
Neural Network Toolbox™ 7
User’s Guide

Mark Hudson Beale
Martin T. Hagan
Howard B. Demuth



How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup   
www.mathworks.com/contact_TS.html Technical support
 

suggest@mathworks.com Product enhancement suggestions 
bugs@mathworks.com Bug reports  
doc@mathworks.com Documentation error reports 
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Neural Network Toolbox™ User’s Guide  
© COPYRIGHT 1992–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement.  The software may be used 
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, 
for, or through the federal government of the United States. By accepting delivery of the Program or 
Documentation, the government hereby agrees that this software or documentation qualifies as commercial 
computer software or commercial computer software documentation as such terms are used or defined in 
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this 
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, 
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation 
by the federal government (or other entity acquiring for or through the federal government) and shall 
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's 
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the 
Program and Documentation, unused, to The MathWorks, Inc. 

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand 
names may be trademarks or registered trademarks of their respective holders.

Patents
MathWorks products are protected by one or more U.S. patents.  Please see 
www.mathworks.com/patents for more information.



Revision History

June 1992 First printing
April 1993 Second printing
January 1997 Third printing
July 1997 Fourth printing
January 1998 Fifth printing Revised for Version 3 (Release 11)
September 2000 Sixth printing Revised for Version 4 (Release 12)
June 2001 Seventh printing Minor revisions (Release 12.1)
July 2002 Online only Minor revisions (Release 13)
January 2003 Online only Minor revisions (Release 13SP1)
June 2004 Online only Revised for Version 4.0.3 (Release 14)
October 2004 Online only Revised for Version 4.0.4 (Release 14SP1)
October 2004 Eighth printing Revised for Version 4.0.4
March 2005 Online only Revised for Version 4.0.5 (Release 14SP2)
March 2006 Online only Revised for Version 5.0 (Release 2006a)
September 2006 Ninth printing Minor revisions (Release 2006b)
March 2007 Online only Minor revisions (Release 2007a)
September 2007 Online only Revised for Version 5.1 (Release 2007b)
March 2008 Online only Revised for Version 6.0 (Release 2008a)
October 2008 Online only Revised for Version 6.0.1 (Release 2008b)
March 2009 Online only Revised for Version 6.0.2 (Release 2009a)
September 2009 Online only Revised for Version 6.0.3 (Release 2009b)
March 2010 Online only Revised for Version 6.0.3 (Release 2010a)
September 2010 Online only Revised for Version 7.0 (Release 2010b)



 

Acknowledgments
The authors would like to thank the following people:

Joe Hicklin of MathWorks for getting Howard into neural network research 
years ago at the University of Idaho, for encouraging Howard and Mark to 
write the toolbox, for providing crucial help in getting the first toolbox Version 
1.0 out the door, for continuing to help with the toolbox in many ways, and for 
being such a good friend. 

Roy Lurie of MathWorks for his continued enthusiasm for the possibilities for 
Neural Network Toolbox™ software.

Mary Ann Freeman of MathWorks for general support and for her leadership of 
a great team of people we enjoy working with.

Rakesh Kumar of MathWorks for cheerfully providing technical and practical 
help, encouragement, ideas and always going the extra mile for us.

Alan LaFleur of MathWorks for facilitating our documentation work.

Stephen Vanreusel of MathWorks for help with testing.

Dan Doherty of MathWorks for marketing support and ideas.

Orlando De Jesús of Oklahoma State University for his excellent work in 
developing and programming the dynamic training algorithms described in 
Chapter 4, “Dynamic Networks,” and in programming the neural network 
controllers described in Chapter 5, “Control Systems.”

Permissions
Martin T. Hagan, Howard B. Demuth, and Mark Hudson Beale for 
permission to include various problems, demonstrations, and other material 
from Neural Network Design, January, 1996.



Neural Network Toolbox™ Design Book
The developers of the Neural Network Toolbox™ software have written a 
textbook, Neural Network Design (Hagan, Demuth, and Beale, ISBN 
0-9717321-0-8). The book presents the theory of neural networks, discusses 
their design and application, and makes considerable use of the MATLAB® 
environment and Neural Network Toolbox software. Demonstration programs 
from the book are used in various chapters of this user’s guide. (You can find 
all the book demonstration programs in the Neural Network Toolbox software 
by typing nnd.)

This book can be obtained from John Stovall at (303) 492-3648, or by e-mail at 
John.Stovall@colorado.edu.

The Neural Network Design textbook includes:

• An Instructor’s Manual for those who adopt the book for a class

• Transparency Masters for class use

If you are teaching a class and want an Instructor’s Manual (with solutions to 
the book exercises), contact John Stovall at (303) 492-3648, or by e-mail at 
John.Stovall@colorado.edu.

To look at sample chapters of the book and to obtain Transparency Masters, go 
directly to the Neural Network Design page at

http://hagan.okstate.edu/nnd.html

From this link, you can obtain sample book chapters in PDF format and you 
can download the Transparency Masters by clicking Transparency Masters 
(3.6MB). 

You can get the Transparency Masters in PowerPoint or PDF format.



 



i

Contents

1
Getting Started

Product Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2

Using the Toolbox and Its Documentation  . . . . . . . . . . . . . .  1-3
Automatic Script Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4

Neural Network Toolbox™ Applications  . . . . . . . . . . . . . . . .  1-5

Neural Network Design Steps . . . . . . . . . . . . . . . . . . . . . . . . . .  1-8

Fitting a Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-9
Defining a Problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-9
Using the Neural Network Fitting Tool . . . . . . . . . . . . . . . . . .  1-10
Using Command-Line Functions  . . . . . . . . . . . . . . . . . . . . . . .  1-21

Recognizing Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-28
Defining a Problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-28
Using the Neural Network Pattern Recognition Tool . . . . . . .  1-30
Using Command-Line Functions  . . . . . . . . . . . . . . . . . . . . . . .  1-41

Clustering Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-49
Defining a Problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-49
Using the Neural Network Clustering Tool . . . . . . . . . . . . . . .  1-50
Using Command-Line Functions  . . . . . . . . . . . . . . . . . . . . . . .  1-60

Time Series Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-66
Defining a Problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-66
Using the Neural Network Time Series Tool . . . . . . . . . . . . . .  1-67
Using Command-Line Functions  . . . . . . . . . . . . . . . . . . . . . . .  1-80

Sample Data Sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-89



ii Contents

2
Network Objects, Data and Training Styles

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-2

Neuron Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4
Simple Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4
Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5
Neuron with Vector Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-6

Network Architectures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-10
A Layer of Neurons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-10
Multiple Layers of Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-12
Input and Output Processing Functions . . . . . . . . . . . . . . . . . .  2-14

Introduction to the Network Object . . . . . . . . . . . . . . . . . . . .  2-16

Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-21

Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-23
Simulation with Concurrent Inputs in a Static Network  . . . .  2-23
Simulation with Sequential Inputs in a Dynamic Network  . .  2-24
Simulation with Concurrent Inputs in a Dynamic Network . .  2-26

Training Styles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-29
Incremental Training with adapt  . . . . . . . . . . . . . . . . . . . . . . .  2-29
Batch Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-31
Training Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-35

3

Multilayer Networks and Backpropagation
 Training

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-2



iii

Multilayer Neural Network Architecture . . . . . . . . . . . . . . . .  3-3
Feedforward Network  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-4

Collect and Prepare the Data  . . . . . . . . . . . . . . . . . . . . . . . . . .  3-7
Preprocessing and Postprocessing  . . . . . . . . . . . . . . . . . . . . . . .  3-7
Dividing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10

Create, Configure and Initialize the Network . . . . . . . . . . .  3-12
Other Related Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-13
Initializing Weights (init)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-13

Train the Network  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-14
Training Algorithms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-15
Efficiency and Memory Reduction  . . . . . . . . . . . . . . . . . . . . . .  3-17
Generalization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-17
Training Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-18

Post-Training Analysis (Network Validation) . . . . . . . . . . .  3-21
Improving Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-24

Use the Network  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-26

Automatic Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-27

Limitations and Cautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-28

4
Dynamic Networks

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
Examples of Dynamic Networks . . . . . . . . . . . . . . . . . . . . . . . . .  4-3
Applications of Dynamic Networks . . . . . . . . . . . . . . . . . . . . . . .  4-8
Dynamic Network Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-9
Dynamic Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-10

Focused Time-Delay Neural Network (timedelaynet) . . . .  4-12



iv Contents

Preparing Data (preparets)  . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-17

Distributed Time-Delay Neural Network (newdtdnn) . . . .  4-18

NARX Network (narxnet, closeloop)  . . . . . . . . . . . . . . . . . . .  4-21

Layer-Recurrent Network (layerrecurrentnet) . . . . . . . . . .  4-27

Training Custom Networks  . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-29

Multiple Sequences, Time Series Utilities and
Error Weighting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-35

Multiple Sequences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-35
Time Series Utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-35
Error Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-38

5
Control Systems

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-2

NN Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-4
System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-4
Predictive Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-5
Using the NN Predictive Controller Block . . . . . . . . . . . . . . . . .  5-6

NARMA-L2 (Feedback Linearization) Control  . . . . . . . . . .  5-14
Identification of the NARMA-L2 Model  . . . . . . . . . . . . . . . . . .  5-14
NARMA-L2 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-16
Using the NARMA-L2 Controller Block . . . . . . . . . . . . . . . . . .  5-18

Model Reference Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-23
Using the Model Reference Controller Block . . . . . . . . . . . . . .  5-25



v

Importing and Exporting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-31
Importing and Exporting Networks  . . . . . . . . . . . . . . . . . . . . .  5-31
Importing and Exporting Training Data  . . . . . . . . . . . . . . . . .  5-35

6
Radial Basis Networks

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-2
Important Radial Basis Functions  . . . . . . . . . . . . . . . . . . . . . . .  6-2

Radial Basis Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-3
Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-3
Network Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-4
Exact Design (newrbe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-5
More Efficient Design (newrb)  . . . . . . . . . . . . . . . . . . . . . . . . . .  6-7
Demonstrations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-8

Probabilistic Neural Networks  . . . . . . . . . . . . . . . . . . . . . . . . .  6-9
Network Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-9
Design (newpnn)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-10

Generalized Regression Networks . . . . . . . . . . . . . . . . . . . . .  6-12
Network Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-12
Design (newgrnn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-14

7

Self-Organizing and Learning
Vector Quantization Nets

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-2
Important Self-Organizing and LVQ Functions . . . . . . . . . . . . .  7-2

Competitive Learning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-3



vi Contents

Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-3
Creating a Competitive Neural Network (newc)  . . . . . . . . . . . .  7-4
Kohonen Learning Rule (learnk) . . . . . . . . . . . . . . . . . . . . . . . . .  7-5
Bias Learning Rule (learncon) . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-5
Training  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-6
Graphical Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-7

Self-Organizing Feature Maps . . . . . . . . . . . . . . . . . . . . . . . . . .  7-9
Topologies (gridtop, hextop, randtop) . . . . . . . . . . . . . . . . . . . .  7-10
Distance Functions (dist, linkdist, mandist, boxdist)  . . . . . . .  7-14
Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-17
Creating a Self-Organizing MAP Neural Network (newsom) .  7-18
Training (learnsomb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-19
Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-22

Learning Vector Quantization Networks  . . . . . . . . . . . . . . .  7-35
Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-35
Creating an LVQ Network (newlvq) . . . . . . . . . . . . . . . . . . . . .  7-36
LVQ1 Learning Rule (learnlv1) . . . . . . . . . . . . . . . . . . . . . . . . .  7-39
Training  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-40
Supplemental LVQ2.1 Learning Rule (learnlv2) . . . . . . . . . . .  7-42

8
Adaptive Filters and Adaptive Training

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-2
Important Adaptive Functions  . . . . . . . . . . . . . . . . . . . . . . . . . .  8-2

Linear Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-3

Adaptive Linear Network Architecture  . . . . . . . . . . . . . . . . .  8-4
Single ADALINE (newlin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-4

Least Mean Square Error  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-7

LMS Algorithm (learnwh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-8



vii

Adaptive Filtering (adapt)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-9
Tapped Delay Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-9
Adaptive Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-9
Adaptive Filter Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-10
Prediction Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-13
Noise Cancellation Example  . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-14
Multiple Neuron Adaptive Filters . . . . . . . . . . . . . . . . . . . . . . .  8-16

9
Advanced Topics

Custom Networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-2
Custom Network  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-2
Network Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-3
Network Behavior  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-12

Additional Toolbox Functions . . . . . . . . . . . . . . . . . . . . . . . . .  9-15

Speed and Memory Comparison for Training 
Multilayer Networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-16

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-32

Improving Generalization  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-34
Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-35
Index Data Division (divideind)  . . . . . . . . . . . . . . . . . . . . . . . .  9-36
Random Data Division (dividerand) . . . . . . . . . . . . . . . . . . . . .  9-36
Block Data Division (divideblock) . . . . . . . . . . . . . . . . . . . . . . .  9-36
Interleaved Data Division (divideint) . . . . . . . . . . . . . . . . . . . .  9-37
Regularization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-37
Summary and Discussion of Early Stopping 
and Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-40
Posttraining Analysis (postreg) . . . . . . . . . . . . . . . . . . . . . . . . .  9-42

Custom Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-45



viii Contents

10
Historical Networks

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-2

Perceptron Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-3
Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-3
Perceptron Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-5
Creating a Perceptron (newp) . . . . . . . . . . . . . . . . . . . . . . . . . .  10-6
Perceptron Learning Rule (learnp) . . . . . . . . . . . . . . . . . . . . . .  10-8
Training (train)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-10
Limitations and Cautions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-16

Linear Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-18
Neuron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-18
Network Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-19
Least Mean Square Error  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-22
Linear System Design (newlind) . . . . . . . . . . . . . . . . . . . . . . .  10-23
Linear Networks with Delays . . . . . . . . . . . . . . . . . . . . . . . . .  10-24
LMS Algorithm (learnwh) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-26
Linear Classification (train)  . . . . . . . . . . . . . . . . . . . . . . . . . .  10-28
Limitations and Cautions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-30

Elman Networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-32
Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-32
Creating an Elman Network (newelm) . . . . . . . . . . . . . . . . . .  10-33
Training an Elman Network . . . . . . . . . . . . . . . . . . . . . . . . . .  10-34

Hopfield Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-37
Fundamentals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-37
Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-37
Design (newhop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-39



ix

11
Network Object Reference

Network Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-2
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-2
Efficiency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-2
Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-3
Subobject Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-6
Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-8
Weight and Bias Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-11

Subobject Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-13
Inputs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-13
Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-15
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-20
Biases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-22
Input Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-23
Layer Weights  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-25

12
Function Reference

DataFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-3

Distance Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-6

Graphical Interface Functions  . . . . . . . . . . . . . . . . . . . . . . . .  12-7

Layer Initialization Functions  . . . . . . . . . . . . . . . . . . . . . . . .  12-8

Learning Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-9

Line Search Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-10

Net Input Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-11

Network Initialization Function . . . . . . . . . . . . . . . . . . . . . .  12-12



x Contents

Network Use Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-13

New Networks Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-14

Performance Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-15

Plotting Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-16

Processing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-17

Simulink® Support Function . . . . . . . . . . . . . . . . . . . . . . . . .  12-18

Topology Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-19

Training Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-20

Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-21

Weight and Bias Initialization Functions . . . . . . . . . . . . . .  12-22

Weight Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-23

Transfer Function Graphs  . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-24

13
Functions — Alphabetical List

A
Mathematical Notation

Mathematical Notation for Equations and Figures  . . . . . . .  A-2
Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-2
Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-2
Weight Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-2



xi

Bias Elements and Vectors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-2
Time and Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-2
Layer Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-3
Figure and Equation Examples . . . . . . . . . . . . . . . . . . . . . . . . . .  A-3

Mathematics and Code Equivalents . . . . . . . . . . . . . . . . . . . . .  A-4

B
Blocks for the Simulink® Environment

Blockset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-2
Transfer Function Blocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-2
Net Input Blocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-3
Weight Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-3
Processing Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-4

Block Generation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-5
Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-5
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-7

C
Code Notes

Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-2

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-3
Utility Function Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-4

Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-6

Code Efficiency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-7

Argument Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C-8



xii Contents

D
Bibliography

Glossary

Index



 

1

Getting Started

Product Overview (p. 1-2)

Using the Toolbox and Its Documentation (p. 1-3)

Neural Network Toolbox™ Applications (p. 1-5)

Neural Network Design Steps (p. 1-8)

Fitting a Function (p. 1-9)

Recognizing Patterns (p. 1-28)

Clustering Data (p. 1-49)

Time Series Prediction (p. 1-66)

Sample Data Sets (p. 1-89)



1 Getting Started

1-2

Product Overview
Neural networks are composed of simple elements operating in parallel. These 
elements are inspired by biological nervous systems. As in nature, the 
connections between elements largely determine the network function. You 
can train a neural network to perform a particular function by adjusting the 
values of the connections (weights) between elements.

Typically, neural networks are adjusted, or trained, so that a particular input 
leads to a specific target output. The next figure illustrates such a situation. 
There, the network is adjusted, based on a comparison of the output and the 
target, until the network output matches the target. Typically, many such 
input/target pairs are needed to train a network.

Neural networks have been trained to perform complex functions in various 
fields, including pattern recognition, identification, classification, speech, 
vision, and control systems.

Neural networks can also be trained to solve problems that are difficult for 
conventional computers or human beings. The toolbox emphasizes the use of 
neural network paradigms that build up to—or are themselves used in— 
engineering, financial, and other practical applications.

This chapter explains how to use four graphical tools for training neural 
networks to solve problems in function fitting, pattern recognition, clustering, 
and time series. Using these four tools will give you an excellent introduction 
to the use of the Neural Network Toolbox™ software.

Neural Network 
including connections 
(called weights) 
between neurons Input Output

Target

Adjust 
weights

Compare



Using the Toolbox and Its Documentation

1-3

Using the Toolbox and Its Documentation
There are four ways you can use the Neural Network Toolbox™ software. The 
first way is through the four graphical user interfaces (GUIs) that are 
described in this chapter. (You can open these GUIs from a master GUI, which 
you can open with the command nnstart.) These provide a quick and easy way 
to access the power of the toolbox for the following tasks:

• Function fitting

• Pattern recognition

• Data clustering

• Time series analysis

The second way to use the toolbox is through basic command-line operations. 
The command-line operations offer more flexibility than the GUIs, but with 
some added complexity. This chapter introduces some of the command-line 
functions, but the next seven chapters cover command-line operations in more 
detail. The next two chapters are important to understanding the use of the 
command line, and the fundamentals of training neural networks. You should 
read them before advancing to later topics.

• Chapter 2, “Network Objects, Data and Training Styles,” presents the 
fundamentals of the neuron model and the architectures of neural networks. 
It also describes the network object, which is used by the Neural Network 
Toolbox™ software to store all of the information that defines a neural 
network. It is important to understand the structure of the network object, 
especially when using command-line operations. This chapter also describes 
how data is stored and used in the toolbox, and how networks are trained.

• Chapter 3, “Multilayer Networks and Backpropagation Training,” explains 
the basic steps involved in designing the multilayer network. This network 
is the workhorse of the toolbox, and it can be used for both function fitting 
and pattern recognition. Most of the design steps for this network can be 
applied to the design of any other network in the toolbox.

If this is your first experience with the toolbox, the GUIs provide the best 
introduction. In addition, the GUIs can generate scripts of documented 
MATLAB® code to provide you with templates for creating your own 
customized command-line functions. The process of using the GUIs first, and 
then generating and modifying MATLAB® scripts, is an excellent way to learn 
about the functionality of the toolbox.



1 Getting Started

1-4

The third way to use the toolbox is through customization. This advanced 
capability allows you to create your own custom neural networks, while still 
having access to the full functionality of the toolbox. You can create networks 
with arbitrary connections, and you will still be able to train them using 
existing toolbox training functions (as long as the network components are 
differentiable). Customizing the toolbox is described in Chapter 9, “Advanced 
Topics”. An example of creating and training a customized network is given in 
“Training Custom Networks” in Chapter 4.

The fourth way to use the toolbox is through the ability to modify any of the 
functions contained in the toolbox. Every computational component is written 
in MATLAB® code and is fully accessible.

These four levels of toolbox usage span the novice to the expert - simple wizards 
guide the new user through specific applications, and network customization 
allows researchers to try novel architectures with minimal effort. Whatever 
your level of neural network and MATLAB® knowledge, there are toolbox 
features to suit your needs.

Automatic Script Generation
The GUIs described in this chapter form an important part of the 
documentation for the Neural Network Toolbox™ software. The GUIs guide 
you through the process of designing neural networks to solve problems in four 
important application areas, without requiring any background in neural 
networks or sophistication in using MATLAB®. In addition, the GUIs can 
automatically generate both simple and advanced MATLAB® scripts that can 
reproduce the steps performed by the GUI, but with the option to override 
default settings. These scripts can provide you with a template for creating 
customized code, and they can aid you in becoming familiar with the 
command-line functionality of the toolbox. It is highly recommended that you 
use the automatic script generation facility of the GUIs.



Neural Network Toolbox™ Applications

1-5

Neural Network Toolbox™ Applications
It would be impossible to cover the total range of applications for which neural 
networks have provided outstanding solutions. The remaining sections of this 
chapter will demonstrate only a few of the applications in function fitting, 
pattern recognition, clustering, and time series analysis. The following table 
provides an idea of the diversity of applications for which neural networks 
provide state-of-the-art solutions. 

Industry Business Applications

Aerospace High-performance aircraft autopilot, flight path 
simulation, aircraft control systems, autopilot 
enhancements, aircraft component simulation, 
and aircraft component fault detection

Automotive Automobile automatic guidance system, and 
warranty activity analysis

Banking Check and other document reading and credit 
application evaluation

Defense Weapon steering, target tracking, object 
discrimination, facial recognition, new kinds of 
sensors, sonar, radar and image signal processing 
including data compression, feature extraction 
and noise suppression, and signal/image 
identification

Electronics Code sequence prediction, integrated circuit chip 
layout, process control, chip failure analysis, 
machine vision, voice synthesis, and nonlinear 
modeling

Entertainment Animation, special effects, and market forecasting

Financial Real estate appraisal, loan advising, mortgage 
screening, corporate bond rating, credit-line use 
analysis, credit card activity tracking, portfolio 
trading program, corporate financial analysis, 
and currency price prediction



1 Getting Started

1-6

Industrial Prediction of industrial processes, such as the 
output gases of furnaces, replacing complex and 
costly equipment used for this purpose in the past

Insurance Policy application evaluation and product 
optimization

Manufacturing Manufacturing process control, product design 
and analysis, process and machine diagnosis, 
real-time particle identification, visual quality 
inspection systems, beer testing, welding quality 
analysis, paper quality prediction, computer-chip 
quality analysis, analysis of grinding operations, 
chemical product design analysis, machine 
maintenance analysis, project bidding, planning 
and management, and dynamic modeling of 
chemical process system

Medical Breast cancer cell analysis, EEG and ECG 
analysis, prosthesis design, optimization of 
transplant times, hospital expense reduction, 
hospital quality improvement, and 
emergency-room test advisement

Oil and gas Exploration

Robotics Trajectory control, forklift robot, manipulator 
controllers, and vision systems

Speech Speech recognition, speech compression, vowel 
classification, and text-to-speech synthesis

Securities Market analysis, automatic bond rating, and 
stock trading advisory systems

Industry Business Applications



Neural Network Toolbox™ Applications

1-7

Telecommunications Image and data compression, automated 
information services, real-time translation of 
spoken language, and customer payment 
processing systems

Transportation Truck brake diagnosis systems, vehicle 
scheduling, and routing systems

Industry Business Applications



1 Getting Started

1-8

Neural Network Design Steps
In the remaining sections of this chapter, you will follow the standard steps for 
designing neural networks to solve problems in four application areas: function 
fitting, pattern recognition, clustering, and time series analysis. The work flow 
for any of these problems has six primary steps. (Data collection, while 
important, generally occurs outside the MATLAB® environment, so it is 
step 0.) 

0 Collect data.

1 Create the network.

2 Configure the network.

3 Initialize the weights and biases.

4 Train the network.

5 Validate the network.

6 Use the network.

You will follow these steps using both the GUI tools and command-line 
operations in the next four sections. More detailed discussions of the six design 
steps are in Chapter 2, “Network Objects, Data and Training Styles” and 
Chapter 3, “Multilayer Networks and Backpropagation Training.”



Fitting a Function

1-9

Fitting a Function
Neural networks are good at fitting functions. In fact, there is proof that a 
fairly simple neural network can fit any practical function.

Suppose, for instance, that you have data from a housing application 
[HaRu78]. You want to design a network that can predict the value of a house 
(in $1000s), given 13 pieces of geographical and real estate information. You 
have a total of 506 example homes for which you have those 13 items of data 
and their associated market values.

You can solve this problem in two ways:

• Use a graphical user interface, nftool, as described in “Using the Neural 
Network Fitting Tool” on page 1-10. 

• Use command-line functions, as described in “Using Command-Line 
Functions” on page 1-21. 

It is generally best to start with the GUI, and then to use the GUI to 
automatically generate command-line scripts. Before using either method, first 
define the problem by selecting a data set. Each GUI has access to many 
sample data sets that you can use to experiment with the toolbox (see “Sample 
Data Sets” on page 1-89). If you have a specific problem that you want to solve, 
you can load your own data into the workspace. The next section describes the 
data format.

Defining a Problem
To define a fitting problem for the toolbox, arrange a set of Q input vectors as 
columns in a matrix. Then, arrange another set of Q target vectors (the correct 
output vectors for each of the input vectors) into a second matrix (see Chapter 
2, “Data Structures,” for a detailed description of data formatting for static and 
time series data). For example, you can define the fitting problem for a Boolean 
AND gate with four sets of two-element input vectors and one-element targets 
as follows:

inputs = [0 1 0 1; 0 0 1 1];
targets = [0 0 0 1];

The next section demonstrates how to train a network to fit a data set, using 
the neural network fitting tool GUI, nftool. This example uses the housing 
data set provided with the toolbox.



1 Getting Started

1-10

Using the Neural Network Fitting Tool

1 Open the Neural Network Start GUI with this command:

nnstart

2 Click Fitting Tool to open the Neural Network Fitting Tool. (You can also 
use the command nftool.) 



Fitting a Function

1-11

3 Click Next to proceed.

4 Click Load Example Data Set in the Select Data window. The Fitting Data 
Set Chooser window opens.

Note  Use the Inputs and Targets options in the Select Data window when 
you need to load data from the MATLAB® workspace.



1 Getting Started

1-12

5 Select House Pricing, and click Import. This returns you to the Select Data 
window.



Fitting a Function

1-13

6 Click Next to display the Validation and Test Data window, shown in the 
following figure.

The validation and test data sets are each set to 15% of the original data.

With these settings, the input vectors and target vectors will be randomly 
divided into three sets as follows:

• 70% will be used for training.

• 15% will be used to validate that the network is generalizing and to stop 
training before overfitting. 

• The last 15% will be used as a completely independent test of network 
generalization.



1 Getting Started

1-14

(See “Dividing the Data” on page 3-10 for more discussion of the data 
division process.)

7 Click Next.

The standard network that is used for function fitting is a two-layer 
feedforward network, with a sigmoid transfer function in the hidden layer 
and a linear transfer function in the output layer. (This network is discussed 
in more detail in Chapter 3, “Multilayer Networks and Backpropagation 
Training” and in Chapters 11-12 of [HDB96].) The default number of hidden 
neurons is set to 10. You might want to increase this number later, if the 
network training performance is poor.



Fitting a Function

1-15

8 Click Next.



1 Getting Started

1-16

9 Click Train.

The training continued until the validation error failed to decrease for six 
iterations (validation stop).

10 Under Plots, click Regression. This is used to validate the network 
performance.

The following regression plots display the network outputs with respect to 
targets for training, validation, and test sets. For a perfect fit, the data 



Fitting a Function

1-17

should fall along a 45 degree line, where the network outputs are equal to 
the targets. For this problem, the fit is reasonably good for all data sets, with 
R values in each case of 0.93 or above. If even more accurate results were 
required, you could retrain the network by clicking Retrain in nftool. This 
will change the initial weights and biases of the network, and may produce 
an improved network after retraining. Other options are provided on the 
following pane.



1 Getting Started

1-18

11 View the error histogram to obtain additional verification of network 
performance. Under the Plots pane, click Error Histogram.

The blue bars represent training data, the green bars represent validation 
data, and the red bars represent testing data. The histogram can give you 
an indication of outliers, which are data points where the fit is significantly 
worse than the majority of data. In this case, you can see that while most 
errors fall between -5 and 5, there is a training point with an error of 17 and 
validation points with errors of 12 and 13. These outliers are also visible on 
the testing regression plot. The first corresponds to the point with a target 
of 50 and output near 33. It is a good idea to check the outliers to determine 
if the data is bad, or if those data points are different than the rest of the 
data set. If the outliers are valid data points, but are unlike the rest of the 
data, then the network is extrapolating for these points. You should collect 
more data that looks like the outlier points, and retrain the network.

12 Click Next in the Neural Network Fitting Tool to evaluate the network.



Fitting a Function

1-19

At this point, you can test the network against new data. 

If you are dissatisfied with the network’s performance on the original or new 
data, you can do one of the following:

• Train it again.

• Increase the number of neurons.

• Get a larger training data set.

If the performance on the training set is good, but the test set performance 
is significantly worse, which could indicate overfitting, then reducing the 
number of neurons can improve your results. If training performance is 
poor, then you may want to increase the number of neurons.



1 Getting Started

1-20

13 If you are satisfied with the network performance, click Next.

14 Use the buttons on this screen to generate scripts or to save your results.

- You can click Simple Script or Advanced Script to create MATLAB® code 
that can be used to reproduce all of the previous steps from the command 
line. Creating MATLAB® code can be helpful if you want to learn how to 
use the command-line functionality of the toolbox to customize the 
training process. In “Using Command-Line Functions” on page 1-21, you 
will investigate the generated scripts in more detail.

- You can also have the network saved as net in the workspace. You can 
perform additional tests on it or put it to work on new inputs.



