Silabs STK3700, Simplicity Studio Iaborgyakorlat

Scherer Balázs

Budapest University of Technology and Economics Department of Measurement and Information Systems

Simplicity Studio

- Saját Firmware library
- Saját ecosystem
- Debug támogatás
- Fogyasztás monitorozás támogatás
- Egyszerű trace featureök
- Integrált dokumentáció és példák

1. Feladat: egyszerű GPIO

lábkezelés

A Giant Gecko GPIO blokkja

A Giant Gecko GPIO blokkja: kimenet

A Giant Gecko GPIO blokkja: bemenet

1. Feladat: Nyomógombokról vezérelt LED-ek

1. Feladat: Konfigurátoros project létrehozása

- New Silicon Labs MCU project
- Simplicity Configurator Program
- Konfigurátor beállítások
 - PE2, PE3 output (LED0, LED1)
 - Push-Pull, Data output = 1, Custom pin name

1. Feladat: Konfigurátoros project létrehozása

- New Silicon Labs MCU project
- Simplicity Configurator Program
- Konfigurátor beállítások
 - PE2, PE3 output (LED0, LED1)
 - PB9, PB10 Input, Filer Enabled (Push1, Push2)

10/55_5	斑	PEE	PILC	P(21	4	Settings	
	-					Pin mode	
07		D9	D10	D11		Filter	
10/00,5	295 .085_5W000	257	902	PGF.		Custom pin name	
		19	FIO			Reserve	
	U		- He				
	DBG_SWOLK			0.8023	_		
	(FB	(F9)		F11	_		
			TEL CEDED	511,5	_		
		39	610	GII			
	141944	11/12/24	1994 - C				
H7	HB	ня	H10	H11			
10/00,8	226	205	704	F27	-7-10		
	(38)	(19)	.10	<u></u>			
PB9 (Push1)	PB10 (Push2)	202	PD1	P24			
1				100			

© BME-MIT 2016

<u>.</u>		<u>k</u>	-
	Baaraa	8	
MÚEGY	ETE	M 1	782

Input Enabled Push2 Not reserved

1. Feladat: Project szerkesztése

InitDevice.c

o enter_DefaultMode_from_RESET()

- Tartalmazza az összes bekonfigurált inicializációt
- A default 14 MHz-es belső RC oszcillátor indul
- Nem kell módosítani
- InitDevice.h
 - Port és PIN definiciók
 - Felhasználhatóak a programban
 - Nem kell módosítani
- Main.c
 - Főprogram ide kerül

Silabs SDK alap architektúra

1. Feladat: Firmware Library

__STATIC_INLINE unsigned int GPIO_PinInGet (GPIO_Port_TypeDef port, unsigned int pin) Read the pad value for a single pin in a GPIO port. More...

__STATIC_INLINE void GPIO_PinOutSet (GPIO_Port_TypeDef port, unsigned int pin) Set a single pin in GPIO data out register to 1. More...

1. Feladat: megoldás

```
int main(void)
  /* Chip errata */
  CHIP_Init();
  enter_DefaultMode_from_RESET();
  /* Infinite loop */
  while (1) {
      if ( GPIO_PinInGet (PUSH1_PORT, PUSH1_PIN) == 0)
      ł
          GPIO PinOutClear (LED1 PORT, LED1 PIN);
      }
      else
      ł
          GPI0_PinOutSet (LED1_PORT, LED1_PIN);
      }
      if ( GPIO_PinInGet (PUSH2_PORT, PUSH2_PIN) == 0)
      {
          GPIO PinOutClear (LED2 PORT, LED2 PIN);
      }
      else
          GPIO_PinOutSet (LED2_PORT, LED2_PIN);
      }
  }
}
```


2. Feladat: Kommunikáció a külvilággal: UART

- Egy UART keret
 - o Start Bit
 - o 5, 6, 7, 8 vagy 9 adat bit
 - Paritás Bit
 - 1, 1.5 vagy 2 Stop Bit
- Szabványos adatsebességek
 - 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
- Fontos a stabil órajel, általában célszerű a kvarc használata

UART fizikai bekötés

Demókártya bekötése

Konfigurátoros project bővítése

Default Mode peripherals fül

o Órajel forrás konfigurálás: HFXO : 48 MHz. Át kell írni !!!

o UARTO engedélyezés. Paraméterek nem kell változtatni

Lábkonfigurálás 1.

