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Abstract

These notes address the calculation and applications of approximate solutions to linear equations
by least squares. Least squares is illustrated by way of several examples in signal processing: linear
prediction, smoothing, deconvolution, system identi�cation, and estimating missing data.

These notes address the calculation and applications of approximate solutions to linear equations by
least squares. We deal with the `easy' case wherein the system matrix is full rank. If the system matrix is
rank de�cient, then other methods are needed, e.g., QR decomposition, singular value decomposition, or the
pseudo-inverse, [2], [3].

In these notes, least squares is illustrated by applying it to several basic problems in signal processing:

1. Linear prediction
2. Smoothing
3. Deconvolution
4. System identi�cation
5. Estimating missing data

For the use of least squares in �lter design, see [1].

1 Notation

We denote vectors in lower-case bold, i.e.,

x =


x1

x2
...

xN

 . (1)

We denote matrices in upper-case bold. The transpose of a vector or matrix in indicated by a superscript
T , i.e., xT is the transpose of x.
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The notation ‖ x ‖2 refers to the Euclidian length of the vector x, i.e.,

‖ x ‖2 =

√
|x1|2 + |x2|2 + · · ·+ |xN |2. (2)

The `sum of squares' of x is denoted by ‖ x ‖22, i.e.,

‖ x ‖22=
∑
n

|x (n) |2 = xTx. (3)

The `energy' of a vector x refers to ‖ x ‖22.
In these notes, it is assumed that all vectors and matrices are real-valued. In the complex-valued case,

the conjugate transpose should be used in place of the transpose, etc.

2 Overdetermined equations

Consider the system of linear equations

y = Hx. (4)

If there is no solution to this system of equations, then the system is `overdetermined'. This frequently
happens when H is a `tall' matrix (more rows than columns) with linearly independent columns.

In this case, it is common to seek a solution x minimizing the energy of the error:

J (x) =‖ y −Hx ‖22 . (5)

Expanding J (x) gives

J (x) = (y −Hx)
T
(y −Hx)

= yTy − yTHx− xTHTy + xTHTHx

= yTy − 2yTHx+ xTHTHx.

(6)

Note that each of the four terms in (6) are scalars. Note also that the scalar xTHTy is the transpose of the
scalar yTHx, and hence xTHTy = yTHx.

Taking the derivative (see Appendix "Vector derivatives" (Section 10: Vector derivatives)), gives

∂

∂x
J (x) = −2HTy + 2HTHx (7)

Setting the derivative to zero,

∂

∂x
J (x) = 0 ⇒ HTHx = HTy (8)

Let us assume that HTH is invertible. Then the solution is given by

x =
(
HTH

)−1
HTy. (9)

This is the `least squares' solution.

min
x
‖ y −Hx ‖22 ⇒ x =

(
HTH

)−1
HTy (10)

In some situations, it is desirable to minimize the weighted square error, i.e.,
∑
nwn r

2
n where r is the residual,

or error, r = y −Hx, and wn are positive weights. This corresponds to minimizing ‖ W1/2 (y −Hx) ‖22
where W is the diagonal matrix, [W]n,n = wn. Using (10) gives

min
x
‖W1/2 (y −Hx) ‖22 ⇒ x =

(
HTWH

)−1
HTWy (11)

http://cnx.org/content/m46131/1.1/
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where we have used the fact that W is symmetric.

3 Underdetermined equations

Consider the system of linear equations

y = Hx. (12)

If there are many solutions, then the system is `underdetermined'. This frequently happens when H is a
`wide' matrix (more columns than rows) with linearly independent rows.

In this case, it is common to seek a solution x with minimum norm. That is, we would like to solve the
optimization problem

min
x

‖ x ‖22
such that y = Hx.

(13)

Minimization with constraints can be done with Lagrange multipliers. So, de�ne the Lagrangian:

L (x, µ) =‖ x ‖22 +µT (y −Hx) (14)

Take the derivatives of the Lagrangian:

∂
∂xL (x) = 2x−HTµ

∂
∂µL (x) = y −Hx

(15)

Set the derivatives to zero to get:

x = 1
2H

Tµ

y = Hx
(16)

Plugging (16) into gives

y =
1

2
HHTµ. (17)

Let us assume HHT is invertible. Then

µ = 2
(
HHT

)−1
y. (18)

Plugging (18) into (16) gives the `least squares' solution:

x = HT
(
HHT

)−1
y. (19)