Fitting a Function

1-21

15 When you have created the MATLAB® code and saved your results, click 
Finish.

Using Command-Line Functions
The easiest way to learn how to use the command-line functionality of the 
toolbox is to generate scripts from the GUIs, and then modify them to 
customize the network training. As an example, look at the simple script that 
was created at step 14 of the previous section.

% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by NFTOOL
%
% This script assumes these variables are defined:
%
%   houseInputs - input data.
%   houseTargets - target data.
 
inputs = houseInputs;
targets = houseTargets;
 
% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize);

% Set up Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
 
% Train the Network
[net,tr] = train(net,inputs,targets);
 
% Test the Network
outputs = net(inputs);
errors = gsubtract(outputs,targets);
performance = perform(net,targets,outputs)
 
% View the Network
view(net)
 



1 Getting Started

1-22

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotfit(targets,outputs)
%figure, plotregression(targets,outputs)
%figure, ploterrhist(errors)

You can save the script, and then run it from the command line to reproduce 
the results of the previous GUI session. You can also edit the script to 
customize the training process. In this case, follow each step in the script.

0 The script assumes that the input vectors and target vectors are already 
loaded into the workspace. If the data are not loaded, you can load them as 
follows:

load house_dataset
inputs = houseInputs;
targets = houseTargets;

This data set is one of the sample data sets that is part of the toolbox (see 
“Sample Data Sets” on page 1-89). You can see a list of all available data sets 
by entering the command help nndatasets. The load command also allows 
you to load the variables from any of these data sets using your own variable 
names. For example, the command

[inputs,targets] = house_dataset;

will load the housing inputs into the array inputs and the housing targets 
into the array targets. 

1 Create a network. The default network for function fitting (or regression) 
problems, fitnet, is a feedforward network with the default tan-sigmoid 
transfer function in the hidden layer and linear transfer function in the 
output layer. You assigned ten neurons (somewhat arbitrary) to the one 
hidden layer in the previous section. The network has one output neuron, 
because there is only one target value associated with each input vector. 

hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize);



Fitting a Function

1-23

Note  More neurons require more computation, and they have a tendency to 
overfit the data when the number is set too high, but they allow the network 
to solve more complicated problems. More layers require more computation, 
but their use might result in the network solving complex problems more 
efficiently. To use more than one hidden layer, enter the hidden layer sizes as 
elements of an array in the fitnet command.

2 Set up the division of data.

net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

With these settings, the input vectors and target vectors will be randomly 
divided, with 70% used for training, 15% for validation and 15% for testing. 
(See “Dividing the Data” on page 3-10 for more discussion of the data 
division process.)

3 Train the network. The network uses the default Levenberg-Marquardt 
algorithm for training (trainlm). To train the network, enter:

[net,tr] = train(net,inputs,targets);

During training, the following training window opens. This window displays 
training progress and allows you to interrupt training at any point by 
clicking Stop Training.



1 Getting Started

1-24

This training stopped when the validation error increased for six iterations, 
which occurred at iteration 23. If you click Performance in the training 
window, a plot of the training errors, validation errors, and test errors 
appears, as shown in the following figure. In this example, the result is 
reasonable because of the following considerations:

• The final mean-square error is small.

• The test set error and the validation set error have similar characteristics.

• No significant overfitting has occurred by iteration 17 (where the best 
validation performance occurs).



Fitting a Function

1-25

4 Test the network. After the network has been trained, you can use it to 
compute the network outputs. The following code calculates the network 
outputs, errors and overall performance.

outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

It is also possible to calculate the network performance only on the test set, 
by using the testing indices, which are located in the training record. (See 
“Post-Training Analysis (Network Validation)” on page 3-21 for a full 
description of the training record.)

tInd = tr.testInd;
tstOutputs = net(inputs(tInd));
tstPerform = perform(net,targets(tInd),tstOutputs)



1 Getting Started

1-26

5 Perform some analysis of the network response. If you click Regression in 
the training window, you can perform a linear regression between the 
network outputs and the corresponding targets.

The following figure shows the results.

The output tracks the targets very well for training, testing, and validation, 
and the R-value is over 0.95 for the total response. If even more accurate 
results were required, you could try any of these approaches:



Fitting a Function

1-27

• Reset the initial network weights and biases to new values with init and 
train again (see “Initializing Weights (init)” on page 3-13).

• Increase the number of hidden neurons.

• Increase the number of training vectors.

• Increase the number of input values, if more relevant information is 
available.

• Try a different training algorithm (see “Training Algorithms” on 
page 3-15).

In this case, the network response is satisfactory, and you can now put the 
network to use on new inputs.

6 View the network diagram.

view(net)

This creates the following diagram of the network.

To get more experience in command-line operations, try some of these tasks:

• During training, open a plot window (such as the regression plot), and watch 
it animate.

• Plot from the command line with functions such as plotfit, 
plotregression, plottrainstate and plotperform. (For more information 
on using these functions, see their reference pages.)

Also, see the advanced script for more options, when training from the 
command line.



1 Getting Started

1-28

Recognizing Patterns
In addition to function fitting, neural networks are also good at recognizing 
patterns. 

For example, suppose you want to classify a tumor as benign or malignant, 
based on uniformity of cell size, clump thickness, mitosis, etc. [MuAh94]. You 
have 699 example cases for which you have 9 items of data and the correct 
classification as benign or malignant.

As with function fitting, there are two ways to solve this problem:

• Use the nprtool GUI, as described in “Using the Neural Network Pattern 
Recognition Tool” on page 1-30.

• Use a command-line solution, as described in “Using Command-Line 
Functions” on page 1-60.

It is generally best to start with the GUI, and then to use the GUI to 
automatically generate command-line scripts. Before using either method, the 
first step is to define the problem by selecting a data set. The next section 
describes the data format.

Defining a Problem
To define a pattern recognition problem, arrange a set of Q input vectors as 
columns in a matrix. Then arrange another set of Q target vectors so that they 
indicate the classes to which the input vectors are assigned (see Chapter 2, 
“Data Structures,” for a detailed description of data formatting for static and 
time series data). There are two approaches to creating the target vectors.

One approach can be used when there are only two classes; you set each scalar 
target value to either 1 or 0, indicating which class the corresponding input 
belongs to. For instance, you can define the exclusive-or classification problem 
as follows:

inputs = [0 1 0 1; 0 0 1 1];
targets = [0 1 0 1];

Alternately, target vectors can have N elements, where for each target vector, 
one element is 1 and the others are 0. This defines a problem where inputs are 
to be classified into N different classes. For example, the following lines show 
how to define a classification problem that divides the corners of a 5-by-5-by-5 
cube into three classes: 



Recognizing Patterns

1-29

• The origin (the first input vector) in one class

• The corner farthest from the origin (the last input vector) in a second class

• All other points in a third class

inputs = [0 0 0 0 5 5 5 5; 0 0 5 5 0 0 5 5; 0 5 0 5 0 5 0 5];
targets = [1 0 0 0 0 0 0 0; 0 1 1 1 1 1 1 0; 0 0 0 0 0 0 0 1];

Classification problems involving only two classes can be represented using 
either format. The targets can consist of either scalar 1/0 elements or 
two-element vectors, with one element being 1 and the other element being 0.

The next section demonstrates how to train a network to recognize patterns, 
using the neural network pattern recognition tool GUI, nprtool. This example 
uses the cancer data set provided with the toolbox. This data set consists of 699 
nine-element input vectors and two-element target vectors. There are two 
elements in each target vector, because there are two categories (benign or 
malignant) associated with each input vector. 



1 Getting Started

1-30

Using the Neural Network Pattern Recognition Tool

1 If needed, open the Neural Network Start GUI with this command:

nnstart

2 Click Pattern Recognition Tool to open the Neural Network Pattern 
Recognition Tool. (You can also use the command nprtool.)



Recognizing Patterns

1-31

3 Click Next to proceed. The Select Data window opens.

4 Click Load Example Data Set. The Pattern Recognition Data Set Chooser 
window opens.



1 Getting Started

1-32

5 Select Breast Cancer and click Import. You return to the Select Data 
window.



Recognizing Patterns

1-33

6 Click Next to continue to the Validation and Test Data window.

Validation and test data sets are each set to 15% of the original data. With 
these settings, the input vectors and target vectors will be randomly divided 
into three sets as follows:

• 70% are used for training.

• 15% are used to validate that the network is generalizing and to stop 
training before overfitting. 

• The last 15% are used as a completely independent test of network 
generalization.

(See “Dividing the Data” on page 3-10 for more discussion of the data 
division process.)



1 Getting Started

1-34

7 Click Next.

The standard network that is used for pattern recognition is a two-layer 
feedforward network, with sigmoid transfer functions in both the hidden 
layer and the output layer. This network architecture is discussed in more 
detail in Chapter 2, “Network Objects, Data and Training Styles,” Chapter 
3, “Multilayer Networks and Backpropagation Training” and in Chapters 
11-12 of [HDB96]. The default number of hidden neurons is set to 10. You 
might want to come back and increase this number if the network does not 
perform as well as you expect. The number of output neurons is set to 2, 
which is equal to the number of elements in the target vector (the number of 
categories). 



Recognizing Patterns

1-35

8 Click Next.



1 Getting Started

1-36

9 Click Train.

The training continues for 55 iterations.

10 Under the Plots pane, click Confusion in the Neural Network Pattern 
Recognition Tool.

The next figure shows the confusion matrices for training, testing, and 
validation, and the three kinds of data combined. The network outputs are 



Recognizing Patterns

1-37

very accurate, as you can see by the high numbers of correct responses in the 
green squares and the low numbers of incorrect responses in the red 
squares. The lower right blue squares illustrate the overall accuracies.

11 Plot the Receiver Operating Characteristic (ROC) curve. Under the Plots 
pane, click Receiver Operating Characteristic in the Neural Network 
Pattern Recognition Tool.



1 Getting Started

1-38

The colored lines in each axis represent the ROC curves. The ROC curve is a 
plot of the true positive rate (sensitivity) versus the false positive rate (1 - 
specificity) as the threshold is varied. A perfect test would show points in the 
upper-left corner, with 100% sensitivity and 100% specificity. For this 
problem, the network performs very well.



Recognizing Patterns

1-39

12 In the Neural Network Pattern Recognition Tool, click Next to evaluate the 
network.

At this point, you can test the network against new data. 

If you are dissatisfied with the network’s performance on the original or new 
data, you can train it again, increase the number of neurons, or perhaps get 
a larger training data set. If the performance on the training set is good, but 
the test set performance is significantly worse, which could indicate 
overfitting, then reducing the number of neurons can improve your results.



1 Getting Started

1-40

13 When you are satisfied with the network performance, click Next.

14 Use the buttons on this screen to save your results.

- You can click Simple Script or Advanced Script to create MATLAB® 
code that can be used to reproduce all of the previous steps from the 
command line. Creating MATLAB® code can be helpful if you want to 
learn how to use the command-line functionality of the toolbox to 
customize the training process. In “Using Command-Line Functions” on 
page 1-41, you will investigate the generated scripts in more detail.

- You can also save the network as net in the workspace. You can perform 
additional tests on it or put it to work on new inputs.

15 When you have saved your results, click Finish.



Recognizing Patterns

1-41

Using Command-Line Functions
The easiest way to learn how to use the command-line functionality of the 
toolbox is to generate scripts from the GUIs, and then modify them to 
customize the network training. As an example, let’s look at the simple script 
that was created at step 14 of the previous section.

% Solve a Pattern Recognition Problem with a Neural Network
% Script generated by NPRTOOL
%
% This script assumes these variables are defined:
%
%   cancerInputs - input data.
%   cancerTargets - target data.

inputs = cancerInputs;
inputs = cancerTargets;

% Create a Pattern Recognition Network
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);

% Set up Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network
[net,tr] = train(net,inputs,targets);

% Test the Network
outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

% View the Network
view(net)

% Plots



1 Getting Started

1-42

% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotconfusion(targets,outputs)
%figure, ploterrhist(errors)

You can save the script, and then run it from the command line to reproduce 
the results of the previous GUI session. You can also edit the script to 
customize the training process. In this case, follow each step in the script.

0 The script assumes that the input vectors and target vectors are already 
loaded into the workspace. If the data are not loaded, you can load them as 
follows:

load cancer_dataset
inputs = cancerInputs;
targets = cancerTargets;

1 Create the network. The default network for function fitting (or regression) 
problems, patternnet, is a feedforward network with the default 
tan-sigmoid transfer functions in both the hidden and output layers. You 
assigned ten neurons (somewhat arbitrary) to the one hidden layer in the 
previous section. 

- The network has two output neurons, because there are two target values 
(categories) associated with each input vector.

- Each output neuron represents a category.

- When an input vector of the appropriate category is applied to the 
network, the corresponding neuron should produce a 1, and the other 
neurons should output a 0.

To create the network, enter these commands:

hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);

Note  The choice of network architecture for pattern recognition problems 
follows similar guidelines to function fitting problems. More neurons require 
more computation, and they have a tendency to overfit the data when the 
number is set too high, but they allow the network to solve more complicated 



Recognizing Patterns

1-43

problems. More layers require more computation, but their use might result in 
the network solving complex problems more efficiently. To use more than one 
hidden layer, enter the hidden layer sizes as elements of an array in the 
patternnet command.

2 Set up the division of data.

net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

With these settings, the input vectors and target vectors will be randomly 
divided, with 70% used for training, 15% for validation and 15% for testing.

(See “Dividing the Data” on page 3-10 for more discussion of the data 
division process.)

3 Train the network. The pattern recognition network uses the default Scaled 
Conjugate Gradient (trainscg) algorithm for training. To train the network, 
enter this command:

[net,tr] = train(net,inputs,targets);

During training, as in function fitting, the training window opens. This 
window displays training progress. To interrupt training at any point, click 
Stop Training.



1 Getting Started

1-44

This training stopped when the validation error increased for six iterations, 
which occurred at iteration 24. 

4 Test the network. After the network has been trained, you can use it to 
compute the network outputs. The following code calculates the network 
outputs, errors and overall performance.



Recognizing Patterns

1-45

outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

It is also possible to calculate the network performance only on the test set, 
by using the testing indices, which are located in the training record.

tInd = tr.testInd;
tstOutputs = net(inputs(tInd));
tstPerform = perform(net,targets(tInd),tstOutputs)

5 View the network diagram.

view(net)

This creates the following diagram of the network.

6 Plot the training, validation and test performance.

figure, plotperform(tr)



1 Getting Started

1-46

7 Use the plotconfusion function to plot the confusion matrix. It shows the 
various types of errors that occurred for the final trained network.

figure, plotconfusion(targets,outputs)

The next figure shows the results.



Recognizing Patterns

1-47

The diagonal cells show the number of cases that were correctly classified, and 
the off-diagonal cells show the misclassified cases. The blue cell in the bottom 
right shows the total percent of correctly classified cases (in green) and the 
total percent of misclassified cases (in red). The results show very good 
recognition. If you needed even more accurate results, you could try any of the 
following approaches:

• Reset the initial network weights and biases to new values with init and 
train again.

• Increase the number of hidden neurons.

• Increase the number of training vectors.

• Increase the number of input values, if more relevant information is 
available.

• Try a different training algorithm (see “Training Algorithms” on page 3-15).

In this case, the network response is satisfactory, and you can now put the 
network to use on new inputs.



1 Getting Started

1-48

To get more experience in command-line operations, here are some tasks you 
can try: 

• During training, open a plot window (such as the confusion plot), and watch 
it animate.

• Plot from the command line with functions such as plotroc and 
plottrainstate. 

Also, see the advanced script for more options, when training from the 
command line.



Clustering Data

1-49

Clustering Data
Clustering data is another excellent application for neural networks. This 
process involves grouping data by similarity. For example, you might perform: 

• Market segmentation by grouping people according to their buying patterns

• Data mining by partitioning data into related subsets

• Bioinformatic analysis by grouping genes with related expression patterns

Suppose that you want to cluster flower types according to petal length, petal 
width, sepal length, and sepal width [MuAh94]. You have 150 example cases 
for which you have these four measurements.

As with function fitting and pattern recognition, there are two ways to solve 
this problem:

• Use the nctool GUI, as described in “Using the Neural Network Clustering 
Tool” on page 1-50.

• Use a command-line solution, as described in “Using Command-Line 
Functions” on page 1-60.

Defining a Problem
To define a clustering problem, simply arrange Q input vectors to be clustered 
as columns in an input matrix (see Chapter 2, “Data Structures,” for a detailed 
description of data formatting for static and time series data). For instance, you 
might want to cluster this set of 10 two-element vectors:

inputs = [7 0 6 2 6 5 6 1 0 1; 6 2 5 0 7 5 5 1 2 2]

The next section demonstrates how to train a network using the nctool GUI.



1 Getting Started

1-50

Using the Neural Network Clustering Tool

1 If needed, open the Neural Network Start GUI with this command:

nnstart

2 Click Clustering Tool to open the Neural Network Clustering Tool. (You 
can also use the command nctool.)



Clustering Data

1-51

3 Click Next. The Select Data window appears.



1 Getting Started

1-52

4 Click Load Example Data Set. The Clustering Data Set Chooser window 
appears. 

5 In this window, select Simple Clusters, and click Import. You return to the 
Select Data window. 

6 Click Next to continue to the Network Size window, shown in the following 
figure.

For clustering problems, the self-organizing feature map (SOM) is the most 
commonly used network, because after the network has been trained, there 
are many visualization tools that can be used to analyze the resulting 
clusters. This network has one layer, with neurons organized in a grid. (For 
more information on the SOM, see “Self-Organizing Feature Maps” on 
page 7-9 and Chapter 14 of [HDB96].) When creating the network, you 
specify the numbers of rows and columns in the grid. Here, the number of 
rows and columns is set to 10. The total number of neurons is 100. You can 
change this number in another run if you want.



Clustering Data

1-53



1 Getting Started

1-54

7 Click Next. The Train Network window appears.



Clustering Data

1-55

8 Click Train

The training runs for the maximum number of epochs, which is 200.

9 For SOM training, the weight vector associated with each neuron moves to 
become the center of a cluster of input vectors. In addition, neurons that are 
adjacent to each other in the topology should also move close to each other 
in the input space, therefore it is possible to visualize a high-dimensional 
inputs space in the two dimensions of the network topology. Investigate 
some of the visualization tools for the SOM. Under the Plots pane, click 
SOM Sample Hits.



1 Getting Started

1-56

The default topology of the SOM is hexagonal. This figure shows the neuron 
locations in the topology, and indicates how many of the training data are 
associated with each of the neurons (cluster centers). The topology is a 
10-by-10 grid, so there are 100 neurons. The maximum number of hits 
associated with any neuron is 22. Thus, there are 22 input vectors in that 
cluster.

10 You can also visualize the SOM by displaying weight planes (also referred 
to as component planes). Click SOM Weight Planes in the Neural Network 
Clustering Tool.



Clustering Data

1-57

This figure shows a weight plane for each element of the input vector (two, 
in this case). They are visualizations of the weights that connect each input 
to each of the neurons. (Darker colors represent larger weights.) If the 
connection patterns of two inputs were very similar, you can assume that 
the inputs are highly correlated. In this case, input 1 has connections that 
are very different than those of input 2.

11 In the Neural Network Clustering Tool, click Next to evaluate the network.



1 Getting Started

1-58

At this point you can test the network against new data. 

If you are dissatisfied with the network’s performance on the original or new 
data, you can increase the number of neurons, or perhaps get a larger 
training data set.

12 When you are satisfied with the network performance, click Next.



Clustering Data

1-59

13 Use the buttons on this screen to save your results.

- You can click Simple Script or Advanced Script to create MATLAB® 
code that can be used to reproduce all of the previous steps from the 
command line. Creating MATLAB® code can be helpful if you want to 
learn how to use the command-line functionality of the toolbox to 
customize the training process. In “Using Command-Line Functions” on 
page 1-60, you will investigate the generated scripts in more detail.

- You can also save the network as net in the workspace. You can perform 
additional tests on it or put it to work on new inputs.

14 When you have generated scripts and saved your results, click Finish.



1 Getting Started

1-60

Using Command-Line Functions
The easiest way to learn how to use the command-line functionality of the 
toolbox is to generate scripts from the GUIs, and then modify them to 
customize the network training. As an example, look at the simple script that 
was created in step 14 of the previous section.

% Solve a Clustering Problem with a Self-Organizing Map
% Script generated by NCTOOL
%
% This script assumes these variables are defined:
%
%   simpleclusterInputs - input data.

inputs = simpleclusterInputs;

% Create a Self-Organizing Map
dimension1 = 10;
dimension2 = 10;
net = selforgmap([dimension1 dimension2]);

% Train the Network
[net,tr] = train(net,inputs);

% Test the Network
outputs = net(inputs);

% View the Network
view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotsomtop(net)
%figure, plotsomnc(net)
%figure, plotsomnd(net)
%figure, plotsomplanes(net)
%figure, plotsomhits(net,inputs)
%figure, plotsompos(net,inputs)

You can save the script, and then run it from the command line to reproduce 
the results of the previous GUI session. You can also edit the script to 



Clustering Data

1-61

customize the training process. In this case, let’s follow each of the steps in the 
script.

0 The script assumes that the input vectors are already loaded into the 
workspace. To demonstrate the command-line operations, you can use a 
different data set than you used for the GUI operation. Use the flower data 
set as an example. The iris data set consists of 150 four-element input 
vectors.

load iris_dataset
inputs = irisInputs;

1 Create a network. For this example, you use a self-organizing map (SOM). 
This network has one layer, with the neurons organized in a grid. (For more 
information, see “Self-Organizing Feature Maps” on page 7-9 and Chapter 
14 of [HDB96].) When creating the network with selforgmap, you specify 
the number of rows and columns in the grid:

dimension1 = 10;
dimension2 = 10;
net = selforgmap([dimension1 dimension2]);

2 Train the network. The SOM network uses the default batch SOM algorithm 
for training.

[net,tr] = train(net,inputs);

3 During training, the training window opens and displays the training 
progress. To interrupt training at any point, click Stop Training.



1 Getting Started

1-62

4 Test the network. After the network has been trained, you can use it to 
compute the network outputs. 

outputs = net(inputs);

5 View the network diagram.

view(net)

This creates the following diagram of the network.



Clustering Data

1-63

6 For SOM training, the weight vector associated with each neuron moves to 
become the center of a cluster of input vectors. In addition, neurons that are 
adjacent to each other in the topology should also move close to each other 
in the input space, therefore it is possible to visualize a high-dimensional 
inputs space in the two dimensions of the network topology. The default 
SOM topology is hexagonal; to view it, enter the following commands.

figure, plotsomtop(net)

In this figure, each of the hexagons represents a neuron. The grid is 
10-by-10, so there are a total of 100 neurons in this network. There are four 
elements in each input vector, so the input space is four-dimensional. The 
weight vectors (cluster centers) fall within this space. 

Because this SOM has a two-dimensional topology, you can visualize in two 
dimensions the relationships among the four-dimensional cluster centers. 
One visualization tool for the SOM is the weight distance matrix (also called 
the U-matrix). 



1 Getting Started

1-64

7 To view the U-matrix, click SOM Neighbor Distances in the training 
window.

In this figure, the blue hexagons represent the neurons. The red lines 
connect neighboring neurons. The colors in the regions containing the red 
lines indicate the distances between neurons. The darker colors represent 
larger distances, and the lighter colors represent smaller distances. A band 
of dark segments crosses from the lower-center region to the upper-right 
region. The SOM network appears to have clustered the flowers into two 
distinct groups.



Clustering Data

1-65

To get more experience in command-line operations, try some of these tasks:

• During training, open a plot window (such as the SOM weight position plot) 
and watch it animate

• Plot from the command line with functions such as plotsomhits, plotsomnc, 
plotsomnd, plotsomplanes, plotsompos, and plotsomtop. (For more 
information on using these functions, see their reference pages.)

Also, see the advanced script for more options, when training from the 
command line.



1 Getting Started

1-66

Time Series Prediction
Dynamic neural networks, such as those described in Chapter 4, “Dynamic 
Networks,” are good at time series prediction. 

Suppose, for instance, that you have data from a pH neutralization process 
[McHs72]. You want to design a network that can predict the pH of a solution 
in a tank from past values of the pH and past values of the acid and base flow 
rate into the tank. You have a total of 2001 time steps for which you have those 
series.

You can solve this problem in two ways:

• Use a graphical user interface, ntstool, as described in “Using the Neural 
Network Time Series Tool” on page 1-67. 

• Use command-line functions, as described in “Using Command-Line 
Functions” on page 1-80. 

It is generally best to start with the GUI, and then to use the GUI to 
automatically generate command-line scripts. Before using either method, the 
first step is to define the problem by selecting a data set. Each GUI has access 
to many sample data sets that you can use to experiment with the toolbox. If 
you have a specific problem that you want to solve, you can load your own data 
into the workspace. The next section describes the data format.

Defining a Problem
To define a time series problem for the toolbox, arrange a set of TS input 
vectors as columns in a cell array. Then, arrange another set of TS target 
vectors (the correct output vectors for each of the input vectors) into a second 
cell array (see “Data Structures” on page 2-23 for a detailed description of data 
formatting for static and time series data). However, there are cases in which 
you only need to have a target data set. For example, you can define the 
following time series problem, in which you want to use previous values of a 
series to predict the next value:

targets = {1 2 3 4 5};

The next section demonstrates how to train a network to fit a time series data 
set, using the neural network time series tool GUI, ntstool. This example uses 
the pH neutralization data set provided with the toolbox.



Time Series Prediction

1-67

Using the Neural Network Time Series Tool

1 If needed, open the Neural Network Start GUI with this command:

nnstart

2 Click Time Series Tool to open the Neural Network Time Series Tool. (You 
can also use the command ntstool.) 



1 Getting Started

1-68

Notice that this opening pane is different than the opening panes for the 
other GUIs. This is because ntstool can be used to solve three different 
kinds of time series problems. 

• In the first type of time series problem, you would like to predict future 
values of a time series y(t) from past values of that time series and past 
values of a second time series x(t). This form of prediction is called 
nonlinear autoregressive with exogenous (external) input, or NARX (see 
“NARX Network (narxnet, closeloop)” on page 4-21), and can be written as 
follows:

This model could be used to predict future values of a stock or bond, based 
on such economic variables as unemployment rates, GDP, etc. It could also 
be used for system identification, in which models are developed to 
represent dynamic systems, such as chemical processes, manufacturing 
systems, robotics, aerospace vehicles, etc.

• In the second type of time series problem, there is only one series involved. 
The future values of a time series y(t) are predicted only from past values 
of that series. This form of prediction is called nonlinear autoregressive, or 
NAR, and can be written as follows:

This model could also be used to predict financial instruments, but without 
the use of a companion series.

• The third time series problem is similar to the first type, in that two series 
are involved, an input series x(t) and an output/target series y(t). Here you 
want to predict values of y(t) from previous values of x(t), but without 
knowledge of previous values of y(t). This input/output model can be 
written as follows:

The NARX model will provide better predictions than this input-output 
model, because it uses the additional information contained in the 
previous values of y(t). However, there may be some applications in which 
the previous values of y(t) would not be available. Those are the only cases 
where you would want to use the input-output model instead of the NARX 
model.

y t( ) f y t 1–( ) … y t d–( ) x t 1–( ) … x t d–( ), , , , ,( )=

y t( ) f y t 1–( ) … y t d–( ), ,( )=

y t( ) f x t 1–( ) … x t d–( ), ,( )=



Time Series Prediction

1-69

3 For this demonstration, select the NARX model and click Next to proceed.

4 Click Load Example Data Set in the Select Data window. The Time Series 
Data Set Chooser window opens.

Note  Use the Inputs and Targets options in the Select Data window when 
you need to load data from the MATLAB® workspace.



1 Getting Started

1-70

5 Select pH Neutralization Process, and click Import. This returns you to 
the Select Data window.



Time Series Prediction

1-71

6 Click Next to open the Validation and Test Data window, shown in the 
following figure.

The validation and test data sets are each set to 15% of the original data.

With these settings, the input vectors and target vectors will be randomly 
divided into three sets as follows:

- 70% will be used for training.

- 15% will be used to validate that the network is generalizing and to stop 
training before overfitting. 

- The last 15% will be used as a completely independent test of network 
generalization.



1 Getting Started

1-72

(See “Dividing the Data” on page 3-10 for more discussion of the data 
division process.)

7 Click Next.

The standard NARX network is a two-layer feedforward network, with a 
sigmoid transfer function in the hidden layer and a linear transfer function 
in the output layer. This network also uses tapped delay lines to store 
previous values of the x(t) and y(t) sequences. Note that the output of the 
NARX network, y(t), is fed back to the input of the network (through delays), 
since y(t) is a function of y(t-1), y(t-2), ..., y(t-d). However, for efficient 
training this feedback loop can be opened. 



Time Series Prediction

1-73

Because the true output is available during the training of the network, you 
can use the open-loop architecture shown above, in which the true output is 
used instead of feeding back the estimated output. This has two advantages. 
The first is that the input to the feedforward network is more accurate. The 
second is that the resulting network has a purely feedforward architecture, 
and therefore a more efficient algorithm can be used for training. This 
network is discussed in more detail in “NARX Network (narxnet, closeloop)” 
in Chapter 4. 

The default number of hidden neurons is set to 10. The default number of 
delays is 2. Change this value to 4. You might want to adjust these numbers 
if the network training performance is poor. 

8 Click Next.



1 Getting Started

1-74

9 Click Train.

The training continued until the validation error failed to decrease for six 
iterations (validation stop).



Time Series Prediction

1-75

10 Under Plots, click Error Autocorrelation. This is used to validate the 
network performance.

The following plot displays the error autocorrelation function. It describes 
how the prediction errors are related in time. For a perfect prediction model, 
there should only be one nonzero value of the autocorrelation function, and 
it should occur at zero lag. (This is the mean square error.) This would mean 
that the prediction errors were completely uncorrelated with each other 
(white noise). If there was significant correlation in the prediction errors, 
then it should be possible to improve the prediction - perhaps by increasing 
the number of delays in the tapped delay lines. In this case, the correlations, 
except for the one at zero lag, fall approximately within the 95% confidence 
limits around zero, so the model seems to be adequate. If even more accurate 
results were required, you could retrain the network by clicking Retrain in 
ntstool. This will change the initial weights and biases of the network, and 
may produce an improved network after retraining.

