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Abstract:
System identification is the art and science of building mathematical models of dynamic systems
from observed input-output data. It can be seen as the interface between the real world of
applications and the mathematical world of control theory and model abstractions. As such, it
is an ubiquitous necessity for successful applications. System identification is a very large topic,
with different techniques that depend on the character of the models to be estimated: linear,
nonlinear, hybrid, nonparametric etc. At the same time, the area can be characterized by a
small number of leading principles, e.g. to look for sustainable descriptions by proper decisions
in the triangle of model complexity, information contents in the data, and effective validation.
The area has many facets and there are many approaches and methods. A tutorial or a survey
in a few pages is not quite possible. Instead, this presentation aims at giving an overview of
the “science” side, i.e. basic principles and results and at pointing to open problem areas in the
practical, “art”, side of how to approach and solve a real problem.

1. INTRODUCTION

Constructing models from observed data is a fundamental
element in science. Several methodologies and nomencla-
tures have been developed in different application areas. In
the control area, the techniques are known under the term
System Identification. The area is indeed huge, and re-
quires bookshelves to be adequately covered. Any attempt
to give a survey or tutorial in a few pages is certainly futile.

I will instead of a survey or tutorial provide a subjective
view of the state of the art of System Identification —
what are the current interests, the gaps in our knowledge,
and the promising directions.

Due to the many “subcultures” in the general problem
area it is difficult to see a consistent and well-built struc-
ture. My picture is rather one of quite a large number
of satellites of specific topics and perspectives encircling
a stable core. The core consists of relatively few funda-
mental results of statistical nature around the concepts of
information, estimation (learning) and validation (gener-
alization). Like planets in the solar system, the satellites
offer different reflections of the radiation from the core.

Here, the core will be described in rather general terms,
and a subjective selection of the encircling satellites will
be visited.

2. THE CORE

The core of estimating models is statistical theory. It
evolves around the following concepts:

Model. This is a relationship between observed quan-
tities. In loose terms, a model allows for prediction
of properties or behaviors of the object. Typically the
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relationship is a mathematical expression, but it could
also be a table or a graph. We shall denote a model
generically by m.

True Description. Even though in most cases it is not
realistic to achieve a “true” description of the object to
be modeled, it is sometimes convenient to assume such a
description as an abstraction. It is of the same character
as a model, but typically much more complex. We shall
denote it by S.

Model Class. This is a set, or collection, of models. It
will generically be denoted by M. It could be a set that
can be parameterized by a finite-dimensional parameter,
like “all linear state-space models of order n”, but it
does not have to, like “all surfaces that are piecewise
continuous”.

Complexity. This is a measure of “size” or “flexibility” of
a model class. We shall use the symbol C for complexity
measures. This could be the dimension of a vector that
parameterizes the set in a smooth way, but it could also
be something like “the maximum norm of the Hessian
of all surfaces in the set.”

Information. This concerns both information provided
by the observed data and prior information about the
object to be modeled, like a model class.

Estimation. This is the process of selecting a model
guided by the information. The data used for selecting
the model is called Estimation Data, (or training data)
and will be denoted by ZN

e (with N marking the size of
the data set). It has become more and more fashionable
to call this process learning, also among statisticians.

Validation. This is the process of ensuring that the
model is useful not only for the estimation data, but
also for other data sets of interest. Data sets for this
purpose are called validation data, to be denoted by Zv.
Another term for this process is generalization.

Model Fit. This is a (scalar) measure of how well a
particular model m is able to “explain” or “fit to” a
particular data set Z. It will be denoted by F(m, Z).
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To have a concrete picture of a template estimation
problem, it could be useful to think of elementary curve-
fitting.
Example 1. A Template Problem – Curve Fitting
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Consider an unknown function g0(x). For a sequence of
x-values (regressors) {x1, x2, . . . , xN} (that may or may
not be chosen by the user) we observe the corresponding
function values with some noise:

y(t) = g0(xt) + e(t) (1)
The problem is to construct an estimate

ĝN (x) (2)
from

ZN = {y(1), x1, y(2), x2, . . . , y(N), xN} (3)

This is a well known basic problem that many people have
encountered already in high-school. In most applications,
x is a vector of dimension, say, n. This means that g
defines a surface in R

n+1 if y is scalar. If y(k) itself is
a p-dimensional vector, it is in this perspective convenient
to view the problem as p separate surface-fitting problems,
one for each component of y.

Two typical approaches are the following ones:

Parametric: Postulate a parameterized model set M, of
say d − 1:th order polynomials g(x, θ), parametrized by
the d coefficients θ (for a scalar x), and then adjust θ to
minimize the least squares fit between y(k) and g(xt, θ).
A complexity measure C could be the order n.

Nonparametric: Form, at each x, a weighted average
of the neighboring y(k). Then a complexity measure C
could be the size of the neighborhoods. (The smaller the
neighborhoods, the more complex/flexible curve.)

The border line between these approaches is not necessar-
ily distinct.

2.1 Estimation

All data sets contain both useful and irrelevant informa-
tion (“Signal and noise”). In order not to get fooled by the
irrelevant information it is necessary to meet the data with
a prejudice of some sort. A typical prejudice is of the form
“Nature is Simple”. The conceptual process for estimation
then becomes

m̂ = arg min
m∈M

[

F(m, ZN
e ) + h(C(m), N)

]

(4)

where F is the chosen measure of fit, and h(C(m), N) is
a penalty based on the complexity of the model m or the
corresponding model set M and the number of data. That
is, the model is formed taking two aspects into account:

(1) The model should show good agreement with the
estimation data.

(2) The model should not be too complex.

These aspects are somewhat contradictory, and a good
trade-off must be found, as we shall discuss later. Since the
“information” (at least the irrelevant part of it) typically
is described by random variables, the model m̂ will also
become a random variable.

The method (4) has the flavor of a parametric fit to
data. However, with a conceptual interpretation it can also
describe non-parametric modeling, like when a model is
formed by kernel smoothing of the observed data.

