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This paper gives a highly abbreviated overview of some of the key issues in empirical nonlinear modelling 
for chemical process applications. This task is complicated by the inherent nature of nonlinearity: the term 
describes a class of systems by the one feature they lack. In fact, this division - linear vs. nonlinear sug- 
gests a 'unity' or 'homogeneity' of the class of nonlinear systems that does not exist. Consequently, this 
review will focus on specific sub-classes of nonlinear models that have analytically useful structural char- 
acteristics, and comparisons will be made both between these classes and with the more familiar linear 
models. Length limitations restrict these discussions somewhat, but it is hoped that the range of examples 
will be great enough to demonstrate how nonlinear model identification is both similar to and different 
from linear model identification. The general conclusion of this paper is that nonlinear input/output mod- 
elling is a vitally important practical art with many unresolved issues; the principal objective of this paper 
is to elucidate some of these issues. 

The title of this paper immediately raises two questions: 

• why nonlinear models? 
• why input/output models? 

The motivation to explore nonlinear models comes 
from the unavoidable nonlinearity of the dynamics of  
many chemical processes. Indeed, several of  the refer- 
ences cited in this paper deal with the nonlinearity of 
two of  the most important chemical process unit opera- 
tions: reactions and separations. Turning to the second 
question, while it is true that fundamental (i.e., 'first 
principles') models generally give us more complete 
process understanding than empirical models do, they 
are also generally much more complex and require cor- 
respondingly longer to develop. Thus, while models 
like that developed by Congalidis e t  a L  1 for the co-poly- 
merization of methyl methacrylate and vinyl acetate 
could, in principle, be used for applications like model 
predictive control, in practice, they are not. Also, note 
that besides providing simpler models, analysis of 
input/output data can also give us useful process 
insights that can be used in subsequently developing or 
refining fundamental models. In particular, all funda- 
mental models are based on assumptions (e.g. these 
effects are important, those are negligible) and these 
assumptions may be wrong: empirical models can help 
us uncover such 'surprises'. 

As many can attest, even linear empirical modelling 
can be quite challenging. The objective of  this paper is 
to give some general insights into the additional com- 
plications that can arise in nonlinear empirical model- 

ling. Consequently, the next section defines both the 
class of  linear A RMA X  models and several classes of 
nonlinear dynamic models. The following section illus- 
trates the general nature of nonlinearity with two spe- 
cific examples of  nonlinear behaviour: asymmetric 
responses to symmetric input changes and sub-har- 
monic generation in response to periodic input 
sequences. Building on this background, the next sec- 
tion discusses some of  the practical considerations 
involved in selecting a nonlinear model structure and 
the following section discusses some of  the important 
connections between nonlinear models and higher-order 
statistics. A brief overview follows of the important 
practical issue of 'robustness', as the term is used in sta- 
tistics - the degree to which computed results are sensi- 
tive to a small fraction of  'anomalous'  data in our 
complete dataset. The notions of identifiability and 
input sequence design are then taken up and the next 
section illustrates many of  the ideas presented in this 
paper with a process example that is simple enough to 
be comprehensible, but complex enough to illustrate the 
nature of  the problems involved. Finally, a brief sum- 
mary of the main ideas presented is given; for a more 
detailed discussion of some of these ideas, refer to the 
forthcoming survey by Pearson and Ogunnaike 2. 

Model  structures 

The following paragraphs describe a few of the more 
common nonlinear dynamic model structures appearing 
in the literature. Because many of these model struc- 
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tures are generalizations of linear models, the discus- 
sions will begin with the linear case. This discussion will 
be restricted to discrete-time formulations for three rea- 
sons: the fact that process data is typically available 
only at discrete time instants, the fact that model-based 
control algorithms like Model Predictive Control are 
usually formulated in discrete time, and because space 
constraints do not permit discussion of both continu- 
ous-time and discrete-time models. In the discrete-time 
formulation, one of the most popular linear representa- 
tions is the ARMAX (AutoRegressive Moving Average 
with eXogenous inputs) model discussed by Ljung3: 

p q 
y ( k )  = ~ ,  a i y ( k  - j )  + ~_, b iu (k  - j )  + c j e ( k  - J)  (1) 

j=l j =0 j=0 

In a typical process application, this model would 
relate the process response sequence {y(k)} to the input 
sequence{u(k)}, called an exogenous input in the statis- 
tical time-series literature. In the applications consid- 
ered here, this input can be either deterministic or 
stochastic and represents the time-varying value of a 
manipulated process variable. The 'disturbance 
sequence' or 'noise sequence' {e(k)} represents the com- 
bined effects of measurement noise, modelling errors 
(e.g. neglected nonlinearities), unmeasured disturbances 
etc. Probably the most common approximation is to 
take {e(k)} as an independent, identically distributed 
(i.i.d.) sequence, setting r = 0. For the r > 0, the coeffi- 
cients {cj} permit the description of correlated distur- 
bance sequences. In either case, note that since {e(k)} is 
a stochastic process, {y(k)} is also a stochastic process, 
regardless of the nature of the input sequence {u(k)}; if 
the input sequence is also taken as a stochastic process, 
it is generally assumed to be independent of the error 
sequence {e(k)}. Note that this model extends directly 
to multiple-input ARMAX models by adding terms to 
the second sum, corresponding to the lagged values of 
additional exogenous inputs. This observation is generic 
and also applies to all of the nonlinear models intro- 
duced below. 

Two special cases of this linear model are particularly 
significant. The case p = 0, q = ~ corresponds to the 
convolution model with {bj} representing the impulse 
response of the system. By Wold's decomposition theo- 
rem, any stationary Gaussian stochastic process {y(k)} 
may be represented in this form with {u(k)} an i.i.d. 
Gaussian sequence and {e(k)} identically zero 4. Con- 
versely, the case p = ~, q = 0 represents an infinite-order 
autoregressive model. As in the previous case, it follows 
from a theorem of Kolmogorov that any stationary 
Gaussian process may also be represented in this form 4. 
The practical implication of this result is that some lin- 
ear systems are best approximated by 'low-order 
autoregressive models', while other systems are best 
approximated by 'low-order moving average models'. 
Conversely, it will be demonstrated in that this result 
does not extend to nonlinear systems: some nonlinear 
phenomena are 'inherently autoregressive' in nature and 
do not possess a 'moving average' representation. 

Probably the best known class of nonlinear systems 
that do possess moving average representations is the 
Volterra model: 

y ( k )  = Yo + ~ a ju ( k  - j )  
j=O 

+ ~ ~ ,  b iau(k  - i ) u ( k  - j )  
i=0 j=0 

+ Z Z Z Cl, i,j u(k - Du(k - i)u(k - j) 
I=O i=0 j=0 

Jr-... 

(2) 

This class of systems is very broad 5, but to be practi- 
cally useful, the sums must be truncated to some finite 
upper limit M and the number of sums included must 
also be made finite. As a simple example of this model 
class, the following second-order Volterra model will be 
considered repeatedly in the following sections6: 

y ( k )  = u(k )  + bu (k  - 1)u(k - 2) (3) 

Even when M is relatively small and only a few sums 
are retained, objection is frequently raised to the num- 
ber of parameters required to specify Volterra models, 
motivating interest in various structurally-constrained 
Volterra models. 

