Adapted from AIMA slides

Extended Bayesian networks

Peter Antal antal@mit.bme.hu

A.I.

Outline

- Reminder
- Bayesian network extensions
 - Canonical local models
 - Decision tree/graph local models
 - Dynamic Bayesian networks

Independence, Conditional independence

 $I_P(X;Y|Z)$ or $(X \perp\!\!\!\perp Y|Z)_P$ denotes that X is independent of Y given Z defined as follows

for all x,y and z with P(z)>0: P(x;y|z)=P(x|z) P(y|z)

(Almost) alternatively, $I_P(X;Y|Z)$ iff

P(X|Z,Y) = P(X|Z) for all z,y with P(z,y) > 0.

Other notations: $D_P(X;Y|Z) = def = \neg I_P(X;Y|Z)$

Direct dependence: $D_P(X;Y|V/\{X,Y\})$

The independence model of a distribution

The independence map (model) M of a distribution P is the set of the valid independence triplets:

$$M_P = \{I_{P,1}(X_1; Y_1|Z_1), ..., I_{P,K}(X_K; Y_K|Z_K)\}$$

If P(X,Y,Z) is a Markov chain, then $M_P=\{D(X;Y), D(Y;Z), I(X;Z|Y)\}$ Normally/almost always: D(X;Z)Exceptionally: I(X;Z)

Bayesian networks: three facets

 $M_P=\{I_{P,1}(X_1;Y_1|Z_1),...\}$ 2. Graphical representation of (in)dependencies

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - a directed, acyclic graph (link ≈ "directly influences")
 - a conditional distribution for each node given its parents:
 P (X_i | Parents (X_i))
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example contd.

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)
- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5-1 = 31$)

A multinomiális általános eset I.

Tfh: 5 szülő csomópont bináris értékű

2 szülő csomópont 3-as értékű

1 szülő csomópont 4-es értékű és

az eredmény csomópont 5-ös értékű ?????

A multinomiális általános eset II.

Sz1 Sz2 Sz3 Sz4 Sz5 Sz6 Sz7 Sz8 Kimeneti változó

```
e2 e3 e4 e5
e2 e2
e3 e3
       e1
        e2
       e3
       e4
```

Minden kombináció

```
2<sup>5</sup> x 3<sup>2</sup> x 4 szülői feltétel van (FVT sor) és 4 (független érték) (FVT oszlop) = összesen: (32 x 9 x 4) x 4 = 4608
```

Constructing Bayesian networks

- ▶ 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that $P(X_i \mid Parents(X_i)) = P(X_i \mid X_1, \ldots, X_{i-1})$

This choice of parents guarantees:

$$P(X_1, ..., X_n) = \pi_{i=1}^n P(X_i / X_1, ..., X_{i-1})$$
 //(chain rule)
= $\pi_{i=1}^n P(X_i / Parents(X_i))$ //(by construction)

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$P(X_1, ..., X_n) = \pi_{i=1} P(X_i | Parents(X_i))$$

e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

$$= P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$$

Noisy-OR

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \dots U_k$ include all causes (can add leak node)
- 2) Independent failure probability q_i for each cause alone

$$\Rightarrow P(X|U_1...U_j, \neg U_{j+1}...\neg U_k) = 1 - \prod_{i=1}^j q_i$$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Τ	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Τ	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters **linear** in number of parents

Decision trees, decision graphs

Decision tree: Each internal node represent a (univariate) test, the leafs contains the conditional probabilities given the values along the path.

Decision graph: If conditions are equivalent, then subtrees can be merged.

E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreg)

A.I.: BN homework guide

Dynamic Bayesian networks

 X_t , E_t contain arbitrarily many variables in a replicated Bayes net

http://phoenix.mit.bme.hu:49080/kgt/

A.I. 4/10/2019 16

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20 \times 2^3 = 160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

A.I. 4/10/2019 17

Inferring independencies from structure: d-separation

I_G(X;Y|Z) denotes that X is d-separated (directed separated) from Y by Z in directed

graph G.

(1)

(2)

(3)

(3)

d-separation and the global Markov condition

Definition 7 A distribution $P(X_1, ..., X_n)$ obeys the global Markov condition w.r.t. DAG G, if

$$\forall X, Y, Z \subseteq U (X \perp\!\!\!\perp Y|Z)_G \Rightarrow (X \perp\!\!\!\perp Y|Z)_P, \tag{9}$$

where $(X \perp\!\!\!\perp Y|Z)_G$ denotes that X and Y are d-separated by Z, that is if every path p between a node in X and a node in Y is blocked by Z as follows

- either path p contains a node n in Z with non-converging arrows (i.e. → n → or ← n →),
- 2. or path p contains a node n not in Z with converging arrows (i.e. $\rightarrow n \leftarrow$) and none of its descendants of n is in Z.

Summary

- Conditional independencies allows:
 - efficient representation of the joint probabilitity distribution,
 - efficient inference to compute conditional probabilites.
- Bayesian networks use directed acyclic graphs to represent
 - conditional independencies,
 - conditional probability distributions,
 - causal mechanisms.
- Design of variables and order of the variables can drastically influence structure

Suggested reading:

- Charniak: Bayesian networks without tears, 1991
- Koller, Daphne, et al. "Graphical models in a nutshell." *Introduction to statistical relational learning* (2007): 13-55.