The complexity penalty could simply be that the search for
a model is constrained to model sets of adequate simplicity,
but it could also be more explicit as in the curve-fitting
problem:

VN (θ, ZN
e ) =

∑

(y(t) − g(θ, xt))
2 (5a)

θ̂N = argmin
θ

VN (θ, ZN
e ) + δ‖θ‖2 (5b)

Such model complexity penalty terms as in (5b) are known
as regularization terms.

2.2 Fit to Validation Data

It is not too difficult to find a model that describes
estimation data well. With a flexible model structure, it
is always possible to find something that is well adjusted
to data. The real test is when the estimated model is
confronted with a new set of data – validation data.
The average fit to validation will be worse than the fit
to estimation data. There are several analytical results
that quantify this deterioration of fit. They all have the
following conceptual form: Let a model m̂ be estimated
from an estimation data set ZN

e in a model set M. Then

F̄(m̂, Zv) = F(m̂, ZN
e ) + f(C(M), N) (6)

Here, the left hand side denotes the expected fit to val-
idation data, while the first term on the right is the
model’s actual fit to estimation data (“the empirical risk”).
The fit is typically measured as the mean square error
as in (5a). The quantity f is a strictly positive function
which increases with the complexity C and decreases with
the number N of estimation data. Hence, to assess the
quality of the model one has to adjust the fit seen on
the estimation data with this positive quantity. The more
flexible the model set, the more detoriation of the fit should
be expected. Note that m̂ is a random variable, so the
statement (6) is a probabilistic one.

For the simple curve fitting problem (5) with δ = 0, the
expression (6) leads to the well known forms

EF̄(m̂, Zv) ≈
1 + d/N

1 − d/N
F(m̂, ZN

e ) (7a)

≈ (1 + 2d/N)F(m̂, ZN
e ) (7b)

≈
1

(1 − d/N)2
F(m̂, ZN

e ) (7c)

where the left hand side is the expected fit when applied
to validation data with expectation also over m̂, and
F(m̂, ZN

e ) is the model’s fit to estimation data. The first
expression is Akaike’s Final Prediction Error (FPE), the
second one is Akaike’s Information Criterion (AIC) when
applied to the Gaussian case, (Akaike, 1974), and the third
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one is the generalized cross-validation (GCV) criterion,
(Craven and Wahba, 1979). Here d = dim θ serves as the
complexity measure of the model set.

Remark: These expressions are derived with expectations
over ZN

e on both sides, e.g. Ljung (1999), Ch 16. However,
they are typically used to estimate the quantity on the
LHS, and then the expectation on the RHS is replaced
with the observed fit, “the empirical risk”.

When the (regularized) criterion (5) with δ > 0 is used,
d in the above expression is replaced with the effective
number of parameters d∗(δ), see e.g. Ljung (1999), where

d∗(δ) =
d
∑

k=1

σk

σk + 2δ
(8a)

σk = the singular values of V ′′
N (θ, ZN

e ) (8b)

Similarly, when Vapnik’s learning theory is applied to
function estimation, the model’s behavior on validation
data is such that with probability at least 1−δ, see Suykens
et al. (2002)

F̄(m̂, Zv) ≤ F(m̂, ZN
e )

(

1 −

√

C(log N/C) + 1 − log δ

N

)−1

+

(9)
Here the complexity measure C is the Vapnik–Chervonen-
kis (VC)-dimension of the model set, which measures
how well the functions of the class can shatter (separate)
random points.

Yet another result in this vein is the following one: Let m̂

be an estimated model in a model set M for data ZN
e , and

let m
∗ be the model that has the best fit (to Zv) in M.

Then with probability at least 1 − δ it will obey

F̄(m̂, Zv) ≤ F̄(m∗, Zv) + 2RN + c

√

log 1/δ

N
(10)

where RN is the Rademacher average which describes how
well the model structure M is capable of reproducing
random functions. See Bartlett et al. (2005) for precise
formulations.

The intuitive, and rather obvious conclusion of all this
is that one should not be so impressed by a good fit to
estimation data, if the model set has been quite flexible.

The formal results reviewed in this section also give a good
rational ground for the pragmatic form of the estimation
criterion (4), and give several concrete suggestions for the
function h.

2.3 Bias and Variance

If we assume that there is a true description S, we can
conceptually write the model error

S − m̂

(actually we can interpret S and m̂ to be any (scalar)
property of the object, like the static gain of a dynamical
system.)

The mean square error (MSE) is

W = E(S − m̂)2 = (S − m
∗)2 + E(m̂ − m

∗)2

= B + V (11a)
m

∗ = Em̂ (11b)

where the MSE splits into a bias (square) contribution
B and a variance error V. This is a very elementary and
well known relation, but still worth some contemplation.
It is obvious that B is a function of the model class com-
plexity (flexibility) C and that it decreases as C increases.
Analogously V increases with C. (There are elementary
expressions for this, but intuitively it is sufficient to realize
that the wider model class is used, the more susceptible
the model will be for picking up random misinformation
in data.)

Conceptually,
V = g(C)/N

where g increases with C and N is size of the estimation
data set.

Our search for the pragmatically best model will thus
mean a search for the model complexity C that minimizes
W . This will typically occur for an M such that B 6= 0,
even when we in principle could find a more flexible M
with no bias: “We should thus not strive for the truth,
but for reasonable approximations.” Another consequence
is that minimizing W leads to increased model complexity
when we have more data, since V decreases with N . Yet
another consequence is that minimization of (11) favors
small model sets that contain good approximations of the
true object. This means that it is beneficial to shrink
the model set as much as possible using physical (or
other) insights into the nature of the object. In the control
literature, such model sets are called Grey-box models. It is
another matter that it may be computationally expensive
and cumbersome to use such model sets.