A particularly useful subset of the class of Volterra 
models is the class of 'block-oriented' nonlinear models. 
Probably the most popular member of this class is the 
Hammerstein model 7-12, shown in Figure 1 and consist- 
ing of a static nonlinearity f(.) followed by a linear 
dynamical system H(z) .  If the function f(.) is analytic, it 
is not difficult to show that this model can be repre- 
sented by the Volterra series (2) with 'diagonal' model 
coefficients (i.e. bi.j = 0 unless i = j ,  cu, k = 0 unless i = j 
= k, etc.). If  the order of the blocks is reversed, i.e. if the 
static nonlinearity follows the linear dynamics, we 
obtain the Wiener model 7,Sa°a3 shown in Figure 2. As 
subsequent examples will illustrate, this model is not 
equivalent to the Hammerstein model. Both of these 
nonlinear models are special cases of the more general 
'sandwich model' considered by Brillinger 14 and Gre- 
blicki and Pawlak 1°, in which the static nonlinearity is 
'sandwiched' between two linear dynamic models. More 
general 'block-oriented' nonlinear models have been 
investigated involving both series and parallel connec- 
tions of static nonlinearities and linear dynamics 7,8,1°. As 
a specific example, the Uryson model consists of several 

Figure 1 

Static Linear 
Nonlinearity Dynamics 

Hammerstein model structure 
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n(z) ~ S(-) ~ y(k) 

Figure 2 

Linear Static 
Dynamics Nonlinearity 

Wiener  model  s t ructure  

Hammerstein models connected in parallel with their 
outputs summed, but driven by a common inpuff. 

The 'autogressive' family of nonlinear dynamic mod- 
els is represented by the NARMAX (Nonlinear 
ARMAX) models studied by Billings and WoontS: 

y ( k )  = F ( y ( k  - 1), y ( k  - 2) . . . . .  y ( k  - p ) ,  

u ( k ) ,  u ( k  - 1),..., u ( k  - q)  

e ( k  - 1), e ( k  - 2) . . . .  , e ( k  - r ) )  + e ( k )  

(4) 

where F(.) is a nonlinear function of the p + q + r + 1 
variables indicated. Usually, this nonlinear function is 
taken to be a low-order polynomial, but if we extend 
this class to more general functions, the range of non- 
linear behaviour we can represent expands correspond- 
ingly. In particular, note that most of the nonlinear 
autoregressive models discussed by Tong 5 are special 
cases of the N A R MAX model with non-polynomial 
functions F(.). The advantage of restricting F(-) to mul- 
tivariable polynomials is that it permits the use of linear 
regression techniques like stepwise regression for model 
identification ~5. Alternatively, Chen and Tsay 16 consider 
a different structural restriction that permits the use of 
nonparametric regression methods (see later for a brief 
discussion). Specifically, the NAARX (Nonlinear Addi- 
tive AutoRegressive models with exogenous inputs) are 
defined as: 

y ( k )  = f L ( y ( k  - 1)) + f 2 ( y ( k  - 2)) +. . .  
+ f p ( y ( k  - p ) )  

+ g o ( u ( k ) )  + g l ( u ( k  - 1)) 
+ . . . g q ( u ( k  - q)) + e ( k )  

(5) 

Note that the linear ARMAX model with i.i.d, mod- 
elling errors discussed above (r = 0 in Equation (1)) rep- 
resents an important special case of the NAARX 
family. Similarly, Hammerstein models may be 
obtained by taking f ( x )  = a~x and g j ( x )  = b:go(X) where 
go(x)  is the static nonlinearity defining the Hammerstein 
model. Further, note that the logistic model y ( k )  = a y ( k  

- 1)(1 - y ( k  - 1)), perhaps the  standard chaotic discrete- 
time modeP, is also a special case of the NAARX 
model. 

Artificial neural networks are mathematical models 
motivated by and loosely modelled on biological neural 
models proposed originally by McCulloch 17. Probably 
the most popular artificial neural network is the feed- 
forward network TM, a multi-layer structure that imple- 

ments a static nonlinear map T : R m ~ R" between an 
m-dimensional input space and an n-dimensional output 
space. In particular, if u • R m and y • R", a two layer 
feedforward network implements the transformation: 

t/ 

y ,  = s ( ~ . ,  wi ju j  - 0 , )  (6) 
j= l  

where ui and y~ are the ith components of the input and 
output vectors, respectively, {w,j} is an n × m matrix of 
'synaptic weights' and {0j} is an m-vector of 'bias 
weights'. The function s(-) is a saturation nonlinearity 
(typically, s ( x )  = 1/(1 + e-x)) called the 'squashing func- 
tion'. Multi-layer networks are constructed by connect- 
ing two-layer networks in cascade and it has been 
shown 19 that a three-layer network is flexible enough to 
approximate any continuous transformation T with 
arbitrary accuracy on compact subsets of R ~ and R m, 

although Kramer 2° and others have argued that more 
than three layers are desirable for certain applications. 

This flexibility may be used in developing 'neural ver- 
sions' of either block-oriented nonlinear models or 
N A R M A X  models. For example, applications of neural 
network-based Hammerstein models to chemical 
processes are discussed by Su and McAvoy ~2. Similarly, 
'Model IV' discussed by Narendra in Parthasarathy 2~ is 
basically the NARMAX model described above with 
F(.) implemented as a feedforward network. These net- 
works feed delayed responses from the output layer 
back to the input layer and are called recurrent feedfor- 
ward networks. In multi-layer networks, it is possible to 
feed delayed ~hidden-layer' responses back to the hidden 
layer itself, introducing dynamics that are entirely inter- 
nal to the network. Networks of this form were pro- 
posed by Elman 22 and have been considered for 
chemical process model applications because of their 
similarity to nonlinear state-space models. In particular, 
these models have the general structure: 

x ( k )  = F ( x ( k  - 1) ,u(k))  (7) 
y(k) = G(x(k)) 

where F(.) and G(-) represent vector transformations 
like those discussed above. One advantage of this for- 
mulation is that the general structure parallels that of 
typical first-principles models, raising the possibility of 
both simplified model identification and physical model 
interpretation 23. 

Closely related to the feedforward networks just 
described are networks based on radial basis functions 
(RBF) 24. These networks also implement multivariable 
nonlinear static mappings F(.), defined by: 

N 

F ( x )  = ~ qo (  II x - Yi II) (8) 
i=l 

where Ilxll is the Euclidean norm of the vector x, o(.) is 
a scalar function, and {ai} is a set of unknown model 
coefficients to be determined from the available data. 
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The function o(z) typically exhibits a local minimum or 
maximum at z = 0, so the vectors {Yt} are called the cen- 
tres of the basis functions. As a specific example, 
Pottmann and Seborg 24 consider the function o(z) = z z 
+/3) -~/2, which exhibits a maximum at z = 0. The advan- 
tage of radial basis functions is that, once the width 
parameter/3 and the centres {Yi} are specified, identifi- 
cation of the model coefficients {ai} reduces to a linear 
regression problem; the harder part of the identification 
problem is the initial specification of/3 and {Yt}. The use 
of RBF networks in dynamic modelling is similar to the 
use of feedforward neural networks: the static mapping 
F(.) can implement either the static nonlinearity appear- 
ing in the NARM A X model or the static nonlinearities 
appearing in block-oriented models. 

The nonlinear models just described represent a very 
incomplete list, but they are representative of the types 
that have been considered for chemical process applica- 
tions. The following sections will attempt to give some 
useful insights into the general nature of these models, 
their important differences, and the practical issues 
involved in using them to model real-world processes. 

Model behaviour 

To illustrate some of the important differences between 
linear and nonlinear model behaviour, the following 
paragraphs briefly consider two inherently nonlinear 
phenomena: asymmetric responses to symmetric input 
changes and subharmonic generation in response to 
periodic input sequences. This second example is not 
included because subharmonic generation is a problem 
of great practical significance in chemical process appli- 
cations, but rather because it clearly illustrates one pro- 
found difference between two broad classes of nonlinear 
systems: 'nonlinear moving average models' and 'non- 
linear autoregressive models'. Other inherently nonlin- 
ear phenomena include harmonic generation, jump 
phenomena, synchronization, chaos and a wide variety 
of amplitude-dependent responses, as discussed by 
Tong s and Nayfeh and Mook 25. 

