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a b s t r a c t

Intriguedby some recent results on impulse response estimationby kernel andnonparametric techniques,
we revisit the old problem of transfer function estimation from input–output measurements. We
formulate a classical regularization approach, focused on finite impulse response (FIR) models, and
find that regularization is necessary to cope with the high variance problem. This basic, regularized
least squares approach is then a focal point for interpreting other techniques, like Bayesian inference
and Gaussian process regression. The main issue is how to determine a suitable regularization matrix
(Bayesian prior or kernel). Several regularization matrices are provided and numerically evaluated on a
data bank of test systems and data sets. Our findings based on the data bank are as follows. The classical
regularization approach with carefully chosen regularizationmatrices shows slightly better accuracy and
clearly better robustness in estimating the impulse response than the standard approach – the prediction
error method/maximum likelihood (PEM/ML) approach. If the goal is to estimate a model of given order
as well as possible, a low order model is often better estimated by the PEM/ML approach, and a higher
ordermodel is often better estimated bymodel reduction on a high order regularized FIRmodel estimated
with careful regularization. Moreover, an optimal regularization matrix that minimizes the mean square
error matrix is derived and studied. The importance of this result lies in that it gives the theoretical upper
bound on the accuracy that can be achieved for this classical regularization approach.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Estimation of the transfer function, or impulse response, of a
linear system is a problem that we feel that we have known ‘‘ev-
erything about’’ for at least a quarter of a century, e.g. Ljung (1985),
based on well established theory and algorithms in statistics and
the system identification community. Nevertheless, papers on the
problem are still appearing. A recent, very inspiring, and thought-
provoking, contribution is Pillonetto and Nicolao (2010a) (see also
the follow-up, (Pillonetto, Chiuso, & Nicolao, 2011)), which shows
rather remarkable results based on Gaussian processes and spline
kernels. That has prompted the current wish to revisit the transfer
function estimation problem from scratch.

✩ The material in this paper was partially presented at the 18th IFAC
World Congress, August 28–September 2, 2011, Milano, Italy. This paper was
recommended for publication in revised form by Associate Editor Antonio Vicino
under the direction of Editor Torsten Söderström.
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ljung@isy.liu.se (L. Ljung).
1 Tel.: +46 13 282226; fax: +46 13 282622.

0005-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2012.05.026
1.1. Problem formulation

Consider a single-input–single-output linear stable system

y(t) = G0(q)u(t) + v(t). (1)

Here q is the shift operator, qu(t) = u(t +1), v(t) is additive noise,
independent of the input u(t), and the transfer function is

G0(q) =

∞
k=1

g0
k q

−k. (2)

The coefficients g0
k , k = 1, . . . ,∞, form the impulse response of the

system. The corresponding frequency response is defined as

G0(eiω) =

∞
k=1

g0
k e

−iωk. (3)

Given the input–output data ZN
= {u(t), y(t), t = 1, . . . ,N},

the goal is to find an estimate ĜN(eiω) of G0(eiω) that is as good
as possible. A related goal is to assess and quantify the error in the
estimate.
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The traditional way is to postulate a finite-dimensional
parameterization

G(q, θ) (4)

in terms of θ and then estimate θ in some suitable way and deliver
the estimate ĜN(eiω) = G(eiω, θ̂N). Many such parameterizations
have been suggested and tested in the literature, e.g. Ljung
(1999). A distinct difficulty is to determine the ‘‘size’’ of the
parameter vector θ and to assess the error that stems from G0(eiω)
being outside the set of functions that is covered within the
parameterization. Partly for that reason, alternative approaches
based on other ideas, like Gaussian process regression, and non-
parametric descriptions of the function G0(eiω) (or the impulse
response) have recently been suggested, e.g. Pillonetto and Nicolao
(2010a) and Pillonetto et al. (2011). Related methods for assessing
the quality of ĜN(eiω) have been discussed in the 1990s and
early 2000s, Goodwin, Gevers, and Ninness (1992), Gustafsson and
Hjalmarsson (1995) and Goodwin, Braslavsky, and Seron (2002) in
connection with bias quantification.

1.2. Questions revisited

Suppose we are given a batch of input–output data. We have no
information about the data, except that it is collected from a linear
stable systemwith additive noise. The task is one of the following:

(a) Estimate, as well as possible, the impulse response of the
unknown system.

(b) Estimate a model of given order that has an impulse response
as close as possible to the unknown system.

The standard answers to these questions are

(for b) to use a prediction error method/maximum likelihood
(PEM/ML) estimate for the given model structure.

(for a) to try several models of different orders, apply (b) and use
model order/model selection techniques to pick the best
model order, and finally get the PEM/ML estimate with the
best model order.

We shall revisit these two questions with an emphasis on
high order regularized FIR (finite impulse response) models that
are simple, safe and robust ways of building linear models,
directly focusing on the impulse response. This basic, regularized
least squares approach is then a focal point for interpreting
other techniques, like Bayesian inference and Gaussian process
regression (Pillonetto et al., 2011; Pillonetto & Nicolao, 2010a).
The main issue is how to determine a suitable regularization
matrix (Bayesian prior or kernel). Several regularization matrices
are provided and numerically evaluated on a data bank of test
systems and data sets. A natural question is then if there exists an
optimal regularizationmatrix. It turns out that there actually exists
an optimal regularization matrix that minimizes the mean square
error matrix and gives a theoretical upper bound on the accuracy
that can be achieved.
Notations. Throughout the paper, let δt,s denote the Kronecker-
delta function, i.e., if t = s, δt,s = 1, otherwise δt,s = 0, In
denote the n×n identitymatrix, diag(a1, . . . , an)denote a diagonal
matrix with ak as the (k, k)th element, k = 1, . . . , n. Let x|y ∼

N (m, P) denote that conditioned on y, x is a multivariate Gaussian
random variable with mean vectorm and covariance matrix P . For
positive integers i, j, k with i ≤ k, let i : j : k denote the vector
[i, i+j, i+2j, . . . , i+mj], wherem is the integer that rounds (k−i)/j
toward 0. For symmetric matrices A and B, let A ≥ B denote that
A − B is a positive semi-definite matrix.
2. A data bank of test systems and data sets

To test different techniques we generated a data bank of
systems and data sets. They should be representative of real-life
systems and data sets, in that the underlying system is not of low
order (but could allow good low order approximations) and should
correspond to different signal-to-noise ratios (SNR). We have done
as follows:

• A number of 30th order random SISO continuous-time systems
were generated using the command rss in MATLAB.

• These continuous-time systems were sampled at 3 times
the bandwidth to yield the discrete-time systems using the
following commands in MATLAB
bw=bandwidth(m)
f=bw*3*2*pi
md = c2d(m,1/f,‘zoh’)
where m is the continuous-time system and md is the
corresponding discrete-time system.