We can verify that x in this formula does in fact satisfy y = Hx by plugging in:

Hx = H
[
HT
(
HHT

)−1
y
]
=
(
HHT

) (
HHT

)−1
y = y (20)

So,

min
x
‖ x ‖22 s.t. y = Hx ⇒ x = HT

(
HHT

)−1
y. (21)

http://cnx.org/content/m46131/1.1/
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In some situations, it is desirable to minimize the weighted energy, i.e.,
∑
nwn x

2
n, where wn are positive

weights. This corresponds to minimizing ‖W1/2 x ‖22 where W is the diagonal matrix, [W]n,n = wn. The
derivation of the solution is similar, and gives

min
x
‖W1/2x ‖22 s.t. y = Hx ⇒ x = W−1 HT

(
HW−1HT

)−1
y (22)

This solution is also derived below, see (45).

4 Regularization

In the overdetermined case, we minimized ‖ y−Hx ‖22. In the underdetermined case, we minimized ‖ x ‖22.
Another approach is to minimize the weighted sum: c1 ‖ y−Hx ‖22 +c2 ‖ x ‖22. The solution x depends on
the ratio c2/c1, not on c1 and c2 individually.

A common approach to obtain an inexact solution to a linear system is to minimize the objective function:

J (x) =‖ y −Hx ‖22 +λ ‖ x ‖22 (23)

where λ > 0. Taking the derivative, we get

∂

∂x
J (x) = 2HT (Hx− y) + 2λx (24)

Setting the derivative to zero,

∂
∂xJ (x) = 0 ⇒ HTHx+ λx = HTy

⇒
(
HTH+ λI

)
x = HTy

(25)

So the solution is given by

x =
(
HTH+ λI

)−1
HTy (26)

So,

min
x
‖ y −Hx ‖22 +λ ‖ x ‖22 ⇒ x =

(
HTH+ λI

)−1
HTy (27)

This is referred to as `diagonal loading' because a constant, λ, is added to the diagonal elements of HTH.
The approach also avoids the problem of rank de�ciency because HTH+λI is invertible even if HTH is not.
In addition, the solution (27) can be used in both cases: when H is tall and when H is wide.

5 Weighted regularization

A more general form of the regularized objective function (23) is:

J (x) =‖ y −Hx ‖22 +λ ‖ Ax ‖22 (28)

where λ > 0. Taking the derivative, we get

∂

∂x
J (x) = 2HT (Hx− y) + 2λATAx (29)

Setting the derivative to zero,

∂
∂xJ (x) = 0 ⇒ HTHx+ λATAx = HTy

⇒
(
HTH+ λATA

)
x = HTy

(30)

http://cnx.org/content/m46131/1.1/
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So the solution is given by

x =
(
HTH+ λATA

)−1
HTy (31)

So,

min
x
‖ y −Hx ‖22 +λ ‖ Ax ‖22

⇒ x =
(
HTH+ λATA

)−1
HTy

(32)

Note that if A is the identity matrix, then equation (32) becomes (27).

6 Constrained least squares

Constrained least squares refers to the problem of �nding a least squares solution that exactly satis�es
additional constraints. If the additional constraints are a set of linear equations, then the solution is obtained
as follows.

The constrained least squares problem is of the form:

min
x
‖ y −Hx ‖22

such that Cx = b
(33)

De�ne the Lagrangian,

L (x, µ) =‖ y −Hx ‖22 +µT (Cx− b) . (34)

The derivatives are:

∂

∂x
L (x) = 2HT (Hx− y) +CTµ (35)

∂

∂µ
L (x) = Cx− b (36)

Setting the derivatives to zero,

∂
∂xL (x) = 0 ⇒ x =

(
HTH

)−1 (
HTy − 0.5CTµ

)
∂
∂µL (x) = 0 ⇒ Cx = b

(37)

Multiplying (37) on the left by C gives Cx, which from is b, so we have

C
(
HTH

)−1 (
HTy − 0.5CTµ

)
= b (38)

or, expanding,

C
(
HTH

)−1
HTy − 0.5C

(
HTH

)−1
CTµ = b. (39)

Solving for µ gives

µ = 2
(
C
(
HTH

)−1
CT
)−1 (

C
(
HTH

)−1
HTy − b

)
(40)