First, consider the second-order Volterra model 
defined in Equation (3) with u(k) and y(k)  representing 
deviations from a nominal (e.g. steady-state) operating 
condition so that both positive and negative values 
make physical sense for both variables. For a linear sys- 
tem, note that if y(k)  is the response to an input change 
u(k), then -y(k) is the response to an input change 
-u(k). In contrast, the response of the second-order 
Volterra model (3) to a step input of amplitude A is: 

f 
O k < 0  

y (k )  = k = O, 1 
A(1 + Ab) k > 2 

(9) 

Specifically, assume b > 0 and note that the 'steady- 
state, gain' inferred from this step response is K = 1 + 

Ab, which is greater than 1 for steps of positive ampli- 
tude and less than 1 for steps of negative amplitude. 

Chien and Ogunnaike 26 illustrate similar asymmetric 
step responses in their analysis of high-purity distilla- 
tion columns. In particular, changes in reflex ratio or 
steam flow to the reboiler tha t  move toward lower 
purity have greater effects on composition than changes 
that move toward higher purity. Responses of this gen- 
eral type - moves away from a fundamental constraint 
(e.g. the 100% purity limit) being easier than moves 
toward it - can be expected in many systems if they are 
operated close enough to the constraint. An even more 
pronounced example of asymmetric response is consid- 
ered in a later section. 

The phenomenon of subharmonic generation illus- 
trates the difference between 'inherently autoregressive' 
nonlinear behaviour and 'inherently moving average' 
behaviour. Specifically, note that if an input sequence 
{u(k)} is periodic with period L, it satisfies the condition 
u(k + L) = u(k) for all k. If y(k)  = g(u(k)) for any static 
nonlinear function g(.), it follows immediately that 
y(k  + L) = g(u(k + L)) = g(u(k)) = y(k)  for all k; that is, 
if the input sequence is periodic with period L, the out- 
put sequence is also periodic with period L. Since the 
generation of the 'l/nth-subharmonic' corresponds to 
lengthening the fundamental period of oscillation from 
L to nL, it follows that static nonlinearities cannot gen- 
erate subharmonics. Since linear systems also preserve 
periodicity, it also follows that block-oriented models - 
Hammerstein, Wiener, 'sandwich', Uryson, etc - cannot 
generate sub-harmonics. Similar arguments show that 
Volterra and other 'moving average' nonlinear models 
cannot generate sub-harmonies, either. 

In contrast, Tong shows explicitly that the following 
threshold autoregressive model can generate sub-har- 
monicsS: 

= ~2y (k  - 1) + u(k) I y ( k  - 1) 1< 2 (10) 
y (k )  Lu(k ) I y ( k -  1) I> 2 

Specifically, in response to the input sequence u(k) = 
(-1) k with period 2, the output sequence has period 6, 
representing a 'l/3rd-subharmonic' of the input. This 
observation suggests that the key feature required in 
nonlinear models capable of generating sub-harmonics 
is recursion: the present output must depend on previ- 
ous outputs and not just on the past history of the 
inputs. Applying this conclusion to neural networks, it 
follows that recurrent networks are necessary to gener- 
ate sub-harmonics. In particular, it follows that either 
the 'neural NARMAX'  models or the Elman networks 
discussed above can generate sub-harmonics (note that 
Equation (10) is a special case of Equation (7)), but the 
'neural Hammerstein' and other block-oriented neural 
models cannot. The same conclusions apply to nonlin- 
ear models based on radial basis function networks. 
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Structure select ion 

The first step in constructing any empirical process 
model is the selection of an appropriate model structure 
(e.g., Volterra, Hammerstein, Wiener, NARMAX etc.). 
This selection problem may be approached from either 
of two basic philosophies: exploratory or confirmatory. 
The exploratory philosophy seeks to extract as much 
structural information from the available data as pos- 
sible, while the confirmatory philosophy selects a candi- 
date model structure and asks the data for a 
confirmation or rejection of its appropriateness. Closely 
related to these philosophies are the notions of para- 
metric, nonparametric and semi-parametric modelling. 
In parametric modelling, the structure of the model is 
fixed, reducing the model identification problem to one 
of determining a finite set of model parameters for 
which the model predictions best match the available 
data. In nonparametric modelling, a particular model 
structure is sought from the available data. For exam- 
ple, in nonparametric regression analysis 27 a model 
y(k) = f ix (k ) )  is sought without specifying the form of 
f(-). In semi-parametric modelling, part of the model 
structure is completely specified while part is only 
loosely specified. In process applications, we are gener- 
ally interested in obtaining a parametric model, but 
nonparametric or semi-parametric procedures can be 
extremely useful in suggesting model forms for subse- 
quent parametric identification. 

These ideas are illustrated in Figure 3 for the NAR- 
MAX modelling problem. In its most general form, this 
problem involves selection of a functional form for the 
multivariable nonlinearity F(-), selection of the input 
variable or variables {u(k)}, and specification of the 
order parameters p, q, r in Equation (4). Once we have 
specified the model inputs and order parameters, it 
would be possible, in theory to use nonparametric 
regression techniques to determine the form of F(-), as 
indicated at the top of Figure 3. In practice, however, 
the data requirements for nonparametric regression in 
many variables are extreme as discussed by Hardle 27. 
Three more practical alternatives are shown in the sec- 

Neural  

N A R M A X  

Nonparametric 
NARMAX 

Nonparamet r ic  
Polynomial  

N A A R X  
N A R M A X  

I / 1 
Semi-parametr ic  

Polynomial  
Hammers t e i n  

N A A R X  
l 

Parametric 

Hammerste in  

Figure 3 N A R M A X  identification procedures 

end tier of Figure 3: neural NARMAX modelling, poly- 
nomial NARMAX modelling and nonparametric 
NAARX modelling. Other possibilities exist (e.g. RBF 
networks instead of neural networks), but the three 
given here are representative. First, the neural NAR- 
MAX alternative discussed earlier replaces the non- 
parametric NARMAX problem with a parametric one, 
implementing the multivariable static nonlinearity F(-) 
as a neural network. Next, probably the most popular 
procedure in practice is the use of polynomial NAR- 
MAX models: the function F(-) is taken to be a low- 
order multivariable polynomial in all of the lagged 
output, input and model error variables. The number of 
terms in this polynomial (hence the number of model 
parameters to be identified) grows rapidly with increas- 
ing polynomial model order. The use of stepwise regres- 
sion techniques has been discussed by various 
authors 15,28,z9 and it provides a systematic approach to 
reducing this complexity by retaining only those terms 
in the polynomial that significantly improve the good- 
ness of fit. Finally, the general procedure for nonpara- 
metric regression in many variables advocated by 
Hardle 27 is the use of additive models, replacing a single 
N-dimensional smoothing problem with N one-dimen- 
sional smoothing problems. This idea was Chen and 
Tsay's motivation for investigating nonparametric 
NAARX models 16. 