• These discrete-time systemswere split into 2500 ‘‘fast’’ systems
S1 that have all their poles inside a circle with radius 0.95 and
2500 ‘‘slow’’ systems S2 which have at least one pole outside
the circle with radius 0.95 (but inside the unit circle).

• The 5000 systems were simulated with an input which was
white Gaussian noise with unit variance, and output additive
white Gaussian noise with different variances:
. low SNR: SNR = 1. The additive output noise has the same
variance as the noise-free output. The number of data in these
records is 375.

. high SNR: SNR = 10. The additive output noise has a variance
which is a tenth of the variance of the noise-free output. The
number of data in these records is 500.

• This gives four collections of data sets.
. S1D1: Fast systems with high SNR.
. S2D1: Slow systems with high SNR.
. S1D2: Fast systems with low SNR.
. S2D2: Slow systems with low SNR.

All these data sets are accessible from http://www.rt.isy.liu.se/
∼tschen/research/regul_fir/systems_tested/.

To evaluate various methods, the estimates of the impulse
response coefficients ĝk, k = 1, . . . , 125, were compared to the
true ones by the measure

W = 100

1 −


125
k=1

|g0
k − ĝk|2

125
k=1

|g0
k − ḡ0|2


1/2 , ḡ0

=
1

125

125
k=1

g0
k . (5)

The W in (5) corresponds to the ‘‘fit’’ in the compare command
in the System Identification Toolbox, Ljung (2007). Note thatW =

100means a perfect fit between the true impulse response and the
corresponding estimate for the first 125 coefficients. Each data set
gives rise to a particular value of W , and in the tables below we
give the average ofW over all the sets in a certain collection.

3. A classical perspective

In the classical perspective G0(eiω) is unknown and estimated
from the data. The estimate is a random variable (due to the noise
v(t)) and the quality can be assessed by the ‘‘distance’’ between
the estimate and the true value.
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http://www.rt.isy.liu.se/~tschen/research/regul_fir/systems_tested/
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A reasonable measure is the mean square error (MSE)

MN(ω) = E|ĜN(eiω) − G0(eiω)|2. (6)

Here, the expectation E is with respect to the output noise process
v(t). Now, the MSEMN(ω) is classically split into a bias part

BN(ω) = EĜN(eiω) − G0(eiω) (7)

and a variance part

VN(ω) = E|ĜN(eiω) − EĜN(eiω)|2 (8)

so that

MN(ω) = VN(ω) + |BN(ω)|2. (9)

3.1. Trading variance for bias to minimize the MSE

In the expression for the MSE MN(ω), the bias term BN(ω)
decreases and the variance term VN(ω) increases, when the model
becomes more flexible (contains more essential parameters). The
MSE MN(ω) is then often minimized for a model flexibility that
does not give zero bias. In otherwords, a pragmatic choice ofmodel
flexibility allows some bias to reduce variance so that the MSE
MN(ω) is minimized.

3.2. OE-models

We will not be concerned with noise models in this contribu-
tion, so a natural numerator/denominator model is

G(q, θ) =
B(q, θ)

F(q, θ)
(10)

where B(q, θ) and F(q, θ) are polynomials of q−1. The PEM/ML
approach to the estimation of (10) would be

θ̂OE
N = argmin

θ

N
t=1

|y(t) − G(q, θ)u(t)|2. (11)

The estimation involves a search for the solution of the non-convex
problem (11), which may lead to local minima and possibly ill-
conditioned calculations. An alternative is to fix the denominator
F(q, θ) to 1 (or any fixed, stable, polynomial) so that a linear
regression problem is obtained.

3.3. FIR-models

The simplest approach to estimate G(q, θ) is to truncate the
expansion (2) at a finite number of impulse response coefficients
(‘‘FIR’’ model, corresponding to fixing F(q, θ) = 1 in (10))

G(q, θ) =

n
k=1

gkq−k, θ = [g1 g2 . . . gn]T (12)

where n is the order of the FIR model. The vector θ is then easily
estimated by the least squares method. Write the model as

y(t) = ϕT (t)θ + v(t), ϕ(t) = [u(t − 1) . . . u(t − n)]T (13a)

or YN = ΦT
Nθ + ΛN (13b)

where YN = [y(n + 1) y(n + 2) . . . y(N)]T (13c)

ΦN = [ϕ(n + 1) ϕ(n + 2) . . . ϕ(N)] (13d)

ΛN = [v(n + 1) v(n + 2) . . . v(N)]T . (13e)
The least squares solution is well known:

θ̂ LS
N = [ĝLS

1 ĝLS
2 . . . ĝLS

n ]
T

= argmin νN(θ) (14a)

νN(θ) = ∥YN − ΦT
Nθ∥

2
=

N
t=n+1

(y(t) − ϕT (t)θ)2 (14b)

θ̂ LS
N = (ΦNΦT

N)−1ΦNYN = R−1
N FN (14c)

FN = ΦNYN =

N
t=n+1

ϕ(t)y(t) (14d)

RN = ΦNΦT
N =

N
t=n+1

ϕ(t)ϕ(t)T . (14e)

Remark 1. Since u(−n + 1), . . . , u(0) are not known, the
summation in (14b) starts at n+ 1 to allow ϕ(t) to be formed. This
is known as the ‘non-windowed’ case. As can be seen from (13c),
this means that the first n outputs, y(1), y(2), . . . , y(n) in the data
set ZN

= {u(t), y(t), t = 1, . . . ,N} are not used.

How good is the resulting FIR model? Let us assume that

Ev(t) = 0, Ev(t)v(s) = σ 2δt,s. (15)

The input u(t) (and thus ϕ(t)) is seen as a deterministic variable,
and for the conceptual analysis here, for simplicity we will assume
that there exists µ > 0 such that

1
N − n

RN → µIn as N → ∞. (16)

Thiswill holdw.p. 1 if u(t) is chosen aswhite noisewith varianceµ
but may be true under many other choices of input (PRBS, certain
multi-sine input etc.). This means that for reasonably large N ,

1
N − n

RN ≈ µIn. (17)

Then it is immediate to show that

Eθ̂ LS
N = θ0 = [g0

1 g0
2 . . . g0

n ]
T (18)

E(θ̂ LS
N − θ0)(θ̂

LS
N − θ0)

T
= σ 2R−1

N ≈
σ 2

(N − n)µ
In (19)

which gives the bias, variance, andMSE, corresponding to (7) to (9),
as follows

BN(ω) =

∞
k=n+1

g0
k e

iωk (20a)

VN(ω) ≈
nσ 2

(N − n)µ
(20b)

MN(ω) ≈
nσ 2

(N − n)µ
+

 ∞
k=n+1

g0
k e

iωk


2

. (20c)

It iswell known fromLjung andWahlberg (1992) that by letting the
order n increase to infinity with the number of data N , sufficiently
slowly, the model (12) will converge to the true transfer function
(2). To minimize the MSE MN(ω) with respect to the order n for
a given data size N requires some idea on the size of BN(ω) as a
function of n. Assume that the system has all poles inside a circle
with radius λ̄. Then there exists a c̄ > 0 such that

|g0
k | < c̄λ̄k (21a)

|BN(ω)| <
c̄λ̄n+1

1 − λ̄
. (21b)
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So, since the squared bias decreases like λ̄2n as a function of n and
the variance increases like n (for large N) an upper bound on the
MSE MN(ω) is minimized by an order n that increases with N like

nopt ∼ logN. (22)

As a result, the upper bound on the MSE MN(ω) is minimized at
relatively low orders compared to the data size.

