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2N
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Note a: Relationship between the DFT and the Continuous
Fourier Spectrum

Consider a continuous-time signal x(t) sampled at the rate f, = 1/T, and observed during
T = NT, (see Fig. 1). Using the notation on p. 39, the relationship between the DFT Xpg(k) of
the observed samples x(nT;), n = 0,1, ..., N-1,

Xpprk) = 3 x(AT, ye-i2snkn (E-1)

n=0

and the continuous Fourier spectrum X;(jo) = F{x(tws(t)} , with wy(t) = 1 for t € [0, T] and zero
elsewhere, is given by

Xprr®) + (XNT) ~X(0))/2 = = 3 X (i~ (E-2)

n=-w

where o, = 2nkf,/N.

Proof: The relationship between the Fourier spectrum X(e'®™) of the discrete-time samples
Xx(nTy), ne”Z,

X(eloT) = F{ f x(t)é‘(t—nTs)} = +§ x(nTy)e et (E-3)

n=-ow n=-ow

and the Fourier spectrum X(jo) = F{x(t)} of the continuous-time signal x(t) is given by

+

@™ = 1 5 X(j(o - noy) (E-4)

1
T,

(see pp. 82-83 of A.V. Oppenheim and R.W. Schafer (1989). Discrete-Time Signal Processing.
Englewood Cliffs (NJ)).

While (E-4) remains valid for the windowed signal x(t)w; (t)
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Figure 1. Continuous-time signal X(t) (black line) sampled at the rate fs (green circles) and observed during
T = 1 s (red rectangular window).
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Figure 2. Dirac train z+°c o(t—nT,) (left) and train of block functions Z”O 5T (t—nT,) (right),
where O A is defined in Fig. 3. At the edges of the observation window WT(t) ‘the block function
is halved.
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Figure 3. Block function §T0(t) .

X% @) = L 3 (i -noy) (E-5)

n=-w

this is no longer true for the right hand side of (E-3) because the Dirac functions at the edges of
the window w; (t) are multiplied by a discontinuity (see Fig. 2, left plot). To quantify the result of
the multiplication of a Dirac function with a discontinuity in the Fourier spectrum

X (e1T) = F{ 5 x(t)wr(w(tnn)} (E-6)

n=-o

we replace the Dirac function &(t) by the block function &; (t) defined in Fig. 3 and take the
limit for T,— 0

X (el = TEE‘OF{ > x(t)m&(twn(t—nn)} (E-7)

n=-—w

From the right plot of Fig. 2 it can be seen that half of the area of the block functions &; (t) and
Sr (t=T) is cut away by the window w (t) . Therefore,

(E-8)

[N R

[ & wrddt = [ &7 t-Tw (Hdt =
and, hence, the samples x(0) and x(NT,) only contribute with a factor 1/2 to the spectrum (E-7)

X, (1) = TloigoF{ > x(t)wr(t)éro(t—nTs)} = ’LO)+ Z x(nT,)e ™Mo + (2 ) g-Njor, (E-9)

n=-w
Note that this result is consistent with the property that the inverse Fourier transform of X;(jo)
evaluated at t = 0 and t = NT, = T gives, respectively, x(0)/2 and xT)/2. Combining (E-1)
with (E-5) and (E-9) evaluated at © = o, = 2nkf/N proves (E-2).



Discussion: The consequence of (E-2) is that Eq. (6-99) on p. 208 should be replaced by

_ - L. 1 & : X(NTs) —x(0)
X(k) = ﬁzi\lz 01 X(tT)z! = TsA/Nn :ZEOOXN(Sk —Njog) — TN (E-10)
and that the following terms should be added to I(s,) in Eq. (6-100)
Uu(NT,)—u(0 NT,) -y
B(sy 1) YO o YNT) —¥O) (E-11)

2N 2N

Hence, I(s) is a polynomial of order max(n,, n,) instead of max(n,, n,)—1.
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Errors 1n figures
page 55, Figure 2-20 should be replaced by
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Figure 2-20. Successive realizations of U[I](k)L_J[I](k) and Y[I](k)lj[”(k).
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