Plugging µ into (37) gives

x =
(
HTH

)−1
(
HTy −CT

(
C
(
HTH

)−1
CT
)−1 (

C
(
HTH

)−1
HTy − b

))
(41)

http://cnx.org/content/m46131/1.1/
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Let us verify that x in this formula does in fact satisfy Cx = b,

Cx = C
(
HTH

)−1 (
HTy−

CT
(
C
(
HTH

)−1
CT
)−1 (

C
(
HTH

)−1
HTy − b

))
= C

(
HTH

)−1
HTy−

C
(
HTH

)−1
CT
(
C
(
HTH

)−1
CT
)−1 (

C
(
HTH

)−1
HTy − b

)
= C

(
HTH

)−1
HTy −

(
C
(
HTH

)−1
HTy − b

)
= b

(42)

So,

min
x
‖ y −Hx ‖22 s.t. Cx = b ⇒

x =
(
HTH

)−1
(
HTy −CT

(
C
(
HTH

)−1
CT
)−1 (

C
(
HTH

)−1
HTy − b

)) (43)

6.1 Special cases

Simpler forms of (43) are frequently useful. For example, if H = I and b = 0 in (43), then we get

min
x
‖ y − x ‖22 s.t. Cx = 0

⇒ x = y −CT
(
CCT

)−1
Cy

(44)

If y = 0 in (43), then we get

min
x
‖ Hx ‖22 s.t. Cx = b

⇒ x =
(
HTH

)−1
CT
(
C
(
HTH

)−1
CT
)−1

b
(45)

If y = 0 and H = I in (43), then we get

min
x
‖ x ‖22 s.t. Cx = b ⇒ x = CT

(
CCT

)−1
b (46)

which is the same as (21).

7 Note

The expressions above involve matrix inverses. For example, (10) involves
(
HTH

)−1
. However, it must

be emphasized that �nding the least square solution does not require computing the inverse of HTH even
though the inverse appears in the formula. Instead, x in (10) should be obtained, in practice, by solving the
system Ax = b where A = HTH and b = HTy. The most direct way to solve a linear system of equations
is by Gaussian elimination. Gaussian elimination is much faster than computing the inverse of the matrix
A.

http://cnx.org/content/m46131/1.1/
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8 Examples

8.1 Polynomial approximation

An important example of least squares is �tting a low-order polynomial to data. Suppose the N -point data
is of the form (ti, yi) for 1 ≤ i ≤ N .

0 0.5 1 1.5 2
−2

−1

0

1

2
Data

0 0.5 1 1.5 2
−2

−1

0

1

2
Polynomial approximation (degree = 2)

0 0.5 1 1.5 2
−2

−1

0

1

2
Polynomial approximation (degree = 4)

 

Figure 46: Least squares polynomial approximation.

The goal is to �nd a polynomial that approximates the data by minimizing the energy of the residual:

E =
∑
i

(yi − p (ti))2 (47)

where p (t) is a polynomial, e.g.,

p (t) = a0 + a1 t+ a2 t
2. (48)

http://cnx.org/content/m46131/1.1/
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The problem can be viewed as solving the overdetermined system of equations,
y1

y2
...

yN

 ≈


1 t1 t21

1 t2 t22
...

...
...

1 tN t2N



a0

a1

a2

 , (49)

which we denote as y ≈ Ha. The energy of the residual, E, is written as

E =‖ y −Ha ‖22 . (50)

From (10), the least squares solution is given by a =
(
HTH

)−1
HTy. An example is illustrated in Figure 46.

8.2 Linear prediction

One approach to predict future values of a time-series is based on linear prediction, e.g.,

y (n) ≈ a1 y (n− 1) + a2 y (n− 2) + a3 y (n− 3) . (51)

If past data y (n) is available, then the problem of �nding ai can be solved using least squares. Finding

a = (a0, a1, a2)
T
can be viewed as one of solving an overdetermined system of equations. For example, if

y (n) is available for 0 ≤ n ≤ N − 1, and we seek a third order linear predictor, then the overdetermined
system of equations are given by

y (3)

y (4)
...

y (N − 1)

 ≈


y (2) y (1) y (0)

y (3) y (2) y (1)
...

...
...

y (N − 2) y (N − 3) y (N − 4)



a1

a2

a3

 , (52)

which we can write as y = Ha where H is a matrix of size (N − 3)×3. From (10), the least squares solution

is given by a =
(
HTH

)−1
HTy. Note that HTH is small, of size 3× 3 only. Hence, a is obtained by solving

a small linear system of equations.

http://cnx.org/content/m46131/1.1/
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Figure 52: Least squares linear prediction.