3.4. Regularization

Still, we see that the variance increases linearly with the FIR
model order n so for higher order FIR models it is important
to counteract the increasing variance by regularization. This is
an example of pragmatic bias–variance trade-off, cf. Section 3.1.
Regularization means that we replace the criterion νN(θ) in (14)
by

vR
N(θ,D) =

N
t=n+1

(y(t) − ϕT (t)θ)2 + θ TDθ (23a)

where D is positive semi-definite and called a regularization
matrix. That changes the estimate to be

θ̂R
N = [ĝR

1 ĝR
2 . . . ĝR

n ]
T (23b)

= (RN + D)−1FN = (RN + D)−1RN θ̂ LS
N . (23c)

We now disregard the tail of the impulse response g0
k , k > n and

assume that the true system is given by a FIR model of order n.
How to select D? We have (all expectations are with respect to

v(t))

Eθ̂R
N = (RN + D)−1RNθ0 (24a)

θR
bias = Eθ̂R

N − θ0 = −(RN + D)−1Dθ0 (24b)

θ̃ = θ̂R
N − Eθ̂R

N = (RN + D)−1RN(θ̂ LS
N − θ0) (24c)

Eθ̃ θ̃ T
= (RN + D)−1σ 2RN(RN + D)−1 (24d)

MSE(θ̂R
N) = E(θ̂R

N − θ0)(θ̂
R
N − θ0)

T

= Eθ̃ θ̃ T
+ θR

bias(θ
R
bias)

T

= (RN + D)−1(σ 2RN + Dθ0θ
T
0 D

T )(RN + D)−1 (24e)

where MSE(θ̂R
N) is the MSE matrix of θ̂R

N with respect to the true
impulse response coefficients vector θ0 in (18).

Suppose that D = diag(d1, d2, . . . , dn) and (17) is used for RN .
The (k, k)th element ofMSE(θ̂R

N) has the form

MSE(ĝR
k ) ≈

σ 2µ(N − n) + d2k(g
0
k )

2

(µ(N − n) + dk)2
(25)

which isminimizedwith respect to dk by dk = σ 2/(g0
k )

2. Therefore
this gives a clue how to choose the regularization matrix D: If
the system is stable as in (21a), the diagonal of D should increase
exponentially:

dk =
σ 2

cλk
, k = 1, . . . , n (26)

where λ = λ̄2 and c = c̄2.

Remark 2. The LS solution of the nth order FIR model (12) can
be seen as a special case of regularization for a higher mth
order FIR model: If we choose the diagonal regularization D =

diag(d1, d2, . . . , dm) with m > n and

dk =


0 if k ≤ n
∞ if k > n (27)

then the regularized LS estimate of the m order model is equal to
the usual LS estimate of the n-th order model.
Remark 3. Regularization as in (23a) is often used in a Tikhonov
sense, Tikhonov andArsenin (1977),where the objective is tomake
an ill-conditioned problemhave better numerical properties. Here,
however, the main aspect of regularization is to better deal with
the bias–variance trade-off (9). But the concepts are closely linked.
Indeed, if the input u for example is band-limited, then the matrix
RN will become very ill-conditioned for large n. At the same time,
the variance of the regular LS estimate, σ 2R−1

N (cf. (19)) will be very
large, and the need for a careful bias–variance trade-off is obvious.

Remark 4. From (24b) we see that for the regularized estimate,
the bias is linear in the true parameter. This means that the
estimation problem is of the kind studied in Eldar (2006), to which
we refer for general comments and insights. For the treatment here
it is more convenient to directly infer the pertinent results.

Remark 5. A standard way in statistics to combine two unbiased
parameter estimates θ1 and θ2 with covariance matrices P1 and P2
to yield an unbiased estimate with minimum variance is to form

θ = (P−1
1 + P−1

2 )−1(P−1
1 θ1 + P−1

2 θ2). (28)

In that perspective the regularized estimate (23b) can be seen
as the combination of the un-regularized estimate θ̂ LS

N and an
estimate θ̄ = [0 0 . . . 0]T with variance σ 2D−1.

3.5. Using a base-line model

If the impulse response is decaying slowly, a high order FIR
model will be required to capture that. It may then be beneficial to
incorporate a ‘‘base-line model’’ that can take care of a dominating
part of the impulse response. For example, a model with an
additive base-line model can be like

G(q, η, θ) = Gb(q, η) + Gr(q, θ) (29a)

with Gr(q, θ) =

n
k=1

gkq−k. (29b)

HereGb(q, η) is the base-linemodel, e.g. of the kind (10), with η the
associated parameter vector and Gr(q, θ) a high order FIR model
and θ is defined as in (12).

Given the input–output data ZN
= {u(t), y(t), t = 1, . . . ,N},

a base-line model Gb(q, η̂N) is first estimated separately using
e.g. PEM/ML methods. With

yb(t) = Gb(q, η̂N)u(t) (30)

the residual output yr(t) is defined as

yr(t) = y(t) − yb(t). (31)

So a new input–output data ZN
r = {u(t), yr(t), t = 1, . . . ,N} is

formed and the FIR model Gr(q, θ) in (29) can then be estimated
using the regularization method as in (23).

An interpretation of how the base-line model enters a general
model description will be given in Section 4.2.

3.6. Cross-validation

Using the classical methods mentioned in Sections 3.2–3.4 for
optimal MSE means that we must know certain variables (say β),
like the best OE model order, the best FIR model order n in (22) or
the optimal regularization parameters c, λ in (26). The necessary
information to compute these are typically not known, which in
the classical perspective typically is handled by cross-validation:

(1) Split the data record into two parts: an estimation data part
and a validation data part.
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(2) Estimate models G(q, θ̂N) using the estimation data for
different values of β .

(3) Form the error between the measured and the model outputs
for these models using the validation data:

ϵ(t, β) = y(t) − G(q, θ̂N)u(t) (32)

W (β) =


t

|ϵ(t, β)|2 (33)

and pick the value of β that minimizes W (β). The model can
then be re-estimated for this β using the whole data record.

3.7. Numerical illustration

Let us try these methods on our data bank of data sets as shown
in Section 2.