The model identification problem may be simplified 
further by imposing additional structural restrictions on 
the NARMAX model, as illustrated in the third tier of 
Figure 3. For example, if the cross-terms in the polyno- 
mial NARMAX model are eliminated entirely, the 
result is a polynomial NAARX model. Alternatively, 
recall that Hammerstein models are special cases of the 
NAARX model with f ( x )  = a?c and &(x) = bjgo(x) 
where go(x) is the static Hammerstein nonlinearity. 
Thus, we can adopt a semi-parametric model identifica- 
tion procedure by using nonparametric smoothing to 
estimate the scalar function go(') and estimating the lin- 
ear model parameters {a~} and {bfl. Greblicki and 
Pawlak 9 discuss nonparametric identification of this 
nonlinearity in detail. This model identification problem 
can be further reduced to a fully parametric procedure 
like that employed by Eskinat et al. ~t. There, the 
authors developed Hammerstein models for distillation 
columns, representing the linear dynamics by a low- 
order ARMAX model and the static nonlinearity by a 
low-order polynomial. The authors conclude that the 
identified Hammerstein models represent the column 
dynamics better than linear models do, but that model 
performance degrades unacceptably for high-purity 
columns. It remains an open question, however, 
whether this conclusion represents an inherent limita- 
tion of the class of Hammerstein models or a limitation 
of the parametric sub-class considered by the authors. 
Note that the semi-parametric Hammerstein modelling 
procedure described above could give useful insight into 
this question. In particular, note that nonparametric 
estimation of the static nonlinearity could be used to 
identify functions that are not well approximated by 
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low-order polynomials (e.g., saturation nonlinearites). 
As a specific example of this difficulty, Pottmann et al. 3° 
consider a pH control problem in which the pH curve 
must be approximated by a piecewise-polynomial func- 
tion to achieve an adequate fit; this approach is closely 
related to the use of spline functions for nonparametric 
regression 27. 

In taking a regression approach to model structure 
selection, the primary focus is on goodness of fit. In 
practice, it is important to note that other criteria may 
be of equal or greater importance. For example, an 
extremely important related issue is the sensitivity of the 
model prediction errors to changes in the problem for- 
mulation. This issue has two aspects: the sensitivity of 
the algorithms used for model identification to errors in 
the data, and the region of validity of the model ~Y~ as 
an approximation of some real-world process 50 . The 
issue of sensitivity to errors in the data is the domain of 
robust statistics 31,32 and will be discussed further in a 
later section. Note also that this sensitivity to data qual- 
ity will generally depend on both the model structure 
chosen and the input variables selected for inclusion in 
the model. In particular, note that the stepwise regres- 
sion procedure discussed above for polynomial NAR- 
MAX model development considers each possible 
model term for inclusion or exclusion on the basis of 
goodness of fit alone; Leger and Altman 33 give a 
detailed discussion of the influence of such variable 
selections on the robustness of the resulting model fit. 
Specifically, they note that the terms included in a mul- 
tivariable model can profoundly affect the sensitivity of 
the model predictions to outliers in the data. 

The region of validity of the model ~ is an extremely 
important topic, to be discussed further later. One way 
of describing this region of validity is in terms of a set 
l~t of input sequences {u(k)} for which the model pre- 
dictions {v(k)} are 'sufficiently close' to their 'true' val- 
ues {y(k)}. An important extension of this concept is to 
consider the qualitative behaviour of the model ~2 over 
the set H: does the model exhibit multiple steady states, 
chaotic regimes, etc? Note that these considerations are 
both more difficult and more important for nonlinear 
models than for linear models because the qualitative 
behaviour of nonlinear models can depend very 
strongly on the specific input sequence driving them. 
The example discussed later illustrates this point in 
detail. 

Finally, note that other practical considerations may 
dictate that certain model structures are preferred over 
others, even at the expense of goodness of fit or some of 
the other adequacy criteria just discussed. In particular, 
differences in overall qualitative behaviour between dif- 
ferent models with comparable goodness of fit can be 
profound, as a later section will demonstrate. For exam- 
ple, it has been argued 34 that non-minimum phase 
dynamics in linear models limit achievable control sys- 
tem performance because they do not exhibit well- 
defined (e.g., stable and causal) inverse. Analogous 
difficulties can arise in nonlinear models, where the cor- 
responding notion is that of unstable zero dynamics3C A 

different, though similar, difficulty can arise in block- 
oriented models if the static nonlinearity fl-) fails to 
have an inverse. Specifically, note that a continuous 
function f(.) defined on a compact support set is invert- 
ible if and only if it is strictly monotonic 36. In a later 
section several models are considered for the same sys- 
tem, including both a non-invertible Wiener model and 
a NARMAX model (Model 1) for which the inverse is 
given explicitly. The point is, even though both models 
may yield comparable goodness of fit to the available 
input/output data, control strategies developed from 
these models are apt to be quite different in both struc- 
ture and performance. 

Higher-order statistics 

When a linear system is excited by a Gaussian input 
sequence {u(k)}, the resulting output sequence {y(k)} is 
also Gaussian. When a nonlinear system is excited by a 
Gaussian input sequence, the resulting output is gener- 
ally non-Gaussian, establishing a strong connection 
between non-Gaussian statistics and nonlinear systems. 
As a practical example of this connection, Brillinger ~4 
considered the problem of identifying the 'sandwich 
model' discussed earlier. He showed that the static non- 
linearity and both linear dynamic subsystems can be 
identified from the power spectrum of the input 
sequence, the cross-spectrum of the input and output 
sequences, and a cross-bispectrum between these 
sequences. Note that the bispectrum and other higher- 
order statistics are identically zero for Gaussian 
sequences 6 and are therefore quantitative measures of 
'non-Gaussianity'. Brillinger's results assume a Gauss- 
ian input sequence {u(k)}, are nonparametric, and 
require the static nonlinearity G(.) to be asymmetric 
(i.e. neither even nor odd). Qualitatively similar results 
for low-order Volterra model identification have been 
derived by Koh and Powers 37 and Pearson et al. 38. In 
particular, the matrix B of second-order Volterra coeffi- 
cients {bu} is given by: 

l 1 I B = =Rs,~T,,~RS,', (11) 
2 " ' : "  

where R,, is the autocorrelation matrix for the Gaussian 
input sequence {u(k)} and Tr, is a cross-bicorrelation 
matrix between the input and output sequences. 

Brillinger's 'sandwich model' identification results ~4 
are based on cumulant expressions involving (generally 
multivariable) static nonlinearities and multivariate 
Gaussian random variables. Applying these results to 
the Wiener model shown in Figure 2 yields the follow- 
ing cross-correlation expression: 

F E { x f ( x ) } L  . .  
(12) 

where {x(k)} is the output sequence generated by the 
linear subsystem H(z)  in response to the input sequence 



Nonlinear input/output modelling: R.K. Pearson 2 0 3  

{u(k)}. In the special case where H(z)  = 1, x (k)  = u(k) 
and Equation (12) reduces to Bussgang's theorem 39. 
Taking the Fourier transform of Equation (12) yields 
the nonparametric 'equivalent linear system identifica- 
tion' expression: 

= 

- E { x f ( x ) }  

E { x  2 } 
H(~)  

(13) 

Here, use has been made of the fact that S,x(w ) = 
H(oJ)S,,(~). Note that if f i x )  = ax,  this expression 
reduces to the correct linear result H(oJ) = aH(o~). How- 
ever, if f ix)  -- ax  + o(x) where o(x) is any even function 
[i.e. o(-x)  = o(x)), it follows that E{xo(x )}  = 0, so again 

H(oJ) = al l (w).  Thus, nonparametric system identifica- 
tion with Gaussian inputs is blind to arbitrary even per- 
turbations o(x). To detect the presence of this 
nonlinearity, it is necessary to consider higher-order sta- 
tistics. Conversely, if f ix)  -- ax  + bx 3, the 'equivalent lin- 
ear model' identified is H(w)  = (a + 360-Z)H(o~), 
permitting^the ratio b/a to be estimated from the depen- 
dence of H(~o) on the input signal intensity d .  