11 View the input-error cross-correlation function to obtain additional 
verification of network performance. Under the Plots pane, click 
Input-Error Cross-correlation.



1 Getting Started

1-76

This input-error cross-correlation function illustrates how the errors are 
correlated with the input sequence x(t). For a perfect prediction model, all of 
the correlations should be zero. If the input is correlated with the error, then 
it should be possible to improve the prediction, perhaps by increasing the 
number of delays in the tapped delay lines. In this case, all of the 
correlations fall within the confidence bounds around zero.

12 Under Plots, click Time Series Response. This displays the inputs, targets 
and errors versus time. It also indicates which time points were selected for 
training, testing and validation. 



Time Series Prediction

1-77

13 Click Next in the Neural Network Time Series Tool to evaluate the network.



1 Getting Started

1-78

At this point, you can test the network against new data. 

If you are dissatisfied with the network’s performance on the original or new 
data, you can do any of the following:

• Train it again.

• Increase the number of neurons and/or the number of delays.

• Get a larger training data set.

If the performance on the training set is good, but the test set performance 
is significantly worse, which could indicate overfitting, then reducing the 
number of neurons can improve your results.



Time Series Prediction

1-79

14 If you are satisfied with the network performance, click Next.

15 Use the buttons on this screen to generate scripts or to save your results.

• You can click Simple Script or Advanced Script to create MATLAB® 
code that can be used to reproduce all of the previous steps from the 
command line. Creating MATLAB® code can be helpful if you want to 
learn how to use the command-line functionality of the toolbox to 
customize the training process. In “Using Command-Line Functions” on 
page 1-80, you will investigate the generated scripts in more detail.

• You can also have the network saved as net in the workspace. You can 
perform additional tests on it or put it to work on new inputs.

16 After creating MATLAB® code and saving your results, click Finish.



1 Getting Started

1-80

Using Command-Line Functions
The easiest way to learn how to use the command-line functionality of the 
toolbox is to generate scripts from the GUIs, and then modify them to 
customize the network training. As an example, look at the simple script that 
was created at step 15 of the previous section.

% Solve an Autoregression Problem with External 
% Input with a NARX Neural Network
% Script generated by NTSTOOL
%
% This script assumes the variables on the right of 
% these equalities are defined:
%
%   phInputs - input time series.
%   phTargets - feedback time series.

inputSeries = phInputs;
targetSeries = phTargets;

% Create a Nonlinear Autoregressive Network with External Input
inputDelays = 1:4;
feedbackDelays = 1:4;
hiddenLayerSize = 10;
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize);

% Prepare the Data for Training and Simulation
% The function PREPARETS prepares time series data 
% for a particular network, shifting time by the minimum 
% amount to fill input states and layer states.
% Using PREPARETS allows you to keep your original 
% time series data unchanged, while easily customizing it 
% for networks with differing numbers of delays, with
% open loop or closed loop feedback modes.
[inputs,inputStates,layerStates,targets] = ...

preparets(net,inputSeries,{},targetSeries);

% Set up Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;



Time Series Prediction

1-81

% Train the Network
[net,tr] = train(net,inputs,targets,inputStates,layerStates);

% Test the Network
outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)

% View the Network
view(net)

% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, plotregression(targets,outputs)
%figure, plotresponse(targets,outputs)
%figure, ploterrcorr(errors)
%figure, plotinerrcorr(inputs,errors)

% Closed Loop Network
% Use this network to do multi-step prediction.
% The function CLOSELOOP replaces the feedback input with a direct
% connection from the outout layer.
netc = closeloop(net);
netc.name = [net.name ' - Closed Loop'];
view(netc)
[xc,xic,aic,tc] = preparets(netc,inputSeries,{},targetSeries);
yc = netc(xc,xic,aic);
closedLoopPerformance = perform(netc,tc,yc)

% Early Prediction Network
% For some applications it helps to get the prediction a 
% timestep early.
% The original network returns predicted y(t+1) at the same 
% time it is given y(t+1).
% For some applications such as decision making, it would 
% help to have predicted y(t+1) once y(t) is available, but 
% before the actual y(t+1) occurs.



1 Getting Started

1-82

% The network can be made to return its output a timestep early 
% by removing one delay so that its minimal tap delay is now 
% 0 instead of 1.  The new network returns the same outputs as 
% the original network, but outputs are shifted left one timestep.
nets = removedelay(net);
nets.name = [net.name ' - Predict One Step Ahead'];
view(nets)
[xs,xis,ais,ts] = preparets(nets,inputSeries,{},targetSeries);
ys = nets(xs,xis,ais);
earlyPredictPerformance = perform(nets,ts,ys)

You can save the script, and then run it from the command line to reproduce 
the results of the previous GUI session. You can also edit the script to 
customize the training process. In this case, follow each of the steps in the 
script.

0 The script assumes that the input vectors and target vectors are already 
loaded into the workspace. If the data are not loaded, you can load them as 
follows:

load pH_dataset
X = pHInputs;
T = pHTargets;

1 Create a network. The NARX network, narxnet, is a feedforward network 
with the default tan-sigmoid transfer function in the hidden layer and linear 
transfer function in the output layer. This network has two inputs. One is 
an external input, and the other is a feedback connection from the network 
output. (After the network has been trained, this feedback connection can be 
closed, as you will see at a later step.) For each of these inputs, there is a 
tapped delay line to store previous values. To assign the network 
architecture for a NARX network, you must select the delays associated with 
each tapped delay line, and also the number of hidden layer neurons. In the 
following steps, you assign the input delays and the feedback delays to range 
from 1 to 4 and the number of hidden neurons to be 10.

inputDelays = 1:4;
feedbackDelays = 1:4;
hiddenLayerSize = 10;
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize);



Time Series Prediction

1-83

Note  Increasing the number of neurons and the number of delays requires 
more computation, and this has a tendency to overfit the data when the 
numbers are set too high, but it allows the network to solve more complicated 
problems. More layers require more computation, but their use might result in 
the network solving complex problems more efficiently. To use more than one 
hidden layer, enter the hidden layer sizes as elements of an array in the 
fitnet command.

2 Prepare the data for training. When training a network containing tapped 
delay lines, it is necessary to fill the delays with initial values of the inputs 
and outputs of the network. There is a toolbox command that facilitates this 
process - preparets. This function has three input arguments: the network, 
the input sequence and the target sequence. The function returns the initial 
conditions that are needed to fill the tapped delay lines in the network, and 
modified input and target sequences, where the initial conditions have been 
removed. You can call the function as follows:

[inputs,inputStates,layerStates,targets] = ...
preparets(net,inputSeries,{},targetSeries);

3 Set up the division of data.

net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

With these settings, the input vectors and target vectors will be randomly 
divided, with 70% used for training, 15% for validation and 15% for testing.

4 Train the network. The network uses the default Levenberg-Marquardt 
algorithm (trainlm) for training. To train the network, enter:

[net,tr] = train(net,inputs,targets,inputStates,layerStates);

During training, the following training window opens. This window displays 
training progress and allows you to interrupt training at any point by 
clicking Stop Training.



1 Getting Started

1-84

This training stopped when the validation error increased for six iterations, 
which occurred at iteration 70. 

5 Test the network. After the network has been trained, you can use it to 
compute the network outputs. The following code calculates the network 
outputs, errors and overall performance. Note that to simulate a network 
with tapped delay lines, you need to assign the initial values for these 
delayed signals. This is done with the inputStates and layerStates 
provided by preparets at an earlier stage.



Time Series Prediction

1-85

outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,errors);
performance = perform(net,targets,outputs)

6 View the network diagram.

view(net)

This creates the following diagram of the network.

7 Plot the performance training record to check for potential overfitting.

figure, plotperform(tr)

This creates the following figure, which demonstrates that training, 
validation and testing errors all decreased until iteration 64. It does not 
appear that any overfitting has occurred, since neither testing or validation 
error increased before iteration 64.



1 Getting Started

1-86

8 Close the loop on the NARX network. When the feedback loop is open on the 
NARX network, it is performing a one-step-ahead prediction. It is predicting 
the next value of y(t) from previous values of y(t) and x(t). With the feedback 
loop closed, it can be used to perform multi-step-ahead predictions. This is 
because predictions of y(t) will be used in place of actual future values of y(t). 
The following commands can be used to close the loop and calculate closed 
loop performance

netc = closeloop(net);
netc.name = [net.name ' - Closed Loop'];
view(netc)
[xc,xic,aic,tc] = preparets(netc,inputSeries,{},targetSeries);
yc = netc(xc,xic,aic);
perfc = perform(netc,tc,yc)

The following figure shows the closed loop network.



Time Series Prediction

1-87

9 Remove a delay from the network, to get the prediction one time step early.

nets = removedelay(net);
nets.name = [net.name ' - Predict One Step Ahead'];
view(nets)
[xs,xis,ais,ts] = preparets(nets,inputSeries,{},targetSeries);
ys = nets(xs,xis,ais);
earlyPredictPerformance = perform(nets,ts,ys)

From this figure, you can see that the network is identical to the previous 
open-loop network, except that one delay has been removed from each of the 
tapped delay lines. The output of the network is then y(t+1) instead of y(t). 
This may sometimes be helpful when a network is deployed for certain 
applications.



1 Getting Started

1-88

If the network performance is not satisfactory, you could try any of these 
approaches:

• Reset the initial network weights and biases to new values with init and 
train again (see “Initializing Weights (init)” on page 3-13).

• Increase the number of hidden neurons or the number of delays.

• Increase the number of training vectors.

• Increase the number of input values, if more relevant information is 
available.

• Try a different training algorithm (see “Training Algorithms” on page 3-15).

To get more experience in command-line operations, try some of these tasks:

• During training, open a plot window (such as the error correlation plot), and 
watch it animate.

• Plot from the command line with functions such as plotresponse, 
ploterrcorr and plotperform. (For more information on using these 
functions, see their reference pages.)

Also, see the advanced script for more options, when training from the 
command line.



Sample Data Sets

1-89

Sample Data Sets
The Neural Network Toolbox™ software contains a number of sample data sets 
that you can use to experiment with the functionality of the toolbox. To view 
the data sets that are available, use the following command:

help nndatasets

  Neural Network Datasets
  -----------------------
 
  Function Fitting, Function approximation and Curve fitting.
 
  Function fitting is the process of training a neural network on a
  set of inputs in order to produce an associated set of target
outputs. Once the neural network has fit the data, it forms a
generalization of the input-output relationship and can be used 

  to generate outputs for inputs it was not trained on.

   simplefit_dataset     - Simple fitting dataset.
   abalone_dataset       - Abalone shell rings dataset.
   bodyfat_dataset       - Body fat percentage dataset.
   building_dataset      - Building energy dataset.
   chemical_dataset      - Chemical sensor dataset.
   cho_dataset           - Cholesterol dataset.
   engine_dataset        - Engine behavior dataset.
   house_dataset         - House value dataset
 
  ----------
 
  Pattern Recognition and Classification
 
  Pattern recognition is the process of training a neural network
to assign the correct target classes to a set of input patterns.
Once trained the network can be used to classify patterns it has

  not seen before.
 
   simpleclass_dataset   - Simple pattern recognition dataset.
   cancer_dataset        - Breast cancer dataset.
   crab_dataset          - Crab gender dataset.
   glass_dataset         - Glass chemical dataset.



1 Getting Started

1-90

   iris_dataset          - Iris flower dataset.
   thyroid_dataset       - Thyroid function dataset.
   wine_dataset          - Italian wines dataset.
 
  ----------
 
  Clustering, Feature extraction and Data dimension reduction
 
  Clustering is the process of training a neural network on
patterns so that the network comes up with its own

  classifications according to pattern similarity and relative
  topology.  This is useful for gaining insight into data, or 
  simplifying it before further processing.
 
   simplecluster_dataset - Simple clustering dataset.
  
  The inputs of fitting or pattern recognition datasets may also
clustered.

 
  ----------
 
  Input-Output Time-Series Prediction, Forecasting, Dynamic
modelling, Nonlinear autoregression, System identification

  and Filtering
 
  Input-output time series problems consist of predicting the 
next value of one time-series given another time-series.

  Past values of both series (for best accuracy), or only one
  of the series (for a simpler system) may be used to predict the
  target series.
 
   simpleseries_dataset  - Simple time-series prediction dataset.
   simplenarx_dataset    - Simple time-series prediction dataset.
   exchanger_dataset     - Heat exchanger dataset.
   maglev_dataset        - Magnetic levitation dataset.
   ph_dataset            - Solution PH dataset.
   pollution_dataset     - Pollution mortality dataset.
   valve_dataset         - Valve fluid flow dataset.
 
  ----------



Sample Data Sets

1-91

 
  Single Time-Series Prediction, Forecasting, Dynamic modelling,
  Nonlinear autoregression, System identification, and Filtering
 
  Single time-series prediction involves predicting the next value
  of a time-series given its past values.
 
   simplenar_dataset     - Simple single series prediction dataset.
   chickenpox_dataset    - Monthly chickenpox instances dataset.
   ice_dataset           - Gobal ice volume dataset.
   laser_dataset         - Chaotic far-infrared laser dataset.
   oil_dataset           - Monthly oil price dataset.
   river_dataset         - River flow dataset.
   solar_dataset         - Sunspot activity dataset
 
  See also nndemos, nntextdemos, nntextbook.

Notice that all of the data sets have file names of the form name_dataset. 
Inside these files will be the arrays nameInputs and nameTargets. You can load 
a data set into the workspace with a command such as

load simplefit_dataset

This will load simplefitInputs and simplefitTargets into the workspace. If 
you want to load the input and target arrays into different names, you can use 
a command such as

[x,t] = simplefit_datasets;

This will load the inputs and targets into the arrays x and t. You can get a 
description of a data set with a command such as

help maglev_dataset



1 Getting Started

1-92



 

2
Network Objects, Data and 
Training Styles

Introduction (p. 2-2)

Neuron Model (p. 2-4)

Network Architectures (p. 2-10)

Introduction to the Network Object (p. 2-16)

Configuration (p. 2-21)

Data Structures (p. 2-23)

Training Styles (p. 2-29)



2 Network Objects, Data and Training Styles

2-2

Introduction
The work flow for the neural network design process has six primary steps: 

0 collect data

1 create the network, 

2 configure the network, 

3 initialize the weights and biases, 

4 train the network, 

5 validate the network and 

6 use the network. 

This chapter discusses the basic ideas behind steps 1, 2, 4 and 6. The details of 
these steps will come in later chapters, as will discussions of steps 3 and 5, 
since the fine points are specific to the type of network that you are using. (Step 
0 generally occurs outside the framework of the Neural Network Toolbox™ 
software, but it will be discussed in Chapter 3, “Multilayer Networks and 
Backpropagation Training.”)

The Neural Network Toolbox™ software uses the network object to store all of 
the information that defines a neural network. This chapter describes the basic 
components of a neural network and shows how they are created and stored in 
the network object.

After a neural network has been created, it needs to be configured and then 
trained. Configuration involves arranging the network so that it is compatible 
with the problem you want to solve, as defined by sample data. After the 
network has been configured, the adjustable network parameters (called 
weights and biases) need to be tuned, so that the network performance is 
optimized. This tuning process is referred to as training the network. 
Configuration and training require that the network be provided with example 
data. This chapter shows how to format the data for presentation to the 
network. It also explains network configuration and the two forms of network 
training: incremental training and batch training.



Introduction

2-3

There are four different levels at which the Neural Network Toolbox software 
can be used. The first level is represented by the GUIs that are described in 
Chapter 1, “Getting Started”. These provide a quick way to access the power of 
the toolbox for many problems of function fitting, pattern recognition, 
clustering and time series analysis. 

The second level of toolbox use is through basic command-line operations. The 
command-line functions use simple argument lists with intelligent default 
settings for function parameters. (You can override all of the default settings, 
for increased functionality.) This chapter, and the ones that follow, concentrate 
on command-line operations.

The GUIs described in Chapter 1, “Getting Started” can automatically 
generate M-files with the command-line implementation of the GUI 
operations. This provides a nice introduction to the use of the command-line 
functionality. 

A third level of toolbox use is customization of the toolbox. This advanced 
capability allows you to create your own custom neural networks, while still 
having access to the full functionality of the toolbox. The fourth level of toolbox 
usage is the ability to modify any of the M-files contained in the toolbox. Every 
computational component is written in MATLAB® code and is fully accessible.

The first level of toolbox use (through the GUIs) was described in Chapter 1, 
“Getting Started,” which also introduced command-line operations. The next 
seven chapters will discuss the command-line operations in more detail. The 
customization of the toolbox is described in Chapter 9, “Advanced Topics”.



2 Network Objects, Data and Training Styles

2-4

Neuron Model

Simple Neuron
The fundamental building block for neural networks is the single-input 
neuron, such as the example that appears below.

There are three distinct functional operations that take place in this example 
neuron. First, the scalar input p is multiplied by the scalar weight w to form 
the product wp, again a scalar. Second, the weighted input wp is added to the 
scalar bias b to form the net input n. (In this case, you can view the bias as 
shifting the function f to the left by an amount b. The bias is much like a 
weight, except that it has a constant input of 1.) Finally, the net input is passed 
through the transfer function f, which produces the scalar output a. The names 
given to these three processes are: the weight function, the net input function 
and the transfer function.

For many types of neural networks, the weight function is a product of a weight 
times the input, but other weight functions (e.g., the distance between the 
weight and the input, |w-p|) are sometimes used. (See “Weight Functions” on 
page 12-23 for a list of weight functions.) The most common net input function 
is the summation of the weighted inputs with the bias, but other operations, 
such as multiplication, can be used. (See “Net Input Functions” on page 12-11 
for a list of net input functions.) Chapter 6, “Radial Basis Networks,” discusses 
how distance can be used as the weight function and multiplication can be used 
as the net input function. There are also many types of transfer functions. 
Examples of various transfer functions are in “Transfer Functions” on 
page 2-5. See also “Transfer Functions” on page 12-21.

a f b= ( + )wp

f�

Input Simple Neuron

n a

b
1

wp



Neuron Model

2-5

Note that w and b are both adjustable scalar parameters of the neuron. The 
central idea of neural networks is that such parameters can be adjusted so that 
the network exhibits some desired or interesting behavior. Thus, you can train 
the network to do a particular job by adjusting the weight or bias parameters.

All the neurons in the Neural Network Toolbox™ software have provision for 
a bias, and a bias is used in many of the examples and is assumed in most of 
this toolbox. However, you can omit a bias in a neuron if you want.

Transfer Functions 
Many transfer functions are included in the Neural Network Toolbox software. 
Two of the most commonly used functions are shown below.

The following figure illustrates the linear transfer function.

Neurons of this type are used in the final layer of multilayer networks that are 
used as function approximators. This is demonstrated in Chapter 3, 
“Multilayer Networks and Backpropagation Training.”

The sigmoid transfer function shown below takes the input, which can have 
any value between plus and minus infinity, and squashes the output into the 
range 0 to 1.

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a



2 Network Objects, Data and Training Styles

2-6

This transfer function is commonly used in the hidden layers of multilayer 
networks, in part because it is differentiable.

The symbol in the square to the right of each transfer function graph shown 
above represents the associated transfer function. These icons replace the 
general f in the network diagram blocks to show the particular transfer 
function being used.

For a complete listing of transfer functions and their icons, see “Transfer 
Functions” on page 12-21. You can also specify your own transfer functions.

You can experiment with a simple neuron and various transfer functions by 
running the demonstration program nnd2n1.

Neuron with Vector Input
The simple neuron can be extended to handle inputs that are vectors. A neuron 
with a single R-element input vector is shown below. Here the individual input 
elements

are multiplied by weights

and the weighted values are fed to the summing junction. Their sum is simply 
Wp, the dot product of the (single row) matrix W and the vector p. (There are 
other weight functions, in addition to the dot product, such as the distance 
between the row of the weight matrix and the input vector, as in Chapter 6, 
“Radial Basis Networks.”)

-1

n
0

+1

��
��

a 

Log-Sigmoid Transfer Function

a = logsig(n)

p1, p2,... pR

w1 1, , w1 2, , ... w1 R,



Neuron Model

2-7

The neuron has a bias b, which is summed with the weighted inputs to form 
the net input n. (In addition to the summation, other net input functions can 
be used, such as the multiplication that is used in Chapter 6, “Radial Basis 
Networks.”) The net input n is the argument of the transfer function f.

This expression can, of course, be written in MATLAB® code as

n = W*p + b

However, you will seldom be writing code at this level, for such code is already 
built into functions to define and simulate entire networks.

Abbreviated Notation
The figure of a single neuron shown above contains a lot of detail. When you 
consider networks with many neurons, and perhaps layers of many neurons, 
there is so much detail that the main thoughts tend to be lost. Thus, the 
authors have devised an abbreviated notation for an individual neuron. This 
notation, which is used later in circuits of multiple neurons, is shown here. 

Input

p
1

an
p

2p
3

p
R

w
1,

 
R

w
1,1

��
�� f

b

1

Where

R = number of    
elements in
input vector

Neuron w Vector Input 

��
��

a = f(Wp +b)

n w1 1, p1 w1 2, p2 ... w1 R, pR b+ + + +=



2 Network Objects, Data and Training Styles

2-8

Here the input vector p is represented by the solid dark vertical bar at the left. 
The dimensions of p are shown below the symbol p in the figure as Rx1. (Note 
that a capital letter, such as R in the previous sentence, is used when referring 
to the size of a vector.) Thus, p is a vector of R input elements. These inputs 
postmultiply the single-row, R-column matrix W. As before, a constant 1 enters 
the neuron as an input and is multiplied by a scalar bias b. The net input to the 
transfer function f is n, the sum of the bias b and the product Wp. This sum is 
passed to the transfer function f to get the neuron’s output a, which in this case 
is a scalar. Note that if there were more than one neuron, the network output 
would be a vector.

A layer of a network is defined in the previous figure. A layer includes the 
weights, the multiplication and summing operations (here realized as a vector 
product Wp), the bias b, and the transfer function f. The array of inputs, vector 
p, is not included in or called a layer. 

As with the “Simple Neuron” on page 2-4, there are three operations that take 
place in the layer: the weight function (matrix multiplication, or dot product, 
in this case), the net input function (summation, in this case) and the transfer 
function.

Each time this abbreviated network notation is used, the sizes of the matrices 
are shown just below their matrix variable names. This notation will allow you 
to understand the architectures and follow the matrix mathematics associated 
with them.

As discussed in “Transfer Functions” on page 2-5, when a specific transfer 
function is to be used in a figure, the symbol for that transfer function replaces 
the f shown above. Here are some examples.

p a

1

n��
��W

��b

R x 1
1 x R

1 x 1

1 x 1

1  x  1

Input

R 1
��
��
��

f

Where...

R = number of    
elements in
input vector

Neuron

a = f(Wp +b)



Neuron Model

2-9

You can experiment with a two-element neuron by running the demonstration 
program nnd2n2.

��
��
��

��
��
��

��
��
��

purelinhardlim logsig



2 Network Objects, Data and Training Styles

2-10

Network Architectures
Two or more of the neurons shown earlier can be combined in a layer, and a 
particular network could contain one or more such layers. First consider a 
single layer of neurons.

A Layer of Neurons
A one-layer network with R input elements and S neurons follows.

In this network, each element of the input vector p is connected to each neuron 
input through the weight matrix W. The ith neuron has a summer that gathers 
its weighted inputs and bias to form its own scalar output n(i). The various n(i) 
taken together form an S-element net input vector n. Finally, the neuron layer 
outputs form a column vector a. The expression for a is shown at the bottom of 
the figure.

Note that it is common for the number of inputs to a layer to be different from 
the number of neurons (i.e., R is not necessarily equal to S). A layer is not 
constrained to have the number of its inputs equal to the number of its 
neurons.

f

f

f

w1,1

wS R,

S

S

S

n1

p1

p2

p3

pR

n2

nS

b1

b2

bS

a1

a2

aS

1

1

1

Inputs Layer of Neurons

a = f(Wp + b)

Where

= number of
elements in
input vector

= number of

neurons in layer

R

S



Network Architectures

2-11

You can create a single (composite) layer of neurons having different transfer 
functions simply by putting two of the networks shown earlier in parallel. Both 
networks would have the same inputs, and each network would create some of 
the outputs.

The input vector elements enter the network through the weight matrix W.

Note that the row indices on the elements of matrix W indicate the destination 
neuron of the weight, and the column indices indicate which source is the input 
for that weight. Thus, the indices in w1,2 say that the strength of the signal 
from the second input element to the first (and only) neuron is w1,2. 

The S neuron R input one-layer network also can be drawn in abbreviated 
notation.

Here p is an R length input vector, W is an SxR matrix, and a and b are S 
length vectors. As defined previously, the neuron layer includes the weight 
matrix, the multiplication operations, the bias vector b, the summer, and the 
transfer function blocks.

Inputs and Layers
To describe networks having multiple layers, the notation must be extended. 
Specifically, it needs to make a distinction between weight matrices that are 

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=

a= f (Wp + b)

p a

1

n���W

���
���b

R x 1
S x R

S x 1

S  x  1

Input Layer of Neurons

R S��
��
��f

S x 1

R = number of 
elements in
input vector 

Where...

 
 

S = number of 
neurons in layer 1
     



2 Network Objects, Data and Training Styles

2-12

connected to inputs and weight matrices that are connected between layers. It 
also needs to identify the source and destination for the weight matrices.

We will call weight matrices connected to inputs input weights; we will call 
weight matrices connected to layer outputs layer weights. Further, 
superscripts are used to identify the source (second index) and the destination 
(first index) for the various weights and other elements of the network. To 
illustrate, the one-layer multiple input network shown earlier is redrawn in 
abbreviated form below. 

As you can see, the weight matrix connected to the input vector p is labeled as 
an input weight matrix (IW1,1) having a source 1 (second index) and a 
destination 1 (first index). Elements of layer 1, such as its bias, net input, and 
output have a superscript 1 to say that they are associated with the first layer.

“Multiple Layers of Neurons” uses layer weight (LW) matrices as well as input 
weight (IW) matrices.

Multiple Layers of Neurons
A network can have several layers. Each layer has a weight matrix W, a bias 
vector b, and an output vector a. To distinguish between the weight matrices, 
output vectors, etc., for each of these layers in the figures, the number of the 
layer is appended as a superscript to the variable of interest. You can see the 
use of this layer notation in the three-layer network shown below, and in the 
equations at the bottom of the figure. 

p a1

1

n1
S 1 x R 

S 1 x 1

S 1  x 1

S 1 x  1

Input 

��
��

IW1,1

��b1

Layer 1

S1
��
��
��

f1

R

a1 = f1(IW1,1p +b1)

S 1 x 1

R  x 1
R = number of 
elements in
input vector 

S = number of 
neurons in Layer 1
     

Where...



Network Architectures

2-13

The network shown above has R1 inputs, S1 neurons in the first layer, S2 

neurons in the second layer, etc. It is common for different layers to have 
different numbers of neurons. A constant input 1 is fed to the bias for each 
neuron.

Note that the outputs of each intermediate layer are the inputs to the following 
layer. Thus layer 2 can be analyzed as a one-layer network with S1 inputs, S2 
neurons, and an S2xS1 weight matrix W2. The input to layer 2 is a1; the output 
is a2. Now that all the vectors and matrices of layer 2 have been identified, it 
can be treated as a single-layer network on its own. This approach can be taken 
with any layer of the network.

The layers of a multilayer network play different roles. A layer that produces 
the network output is called an output layer. All other layers are called hidden 
layers. The three-layer network shown earlier has one output layer (layer 3) 
and two hidden layers (layer 1 and layer 2). Some authors refer to the inputs 
as a fourth layer. This toolbox does not use that designation.

The architecture of a multilayer network with a single input vector can be 
specified with the notation R-S1-S2-...-SM, where the number of elements of the 
input vector and the number of neurons in each layer are specified.

iw
1,1

1,1 lw
2,1

1,1 lw
,

1,1

3 2

iw
1,1

1S R, lw
2,1

2 1SS , lw
3,2

S S3 2,

S S S

S S S

S S S

n 1

1
n 1

2
n 1

3

p1

p2

p3

pR

n 2

1
n 2

2
n 2

3

n
1

S1 n
2

S2 n
3

S3

b 1

1
b 1

2
b 1

3

b 2

1
b 2

2
b 2

3

b
1

S1 b
2

S2 b
3

S3

a 1

1
a 1

2
a 1

3

a 2

1
a 2

2
a 2

3

a
1

S1 a
2

S2 a
3

S3

1 1 1

1 1 1

1 1 1

Inputs Layer 1 Layer 2 Layer 3

f
2

f
2

f
2

f
3

f
3

f
3

f
1

f
1

f
1

a IW p b
1 1,1 1
= ( + )f

1
a LW a b

2 2,1 1 2
= ( + )f

2
a LW a b

3 3,2 2 3
= ( + )f

3

a LW LW IW p b b b
3 3,2 2,1 1,1 1 2 3
= ( ( ( + )+ )+ )f f f

3 2 1



2 Network Objects, Data and Training Styles

2-14

The same three-layer network can also be drawn using abbreviated notation.

Multiple-layer networks are quite powerful. For instance, a network of two 
layers, where the first layer is sigmoid and the second layer is linear, can be 
trained to approximate any function (with a finite number of discontinuities) 
arbitrarily well. This kind of two-layer network is used extensively in Chapter 
3, “Multilayer Networks and Backpropagation Training.”

Here it is assumed that the output of the third layer, a3, is the network output 
of interest, and this output is labeled as y. This notation is used to specify the 
output of multilayer networks.

Input and Output Processing Functions
Network inputs might have associated processing functions. Processing 
functions transform user input data to a form that is easier or more efficient for 
a network.