Port I/O fül jobb felső sarok

o Engedélyezés. Átállítani az 1. alternatív kivezetésre

Lábkonfigurálás 2.

Default mode port I/O lábbeállítások

• UARTO:

- PEO: Push-pull, Data output = 0
- PE1: Input

Board Controller UART enable, GPIO lábként kezelve: PF7

Push-Pull, Data output = 1

2.a, Üzenet küldés periodikusan

Régi program kiegészítés

Várakozásra szükség van

void USART_Tx (USART_TypeDef *usart, uint8_t data) Transmit one 4-9 bit frame. More...

o Engedélyezést nem elfelejteni

GPI0_PinOutSet (UART_ENABLE_PORT, UART_ENABLE_PIN);

```
USART_Tx (UART0, 'c');
for(volatile int i=0; i<1000000; i++);</pre>
```


2.b, Echo

Karakterre várás és visszaküldés

o Az Rx Függvény blokkol nincs szükség külön várakozásra

uint8_t USART_Rx (USART_TypeDef *usart) Receive one 4-8 bit frame, (or part of 10-16 bit frame). More...

uint8_t ch = USART_Rx (UART0); USART_Tx (UART0, ch);

2.b, Echo

Karakterre várás és visszaküldés

• Az Rx Függvény blokkol nincs szükség külön várakozásra

uint8_t USART_Rx (USART_TypeDef *usart) Receive one 4-8 bit frame, (or part of 10-16 bit frame). More...

uint8_t ch = USART_Rx (UART0); USART_Tx (UART0, ch);

Nézzük meg mi történt a LED, nyomógomb kezeléssel

3. Feladat: Megszakítás

kezelés

3. UART fogadás megszakítással

- Várakozás nélküli echo
- Konfigurátor módosítások nem szükségesek
- UART interrupt engedélyezés

__STATIC_INLINE void USART_IntEnable (USART_TypeDef *usart, uint32_t flags) Enable one or more USART interrupts. More...

Flag: USART_IF_RXDATAV (efm32gg_usart.h)

Data Valid flag

#define USART_IF_RXDATAV

(0x1UL << 2)

/**< RX Data Valid Interrupt Flag */

3. UART fogadás megszakítással

- Vektoros Interrupt kezelő engedélyezés: NVIC
 - A periféria kiváltja az IT-t, de ez mondja meg, hogy ki és hogyan kezeli
 - NVIC_EnableIRQ(UARTO_RX_IRQn): engedélyezet IRQ a az emf32gg990f1024.h-ból (em_device.h includeo-on keresztül F3-al eljutva)
 - UARTO_RX_IRQn = 20, /*!< 16+20 EFM32 UARTO_RX Interrupt */</p>
- Interrupt kezelő függvény
 - startup_gcc_efm32gg.s –ból a neve
 - o void UART0_RX_IRQHandler(void)
 - Fogadás, IT nyugtázás: USART_IntClear (USART_TypeDef *usart, uint32_t flags)