The second-order Volterra model considered earlier 
gives another illustration of the need for higher-order 
statistics in nonlinear system identification. Specifically 
if the model in Equation (3) is excited by a zero-mean, 
i.i.d. Gaussian sequence with variance o a, the model 
response will also be a zero mean sequence that is 
uncorrelated, i.e.: 

Ryy(k)  = R , , ( k )  = k = 0 
k ~ : O  

(14) 

For Gaussian processes, lack of correlation implies 
statistical independence, but this result does not hold 
for non-Gaussian processes. As in the Wiener model 
example just considered, to see the nonlinear nature of 
this system it is necessary to consider higher-order sta- 
tistics. Here, however, the effects are extremely subtle 
because the skewness 3' = E{x3}/0-3 is also zero. A com- 
plete dynamic third-moment characterization reveals 
that the third cumulant c3(1, 2) = E{y(k )y (k  - 1)y 
(k - 2)} is nonzero, reflecting the 'dynamically asym- 
metric' non-Gaussian nature of the sequence {y(k)}. In 
fact, the nonlinear model structure correctly follows 
from Equation (11) since this system is a second-order 
Volterra model driven by a Gaussian input sequence. 
Equivalently, this model may be identified by nonpara- 
metric frequency-domain techniques based on cross- 
bispectra like those considered by Brillinger TM. 

Outliers and robust statistics 

Unfortunately, length considerations do not permit a 
detailed discussion of robustness here, but this topic is 
extremely important in practice, as the following exam- 
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Figure 4 Two cross-covariance functions 

pie illustrates. Specifically, Figure 4 shows two normal- 
ized cross-covariance functions, estimated from on-line 
physical property measurements made at the inlet and 
outlet of a storage tank as part of an attempt to char- 
acterize the flow through the tank. In both cases, a stan- 
dard moment-based estimator was applied to data 
records of length N = 1024. The difference between the 
two plots reflects the influence of a single pair of data 
values. Specifically, the function with the sharp peak at 
~- = 0 was computed for the original dataset, in which a 
single missing data record resulted in a pair of coinci- 
dent spurious values about 30 standard deviations 
below the median value. The other cross-covariance 
function was computed for the same dataset, but with 
these spurious data values replaced by the median value 
for each sequence. While this pair of points represents a 
'gross outlier', it amounts to only 0.1% of the dataset, 
yet completely dominates the computed results. 

A useful approach to this problem in linear system 
identification is to first 'clean' the data using a proce- 
dure based on robust statistics like that outlined by 
Martin and Thomson 4°. This approach effectively iden- 
tifies dynamic outliers in the data and replaces them 
with estimates based on neighbouring data points. An 
inherent working assumption in this approach is that 
the underlying 'clean' data are well approximated by a 
Gaussian random variable, so the resulting 'cleaned' 
data sequence is made 'more Gaussian' than the origi- 
nal. The difficulty in extending this philosophy to non- 
linear system identification is that the 'clean' nonlinear 
model response to a Gaussian input sequence is non- 
Gaussian. Further, it is precisely the 'deviations from 
Gaussianity' of the output sequence that contain the 
information needed for model identification. Thus, the 
task of distinguishing 'outliers' from 'legitimate nonlin- 
ear model responses' is difficult and represents an 
important area for continued research activity. 

It is easy to show that outlier problems generally 
become more severe with increasing moment order. As 
a specific example, consider the effects of a single 'out- 
lier' of magnitude +80- contaminating a sequence of 
1024 i.i.d. Gaussian random variables with mean zero 
and variance 0-2. Estimated values for the mean, vari- 
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Table 1 Effects of +8s outlier on estimated moments 

Outlier Average Variance Skewness Kurtosis 

No -0.006 1.000 -0.002 0.553 
Yes +0.002 1.065 +0.454 3.894 

ance, skewness and kurtosis 41 with and without this out- 
lier are given in Table  1. The presence of this one 'bad' 
data point (i.e. a large error in 0.1% of the data) has 
negligible effect on the estimated mean, increases the 
variance slightly, but inflates both the estimated skew- 
ness and kurtosis enormously: note that both of these 
quantities should be zero. Analogous outlier sensitivities 
can be expected for estimated bispectra, trispectra and 
other higher-order statistics. Indeed, the sensitivity is 
worse for these dynamic statistics in the sense that the 
effects of the outlier can be distributed unpredictably 
over the entire frequency space on which these higher- 
order spectra are defined. 

Identifiability and input sequence design 

In theory, linear systems may be identified from their 
responses to a wide variety of input sequences: 
impulses, steps, pseudo-random binary sequences 
(PRBS), i.i.d. Gaussian sequences (i.e. Gaussian 'white 
noise') or correlated Gaussian sequences (e.g. Gaussian 
autoregressive processes). In practice, some input 
sequences are more effective than others, but input 
sequence design procedures for linear system identifica- 
tion typically only specify the power spectrum of the 
sequence 3. In particular, note that the random telegraph 
wave (a particular PRBS discussed in Papoulis 42) and 
the first-order Gaussian autoregressive process have the 
same correlation structure (and thus the same power 
spectrum). Consequently, these sequences would be 
equally effective in linear system identification. The 
choice between these (or other) sequences will ulti- 
mately depend on additional practical considerations, 
as discussed in Ljung 3. 

In contrast, specification of the power spectrum of 
the input sequence is not sufficient for nonlinear system 
identification. Specifically, it was noted by Pearson et 

al. 38 that no PRBS input can be used to identify the 
diagonal elements of the B matrix in second-order 
Volterra models. However, the B matrix can be identi- 
fied using the Gaussian autocorrelation sequence with 
the same autocorrelation matrix; this result is given 
explicitly by Equation (1 1). In general, PRBS inputs are 
a poor choice for nonlinear system identification 
because they do not exercise the process over a wide 
enough range of input values. Note, however, that sim- 
ply expanding the range of input values is not sufficient, 
either. For example, note that the impulse response of 
the second-order Volterra model defined in Equation 
(3) is y (k )  = u(k)  = ot6(k), for arbitrary a. Thus, the 
impulse response of this system gives no indication of 
its nonlinearity, regardless of the input amplitude a or 

the strength of the nonlinearity b. More generally, note 
that the impulse response of a Volterra model depends 
only on the diagonal model coefficients: y (k )  = Yo +ak 

+bk, k + Ok,k, k -J- . . . .  

From a theoretical perspective, i.i.d, input sequences 
are often very effective for nonlinear system identifica- 
tion 38,43,44. Because so many results are available for 
Gaussian stochastic processes, i.i.d. Gaussian sequences 
are particularly popular for both developing and inves- 
tigating nonlinear system identification algorithms. In 
some cases, however, better performance may be 
achieved by using non-Gaussian sequences tailored to 
the model structure under consideration. For example, 
it was shown by Pearson et al. 38 that leptokurtic distri- 
butions 41 are desirable for identifying the diagonal ele- 
ments of the B matrix in second-order Volterra models, 
while platykurtic distributions 41 are desirable for identi- 
fying the off-diagonal elements. As in linear modelling, 
the dependence structure of the input sequence is 
important as well, although much less is known about 
specification of 'good' dependence structures for non- 
linear system identification. 