For instance, mapminmax transforms input data so that all values fall into the 
interval [-1, 1]. This can speed up learning for many networks. 
removeconstantrows removes the rows of the input vector that correspond to 
input elements that always have the same value, because these input elements 
are not providing any useful information to the network. The third common 
processing function is fixunknowns, which recodes unknown data (represented 
in the user’s data with NaN values) into a numerical form for the network. 
fixunknowns preserves information about which values are known and which 
are unknown.

p a1 a2

1 1

n1 n2

a3 = y

n3

1

S 2 x S 1

S 2 x 1

S 2 x 1

 S 2 x 1
S 3x S 2

S 3 x 1

S 3 x 1

S 3 x 1 R x 1

S 1 x R 

 S 1 x 1

 S 1 x 1

S 1 x 1

Input 

��
��

IW1,1

��b1 ��b2 ���b3

��
��

LW2,1

���
���

LW3,2

R S3S1 S2
�
�
�

f2

��
��
��

f3

Layer 1 Layer 2 Layer 3

a1 = f1 (IW1,1p +b1) a2 = f2 (LW2,1 a1 +b2) a3 =f3 (LW3,2a2 +b3)

a3 =f3 (LW3,2 f2 (LW2,1f1 (IW1,1p +b1)+ b2)+ b3   =  y

��
��
��

f1



Network Architectures

2-15

Similarly, network outputs can also have associated processing functions. 
Output processing functions are used to transform user-provided target vectors 
for network use. Then, network outputs are reverse-processed using the same 
functions to produce output data with the same characteristics as the original 
user-provided targets.

Both mapminmax and removeconstantrows are often associated with network 
outputs. However, fixunknowns is not. Unknown values in targets 
(represented by NaN values) do not need to be altered for network use.

Processing functions are described in more detail in “Preprocessing and 
Postprocessing” in Chapter 3.



2 Network Objects, Data and Training Styles

2-16

Introduction to the Network Object
The easiest way to create a neural network is to use one of the network creation 
functions (see “New Networks Functions” on page 12-14 for a full list of these 
functions). To investigate how this is done, you can create a simple, two-layer 
feedforward network, using the command feedforwardnet:

net = feedforwardnet

This command will display the following

net =

Neural Network

              name: 'Feed-Forward Neural Network'
    efficiencyMode: 'speed'
 efficiencyOptions: .cacheDelayedInputs, .flattenTime,
                    .memoryReduction
          userdata: (your custom info)

    dimensions:

         numInputs: 1
         numLayers: 2
        numOutputs: 1
    numInputDelays: 0
    numLayerDelays: 0
 numFeedbackDelays: 0
 numWeightElements: 20
        sampleTime: 1

    connections:

       biasConnect: [1; 1]
      inputConnect: [1; 0]
      layerConnect: [0 0; 1 0]
     outputConnect: [0 1]

    subobjects:



Introduction to the Network Object

2-17

            inputs: 1x1 cell array of 1 nnInput
            layers: 2x1 cell array of 2 nnLayers
           outputs: 1x2 cell array of 1 nnOutput
            biases: 2x1 cell array of 2 nnBiass
      inputWeights: 2x1 cell array of 1 nnWeight
      layerWeights: 2x2 cell array of 1 nnWeight

    functions:

          adaptFcn: 'adaptwb'
        adaptParam: (none)
          derivFcn: 'defaultderiv'
         divideFcn: 'dividerand'
       divideParam: .trainRatio, .valRatio, .testRatio
        divideMode: 'sample'
           initFcn: 'initlay'
        performFcn: 'mse'
      performParam: .regularization, .normalization
          plotFcns: {'plotperform', plottrainstate, ploterrhist,
                    plotregression}
         plotParam: 2x2 cell array of 1 nnParam
          trainFcn: 'trainlm'
        trainParam: .showWindow, .showCommandLine, .show, .epochs,
                    .time, .goal, .min_grad, .max_fail, .mu, .mu_dec,
                    .mu_inc, .mu_max

    weight and bias values:

                IW: {2x1 cell} containing 1 input weight matrix
                LW: {2x2 cell} containing 1 layer weight matrix
                 b: {2x1 cell} containing 2 bias vectors

    methods:

             adapt: Learn while in continuous use
         configure: Configure inputs & outputs
            gensim: Generate Simulink model
              init: Initialize weights & biases
           perform: Calculate performance
               sim: Evaluate network outputs given inputs



2 Network Objects, Data and Training Styles

2-18

             train: Train network with examples
              view: View diagram
       unconfigure: Unconfigure inputs & outputs

    evaluate:       outputs = net(inputs)

This display is an overview of the network object, which is used to store all of 
the information that defines a neural network. There is a lot of detail here, but 
there are a few key sections that can help you to see how the network object is 
organized. 

The dimensions section stores the overall structure of the network. Here you 
can see that there is one input to the network (although the one input can be a 
vector containing many elements), one network output and two layers. 

The connections section stores the connections between components of the 
network. For example, here there is a bias connected to each layer, the input is 
connected to layer 1, and the output comes from layer 2. You can also see that 
layer 1 is connected to layer 2. (The rows of net.layerConnect represent the 
destination layer, and the columns represent the source layer. A one in this 
matrix indicates a connection, and a zero indicates a lack of connection. For 
this example, there is a single one in the 2,1 element of the matrix.)

The key subobjects of the network object are inputs, layers, outputs, biases, 
inputWeights and layerWeights. View the layers subobject for the first layer 
with the command

net.layers{1}

This will display

Neural Network Layer

              name: 'Hidden'
        dimensions: 20
       distanceFcn: (none)
     distanceParam: (none)
         distances: []
           initFcn: 'initnw'
       netInputFcn: 'netsum'
     netInputParam: (none)
         positions: []
             range: [20x2 double]



Introduction to the Network Object

2-19

              size: 20
       topologyFcn: (none)
       transferFcn: 'tansig'
     transferParam: (none)
          userdata: (your custom info)

The number of neurons in this layer is 20, which is the default size for the 
feedforwardnet command. The net input function is netsum (summation) and 
the transfer function is the tansig. If you wanted to change the transfer 
function to logsig, for example, you could execute the command

net.layers{1}.transferFcn = `logsig';

To view the layerWeights subobject for the weight between layer 1 and layer 
2, use the command

net.layerWeights{2,1}

This produces the following response.

Neural Network Weight

            delays: 0
           initFcn: 'initzero'
        initConfig: .inputSize
             learn: true
          learnFcn: 'learngdm'
        learnParam: .lr, .mc
              size: [0 20]
         weightFcn: 'dotprod'
       weightParam: (none)
          userdata: (your custom info)

The weight function is dotprod, which represents standard matrix 
multiplication (dot product). Note that the size of this layer weight is 0 by 20. 
The reason that we have zero rows is because the network has not yet been 
configured for a particular data set. The number of output neurons is 
determined by the number of elements in your target vector. During the 
configuration process, you will provide the network with example inputs and 
targets, and then the number of output neurons can be assigned. 

This gives you some idea of how the network object is organized. For many 
applications, you will not need to be concerned about making changes directly 



2 Network Objects, Data and Training Styles

2-20

to the network object, since that is taken care of by the network creation 
functions (see “New Networks Functions” on page 12-14). It is usually only 
when you want to override the system defaults that it is necessary to access the 
network object directly. Later chapters will demonstrate how this is done for 
particular networks and training methods.

If you would like to investigate the network object in more detail, you will find 
that the object listings, such as the one shown above, contains links to help files 
on each subobject. Just click on the links, and you can selectively investigate 
those parts of the object that are of interest to you.



Configuration

2-21

Configuration
After a neural network has been created, it must be configured. The 
configuration step consists of examining input and target data, setting the 
network’s input and output sizes to match the data, and choosing settings for 
processing inputs and outputs that will enable best network performance. The 
configuration step is normally done automatically, when the training function 
is called. However, it can be done manually, by using the configuration 
function. For example, to configure the network you created previously to 
approximate a sine function, issue the following commands.

p = -2:.1:2;
t = sin(pi*p/2);
net1 = configure(net,p,t);

You have provided the network with an example set of inputs and targets 
(desired network outputs). With this information, the configure function can 
set the network input and output sizes to match the data.

After the configuration, if you look again at the weight between layer 1 and 
layer 2, you can see that the dimension of the weight is 1 by 20. This is because 
the target for this network is a scalar.

net1.layerWeights{2,1}

    Neural Network Weight

            delays: 0
           initFcn: 'initzero'
        initConfig: .inputSize
             learn: true
          learnFcn: 'learngdm'
        learnParam: .lr, .mc
              size: [1 20]
         weightFcn: 'dotprod'
       weightParam: (none)
          userdata: (your custom info)

In addition to setting the appropriate dimensions for the weights, the 
configuration step also defines the settings for the processing of inputs and 
outputs. The input processing can be located in the inputs subobject:

net1.inputs{1}



2 Network Objects, Data and Training Styles

2-22

    Neural Network Input

              name: 'Input'
       processFcns: {'removeconstantrows','mapminmax'}
      processParam: {1x3} containing 2 nnParam

processSettings: {1x3} containing 3 nnSetting
    processedRange: [1x2 double]
     processedSize: 1
             range: [1x2 double]
              size: 1
          userdata: (your custom info)

Before the input is applied to the network, it will be processed by two functions: 
removeconstantrows and mapminmax. These are discussed fully in Chapter 3, 
“Multilayer Networks and Backpropagation Training,” so we won’t address the 
particulars here. These processing functions may have some processing 
parameters, which are contained in the subobject 
net1.inputs{1}.processParam. These have default values that you can 
override. The processing functions can also have configuration settings that are 
dependent on the sample data. These are contained in 
net1.inputs{1}.processSettings and are set during the configuration 
process. For example, the mapminmax processing function normalizes the data 
so that all inputs fall in the range [-1,1]. Its configuration settings include the 
minimum and maximum values in the sample data, which it needs to perform 
the correct normalization. This will be discussed in much more depth in 
Chapter 3, “Multilayer Networks and Backpropagation Training.”

As a general rule, we use the term “parameter,” as in process parameters, 
training parameters, etc., to denote constants that have default values that are 
assigned by the software when the network is created (and which you can 
override). We use the term “configuration setting,” as in process configuration 
setting, to denote constants that are assigned by the software from an analysis 
of sample data. These settings do not have default values, and should not 
generally be overridden.



Data Structures

2-23

Data Structures
This section discusses how the format of input data structures affects the 
simulation of networks. It starts with static networks, and then continues with 
dynamic networks. The following section describes how the format of the data 
structures affects network training.

There are two basic types of input vectors: those that occur concurrently (at the 
same time, or in no particular time sequence), and those that occur sequentially 
in time. For concurrent vectors, the order is not important, and if there were a 
number of networks running in parallel, you could present one input vector to 
each of the networks. For sequential vectors, the order in which the vectors 
appear is important. 

Simulation with Concurrent Inputs in a Static 
Network
The simplest situation for simulating a network occurs when the network to be 
simulated is static (has no feedback or delays). In this case, you need not be 
concerned about whether or not the input vectors occur in a particular time 
sequence, so you can treat the inputs as concurrent. In addition, the problem is 
made even simpler by assuming that the network has only one input vector. 
Use the following network as an example.

To set up this linear feedforward network, use the following commands:

net = linearlayer;
net.inputs{1}.size = 2;
net.layers{1}.dimensions = 1;

p
1 an

Inputs

bp
2 w

1,2

w
1,1

1
a = purelin (Wp + b)

Linear Neuron

��
��

��
��



2 Network Objects, Data and Training Styles

2-24

For simplicity, assign the weight matrix and bias to be

and 

The commands for these assignments are

net.IW{1,1} = [1 2];
net.b{1} = 0;

Suppose that the network simulation data set consists of Q = 4 concurrent 
vectors:

Concurrent vectors are presented to the network as a single matrix:

P = [1 2 2 3; 2 1 3 1];

You can now simulate the network:

A = net(P)
A =
     5     4     8     5

A single matrix of concurrent vectors is presented to the network, and the 
network produces a single matrix of concurrent vectors as output. The result 
would be the same if there were four networks operating in parallel and each 
network received one of the input vectors and produced one of the outputs. The 
ordering of the input vectors is not important, because they do not interact with 
each other.

Simulation with Sequential Inputs in a Dynamic 
Network
When a network contains delays, the input to the network would normally be 
a sequence of input vectors that occur in a certain time order. To illustrate this 
case, the next figure shows a simple network that contains one delay.

W 1 2= b 0=

p1
1
2

= , p2
2
1

= , p3
2
3

= , p4
3
1

=



Data Structures

2-25

The following commands create this network:

net = linearlayer([0 1]);
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.biasConnect = 0;

Assign the weight matrix to be

The command is

net.IW{1,1} = [1 2];

Suppose that the input sequence is

Sequential inputs are presented to the network as elements of a cell array:

P = {1 2 3 4};

You can now simulate the network:

A = net(P)
A = 
    [1]    [4]    [7]    [10]

a(t)n(t)

Inputs

w
1,1

�
�D w

1,2

Linear Neuron

��

p(t)

a(t) = w
1,1 

p(t) + w
1,2 

p(t - 1)

�

W 1 2=

p1 1= , p2 2= , p3 3= , p4 4=



2 Network Objects, Data and Training Styles

2-26

You input a cell array containing a sequence of inputs, and the network 
produces a cell array containing a sequence of outputs. The order of the inputs 
is important when they are presented as a sequence. In this case, the current 
output is obtained by multiplying the current input by 1 and the preceding 
input by 2 and summing the result. If you were to change the order of the 
inputs, the numbers obtained in the output would change.

Simulation with Concurrent Inputs in a Dynamic 
Network
If you were to apply the same inputs as a set of concurrent inputs instead of a 
sequence of inputs, you would obtain a completely different response. 
(However, it is not clear why you would want to do this with a dynamic 
network.) It would be as if each input were applied concurrently to a separate 
parallel network. For the previous example, “Simulation with Sequential 
Inputs in a Dynamic Network” on page 2-24, if you use a concurrent set of 
inputs you have

which can be created with the following code:

P = [1 2 3 4];

When you simulate with concurrent inputs, you obtain

A = net(P)
A =
     1     2     3     4

The result is the same as if you had concurrently applied each one of the inputs 
to a separate network and computed one output. Note that because you did not 
assign any initial conditions to the network delays, they were assumed to be 0. 
For this case the output is simply 1 times the input, because the weight that 
multiplies the current input is 1.

In certain special cases, you might want to simulate the network response to 
several different sequences at the same time. In this case, you would want to 
present the network with a concurrent set of sequences. For example, suppose 
you wanted to present the following two sequences to the network:

p1 1= , p2 2= , p3 3= , p4 4=



Data Structures

2-27

The input P should be a cell array, where each element of the array contains 
the two elements of the two sequences that occur at the same time:

P = {[1 4] [2 3] [3 2] [4 1]};

You can now simulate the network:

A = net(P);

The resulting network output would be

A = {[1 4] [4 11] [7 8] [10 5]}

As you can see, the first column of each matrix makes up the output sequence 
produced by the first input sequence, which was the one used in an earlier 
example. The second column of each matrix makes up the output sequence 
produced by the second input sequence. There is no interaction between the 
two concurrent sequences. It is as if they were each applied to separate 
networks running in parallel.

The following diagram shows the general format for the network input P when 
there are Q concurrent sequences of TS time steps. It covers all cases where 
there is a single input vector. Each element of the cell array is a matrix of 
concurrent vectors that correspond to the same point in time for each sequence. 
If there are multiple input vectors, there will be multiple rows of matrices in 
the cell array.

In this section, you apply sequential and concurrent inputs to dynamic 
networks. In “Simulation with Concurrent Inputs in a Static Network” on 
page 2-23, you applied concurrent inputs to static networks. It is also possible 

p1 1( ) 1 ,= p1 2( ) 2 ,= p1 3( ) 3 ,= p1 4( ) 4=

p2 1( ) 4 ,= p2 2( ) 3 ,= p2 3( ) 2 ,= p2 4( ) 1=

p1 1( ) p2 1( ) … pQ 1( ), , ,[ ] p1 2( ) p2 2( ) … pQ 2( ), , ,[ ]· … p1 TS( ) p2 TS( ) … pQ TS( ), , ,[ ], , ,{ }

First Sequence

Qth Sequence



2 Network Objects, Data and Training Styles

2-28

to apply sequential inputs to static networks. It does not change the simulated 
response of the network, but it can affect the way in which the network is 
trained. This will become clear in “Training Styles” on page 2-29.



Training Styles

2-29

Training Styles
This section describes two different styles of training. In incremental training 
the weights and biases of the network are updated each time an input is 
presented to the network. In batch training the weights and biases are only 
updated after all the inputs are presented. The batch training methods are 
generally more efficient in the MATLAB® environment, and they are 
emphasized in the Neural Network Toolbox™ software, but there some 
applications where incremental training can be useful, so that paradigm is 
implemented as well.

Incremental Training with adapt
Incremental training can be applied to both static and dynamic networks, 
although it is more commonly used with dynamic networks, such as adaptive 
filters. This section demonstrates how incremental training is performed on 
both static and dynamic networks.

Incremental Training of Static Networks
Consider again the static network used for the first example. You want to train 
it incrementally, so that the weights and biases are updated after each input is 
presented. In this case you use the function adapt, and the inputs and targets 
are presented as sequences.

Suppose you want to train the network to create the linear function:

Then for the previous inputs,

the targets would be

For incremental training, you present the inputs and targets as sequences:

P = {[1;2] [2;1] [2;3] [3;1]};
T = {4 5 7 7};

t 2p1 p2+=

p1
1
2

= , p2
2
1

= , p3
2
3

= , p4
3
1

=

t1 4= , t2 5= , t3 7= , t4 7=



2 Network Objects, Data and Training Styles

2-30

First, set up the network with zero initial weights and biases. Also, set the 
initial learning rate to zero to show the effect of incremental training.

net = linearlayer(0,0);
net = configure(net,P,T);
net.IW{1,1} = [0 0];
net.b{1} = 0;

Recall from “Simulation with Concurrent Inputs in a Static Network” on 
page 2-23 that, for a static network, the simulation of the network produces the 
same outputs whether the inputs are presented as a matrix of concurrent 
vectors or as a cell array of sequential vectors. However, this is not true when 
training the network. When you use the adapt function, if the inputs are 
presented as a cell array of sequential vectors, then the weights are updated as 
each input is presented (incremental mode). As shown in the next section, if the 
inputs are presented as a matrix of concurrent vectors, then the weights are 
updated only after all inputs are presented (batch mode).

You are now ready to train the network incrementally.

[net,a,e,pf] = adapt(net,P,T);

The network outputs remain zero, because the learning rate is zero, and the 
weights are not updated. The errors are equal to the targets:

a = [0]    [0]    [0]    [0]
e = [4]    [5]    [7]    [7]

If you now set the learning rate to 0.1 you can see how the network is adjusted 
as each input is presented:

net.inputWeights{1,1}.learnParam.lr = 0.1;
net.biases{1,1}.learnParam.lr = 0.1;
[net,a,e,pf] = adapt(net,P,T);
a = [0]    [2]    [6]    [5.8]
e = [4]    [3]    [1]    [1.2]

The first output is the same as it was with zero learning rate, because no 
update is made until the first input is presented. The second output is different, 
because the weights have been updated. The weights continue to be modified 
as each error is computed. If the network is capable and the learning rate is set 
correctly, the error is eventually driven to zero.



Training Styles

2-31

Incremental Training with Dynamic Networks
You can also train dynamic networks incrementally. In fact, this would be the 
most common situation. 

To train the network incrementally, present the inputs and targets as elements 
of cell arrays. Here are the initial input Pi and the inputs P and targets T as 
elements of cell arrays. 

Pi = {1};
P = {2 3 4};
T = {3 5 7};

Take the linear network with one delay at the input, as used in a previous 
example. Initialize the weights to zero and set the learning rate to 0.1.

net = linearlayer([0 1],0.1);
net = configure(net,P,T);
net.IW{1,1} = [0 0];
net.biasConnect = 0;

You want to train the network to create the current output by summing the 
current and the previous inputs. This is the same input sequence you used in 
the previous example with the exception that you assign the first term in the 
sequence as the initial condition for the delay. You can now sequentially train 
the network using adapt.

[net,a,e,pf] = adapt(net,P,T,Pi);
a = [0] [2.4] [7.98]
e = [3] [2.6] [-0.98]

The first output is zero, because the weights have not yet been updated. The 
weights change at each subsequent time step.

Batch Training
Batch training, in which weights and biases are only updated after all the 
inputs and targets are presented, can be applied to both static and dynamic 
networks. Both types of networks are discussed in this section.

Batch Training with Static Networks
Batch training can be done using either adapt or train, although train is 
generally the best option, because it typically has access to more efficient 



2 Network Objects, Data and Training Styles

2-32

training algorithms. Incremental training is usually done with adapt; batch 
training is usually done with train.

For batch training of a static network with adapt, the input vectors must be 
placed in one matrix of concurrent vectors.

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

Begin with the static network used in previous examples. The learning rate is 
set to 0.01.

net = linearlayer(0,0.01);
net = configure(net,P,T);
net.IW{1,1} = [0 0];
net.b{1} = 0;

When you call adapt, it invokes trains (the default adaptation function for the 
linear network) and learnwh (the default learning function for the weights and 
biases). trains uses Widrow-Hoff learning.

[net,a,e,pf] = adapt(net,P,T);
a = 0 0 0 0
e = 4 5 7 7

Note that the outputs of the network are all zero, because the weights are not 
updated until all the training set has been presented. If you display the 
weights, you find

net.IW{1,1}
ans = 0.4900 0.4100

net.b{1}
ans =

    0.2300

This is different from the result after one pass of adapt with incremental 
updating.

Now perform the same batch training using train. Because the Widrow-Hoff 
rule can be used in incremental or batch mode, it can be invoked by adapt or 
train. (There are several algorithms that can only be used in batch mode (e.g., 
Levenberg-Marquardt), so these algorithms can only be invoked by train.)

For this case, the input vectors can be in a matrix of concurrent vectors or in a 
cell array of sequential vectors. Because the network is static and because 



Training Styles

2-33

train always operates in batch mode, train converts any cell array of 
sequential vectors to a matrix of concurrent vectors. Concurrent mode 
operation is used whenever possible because it has a more efficient 
implementation in MATLAB® code:

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

The network is set up in the same way.

net = linearlayer(0,0.01);
net = configure(net,P,T);
net.IW{1,1} = [0 0];
net.b{1} = 0;

Now you are ready to train the network. Train it for only one epoch, because 
you used only one pass of adapt. The default training function for the linear 
network is trainb, and the default learning function for the weights and biases 
is learnwh, so you should get the same results obtained using adapt in the 
previous example, where the default adaptation function was trains.

net.trainParam.epochs = 1;
net = train(net,P,T);

If you display the weights after one epoch of training, you find

net.IW{1,1}
ans = 0.4900 0.4100

net.b{1}
ans =

    0.2300

This is the same result as the batch mode training in adapt. With static 
networks, the adapt function can implement incremental or batch training, 
depending on the format of the input data. If the data is presented as a matrix 
of concurrent vectors, batch training occurs. If the data is presented as a 
sequence, incremental training occurs. This is not true for train, which always 
performs batch training, regardless of the format of the input.

Batch Training with Dynamic Networks
Training static networks is relatively straightforward. If you use train the 
network is trained in batch mode and the inputs are converted to concurrent 
vectors (columns of a matrix), even if they are originally passed as a sequence 



2 Network Objects, Data and Training Styles

2-34

(elements of a cell array). If you use adapt, the format of the input determines 
the method of training. If the inputs are passed as a sequence, then the 
network is trained in incremental mode. If the inputs are passed as concurrent 
vectors, then batch mode training is used.

With dynamic networks, batch mode training is typically done with train only, 
especially if only one training sequence exists. To illustrate this, consider again 
the linear network with a delay. Use a learning rate of 0.02 for the training. 
(When using a gradient descent algorithm, you typically use a smaller learning 
rate for batch mode training than incremental training, because all the 
individual gradients are summed before determining the step change to the 
weights.)

net = linearlayer([0 1],0.02);
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.IW{1,1} = [0 0];
net.biasConnect = 0;
net.trainParam.epochs = 1;
Pi = {1};
P = {2 3 4};
T = {3 5 6};

You want to train the network with the same sequence used for the 
incremental training earlier, but this time you want to update the weights only 
after all the inputs are applied (batch mode). The network is simulated in 
sequential mode, because the input is a sequence, but the weights are updated 
in batch mode.

net = train(net,P,T,Pi);

The weights after one epoch of training are

net.IW{1,1}
ans = 0.9000    0.6200

These are different weights than you would obtain using incremental training, 
where the weights would be updated three times during one pass through the 
training set. For batch training the weights are only updated once in each 
epoch.



Training Styles

2-35

Training Feedback
The showWindow parameter allows you to specify whether a training window is 
visible when you train. The training window appears by default. Two other 
parameters, showCommandLine and show, determine whether command-line 
output is generated and the number of epochs between command-line feedback 
during training. For instance, this code turns off the training window and gives 
you training status information every 35 epochs when the network is later 
trained with train:

net.trainParam.showWindow = false;
net.trainParam.showCommandLine = true;
net.trainParam.show= 35;

Sometimes it is convenient to disable all training displays. To do that, turn off 
both the training window and command-line feedback:

net.trainParam.showWindow = false;
net.trainParam.showCommandLine = false;

The training window appears automatically when you train. Use the 
nntraintool function to manually open and close the training window.

nntraintool
nntraintool('close')



2 Network Objects, Data and Training Styles

2-36



 

3

Multilayer Networks and 
Backpropagation Training

Introduction (p. 3-2)

Multilayer Neural Network Architecture (p. 3-3)

Collect and Prepare the Data (p. 3-7)

Create, Configure and Initialize the Network (p. 3-12)

Train the Network (p. 3-14)

Post-Training Analysis (Network Validation) (p. 3-21)

Use the Network (p. 3-26)

Automatic Code Generation (p. 3-27)

Limitations and Cautions (p. 3-28)



3 Multilayer Networks and Backpropagation Training

3-2

Introduction
The multilayer feedforward neural network is the workhorse of the Neural 
Network Toolbox™ software. It can be used for both function fitting and 
pattern recognition problems. With the addition of a tapped delay line, it can 
also be used for prediction problems (see “Focused Time-Delay Neural Network 
(timedelaynet)” on page 4-12). This chapter demonstrates how you can use the 
multilayer network. It also illustrates the basic procedures for designing any 
neural network.

Note  The training functions described in this chapter are not limited to 
multilayer networks. They can be used to train arbitrary architectures (even 
custom networks), as long as their components are differentiable.

The work flow for the general neural network design process has six primary 
steps: 

0 collect data

1 create the network, 

2 configure the network, 

3 initialize the weights and biases, 

4 train the network, 

5 validate the network (post-training analysis) and 

6 use the network. 

Chapter 2, “Network Objects, Data and Training Styles” introduced steps 1 and 
2, and described the basics of steps 4 and 6. The current chapter will 
demonstrate all six steps of the design process for multilayer networks. It will 
also discuss step 0, which may happen outside the framework of the Neural 
Network Toolbox™ software, but which is critical to the success of the design 
process. The next section describes the architecture of the multilayer 
feedforward network. This is followed by other sections that describe the six 
steps of the neural network design process.



Multilayer Neural Network Architecture

3-3

Multilayer Neural Network Architecture
This section presents the architecture of the multilayer feedforward neural 
network.

Neuron Model (logsig, tansig, purelin)
An elementary neuron with R inputs is shown below. Each input is weighted 
with an appropriate w. The sum of the weighted inputs and the bias forms the 
input to the transfer function f. Neurons can use any differentiable transfer 
function f to generate their output.

Multilayer networks often use the log-sigmoid transfer function logsig.

The function logsig generates outputs between 0 and 1 as the neuron’s net 
input goes from negative to positive infinity.

Input

p
1

an
p

2p
3

p
R

w
1,

 
R

w
1,1

��
�� f

b

1

Where

R = number of    
elements in
input vector

General Neuron 

��
��

a = f(Wp +b)

-1

n
0

+1

��
��

a 

Log-Sigmoid Transfer Function

a = logsig(n)



3 Multilayer Networks and Backpropagation Training

3-4

Alternatively, multilayer networks can use the tan-sigmoid transfer function 
tansig.

Sigmoid output neurons are often used for pattern recognition problems, while 
linear output neurons are used for function fitting problems. The linear 
transfer function purelin is shown below.

The three transfer functions described here are the most commonly used 
transfer functions for multilayer networks, but other differentiable transfer 
functions can be created and used if desired. See Chapter 9, “Advanced Topics.”

Feedforward Network
A single-layer network of S logsig neurons having R inputs is shown below in 
full detail on the left and with a layer diagram on the right. 

Tan-Sigmoid Transfer Function

a = tansig(n)

n
0

-1

+1

a

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a



Multilayer Neural Network Architecture

3-5

Feedforward networks often have one or more hidden layers of sigmoid 
neurons followed by an output layer of linear neurons. Multiple layers of 
neurons with nonlinear transfer functions allow the network to learn nonlinear 
relationships between input and output vectors. The linear output layer is most 
often used for function fitting (or nonlinear regression) problems.

On the other hand, if you want to constrain the outputs of a network (such as 
between 0 and 1), then the output layer should use a sigmoid transfer function 
(such as logsig). This is the case when the network is used for pattern 
recognition problems (in which a decision is being made by the network).

As noted in Chapter 2, “Network Objects, Data and Training Styles,” for 
multiple-layer networks the layer number determines the superscript on the 
weight matrix. The appropriate notation is used in the two-layer 
tansig/purelin network shown next.

p
1

a
2

n
2

Input

p
2

p
3

p
R

w
S, 

 
R

w
1,

 
1

b
2

b
1

b
S

a
S

n
S

a
1

n
1

1

1

1

��
��

��

��

Layer of logsig 
Neurons

p a

1

n��W

��
��b

R x 1
S x R

S x 1

S  x  1

Input Layer of logsig Neurons

R S

S x 1

a= logsig (Wp + b)

Where...