3. UART fogadás megszakítással: megoldás

```
#include "em device.h"
 #include "em chip.h"
 #include "em gpio.h"
 #include "em usart.h"
 #include "InitDevice.h"

void UART0 RX IRQHandler(void)

       USART IntClear (UARTO, USART IF RXDATAV);
       uint8 t ch = USART Rx (UART0);
       USART Tx (UART0, ch);
                          * @brief Main function
⊖ int main(void)
   /* Chip errata */
   CHIP Init();
   enter DefaultMode from RESET();
   USART IntEnable (UART0, USART IF RXDATAV);
   NVIC EnableIRQ(UART0 RX IRQn);
   GPIO PinOutSet (UART ENABLE PORT, UART ENABLE PIN);
   /* Infinite loop */
   while (1) {
       if ( GPIO PinInGet (PUSH1_PORT, PUSH1_PIN) == 0)
       {
           GPIO PinOutClear (LED1 PORT, LED1 PIN);
       }
       else
           GPIO_PinOutSet (LED1_PORT, LED1_PIN);
       }
```


4. Feladat: Printf-elés

Printf használata

Legalább 2 lehetőség van az stdout használatára

Printf használata

Legalább 2 lehetőség van az stdout használatára

Driver csomag használata

4. feladat: Printf használata: ITM Trace alapon

- Driver könyvtár használja az általunk már kipróbált emf32 könyvtárat
- Driver könyvtárból:
 - A trace csatorna a GPIO Port F, Pin 2-t használja (nem kell külön initelni)
 - C:\SiliconLabs\SimplicityStudio\v3\developer\sdks\efm32\v2\kits\common
 - Vagy bemásolni, vagy Eclipsből beszedni, de akkor törölgetni kell a többi file-t. Javasolt a copy.
 - o retargetio.c
 - retargetSWO.c
 - o retargetSWO.h
- setupSWOForPrint()
- stdio include kell. Printf végére \r\n mert nem küldi el !!!
- Eredmény a Console ablakba jön
- Nincs ilyenkor Energy profile és Interupt trace

4. feladat: megoldás

```
#include <stdio.h>
  ovid UART0 RX IRQHandler(void)
   ł
        USART IntClear (UART0, USART IF RXDATAV);
         uint8 t ch = USART_Rx (UART0);
        USART Tx (UART0, ch);
         printf("IT Uart Rx:%c \r\n",ch);
  * @brief Main function
                                *********************
  ⊖ int main(void)
   {
     /* Chip errata */
     CHIP Init();
     enter DefaultMode from RESET();
     setupSWOForPrint();
     USART IntEnable (UART0, USART IF RXDATAV);
     NVIC EnableIRQ(UART0 RX IRQn);
     printf("Hello Silabs \r\n");
    4
            Memory Securables
📃 Console 🖾
Program Output Console
Hello Silabs
IT Uart Rx:d
IT Uart Rx:h
```


5. Feladat: LCD kezelés

LCD kijelző kiosztás

Segment placement

[PIN	1	2	3	4	5	6	7	8	9	10	11	12	13	14
[SO	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13
	COMO	DP2	1 E	1 D	2 E	2 D	3 E	3 D	4 E	4 D	DP5	5 D	DP6	6 D	7 E
[COM1	DP4	1 Q	1 N	2 Q	2 N	3 Q	3 N	4 Q	4 N	5 E	5 N	6 E	6 N	7 Q
[COM2	DP3	1 P	1 C	2 P	2 C	3 P	3 C	4 P	4 C	5 Q	5 C	6 Q	6 C	7 P
3	COM3	COL3	1 G	1 M	2 G	2 M	3 G	3 M	4 G	4 M	5 P	5 M	6 P	6 M	7 G
.[COM4	MINUS	1 F	1 J	2 F	2 J	3 F	3 J	4 F	4 J	5 G	5 J	6 G	6 J	7 F
[COM5	PAD1	1 H	1 K	2 H	2 K	3 H	3 K	4 H	4 K	5 F	5 K	6 F	6 K	7 H
[COM6	GEK	1 A	1 B	2 A	2 B	3 A	3 B	4 A	4 B	5 H	5 B	6 H	6 B	7 A
[COM7	A7	A6	A5	A4	A3	A2	A1	AO	EFM	5 A	COL5	6 A	ANT	BAT