2.4 The Information Contents in Data

The value of information in observed data must be mea-
sured with respect to what we already know. For example,
suppose that we know the logarithm of the probability
density function ℓY (x, θ) of an observed random variable Y
up to a parameter θ. Then the Fisher Information matrix
for θ is

I = Eℓ′Y (Y, θ)(ℓ′Y (Y, θ))T (12)
where prime denotes differentiation w.r.t. θ. The cele-
brated Cramér-Rao

inequality, (Cramér, 1946), says that no (unbiased) esti-
mator θ̂ can have a smaller covariance matrix than the
inverse of I:

Cov θ̂ ≥ I−1 (13)
For the curve fitting problem (5a) with Gaussian errors,
the information matrix is

I =
1

λ

N
∑

t=1

g′(xt, θ)(g
′(xt, θ))

T (14)

where λ is the variance of the errors e.

3. THE COMMUNITIES AROUND THE CORE

The art and technique of building mathematical mod-
els of (dynamic) systems is crucial to many application
areas. Hence, many scientific communities are active in
developing theory and algorithms. With a few exceptions,
this has taken place in surprisingly separated and isolated
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environments, with journals and conferences of their own.
So, we see separate subcultures in the general problem
area, and it would be highly desirable to encourage more
active exchanges of ideas. In particular, I am sure that the
System Identification community would benefit from an
influx of new ideas from other cultures.

3.1 Statistics

Mathematical statistics and time series analysis (cf Section
3.2) is in many respects the “mother” field of System
Identification, see e.g. Deistler (2002). Here many of the
basic results of Section 2 were developed. Statistics is
clearly a very broad field, and it is not meaningful to give
terse summary of recent trends.

Among developments with relevance to System Identifica-
tion are for example the bootstrap, see e.g. Efron and Tib-
shirani (1993), and the EM algorithm, (Dempster et al.,
1977). Other results of relevance to order selection are new
techniques for regularization (variants of (5b)), such as
Lars, Lasso, NN-garotte, see e.g. Hastie et al. (2001).

3.2 Econometrics and Time Series Analysis

Econometrics is a science that has grown out of statistics
for extracting information from economic data, taking
into account both the special features of such data and
the a priori information coming from economic theory.
Econometrics has a long tradition of giving inspiration
to time series and difference equation modeling and its
roots coincide with developments in statistics. The work
on time series dates back to Jevons (1884), Yule (1927),
and Wold (1938). The classic paper Mann and Wald (1943)
developed the asymptotic theory for the LS estimator
for stochastic linear difference equations (AR systems).
The results were extended to simultaneous (multivari-
ate) systems, where LS is not consistent, in Koopmans
et al. (1950), where also central identifiability issues were
sorted out and Gaussian Maximum Likelihood estimates
were proposed and analyzed. Important extensions to the
ARMA(X) case have been proposed by Anderson (1971)
Hannan (1970) later on. The problem of errors-in-variables
modeling (when there are disturbances on both input and
output measurements) also has its origins in econometrics,
(Frisch, 1934).

More recently, important focus has been on describing
volatility clustering, i.e. more careful modeling of con-
ditional variances for modeling and forecasting of risk
(GARCH models, (Engle, 1982)), as well as on describ-
ing non-stationary behavior of interesting variables in
terms of a common stationary linear combination (“co-
integration”), (Engle and Granger, 1987), which gives
the long run equilibrium relation between these variables.
These two subjects were in focus for the Sveriges Riks-
banks Prize in Economic Sciences in memory of Alfred
Nobel in 2003.

3.3 Statistical Learning Theory

The coining of the term Statistical learning, e.g. Vap-
nik (1998), Hastie et al. (2001), has moved the fields
of statistics and Machine learning closer together. Much

effort has been devoted to convex estimation formulations,
such as support vector machines, Vapnik (1982). An im-
portant feature of these techniques is that the classifi-
cation/estimation is formulated in high-dimensional fea-
ture spaces, which by RKHS (Reproducing Kernel Hilbert
Space) theory is transformed to kernels in the data space.
The kernel trick and Mercer conditions are terms that
relate to this transformation, see e.g. Wahba (1999). Issues
of convexification have lately played an essential role, e.g.
Bartlett et al. (2006).

3.4 Machine Learning

The term machine learning was coined in Artificial In-
telligence, see e.g. the classical book Nilsson (1965). The
area has housed many approaches, like Kohonen’s self-
organizing and self-learning maps, (Kohonen, 1984), to
Quinlan’s tree-learning for binary data, (Quinlan, 1986),
and the early work on perceptrons, (Rosenblatt, 1962),
that later led to neural networks. More recent efforts,
include Gaussian Process Regression (kriging), e.g. Ras-
mussen and Williams (2006), which in turn can be traced
back to general nonlinear regression. Overall, the fields
on machine learning and statistical learning appear to be
converging.

3.5 Manifold Learning

Another “learning topic” is manifold learning, which really
is the important area of dimension reduction of high-
dimensional data to nonlinear manifolds. This is a non-
linear counterpart of multivariate data analysis, such as
Principal Component Analysis (PCA). Some techniques,
like kernel PCA, (Schölkopf et al., 1999), are such exten-
sions. Other methods are based on developing proximity
matrices, often with nonparametric techniques, such as
isomaps and variance unfolding. A special such technique
that has been frequently used is LLE (Local Linear Em-
bedding), (Roweis and Saul, 2000). It can be described as
a way to determine a coordinate system in the manifold
that inherits neighborhoods and closeness properties of
the original data. Manifold learning has evolved into a
community of its own, essentially because of its importance
for computer vision and object recognition.

3.6 Statistical Process Control and Chemometrics

The term chemometrics is primarily used in process indus-
try and stands for statistical methods for extracting infor-
mation from data sets that often consist of many measured
variables. The techniques are various forms of Multivariate
data analysis, such as PCA, but in Chemometrics the use
of Partial Least Squares (PLS), (Wold et al., 1984), has
been a predominant way of projecting data onto linear
subspaces. For a recent survey, see MacGregor (2003). The
PLS methods are conceptually related to subspace methods
in System Identification. The term (Multivariate) Statis-
tical Process Control refers to identifying important indi-
cators for the process and keeping track of their changes.