Once the coe�cients ai are found, then y (n) for n > N can be estimated using the recursive di�erence
equation (51).

An example is illustrated in Figure 52. One hundred samples of data are available, i.e., y (n) for 0 ≤ n ≤
99. From these 100 samples, a p-order linear predictor is obtained by least squares, and the subsequent 100
samples are predicted.

8.3 Smoothing

One approach to smooth a noisy signal is based on least squares weighted regularization. The idea is to
obtain a signal similar to the noisy one, but smoother. The smoothness of a signal can be measured by the
energy of its derivative (or second-order derivative). The smoother a signal is, the smaller the energy of its
derivative is.

http://cnx.org/content/m46131/1.1/
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De�ne the matrix D as

D =


1 −2 1

1 −2 1

. . .
. . .

1 −2 1

 . (53)

Then Dx is the second-order di�erence (a discrete form of the second-order derivative) of the signal x (n).
See Appendix "The Kth-order di�erence" (Section 11: The Kth-order di�erence). If x is smooth, then
‖ Dx ‖22 is small in value.

If y (n) is a noisy signal, then a smooth signal x (n), that approximates y (n), can be obtained as the
solution to the problem:

min
x
‖ y − x ‖22 +λ ‖ Dx ‖22 (54)

where λ > 0 is a parameter to be speci�ed. Minimizing ‖ y− x ‖22 forces x to be similar to the noisy signal
y. Minimizing ‖ Dx ‖22 forces x to be smooth. Minimizing the sum in (54) forces x to be both similar to y
and smooth (as far as possible, and depending on λ).

If λ = 0, then the solution will be the noisy data, i.e., x = y, because this solution makes (54) equal to
zero. In this case, no smoothing is achieved. On the other hand, the greater λ is, the smoother x will be.

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5
Noisy data

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5
Least squares smoothing

 

Figure 54: Least squares smoothing.

Using (32), the signal x minimizing (54) is given by

x =
(
I+ λDTD

)−1
y. (55)

Note that the matrix I+λDTD is banded. (The only non-zero values are near the main diagonal). Therefore,
the solution can be obtained using fast solvers for banded systems [5].

http://cnx.org/content/m46131/1.1/
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An example of least squares smoothing is illustrated in Figure 54. A noisy ECG signal is smoothed using
(55). We have used the ECG waveform generator ECGSYN [4].

8.4 Deconvolution

Deconvolution refers to the problem of �nding the input to an LTI system when the output signal is known.
Here, we assume the impulse response of the system is known. The output, y (n), is given by

y (n) = h (0) x (n) + h (1) x (n− 1) + · · ·+ h (N) x (n−N) (56)

where x (n) is the input signal and h (n) is the impulse response. Equation (56) can be written as y = Hx
where H is a matrix of the form

H =


h (0)

h (1) h (0)

h (2) h (1) h (0)
...

. . .

 . (57)

This matrix is constant-valued along its diagonals. Such matrices are called Toeplitz matrices.
It may be expected that x can be obtained from y by solving the linear system y = Hx. In some

situations, this is possible. However, the matrix H is often singular or almost singular. In this case,
Gaussian elimination encounters division by zeros.

For example, Figure 57 illustrates an input signal, x (n), an impulse response, h (n), and the output
signal, y (n). When we attempt to obtain x by solving y = Hx in Matlab, we receive the warning message:
`Matrix is singular to working precision' and we obtain a vector of all NaN (not a number).

http://cnx.org/content/m46131/1.1/
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Figure 57: Deconvolution of noise-free data by diagonal loading.

Due to H being singular, we regularize the problem. Note that the input signal is largely zero, hence, it
is reasonable to seek a solution x with small energy. The signal x we seek should also satisfy y = Hx, at
least approximately. To obtain such a signal, x, we solve the problem:

min
x
‖ y −Hx ‖22 +λ ‖ x ‖22 (58)

where λ > 0 is a parameter to be speci�ed. Minimizing ‖ y −Hx ‖22 forces x to be consistent with the
output signal y. Minimizing ‖ x ‖22 forces x to have low energy. Minimizing the sum in (58) forces x to be
consistent with y and to have low energy (as far as possible, and depending on λ). Using (32), the signal x

http://cnx.org/content/m46131/1.1/
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minimizing (58) is given by

x =
(
HTH+ λI

)−1
HTy. (59)

This technique is called `diagonal loading' because λ is added the diagonal of HTH. A small value of λ is
su�cient to make the matrix invertible. The solution, illustrated in Figure 57, is very similar to the original
input signal, shown in the �gure.