 
 

R = number of 
elements in
 input vector 

S = number of 
neurons in layer a= logsig (Wp + b)

��
��

��

��

��
��
��



3 Multilayer Networks and Backpropagation Training

3-6

This network can be used as a general function approximator. It can 
approximate any function with a finite number of discontinuities arbitrarily 
well, given sufficient neurons in the hidden layer.

Now that the architecture of the multilayer network has been defined, the 
design process is described in the following sections.

p1 a1 a3 = y 

1 1

n1 n2
2 x 1

4 x1

4 x 1

3  x 1

3  x 1

3  x 1

Input

3 x 4��
��LW2,1

4  x 1��b1

4 x 2��
��IW1,1

��b2

Hidden Layer Output Layer

2 4 3

a2 =purelin (LW2,1a1 +b2)

f2

a1 = tansig (IW1,1p1 +b1)

��
��
��

��
��
��



Collect and Prepare the Data

3-7

Collect and Prepare the Data
Before beginning the network design process, you first collect and prepare 
sample data. It is generally difficult to incorporate prior knowledge into a 
neural network, therefore the network can only be as accurate as the data that 
are used to train the network. 

It is important that the data cover the range of inputs for which the network 
will be used. Multilayer networks can be trained to generalize well within the 
range of inputs for which they have been trained. However, they do not have 
the ability to accurately extrapolate beyond this range, so it is important that 
the training data span the full range of the input space.

After the data have been collected, there are two steps that need to be 
performed before the data are used to train the network: the data need to be 
preprocessed, and they need to be divided into subsets. The next two 
subsections describe these two steps.

Preprocessing and Postprocessing
Neural network training can be made more efficient if you perform certain 
preprocessing steps on the network inputs and targets. This section describes 
several preprocessing routines that you can use. (The most common of these 
are provided automatically when you create a network, and they become part 
of the network object, so that whenever the network is used, the data coming 
into the network is preprocessed in the same way.)

For example, in multilayer networks, sigmoid transfer functions are generally 
used in the hidden layers. These functions become essentially saturated when 
the net input is greater than three ( ). If this happens at the 
beginning of the training process, the gradients will be very small, and the 
network training will be very slow. In the first layer of the network, the net 
input is a product of the input times the weight plus the bias. If the input is 
very large, then the weight must be very small in order to prevent the transfer 
function from becoming saturated. It is standard practice to normalize the 
inputs before applying them to the network.

Generally, the normalization step is applied to both the input vectors and the 
target vectors in the data set. In this way, the network output always falls into 
a normalized range. The network output can then be reverse transformed back 
into the units of the original target data when the network is put to use in the 
field. 

3–( )exp 0.05≅



3 Multilayer Networks and Backpropagation Training

3-8

It is easiest to think of the neural network as having a preprocessing block that 
appears between the input and the first layer of the network and a 
postprocessing block that appears between the last layer of the network and 
the output, as shown in the following figure.

Most of the network creation functions in the toolbox, including the multilayer 
network creation functions, such as feedforwardnet, automatically assign 
processing functions to your network inputs and outputs. These functions 
transform the input and target values you provide into values that are better 
suited for network training.

You can override the default input and output processing functions by 
adjusting network properties after you create the network.

To see a cell array list of processing functions assigned to the input of a 
network, access this property:

net.inputs{1}.processFcns

where the index 1 refers to the first input vector. (There is only one input vector 
for the feedforward network.) To view the processing functions returned by the 
output of a two-layer network, access this network property:

net.outputs{2}.processFcns

where the index 2 refers to the output vector coming from the second layer. (For 
the feedforward network, there is only one output vector, and it comes from the 
final layer.) You can use these properties to change the processing functions 
that you want your network to apply to the inputs and outputs. However, the 
defaults usually provide excellent performance.

Several processing functions have parameters that customize their operation. 
You can access or change the parameters of the ith input processing function 
for the network input as follows:

Neural 
Network

Pre-
Processing

Post-
Processing

Input Output

Network Object



Collect and Prepare the Data

3-9

net.inputs{1}.processParams{i}

You can access or change the parameters of the ith output processing function 
for the network output associated with the second layer, as follows:

net.outputs{2}.processParams{i}

For multilayer network creation functions, such as feedforwardnet, the 
default input processing functions are removeconstantrows and mapminmax. 
For outputs, the default processing functions are also removeconstantrows 
and mapminmax. 

The following table lists the most common preprocessing and postprocessing 
functions. See the function pages for detailed descriptions. In most cases, you 
will not need to use them directly, since the preprocessing steps become part of 
the network object, as was described in Chapter 2, “Network Objects, Data and 
Training Styles.” When you simulate or train the network, the preprocessing 
and postprocessing will be done automatically.

Representing Unknown or Don’t Care Targets
Unknown or “don’t care” targets can be represented with NaN values. We do not 
want unknown target values to have an impact on training, but if a network 
has several outputs, some elements of any target vector may be known while 
others are unknown. One solution would be to remove the partially unknown 
target vector and its associated input vector from the training set, but that 
involves the loss of the good target values. A better solution is to represent 
those unknown targets with NaN values. All the performance functions of the 
toolbox will ignore those targets for purposes of calculating performance and 
derivatives of performance.

Function Algorithm

mapminmax Normalize inputs/targets to fall in the range [-1,1]

mapstd Normalize inputs/targets to have zero mean and 
unity variance

processpca Extract principal components from the input vector

fixunknowns Process unknown inputs

removeconstantrows Remove inputs/targets that are constant



3 Multilayer Networks and Backpropagation Training

3-10

Dividing the Data
When training multilayer networks, the general practice is to first divide the 
data into three subsets. The first subset is the training set, which is used for 
computing the gradient and updating the network weights and biases. The 
second subset is the validation set. The error on the validation set is monitored 
during the training process. The validation error normally decreases during 
the initial phase of training, as does the training set error. However, when the 
network begins to overfit the data, the error on the validation set typically 
begins to rise. The network weights and biases are saved at the minimum of 
the validation set error. This technique is discussed in more detail in 
“Improving Generalization” on page 9-34.

The test set error is not used during training, but it is used to compare different 
models. It is also useful to plot the test set error during the training process. If 
the error on the test set reaches a minimum at a significantly different 
iteration number than the validation set error, this might indicate a poor 
division of the data set.

There are four functions provided for dividing data into training, validation 
and test sets. They are dividerand (the default), divideblock, divideint, and 
divideind. The data division is normally performed automatically when you 
train the network.

You can access or change the division function for your network with this 
property:

net.divideFcn

Each of the division functions takes parameters that customize its behavior. 
These values are stored and can be changed with the following network 
property:

Function Algorithm

dividerand Divide the data randomly (default)

divideblock Divide the data into contiguous blocks

divideint Divide the data using an interleaved selection

divideind Divide the data by index



Collect and Prepare the Data

3-11

net.divideParam

The divide function is accessed automatically whenever the network is trained, 
and is used to divide the data into training, validation and testing subsets. If 
net.divideFcn is set to ̀ dividerand' (the default), then the data is randomly 
divided into the three subsets using the division parameters 
net.divideParam.trainRatio, net.divideParam.valRatio and 
net.divideParam.testRatio. The fraction of data that is placed in the 
training set is trainRatio/(trainRatio+valRatio+testRatio), with a similar 
formula for the other two sets. The default ratios for training, testing and 
validation are 0.7, 0.15 and 0.15, respectively.

If net.divideFcn is set to `divideblock', then the data is divided into three 
subsets using three contiguous blocks of the original data set (training taking 
the first block, validation the second and testing the third). The fraction of the 
original data that goes into each subset is determined by the same three 
division parameters used for dividerand.

If net.divideFcn is set to `divideint', then the data is divided by an 
interleaved method, as in dealing a deck of cards. It is done so that different 
percentages of data go into the three subsets. The fraction of the original data 
that goes into each subset is determined by the same three division parameters 
used for dividerand.

When net.divideFcn is set to `divideind', the data is divided by index. The 
indices for the three subsets are defined by the division parameters 
net.divideParam.trainInd, net.divideParam.valInd and 
net.divideParam.testInd. The default assignment for these indices is the 
null array, so you must set the indices when using this option.



3 Multilayer Networks and Backpropagation Training

3-12

Create, Configure and Initialize the Network
After the data has be collected, the next step in training a network is to create 
the network object. The function feedforwardnet creates a multilayer 
feedforward network. If this function is invoked with no input arguments, then 
a default network object is created that has not been configured, as was shown 
in Chapter 2, “Network Objects, Data and Training Styles.” The resulting 
network can then be configured with the configure command.

As an example, the file housing.mat contains a predefined set of input and 
target vectors. The input vectors define data regarding real-estate properties 
and the target values define relative values of the properties. Load the data 
using the following command:

load house_dataset

Loading this file creates two variables. The input matrix houseInputs consists 
of 506 column vectors of 13 real estate variables for 506 different houses. The 
target matrix houseTargets consists of the corresponding 506 relative 
valuations.

The next step is to create the network. The following call to feedforwardnet 
creates a two-layer network with 10 neurons in the hidden layer. (During the 
configuration step, the number of neurons in the output layer is set to one, 
which is the number of elements in each vector of targets.)

net = feedforwardnet;
net = configure(net,houseInputs,houseTargets);

Optional arguments can be provided to feedforwardnet. For instance, the first 
argument is an array containing the number of neurons in each hidden layer. 
(The default setting is 10, which means one hidden layer with 10 neurons. One 
hidden layer generally produces excellent results, but you may want to try two 
hidden layers, if the results with one are not adequate. Increasing the number 
of neurons in the hidden layer increases the power of the network, but requires 
more computation and is more likely to produce overfitting.) The second 
argument contains the name of the training function to be used. If no 
arguments are supplied, the default number of layers is 2, the default number 
of neurons in the hidden layer is 10, and the default training function is 
trainlm. The default transfer function for hidden layers is tansig and the 
default for the output layer is purelin.



Create, Configure and Initialize the Network

3-13

The configure command configures the network object and also initializes the 
weights and biases of the network; therefore the network is ready for training. 
There are times when you might want to reinitialize the weights, or to perform 
a custom initialization. The section “Initializing Weights (init)” on page 3-13 
explains the details of the initialization process. You can also skip the 
configuration step and go directly to training the network. The train command 
will automatically configure the network and initialize the weights.

Other Related Architectures
While two-layer feedforward networks can potentially learn virtually any 
input-output relationship, feedforward networks with more layers might learn 
complex relationships more quickly. For most problems, it is best to start with 
two layers, and then increase to three layers, if the performance with two 
layers is not satisfactory.

The function cascadeforwardnet creates cascade-forward networks. These are 
similar to feedforward networks, but include a weight connection from the 
input to each layer, and from each layer to the successive layers. For example, 
a three-layer network has connections from layer 1 to layer 2, layer 2 to layer 
3, and layer 1 to layer 3. The three-layer network also has connections from the 
input to all three layers. The additional connections might improve the speed 
at which the network learns the desired relationship.

The function patternnet creates a network that is very similar to 
feedforwardnet, except that it uses the tansig transfer function in the last 
layer. This network is generally used for pattern recognition. Other networks 
can learn dynamic or time-series relationships. They are introduced in Chapter 
4, “Dynamic Networks”.

Initializing Weights (init)
Before training a feedforward network, you must initialize the weights and 
biases. The configure command automatically initializes the weights, but you 
might want to reinitialize them. You do this with the init command. This 
function takes a network object as input and returns a network object with all 
weights and biases initialized. Here is how a network is initialized (or 
reinitialized):

net = init(net);

For specifics on how the weights are initialized, see Chapter 9, “Advanced 
Topics.”



3 Multilayer Networks and Backpropagation Training

3-14

Train the Network
Once the network weights and biases are initialized, the network is ready for 
training. The multilayer feedforward network can be trained for function 
approximation (nonlinear regression) or pattern recognition. The training 
process requires a set of examples of proper network behavior—network inputs 
p and target outputs t. 

The process of training a neural network involves tuning the values of the 
weights and biases of the network to optimize network performance, as defined 
by the network performance function net.performFcn. The default 
performance function for feedforward networks is mean square error mse—the 
average squared error between the network outputs a and the target outputs 
t. It is defined as follows

(Individual squared errors can also be weighted. See “Error Weighting” on 
page 4-38.) There are two different ways in which training can be 
implemented: incremental mode and batch mode. In incremental mode, the 
gradient is computed and the weights are updated after each input is applied 
to the network. In batch mode, all the inputs in the training set are applied to 
the network before the weights are updated. This chapter describes batch mode 
training with the train command. Incremental training with the adapt 
command is discussed in “Incremental Training with adapt” on page 2-29 and 
in Chapter 8, “Adaptive Filters and Adaptive Training”. For most problems, 
when using the Neural Network Toolbox™ software, batch training is 
significantly faster and produces smaller errors than incremental training.

For training multilayer feedforward networks, any standard numerical 
optimization algorithm can be used to optimize the performance function, but 
there are a few key ones that have shown excellent performance for neural 
network training. These optimization methods use either the gradient of the 
network performance with respect to the network weights, or the Jacobian of 
the network errors with respect to the weights.

The gradient and the Jacobian are calculated using a technique called the 
backpropagation algorithm, which involves performing computations 
backward through the network. The backpropagation computation is derived 

F mse 1
N
---- ei( )2

i 1=

N


1
N
---- ti ai–( )2

i 1=

N

= = =



Train the Network

3-15

using the chain rule of calculus and is described in Chapters 11 (for the 
gradient) and 12 (for the Jacobian) of [HDB96].

Training Algorithms
As an illustration of how the training works, consider the simplest optimization 
algorithm — gradient descent. It updates the network weights and biases in 
the direction in which the performance function decreases most rapidly, the 
negative of the gradient. One iteration of this algorithm can be written

where  is a vector of current weights and biases,  is the current gradient, 
and  is the learning rate. This equation is iterated until the network 
converges.

A list of the training algorithms that are available in the Neural Network 
Toolbox™ software, and which use gradient- or Jacobian-based methods, is 
shown in the following table. For details on specific algorithms, see their 
function pages. See also Chapters 11 and 12 of [HDB96] for a detailed 
description of several of these techniques.

Function Algorithm

trainlm Levenberg-Marquardt

trainbr Bayesian Regularization

trainbfg BFGS Quasi-Newton

trainrp Resilient Backpropagation

trainscg Scaled Conjugate Gradient

traincgb Conjugate Gradient with Powell/Beale Restarts

traincgf Fletcher-Powell Conjugate Gradient

traincgp Polak-Ribiére Conjugate Gradient

trainoss One Step Secant

traingdx Variable Learning Rate Gradient Descent

xk 1+ xk αkgk–=

xk gk
αk



3 Multilayer Networks and Backpropagation Training

3-16

The fastest training function is generally trainlm, and it is the default training 
function for feedforwardnet. The quasi-Newton method, trainbfg, is also 
quite fast. Both of these methods tend to be less efficient for large networks 
(with thousands of weights), since they require more memory and more 
computation time for these cases. Also, trainlm performs better on function 
fitting (nonlinear regression) problems than on pattern recognition problems.

When training large networks, and when training pattern recognition 
networks, trainscg and trainrp are good choices. Their memory requirements 
are relatively small, and yet they are much faster than standard gradient 
descent algorithms.

See “Speed and Memory Comparison for Training Multilayer Networks” on 
page 9-16 for a full comparison of the performances of the training algorithms 
shown in the table above.

As a note on terminology, the term “backpropagation” is sometimes used to 
refer specifically to the gradient descent algorithm, when applied to neural 
network training. That terminology is not used here, since the process of 
computing the gradient and Jacobian by performing calculations backward 
through the network is applied in all of the training functions listed above. It 
is clearer to use the name of the specific optimization algorithm that is being 
used, rather than to use the term backpropagation alone. 

Also, the multilayer network is sometimes referred to as a backpropagation 
network. However, the backpropagation technique that is used to compute 
gradients and Jacobians in a multilayer network can also be applied to many 
different network architectures. (See Chapter 4, “Dynamic Networks” and 
Chapter 6, “Radial Basis Networks” for examples of other networks that can 
use the same training functions that are shown in the table above.) In fact, the 
gradients and Jacobians for any network that has differentiable transfer 
functions, weight functions and net input functions can be computed using the 
Neural Network Toolbox™ software through a backpropagation process. You 
can even create your own custom networks, as described in Chapter 9, 
“Advanced Topics,” and then train them using any of the training functions in 

traingdm Gradient Descent with Momentum

traingd Gradient Descent

Function Algorithm



Train the Network

3-17

the table above. The gradients and Jacobians will be automatically computed 
for you.

Efficiency and Memory Reduction
There are some network parameters that are helpful when training large 
networks or using large data sets. For example, the parameter 

net.effficiency.memoryReduction

can be used to reduce the amount of memory that you use while training or 
simulating the network. If this parameter is set to 1 (the default value), the 
maximum memory is used, and the fastest training times will be achieved. If 
this parameter is set to 2, then the data is divided into two parts. All 
calculations (like gradients and Jacobians) are done first on part one, and then 
later on part two. Any intermediate variables used in part 1 are released before 
the part 2 calculations are done. This can save significant memory, especially 
for the trainlm training function. If memoryReduction is set to N, then the data 
is divided into N parts, which are computed separately. The larger the value of 
N, the larger the reduction in memory use, although the amount of reduction 
diminishes as N is increased.

There is a drawback to using memory reduction. A computational overhead is 
associated with computing the Jacobian and gradient in submatrices. If you 
have enough memory available, then it is better to leave memoryReduction set 
to 1 and to compute the full Jacobian or gradient in one step. If you have a large 
training set, and you are running out of memory, then you should set 
memoryReduction to 2 and try again. If you still run out of memory, continue to 
increase memoryReduction. 

Generalization
Properly trained multilayer networks tend to give reasonable answers when 
presented with inputs that they have never seen. Typically, a new input leads 
to an accurate ouput, if the new input is similar to inputs used in the training 
set. This generalization property makes it possible to train a network on a 
representative set of input/target pairs and get good results without training 
the network on all possible input/output pairs. There are two features of the 
Neural Network Toolbox™ software that are designed to improve network 
generalization: regularization and early stopping. These features and their use 
are discussed in detail in “Improving Generalization” on page 9-34. A few 
comments on using these techniques are given in the following.



3 Multilayer Networks and Backpropagation Training

3-18

The default generalization feature for the multilayer feedforward network is 
early stopping. Data are automatically divided into training, validation and 
test sets, as described in “Dividing the Data” on page 3-10. The error on the 
validation set is monitored during training, and the training is stopped when 
the validation increases over net.trainParam.max_fail iterations. If you wish 
to disable early stopping, you can assign no data to the validation set. This can 
be done by setting net.divideParam.valRatio to zero.

An alternative method for improving generalization is regularization. 
Regularization can be done automatically by using the Bayesian regularization 
training function trainbr. This can be done by setting net.trainFcn to 
`trainbr'. This will also automatically move any data in the validation set to 
the training set.

Training Example
To demonstrate the training process, execute the following commands:

load house_dataset
net = feedforwardnet;
[net,tr] = train(net,houseInputs,houseTargets);

Notice that you did not need to issue the configure command, because the 
configuration is done automatically by the train function. The training 
window will appear during training, as shown in the following figure. (If you do 
not wish to have this window displayed during training, you can set the 
parameter net.trainParam.showWindow to false. If you want training 
information displayed in the command line, you can set the parameter 
net.trainParam.showCommandLine to true.)

This window shows that the data has been divided using the dividerand 
function, and the Levenberg-Marquardt (trainlm) training method has been 
used with the mean square error performance function. Recall that these are 
the default settings for feedforwardnet.

During training, the progress is constantly updated in the training window. Of 
most interest are the performance, the magnitude of the gradient of 
performance and the number of validation checks. The magnitude of the 
gradient and the number of validation checks are used to terminate the 
training. The gradient will become very small as the training reaches a 
minimum of the performance. If the magnitude of the gradient is less than 
1e-5, the training will stop. This limit can be adjusted by setting the parameter 
net.trainParam.min_grad. The number of validation checks represents the 



Train the Network

3-19

number of successive iterations that the validation performance fails to 
decrease. If this number reaches 6 (the default value), the training will stop. In 
this run, you can see that the training did stop because of the number of 
validation checks. You can change this criterion by setting the parameter 
net.trainParam.max_fail. (Note that your results may be different than 
those shown in the following figure, because of the random setting of the initial 
weights and biases.)



3 Multilayer Networks and Backpropagation Training

3-20

There are other criteria that can be used to stop network training. They are 
listed in the following table.

The training will also stop if you click the “Stop Training” button in the 
training window. You may want to do this if the performance function fails to 
decrease significantly over many iterations. It is always possible to continue 
the training by re-issuing the train command shown above. It will continue to 
train the network from the completion of the previous run.

From the training window, you can access four plots: performance, training 
state, error histogram and regression. The performance plot shows the value of 
the performance function versus the iteration number. It plots training, 
validation and test performances. The training state plot shows the progress of 
other training variables, such as the gradient magnitude, the number of 
validation checks, etc. The error histogram plot shows the distribution of the 
network errors. The regression plot shows a regression between network 
outputs and network targets. You can use the histogram and regression plots 
to validate network performance, as is discussed in the next section.

Parameter Stopping Criteria

min_grad Minimum Gradient Magnitude

max_fail Maximum Number of Validation Increases

time Maximum Training Time

goal Minimum Performance Value

epochs Maximum Number of Training Epochs (Iterations)



Post-Training Analysis (Network Validation)

3-21

Post-Training Analysis (Network Validation)
When the training is complete, you will want to check the network performance 
and determine if any changes need to be made to the training process, the 
network architecture or the data sets. The first thing to do is to check the 
training record, tr, which was the second argument returned from the training 
function.

tr = 

                     trainFcn: 'trainlm'
                   trainParam: [1x1 nnParam]
                   performFcn: 'mse'
                 performParam: [1x1 nnParam]
                     derivFcn: 'defaultderiv'
                    divideFcn: 'dividerand'
                   divideMode: 'sample'
                  divideParam: [1x1 nnParam]
                     trainInd: [1x354 double]
                       valInd: [1x76 double]
                      testInd: [1x76 double]
                         stop: 'Validation stop.'
                   num_epochs: 30
                    trainMask: {[1x506 double]}
                      valMask: {[1x506 double]}
                     testMask: {[1x506 double]}
                   best_epoch: 24
                         goal: 0
                       states: {1x8 cell}
                        epoch: [1x31 double]
                         time: [1x31 double]
                         perf: [1x31 double]
                        vperf: [1x31 double]
                        tperf: [1x31 double]
                           mu: [1x31 double]
                     gradient: [1x31 double]
                     val_fail: [1x31 double]
          physicalMemoryTotal: [1x31 double]
      physicalMemoryAvailable: [1x31 double]
           physicalMemoryUsed: [1x31 double]
    physicalMemoryPercentUsed: [1x31 double]



3 Multilayer Networks and Backpropagation Training

3-22

This structure contains all of the information concerning the training of the 
network. For example, tr.trainInd, tr.valInd and tr.testInd contain the 
indices of the data points that were used in the training, validation and test 
sets, respectively. If you wish to retrain the network using the same division of 
data, you can set net.divideFcn to ̀ divideInd', net.divideParam.trainInd 
to tr.trainInd, net.divideParam.valInd to tr.valInd, 
net.divideParam.testInd to tr.testInd.

The tr structure also keeps track of several variables during the course of 
training, such as the value of the performance function, the magnitude of the 
gradient, etc. You can use the training record to plot the performance progress 
by using the plotperf command, as in

plotperf(tr)

This produces the following figure. As indicated by tr.best_epoch, the 
iteration at which the validation performance reached a minimum was 24. The 
training continued for 6 more iterations before the training stopped.



Post-Training Analysis (Network Validation)

3-23

This figure doesn’t indicate any major problems with the training. The 
validation and test curves are very similar. If the test curve had increased 
significantly before the validation curve increased, then it is possible that some 
overfitting might have occurred. 

The next step in validating the network is to create a regression plot, which 
shows the relationship between the outputs of the network and the targets. If 
the training were perfect, the network outputs and the targets would be exactly 
equal, but the relationship is rarely perfect in practice. For the housing 
example, we can create a regression plot with the following commands. The 
first command calculates the trained network response to all of the inputs in 
the data set. The following six commands extract the outputs and targets that 
belong to the training, validation and test subsets. The final command creates 
three regression plots for training, testing and validation.

houseOutputs = net(houseInputs);
trOut = houseOutputs(tr.trainInd);
vOut = houseOutputs(tr.valInd);
tsOut = houseOutputs(tr.testInd);
trTarg = houseTargets(tr.trainInd);
vTarg = houseTargets(tr.valInd);
tsTarg = houseTargets(tr.testInd);
plotregression(trTarg,trOut,'Train',vTarg,vOut,'Validation',...
tsTarg,tsOut,'Testing')

The result is shown in the following figure. The three axes represent the 
training, validation and testing data. The dashed line in each axis represents 
the perfect result – outputs = targets. The solid line represents the best fit 
linear regression line between outputs and targets. The R value is an 
indication of the relationship between the outputs and targets. If R=1, this 
indicates that there is an exact linear relationship between outputs and 
targets. If R is close to zero, then there is no linear relationship between 
outputs and targets.

For this example, the training data indicates a good fit. The validation and test 
results also show R values that greater than 0.9. The scatter plot is helpful in 
showing that certain data points have poor fits. For example, there is a data 
point in the test set whose network output is close to 35, while the 
corresponding target value is about 12. The next step would be to investigate 
this data point to determine if it represents extrapolation (i.e., is it outside of 
the training data set). If so, then it should be included in the training set, and 
additional data should be collected to be used in the test set.



3 Multilayer Networks and Backpropagation Training

3-24

Improving Results
If the network is not sufficiently accurate, you can try initializing the network 
and the training again. Each time your initialize a feed-forward network, the 
network parameters are different and might produce different solutions.

net = init(net);
net = train(net,houseInputs,houseTargets);



Post-Training Analysis (Network Validation)

3-25

As a second approach, you can increase the number of hidden neurons above 
20. Larger numbers of neurons in the hidden layer give the network more 
flexibility because the network has more parameters it can optimize. (Increase 
the layer size gradually. If you make the hidden layer too large, you might 
cause the problem to be under-characterized and the network must optimize 
more parameters than there are data vectors to constrain these parameters.)

A third option is to try a different training function. Bayesian regularization 
training with trainbr, for example, can sometimes produce better 
generalization capability than using early stopping.

Finally, try using additional training data. Providing additional data for the 
network is more likely to produce a network that generalizes well to new data.



3 Multilayer Networks and Backpropagation Training

3-26

Use the Network
After the network is trained and validated, the network object can be used to 
calculate the network response to any input. For example, if you wish to find 
the network response to the 5th input vector in the building data set, you can 
use the following

a = net(houseInputs(:,5))
a =
-34.3922

(If you try this command, your output might be different, depending on the 
state of your random number generator when the network was initialized.) 
Below, the network object is called to calculate the outputs for a concurrent set 
of all the input vectors in the housing data set. This is the batch mode form of 
simulation, in which all the input vectors are placed in one matrix. This is 
much more efficient than presenting the vectors one at a time.

a = net(houseInputs);



Automatic Code Generation

3-27

Automatic Code Generation
It is often easiest to learn how to use the Neural Network Toolbox™ software 
by starting with some example code and modifying it to suit your problem. It is 
very simple to create example code by using the GUIs described in Chapter 1, 
“Getting Started.” In particular, to generate some sample code to reproduce the 
function fitting examples shown in this chapter, you can run the neural fitting 
GUI, nftool. Select the house pricing data from the GUI, and after you have 
trained the network, click the “Advanced Script” button on the final panel of 
the GUI. This will automatically generate code that will demonstrate most of 
the options that are available to you when following the general network 
design process for function fitting problems. You can customize the generated 
script to fit your needs.

If you are interested in using a multilayer neural network for pattern 
recognition, use the pattern recognition GUI, nprtool. It will lead you through 
a similar set of design steps for pattern recognition problems, and can then 
generate example code demonstrating the many options that are available for 
pattern recognition networks.



3 Multilayer Networks and Backpropagation Training

3-28

Limitations and Cautions
You would normally use Levenberg-Marquardt training for small and medium 
size networks, if you have enough memory available. If memory is a problem, 
then there are a variety of other fast algorithms available. For large networks 
you will probably want to use trainscg or trainrp.

Multilayer networks are capable of performing just about any linear or 
nonlinear computation, and they can approximate any reasonable function 
arbitrarily well. However, while the network being trained might theoretically 
be capable of performing correctly, backpropagation and its variations might 
not always find a solution. See page 12-8 of [HDB96] for a discussion of 
convergence to local minimum points. 

The error surface of a nonlinear network is more complex than the error 
surface of a linear network. To understand this complexity, see the figures on 
pages 12-5 to 12-7 of [HDB96], which show three different error surfaces for a 
multilayer network. The problem is that nonlinear transfer functions in 
multilayer networks introduce many local minima in the error surface. As 
gradient descent is performed on the error surface, depending on the initial 
starting conditions, it is possible for the network solution to become trapped in 
one of these local minima. Settling in a local minimum can be good or bad 
depending on how close the local minimum is to the global minimum and how 
low an error is required. In any case, be cautioned that although a multilayer 
backpropagation network with enough neurons can implement just about any 
function, backpropagation does not always find the correct weights for the 
optimum solution. You might want to reinitialize the network and retrain 
several times to guarantee that you have the best solution. 

Networks are also sensitive to the number of neurons in their hidden layers. 
Too few neurons can lead to underfitting. Too many neurons can contribute to 
overfitting, in which all training points are well fitted, but the fitting curve 
oscillates wildly between these points. Ways of dealing with various of these 
issues are discussed in “Improving Generalization” on page 9-34. This topic is 
also discussed starting on page 11-21 of [HDB96].



