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 Learning paradigms
◦ Learning as inference

◦ Bayesian learning, full Bayesian inference, Bayesian 
model averaging

◦ Model identification, maximum likelihood learning

 Probably Approximately Correct learning
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 Epicurus' (342? B.C. - 270 B.C.) principle of multiple 
explanations which states that one should keep all 
hypotheses that are consistent with the data.

 The principle of Occam's razor (1285 - 1349, sometimes 
spelt Ockham). Occam's razor states that when inferring 
causes entities should not be multiplied beyond necessity. 
This is widely understood to mean: Among all hypotheses 
consistent with the observations, choose the simplest. In 
terms of a prior distribution over hypotheses, this is the same 
as giving simpler hypotheses higher a priori probability, and 
more complex ones lower probability.
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Russel&Norvig: Artificial intelligence, ch.20
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 Simplest form: learn a function from examples


f is the target function

An example is a pair (x, f(x))

Problem: find a hypothesis h
such that h ≈ f
given a training set of examples

(This is a highly simplified model of real learning:
◦ Ignores prior knowledge
◦ Assumes examples are given)
◦



Example from concept learning

X: i.i.d. samples.

n: sample size

H: hypotheses

bad

The Probably Approximately Correct PAC-learning

A single estimate of the expected error for a given hypothesis is convergent, 

but can we estimate the errors for all hypotheses uniformly well??



Assume that the true hypothesis f is element of the 
hypothesis space H. 

Define the error of a hypothesis h as its misclassification 
rate:

Hypothesis h is approximately correct if

(ε is the “accuracy”)

For h∈Hbad

𝑒𝑟𝑟𝑜𝑟 ℎ = 𝑝(ℎ(𝑥) ≠ 𝑓(𝑥))

𝑒𝑟𝑟𝑜𝑟 ℎ < 𝜀

𝑒𝑟𝑟𝑜𝑟 ℎ > 𝜀



H can be separated to H<ε and Hbad as Hε<

By definition for any h ∈ Hbad, the probability of error is 
larger than 𝜀
thus the probability of no error is less than  )1( 

bad



Thus for m samples for a hb ∈ 𝐻𝑏𝑎𝑑:

For any hb ∈ 𝐻𝑏𝑎𝑑, this can be bounded as

𝑝 𝐷𝑛:ℎ𝑏 𝑥 = 𝑓 𝑥 ≤ (1 − 𝜀)𝑛

𝑝 𝐷𝑛:∃ℎ𝑏∈ 𝐻, ℎ𝑏 𝑥 = 𝑓 𝑥 ≤

≤ 𝐻𝑏𝑎𝑑 1 − 𝜀 𝑛

≤ |𝐻| (1 − 𝜀)𝑛



To have at least δ “probability” of approximate correctness:

By expressing the sample size as function of  ε accuracy 
and δ confidence we get a bound for sample complexity

|𝐻| (1 − 𝜀)𝑛≤ δ

1/𝜀(ln 𝐻 + ln
1

δ
) ≤ n



How many distinct concepts/decision trees with n Boolean 
attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22n

 E.g., with 6 Boolean attributes, there are 
18,446,744,073,709,551,616 trees



 Normative predictive probabilistic inference
◦ performs Bayesian model averaging

◦ implements learning through model posteriors

◦ avoids model identification

 Model identification is hard
◦ Probably Approximately Correct learning
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