3.7 Data Mining

Data Mining or Knowledge Discovery has become a buzz-
word for sorting through large databases and finding rel-
evant information. Data mining has been applied to a
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variety of problems like intelligence, business, finance and
searching the web for medical and genetic information. It
employs many different techniques, in terms of computer
science, numerical analysis, and visualization. Wikipedia
describes data mining as “the nontrivial extraction of
implicit, previously unknown, and potentially useful in-
formation from data”. It is clear that this definition puts
the subject in orbit of our core, and several techniques of
statistical and model predictive nature, like Neural Net-
works, Decision Trees, and Nearest Neighbor classification
are also found in the toolbox of data mining. See Tan et al.
(2006) for an introduction.

3.8 Artificial Neural Networks

Neural Networks are a development of the perceptron,
(Rosenblatt, 1962) and have seen a significant development
over the past two decades, e.g. Haykin (1999) and the area
has transformed into a community of its own, e.g. “The
IEEE Neural Networks Society”. This is quite remarkable,
since the topic is but a flexible way of parameterizing
arbitrary hypersurfaces for regression and classification.
The main reason for the interest is that these structures
have proved to be very effective for solving a large number
of nonlinear estimation problems.

3.9 Fitting ODE-coefficients, and Special Applications

There is also a subarea of contributions and books that
do not have roots neither in statistics nor artificial intel-
ligence. This is a perspective that has come from physi-
cal modeling, simulation and solving ordinary differential
equations (ODEs), and is thus more of numerical analysis
and engineering. In such a context, if the ODE contains
unknown parameters, it is natural to employ numeric
optimization to fit the solutions to observed data, without
invoking a statistical framework. This perspective is taken,
e.g., in Schittkowski (2002).

To this culture we can also count books that deal with
particular applications, (even though they may use also
statistics), e.g., the extensive literature on aircraft model-
ing, like Klein and Morelli (2006).

3.10 System Identification

System Identification is the term that has been coined
by Zadeh (1956) for the model estimation problem for
dynamic systems in the control community. Two main
avenues can be seen for the development of the theory and
methodology (Gevers, 2006): One is the realization avenue,
that starts from the theory how to realize linear state space
models from impulse responses, Ho and Kalman (1966),
followed by Akaike (1976), leading to so-called subspace
methods, e.g. Larimore (1983) and Van Overschee and
DeMoor (1996). The other avenue is the prediction-error
approach, more in line with statistical time-series analysis
and econometrics. This approach and all its basic themes
were outlined in the pioneering paper Åström and Bohlin
(1965). It is also the main perspective in Ljung (1999).

A main feature of dynamical systems is that the future
depends on the past. Thus a prediction of the output y(t)
at time t, either being constructed by ad hoc reasoning or

carefully calculated in a stochastic framework, depends on
all or some previous measured inputs and outputs, Zt−1 =
{y(t− 1), u(t− 1), y(t− 2), u(t−2), . . .}. Let us denote the
prediction by ŷ(t|t − 1) = g(Zt−1). In case the system is
not fully known, this prediction will be parameterized by
a parameter θ (which typically is finite-dimensional, but
could also conceptually capture nonparametric structures)
so the prediction is

ŷ(t|θ) = g(Zt−1, θ) (15)

The distinguishing features as well as the bulk of efforts
in System Identification can, somewhat simplistically, be
described as

(1) Invent parameterizations ŷ(t|θ), suitable to describe
linear and nonlinear dynamic systems. For underlying
state-space realizations, realization theory has been
an important source of inspiration. Questions of how
prior physical knowledge can best be incorporated
form another central issue.

(2) Translate the core material of Section 2 to properties
of estimated systems, as well as estimation proce-
dures.

(3) Find effective ways to estimate θ numerically for the
chosen parameterizations. The curve-fitting criterion
(5) forms a beacon for these efforts in the prediction
error approach, typically leading to nonlinear opti-
mization by iterative search. The realization avenue
has developed techniques based on SVD and QR
factorizations.

(4) The typical intended use of the model in this context
is for prediction or control. This means that models
of the noise affecting the system often are essential.

(5) Experiment design now becomes the selection of input
signal. The effects of the experiment design can be
evaluated from the core material, but can be given
concrete interpretations in terms of model quality for
control design, e.g. Gevers (1993). Specific features for
control applications are the problems and opportuni-
ties of using inputs, partly formed from output feed-
back, e.g. Hjalmarsson (2005). An important problem
is to quantify the model error, and its contribution
from the variance error and the bias error, cf. (11),
“model error models”, e.g. Goodwin et al. (1992).

4. SOME OPEN AREAS IN SYSTEM
IDENTIFICATION

System Identification is quite a mature area that has had
an interesting and productive development. Much has been
done, but many problems remain. I shall in this section
outline a few areas that I believe are worthy of more
studies, and I would like to encourage young researchers
to have a go at these problems. Some open areas from an
industrial perspective follow in Section 6.

4.1 Issues in Identification of Nonlinear Models

A nonlinear dynamic model is one where ŷ(t|θ) = g(Zt, θ)
is nonlinear in ZN (but could be any function, including
linear, of θ). Identification of nonlinear models is probably
the most active area in System Identification today, Ljung
and Vicino (2005). It is clear from Section 3 that there is a
corresponding wide activity in neighboring communities,
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and I think it is important for the control community to
focus on issues that are central for dynamic systems:

• What are the useful parameterizations of ŷ(t|θ) for
nonlinear models of dynamic systems? Ideas and
suggestions have proliferated and given rise to a
confusing amount of models. In Section 5 we make
an attempt at a taxonomy of such models.

• Stability of predictions and simulations: Consider
the following simple example. Let a nonlinear model
by given by ŷ(t|θ) = g(y(t − 1), u(t − 1), θ). The
predictions are simple enough, since they just involve
two measured inputs and outputs. The simulation of
this model for a given input is more tricky:

ys(t) = g(ys(t − 1), u(t − 1), θ), t = 1, 2, ...