 

4

Dynamic Networks

Introduction (p. 4-2)

Focused Time-Delay Neural Network (timedelaynet) (p. 4-12)

Preparing Data (preparets) (p. 4-17)

Distributed Time-Delay Neural Network (newdtdnn) (p. 4-18)

NARX Network (narxnet, closeloop) (p. 4-21)

Layer-Recurrent Network (layrecnet) (p. 4-27)

Training Custom Networks (p. 4-29)

Multiple Sequences, Time Series Utilities and Error Weighting (p. 4-35)



4 Dynamic Networks

4-2

Introduction
Neural networks can be classified into dynamic and static categories. Static 
(feedforward) networks have no feedback elements and contain no delays; the 
output is calculated directly from the input through feedforward connections. 
In dynamic networks, the output depends not only on the current input to the 
network, but also on the current or previous inputs, outputs, or states of the 
network.

The training of dynamic networks is very similar to the training of static 
feedforward networks, as discussed in Chapter 3, “Multilayer Networks and 
Backpropagation Training.” As described in that chapter, the work flow for the 
general neural network design process has six primary steps: 

0 collect data

1 create the network, 

2 configure the network, 

3 initialize the weights and biases, 

4 train the network, 

5 validate the network (post-training analysis) and 

6 use the network. 

These design steps, and the training methods discussed in Chapter 3, 
“Multilayer Networks and Backpropagation Training,” can also be used for 
dynamic networks. The main differences in the design process occur because 
the inputs to the dynamic networks are time sequences. (See “Simulation with 
Sequential Inputs in a Dynamic Network” on page 2-24 and “Batch Training 
with Dynamic Networks” on page 2-33 for previous discussions of simulation 
and training of dynamic networks.) This results in some additional 
initialization procedures prior to training or simulating a dynamic network. 
There are also special validation procedures that can be used for dynamic 
networks. (These were discussed in “Time Series Prediction” on page 1-66.)

This chapter will begin by explaining how dynamic networks operate and by 
giving examples of applications for dynamic networks. Then you will be 
introduced to the general framework for representing dynamic networks in the 



Introduction

4-3

toolbox. This will allow you to design your own specialized dynamic networks, 
which can then be trained using existing toolbox training functions. Next, the 
chapter describes several standard dynamic network architectures that you 
can create with a single command. Each will be demonstrated with a practical 
application. Finally, the chapter provides an example of creating and training 
a custom network.

Examples of Dynamic Networks
Dynamic networks can be divided into two categories: those that have only 
feedforward connections, and those that have feedback, or recurrent, 
connections. To understand the differences between static, 
feedforward-dynamic, and recurrent-dynamic networks, create some networks 
and see how they respond to an input sequence. (First, you might want to 
review the section on applying sequential inputs to a dynamic network on page 
2-24.)

The following command creates a pulse input sequence and plots it:

p = {0 0 1 1 1 1 0 0 0 0 0 0};

stem(cell2mat(p))

The next figure show the resulting pulse.



4 Dynamic Networks

4-4

Now create a static network and find the network response to the pulse 
sequence. The following commands create a simple linear network with one 
layer, one neuron, no bias, and a weight of 2:

net = linearlayer;
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.biasConnect = 0;
net.IW{1,1} = 2;

To view the network, use the following command:

view(net)

0 2 4 6 8 10 12
−0.5

0

0.5

1

1.5

2

2.5



Introduction

4-5

You can now simulate the network response to the pulse input and plot it:

a = net(p);
stem(cell2mat(a))

The result is shown in the following figure. Note that the response of the static 
network lasts just as long as the input pulse. The response of the static network 
at any time point depends only on the value of the input sequence at that same 
time point.

Now create a dynamic network, but one that does not have any feedback 
connections (a nonrecurrent network). You can use the same network used on 
page 2-24, which was a linear network with a tapped delay line on the input:

net = linearlayer([0 1]);
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.biasConnect = 0;
net.IW{1,1} = [1 1];

To view the network, use the following command:

view(net)

0 2 4 6 8 10 12
−0.5

0

0.5

1

1.5

2

2.5



4 Dynamic Networks

4-6

You can again simulate the network response to the pulse input and plot it:

a = net(p);
stem(cell2mat(a))

The response of the dynamic network, shown in the following figure, lasts 
longer than the input pulse. The dynamic network has memory. Its response at 
any given time depends not only on the current input, but on the history of the 
input sequence. If the network does not have any feedback connections, then 
only a finite amount of history will affect the response. In this figure you can 
see that the response to the pulse lasts one time step beyond the pulse 
duration. That is because the tapped delay line on the input has a maximum 
delay of 1.

0 2 4 6 8 10 12
−0.5

0

0.5

1

1.5

2

2.5



Introduction

4-7

Now consider a simple recurrent-dynamic network, shown in the following 
figure.

You can create the network, view it and simulate it with the following 
commands. The narxnet command is discussed in “NARX Network (narxnet, 
closeloop)” on page 4-21.

net = narxnet(0,1,[],'closed');
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.biasConnect = 0;
net.LW{1} = .5;
net.IW{1} = 1;
view(net)
a = net(p);
stem(cell2mat(a))

The resulting network diagram is shown below.

lw1,1

iw1,1

S

D

Inputs Linear Neuron

p t( )
n t( ) a t( )

a t iw p t lw a t( ) ( ) ( -1)= +1,1 1,1



4 Dynamic Networks

4-8

The following figure is the plot of the network response.

Notice that recurrent-dynamic networks typically have a longer response than 
feedforward-dynamic networks. For linear networks, feedforward-dynamic 
networks are called finite impulse response (FIR), because the response to an 
impulse input will become zero after a finite amount of time. Linear 
recurrent-dynamic networks are called infinite impulse response (IIR), because 
the response to an impulse can decay to zero (for a stable network), but it will 
never become exactly equal to zero. An impulse response for a nonlinear 
network cannot be defined, but the ideas of finite and infinite responses do 
carry over.

Applications of Dynamic Networks
Dynamic networks are generally more powerful than static networks (although 
somewhat more difficult to train). Because dynamic networks have memory, 
they can be trained to learn sequential or time-varying patterns. This has 
applications in such disparate areas as prediction in financial markets 
[RoJa96], channel equalization in communication systems [FeTs03], phase 
detection in power systems [KaGr96], sorting [JaRa04], fault detection 
[ChDa99], speech recognition [Robin94], and even the prediction of protein 
structure in genetics [GiPr02]. You can find a discussion of many more dynamic 
network applications in [MeJa00].

0 2 4 6 8 10 12
−0.5

0

0.5

1

1.5

2

2.5



Introduction

4-9

One principal application of dynamic neural networks is in control systems. 
This application is discussed in detail in Chapter 5, “Control Systems.” 
Dynamic networks are also well suited for filtering. You will see the use of some 
linear dynamic networks for filtering in Chapter 8, “Adaptive Filters and 
Adaptive Training,” and some of those ideas are extended in this chapter, using 
nonlinear dynamic networks.

Dynamic Network Structures
The Neural Network Toolbox™ software is designed to train a class of network 
called the Layered Digital Dynamic Network (LDDN). Any network that can be 
arranged in the form of an LDDN can be trained with the toolbox. Here is a 
basic description of the LDDN.

Each layer in the LDDN is made up of the following parts:

• Set of weight matrices that come into that layer (which can connect from 
other layers or from external inputs), associated weight function rule used to 
combine the weight matrix with its input (normally standard matrix 
multiplication, dotprod), and associated tapped delay line

• Bias vector

• Net input function rule that is used to combine the outputs of the various 
weight functions with the bias to produce the net input (normally a summing 
junction, netprod)

• Transfer function 

The network has inputs that are connected to special weights, called input 
weights, and denoted by IWi,j (net.IW{i,j} in the code), where j denotes the 
number of the input vector that enters the weight, and i denotes the number of 
the layer to which the weight is connected. The weights connecting one layer to 
another are called layer weights and are denoted by LWi,j (net.LW{i,j} in the 
code), where j denotes the number of the layer coming into the weight and i 
denotes the number of the layer at the output of the weight.

The following figure is an example of a three-layer LDDN. The first layer has 
three weights associated with it: one input weight, a layer weight from layer 1, 
and a layer weight from layer 3. The two layer weights have tapped delay lines 
associated with them.



4 Dynamic Networks

4-10

The Neural Network Toolbox™ software can be used to train any LDDN, so 
long as the weight functions, net input functions, and transfer functions have 
derivatives. Most well-known dynamic network architectures can be 
represented in LDDN form. In the remainder of this chapter you will see how 
to use some simple commands to create and train several very powerful 
dynamic networks. Other LDDN networks not covered in this chapter can be 
created using the generic network command, as explained in Chapter 9, 
“Advanced Topics.”

Dynamic Network Training
Dynamic networks are trained in the Neural Network Toolbox™ software 
using the same gradient-based algorithms that were described in Chapter 3, 
“Multilayer Networks and Backpropagation Training.” You can select from any 
of the training functions that were presented in that chapter. Examples are 
provided in the following sections.

Although dynamic networks can be trained using the same gradient-based 
algorithms that are used for static networks, the performance of the algorithms 
on dynamic networks can be quite different, and the gradient must be 
computed in a more complex way. Consider the simple recurrent network 
shown on page 4-7. The weights have two different effects on the network 

S
1
x 1

S
2
x 1

S
3
x 1

S
1
x 1

S
2
x 1 S

3
x 1

S
1
x 1 S

2
x 1 S

3
x 1

R x 1
1

S
1
x R S

2
x S

1
S

3
x S

2

S
1

S
2

S
3

n
1
( )t

n
2
( )t n

3
( )t

p
1
( )t

a
1
( )t

a
2
( )t a

3
( )t

IW
1,1

LW
1,3

LW
2,3

LW
1,1

LW
2,1

LW
3,2

b
1

b
2

b
31 1 1

R
1

Inputs Layer 1 Layer 2 Layer 3

T
D
L

T
D
L

T
D
L

T
D
L

f
1

f
2

f
3



Introduction

4-11

output. The first is the direct effect, because a change in the weight causes an 
immediate change in the output at the current time step. (This first effect can 
be computed using standard backpropagation.) The second is an indirect effect, 
because some of the inputs to the layer, such as a(t  1), are also functions of 
the weights. To account for this indirect effect, you must use dynamic 
backpropagation to compute the gradients, which is more computationally 
intensive. (See [DeHa01a], [DeHa01b] and [DeHa07].) Expect dynamic 
backpropagation to take more time to train, in part for this reason. In addition, 
the error surfaces for dynamic networks can be more complex than those for 
static networks. Training is more likely to be trapped in local minima. This 
suggests that you might need to train the network several times to achieve an 
optimal result. See [DHH01] and [HDH09] for some discussion on the training 
of dynamic networks.

The remaining sections of this chapter demonstrate how to create, train, and 
apply certain dynamic networks to modeling, detection, and forecasting 
problems. Some of the networks require dynamic backpropagation for 
computing the gradients and others do not. As a user, you do not need to decide 
whether or not dynamic backpropagation is needed. This is determined 
automatically by the software, which also decides on the best form of dynamic 
backpropagation to use. You just need to create the network and then invoke 
the standard train command.



4 Dynamic Networks

4-12

Focused Time-Delay Neural Network (timedelaynet)
Begin with the most straightforward dynamic network, which consists of a 
feedforward network with a tapped delay line at the input. This is called the 
focused time-delay neural network (FTDNN). This is part of a general class of 
dynamic networks, called focused networks, in which the dynamics appear only 
at the input layer of a static multilayer feedforward network. The following 
figure illustrates a two-layer FTDNN.

This network is well suited to time-series prediction. The following 
demonstrates the use of the FTDNN for predicting a classic time series.

The following figure is a plot of normalized intensity data recorded from a 
Far-Infrared-Laser in a chaotic state. This is a part of one of several sets of data 
used for the Santa Fe Time Series Competition [WeGe94]. In the competition, 
the objective was to use the first 1000 points of the time series to predict the 
next 100 points. Because our objective is simply to illustrate how to use the 
FTDNN for prediction, the network is trained here to perform one-step-ahead 
predictions. (You can use the resulting network for multistep-ahead 
predictions by feeding the predictions back to the input of the network and 
continuing to iterate.)

S
1
x 1

S
2
x 1

S
1
x 1

S
2
x 1

S
1
x 1 S

2
x 1

S
1
x (R

1
d) S

2
x S

1

S
1

S
2

n
1
( )t

n
2
( )t

p
1
( )t

a
1
( )t a

2
( )t

IW
1,1

LW
2,1

b
1

b
21 1

R
1

Inputs Layer 1 Layer 2

T
D
L

f
1

f
2

d



Focused Time-Delay Neural Network (timedelaynet)

4-13

The first step is to load the data, normalize it, and convert it to a time sequence 
(represented by a cell array):

y = laser_dataset;
y = y(1:600);

Now create the FTDNN network, using the timedelaynet command. This 
command is similar to the feedforwardnet command, with the additional 
input of the tapped delay line vector (the first input). For this example, use a 
tapped delay line with delays from 1 to 8, and use ten neurons in the hidden 
layer:

ftdnn_net = timedelaynet([1:8],10);
ftdnn_net.trainParam.epochs = 1000;
ftdnn_net.divideFcn = '';

Arrange the network inputs and targets for training. Because the network has 
a tapped delay line with a maximum delay of 8, begin by predicting the ninth 
value of the time series. You also need to load the tapped delay line with the 
eight initial values of the time series (contained in the variable Pi):

p = y(9:end);
t = y(9:end);

0 100 200 300 400 500 600
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1



4 Dynamic Networks

4-14

Pi=y(1:8);
ftdnn_net = train(ftdnn_net,p,t,Pi);

Notice that the input to the network is the same as the target. Because the 
network has a minimum delay of one time step, this means that you are 
performing a one-step-ahead prediction.

During training, the following training window will appear.

Training stopped because the maximum epoch was reached. From this window, 
you can display the response of the network by clicking Time-Series 
Response. The following figure will appear.



Focused Time-Delay Neural Network (timedelaynet)

4-15

Now simulate the network and determine the prediction error.

yp = ftdnn_net(p,Pi);
e = gsubtract(yp,t);
rmse = sqrt(mse(e))

rmse =
    0.9047

(Note that gsubtract is a general subtraction function that can operate on cell 
arrays.) This result is much better than you could have obtained using a linear 
predictor. You can verify this with the following commands, which design a 
linear filter with the same tapped delay line input as the previous FTDNN.

lin_net = linearlayer([1:8]);
lin_net.trainFcn='trainlm';
[lin_net,tr] = train(lin_net,p,t,Pi);
lin_yp = lin_net(p,Pi);



4 Dynamic Networks

4-16

lin_e = gsubtract(lin_yp-t);
lin_rmse = sqrt(mse(lin_e))

lin_rmse =
21.1386

The rms error is 21.1386 for the linear predictor, but 0.9407 for the nonlinear 
FTDNN predictor.

One nice feature of the FTDNN is that it does not require dynamic 
backpropagation to compute the network gradient. This is because the tapped 
delay line appears only at the input of the network, and contains no feedback 
loops or adjustable parameters. For this reason, you will find that this network 
trains faster than other dynamic networks. 

If you have an application for a dynamic network, try the linear network first 
(linearlayer) and then the FTDNN (timedelaynet). If neither network is 
satisfactory, try one of the more complex dynamic networks discussed in the 
remainder of this chapter.



Preparing Data (preparets)

4-17

Preparing Data (preparets)
You will notice in the last section that for dynamic networks there is a 
significant amount of data preparation that is required before training or 
simulating the network. This is because the tapped delay lines in the network 
need to be filled with initial conditions, which requires that part of the original 
data set be removed and shifted. (You can see the steps for doing this on page 
4-13.) There is a toolbox function that facilitates the data preparation for 
dynamic (time series) networks - preparets. For example, the following lines:

p = y(9:end);
t = y(9:end);
Pi = y(1:8);

can be replaced with

[p,Pi,Ai,t] = preparets(ftdnn_net,y,y);

The preparets function uses the network object to determine how to fill the 
tapped delay lines with initial conditions, and how to shift the data to create 
the correct inputs and targets to use in training or simulating the network. The 
general form for invoking preparets is

[X,Xi,Ai,T,EW,shift] = preparets(net,inputs,targets,feedback,EW)

The input arguments for preparets are the network object (net), the external 
(non-feedback) input to the network (inputs), the non-feedback target 
(targets), the feedback target (feedback), and the error weights (EW) (see 
“Error Weighting” on page 4-38). The difference between external and feedback 
signals will become clearer when the NARX network is described in “NARX 
Network (narxnet, closeloop)” on page 4-21. For the FTDNN network, there is 
no feedback signal.

The return arguments for preparets are the time shift between network 
inputs and outputs (shift), the network input for training and simulation (X), 
the initial inputs (Xi) for loading the tapped delay lines for input weights, the 
initial layer outputs (Ai) for loading the tapped delay lines for layer weights, 
the training targets (T), and the error weights (EW).

Using preparets eliminates the need to manually shift inputs and targets and 
load tapped delay lines. This is especially useful for more complex networks.



4 Dynamic Networks

4-18

Distributed Time-Delay Neural Network (newdtdnn)
The FTDNN had the tapped delay line memory only at the input to the first 
layer of the static feedforward network. You can also distribute the tapped 
delay lines throughout the network. The distributed TDNN was first 
introduced in [WaHa89] for phoneme recognition. The original architecture 
was very specialized for that particular problem. The figure below shows a 
general two-layer distributed TDNN.

This network can be used for a simplified problem that is similar to phoneme 
recognition. The network will attempt to recognize the frequency content of an 
input signal. The following figure shows a signal in which one of two 
frequencies is present at any given time.

S
1
x 1

S
1
x 1

S
1
x ( )R d

1 1
n

1
( )t

p
1
( )t

IW
1,1

b
11

R
1

Inputs Layer 1

T
D
L

d
1

S
2
x 1

S
2
x 1

S
2
x 1

S
2
x ( )S d

1 2

S
1

S
2

n
2
( )t

a
1
( )t a

2
( )t

LW
2,1

b
21

Layer 2

f
1

f
2

T
D
L

d
2



Distributed Time-Delay Neural Network (newdtdnn)

4-19

The following code creates this signal and a target network output. The target 
output is 1 when the input is at the low frequency and -1 when the input is at 
the high frequency.

time = 0:99;
y1 = sin(2*pi*time/10);
y2 = sin(2*pi*time/5);
y=[y1 y2 y1 y2];
t1 = ones(1,100);
t2 = -ones(1,100);
t = [t1 t2 t1 t2];

Now create the distributed TDNN network with the distdelaynet function. 
The only difference between the distdelaynet function and the timedelaynet 
function is that the first input argument is a cell array that contains the tapped 
delays to be used in each layer. In the next example, delays of zero to four are 
used in layer 1 and zero to three are used in layer 2. (To add some variety, the 
training function trainbr is used in this example instead of the default, which 
is trainlm. You can use any training function discussed in Chapter 3, 
“Multilayer Networks and Backpropagation Training.”)

0 50 100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

1.5



4 Dynamic Networks

4-20

d1 = 0:4;
d2 = 0:3;
p = con2seq(y);
t = con2seq(t);
dtdnn_net = distdelaynet({d1,d2},5);
dtdnn_net.trainFcn = 'trainbr';
dtdnn_net.divideFcn = '';
dtdnn_net.trainParam.epochs = 100;
dtdnn_net = train(dtdnn_net,p,t);
yp = sim(dtdnn_net,p);
yp = cell2mat(yp);
plotresponse(t,yp);

The following figure shows the trained network output. The network is able to 
accurately distinguish the two “phonemes.”

You will notice that the training is generally slower for the distributed TDNN 
network than for the FTDNN. This is because the distributed TDNN must use 
dynamic backpropagation.

0 50 100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

1.5



NARX Network (narxnet, closeloop)

4-21

NARX Network (narxnet, closeloop)
All the specific dynamic networks discussed so far have either been focused 
networks, with the dynamics only at the input layer, or feedforward networks. 
The nonlinear autoregressive network with exogenous inputs (NARX) is a 
recurrent dynamic network, with feedback connections enclosing several 
layers of the network. The NARX model is based on the linear ARX model, 
which is commonly used in time-series modeling.

The defining equation for the NARX model is

where the next value of the dependent output signal y(t) is regressed on 
previous values of the output signal and previous values of an independent 
(exogenous) input signal. You can implement the NARX model by using a 
feedforward neural network to approximate the function f. A diagram of the 
resulting network is shown below, where a two-layer feedforward network is 
used for the approximation. This implementation also allows for a vector ARX 
model, where the input and output can be multidimensional.

There are many applications for the NARX network. It can be used as a 
predictor, to predict the next value of the input signal. It can also be used for 
nonlinear filtering, in which the target output is a noise-free version of the 
input signal. The use of the NARX network is demonstrated in another 
important application, the modeling of nonlinear dynamic systems.

y t( ) f y t 1–( ) y t 2–( ) … y t ny–( ) u t 1–( ) u t 2–( ) … u t nu–( ), , , , , , ,( )=

S
1
x 1 S

2
x 1

S
1
x 1

S
2
x 1

S
1
x 1 S

2
x 1

R x 1
1

S
1
x R S

2
x S

1

S
1

S
2

n
1
( )t

n
2
( )t

p
1
( )t = ( )u t a

1
( )t a

2
( ) = ( )t ty

IW
1,1

LW
1,3

LW
2,1

b
1

b
21 1

R
1

Inputs Layer 1 Layer 2

T
D
L

T
D
L

f
1

f
2

^



4 Dynamic Networks

4-22

Before demonstrating the training of the NARX network, an important 
configuration that is useful in training needs explanation. You can consider the 
output of the NARX network to be an estimate of the output of some nonlinear 
dynamic system that you are trying to model. The output is fed back to the 
input of the feedforward neural network as part of the standard NARX 
architecture, as shown in the left figure below. Because the true output is 
available during the training of the network, you could create a series-parallel 
architecture (see [NaPa91]), in which the true output is used instead of feeding 
back the estimated output, as shown in the right figure below. This has two 
advantages. The first is that the input to the feedforward network is more 
accurate. The second is that the resulting network has a purely feedforward 
architecture, and static backpropagation can be used for training.

The following demonstrates the use of the series-parallel architecture for 
training an NARX network to model a dynamic system.

The example of the NARX network is the magnetic levitation system described 
beginning on page 5-18. The bottom graph in the following figure shows the 
voltage applied to the electromagnet, and the top graph shows the position of 
the permanent magnet. The data was collected at a sampling interval of 0.01 
seconds to form two time series.

u( )t u( )t

( )y t

T
D
L

T
D
L

T
D
L

T
D
L

( )y t^ ( )y t^
Feed

Forward
Network

Feed
Forward
Network

Parallel Architecture Series-Parallel Architecture



NARX Network (narxnet, closeloop)

4-23

The goal is to develop an NARX model for this magnetic levitation system. 

First, load the training data. Use tapped delay lines with two delays for both 
the input and the output, so training begins with the third data point. There 
are two inputs to the series-parallel network, the u(t) sequence and the y(t) 
sequence, so p is a cell array with two rows:

load magdata
[u,us] = mapminmax(u);
[y,ys] = mapminmax(y); 
y = con2seq(y);
u = con2seq(u);

Create the series-parallel NARX network using the function narxnet. Use 10 
neurons in the hidden layer and use trainlm for the training function, and then 
prepare the data with preparets:

d1 = [1:2];
d2 = [1:2];
narx_net = narxnet(d1,d2,10);
narx_net.divideFcn = '';
narx_net.trainParam.min_grad = 1e-10;
[p,Pi,Ai,t] = preparets(narx_net,u,{},y);

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

P
os

iti
on

0 500 1000 1500 2000 2500 3000 3500 4000
−1

0

1

2

3

4

V
ol

ta
ge



4 Dynamic Networks

4-24

(Notice that the y sequence is considered a feedback signal, which is an input 
that is also an output (target). Later, when you close the loop, the appropriate 
output will be connected to the appropriate input.) Now you are ready to train 
the network.

narx_net = train(narx_net,p,t,Pi);

You can now simulate the network and plot the resulting errors for the 
series-parallel implementation.

yp = sim(narx_net,p,Pi);
e = cell2mat(yp)-cell2mat(t);
plot(e)

The result is displayed in the following plot. You can see that the errors are 
very small. However, because of the series-parallel configuration, these are 
errors for only a one-step-ahead prediction. A more stringent test would be to 
rearrange the network into the original parallel form (closed loop) and then to 
perform an iterated prediction over many time steps. Now the parallel 
operation is demonstrated.

0 500 1000 1500 2000 2500 3000 3500 4000

−0.01

−0.005

0

0.005

0.01



NARX Network (narxnet, closeloop)

4-25

There is a toolbox function (closeloop) for converting NARX (and other) 
networks from the series-parallel configuration (open loop), which is useful for 
training, to the parallel configuration (closed loop), which is useful for 
multi-step-ahead prediction. The following command illustrates how to convert 
the network that you just trained to parallel form.

narx_net_closed = closeloop(narx_net);

To see the differences between the two networks, you can use the view 
command:

view(narx_net)

view(narx_net_closed)

You can now use the closed loop (parallel) configuration to perform an iterated 
prediction of 900 time steps. In this network you need to load the two initial 
inputs and the two initial outputs as initial conditions. You can use the 



4 Dynamic Networks

4-26

preparets function to prepare the data. It will use the network structure to 
determine how to divide and shift the data appropriately.

y1=y(1700:2600);
u1=u(1700:2600);
[p1,Pi1,Ai1,t1] = preparets(narx_net_closed,u1,{},y1);
yp1 = narx_net_closed(p1,Pi1,Ai1);
plot([cell2mat(yp1)' cell2mat(t1)'])

The following figure illustrates the iterated prediction. The solid line is the 
actual position of the magnet, and the dashed line is the position predicted by 
the NARX neural network. Even though the network is predicting 900 time 
steps ahead, the prediction is very accurate.

In order for the parallel response (iterated prediction) to be accurate, it is 
important that the network be trained so that the errors in the series-parallel 
configuration (one-step-ahead prediction) are very small.

You can also create a parallel (closed loop) NARX network, using the narxnet 
command with the fourth input argument set to ‘closed’, and train that 
network directly. Generally, the training takes longer, and the resulting 
performance is not as good as that obtained with series-parallel training.

0 100 200 300 400 500 600 700 800 900
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4



Layer-Recurrent Network (layrecnet)

4-27

Layer-Recurrent Network (layrecnet)
The next dynamic network to be introduced is the Layer-Recurrent Network 
(LRN). An earlier simplified version of this network was introduced by Elman 
[Elma90]. In the LRN, there is a feedback loop, with a single delay, around each 
layer of the network except for the last layer. The original Elman network had 
only two layers, and used a tansig transfer function for the hidden layer and 
a purelin transfer function for the output layer. The original Elman network 
was trained using an approximation to the backpropagation algorithm. The 
layrecnet command generalizes the Elman network to have an arbitrary 
number of layers and to have arbitrary transfer functions in each layer. The 
toolbox trains the LRN using exact versions of the gradient-based algorithms 
discussed in Chapter 3, “Multilayer Networks and Backpropagation Training.” 
The following figure illustrates a two-layer LRN.

The LRN configurations are used in many filtering and modeling applications 
discussed already. To demonstrate its operation, the “phoneme” detection 
problem discussed on page 4-18 is used. Here is the code to load the data and 
to create and train the network:

load phoneme
p = con2seq(y);
t = con2seq(t);
lrn_net = newlrn(p,t,8);
lrn_net.trainFcn = 'trainbr';

S
1
x 1

S
2
x 1

S
1
x 1

S
2
x 1

S
1
x 1 S

2
x 1

R x 1
1

S
1
x R S

2
x S

1

S
1

S
2

n
1
( )t

n
2
( )t

p
1
( )t a

1
( )t

a
2
( )t

IW
1,1

LW
1,1

LW
2,1

b
1

b
21 1

R
1

Inputs Layer 1 Layer 2

D

f
1

f
2



4 Dynamic Networks

4-28

lrn_net.trainParam.show = 5;
lrn_net.trainParam.epochs = 50;
lrn_net = train(lrn_net,p,t);

After training, you can plot the response using the following code:

y = lrn_net(p);
plot(cell2mat(y));

The following plot demonstrates that the network was able to detect the 
“phonemes.” The response is very similar to the one obtained using the TDNN.

0 50 100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

1.5



Training Custom Networks

4-29

Training Custom Networks
So far, this chapter has described the training procedures for several specific 
dynamic network architectures. However, any network that can be created in 
the toolbox can be trained using the training functions described in Chapter 3, 
“Multilayer Networks and Backpropagation Training,” so long as the 
components of the network are differentiable. This section will give an example 
of how to create and train a custom architecture. The custom architecture we 
will use is the model reference adaptive control (MRAC) system that is 
described in detail in “Model Reference Control” on page 5-23.

As you can see in “Model Reference Control” on page 5-23, the model reference 
control architecture has two subnetworks. One subnetwork is the model of the 
plant that you want to control. The other subnetwork is the controller. We will 
begin by training a NARX network that will become the plant model 
subnetwork. For this example, we will use the robot arm to represent the plant, 
as described in “Model Reference Control” on page 5-23. The following code will 
load data collected from the robot arm and create and train a NARX network. 
For this simple problem, you do not need to preprocess the data, and all of the 
data can be used for training, so no data division is needed.

[u,y] = robotarm_dataset;
y = con2seq(y);
u = con2seq(u);
d1 = [1:2];
d2 = [1:2];
S1 = 5;
narx_net = narxnet(d1,d2,S1);
narx_net.divideFcn = '';
narx_net.inputs{1}.processFcns = {};
narx_net.inputs{2}.processFcns = {};
narx_net.outputs{2}.processFcns = {};
narx_net.trainParam.min_grad = 1e-10;
[p,Pi,Ai,t] = preparets(narx_net,u,{},y);
narx_net = train(narx_net,p,t,Pi);
narx_net_closed = closeloop(narx_net);
view(narx_net_closed)

The resulting network is shown in the following figure.