Example 1 (Fixed Order OE Models). We estimate models (10) of
different orders n (same order for B(q, θ) and F(q, θ)) using the
command m = oe(data, [n, n, 1]) in the System Identification
Toolbox, Ljung (2007), and compute the average fit (5) for all
models in the corresponding data set.

The results are shown in the table below. It also contains the
fits when the order n for each data set has been chosen by cross-
validation (CV) testing orders 5:5:40.

n = 5 n = 15 n = 25 n = 35 n = 40 CV

S1D1 86.3 86.4 74.2 54.9 42.6 89.4
S2D1 68.7 71.7 63.1 49.3 42.0 73.2
S1D2 71.9 56.1 34.5 10.2 −1.7 70.8
S2D2 50.8 42.3 20.4 −2.1 −8.5 49.6

Example 2 (Fixed Order FIR Models). We estimate models (12) of
different orders nusing the least squaresmethod (14) and compute
the average fit (5) for all models in the corresponding data set.

The results are shown in the table below. It also contains the
fits when the order for each data set has been chosen by cross-
validation (CV) testing orders 5:10:125.

n = 5 n = 35 n = 65 n = 95 n = 125 CV

S1D1 32.2 83.1 85.8 81.7 76.9 86.1
S2D1 −0.7 47.1 60.0 64.0 65.3 67.4
S1D2 30.8 61.4 46.0 25.9 −0.1 59.6
S2D2 −1.8 30.5 24.2 8.0 −18.2 30.5

Example 3 (FIR-Models of Order 125 with Regularization). We
estimatemodels (12) of order 125 using the regularizationmethod
(23) with diagonal D for different values of c and λ in (26), and
compute the average fit (5) for all models in the corresponding
data set. Throughout the simulations in this paper, the variance σ 2

is estimated from the sample variance of the estimated FIR model
(12) of order 125 using the least squares method.

The results are shown in the table below. It also contains the
fits when c and λ for each data set have been chosen by cross-
validation (CV) testing the grid of 9 values, c = 1, 5, 9 and λ =

0.5, 0.9, 0.95.

c = 1 c = 1 c = 1 c = 9 c = 9 CV
λ = 0.5 λ = 0.9 λ = 0.95 λ = 0.5 λ = 0.95

S1D1 51.0 84.8 79.2 58.2 77.5 84.8
S2D1 18.4 67.8 66.8 24.5 65.6 67.1
S1D2 37.4 54.9 36.3 44.7 17.1 55.6
S2D2 6.4 29.5 8.6 12.7 −7.5 23.3
Example 4 (As Example 3, but with Base-Line Model (29)). We
estimate models (29) where an additive second order base-
line model Gb(q, η) is first identified using the command
m = oe(data, [2, 2, 1]), then the new data set ZN

r = {u(t), yr(t),
t = 1, . . . ,N} as described in Section 3.5 is formed, and finally an
FIR model (12) of order 125 is estimated using the regularization
method as in Example 3.

c = 1 c = 1 c = 1 c = 9 c = 9 CV
λ = 0.5 λ = 0.9 λ = 0.95 λ = 0.5 λ = 0.95

S1D1 74.8 85.4 79.3 78.0 77.5 86.7
S2D1 56.5 72.2 69.6 58.7 68.4 74.1
S1D2 62.2 57.5 37.4 64.3 17.1 66.4
S2D2 42.2 32.6 9.8 42.7 −6.4 45.8

Findings. The ‘‘standard’’ approach (Example 1), works well. It is the
best approach for all data sets except S2D1. Note that in the simulated
data, the ‘‘true’’ order is 30, but this is normally not the best order
choice for the OE models. The experiments in Example 2 also show
that although the true impulse response is infinite, it is normally not
the best choice to use maximum FIR model order. The high variance
for such models overrides the low bias. Choosing the FIR model
order by cross-validation gives a fit between 30%–85%. Using FIR
models of order 125 and regularization (23) with diagonal D in (26)
(Example 3) does not always improve the fit for all the c, λ tests, and
the good affect is largely dependent on their values, so they should be
chosen with care. The cross-validation choice of c, λ over the 9 point-
grid gives a fit of about the same size as cross-validation over orders.
Adding a second order base-line model, (Example 4), is beneficial,
mostly so for the slow systems.

4. A Bayesian perspective

In the Bayesian view, the parameter to be estimated is itself
a random variable, and we seek the posterior distribution of this
parameter, given the observations.

The followingwell known and simple result about conditioning
jointly Gaussian random variable is a key element in Bayesian
calculations. Let
x1
x2


∼ N


m1
m2


,


P11 P12
P21 P22


. (34a)

Then

x1|x2 ∼ N (m, P) (34b)

m = m1 + P12P−1
22 (x2 − m2) (34c)

P = P11 − P12P−1
22 P21. (34d)

It is also good to recall the following simple matrix equality:

A(Ij + BA)−1
= (Ik + AB)−1A (35)

where A is an k × j matrix and B is a j × k matrix.
In the current setup, we regard the parameter of the nth order

FIR model (12), i.e., the impulse response coefficients vector θ as a
random variable, say of Gaussian distribution with zero mean and
covariance matrix Pn:

θ ∼ N (θ ap, Pn), θ ap
= 0. (36)

If the input u(t) (and ϕ(t), see (13a)) is known and the noise v(t)
is independently Gaussian distributed with

v(t) ∼ N (0, σ 2) (37)

then with

YN = ΦT
Nθ + ΛN . (38)
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YN and θ will be jointly Gaussian variables:
θ
YN


∼ N


0
0


,


Pn PnΦN

ΦT
NPn ΦT

NPnΦN + σ 2IN−n


. (39)

The posterior distribution of θ given YN follows from (34)

θ |YN ∼ N (θ̂
apost
N , Papost

N ) (40a)

θ̂
apost
N = PnΦN(ΦT

NPnΦN + σ 2IN−n)
−1YN (40b)

= (PnΦNΦT
N + σ 2In)−1PnΦNYN (40c)

= (RN + σ 2P−1
n )−1FN (40d)

= ((σ 2R−1
N )−1

+ P−1
n )−1(σ 2R−1

N )−1θ̂ LS
N (40e)

Papost
N = Pn − PnΦN(ΦT

NPnΦN + σ 2IN−n)
−1ΦT

NPn (40f)

= Pn − (PnΦNΦT
N + σ 2In)−1PnΦNΦT

NPn

= ((σ 2R−1
N )−1

+ P−1
n )−1 (40g)

where FN , RN , θ̂ LS
N are defined in (14). Moreover, (40b) and (40f) are

the expressions from (34) while the steps to (40e) and (40g) using
(35) stress the link to (28) merging the models θ̂ LS

N and θ ap
= 0.