This is a nonlinear dynamic system, and to establish
for which values of θ it is stable, is in general very
difficult. For control applications, it would be very
helpful to find flexible classes of models, for which
simulation stability could be tested with reasonable
effort.

• How to identify a nonlinear system that operates in
closed loop and is stabilized by an unknown regula-
tor?

• Develop Model Error Models for linear or nonlinear
models of nonlinear systems that can be used for
robust control design.

• Find effective data-based nonlinearity tests for dy-
namical systems.

4.2 Convexification

By convexification we mean formulating the estimation
method as a convex optimization problem (or, more gen-
erally, one that does not give rise to local minima). As
seen in Section 3, convexification has played a major role
recently in several communities, and the development of
convex and semidefinite programming has been booming
in recent years, e.g. Boyd and Vandenberghe (2004). These
activities have not been particularly pronounced in the
System Identification community, which has largely been
sticking to a maximum likelihood (or related) framework.

The likelihood function for estimating θ in a parameter-
ization ŷ(t|θ) is typically multi-modal, so the estimation
problem becomes plagued by the existence of local minima.
The estimation procedure becomes dependent on good
initial starting values, and such are often easy to find for
black-box linear models. For other models, both nonlinear
black-box models and linear grey-box models, the problem
is a serious one. More efforts are required to understand
convexification and utilize modern semidefinite program-
ming techniques. One solution is of course to look for how
far we can get with linear parameterizations (ŷ(t|θ) linear
in θ), for example LS Support Vector Machines and other
radial bases (kernel) techniques, cf. Suykens et al. (2002).

While convexification has not been a focus of System
Identification research, there are a few results of this
character:

Subspace methods, (N4SID, MOESP, etc. ) form a one-
shot estimation procedure for black-box linear state space
models, e.g. Van Overschee and DeMoor (1996). Pushing
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Fig. 1. The surface log EVN (θ). The “floor” is formed by
the two parameters θ1 and θ2 and the “wall” is the
value of V .

the interpretation slightly, these methods can be seen as a
form of regularized Least Squares for ARX models.

Reformulation via differential algebra. Consider the fol-
lowing example:
Example 2. (Constructing more measured signals). Let a
model be described by (the Michaelis-Menten equation)

ẏ = θ1
y

θ2 + y
− y + u (16a)

ym(tk) = y(tk) + e(tk) (16b)

The signals u(tk) and ym(tk), k = 1, 2, . . . , N are measured
and e is white Gaussian noise. The maximum likelihood
method for estimating θ is to minimize

VN (θ) =

N
∑

k=1

(ym(tk) − ŷ(tk|θ))
2

where ŷ(t|θ) is the solution to (16a). The surface log EVN (θ)
is shown in Figure 1 when the input u is an impulse.
The surface does not depend on the variance of e. (That
only shifts the level by a constant.) Clearly it is a difficult
function to minimize: There are many local minima, the
global minimum has a very narrow domain of attraction,
and there are slopes that continue to roll off downhill as
θ grows. This is true no matter how small the variance of
the noise is. One might conclude that it is difficult to find
the parameters of this model, and that information about
them are well hidden in the data.

If we for the moment disregard the noise e, we can do as
follows: Multiply (16a) with the numerator and rearrange
the terms:

ẏy + θ2ẏ = θ1y − y2 − θ2y + uy + θ2u

or

ẏy + y2 − uy = [θ1 θ2]

[

y
u − ẏ − y

]

(17)

Equation (17) is a linear regression that relates the un-
known parameters and measured variables. We can thus
find them by a simple least squares procedure. We have,
in a sense, convexified the problem in Figure 1.

The manipulations leading to (17) are an example of Ritt’s
algorithm in Differential Algebra. In fact it can be shown,
(Ljung and Glad, 1994), that any globally identifiable
model structure can be rearranged (using Ritt’s algorithm)
to a linear regression. This is in a sense a general convex-
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ification result for any identifiable estimation problem. A
number of cautions must be mentioned, though:

• Although Ritt’s algorithm is known to converge in a
finite number of steps, the complexity of the calcula-
tions may be forbidding for larger problems.

• With noisy measurements, care must be exercised
in differentiation, and also the linear regression may
be subject to disturbances that can give biased esti-
mates.

But the fact remains: the result shows that the complex,
non-convex form of the likelihood function with many local
minima is not inherent in the model structure.

Sum Of Squares Techniques in Linear Grey-Boxes. The
non-convex nature of the criterion function is normally
no serious problem for linear black-box models, since
many consistent, non-optimal, non-iterative methods (e.g.
Instrumental Variables, N4SID) can be used to get into the
domain of attraction of the global minimum. The issue is
much more pressing for physically parameterized grey-box
models, even in the linear case. Monte-Carlo tests show,
that, e.g. for third order linear grey-box models with six
physical parameters, the success rate in reaching the global
minimum from random initializations of the parameters,
ranges from 0% to 18%. An attempt to convexify this
problem is described in Parrilo and Ljung (2003): Let
A, B and C be a black-box estimate of the linear system,
and let A0(θ), B0(θ), C0(θ), be the corresponding grey-
box parameterizations which are assumed to be affine in
θ. Then formulate the following polynomial optimization
problem:

(θ̂, T̂ ) = argmin
θ,T

h(θ, T ) (18a)

h(θ, T ) =‖T · A − A0(θ) · T ‖F + ‖T · B − B0(θ)‖F

+ ‖C − C0(θ)T ‖F (18b)

and solve it using the sum of squares technique, (Parrilo
and Sturmfels, 2003). Here T corresponds to the unknown
similarity transform that connects the two state-space
bases. Also this approach suffers from complexity issues,
and needs to be refined.

Manifold Learning. Manifold learning was mentioned
in Section 3.5. The “re-coordinatization” of the LLE-
technique can also be used to cover the nonlinearities of the
mapping from the original regressor space to the measured
output, so we can obtain a concatenated mapping

X → g(x) → Z → h(z) → Y

where X is the original regressor space, Z is the manifold
(typically, but not necessarily, of lower dimension than X ),
and Y is the space of the observed outputs. The function
g is the LLE mapping, and h may be chosen as a simple
mapping (with convexity properties) relying upon g for
the nonlinearities. Some attempts with this (for dynamic
models) are reported in Ohlsson et al. (2008).