	PIN	15	16	17	18	19	20	21	22	23	24	25	26	27	28
[S14	S15	S16	S17	S18	S19	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COMO
[COMO	7 D	11 A	10 A	9 A	8 A	EM2								COMO
[COM1	7 N	11 F	10 F	9 F	8 F	EM4							COM1	
[COM2	7 C	11 B	10 B	9 B	8 B	COL10					/	COM2		
1	COM3	7 M	11 G	10 G	9 G	8 G	DP10			/		COM3			
	COM4	7 J	11 E	10 E	9 E	8 E	PADO				COM4				
	COM5	7 K	11 C	10 C	9 C	8 C	EM3			COM5					
	COM6	7 B	11 D	10 D	9 D	8 D	EM1		COM6						
	COM7	°C	°F	B1	BO	B2	EMO	COM7		/			/	/	

5. feladat: LCD kijelző használata

- Beépített energiatakarékos szegmens LCD meghajtó
- Nem kell hozzá konfigurálás, csak file másolás
- Szükséges File-ok (driver és emlib könyvtárak)
 - o em_lcd.c
 - o segmenticd.c
 - o segmentlcd.h

35.

5. feladat: LCD kijelző használata

Szegmenses LCD Ininccializáció

- Include-olni a segmentlcd.h
- o SegmentLCD_Init(false)
- Feladat:
- Statikus üzenet kiírása
 - o SegmentLCD_Write("Text")
- Fogadott UART karakterek számolása, kijelzése
 - o SegmentLCD_Number(int)
- További kijelző ikonok kipróbálása
 - o SegmentLCD_Aring
 - SegmentLCD_Symbol
 - SegmentLCD_Battery

5. feladat: megoldás

🗢 Development - Bambi_project/src/main.c - Simplicity Studio								
File Edit Source Refactor Navigate Sear	rch Project Run Window Help							
音 📑 - 🗟 🐵 🛛 🗞 - 🦓 - 🚱 - 🥭 🥒								
Project Explorer 🛛 🗖 🗖	🖫 Bambi_project.hwconf 🚺 main.c 🛛 🖻 retargetswo.h 📄 segmentlcd.h							
 Bambi_project [GNU ARM v4.8.3 - Debug Binaries Includes CMSIS c efm32gg c retargetio.c c retargetswo.c n retargetswo.h c segmentlcd.c n segmentlcd.h e emlib c em_cmu.c c em_emu.c c em_lcd.c c em_lcd.c c em_system.c c em_usart.c GNU ARM v4.8.3 - Debug in tiDevice.h in tiDevice.c in tiDevice.c in tiDevice.c in min.c 	<pre>uint32_t counter = 0; void UART0_RX_IRQHandler(void) { USART_IntClear (UART0, USART_IF_RXDATAV); uint8_t ch = USART_Rx (UART0); USART_Ix (UART0, ch); printf("IT Uart_Rx:%c \r\n",ch); SegmentLCD_ARing(counter%8, 0); SegmentLCD_ARing(counter%8, 1); } e /************************************</pre>							
Bambi_project.hwconf	(

Extra feladatok otthoni

gyakorlásra

Extra 1.: GPIO IT kezelés

- Configurátorban beállítani a GPIO lábakat: PB9, PB10 (elég az egyiket)
- Megfelelő Firmware library függvények meghívása
 O GPIO_ExtIntConfig
- Vigyázat külön IT engedélyezés függvény az NVIC-ben
 NVIC_EnableIRQ
- IT kiszolgáló függvény
 - startup_gcc_efm32gg.s –ból a neve
 - IT flag törlés

Extra 2.: Timer 0 IT programozás feladat

- Periódikus IT 1ms-enként ami növel egy számlálót
- Nyomógomb hatására kiírni a számláló értékét, az LCD-re, aki akar csinálhat reflexidő mérőt