As in the case of linear system identification, identifi- 
ability also depends on the structure of the model 
sought. For example, note that the nonlinear static map 
implemented by a feedforward neural network is invari- 
ant under the permutation of processing units in the 
hidden layers. Thus, nonlinear models based on feed- 
forward networks are only identifiable within the limits 
of this permutation invariance. If  the nonlinear 'squash- 
ing functions' are removed from a feedforward net- 
work, this permutation invariance expands to an 
invariance under a much broader class of transforma- 
tions. In particular, the (linear) map implemented by 
such a network is invariant under post-multiplication of 
the weights in layer i by an arbitrary nonsingular matrix 
W and pre-multiplication of the weights in layer i + 1 
by its inverse W -l. This invariance is analogous to the 
invariance of state-space models under the appropriate 
similarity transformations of the matrices defining the 
model. Specifically, consider the linear state-space 
model: 

X k +  1 ---- Ax k + Bu k 
Yk = CXk (15) 

and note that the input/output response of this model is 
invariant under the transformation A ~ W-lAW, B 
W-1B, and C ~ CW. In A R M A X  models, this invari- 
ance corresponds to non-uniqueness under pole-zero 
cancellation. For example, consider the standard linear 
'first order plus deadtime' model: 

y ( k )  = a y ( k  - 1) + bu(k  - d)  (16) 

Using this equation to represent y (k - 1) in terms of 
y ( k  - 2) and u(k  - d - 1) and substituting the results 
back into Equation (16) then yields the fully equivalent 
second-order model: 
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y ( k )  = a2y (k  - 2) + bu(k  - d) + a b u ( k  - d - 1) (17) 

The same non-uniqueness arises in N A R M A X  mod- 
els: simply use the original model to derive expressions 
for the variables y ( k  - j )  required in the model and sub- 
stitute them back into the original equation. Since this 
result will always lead to a higher-order model, Occam's 
razor can be invoked to select the simpler, original 
model. In practice, however, since these models are only 
approximations of a more complicated ' truth' we will 
generally not identify either of these equivalent models, 
but rather a model that is 'near' one or the other, 
depending on our initial choice of model order parame- 
ters, the available data, the details of the identification 
algorithm used etc. Further, as the following example 
will illustrate, the same general qualitative behaviour 
can often be obtained from very different model struc- 
tures: in such cases, it may not be obvious which model 
is 'simpler', or whether there are any 'near equivalences' 
between these models. 

Example 

Many of the nonlinear modelling issues discussed in the 
preceding sections are illustrated by the following exam- 
ple. A single irreversible, exothermic reaction, A ~ B, is 
assumed to occur in a CSTR. Detailed descriptions of 
this problem are given by Nahas et  al. 45 and Pottmann 
and Seborg24; the dynamics are described by two cou- 
pled nonlinear ordinary differential equations relating 
the concentration c A of species A in the reactor effluent 
to the reactor temperature T and the flow rate qc of 
coolant to the reactor cooling jacket. Like the high- 
purity distillation column example discussed earlier, this 
system exhibits a pronounced asymmetry in its response 
to changes in the manipulated variable qc. Specifically, 
the change in CA for a 10% step decrease  in qc is a 
monotonic decrease that looks very much like a first- 
order linear system response. In contrast, the change in 
CA for a 10% step increase in q¢ is a decaying oscillation, 
very much like the response of an underdamped second- 
order linear system. The following paragraphs will not 
attempt to develop a specific empirical model for this 
CSTR example, but they will explore the model struc- 
ture selection problem in some detail. In particular, this 
section will focus on the question: which classes of mod- 
els are rich enough to exhibit the qualitative behaviour 
just described for the CSTR? The input sequence con- 
sidered here will be: 

{o A k__o (18) u(k )  = k < 0 

where A may be either positive or negative. 
First, consider the class of truncated Volterra models. 

If each infinite sum is truncated to M terms, the model 
responses reaches steady-state after M time steps, i.e.: 

M M M 

y(k) = Yo + A~, a,. + A2~ ~, bia +... (19) 
i=O i=O j=O 

for k > M. Thus, if we are to approximate the CSTR 
response with a truncated Volterra model, we must take 
M large enough to allow the oscillatory positive step 
response to approach its steady-state value. Generally, 
this value of M will be large, resulting in an unaccept- 
ably large number of model parameters to identify. For 
example, if it takes M = 30 samples for the oscillation 
to decay, even restricting consideration to second-order 
Volterra models will require identification of approxi- 
mately 450 quadratic parameters bi. j. 

As noted earlier, block-oriented models are Volterra 
models with restricted structures that can be character- 
ized by many fewer parameters, For example, it was 
noted that the Hammerstein model is a Volterra model 
in which only the 'diagonal' model coefficients are non- 
zero. Applied to the example just discussed, this restric- 
tion reduces the number of quadratic model parameters 
from about 450 to 30; in practice, Hammerstein models 
may be approximated by many fewer parameters than 
this by exploiting the block structure of the model 
rather than using the Volterra representation. Unfortu- 
nately, the Hammerstein model is incapable of describ- 
ing the qualitative behaviour exhibited by the CSTR 
example considered here. In particular, note that the 
static nonlinearity ft.) preceding the linear dynamics in 
the Hammerstein model changes a step of amplitude A 
into a step of amplitude f(A). Thus, if the qualitative 
nature of the linear subsystem's step response is inher- 
ently monotone, the overall Hammerstein model's step 
response will also be monotone. Conversely, if the lin- 
ear system exhibits an oscillatory step response, the 
Hammerstein will also exhibit an oscillatory step 
response. 

In contrast, the Wiener model is sufficiently flexible 
to exhibit step responses like the CSTR example. In 
particular, consider the Wiener model with first-order 
linear dynamics followed by the static nonlinearity f i x )  

= g(h(x ) )  where: 

J'l - e- s in(2nfx)  x > 0 
g(x) / l -  e ~/~ x < 0 

(20) 

Here, sgn(x) is the algebraic sign function, defined as +1 
if x > 0, -1 if x < 0 and 0 if x = 0. This nonlinearity was 
chosen so that y ( t )  = 1 - e-'/rsin(2"rrft + o) for a step 
input of amplitude A = +1 and y ( t )  =e -t/r - 1 for a step 
input of amplitude A -- -1. The response for intermedi- 
ate amplitude steps is shown in Figure 5. For compari- 
son, the step responses for the corresponding 
Hammerstein model - i.e. the same static nonlinearity 
followed by first-order linear dynamics - are shown in 
Figure 6. As noted above, the step response of the Ham- 
merstein model exhibits the qualitative character of the 
first-order linear subsystem, with appropriately trans- 
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Figure 7 Static nonlinearity for block-oriented models 

formed input amplitudes. Also, note that the steady- 
state behaviour of the Wiener and Hammerstein model 
is identical because both models reduce to the static 
nonlinearity f(-) at steady-state. Thus, the distinction 
between Wiener and Hammerstein models lies entirely 
in their transient behaviour. 

The static nonlinearity f(.) defined in Equation (20) is 
plotted in F i g u r e  7. Several points are worth noting. 
First, this function is highly asymmetric, reflecting the 
asymmetry of the Wiener system response. Further, 
note that this nonlinearity is not monotonic. As noted 

earlier, it therefore follows that J(.) is not invertible, 
complicating the task of inverse-based control system 
design, and probably limiting achievable control system 
performance. In addition, note that the behaviour off(.) 
implies a non-monotonic relationship between the input 
amplitude A and the steady-state response of the model. 
Specifically, note that the steady-state value of the step 
response for A = +0.80 is greater than the steady-state 
value for A = +1.00. while this behaviour is somewhat 
counter-intuitive, it does emphasize another point made 
earlier: it is important to consider the behaviour of any 
nonlinear model over the whole set of possible inputs H, 
and not just for a few selected sequences (e.g. +10% flow 
rate changes in this example). Both extrapolations 
beyond the original input sequence range and interpola- 
tions between selected inputs can behave quite unex- 
pectedly. 

One final point to note regarding the Wiener model is 
that the oscillatory character of positive step responses 
is described by the behaviour off(x)  as x ---) + 1. In par- 
ticular, note that f(x) oscillates with increasing fre- 
quency as x ---) +1, analogous to the behaviour of the 
'topologist's sine curve' sin(l/x) as x --) 046. Alterna- 
tively, we may regard this function as fractual in nature, 
since the qualitative behaviour remains the same if we 
look at the function with successively finer resolution 
near x - + 1. Consequently, this function would be quite 
difficult to identify from input/output data using either 
parametric or nonparametric procedures. 