4 Dynamic Networks

4-30

Now that the NARX plant model is trained, you can create the total MRAC 
system and insert the NARX model inside. Begin with a feedforward network, 
and then add the feedback connections. Also, turn off learning in the plant 
model subnetwork, since it has already been trained. The next stage of training 
will train only the controller subnetwork.

mrac_net = feedforwardnet([S1 1 S1]);
mrac_net.layerConnect = [0 1 0 1;1 0 0 0;0 1 0 1;0 0 1 0];
mrac_net.outputs{4}.feedbackMode = 'closed';
mrac_net.layers{2}.transferFcn = 'purelin';
mrac_net.layerWeights{3,4}.delays = 1:2;
mrac_net.layerWeights{3,2}.delays = 1:2;
mrac_net.layerWeights{3,2}.learn = 0;
mrac_net.layerWeights{3,4}.learn = 0;
mrac_net.layerWeights{4,3}.learn = 0;
mrac_net.biases{3}.learn = 0;
mrac_net.biases{4}.learn = 0;

The following code turns off data division and preprocessing, which are not 
needed for this example problem. It also sets the delays needed for certain 
layers and names the network.

mrac_net.divideFcn = '';
mrac_net.inputs{1}.processFcns = {};
mrac_net.outputs{4}.processFcns = {};
mrac_net.name = 'Model Reference Adaptive Control Network';
mrac_net.layerWeights{1,2}.delays = 1:2;
mrac_net.layerWeights{1,4}.delays = 1:2;
mrac_net.inputWeights{1}.delays = 1:2;



Training Custom Networks

4-31

To configure the network, we need some sample training data. The following 
code loads and plots the training data, and configures the network.

[refin,refout] = refmodel_dataset;
ind = 1:length(refin);
plot(ind,refin,ind,refout);
refin = con2seq(refin);
refout = con2seq(refout);
mrac_net = configure(mrac_net,refin,refout);

You want the closed-loop MRAC system to respond in the same way as the 
reference model that was used to generate this data. (See “Using the Model 
Reference Controller Block” on page 5-25 for a description of the reference 
model.)

Now insert the weights from the trained plant model network into the 
appropriate location of the MRAC system.

mrac_net.LW{3,2} = narx_net_closed.IW{1};

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1



4 Dynamic Networks

4-32

mrac_net.LW{3,4} = narx_net_closed.LW{1,2};
mrac_net.b{3} = narx_net_closed.b{1};
mrac_net.LW{4,3} = narx_net_closed.LW{2,1};
mrac_net.b{4} = narx_net_closed.b{2};

You can set the output weights of the controller network to zero, which will give 
the plant an initial input of zero.

mrac_net.LW{2,1} = zeros(size(mrac_net.LW{2,1}));
mrac_net.b{2} = 0;

You can also associate any plots and training function that you desire to the 
network.

mrac_net.plotFcns = {'plotperform','plottrainstate',...
'ploterrhist','plotregression','plotresponse'};

mrac_net.trainFcn = 'trainlm';

The final MRAC network can be viewed with the following command.

view(mrac_net)

Layer 3 and Layer 4 (output) make up the plant model subnetwork. Layer 1 
and Layer 2 make up the controller.

You can now prepare the training data and train the network.

[x_tot,xi_tot,ai_tot,t_tot] = ...
preparets(mrac_net,refin,{},refout);

mrac_net.trainParam.epochs = 50;
mrac_net.trainParam.min_grad = 1e-10;
[mrac_net,tr] = train(mrac_net,x_tot,t_tot,xi_tot,ai_tot);



Training Custom Networks

4-33

Note  Notice that you are using the trainlm training function here, but any of 
the training functions discussed in Chapter 3, “Multilayer Networks and 
Backpropagation Training,” could be used as well. Any network that you can 
create in the toolbox can be trained with any of those training functions. The 
only limitation is that all of the parts of the network must be differentiable.

You will find that the training of the MRAC system takes much longer that the 
training of the NARX plant model. This is because the network is recurrent and 
dynamic backpropagation must be used. This is determined automatically by 
the toolbox software and does not require any user intervention. There are 
several implementations of dynamic backpropagation (see [DeHa07]), and the 
toolbox software automatically determines the most efficient one for the 
selected network architecture and training algorithm.

After the network has been trained, you can test the operation by applying a 
test input to the MRAC network. The following code creates a skyline input 
function, which is a series of steps of random height and width, and applies it 
to the trained MRAC network.

testin = skyline(1000,50,200,-.7,.7);
testinseq = con2seq(testin);
testoutseq = mrac_net(testinseq);
testout = cell2mat(testoutseq);
figure;plot([testin' testout'])

From the figure below, you can see that the plant model output does follow the 
reference input with the correct critically-damped response, even though the 
input sequence was not the same as the input sequence in the training data. 
The steady state response is not perfect for each step, but this could be 
improved with a larger training set and perhaps more hidden neurons.

The purpose of this example was to show that you can create your own custom 
dynamic network and train it using the standard toolbox training functions 
without any modifications. Any network that you can create in the toolbox can 
be trained with the standard training functions, as long as each component of 
the network has a defined derivative.

It should be noted that recurrent networks are generally more difficult to train 
than feedforward networks. See [HDH09] for some discussion of these training 
difficulties.



4 Dynamic Networks

4-34

0 100 200 300 400 500 600 700 800 900 1000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6



Multiple Sequences, Time Series Utilities and Error Weighting

4-35

Multiple Sequences, Time Series Utilities and Error 
Weighting

There are a number of utility functions available in the toolbox for 
manipulating time series data sets. This section describes some of these 
functions, as well as a technique for weighting errors.

Multiple Sequences
There are times when time series data is not available in one long sequence, 
but rather as several shorter sequences. When dealing with static networks 
and concurrent batches of static data, you can simply append data sets together 
to form one large concurrent batch. However, you would not generally want to 
append time sequences together, since that would cause a discontinuity in the 
sequence. For these cases, you can create a concurrent set of sequences, as 
described in “Data Structures” on page 2-23. 

When training a network with a concurrent set of sequences, it is required that 
each sequence be of the same length. If this is not the case, then the shorter 
sequence inputs and targets should be padded with NaNs, in order to make all 
sequences the same length. The targets that are assigned values of NaN will 
be ignored during the calculation of network performance.

The following code illustrates the use of the function catsamples to combine 
several sequences together to form a concurrent set of sequences, while at the 
same time padding the shorter sequences.

load magmulseq
y_mul = catsamples(y1,y2,y3,'pad');
u_mul = catsamples(u1,u2,u3,'pad');
d1 = [1:2];
d2 = [1:2];
narx_net = narxnet(d1,d2,10);
narx_net.divideFcn = '';
narx_net.trainParam.min_grad = 1e-10;
[p,Pi,Ai,t] = preparets(narx_net,u_mul,{},y_mul);
narx_net = train(narx_net,p,t,Pi);

Time Series Utilities
There are other utility functions that are useful when manipulating neural 
network data, which can consist of time sequences, concurrent batches or 



4 Dynamic Networks

4-36

combinations of both. It can also include multiple signals (as in multiple input, 
output or target vectors). The following diagram illustrates the structure of a 
general neural network data object. For this example there are three time steps 
of a batch of four samples (four sequences) of two signals. One signal has two 
elements, and the other signal has three elements.

The following table lists some of the more useful toolbox utility functions for 
neural network data. They allow you to do things like add, subtract, multiply, 
divide, etc. (Addition and subtraction of cell arrays do not have standard 
definitions, but for neural network data these operations are well-defined and 
are implemented in the following functions.)

Function Name Operation

gadd Add neural network (nn) data.

gdivide Divide nn data.

getelements Selects indicated elements from nn data.

getsamples Selects indicated samples from nn data.

getsignals Selects indicated signals from nn data.

gettimesteps Selects indicated time steps from nn data.

gmultiply Multiply nn data.

gnegate Take the negative of nn data.



Multiple Sequences, Time Series Utilities and Error Weighting

4-37

There are also some useful plotting and analysis functions for dynamic 
networks that are listed in the following table. There are examples of using 
these functions in “Time Series Prediction” on page 1-66.

gsubtract Subtract nn data.

nndata Creates an nn data object of specified size, where 
values are assigned randomly or to a constant.

nnsize Returns number of elements, samples, time steps 
and signals in an nn data object.

numelements Returns the number of elements in nn data.

numsamples Returns the number of samples in nn data.

numsignals Returns the number of signals in nn data.

numtimesteps Returns the number of time steps in nn data.

setelements Sets specified elements of nn data.

setsamples Sets specified samples of nn data.

setsignals Sets specified signals of nn data.

settimesteps Sets specified time steps of nn data.

Function Name Operation

ploterrcorr Plot the autocorrelation function of the error.

plotinerrcorr Plot the crosscorrelation between the error and 
the input.

plotresponse Plot network output and target versus time.

Function Name Operation



4 Dynamic Networks

4-38

Error Weighting
In the default mean square error performance function (see Train the Network 
(p. 3-14)), each squared error contributes the same amount to the performance 
function, as in

.

However, the toolbox allows you to weight each squared error individually, as 
in

.

The error weighting object needs to have the same dimensions as the target 
data. In this way, errors can be weighted according to time step, sample 
number, signal number or element number. The following is an example of 
weighting the errors at the end of a time sequence more heavily than errors at 
the beginning of a time sequence. The error weighting object is passed as the 
last argument in the call to train.

y = laser_dataset;
y = y(1:600);
ind = 1:600;
ew = 0.99.^(600-ind);
figure;plot(w)
ew = con2seq(ew);
ftdnn_net = timedelaynet([1:8],10);
ftdnn_net.trainParam.epochs = 1000;
ftdnn_net.divideFcn = '';
[p,Pi,Ai,t,ew1] = preparets(ftdnn_net,y,y,{},ew);
[ftdnn_net1,tr] = train(ftdnn_net,p,t,Pi,Ai,ew1);

The following figure illustrates the error weighting for this example. There are 
600 time steps in the training data, and the errors are weighted exponentially, 
with the last squared error having a weight of 1, and the squared error at the 
first time step having a weighting of 0.0024.

F mse 1
N
---- ei( )2

i 1=

N


1
N
---- ti ai–( )2

i 1=

N

= = =

F mse 1
N
---- wi

e ei( )
2

i 1=

N


1
N
---- wi

e ti ai–( )
2

i 1=

N

= = =



Multiple Sequences, Time Series Utilities and Error Weighting

4-39

The response of the trained network is shown in the following figure. If you 
compare this response to the response of the network that was trained without 
exponential weighting on the squared errors, as shown on page 4-15, you can 
see that the errors late in the sequence are smaller than the errors earlier in 
the sequence. The errors that occurred later are smaller because they 
contributed more to the weighted performance index than earlier errors.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



4 Dynamic Networks

4-40



 

5

Control Systems

Introduction (p. 5-2)

NN Predictive Control (p. 5-4)

NARMA-L2 (Feedback Linearization) Control (p. 5-14)

Model Reference Control (p. 5-23)

Importing and Exporting (p. 5-31)



5 Control Systems

5-2

Introduction
Neural networks have been applied successfully in the identification and 
control of dynamic systems. The universal approximation capabilities of the 
multilayer perceptron make it a popular choice for modeling nonlinear systems 
and for implementing general-purpose nonlinear controllers [HaDe99]. This 
chapter introduces three popular neural network architectures for prediction 
and control that have been implemented in the Neural Network Toolbox™ 
software: 

• Model Predictive Control

• NARMA-L2 (or Feedback Linearization) Control

• Model Reference Control

This chapter presents brief descriptions of each of these architectures and 
demonstrates how you can use them.

There are typically two steps involved when using neural networks for control:

1 System identification

2 Control design

In the system identification stage, you develop a neural network model of the 
plant that you want to control. In the control design stage, you use the neural 
network plant model to design (or train) the controller. In each of the three 
control architectures described in this chapter, the system identification stage 
is identical. The control design stage, however, is different for each 
architecture: 

• For model predictive control, the plant model is used to predict future 
behavior of the plant, and an optimization algorithm is used to select the 
control input that optimizes future performance.

• For NARMA-L2 control, the controller is simply a rearrangement of the 
plant model. 

• For model reference control, the controller is a neural network that is trained 
to control a plant so that it follows a reference model. The neural network 
plant model is used to assist in the controller training.



Introduction

5-3

The next three sections of this chapter discuss model predictive control, 
NARMA-L2 control, and model reference control. Each section consists of a 
brief description of the control concept, followed by a demonstration of the use 
of the appropriate Neural Network Toolbox function. These three controllers 
are implemented as Simulink® blocks, which are contained in the Neural 
Network Toolbox blockset.

To assist you in determining the best controller for your application, the 
following list summarizes the key controller features. Each controller has its 
own strengths and weaknesses. No single controller is appropriate for every 
application.

Model Predictive Control
This controller uses a neural network model to predict future plant responses 
to potential control signals. An optimization algorithm then computes the 
control signals that optimize future plant performance. The neural network 
plant model is trained offline, in batch form, using any of the training 
algorithms discussed in Chapter 3, “Multilayer Networks and 
Backpropagation Training.” (This is true for all three control architectures.) 
The controller, however, requires a significant amount of online computation, 
because an optimization algorithm is performed at each sample time to 
compute the optimal control input.

NARMA-L2 Control
This controller requires the least computation of these three architectures. The 
controller is simply a rearrangement of the neural network plant model, which 
is trained offline, in batch form. The only online computation is a forward pass 
through the neural network controller. The drawback of this method is that the 
plant must either be in companion form, or be capable of approximation by a 
companion form model. (“Identification of the NARMA-L2 Model” on page 5-14 
describes the companion form model.)

Model Reference Control
The online computation of this controller, like NARMA-L2, is minimal. 
However, unlike NARMA-L2, the model reference architecture requires that a 
separate neural network controller be trained offline, in addition to the neural 
network plant model. The controller training is computationally expensive, 
because it requires the use of dynamic backpropagation [HaJe99]. On the 
positive side, model reference control applies to a larger class of plant than does 
NARMA-L2 control.



5 Control Systems

5-4

NN Predictive Control
The neural network predictive controller that is implemented in the Neural 
Network Toolbox™ software uses a neural network model of a nonlinear plant 
to predict future plant performance. The controller then calculates the control 
input that will optimize plant performance over a specified future time horizon. 
The first step in model predictive control is to determine the neural network 
plant model (system identification). Next, the plant model is used by the 
controller to predict future performance. (See the Model Predictive Control 
Toolbox™ documentation for complete coverage of the application of various 
model predictive control strategies to linear systems.)

The following section describes the system identification process. This is 
followed by a description of the optimization process. Finally, it discusses how 
to use the model predictive controller block that is implemented in the 
Simulink® environment.

System Identification
The first stage of model predictive control is to train a neural network to 
represent the forward dynamics of the plant. The prediction error between the 
plant output and the neural network output is used as the neural network 
training signal. The process is represented by the following figure: 

Plant

Neural Network

Model

Learning
Algorithm

+-

Error

u

ym

yp



NN Predictive Control

5-5

The neural network plant model uses previous inputs and previous plant 
outputs to predict future values of the plant output. The structure of the neural 
network plant model is given in the following figure.

This network can be trained offline in batch mode, using data collected from 
the operation of the plant. You can use any of the training algorithms discussed 
in Chapter 3, “Multilayer Networks and Backpropagation Training,” for 
network training. This process is discussed in more detail later in this chapter.

Predictive Control
The model predictive control method is based on the receding horizon 
technique [SoHa96]. The neural network model predicts the plant response 
over a specified time horizon. The predictions are used by a numerical 
optimization program to determine the control signal that minimizes the 
following performance criterion over the specified horizon.

where N1, N2, and Nu and define the horizons over which the tracking error 
and the control increments are evaluated. The u' variable is the tentative 
control signal, yr is the desired response, and ym is the network model response. 
The p value determines the contribution that the sum of the squares of the 
control increments has on the performance index. 

The following block diagram illustrates the model predictive control process. 
The controller consists of the neural network plant model and the optimization 

IW1,1

IW1,2

b1

LW2,1

b21
1

TDL

TDL

yp t( )

u t( )

ym t 1+( )

Layer 1Inputs Layer 2

S 1 1

J yr t j+( ) ym t j+( )–( )2

j N1=

N2

 ρ u' t j 1–+( ) u' t j 2–+( )–( )2

j 1=

Nu

+=



5 Control Systems

5-6

block. The optimization block determines the values of u' that minimize J, and 
then the optimal u is input to the plant. The controller block is implemented in 
Simulink, as described in the following section.

Using the NN Predictive Controller Block
This section demonstrates how the NN Predictive Controller block is used. The 
first step is to copy the NN Predictive Controller block from the Neural 
Network Toolbox blockset to your model window. See your Simulink 
documentation if you are not sure how to do this. This step is skipped in the 
following demonstration.

A demo model is provided with the Neural Network Toolbox software to 
demonstrate the predictive controller. This demo uses a catalytic Continuous 
Stirred Tank Reactor (CSTR). A diagram of the process is shown in the 
following figure.

The dynamic model of the system is

Optimization

Plant

Neural
Network
Model

u yp

ymu'
yr

Controller



NN Predictive Control

5-7

where h(t) is the liquid level, Cb(t) is the product concentration at the output 
of the process, w1(t) is the flow rate of the concentrated feed Cb1, and w2(t) is 
the flow rate of the diluted feed Cb2. The input concentrations are set to 
Cb1 = 24.9 and Cb2 = 0.1. The constants associated with the rate of 
consumption are k1 = 1 and k2 = 1. 

The objective of the controller is to maintain the product concentration by 
adjusting the flow w1(t). To simplify the demonstration, set w2(t) = 0.1. The 
level of the tank h(t) is not controlled for this experiment.

To run this demo, follow these steps:

1 Start MATLAB®.

2 Run the demo model by typing predcstr in the MATLAB Command 
Window. This command starts Simulink and creates the following model 
window. The NN Predictive Controller block is already in the model.

w1 w2

Cb1 Cb2

Cb

w0

h

dh t( )
dt

--------------- w1 t( ) w2 t( ) 0.2 h t( )–+=

dCb t( )
dt

------------------ Cb1 Cb t( )–( )
w1 t( )
h t( )

-------------- Cb2 Cb t( )–( )
w2 t( )
h t( )

--------------
k1Cb t( )

1 k2Cb t( )+( )2
--------------------------------------–+=



5 Control Systems

5-8

3 Double-click the NN Predictive Controller block. This brings up the 
following window for designing the model predictive controller. This window 
enables you to change the controller horizons N2 and Nu. (N1 is fixed at 1.) 
The weighting parameter p, described earlier, is also defined in this window. 
The parameter  is used to control the optimization. It determines how 
much reduction in performance is required for a successful optimization 
step. You can select which linear minimization routine is used by the 
optimization algorithm, and you can decide how many iterations of the 
optimization algorithm are performed at each sample time. The linear 
minimization routines are slight modifications of those discussed in Chapter 
3, “Multilayer Networks and Backpropagation Training.”

This block contains the Simulink 
CSTR plant model.

This NN Predictive Controller block was copied from the Neural Network Toolbox 
blockset to this model window. The Control Signal was connected to the input of 
the plant model. The output of the plant model was connected to Plant Output. 
The reference signal was connected to Reference.

α



NN Predictive Control

5-9

4 Select Plant Identification. This opens the following window. You must 
develop the neural network plant model before you can use the controller. 
The plant model predicts future plant outputs. The optimization algorithm 
uses these predictions to determine the control inputs that optimize future 
performance. The plant model neural network has one hidden layer, as 
shown earlier. You select the size of that layer, the number of delayed inputs 
and delayed outputs, and the training function in this window. You can 
select any of the training functions described in Chapter 3, “Multilayer 
Networks and Backpropagation Training,” to train the neural network plant 
model.

The Cost Horizon N2 is the 
number of time steps over which 
the prediction errors are 
minimized.

The File menu has several 
items, including ones that 
allow you to import and 
export controller and plant 
networks.

The Control Horizon Nu is 
the number of time steps 
over which the control 
increments are minimized.

The Control Weighting Factor 
multiplies the sum of squared 
control increments in the 
performance function.

You can select from several 
line search routines to be 
used in the performance 
optimization algorithm.

This button opens the Plant 
Identification window. The plant 
must be identified before the 
controller is used.

After the controller parameters 
have been set, select OK or Apply 
to load the parameters into the 
Simulink model.

This selects the number of 
iterations of the 
optimization algorithm to 
be performed at each 
sample time.

This parameter 
determines when the 
line search stops.



5 Control Systems

5-10

.

5 Select the Generate Training Data button. The program generates training 
data by applying a series of random step inputs to the Simulink plant model. 

This button begins the 
plant model training. 
Generate or import data 
before training.

After the plant model has been 
trained, select OK or Apply to 
load the network into the Simulink 
model.

You can use validation 
(early stopping) and 
testing data during 
training. 

Number of data points 
generated for training, 
validation, and test 
sets.

Simulink plant model 
used to generate 
training data (file 
with.mdl extension).

The random plant input is 
a series of steps of random 
height occurring at 
random intervals. These 
fields set the minimum and 
maximum height and 
interval.

You can use any 
training function to 
train the plant model.

You can define the size 
of the two tapped 
delay lines coming into 
the plant model.

The number of neurons in the first 
layer of the plant model network.

Interval at which the program collects data 
from the Simulink plant model.

The File menu has several items, including ones that 
allow you to import and export plant model 
networks.

You can normalize the 
data using the premnmx 
function.

This button starts the 
training data generation.

You can use existing data 
to train the network. If you 
select this, a field will 
appear for the filename.

You can select a range 
on the output data to 
be used in training.

Select this option to continue 
training with current weights. 
Otherwise, you use randomly 
generated weights.

Number of 
iterations of plant 
training to be 
performed.



NN Predictive Control

5-11

The potential training data is then displayed in a figure similar to the 
following.

6 Select Accept Data, and then select Train Network from the Plant 
Identification window. Plant model training begins. The training proceeds 
according to the training algorithm (trainlm in this case) you selected. This 
is a straightforward application of batch training, as described in Chapter 3, 
“Multilayer Networks and Backpropagation Training.” After the training is 
complete, the response of the resulting plant model is displayed, as in the 

Accept the data if it is sufficiently 
representative of future plant 
activity. Then plant training begins.

If you refuse the training data, you 
return to the Plant Identification 
window and restart the training.



5 Control Systems

5-12

following figure. (There are also separate plots for validation and testing 
data, if they exist.) 

You can then continue training with the same data set by selecting Train 
Network again, you can Erase Generated Data and generate a new data 
set, or you can accept the current plant model and begin simulating the 
closed loop system. For this demonstration, begin the simulation, as shown 
in the following steps.

7 Select OK in the Plant Identification window. This loads the trained neural 
network plant model into the NN Predictive Controller block.

8 Select OK in the Neural Network Predictive Control window. This loads the 
controller parameters into the NN Predictive Controller block.

9 Return to the Simulink model and start the simulation by choosing the Start 
command from the Simulation menu. As the simulation runs, the plant 
output and the reference signal are displayed, as in the following figure.

Random plant input – 
steps of random height 
and width.

Difference between 
plant output and 
neural network model 
output.

Output of Simulink 
plant model.

Neural network plant 
model output (one step 
ahead prediction).



NN Predictive Control

5-13



5 Control Systems

5-14

NARMA-L2 (Feedback Linearization) Control
The neurocontroller described in this section is referred to by two different 
names: feedback linearization control and NARMA-L2 control. It is referred to 
as feedback linearization when the plant model has a particular form 
(companion form). It is referred to as NARMA-L2 control when the plant model 
can be approximated by the same form. The central idea of this type of control 
is to transform nonlinear system dynamics into linear dynamics by canceling 
the nonlinearities. This section begins by presenting the companion form 
system model and demonstrating how you can use a neural network to identify 
this model. Then it describes how the identified neural network model can be 
used to develop a controller. This is followed by a demonstration of how to use 
the NARMA-L2 Control block, which is contained in the Neural Network 
Toolbox™ blockset.

Identification of the NARMA-L2 Model
As with model predictive control, the first step in using feedback linearization 
(or NARMA-L2) control is to identify the system to be controlled. You train a 
neural network to represent the forward dynamics of the system. The first step 
is to choose a model structure to use. One standard model that is used to 
represent general discrete-time nonlinear systems is the nonlinear 
autoregressive-moving average (NARMA) model:

where u(k) is the system input, and y(k) is the system output. For the 
identification phase, you could train a neural network to approximate the 
nonlinear function N. This is the identification procedure used for the NN 
Predictive Controller.

If you want the system output to follow some reference trajectory 
y(k + d) = yr(k + d), the next step is to develop a nonlinear controller of the 
form

The problem with using this controller is that if you want to train a neural 
network to create the function G to minimize mean square error, you need to 
use dynamic backpropagation ([NaPa91] or [HaJe99]). This can be quite slow. 
One solution, proposed by Narendra and Mukhopadhyay [NaMu97], is to use 

y k d+( ) N y k( ) y k 1–( ) … y k n– 1+( ) u k( ) u k 1–( ) … u k n– 1+( ), , , , , , ,[ ]=

u k( ) G y k( ) y k 1–( ) … y k n– 1+( ) yr k d+( ) u k 1–( ) … u k m– 1+( ), , , , , , ,[ ]=



NARMA-L2 (Feedback Linearization) Control

5-15

approximate models to represent the system. The controller used in this section 
is based on the NARMA-L2 approximate model:

This model is in companion form, where the next controller input u(k) is not 
contained inside the nonlinearity. The advantage of this form is that you can 
solve for the control input that causes the system output to follow the reference 
y(k + d) = yr(k + d). The resulting controller would have the form

Using this equation directly can cause realization problems, because you must 
determine the control input u(k) based on the output at the same time, y(k). 
So, instead, use the model

where . The following figure shows the structure of a neural network 
representation.

ŷ k d+( ) f y k( ) y k 1–( ) … y k n– 1+( ) u k 1–( ) … u k m– 1+( ), , , , , ,[ ]
g y k( ) y k 1–( ) … y k n– 1+( ) u k 1–( ) … u k m– 1+( ), , , , , ,[ ] u k( )⋅+

=

u k( )
yr k d+( ) f y k( ) y k 1–( ) … y k n– 1+( ) u k 1–( ) … u k n– 1+( ), , , , , ,[ ]–

g y k( ) y k 1–( ) … y k n– 1+( ) u k 1–( ) … u k n– 1+( ), , , , , ,[ ]
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

y k d+( ) f y k( ) y k 1–( ) … y k n– 1+( ) u k( ) u k 1–( ) … u k n– 1+( ), , , , , , ,[ ]
g y k( ) … y k n– 1+( ) u k( ) … u k n– 1+( ), , , , ,[ ] u k 1+( )⋅+

=

d 2≥



5 Control Systems

5-16

NARMA-L2 Controller
Using the NARMA-L2 model, you can obtain the controller

which is realizable for . The following figure is a block diagram of the 
NARMA-L2 controller.

u(t+1)
a1(t)

1

��
��

b1
��
��IW1,1

Neural Network Approximation of g ( )

Neural Network Approximation of f ( )

a2 (t)

1
��
��LW2,1

��
��

b2

T
D
L
n-1

a3 (t)

1

��
��

IW3,2

��b3

y(t+2)

T
D
L
n-1 ��

��
LW4,3

��b41

a4 (t)y(t+1)

��
��

IW1,2

T
D
L
n-1

��
��

IW3,1

T
D
L
n-1

��
��
��

��
��
��

��
��
��

��
��
��

u(t+1)
a1(t)

1

��
��

b1
��
��IW1,1

Neural Network Approximation of g ( )

Neural Network Approximation of f ( )

a2 (t)

1
��
��LW2,1

��
��

b2

T
D
L
n-1

a3 (t)

1

��
��

IW3,2

��b3

y(t+2)

T
D
L
n-1 ��

��
LW4,3

��b41

a4 (t)y(t+1)

��
��

IW1,2

T
D
L
n-1

��
��

IW3,1

T
D
L
n-1

��
��
��

��
��
��

��
��
��

��
��
��

u k 1+( )
yr k d+( ) f y k( ) … y k n– 1+( ) u k( ) … u k n– 1+( ), , , , ,[ ]–

g y k( ) … y k n– 1+( ) u k( ) … u k n– 1+( ), , , , ,[ ]
------------------------------------------------------------------------------------------------------------------------------------------------------=

d 2≥



NARMA-L2 (Feedback Linearization) Control

5-17

This controller can be implemented with the previously identified NARMA-L2 
plant model, as shown in the following figure.

Reference
Model

f g

Plant

T
D
L

T
D
L

+

-

+

-

r yr

yuController

ec



5 Control Systems

5-18

Using the NARMA-L2 Controller Block
This section demonstrates how the NARMA-L2 controller is trained. The first 
step is to copy the NARMA-L2 Controller block from the Neural Network 
Toolbox blockset to your model window. See your Simulink® documentation if 
you are not sure how to do this. This step is skipped in the following 
demonstration.

A demo model is provided with the Neural Network Toolbox software to 
demonstrate the NARMA-L2 controller. In this demo, the objective is to control 
the position of a magnet suspended above an electromagnet, where the magnet 
is constrained so that it can only move in the vertical direction, as in the 
following figure.

u(t+1)

a1(t)

1

��
��

b1
��
��IW1,1

Neural Network Approximation of g ( )

Neural Network Approximation of f ( )

a2 (t)

1
��
��LW2,1

��
��

b2

T
D
L
n-1

a3 (t)

1

��
��

IW3,2

��b3

T
D
L
n-1 ��

��
LW4,3

��b41

a4 (t)y(t+1)

��
��

IW1,2

T
D
L
n-1

��
��

IW3,1

T
D
L
n-1

��
��
��

��
��
��

��
��
��

��
��
��

yr(t+2)

-
+



NARMA-L2 (Feedback Linearization) Control

5-19

The equation of motion for this system is

where y(t) is the distance of the magnet above the electromagnet, i(t) is the 
current flowing in the electromagnet, M is the mass of the magnet, and g is the 
gravitational constant. The parameter  is a viscous friction coefficient that is 
determined by the material in which the magnet moves, and  is a field 
strength constant that is determined by the number of turns of wire on the 
electromagnet and the strength of the magnet. 