In practice, the available data is also noisy. In this case, the data y is given by y = Hx+w where w is
the noise. The noise is often modeled as an additive white Gaussian random signal. In this case, diagonal
loading with a small λ will generally produce a noisy estimate of the input signal. In Figure 57, we used
λ = 0.1. When the same value is used with the noisy data, a noisy result is obtained, as illustrated in
Figure 59. A larger λ is needed so as to attenuate the noise. But if λ is too large, then the estimate of the
input signal is distorted. Notice that with λ = 1.0, the noise is reduced but the height of the the pulses
present in the original signal are somewhat attenuated. With λ = 5.0, the noise is reduced slightly more,
but the pulses are substantially more attenuated.

http://cnx.org/content/m46131/1.1/
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Figure 59: Deconvolution of noisy data by diagonal loading.

To improve the deconvolution result in the presence of noise, we can minimize the energy of the derivative
(or second-order derivative) of x instead. As in the smoothing example above, minimizing the energy of the
second-order derivative forces x to be smooth. In order that x is consistent with the data y and is also
smooth, we solve the problem:

min
x
‖ y −Hx ‖22 +λ ‖ Dx ‖22 (60)

where D is the second-order di�erence matrix (53). Using (32), the signal x minimizing (60) is given by

x =
(
HTH+ λDTD

)−1
HTy. (61)

http://cnx.org/content/m46131/1.1/
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The solution obtained using (61) is illustrated in Figure 61. Compared to the solutions obtained by diagonal
loading, illustrated in Figure 59, this solution is less noisy and less distorted.
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Figure 61: Deconvolution of noisy data by derivative regularization.

This example illustrates the need for regularization even when the data is noise-free (an unrealistic ideal
case). It also illustrates the choice of regularizer (i.e., ‖ x ‖22, ‖ Dx ‖22, or other) a�ects the quality of the
result.

8.5 System identi�cation

System identi�cation refers to the problem of estimating an unknown system. In its simplest form, the
system is LTI and input-output data is available. Here, we assume that the output signal is noisy. We also
assume that the impulse response is relatively short.

http://cnx.org/content/m46131/1.1/
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Figure 61: Least squares system identi�cation.

The output, y (n), of the system can be written as

y (n) = h0 x (n) + h1 x (n− 1) + h2 x (n− 2) + w (n) (62)

where x (n) is the input signal and w (n) is the noise. Here, we have assumed the impulse response hn is of

http://cnx.org/content/m46131/1.1/
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length 3. We can write this in matrix form as

y0

y1

y2

y3
...


≈



x0

x1 x0

x2 x1 x0

x3 x2 x1
...

...




h0

h1

h2

 (63)

which we denote as y ≈ Xh. If y is much longer than the length of the impulse response h, then X is a tall
matrix and y ≈ Xh is an overdetermined system of equations. In this case, h can be estimated from (10) as

h =
(
XTX

)−1
XTy (64)

An example is illustrated in Figure 61. A binary input signal and noisy output signal are shown. When it is
assumed that h is of length 10, then we obtain the impulse response shown. The residual, i.e., r = y−Xh,
is also shown in the �gure. It is informative to plot the root-mean-square-error (RMSE), i.e., ‖ r ‖2, as
a function of the length of the impulse response. This is a decreasing function. If the data really is the
input-output data of an LTI system with a �nite impulse response, and if the noise is not too severe, then
the RMSE tends to �atten out at the correct impulse response length. This provides an indication of the
length of the unknown impulse response.

8.6 Missing sample estimation

Due to transmission errors, transient interference, or impulsive noise, some samples of a signal may be lost
or so badly corrupted as to be unusable. In this case, the missing samples should be estimated based on the
available uncorrupted data. To complicate the problem, the missing samples may be randomly distributed
through out the signal. Filling in missing values in order to conceal errors is called error concealment[6].

This example shows how the missing samples can be estimated by least squares. As an example, Figure 64
shows a 200-point ECG signal wherein 100 samples are missing. The problem is to �ll in the missing 100
samples.
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Figure 64: Least squares estimation of missing data.