For a given initial steady state, the description of the 
CSTR behaviour given above - 'second-order for posi- 
tive changes, first-order for negative changes' - actually 
defines a Uryson model. Specifically, define the two 
functions: 

o+ z,:{Zo z oZ ° z 0Z ° 
Using these nonlinear functions, define the two Ham- 
merstein models: 

y + ( k )  = a ( y  + ( k  - 1) + a~+y + (k - 2) + b+O+(u(k - 1)) 
y - ( k )  = a~y  - ( k  - 1) + b - O ( u ( k  - 1)) 

(22) 

and combine these two 'Hammerstein channels' into the 
Uryson model response: 

y ( k )  = y + ( k )  + y _ ( k )  (23) 

For properly chosen values of the parameters a +, a T, a T, 
b +, and b-, we may obtain the desired qualitative behav- 
iour from this model. Also, note that we may represent 
the autoregressive dynamics described in Equation (22) 
for the positive and negative channels of the Uryson 
model by equivalent infinite-order moving-average 
models, excited by O÷(O(k - 1)) and O ( O ( k -  1)), respec- 
tively. These two models may be combined into a single 
infinite-order nonlinear moving average model with a 
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very special structure 47. One consequence of this special 
structure is that this Uryson model exhibits an interest- 
ing 'nearly linear' scaling property. Specifically, if {y(k)} 
is the response to an input sequence {u(k)}, then the 
response to an input sequence {Au(k)} is {Ay(k)} for any 
A > 0. This result follows from the fact that both of the 
functions 0_(x) and O+(x) are homogeneous 48 with 
respect to positive scaling constants A: 0_+(Ax) = A0_+(x) 
for A. > 0. Thus, unlike NARMAX Models 4 and 5 dis- 
cussed below, the qualitative behaviour of the step 
response is not a function of the input step magnitude 
IAI, only its sign. 

In contrast to the Wiener model considered above, 
the Uryson model is invertible, although the inverse is a 
little unusual. Specifically, define the following quanti- 
ties: 

u ( k  -1) = [y(k) - a { y ( k  - 1)]/b- 
u+(k - 1) = [y(k) - a ~y (k  - 1) - a~y(k  - 2)]/b + 

(24) 

The input u(k  - 1) required to drive y ( k  - 1) and y ( k  - 2) 
to y (k )  will be: 

u ( k - 1 ) = f u ( k - 1 )  i f u ( k - 1 ) < O  
/u+(k 1) if u + ( k -  l) _> 0 

(25) 

It is important to note that it is the complete separa- 
tion of this Uryson model into a pair of 'non-overlap- 
ping channels' for positive and negative inputs that 
makes this inversion possible. In more general cases, it 
is not obvious under what circumstances a well-defined 
inverse will exist; similarly, questions have been raised 
regarding identifiability of Uryson models 1°. Finally, 
note that the Uryson model considered here does not 
have a Volterra series representation, since the nonlin- 
earities O+_(x) are not analytic functions. 

In general, N A R M A X  models appear to be a more 
convenient choice for representing behaviour like the 
CSTR step response, as the following five examples 
illustrate: 

1. y (k )  --- ay (k  - 1) + bu(k  -1) + cu(k - 1)y(k-  1) 
2. y (k )  = a fy (k  - 1) + bu(k  -1) 
3. y (k )  = ay (k  - 1) + bu(k  -1) + eO+[y(k - 2)1 
4. y (k )  = dy2(k - 1) + bu(k  -1) 
5. y (k )  = a y ( k -  1) + b u ( k - 1 )  + c u ( k -  1 )y (k -  1) 

+ dy2(k - 1) 

Conversely, these examples also demonstrate that the 
general qualitative behaviour of nonlinear models with 
'similar' step responses can be radically different. This 
observation emphasizes a point made earlier: goodness 
of fit alone is not a sufficient criterion for 'model ade- 
quacy'. 

Model 1 is a bilinear generalization of the standard 
first-order linear model (see Tong 5 for a discussion of 
bilinear models). For step inputs, this nonlinear model 
reduces to the first-order linear model with autoregres- 
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sive coefficient a + cA. This qualitative behaviour of 
this step response can thus be determined from linear 
system theory. In particular, this model will exhibit a 
stable, monotonic response if 0 < a + cA < 1, a stable, 
damped oscillatory response i f -1  < a + cA < 0, and 
unstable step responses outside these ranges. Step 
responses for ,4 in the range -1 < A < +1 are shown in 
Figure 8 for a - -0.35, b -- 1.0, c = -0.55. While the 
exact details of these step responses are not identical to 
those of the Wiener model, the qualitative behaviour is 
the same: a step of amplitude A -- + 1 yields a decaying 
oscillation, while a step of amplitude A = -1 yields a 
monotonic response. Unlike the Wiener model, how- 
ever, the steady-state response varies monotonically 
with ,4, a more intuitively pleasing behaviour than the 
non-monotonic variation exhibited by the Wiener 
model. Also unlike the Wiener model, note that Model 
1 is invertible. In particular, the control input u(k - 1) 
necessary to drive the output of Model 1 from y ( k  - 1) 
to y (k )  is: 

u(k  - 1) = y ( k )  - a y ( k  - 1) (26) 
b + cy (k  - 1) 

provided b + cy (k  - 1) ~ 0. Finally, it is important to 
note that the identification of this model is much easier 
than the Wiener model identification problem just dis- 
cussed. Specifically, note that Model 1 is a parametric 
model, linear in the three model parameters a, b and c. 

Models 2 and 3 are both NAARX models and also 
threshold autoregressive models 5, similar in structure to 
Equation (10). In addition, these models also both 
exhibit the same positive homogeneous behaviour as the 
Uryson model discussed above. This behaviour is evi- 
dent in the step responses shown in Figures 9 and 10 for 
these two models. Here, the parameters are a = -0.70, 
b = 1 for Model 2 and a = 0.60, b = 1, c = --0.80 for 
Model 3. Much more can be said about the qualitative 
behaviour of these models because of their simple struc- 
ture. In particular, note that if the response of Model 2 
to an input sequence {u(k)} is uniformly positive, the 
absolute value function has no effect and the model 
reduces to Equation (16) with delay d = 1. In contrast, 
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if the response to an input sequence {u(k)} is uniformly 
negative, the absolute value function may be replaced 
by a negative sign, reversing the sign of  the autoregres- 
sive coefficient a. These observations describe the step 
responses shown in Figure 9: for A > 0, the model 
shown is effectively Equation (16) with a = -0.70, for 
A > 0, it is effectively the same model with 
a = +0.70. 

If  the response to {u(k)} can be both positive and 
negative, more complicated behaviour is possible, as 
illustrated in Figure 11. This plot shows the response of  
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Figure 12 Sustained oscillation for Model 3 

Model 2 with a = -1.5, b = 1 to a positive step input. 
This response is chaotic and, as noted above, scales lin- 
early with the step amplitude A for any A > 0. In con- 
trast, for A < 0, the step response is always negative, so 
the model behaves like a first-order linear model with 
autoregressive coefficient a = +1.5; this response is 
unstable, growing exponentially with time. Interest- 
ingly, chaotic step responses have not yet been observed 
in Model 3, although sustained oscillations have, as 
shown in Figure 12. There, the positive step response is 
shown for Model 3 with parameters a = 0.35, b = l, c 
= -1.2. Finally, note that both these models exhibit 
unique steady-states. For  Model 2, i f - 1  < a < 1, this 
steady state value is: 

~bA/(1 - a) bA > 0 (27) 
Y s = [ b A / ( l + a )  b A < O  

while for Model 3, the steady state response is: 

b A / ( 1 - a - c )  b A > O , a + c < l  
Ys = bA/(1 a) bA < O,a < l 

(28) 

Model 4 replaces the nonsmooth absolute value non- 
linearity in Model 2 with a quadratic term, yielding a 
polynomial N A A RX  model. The step responses for this 
model are shown in Figure 13 for b = 1, d -- -0.24 and 

d 

o. 