We notice that this a posteriori estimate θ̂
apost
N is the same as the

regularized estimate θ̂R
N if the regularization matrix D is chosen as

D = σ 2P−1
n . (41)

This is just a restatement of thewell-known fact that regularization
is closely related to prior estimates.

So this gives an insight into how to choose the regularization
matrix: Let it reflect the size and correlations of the impulse
response coefficients. For the size, it is entirely in line with
the choice of diagonal elements (26). If the impulse response is
smooth (for example a fast sampled continuous system) it is also
natural to let Pn reflect that, by letting the diagonals close to
the main diagonal show high correlation. A simple choice is to
let the correlation coefficient between gk and gj in (12) be ρ|k−j|.
With diagonal elements of Pn being cλk as in (26) we then get a
covariance matrix Pn whose (k, j)th element is

cρ|k−j|λ(k+j)/2 (42)

where c ≥ 0, 0 ≤ λ ≤ 1 and |ρ| ≤ 1. The estimates that we come
up with are thus the same as in the classical, regularized estimate
(23b), but the Bayesian perspective has given additional insights
into the choice of D.

4.1. Estimating hyper-parameters

The Bayesian perspective gives one more insight. Suppose that
prior knowledge does not give a definite choice of Pn, but it is
natural to let it depend on unknown hyper-parameters β , Pn(β)
(like β = [c λ] in (26)). From (39) we see that

YN ∼ N (0, σ 2IN−n + ΦT
NPn(β)ΦN) (43a)

so with a classical twist in this Bayesian framework we can form
the likelihood function of the observation YN given β , and estimate
β by the maximum likelihood (ML) method:

β̂ = argmin
β

Y T
NΣ(β)−1YN + log detΣ(β) (43b)

where Σ(β) = σ 2IN−n + ΦNPn(β)ΦT
N . This method of estimating

hyper-parameters in the prior distribution is known as the
empirical Bayesmethods (Carlin & Louis, 1996).

The noise variance σ 2 used in (43b) and (41) can of course be
included among the hyper-parameters, but in the simulations in
this paper we used the way as mentioned in Example 3.
4.2. Base-line model as a prior model

The prior mean θ ap in (36) is usually set to 0. It is interesting
to see that in the Bayesian perspective the impulse response
coefficients vector of the base-line model in (29) can actually be
seen as a nonzero prior mean θ ap in (36).

Given the data ZN
= {u(t), y(t), t = 1, . . . ,N}, a base-line

model Gb(q, η̂N) is first estimated. Then from (30) and (31),

Y r
N = YN − Y b

N (44)

where Y ∗

N = [y∗(n + 1) y∗(n + 2) . . . y∗(N)]T and ‘‘*’’
represents either ‘‘r ’’ or ‘‘b’’. Using the Bayesian method as
described above, the impulse response coefficient vector of the FIR
model Gr(q, θ̂

apost
N ) in (29) resulting from ZN

r = {u(t), yr(t), t =

1, . . . ,N} can be written as

θ̂
apost
N = Pn(β)ΦN(ΦT

NPn(β)ΦN + σ 2IN−n)
−1Y r

N . (45)

Here the hyper-parameter β is determined by the maximum
likelihood method:

β̂ = argmin
β

(Y r
N)TΣ(β)−1Y r

N + log detΣ(β) (46)

where Σ(β) is defined in (43b).
On the other hand, let ĝb

k and ĝapost
k k = 1, . . . ,∞, denote

the impulse response coefficients of the base-line model Gb(q, η̂N)

and the FIR model Gr(q, θ̂
apost
N ) in (29), respectively. Then for

sufficiently large n, the model (29) satisfies

G(q, η̂N , θ̂
apost
N ) ≈

n
k=1

(ĝb
k + ĝapost

k )q−k. (47)

Now let θ̂
apost
N = [ĝapost

1 , ĝapost
2 , . . . , ĝapost

n ]
T and θ̂ b

N = [ĝb
1 , ĝ

b
2 ,

. . . , ĝb
n ]

T . Then from (44) to (46), and Y b
N ≈ ΦT

N θ̂ b
N , it is

straightforward to see that for sufficiently large n, the impulse
response coefficients vector θ̂ b

N + θ̂
apost
N of G(q, η̂N , θ̂Napost ) can be

seen as the posteriormean of θ given YN with the prior distribution

θ ∼ N (θ ap, Pn), θ ap
= θ̂ b

N . (48)

4.3. Numerical illustration

Let us test, on the data bank of data sets as shown in Section 2,
the Bayesian method (40) and (43) with the following prior
covariances: the diagonal (26) and the correlation (42)

PDI(k, j) =


cλk ifk = j
0 else (‘Diagonal’) (49a)

PDC (k, j) = cρ|k−j|λ(k+j)/2 (‘Diagonal/correlated’) (49b)

where the hyper-parameters are c ≥ 0, 0 ≤ λ ≤ 1 and |ρ| ≤

1. The complexity of the prior (49b) can be reduced by linking
ρ = f (λ), where f (·) could be, for example, either a nondecreasing
function that satisfies f (0) = 0 and f (1) = 1 or a nonincreasing
function that satisfies f (0) = 0 and f (1) = −1. Here, we test a
special case of the prior (49b) by linking ρ = λ1/2:

PTC (k, j) = c min(λj, λk) (‘Tuned/correlated’). (49c)

Remark 6. It’s interesting to note that the prior (49c) actually
corresponds to the stable spline kernel of order 1 introduced
using stochastic arguments in Pillonetto et al. (2011). We refer
to Pillonetto, Chiuso, and De Nicolao (2010) for discussions
regarding the comparison between the performance of the stable
spline kernels of orders 1 and 2.
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Example 5 (Testing ML Estimation of Hyper-Parameters). We first
estimate models (12) of order 125 using the Bayesian method (40)
and (43) with the prior covariances (49). Then we estimate models
(29) where an additive second order base-line model Gb(q, η) is
first identified using the command m = oe(data, [2, 2, 1]), then
the new data set ZN

r = {u(t), yr(t), t = 1, . . . ,N} as described in
Section 3.5 is formed, and finally an FIR model (12) of order 125 is
estimated using the Bayesian method (40) and (43) again.

The average fit (5) is calculated and the simulation results
are shown in the table below, where an ‘‘e’’ is appended to the
regularization matrix name if a base-line model is used.