To formulate the problem as a least squares problem, we introduce some notation. Let x be a signal of
length N . Suppose K samples of x are known, where K < N . The K-point known signal, y, can be written
as

y = Sx (65)

where S is a `selection' (or `sampling') matrix of size K ×N . For example, if only the �rst, second and last
elements of a 5-point signal x are observed, then the matrix S is given by

S =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 . (66)

The matrix S is the identity matrix with rows removed, corresponding to the missing samples. Note that
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Sx removes two samples from the signal x,

Sx =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 1





x (0)

x (1)

x (2)

x (3)

x (4)


=


x (0)

x (1)

x (4)

 = y. (67)

The vector y consists of the known samples of x. So, the vector y is shorter than x (K < N).
The problem can be stated as: Given the signal, y, and the matrix, S, �nd x such that y = Sx. Of

course, there are in�nitely many solutions. Below, it is shown how to obtain a smooth solution by least
squares.

Note that STy has the e�ect of setting the missing samples to zero. For example, with S in (66) we have

STy =



1 0 0

0 1 0

0 0 0

0 0 0

0 0 1




y (0)

y (1)

y (2)

 =



y (0)

y (1)

0

0

y (2)


. (68)

Let us de�ne Sc as the `complement' of S. The matrix Sc consists of the rows of the identity matrix not
appearing in S. Continuing the 5-point example,

Sc =

 0 0 1 0 0

0 0 0 1 0

 . (69)

Now, an estimate
^
x can be represented as

^
x= STy + STc v (70)

where y is the available data and v consists of the samples to be determined. For example,

STy + STc v =



1 0 0

0 1 0

0 0 0

0 0 0

0 0 1




y (0)

y (1)

y (2)

+



0 0

0 0

1 0

0 1

0 0


 v (0)

v (1)

 =



y (0)

y (1)

v (0)

v (1)

y (2)


. (71)

The problem is to estimate the vector v, which is of length N −K.
Let us assume that the original signal, x, is smooth. Then it is reasonable to �nd v to optimize the

smoothness of
^
x, i.e., to minimize the energy of the second-order derivative of

^
x. Therefore, v can be

obtained by minimizing ‖ D ^
x‖22 where D is the second-order di�erence matrix (53). Using (70), we �nd v

by solving the problem

min
v
‖ D

(
STy + STc v

)
‖22, (72)
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i.e.,

min
v
‖ DSTy +DSTc v ‖22 . (73)

From (10), the solution is given by

v = −
(
ScD

TDSTc
)−1

ScD
TDSTy. (74)

Once v is obtained, the estimate
^
x in (70) can be constructed simply by inserting entries v (i) into y.

An example of least square estimation of missing data using (74) is illustrated in Figure 64. The result
is a smoothly interpolated signal.
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Figure 74: Visualization of the banded matrix G in (75). All the non-zero values lie near the main
diagonal.

We make several remarks.

1. All matrices in (74) are banded, so the computation of v can be implemented with very high e�ciency
using a fast solver for banded systems [5]. The banded property of the matrix

G = ScD
TDSTc (75)

arising in (74) is illustrated in Figure 74.
2. The method does not require the pattern of missing samples to have any particular structure. The

missing samples can be distributed quite randomly.
3. This method (74) does not require any regularization parameter λ be speci�ed. However, this derivation

does assume the available data, y, is noise free. If y is noisy, then simultaneous smoothing and missing
sample estimation is required (see the Exercises).
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Speech de-clipping: In audio recording, if the amplitude of the audio source is too high, then the recorded
waveform may su�er from clipping (i.e., saturation). Figure 75 shows a speech waveform that is clipped. All
values greater than 0.2 in absolute value are lost due to clipping.
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Figure 75: Estimation of speech waveform samples lost due to clipping. The lost samples are estimated
by least squares.

To estimate the missing data, we can use the least squares approach given by (74). That is, we �ll in the
missing data so as to minimize the energy of the derivative of the total signal. In this example, we minimize
the energy of the the third derivative. This encourages the �lled in data to have the form of a parabola
(second order polynomial), because the third derivative of a parabola is zero. In order to use (74) for this
problem, we only need to change the matrix D to the following one. If we de�ne the matrix D as

D =


1 −3 3 −1

1 −3 3 −1
. . .

. . .

1 −3 3 −1

 , (76)

then Dx is an approximation of the third-order derivative of the signal x.
Using (74) with D de�ned in (76), we obtain the signal shown in the Figure 75. The samples lost due to

clipping have been smoothly �lled in.
Figure 76 shows both, the clipped signal and the estimated samples, on the same axis.
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Figure 76: The available clipped speech waveform is shown in blue. The �lled in signal, estimated by
least squares, is shown in red.