\ 
0.0 0.2 0.4 

Figure 13 Model 4 step responses 
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Figure 14 Model 4 step responses, A = +3.00 

to 
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Figure 15 Model 4 step responses, A = +7.00 

the values of A between -1 and +1. These responses are 
qualitatively similar to those shown in Figure 9 for 
Model 2. Profound differences exist between these mod- 
els, however, despite the apparent simplicity of substi- 
tuting a quadratic nonlinearity for an absolute value. 
First, note that Model 4 does not share the 'nearly lin- 
ear' scaling property of Model 2: the qualitative depen- 
dence of the step response on the step amplitude A is 
significant as shown in Figures 14 and 15. Specifically, 
note that the step response for A = +1.00 shown in 
Figure 13 is only slightly oscillatory, while the step 
response for A -- +3.00 shown in Figure 14 is highly 
oscillatory. Increasing the amplitude further to A = +7.00 
yields the chaotic step response shown in Figure 15. 
Finally, note that if the step amplitude is made too large 
- either positive or negative - Model 4 becomes un- 
stable. This general behaviour further illustrates yet 
another point made earlier: nonlinear models need to be 
characterized over the entire set 11 of probable input 
sequences and not simply for a few 'representative' ele- 
ments of 1I. 

Unlike Models, 1, 2, and 3, Model 4 exhibits multiple 
steady states. In particular, substituting y(k) -- y(k - 1) 
= Ys into Model 4 yields a quadratic equation for ys, 
with the two roots: 

= 1 + ~ 4dbA 

2d (29) 

Further, note that if 1 - 4dbA < 0, this model exhibits 
no real steady states, suggesting oscillatory, chaotic or 
unstable behaviour. 

Model 5 is a simple polynomial NARMAX model 
that includes both Models 1 and 4 as special cases. For 
arbitrary parameters a, b, c and d, this model will gen- 
erally resemble Model 4 in its overall qualitative behav- 
iour. For example, unless d = 0, this model will exhibit 
two steady states like Model 4. Further, the qualitative 
behaviour of this model will depend on the amplitude of 
the input sequence, like Models 1 and 4 and unlike 
Models 2 and 3. Typical behaviour for the positive step 
response would be a monotonically increasing response 
for small amplitude steps, damped oscillations at larger 
amplitudes, sustained oscillations and chaotic behav- 
iour at still larger amplitudes, and instability at suffi- 
ciently large amplitudes. 

Summary 

This paper has attempted to summarize a number of the 
key issues in nonlinear input/output modelling, compar- 
ing and contrasting this problem with its linear coun- 
terpart where possible. Consequently, the objective of 
the paper has been more to raise questions than to 
answer them and, indeed, some of these questions 
appear to be very difficult to answer, even in general 
terms. Certain general conclusions may be drawn, how- 
ever. First, the example discussed in the previous sec- 
tion emphasizes the point made earlier that goodness of 
fit alone is not a sufficient criterion for 'model ade- 
quacy'. In particular, other considerations like the sen- 
sitivity of the identified model to errors in the data may 
be equally important and can be profoundly influenced 
by general choices of model structure, order parameters 
and terms (e.g. input variables) included in or excluded 
from the model. In addition, the results of the previous 
section clearly demonstrates that the overall qualitative 
behaviour of different models with comparable good- 
ness of fit for a few selected inputs can be radically dif- 
ferent: some will exhibit chaotic responses or multiple 
steady states while others will not, the qualitative 
behaviour of the responses of some models will change 
dramatically with the magnitude of the input sequence 
while others will not, etc. 

As noted earlier and illustrated in the previous two 
sections, specification of a reasonably 'complete' set 1I 
of input sequences {u(k)} is important in nonlinear sys- 
tem identification. In particular, the qualitative nature 
of a nonlinear model's behaviour can depend very 
strongly on its input sequence, in contrast to the behav- 
iour of linear models. In particular, note that if {ul(k)} 
and {u2(k)} are two input sequences to a linear model 
and {yl(k)} and {y2(k)} are the corresponding output 
sequences, the response to any 'intermediate' sequence 
~(k) = eUl(k) + (1 - e)u2(k) for 0 < e < 1 is simply eyl(k) 
+ ( l  - E)yE(k ). S u c h  ' interpolatory' behaviour may or 
may not hold for nonlinear models, as the NARMAX 
models considered in the previous section demonstrate. 
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Figure 16 Implicit Wiener model for high-purity columns 

This observation has two practical implications for non- 
linear model development. First, because the real-world 
process ~ being modelled is itself nonlinear, it is impor- 
tant to characterize its behaviour over the set 1I of prac- 
tically important input sequences as completely as 
possible. Second, once a candidate structure is selected 
for the empirical model ~R of this process, it is impor- 
tant to characterize its qualitative behaviour over the 
set 1I as well. It is only after both of these characteriza- 
tions have ben made that we can hope to estimate 
'model adequacy'. 

The subharmonic generation example discussed ear- 
lier emphasized the difference between 'nonlinear 
autoregressive' and 'nonlinear moving average' behav- 
iour. In particular, it was shown that subharmonic gen- 
eration is an 'inherently autoregressive' phenomenon 
that has no 'moving average representation'. The CSTR 
step response example discussed in the previous section 
is less definite, but the results suggest that while this 
response is 'barely representable' by moving average 
models (i.e. the infinite-order moving average equiva- 
lents of the Wiener and Uryson models), it is much 
more easily represented by autoregressive models. Con- 
versely, this example also demonstrated that nonlinear 
autoregressive models can exhibit potentially undesir- 
able behaviour (e.g. multiple steady states, chaotic step 
responses, amplitude-dependent instabilities etc.). If 
such qualitative behaviour is inherent in the process ~,  
its presence in the empirical model ~ is reasonable, but 
this is not always the case. In contrast, block-oriented 
and other 'nonlinear moving average' models tend to 
exhibit less of this type of behaviour. Consequently, 
intermediate cases like the high-purity distillation col- 
umn pose particularly intriguing questions. Specifically 
it was noted earlier that while the Hammerstein models 
investigated by Eskinat et aL 11 do not adequately 
describe high-purity column dynamics, the more general 
question remains open: can these dynamics be ade- 
quately described by any Hammerstein model, or is the 
class of Hammerstein models simply too restrictive? A 
popular alternative to dealing with high-purity column 
dynamics is to model the logarithm of product concen- 
tration instead of the concentration itself. Note that this 

alternative implicitly constructs a Wiener model of the 
process, as shown in Figure 16. That is, since the rela- 
tionship between the manipulated variable {u(k)} and 
the logarithm of product concentration is assumed lin- 
ear, the relationship between {u(k)} and measured con- 
centration {y(k)} is a Wiener model with an exponential 
compensating nonlinearity, as shown, Nonparametric 
identification of the nonlinearity in either Hammerstein 
or Wiener models 9,1°,t3 would permit the search for 
other, more effective nonlinearities in either of these 
approaches to modelling high-purity distillation 
columns. 

Finally, it is important to note the role that certain 
classes of nonlinear models can play in the development 
of algorithms and methodologies, even when they are 
not the best choice of model structure for practical 
applications. In particular, it was noted in the previous 
section that the Volterra model was a poor choice for 
describing the CSTR dynamics considered there 
because of the extreme number of parameters required 
for its specification, even in the restrictive case of sec- 
ond-order Volterra models. Conversely, the investiga- 
tion of this general class of models described by Pearson 
et aL 38 has yielded some very useful insights into the 
challenging problem of input sequence design for non- 
linear system identification. Specifically, these results 
make it clear that PRBS inputs are singularly inappro- 
priate for Hammerstein model identification, a conclu- 
sion that is reasonable in retrospect, important in view 
of the popularity of PRBS for linear modelling, but not 
obvious beforehand. 
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