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Outline

» Learning paradigms
- Learning as inference

- Bayesian learning, full Bayesian inference, Bayesian
model averaging

- Model identification, maximum likelihood learning
» Probably Approximately Correct learning
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Principles for induction

» Epicurus' (3427 B.C. - 270 B.C.) principle of multiple
explanations which states that one should keep a//
hypotheses that are consistent with the data.

» The principle of Occam's razor (1285 - 1349, sometimes
spelt Ockham). Occam's razor states that when inferring
causes entities should not be multiplied beyond necessity.
This is widely understood to mean: Among all hypotheses
consistent with the observations, choose the simplest. In
terms of a prior distribution over hypotheses, this is the same
as giving simpler hypotheses higher a priori probability, and
more complex ones lower probability.




Bayesian inference with multiple
models

Assume multiple models M; = (.5;, 8;) with prior p(M;) 2 =1,..., M.
The inference p(() = q|E = e) can be performed as follows:
ﬁf| )— 2ui=1,... . MD\ fj U\ 1,,,,‘4-11}?(*’I|Mz‘=f-'i’)}f?(}"tff.|f)
Note that p(M;|e) is a posterior over models with evidence e:
ple|M;)p(M;)
ple)

l.e., the evidence e reweight our beliefs in multiple models.

p(M;le) = o p(e|M;)p(M;)

The inference is performed by Bayesian Model Averaging (BMA).
Epicurus’ (342(?) B.C. - 270 B.C.) principle of multiple ex-
planations which states that one should keep all hypotheses that
are consistent with the data.
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Bayesian model averaging

Beside models, assume N multiple complete observations D).
The standard inference p((Q) = q|E = e, Dy) is defined as:
plgle, Dn) = izt up(q, Mile, Dn) = X1, up(q|M;, e, Dy )p(Mile, Dy)
Because p(q| M, e, Dy) = p(q|M;, €) and p(M;le, D) = p(M;|Dy):
...... up(q|Mi, e)p(M;i| D)

where again p(ﬂ-ﬁD;\;) is a posterior after observations Dy:

P [D\ | :'llri)p(:llr?)

oC p(D\LUl)p(M) -

p(M;|Dy) = o(e)
p(e likelihood  prior

l.e., our rational foundation, probability theory, automatically includes
and normatively defines learning from observations as standard Bayesian

inference!
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Full Bayesian learning

View learning as Bayesian updating of a probability distribution
over the hypothesis space

[ is the hypothesis variable, values /(. h, ..., prior P(/) jth ob-
servation d; gives the outcome of random variable 7); training data

d=d, ..., dy

Given the data so far, each hypothesis has a posterior probability:
P(h;|d) = aP(d|h;)P(h;)

where /?(d|A;) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:
P(X|d) = 2; P(X|d, h;)P(h;|d) = >; P(X|h;))P(h;|d)

No need to pick one best-guess hypothesis!




Bayesian model averaging

View learning as Bayesian updating of a probability distribution
over the hypothesis space

H is the hypothesis variable, values /1. ho. . .., prior P(H)

Jth observation d; gives the outcome of random variable /);
training data d=d;.. ... dy

Given the data so far, each hypothesis has a posterior probability:
P(h;|d) = aP(d|h;)P(h;)
where P’(d|/;) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

P(X|d) =Y, P(X

d, :IL)PUEJCU — Eg PL‘Y“IFJP”EJED

No need to pick one best-guess hypothesis!

ficial intelligence, ch.20



Bayesian Model Averaging example

Suppose there are five kinds of bags of candies:
10% are /iy 100% cherry candies
20% are ho: 75% cherry candies + 25% lime candies
40% are hs: 50% cherry candies + 50% lime candies
20% are hy: 25% cherry candies + 75% lime candies
10% are hs: 100% lime candies

LY ET

Then we observe candies drawn from some bag: ® @ oo 000000

What kind of bag is it? What flavour will the next candy be?

Russel&Norvig: Artificial intelligence




Learning rate for models
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Learning rate for model predictions
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MAP approximation

Summing over the hypothesis space is often intractable
(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose /\jap maximizing

P(h;|d)

h;)P(h;) or log P(d

|.e., maximize P(d h;) + log P(h;)

Log terms can be viewed as (negative of)
bits to encode data given hypothesis + bits to encode hypothesis
This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, /’(d|/;) is 1 if consistent, 0 otherwise
= MAP = simplest consistent hypothesis (cf. science)

AIMA: Inductive inference 9



ML approximation

For large data sets, prior becomes irrelevant
Maximum likelihood (ML) learning: choose /1y, maximizing F(d|h;)

l.e., simply get the best fit to the data; identical to MAP for uniform
prior
(which is reasonable if all hypotheses are of the same complexity)

ML is the “standard” (non-Bayesian) statistical learning method

AlIMA: Inductive inference 10



Maximum likelood model selection

sequential likelihood of a given data

1 ° ® ® ® ® ® ® ® ® ® ® ®

0.8

0.6

0.4

0.2

0 —————
12 3 4 5 6 7 8 9 10 11 12

—@=N] —@=h?2 —@=h3 w=@=h4 —@=h5

Al.  April 8, 2019



Inductive learning

» Simplest form: learn a function from examples
4

fis the target function

An example is a pair (x, f(x)

Problem: find a hypothesis A
such that A ~ f
given a training set of examples

(This is a highly simplified model of real learning:
> Ignores prior knowledge
> Assumes examples are given)




The Probably Approximately Correct PAC-learning

A single estimate of the expected error for a given hypothesis is convergent,
but can we estimate the errors for all hypotheses uniformly well??

Example from concept learning

X: 1.I.d. samples.
n. sample size H

H: hypotheses

Hhad




Assume that the true hypothesis 7is element of the
hypothesis space H.

Define the error of a hypothesis h as its misclassification
rate:

error(h) = p(h(x) # f(x))

Hypothesis his approximately correct if
error(h) < ¢

(e is the “accuracy”)

For heH, 4

error(h) > ¢




H can be separated to H__. and H,_,4as H._

bad

By definition for any h € H, 4, the probability of error is
larger than ¢
> thus the probability of no error is less than <(1—-¢)




Thus for m samples for a h, € Hy,4:

p(Dpihy () = F()) < (1 — &)

For any h, € Hy,4, this can be bounded as

p(Dp:3hy€ H, by (x) = f(x)) <
< |Hpgql(1 — &)™
< |H| (1—-¢&)"




To have at least 6 “probability” of approximate correctness:

|H| (1 —&)"< 8

By expressing the sample size as function of € accuracy
and 6 confidence we get a bound for sample complexity

1/e(nlH| + In(g)) <n




Hypothesis spaces

How many distinct concepts/decision trees with n Boolean
attributes?

= number of Boolean functions
— number of distinct truth tables with 2" rows = 22"

» E.g., with 6 Boolean attributes, there are
18,446,744,073,709,551,616 trees




Summary

» Normative predictive probabilistic inference
- performs Bayesian model averaging

> implements learning through model posteriors
- avoids model identification

» Model identification is hard
> Probably Approximately Correct learning
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