9 Exercises

1. Find the solution x to the least squares problem:

min
x
‖ y −Ax ‖22 +λ ‖ b− x ‖22 (77)

2. Show that the solution x to the least squares problem

min
x

λ1 ‖ b1 −A1x ‖22 +λ2 ‖ b2 −A2x ‖22 +λ3 ‖ b3 −A3x ‖22 (78)

is

x =
(
λ1A

T
1 A1 + λ2A

T
2 A2 + λ3A

T
3 A3

)−1

×
(
λ1A

T
1 b1 + λ2A

T
2 b2 + λ3A

T
3 b3

) (79)

3. In reference to (27), why is HTH+ λI with λ > 0 invertible even if HTH is not?
4. Show (85).
5. Smoothing. Demonstrate least square smoothing of noisy data. Use various values of λ. What behavior

do you observe when λ is very high?
6. The second-order di�erence matrix (53) was used in the examples for smoothing, deconvolution, and

estimating missing samples. Discuss the use of the third-order di�erence instead. Perform numerical
experiments and compare results of 2-nd and 3-rd order di�erence matrices.

7. System identi�cation. Perform a system identi�cation experiment with varying variance of additive
Gaussian noise. Plot the RMSE versus impulse response length. How does the plot of RMSE change
with respect to the variance of the noise?

8. Speech de-clipping. Record your own speech and use it to arti�cially create a clipped signal. Perform
numerical experiments to test the least square estimation of the lost samples.

9. Suppose the available data is both noisy and that some samples are missing. Formulate a suitable
least squares optimization problem to smooth the data and recover the missing samples. Illustrate the
e�ectiveness by a numerical demonstration (e.g. using Matlab).
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10 Vector derivatives

If f (x) is a function of x1, · · · , xN , then the derivative of f (x) with respect to x is the vector of derivatives,

∂

∂x
f (x) =


∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xN

 . (80)

This is the gradient of f , denoted ∇f . By direct calculation, we have

∂

∂x
xTb = b (81)

and

∂

∂x
bTx = b. (82)

Suppose that A is a symmetric real matrix, AT = A. Then, by direct calculation, we also have

∂

∂x
xTAx = 2Ax. (83)

Also,

∂

∂x
(y − x)

T
A (y − x) = 2A (x− y) , (84)

and

∂

∂x
‖ Ax− b ‖22= 2AT (Ax− b) . (85)

We illustrate (83) by an example. Set A as the 2× 2 matrix,

A =

 3 2

2 5

 . (86)

Then, by direct calculation

xTAx =
[
x1 x2

] 3 2

2 5

 x1

x2

 = 3x21 + 4x1x2 + 5x22 (87)

so

∂

∂x1

(
xTAx

)
= 6x1 + 4x2 (88)

and

∂

∂x2

(
xTAx

)
= 4x1 + 10x2 (89)

Let us verify that the right-hand side of (83) gives the same:

2Ax = 2

 3 2

2 5

 x1

x2

 6x1 + 4x2

4x1 + 10x2

 . (90)
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11 The Kth-order di�erence

The �rst order di�erence of a discrete-time signal x (n), n ∈ Z, is de�ned as

y (n) = x (n)− x (n− 1) . (91)

This is represented as a system with input x and output y,

x −→ D −→ y (92)

The second order di�erence is obtained by taking the �rst order di�erence twice:

x −→ D −→ D −→ y (93)

which give the di�erence equation

y (n) = x (n)− 2x (n− 1)− x (n− 2) . (94)

The third order di�erence is obtained by taking the �rst order di�erence three times:

x −→ D −→ D −→ D −→ y (95)

which give the di�erence equation

y (n) = x (n)− 3x (n− 1) + 3x (n− 2)− x (n− 3) . (96)

In terms of discrete-time linear time-invariant systems (LTI), the �rst order di�erence is an LTI system with
transfer function

D (z) = 1− z−1. (97)

The second order di�erence has the transfer function

D2 (z) =
(
1− z−1

)2
= 1− 2z−1 + z−2. (98)

The third order di�erence has the transfer function

D3 (z) =
(
1− z−1

)3
= 1− 3z−1 + 3z−2 − z−3. (99)

Note that the coe�cient come from Pascal's triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
...

...
...

Table 1
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