Model order reduction. Model reduction is closely re-
lated to System Identification, cf. Section 4.3. It is there-
fore interesting to follow convexification attempts for
model order reduction problems, see Sou et al. (2008), and
see if they have implications on system identification loss
function formulations.

4.3 Model Approximation/Model Reduction

System identification is really system approximation. We
attempt to find a model of acceptable accuracy from data,
and the resulting model is by necessity an approximation
of the true description. This means that the topics of model
reduction and model approximation are closely related to
identification. Now, model reduction is in itself a huge
research area with a wide scope of application areas (e.g.
www.modelreduction.com). It could rightly have been
listed as one of the communities around the core, Section 3,
but it lacks the data-estimation component. It is true
that a model reduction perspective has been in focus for
some work in system identification, but I am convinced
that the identification community could learn a lot more
by studying the model reduction research - especially for
nonlinear systems.

Linear Systems – Linear Models. Model reduction for
linear models is quite well understood. Balanced realiza-
tions, Moore (1981), show how the different states con-
tribute to the input-output map and are a rational ground
for reducing the state dimension by projecting the state-
space to certain subspaces. As noted in the original con-
tribution this is pretty much like Principal Component
Analysis (PCA) in linear regression (and related to how
the state space is selected in subspace methods, cf. Sec-
tion 4.2). Linear model reduction can be a very useful tool
in system identification (cf. the command balred in the
System Identification Toolbox, Ljung (2007)), for exam-
ple when concatenating single-output models to a bigger
model. My impression is, though, that this possibility is
much underutilized.

Nonlinear Systems – Linear Models. The situation be-
comes much more difficult and interesting when we want
to approximate a nonlinear system with a linear model,
(which is typically what happens in practice when you
build linear models.) Certain issues are well understood,
like what is the linear second-order equivalent to a nonlin-
ear system, Ljung (2001), but the results can be surprising
as seen from the following example (Enqvist, 2005):
Example 3. Consider the static and (slightly) nonlinear
system

y(t) = u(t) + 0.01u3(t) (19)

For a certain (non-Gaussian and bounded) input, its
linear second order equivalent is dynamic with a Bode
plot as shown in Figure 2. It has a very high gain for
low frequencies, and is very different from the Bode plot
obtained by just ignoring the small nonlinear term. It is
this linear model with the strange low frequency gain that
an output error identification method will produce for data
from (19).

Such investigations of nonlinear systems that are “pertur-
bations” of linear ones are also carried out by Schoukens,
Pintelon and coworkers, e.g. Schoukens et al. (2003)

Nonlinear Systems – Nonlinear Models. The most chal-
lenging problem is when we would like to approximate
a nonlinear system with a simpler nonlinear model. For
effective identification of nonlinear models, this is a topic
which must be understood. There is a quite extensive
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Fig. 2. Amplitude Bode plot of the second order linear
equivalent of (19). Straight line: Bode plot of the
linear system obtained by ignoring the small nonlinear
term.

literature on this problem, but this is not the place to
provide a survey of that. Let it suffice to note that among
the approaches we see (1) linearization followed by reduc-
tion of the linear model, with its states fed back into the
nonlinear model, (2) mimicking the balanced realization
thinking in terms of contributions to observability and
controllability, Scherpen and Gray (2002), and (3) vari-
ous nonlinear Galerkin methods (truncations of function
expansions).

There also exist some Matlab packages for nonlinear
model reduction, e.g. Sun and Hahn (2006).

4.4 Large Databases and Data Mining

We have just got used to the GigaByte and TeraByte
world and the PetaByte world is around the corner. The
impact on identification and model building cannot be
overemphasized. It is now (or soon will be) possible to have
a major industrial plant’s entire process data recordings
over decades available in one database. That in itself
constitutes an (implicit) model of the plant, but it is
a formidable task to condense it to useful formats. The
tools of data mining (Section 3.7) need to be adapted and
adopted to the model building and prediction problems
of the System Identification community. Some first steps
have been taken by Just-in-Time-models, Cybenko (1996)
and the Model-on-Demand concept, Roll et al. (2005).

Bayesian Networks. Bayesian (or belief) networks are
probabilistic graphical models that describe dependences
between variables and they are used in a wide variety of
applications, see e.g. Jensen (2001). They have not really
been used in System Identification applications, but could
be a very useful tool to infer and describe signal flows in
a dynamical system, for example to find suitable model
structures. By data mining in process databases, relevant
dependencies between variables of interest could be found.

Sensor Networks. (Wireless) Sensor networks, e.g. Chong
and Kumar (2003), is a rapidly evolving technology to
collect information with (many) spatially distributed, au-
tonomous devices. This has an interesting potential for
industrial monitoring purposes and adds to the richness of
information for model development.

5. NONLINEAR MODEL STRUCTURES: A
PALETTE OF GREY SHADES

As mentioned in the previous section, identification of
nonlinear models is a very active area. The goal can be
said to find model structures that obey the conclusion of
Section 2.3: to find descriptions that are flexible enough
to cover many relevant nonlinear phenomena, at the same
time as they allow inclusion of physical insight in order not
to be too flexible. This has lead to a large, and sometimes
confusing amount of approaches, and it is not easy to give
a coherent description of the current status. Part of the
problem is the negative definition: it has been commented
that this area is as huge as “non-elephant zoology” (quote
attributed to mathematician/physicist Stan Ulam). In
this section we give a brief account of the dominating
concepts. It is customary in estimation, as remarked in
Section 2, to distinguish between grey-box models that are
parameterizations based on physical insights, and black-
box models, that are just flexible function surfaces. To
bring some kind of order into nonlinear model structures
we need to invoke a whole palette of grey shades from
white to black.