DI DC TC DIe DCe TCe

S1D1 86.7 90.8 90.3 88.9 91.2 91.1
S2D1 68.6 78.0 77.8 75.6 81.6 81.6
S1D2 61.8 72.7 72.4 68.9 74.0 74.1
S2D2 33.2 60.7 60.8 50.6 62.2 61.8

Findings. We see that estimating the hyper-parameters for DI and
DIe give about the same fit as the CV in Examples 3 and 4. The ML
estimates of the hyper-parameters are slightly better though, perhaps
since the search is over a continuum of c, λ and not just the 9-
point grid, used for CV. It is also clear that allowing and estimating
correlation between the impulse response coefficients with DC, and TC
gives a clear improvement. It should be noted that the criterion (43b) is
not convex, so it requires some care to initialize the search and search
for the minimum. This can be illustrated by the fact that TC actually
behaves better than DC in some cases, though it is a special case of DC,
but with fewer parameters. In all the tests, we initialize c = exp(5),
ρ = 0.5. Since the optimization problem (43b) is sensitive to the
initial value of λ, we solved (43b) twice with two initial values of
λ, 1 and 0.5, respectively. The hyper-parameter estimate that gave a
larger likelihood p(YN |β)was chosen as the ultimate hyper-parameter
estimate.

5. Gaussian process regression to the transfer function estima-
tion

Gaussian process regression (GPR) has become a widely spread
and very popular method for inference in machine learning,
see, e.g. Rasmussen and Williams (2006). In short, it is about
inferring an unknown function f (x) from measurements yk, k =

1, 2, . . . ,N that bear some information about f (x). The argument
x can either be a continuous or a discrete variable. The prior
information about the function is that it is a Gaussian process, with
a certainmean and covariance function. Thismeans that the vector
[f (x1), f (x2), . . . ., f (xn)], for any collection of points xi is a jointly
Gaussian random vector, withmeanm(x) = Ef (x) and covariances

Cov(f (xi), f (xj)) = P(xi, xj) (50)

where P(xi, xj) is often called a kernel. Often m(x) ≡ 0. Typically,
the observation yk is a linear functional of f (xi), measured in ad-
ditive Gaussian noise. This causes [f (x), y1, . . . , yN ] to be a jointly
Gaussian vector, which means that the posterior distributions,

p(f (x1), . . . , f (xn)|y1, . . . , yN) (51)

can be calculated by the rules for conditioning jointly Gaussian ran-
dom variables, (34).

In Pillonetto and Nicolao (2010a) the GPR is applied to
estimating the impulse response of a stable linear system. For a
sampled model, the impulse response function is given by g0

k , k =

1, . . . ,∞ in (2). The observation yk is themeasured output in (1) at
time t = k. Modeling the impulse response function as a Gaussian
process means that, for any n,

[g1, . . . , gn] ∼ N (0, Pn) (52)
where Pn is the n × n upper left block matrix of the semi-infinite
matrix P defined in (50). This is the same situation as in the
Bayesian perspective (36)–(40). The Gaussian process estimate
of any collections of impulse response coefficients is thus given
by (40).

The only thing that remains to be discussed is the choice of
prior covariances (52) (or (50)). Of course, the considerations for
choosing Pn in (52) and in (36) must be the same, and the relation
to the thoughts about the regularizationmatrixD in (41) still holds.
But in GPR several standard choices for (50) exist.

In Pillonetto and Nicolao (2010a) the following kernels/
covariance functions are discussed

PCS(k, j) =


c
k2

2


j −

k
3


, k ≥ j

c
j2

2


k −

j
3


, k < j

(‘Cubic Spline’) (53a)

PSE(k, j) = ce−
(k−j)2

2λ2 (‘Squared Exponential’) (53b)

PSS(k, j) =


c
λ2k

2


λj

−
λk

3


, k ≥ j

c
λ2j

2


λk

−
λj

3


, k < j

(‘Stable Spline’) (53c)

where the hyper-parameters c ≥ 0, 0 ≤ λ ≤ 1. There is also a
MATLAB toolbox, Pillonetto and Nicolao (2010b) that implements
the GPR, including estimating the hyper-parameters using (43).

Let us test the GPR approach with the kernels (53) on the data
bank of data sets as shown in Section 2.

Example 6 (D-Matrices Suggested in the GPR Approach). Similar to
Example 5, let us estimate the models (12) of order 125 and (29)
with the kernels (53).

The average fit (5) is calculated and the simulation results are
shown in the table below, where an ‘‘e’’ is appended to the kernel
name if a base-line model is used.

CS SE SS CSe SEe SSe

S1D1 78.0 80.8 90.3 81.6 84.2 90.4
S2D1 38.8 74.7 77.9 47.9 78.9 81.2
S1D2 16.6 44.4 70.1 60.7 65.7 71.6
S2D2 12.1 48.3 58.5 −44.3 58.6 59.6

Findings. The CS kernel, has difficulties with the slow systems, while
the kernel SS shows a performance compatible with DC, DI and TC
in Example 5.

Remark 7. The simulation results reported here are obtained
using our own implementation. Similar results can be obtained
using the stable spline toolbox for system identification (Pillonetto
& Nicolao, 2010b). The difference lies in the estimation of σ 2 and
on the other hand, in that two initial values of λ are used in solving
(43b) as in Example 5.

Remark 8. For the test data bank, the DC, TC and SS priors/kernels
give quite close results, while in some cases the DC prior is slightly
better. This is perhaps because the DC prior uses an independent
argumentρ to describe the correlations between impulse response
coefficients. This extra flexibility enables the DC prior to capture
more complicate impulse responses, although it also adds extra
difficulty in solving the optimization problem (46).
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Remark 9. It is fair to add that the theory around GPR and
its relation to Bayesian estimation is much richer than shown
here. The estimation of continuous time impulse responses can
be handled in the same framework and there are interesting
connections to Reproducing Kernel Hilbert Spaces (RKHS) and
spline approximation. Our point here is that the actual resulting
impulse response estimate is a regularized FIR estimate (23b) for
certain choices of regularization matrix D. We refer to Pillonetto
and Nicolao (2010a) for a more complete account of the theory.

Remark 10. It is interesting to note that a parametric model
is also used in Pillonetto et al. (2011)(cf. Section 4.2). The
parametric model therein is used to construct the prior covariance
Pn of the impulse response coefficients θ so that it can capture
impulse responses withmore complicate behaviors. Moreover, the
parametric model therein is estimated jointly with the hyper-
parameters bymaximizing themarginal likelihood. In contrast, the
parametric model Gb(q, η̂N) here plays a role of a prior mean of
θ , and estimated separately with the nonparametric model θ̂ apost

N .
One benefit of the way used here is that two very low-dimensional
optimization problems need to be solved instead of one low-
dimensional one, making maybe the solution less exposed to local
minima. These two different ways of using parametric models are
tested on the test data bank. The simulation shows that they give
quite close results, while in some cases the way introduced here is
slightly better.

6. Optimal regularization matrix

We have seen that a focus in the discussions has been to find a
proper regularization matrix D in (23a). This is the same problem
as finding a proper prior covariance matrix Pn in (36), or as finding
a good kernel P(·, ·) in the Gaussian process approach (50).

The algorithmic impact of all these choices is equivalent, and
they lead to the same estimate (or posterior model). We have seen
in the tables that the quality of the models depends quite a lot
on these regularization matrices. Several regularization matrices
can do very well in the model evaluations. So a natural question
is: Is there an optimal choice of regularization matrix for a certain
true system θ0? Actually, there is, and we return to the classical
perspective in Section 3 to analyze this.

We found in (24e) an expression for the MSEmatrix. Let us first
rewrite the expression (24e) using (41) that does not turn out to be
ill-defined later on. Let
Pn = σ 2D−1 and Q0 = θ0θ

T
0 .

Then
(RN + D)−1

= (PnRN + σ 2In)−1Pn
and
MSE(θ̂R

N)(Pn) = (PnRN + σ 2In)−1(σ 2PnRNPn

+ σ 4Q0)(RNPn + σ 2In)−1 (54)
where we stressed how the MSE matrix depends on Pn for a given
θ0 (Q0).

Again, is there a way to find a ‘‘best’’ Pn for a given system
θ0? We could first ask what the average MSE is if θ0 is a random
variable with zero mean and covariance Eθ0θ

T
0 = Q . This average

MSE is obtained by replacing Q0 in (54) by Q , and corresponds in
a Bayesian perspective to the MSE of the estimate θ̂

apost
N . Keeping

in mind that θ̂
apost
N is the posterior mean, we know from the

Bayesian approach that theMSE of the estimate θ̂
apost
N is minimized

by picking the prior covariance Pn in (36) to be the true (prior)
covariance Q of θ0. Therefore, for a given θ0, the choice
Pn = Q0

minimizes (54), and we have the following result.
Theorem 1 (Best Choice of Pn for Given θ0). The matrix in (54) obeys
the following matrix inequality

MSE(θ̂R
N)(Pn) ≥ MSE(θ̂R

N)(θ0θ
T
0 ), for any Pn ≥ 0. (55)

Proof. An independent direct algebraic proof is given in Appendix.
See also equation (14) in Eldar (2006).

Thatmeans that there is an optimal choice of regularization that
is independent of both N and the input u(t), that minimizes the
MSE matrix in a matrix sense. Whatever the quadratic measure of
fit for the model, the best choice of regularization is to use

Pn = θ0θ
T
0 (56)

which yields the corresponding optimal regularized estimate

θ̂
Opt
N = (θ0θ

T
0 ΦNΦT

N + σ 2IN−n)
−1θ0θ

T
0 ΦNYN . (57)

Let us try this regularization matrix on the data bank. �

Example 7 (Best Regularization Compared to the Optimal One). Let
us compute the estimates (57) corresponding to optimal regular-
ization (56) and compare to the best performing ones (without the
base-line model) in Examples 5 and 6.

Best Ideal

S1D1 90.8 (DC) 98.6
S2D1 78.0 (DC) 91.9
S1D2 72.7 (DC) 94.5
S2D2 60.8 (TC) 88.9

Findings. The optimal regularization (which requires system knowl-
edge) clearly outperforms all the best choices from the previous
sections.

We see that the performance of this regularization indeed is
superior to all we have seen in the other tables. The figures in this
example are indeed the upper bounds of what can be achieved
for FIR models by regularization, Bayesian method and Gaussian
process regression (bothwith zero priormean). It is of independent
interest to know such upper bounds.

The drawback is of course that the optimal choice (56) depends
on the unknown system and cannot be used in practice.

As usual there are two approaches to this dilemma:

• Adaptive choice (choose Pn based on a preliminary estimate of
θ ).

• Robust choice (choose Pn as a min–max choice over a prior set
of possible models).

It is an interesting topic for future research to find out how
these approaches could be best implemented for more successful
regularization.

7. Estimating the impulse response

Let us now sum up and consider the findings about question
(a) in the introduction, to estimate the impulse of the unknown
system, that has the best fit to the true impulse response.

The standard answer is to try the models (10) of different
orders using PEM/ML methods, use the cross-validation in
Section 3.6 to pick the best model order, and finally use the
whole data record to estimate the model (10) with the best
model order. Actually, the standard approach has been tested in
Example 1 where its performance is shown in the column CV.
Comparing the performance of the standard approach with that
of the regularization methods based on the kernels/regularization
matrices SS, TC and DC as shown in Examples 5 and 6 shows that
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Fig. 1. Box plots of the 2500 fits for CV/S1D1 in Example 1 (left figure) and DC/S1D1 in Example 5 (right figure). The left figure has an additional 1.4% fits below 50.
the standard approach works rather well but the average fit can be
improved.

Moreover, recall that each figure in the tables in Examples 1–6
is the average of 2500 fits. It is of course interesting to study the
distribution of the fits over the different individual data sets. It
turns out that the distributions in the CV column of Example 1
have better medians but long tails of poor fits, while the SS,
TC and DC columns of Examples 5 and 6 are distributed much
more compactly. For illustration, the box plots for the 2500
fits corresponding to CV/S1D1 in Example 1 and the DC/S1D1
in Example 5 are shown in Fig. 1. This observation indicates
that the standard approach occasionally has problems and is
actually less robust than the regularization methods based on
the kernels/regularization matrices SS, TC and DC as shown in
Sections 4 and 5.

8. Estimating a model of given order

Let us now turn to question (b) in the introduction, to find a
model (10) of a given order, that has the best fit to the true impulse
response.

The PEM/ML approach (11) has two good features, e.g. Ljung
(1999):

(1) If the given model structure contains the true, unknown sys-
tem, PEM/ML has the smallest possible variance (asymptoti-
cally) [among all unbiased estimates].

(2) If not, PEM/ML will converge, as N → ∞, to the best possible
approximation within the given structure.

Is there a catch? Yes, if the true system and model is of high
order, the estimate will have rather high variance. It will be the
smallest one possible for unbiased estimates, but just as shown
in Section 3.1 it is conceivable that the MSE could be smaller if
we allow some bias. There are several ways to achieve this. One
would be to regularize the estimation criterion (11), just as in
(23a). Another would be to use the best available impulse response
estimate and fit it to the requiredmodel structure. That can be done
bymodel reduction either byminimizing the L2-fit, e.g. Tjärnström
and Ljung (2002) or by balanced realization reduction (see balred
in the System Identification Toolbox, Ljung (2007)), or any other
model reduction technique.