5.1 White Models

White box models are the results of diligent and extensive
physical modeling from first principles. This approach
consists of writing down all known relationships between
relevant variables and using software support to organize
them suitably. Similarly, libraries of standard components
and subsystems are frequently used.

Physical Modeling and DAEs Modern object-oriented
modeling tools, like Modelica, (Fritzson, 2003), do not
necessarily deliver the resulting model in state space
form, but as a collection of differential algebraic equations
(DAE):

Fk(ξ(t), ξ̇(t), z(t), e(t)), k = 1, . . . , K (20)

Here z are measured signals, being inputs and outputs,
but not necessarily distinguished as such, e are unmea-
sured disturbance signals, possibly modeled as stochastic
processes, and ξ are so called internal variables that are
used to describe the dynamic relationships.

5.2 Off-white Models

Models with lightest shade of grey are obtained when
white-box models (20) contain some parameters that have
unknown or uncertain numerical values.

The nonlinear identification problem is to estimate such
parameters from the measured z(t). In general, this is a
difficult problem, that has not yet been treated in full
generality. A good reference for a deterministic setting is
Schittkowski (2002).

State-space Models If the model equations can be trans-
formed into state space form

ẋ(t) = f(x(t), u(t), θ) (21a)
y(t) = h(x(t), u(t), θ) + e(t) (21b)
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where e is white noise, a formal treatment is possible:
For each parameter θ this defines a simulated (predicted)
output ŷ(t|θ) which is a parameterized function

ŷ(t|θ) = g(Zt−1
e , θ)

in somewhat implicit form. Minimizing a criterion like (5a)
will then actually be the Maximum Likelihood method.
This really requires e to be white measurement noise. Some
more sophisticated noise modeling is possible, usually
involving ad hoc nonlinear observers.

The approach is conceptually simple, but could be very
demanding in practice, since the minimization problem
will take substantial effort and the criterion may have
several local minima.

A recent approach using the EM method, (Dempster et al.,
1977) for the case where f and h in (21) are affine in θ is
described in Schön et al. (2006). Particle filter techniques
to deal with Maximum Likelihood methods to identify
nonlinear systems are described in Andrieu et al. (2004).

5.3 Smoke-Grey Models

Semi-physical Modeling: By semi-physical modeling we
mean finding nonlinear transformations of the measured
data, so that the transformed data stand a better chance
to describe the system in a linear relationship. The basic
rule for this process (to ensure its leisurely aspect) is that
only high-school physics should be required and the work
must take no more than 10 minutes.

To give a trivial example, consider a process where water
is heated by an immersion heater. The input is the voltage
applied to the heater, and the output is the temperature
of the water. Any attempt to build a linear model from
voltage to temperature will fail. A moment’s reflection
(obeying the rules of semi-physical modeling) tells us that
it is the power of the heater that is the driving stimulus
for the temperature: thus let the squared voltage be the
input to a linear model generating water temperature at
the output. Despite the trivial nature of this example,
it is good to keep as a template for data preprocessing.
Many identification attempts have failed due to lack of
adequate semi-physical modeling. See, e.g., Ljung (1999),
Examples 5.1 and pages 533 - 536 for more examples of
this kind.

5.4 Steel-Grey Models

Composite Local Models: Nonlinear systems are often
handled by linearization around a working point.

The idea behind composite local models is to deal with
the nonlinearities by developing local models, which are
good approximations in different neighborhoods, and then
compose a global model from these. Often, the local
models are linear, so a common name for composite models
is also local linear models. See, e.g. Johansen and Foss
(1995), and Murray-Smith and Johansen (1997).

Let the partitioning into neighborhoods be based on a
measured working point variable denoted by ρ(t) (some-
times called regime variable). Let the regime variable be
partitioned into d values ρk, k = 1, . . . , d, and let the

neighborhoods around ρk be defined by weighting func-
tions wk(ρ), k = 1, . . . , d. The partitioning into neighbor-
hoods may not be known a priori and then a vector η may
be formed from (unknown) parameters that describe the
partitioning, which may be overlapping or selecting. Then
the weigthing functions will depend on this parameter:
wk(ρ, η). This means that the predicted output will be

ŷ(t|θ, η) =

d
∑

k=1

wk(ρ(t), η)ŷ(k)(t|θ(k))

where ρ(t) is the known current value of the regime
variable. The prediction ŷ(k)(t|θ(k)) is the local model
corresponding to ρk. This prediction depends on some
parameters that are associated with the k :th local model,
which we denote by θ(k). (The vector θ will contain the
parameters of all local models.) If this model is linear in
the parameters, ŷ(k)(t) = ϕT (t)θ(k), we obtain

ŷ(t|θ, η) =

d
∑

k=1

wk(ρ(t), η)ϕT (t)θ(k) (22)

which for fixed η is a linear regression, since the regime
variable ρ(t) and the regression vector ϕ(t) are measured
and known.

LPV Models: So-called Linear Parameter Varying
(LPV) models are closely related to composite local mod-
els. In state space form they are described by:

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) + D(ρ(t))u(t)

where the exogenous or regime parameter ρ(t) is measured
during the operation of the system. Identification of such
models has been the subject of recent interest. See, e.g.,
Lee and Poolla (1999) and Bamieh and Giarré (2002).

5.5 Slate-Grey Models

Hybrid Models: The model (22) is also an example of
a hybrid model. It is piecewise linear (or affine), and
switches between different modes as the “state” ϕ(t) varies
over the partition. The regime variable ρ is then a known
function of ϕ. If the partition is given, so that η is
known, the estimation problem is simple: It is a linear
regression. However, if the partition has to be estimated
too, the problem is considerably more difficult, due to the
discrete/logical nature of the influence of η. Methods based
on mixed integer and linear (or quadratic) programming
are described in Roll et al. (2004). See also Bemporad et al.
(2005) for another approach.

Block-oriented Models. A very useful idea is to build
up structures from simple building blocks. This could
correspond both to physical insights and as a means for
generating flexible structures.