Let us test the above methods on the data bank of data sets.
Example 8 (Estimating Models of a Given Structure). We try the
following methods:

• OE: m = oe(data, [n, n, 1])
• DC + BR:

mf = DC(data, 125)
m = balred(mf, n)

Here, the command DC(data,125) denotes the regularization
method with the DC regularization (49b) (base-line model is not
used). The average fit (5) is calculated and the simulation results
are shown in the table below.

n = 2 n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
S1D1
OE 57.4 86.3 89.2 86.4 81.5 74.2 61.5
DC + BR 28.2 83.0 90.6 90.8 90.8 90.8 90.8
S2D1
OE 47.1 68.7 72.8 71.7 70.5 63.1 57.2
DC + BR −47.0 53.2 73.5 76.2 77.0 77.4 77.6
S1D2
OE 53.2 71.9 65.5 56.1 46.1 34.5 19.7
DC + BR 30.5 68.9 72.7 72.7 72.7 72.7 72.7
S2D2
OE 40.2 50.8 43.0 42.3 30.7 20.5 10.5
DC + BR −31.6 41.3 56.9 59.1 59.8 60.2 60.3

We also tried the regularization matrices/priors DI, TC and SS
instead of DC, and they gave very similar or slightly inferior results.

Findings. For low order models (2nd and 5th order models), the
PEM/MLmethodOE gives the best fit. In particular, the 5th ordermodel
gives a better fit than the 2nd ordermodel. That’s because the variance
of the 5th order model is small enough so that further reducing the
variance at the price of some bias gives a worse fit. In contrast, the
balanced realizationmodel reduction on the regularized FIRmodel has
some difficulties for low order models. For higher order models, the
PEM/ML method OE works badly due to the high variance caused by
the increasing model flexibility. In contrast, the balanced realization
model reduction on the regularized FIRmodelworks ratherwell. That’s
because on the one hand the regularization can curb the flexibility and
overcome the high variance, and on the other hand, the regularized FIR
model allows good approximations with high order models. Therefore,
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Table 1
The average fit (5) to test data bank as shown in Section 2 for the standard approach
(cf. Example 1, CV column), the regularized FIR approachwith the DC regularization
(cf. Example 5, DC column), and the theoretical limit of the regularization
(cf. Example 7, Ideal column).

Standard Reg. FIR (DC) Opt. reg.

S1D1 89.4 90.8 98.6
S2D1 73.2 78.0 91.9
S1D2 70.8 72.7 94.5
S2D2 49.6 60.8 88.9

it is beneficial to first estimate a 125th order regularized FIR model
and then reduce its order using balanced realization model reduction.
We also see that the simple 5th order model for the OE gives not much
worse performance than the best that can be achieved (within 5% for
the ‘‘fast’’ systems and 10% for ‘‘slow’’ systems).

Remark 11. As mentioned in Section 2, the white noise input
is used to simulate the 5000 systems. It is of course interesting
to study the cases where the input is not white. We actually
tested the casewhere the input is a band-limited Gaussian random
signal. As a result, the balanced realization model reduction on the
regularized FIR model gives a better fit than the PEM/ML method
OE for the 5th ordermodel. In contrast with the table in Example 8,
the PEM/ML method OE has a significant drop in the fits for most
cases, especially for model orders greater than 2. The balanced
realization model reduction on the regularized FIR model gives a
little bit worse fits and shows very good robustness. Nevertheless,
for the band-limited Gaussian random input signal, the same
finding as in Example 8 can be drawn. For low order models (2nd
order model), the PEM/ML method OE gives the best fit. For high
order models, the balanced realization model reduction on the
regularized FIR model is preferred.

9. Conclusions

So, let us return to the two questions posed in the introduction
and summarize our findings.

The first question is to estimate the impulse response of a linear
system as well as possible. We have tried two basic techniques for
that:
• The ‘‘standard’’ approach: estimate parametric models of

different ‘‘sizes’’ by PEM/ML techniques and choose the model
size by cross validation.

• A regularized FIR model approach: estimate a high order FIR
model and regularize the estimate to suitably curb flexibility.
We have reported several interpretations and paradigms for
this approach, and a key feature is to select the regularization
matrix (priors or kernels).

For convenience we repeat in Table 1 the bottom line of the results
of these two techniques, when applied to the test data bank,
described in Section 2. We have also tried a hybrid version of the
two approaches by adding a second order base-line model. This
gives a touch better fit. (See Example 5.) A box plot for the 2500
figures behind the first two entries in the table was given in Fig. 1.

The conclusion is that for the test data bank that has relatively
short data records and high order systems, the regularization
method with carefully chosen regularization matrices shows both
better accuracy and robustness than the standard approach.

Wehave seen that the results depend significantly on the choice
of regularization matrix, and how well it is tuned. That raises the
question of how far regularization can bring us. The theoretical
limits in the last column of Table 1 are therefore of interest. They
show a substantial potential, but it is not clear how much of it can
be achieved with practical algorithms.

The second question is to estimate a model (10) of given order
that has an impulse response as close as possible to the unknown
system. We have also tried two basic techniques for that:
• The ‘‘standard’’ approach: estimate model (10) by PEM/ML
techniques.

• A regularized FIR model approach, together with a model
reduction technique: fit a well estimated regularized FIR model
to (10) by some model reduction techniques.

The conclusion is that for the data and systems in the test data
bank, a low order model is often better estimated by the standard
approach; a higher order model is often better estimated bymodel
reduction on a high order regularized FIR model with careful
regularization.
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Appendix. Proof of Theorem 1

Define

M = −(PnR + In)−1 and M0 = −(Q0R + In)−1 (A.1)

where for convenience we have let R = σ−2RN and Q0 = θ0θ
T
0 .

With (A.1), (55) can be rewritten as

M(PnRPn + Q0)MT
≥ M0(Q0RQ0 + Q0)MT

0 . (A.2)

Note that

I + M = −MPnR, I + M0 = −M0Q0R (A.3)

thus (55) can be further rewritten as

(I + M)R−1(I + M)T + MQ0MT

≥ (I + M0)R−1(I + M0)
T

+ M0Q0MT
0 . (A.4)

In the following, we show that

(I + M)R−1(I + M)T + MQ0MT

− (I + M0)R−1(I + M0)
T

− M0Q0MT
0

= (M − M0)(R−1
+ Q0)(M − M0)

T . (A.5)

Simple calculation shows that (A.5) is equivalent to

(I + M0)R−1MT
+ MR−1(I + MT

0 )

− (I + M0)R−1MT
0 − M0R−1(I + MT

0 )

= 2M0Q0MT
0 − M0Q0MT

− MQ0MT
0 . (A.6)

It follows from the second equation of (A.3) that

(I + M0)R−1
= −M0Q0. (A.7)

Now inserting (A.7) into the left hand side of (A.6) shows that (A.6)
and thus (A.5) holds.Moreover, since (M−M0)(R−1

+Q0)(M−M0)
T

in (A.5) is positive semi-definite, Eq. (A.4) holds as well, which in
turn implies (55) holds. So this completes the proof.
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Remark 12. Asmentioned in Remark 4, the bias of the regularized
estimate θ̂R

N is linear in θ0. Note from (23b) that

θ̂R
N = (I + M)θ̂ LS

N (A.8)

so the bias is equal to Mθ0 and thus M corresponds to the bias
gradient matrix in (14) of Eldar (2006).
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