There are two basic building blocks for block-oriented
models: linear dynamic system and nonlinear static trans-
formation. These can be combined in a number of ways.
Some combinations are known under well-known names,
see Figure 3. Recently, such variations of structures have
been found to be useful in several contexts, see Hsu et al.
(2006) and Schoukens et al. (2003).
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Fig. 3. Typical block oriented models, where squares are
linear dynamic systems and ovals are static nonlinear-
ities. Above: A Wiener model. Middle: A Hammer-
stein model, Below: A Hammerstein-Wiener model.

Remark: The actual shade of grey in slate-grey models
may be in the eye of the beholder: For example block-
oriented connections may correspond to physical phenom-
ena. The Wiener model is a linear system followed by a
nonlinear sensor and the Hammerstein model has a nonlin-
ear actuator. Both these cases are common in practice, and
then a block oriented model is rather smoke-grey. But one
may also note that the Wiener model, if allowed to have
multiple linear outputs, becomes a universal approximator
to a wide class of nonlinear systems, cf. Boyd and Chua
(1985), so it could as well be viewed as a black-box model.
The same is true for hybrid models.

5.6 Black Models

Basis Function Expansion: In a black-box setting, the
idea is to parameterize the function g(x, θ) in a flexible
way, so that it can well approximate any feasible true
functions g0(x). A typical choice is to use a function
expansion

g(x, θ) =

m
∑

k=1

αkgk(x) (23a)

with some basis functions gk.

It turns out that a powerful choice of basis functions is
to let them be generated from one and the same “mother
function” κ(x) and scale and translate it according to

gk(x) = κ(βk(x − γk)) (23b)

(here written as if x is a scalar.) The basis functions
are thus characterized by the scale (dilation) parameters
βk and the location (translation) parameters γk. Typical
choices of κ(·) are the sigmoid or the Gaussian bell.

When x is a vector, the argument can be interpreted
as a scalar product with a vector βk which then also
determines suitable projections in the regressor space.
Another possibility is to interpret the scaling as ellipsoidal
symmetric.

The resulting structure (23) is very flexible and very much
used. Depending on how the particular options are chosen,
this contains, for example, radial basis neural networks,
one-hidden-layer sigmoidal neural networks, neuro-fuzzy
models, wavenets, least-squares support vector machines
etc. See e.g Ljung (1999), Chapter 5.

6. SOME CENTRAL PROBLEMS FOR INDUSTRIAL
USE

System Identification is an area of control where the gap
between theory and practice is not very pronounced. More
or less sophisticated identification methods are in daily
use in practical applications in companies. Identification
software of different kinds have a wide circulation in the
industrial world. Still, there are a number of issues for
industrial use that have not yet been addressed in a
satisfactory way:

6.1 Automatically Polishing Data and Finding Informative
Portions

Sometimes a carefully designed identification experiment
is carried out in industry in order to build a model.
However, more often one has to rely upon process records
from normal production. In fact, the problem is often that
one has too much data stored from previous production
(cf. Section 4.4). Reasons why these are not used include
that they contain missing data and outliers, that they
are not informative (nothing has happened for a long
time) or other deficiencies. What industry demands are
automatic procedures for scanning large data records for
segments that are informative with respect to a specified
issue, polishing the data (“peak shaving”) and marking
and possibly reconstructing missing data. That would be a
very useful step toward effective data mining for industrial
data.

6.2 An Efficient Integration of Modeling and Parameter
Estimation

Models and simulation are playing a more and more im-
portant role in industrial product and process develop-
ment. Modeling and simulation tools like Simulink, Dy-
mola, NI-MatrixX, Modelica, etc are ubiquitous for
engineering work. Mostly, these models are derived from
first principles, physical insight and sometimes they are
black-box models obtained by system identification. The
System Identification framework certainly offers grey-box
techniques for mixing physical insights with information
from measured data. But for these to be more used, they
should be integrated in the engineer’s daily modeling tool.
An environment based on modern modeling from first
principles, allowing Differential Algebraic Equations and
model libraries, such as Modelica, should be integrated
with efficient parameter fitting to observed signals, and
serious statistical model validation techniques. A study of
how DAE modeling that includes stochastic disturbances
can be adapted to system identification is given in Gerdin
(2006).

6.3 Taking Care of Structural Information

For an engineer in industry, often certain structural infor-
mation about the plant are known, like “the input flow
rate cannot affect the temperature at stage 3” or “these
two process components are identical and connected in
cascade” etc. Modern control theory encourages us to take
a multivariate view of the process and treat multiple in-
puts and multiple outputs simultaneously. Simple process
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insights of the sort just mentioned may not be so easy to
incorporate in this view. True, we can develop grey-box
models to account for structural information, but it may
seem as overkill if the purpose is just to describe simple,
logical information flow constraints. There is a need to take
care of this problem and provide simpler tools for handling
structural information. A study of this kind is Wahlberg
et al. (2008).

6.4 Simple Models for Control Tuning and Performance
Monitoring

A major concern in industrial applications is monitoring.
This includes both failure detection and predictive main-
tenance. A specific aspect is to monitor the performance
of the control loops: Is it time to retune the controller
or are there indications of valve stiction? Such questions
can be answered by estimating simple models. Likewise,
retuning of PID controllers can be made in terms of low
order models that capture the essential dynamics in the
relevant frequency band(s).

7. CONCLUDING REMARKS

I have tried to sketch a broad and subjective picture of
where System Identification stands, by itself and among
its neighbors. A main message has been that much more
interaction between the different “communities around the
core” would be very valuable. I have pointed to some
open problem areas both regarding theory and industrial
practice where progress would mean big steps forward in
terms of understanding and usefulness of our field.

Let me end with a personal IFAC reflection. When I was
IFAC Vice President and chairman of the Technical Board
(1987–1993) there was a discussion if it was not time to
abolish the long running (since 1967) Symposium series on
System Identification, since the topic had lost its luster.
In the end we did not do so. I hope I have convinced the
readers that that was a wise decision.
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