To run this demo, follow these steps:

1 Start MATLAB®.

2 Run the demo model by typing narmamaglev in the MATLAB Command 
Window. This command starts Simulink and creates the following model 
window. The NARMA-L2 Control block is already in the model.

+

-

N

S

y t( )

i t( )

d2y t( )

dt2
----------------- g–

α
M
----- i2 t( )

y t( )
------------ β

M
-----dy t( )

dt
--------------–+=

β
α



5 Control Systems

5-20

3 Double-click the NARMA-L2 Controller block. This brings up the following 
window. This window enables you to train the NARMA-L2 model. There is 
no separate window for the controller, because the controller is determined 
directly from the model, unlike the model predictive controller.



NARMA-L2 (Feedback Linearization) Control

5-21

4 This window works the same as the other Plant Identification windows, so 
the training process is not repeated. Instead, simulate the NARMA-L2 
controller.

5 Return to the Simulink model and start the simulation by choosing the 
Start command from the Simulation menu. As the simulation runs, the 
plant output and the reference signal are displayed, as in the following 
figure.



5 Control Systems

5-22



Model Reference Control

5-23

Model Reference Control
The neural model reference control architecture uses two neural networks: a 
controller network and a plant model network, as shown in the following 
figure. The plant model is identified first, and then the controller is trained so 
that the plant output follows the reference model output.

The figure on the following page shows the details of the neural network plant 
model and the neural network controller as they are implemented in the 
Neural Network Toolbox™ software. Each network has two layers, and you can 
select the number of neurons to use in the hidden layers. There are three sets 
of controller inputs:

• Delayed reference inputs

• Delayed controller outputs

• Delayed plant outputs

For each of these inputs, you can select the number of delayed values to use. 
Typically, the number of delays increases with the order of the plant. There are 
two sets of inputs to the neural network plant model:

• Delayed controller outputs

• Delayed plant outputs

As with the controller, you can set the number of delays. The next section 
demonstrates how you can set the parameters.

PlantNN
Controller

-

+

+

-

Command
Input

Plant
Output

Model 
Error

Control 
Input

NN
Plant Model

Reference 
Model

Control
Error



5 Control Systems

5-24

r(
t)

a3
 (t

)

1

1

n1
(t

)

n3
(t

)

�
�

�
�

L
W

3,
2

��b
1

�
�

�
� IW

1,
1

�
�

�
�

b3

f2

�
�

�
�

�
�

�
� f1

���� f3

T D L
�
�LW

1,
2

y(
t)

T D L
�
�

�
� LW

1,
4

T D L �
�
�

�
�
�

L
W

3,
4

T D L
�
�
�
�

L
W

4,
3

�
�
�
�

b4

���� f4

1

a4
 (t

)
n4

(t
)

a2
 (t

)

1

�
�
�

�
�
�

L
W

2,
1

�
�

�
�

b2

�
�

�
�

�
�

�
� f2

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

P
la

nt
T D L

e p
(t

)

e c
(t

)

c(
t)

n2
(t

)



Model Reference Control

5-25

Using the Model Reference Controller Block
This section demonstrates how the neural network controller is trained. The 
first step is to copy the Model Reference Control block from the Neural Network 
Toolbox blockset to your model window. See your Simulink® documentation if 
you are not sure how to do this. This step is skipped in the following 
demonstration.

A demo model is provided with the Neural Network Toolbox software to 
demonstrate the model reference controller. In this demo, the objective is to 
control the movement of a simple, single-link robot arm, as shown in the 
following figure:

The equation of motion for the arm is

where φ is the angle of the arm, and u is the torque supplied by the DC motor. 

The objective is to train the controller so that the arm tracks the reference 
model

where yr is the output of the reference model, and r is the input reference 
signal. 

φ

d2φ

dt2
---------- 10 φsin– 2dφ

dt
-------– u+=

d2yr

dt2
------------ 9yr– 6

dyr
dt

---------– 9r+=



5 Control Systems

5-26

This demo uses a neural network controller with a 5-13-1 architecture. The 
inputs to the controller consist of two delayed reference inputs, two delayed 
plant outputs, and one delayed controller output. A sampling interval of 0.05 
seconds is used.

To run this demo, follow these steps.

1 Start MATLAB®.

2 Run the demo model by typing mrefrobotarm in the MATLAB Command 
Window. This command starts Simulink and creates the following model 
window. The Model Reference Control block is already in the model. 

3 Double-click the Model Reference Control block. This brings up the following 
window for training the model reference controller.



Model Reference Control

5-27

4 The next step would normally be to select Plant Identification, which opens 
the Plant Identification window. You would then train the plant model. 
Because the Plant Identification window is identical to the one used with 
the previous controllers, that process is omitted here.

5 Select Generate Data. The program starts generating the data for training 
the controller. After the data is generated, the following window appears.

The file menu has several 
items, including ones that 
allow you to import and 
export controller and plant 
networks. You must specify a 

Simulink reference 
model for the plant 
to follow.

The parameters in this block 
specify the random 
reference input for training. 
The reference is a series of 
random steps at random 
intervals.

This button opens the Plant 
Identification window. The plant 
must be identified before the 
controller is trained.

This block specifies 
the inputs to the 
controller. 

The training data is 
broken into 
segments. Specify 
the number of 
training epochs for 
each segment.

After the controller has been 
trained, select OK or Apply to 
load the network into the Simulink 
model.

Current weights are used 
as initial conditions to 
continue training.

If selected, 
segments of data 
are added to the 
training set as 
training continues. 
Otherwise, only one 
segment at a time is 
used.

You must generate or 
import training data 
before you can train the 
controller.



5 Control Systems

5-28

6 Select Accept Data. Return to the Model Reference Control window and 
select Train Controller. The program presents one segment of data to the 
network and trains the network for a specified number of iterations (five in 
this case). This process continues, one segment at a time, until the entire 
training set has been presented to the network. Controller training can be 
significantly more time consuming than plant model training. This is 
because the controller must be trained using dynamic backpropagation (see 
[HaJe99]). After the training is complete, the response of the resulting 
closed loop system is displayed, as in the following figure.

Select this if the training data 
shows enough variation to 
adequately train the controller.

If the data is not adequate, select 
this button and then go back to the 
controller window and select 
Generate Data again.



Model Reference Control

5-29

7 Go back to the Model Reference Control window. If the performance of the 
controller is not accurate, then you can select Train Controller again, which 
continues the controller training with the same data set. If you would like to 
use a new data set to continue training, select Generate Data or Import 
Data before you select Train Controller. (Be sure that Use Current 
Weights is selected if you want to continue training with the same weights.) 
It might also be necessary to retrain the plant model. If the plant model is 
not accurate, it can affect the controller training. For this demonstration, 
the controller should be accurate enough, so select OK. This loads the 
controller weights into the Simulink model.

8 Return to the Simulink model and start the simulation by selecting the 
Start command from the Simulation menu. As the simulation runs, the 
plant output and the reference signal are displayed, as in the following 
figure.

This axis displays the 
random reference input 
that was used for training.

This axis displays the 
response of the reference 
model and the response of 
the closed loop plant. The 
plant response should 
follow the reference 
model.



5 Control Systems

5-30



Importing and Exporting

5-31

Importing and Exporting
You can save networks and training data to the workspace or to a disk file. The 
following two sections demonstrate how you can do this.

Importing and Exporting Networks
The controller and plant model networks that you develop are stored within 
Simulink® controller blocks. At some point you might want to transfer the 
networks into other applications, or you might want to transfer a network from 
one controller block to another. You can do this by using the Import Network 
and Export Network menu options. The following demonstration leads you 
through the export and import processes. (The NARMA-L2 window is used for 
this demonstration, but the same procedure applies to all the controllers.)

1 Repeat the first three steps of the NARMA-L2 demonstration “Using the 
NARMA-L2 Controller Block” on page 5-18. The NARMA-L2 Plant 
Identification window should then be open.

2 Select Export from the File menu, as shown below.

This causes the following window to open.



5 Control Systems

5-32

3 Select Export to Disk. The following window opens. Enter the filename 
test in the box, and select Save. This saves the controller and plant 
networks to disk.

4 Retrieve that data with the Import menu option. Select Import Network 
from the File menu, as in the following figure.

Here you can select 
which variables or 
networks will be 
exported.

You can save the 
networks as network 
objects, or as weights 
and biases.

You can send the 
networks to disk, or 
to the workspace.

Here you can choose 
names for the network 
objects.

You can also save the 
networks as Simulink 
models.

The filename goes 
here.



Importing and Exporting

5-33

This causes the following window to appear. Follow the steps indicated to 
retrieve the data that you previously exported. Once the data is retrieved, 
you can load it into the controller block by selecting OK or Apply. Notice that 
the window only has an entry for the plant model, even though you saved 
both the plant model and the controller. This is because the NARMA-L2 
controller is derived directly from the plant model, so you don’t need to 
import both networks.



5 Control Systems

5-34

Select MAT-file and 
select Browse.

Available MAT-files will 
appear here. Select the 
appropriate file; then select 
Open.

The available networks 
appear here.

Select the appropriate plant 
and/or controller and move 
them into the desired 
position and select OK.



Importing and Exporting

5-35

Importing and Exporting Training Data
The data that you generate to train networks exists only in the corresponding 
plant identification or controller training window. You might want to save the 
training data to the workspace or to a disk file so that you can load it again at 
a later time. You might also want to combine data sets manually and then load 
them back into the training window. You can do this by using the Import and 
Export buttons. The following demonstration leads you through the import 
and export processes. (The NN Predictive Control window is used for this 
demonstration, but the same procedure applies to all the controllers.)

1 Repeat the first five steps of the NN Predictive Control demonstration 
“Using the NN Predictive Controller Block” on page 5-6. Then select Accept 
Data. The Plant Identification window should then be open, and the 
Import and Export buttons should be active.

2 Select the Export button. This causes the following window to open.

3 Select Export to Disk. The following window opens. Enter the filename 
testdat in the box, and select Save. This saves the training data structure 
to disk.

You can select a name 
for the data structure. 
The structure contains 
at least two fields: 
name.U, and name.Y. 
These two fields 
contain the input and 
output arrays.

You can export the 
data to the workspace 
or to a disk file.



5 Control Systems

5-36

4 Now retrieve the data with the import command. Select the Import button 
in the Plant Identification window. This causes the following window to 
appear. Follow the steps indicated on the following page to retrieve the data 
that you previously exported. Once the data is imported, you can train the 
neural network plant model.

The filename goes 
here.



Importing and Exporting

5-37

Select MAT-file and 
select Browse. Available MAT-files will 

appear here. Select the 
appropriate file; then select 
Open.

The available data appears 
here.

Select the appropriate data 
structure or array and move 
it into the desired position 
and select OK.

The data can be imported as two 
arrays (input and output), or as a 
structure that contains at least two 
fields: name.U and name.Y.



5 Control Systems

5-38



 

6

Radial Basis Networks

Introduction (p. 6-2)

Radial Basis Functions (p. 6-3)

Probabilistic Neural Networks (p. 6-9)



6 Radial Basis Networks

6-2

Introduction
Radial basis networks can require more neurons than standard feedforward 
backpropagation networks, but often they can be designed in a fraction of the 
time it takes to train standard feedforward networks. They work best when 
many training vectors are available. 

You might want to consult the following paper on this subject: Chen, S., C.F.N. 
Cowan, and P.M. Grant, “Orthogonal Least Squares Learning Algorithm for 
Radial Basis Function Networks,” IEEE Transactions on Neural Networks, 
Vol. 2, No. 2, March 1991, pp. 302–309.

This chapter discusses two variants of radial basis networks, generalized 
regression networks (GRNN) and probabilistic neural networks (PNN). You 
can read about them in P.D. Wasserman, Advanced Methods in Neural 
Computing, New York: Van Nostrand Reinhold, 1993, on pp. 155–61 and 
pp. 35–55, respectively.

Important Radial Basis Functions
Radial basis networks can be designed with either newrbe or newrb. GRNNs 
and PNNs can be designed with newgrnn and newpnn, respectively.

Type help radbasis to see a listing of all functions and demonstrations related 
to radial basis networks.



Radial Basis Functions

6-3

Radial Basis Functions

Neuron Model
Here is a radial basis network with R inputs.

Notice that the expression for the net input of a radbas neuron is different from 
that of other neurons. Here the net input to the radbas transfer function is the 
vector distance between its weight vector w and the input vector p, multiplied 
by the bias b. (The || dist || box in this figure accepts the input vector p and 
the single row input weight matrix, and produces the dot product of the two.)

The transfer function for a radial basis neuron is

Here is a plot of the radbas transfer function.

Input

p1
p2
p3

pR

Radial Basis Neuron 

an

b

1

a = radbas( || w-p || b)

���
���|| dist ||

+

_

w
1,1

 ... w
1,R

��
��

radbas n( ) e n2–
=

a = radbas(n)

Radial Basis Function

n0.0

1.0

+0.833-0.833

a

0.5 ��



6 Radial Basis Networks

6-4

The radial basis function has a maximum of 1 when its input is 0. As the 
distance between w and p decreases, the output increases. Thus, a radial basis 
neuron acts as a detector that produces 1 whenever the input p is identical to 
its weight vector w.

The bias b allows the sensitivity of the radbas neuron to be adjusted. For 
example, if a neuron had a bias of 0.1 it would output 0.5 for any input vector 
p at vector distance of 8.326 (0.8326/b) from its weight vector w. 

Network Architecture
Radial basis networks consist of two layers: a hidden radial basis layer of S1 
neurons, and an output linear layer of S2 neurons.

The || dist || box in this figure accepts the input vector p and the input 
weight matrix IW1,1, and produces a vector having S1 elements. The elements 
are the distances between the input vector and vectors iIW1,1 formed from the 
rows of the input weight matrix. 

The bias vector b1 and the output of || dist || are combined with the 
MATLAB® operation .* , which does element-by-element multiplication.

The output of the first layer for a feedforward network net can be obtained with 
the following code:

a{1} = radbas(netprod(dist(net.IW{1,1},p),net.b{1}))

n1  S 2 x 1

 S 1 x 1

 S 1 x 1

S 1 x 1

S 1 x R 

��
��

IW1,1

��
��b1

a1

1

n2
S 2 x S 1

S 2 x 1

S 2 x 1

��
��b2

��LW2,1

1

p
 R x 1

R S1 S2

Input Radial Basis Layer Linear Layer

a
i
1 = radbas ( || 

i
IW1,1 - p || b

i
1) a2 = purelin (LW2,1 a1 +b2)

��
��
��

Where...

 

R = number of 
      elements in 
      input vector
 

a
i
1 is i th element of a1 where  

i 
IW1,1 is a vector made of the i th row of IW1,1   

��|| dist ||
 S 1 x 1

.*

a2 = y

S1 = number of 
       neurons in
       layer 1

S2 =number of 
       neurons in 
       layer 2

��
��
��



Radial Basis Functions

6-5

Fortunately, you won’t have to write such lines of code. All the details of 
designing this network are built into design functions newrbe and newrb, and 
you can obtain their outputs with sim.

You can understand how this network behaves by following an input vector p 
through the network to the output a2. If you present an input vector to such a 
network, each neuron in the radial basis layer will output a value according to 
how close the input vector is to each neuron’s weight vector.

Thus, radial basis neurons with weight vectors quite different from the input 
vector p have outputs near zero. These small outputs have only a negligible 
effect on the linear output neurons.

In contrast, a radial basis neuron with a weight vector close to the input vector 
p produces a value near 1. If a neuron has an output of 1, its output weights in 
the second layer pass their values to the linear neurons in the second layer.

In fact, if only one radial basis neuron had an output of 1, and all others had 
outputs of 0’s (or very close to 0), the output of the linear layer would be the 
active neuron’s output weights. This would, however, be an extreme case. 
Typically several neurons are always firing, to varying degrees.

Now look in detail at how the first layer operates. Each neuron’s weighted 
input is the distance between the input vector and its weight vector, calculated 
with dist. Each neuron’s net input is the element-by-element product of its 
weighted input with its bias, calculated with netprod. Each neuron’s output is 
its net input passed through radbas. If a neuron’s weight vector is equal to the 
input vector (transposed), its weighted input is 0, its net input is 0, and its 
output is 1. If a neuron’s weight vector is a distance of spread from the input 
vector, its weighted input is spread, its net input is sqrt(-log(.5)) (or 0.8326), 
therefore its output is 0.5.

Exact Design (newrbe)
You can design radial basis networks with the function newrbe. This function 
can produce a network with zero error on training vectors. It is called in the 
following way:

net = newrbe(P,T,SPREAD)

The function newrbe takes matrices of input vectors P and target vectors T, and 
a spread constant SPREAD for the radial basis layer, and returns a network with 
weights and biases such that the outputs are exactly T when the inputs are P.



6 Radial Basis Networks

6-6

This function newrbe creates as many radbas neurons as there are input 
vectors in P, and sets the first-layer weights to P'. Thus, there is a layer of 
radbas neurons in which each neuron acts as a detector for a different input 
vector. If there are Q input vectors, then there will be Q neurons.

Each bias in the first layer is set to 0.8326/SPREAD. This gives radial basis 
functions that cross 0.5 at weighted inputs of +/- SPREAD. This determines the 
width of an area in the input space to which each neuron responds. If SPREAD 
is 4, then each radbas neuron will respond with 0.5 or more to any input vectors 
within a vector distance of 4 from their weight vector. SPREAD should be large 
enough that neurons respond strongly to overlapping regions of the input 
space.

The second-layer weights IW 2,1 (or in code, IW{2,1}) and biases b2 (or in code, 
b{2}) are found by simulating the first-layer outputs a1 (A{1}), and then 
solving the following linear expression: 

[W{2,1} b{2}] * [A{1}; ones] = T

You know the inputs to the second layer (A{1}) and the target (T), and the layer 
is linear. You can use the following code to calculate the weights and biases of 
the second layer to minimize the sum-squared error.

Wb = T/[P; ones(1,Q)]

Here Wb contains both weights and biases, with the biases in the last column. 
The sum-squared error is always 0, as explained below.

There is a problem with C constraints (input/target pairs) and each neuron has 
C +1 variables (the C weights from the C radbas neurons, and a bias). A linear 
problem with C constraints and more than C variables has an infinite number 
of zero error solutions. 

Thus, newrbe creates a network with zero error on training vectors. The only 
condition required is to make sure that SPREAD is large enough that the active 
input regions of the radbas neurons overlap enough so that several radbas 
neurons always have fairly large outputs at any given moment. This makes the 
network function smoother and results in better generalization for new input 
vectors occurring between input vectors used in the design. (However, SPREAD 
should not be so large that each neuron is effectively responding in the same 
large area of the input space.)

The drawback to newrbe is that it produces a network with as many hidden 
neurons as there are input vectors. For this reason, newrbe does not return an 



Radial Basis Functions

6-7

acceptable solution when many input vectors are needed to properly define a 
network, as is typically the case.

More Efficient Design (newrb)
The function newrb iteratively creates a radial basis network one neuron at a 
time. Neurons are added to the network until the sum-squared error falls 
beneath an error goal or a maximum number of neurons has been reached. The 
call for this function is

net = newrb(P,T,GOAL,SPREAD)

The function newrb takes matrices of input and target vectors P and T, and 
design parameters GOAL and SPREAD, and returns the desired network.

The design method of newrb is similar to that of newrbe. The difference is that 
newrb creates neurons one at a time. At each iteration the input vector that 
results in lowering the network error the most is used to create a radbas 
neuron. The error of the new network is checked, and if low enough newrb is 
finished. Otherwise the next neuron is added. This procedure is repeated until 
the error goal is met or the maximum number of neurons is reached.

As with newrbe, it is important that the spread parameter be large enough that 
the radbas neurons respond to overlapping regions of the input space, but not 
so large that all the neurons respond in essentially the same manner.

Why not always use a radial basis network instead of a standard feedforward 
network? Radial basis networks, even when designed efficiently with newrbe, 
tend to have many times more neurons than a comparable feedforward 
network with tansig or logsig neurons in the hidden layer.

This is because sigmoid neurons can have outputs over a large region of the 
input space, while radbas neurons only respond to relatively small regions of 
the input space. The result is that the larger the input space (in terms of 
number of inputs, and the ranges those inputs vary over) the more radbas 
neurons required.

On the other hand, designing a radial basis network often takes much less time 
than training a sigmoid/linear network, and can sometimes result in fewer 
neurons’ being used, as can be seen in the next demonstration.



6 Radial Basis Networks

6-8

Demonstrations
The demonstration demorb1 shows how a radial basis network is used to fit a 
function. Here the problem is solved with only five neurons.

Demonstrations demorb3 and demorb4 examine how the spread constant affects 
the design process for radial basis networks.

In demorb3, a radial basis network is designed to solve the same problem as in 
demorb1. However, this time the spread constant used is 0.01. Thus, each 
radial basis neuron returns 0.5 or lower for any input vector with a distance of 
0.01 or more from its weight vector.

Because the training inputs occur at intervals of 0.1, no two radial basis 
neurons have a strong output for any given input.

demorb3 demonstrated that having too small a spread constant can result in a 
solution that does not generalize from the input/target vectors used in the 
design. Demonstration demorb4 shows the opposite problem. If the spread 
constant is large enough, the radial basis neurons will output large values 
(near 1.0) for all the inputs used to design the network.

If all the radial basis neurons always output 1, any information presented to 
the network becomes lost. No matter what the input, the second layer outputs 
1’s. The function newrb will attempt to find a network, but cannot because of 
numerical problems that arise in this situation.

The moral of the story is, choose a spread constant larger than the distance 
between adjacent input vectors, so as to get good generalization, but smaller 
than the distance across the whole input space.

For this problem that would mean picking a spread constant greater than 0.1, 
the interval between inputs, and less than 2, the distance between the leftmost 
and rightmost inputs.



Probabilistic Neural Networks

6-9

Probabilistic Neural Networks
Probabilistic neural networks can be used for classification problems. When an 
input is presented, the first layer computes distances from the input vector to 
the training input vectors and produces a vector whose elements indicate how 
close the input is to a training input. The second layer sums these contributions 
for each class of inputs to produce as its net output a vector of probabilities. 
Finally, a compete transfer function on the output of the second layer picks the 
maximum of these probabilities, and produces a 1 for that class and a 0 for the 
other classes. The architecture for this system is shown below.

Network Architecture

It is assumed that there are Q input vector/target vector pairs. Each target 
vector has K elements. One of these elements is 1 and the rest are 0. Thus, each 
input vector is associated with one of K classes.

The first-layer input weights, IW1,1 (net.IW{1,1}), are set to the transpose of 
the matrix formed from the Q training pairs, P'. When an input is presented, 
the || dist || box produces a vector whose elements indicate how close the 
input is to the vectors of the training set. These elements are multiplied, 
element by element, by the bias and sent to the radbas transfer function. An 
input vector close to a training vector is represented by a number close to 1 in 

Q  x R 

��
��

IW1,1

p
 R x 1

R Q

Input Radial Basis Layer Competitive Layer

Where...

 R = number of  
elements in 
input vector

n1

 Q  x 1

 Q  x 1

��
��b11 ��
��|| dist ||

 Q  x 1

.*

a2 = compet ( LW2,1 a1)a
i
1 = radbas ( || 

i
IW1,1 - p || bi1)

a
i
1 is i th element of a1 where  

i 
IW1,1 is a vector made of the i th row of IW1,1   

a1

Q  x 1

K x Q

 K  x 1

K

n2

 K  x 1��
��

LW2,1

��
��
��

C

Q = number of input/target pairs        = number of neurons in layer 1
K = number of classes of input data   = number of neurons in layer 2

a2 = y

��
��
��



6 Radial Basis Networks

6-10

the output vector a1. If an input is close to several training vectors of a single 
class, it is represented by several elements of a1 that are close to 1.

The second-layer weights, LW1,2 (net.LW{2,1}), are set to the matrix T of 
target vectors. Each vector has a 1 only in the row associated with that 
particular class of input, and 0’s elsewhere. (Use function ind2vec to create the 
proper vectors.) The multiplication Ta1 sums the elements of a1 due to each of 
the K input classes. Finally, the second-layer transfer function, compete, 
produces a 1 corresponding to the largest element of n2, and 0’s elsewhere. 
Thus, the network classifies the input vector into a specific K class because that 
class has the maximum probability of being correct. 

Design (newpnn)
You can use the function newpnn to create a PNN. For instance, suppose that 
seven input vectors and their corresponding targets are

P = [0 0;1 1;0 3;1 4;3 1;4 1;4 3]'

which yields

P =
     0     1     0     1     3     4     4
     0     1     3     4     1     1     3
Tc = [1 1 2 2 3 3 3]

which yields 

Tc =
     1     1     2     2     3     3     3

You need a target matrix with 1’s in the right places. You can get it with the 
function ind2vec. It gives a matrix with 0’s except at the correct spots. So 
execute 

T = ind2vec(Tc) 

which gives

T =
   (1,1)        1
   (1,2)        1
   (2,3)        1
   (2,4)        1
   (3,5)        1



Probabilistic Neural Networks

6-11

   (3,6)        1
   (3,7)        1

Now you can create a network and simulate it, using the input P to make sure 
that it does produce the correct classifications. Use the function vec2ind to 
convert the output Y into a row Yc to make the classifications clear.

net = newpnn(P,T);
Y = sim(net,P);
Yc = vec2ind(Y)

This produces

Yc =
     1     1     2     2     3     3     3

You might try classifying vectors other than those that were used to design the 
network. Try to classify the vectors shown below in P2.

P2 = [1 4;0 1;5 2]'

P2 =
     1     0     5
     4     1     2

Can you guess how these vectors will be classified? If you run the simulation 
and plot the vectors as before, you get

Yc =
     2     1     3

These results look good, for these test vectors were quite close to members of 
classes 2, 1, and 3, respectively. The network has managed to generalize its 
operation to properly classify vectors other than those used to design the 
network.

You might want to try demopnn1. It shows how to design a PNN, and how the 
network can successfully classify a vector not used in the design.



6 Radial Basis Networks

6-12

Generalized Regression Networks
A generalized regression neural network (GRNN) is often used for function 
approximation. It has a radial basis layer and a special linear layer.

Network Architecture 
The architecture for the GRNN is shown below. It is similar to the radial basis 
network, but has a slightly different second layer.

Here the nprod box shown above (code function normprod) produces S2 
elements in vector n2. Each element is the dot product of a row of LW2,1 and the 
input vector a1, all normalized by the sum of the elements of a1. For instance, 
suppose that

LW{2,1}= [1 -2;3 4;5 6];
a{1} = [0.7;0.3];

Then

aout = normprod(LW{2,1},a{1})
aout =
    0.1000
    3.3000
    5.3000

The first layer is just like that for newrbe networks. It has as many neurons as 
there are input/ target vectors in P. Specifically, the first-layer weights are set 

n1

 Q  x 1

 Q  x 1

Q  x R 

��
��IW1,1

��b11

p
 R x 1

R Q

Input Radial Basis Layer Special Linear Layer

a2 = purelin ( n2)

n2

Q  x 1

 Q  x 1

Q
��
��
��

Where...

 
= no. of elements
   in input vector

= no. of neurons  
    in layer 1

Q

R

 = no. of neurons  
     in layer 2

Q
��
��

|| dist ||
 Q  x 1

a1

Q  x 1

Q  x Q��LW2,1

��
��nprod.*

Q    = no. of input/
     target pairs

a
i
1 = radbas ( || 

i
IW1,1 - p || b

i
1)

a
i
1 is i th element of a1 where  

i 
IW1,1 is a vector made of the i th row of IW1,1   

a2 = y

��
��
��



Generalized Regression Networks

6-13

to P'. The bias b1 is set to a column vector of 0.8326/SPREAD. The user chooses 
SPREAD, the distance an input vector must be from a neuron’s weight vector to 
be 0.5.

Again, the first layer operates just like the newbe radial basis layer described 
previously. Each neuron’s weighted input is the distance between the input 
vector and its weight vector, calculated with dist. Each neuron’s net input is 
the product of its weighted input with its bias, calculated with netprod. Each 
neuron’s output is its net input passed through radbas. If a neuron’s weight 
vector is equal to the input vector (transposed), its weighted input will be 0, its 
net input will be 0, and its output will be 1. If a neuron’s weight vector is a 
distance of spread from the input vector, its weighted input will be spread, and 
its net input will be sqrt(-log(.5)) (or 0.8326). Therefore its output will be 0.5.

The second layer also has as many neurons as input/target vectors, but here 
LW{2,1} is set to T.

Suppose you have an input vector p close to pi, one of the input vectors among 
the input vector/target pairs used in designing layer 1 weights. This input p 
produces a layer 1 ai output close to 1. This leads to a layer 2 output close to ti, 
one of the targets used to form layer 2 weights.

A larger spread leads to a large area around the input vector where layer 1 
neurons will respond with significant outputs. Therefore if spread is small the 
radial basis function is very steep, so that the neuron with the weight vector 
closest to the input will have a much larger output than other neurons. The 
network tends to respond with the target vector associated with the nearest 
design input vector.

As spread becomes larger the radial basis function’s slope becomes smoother 
and several neurons can respond to an input vector. The network then acts as 
if it is taking a weighted average between target vectors whose design input 
vectors are closest to the new input vector. As spread becomes larger more and 
more neurons contribute to the average, with the result that the network 
function becomes smoother.



6 Radial Basis Networks

6-14

Design (newgrnn)
You can use the function newgrnn to create a GRNN. For instance, suppose that 
three input and three target vectors are defined as

P = [4 5 6];
T = [1.5 3.6 6.7];

You can now obtain a GRNN with

net = newgrnn(P,T);

and simulate it with

P = 4.5;
v = sim(net,P);

You might want to try demogrn1. It shows how to approximate a function with 
a GRNN.



 

7
Self-Organizing and Learning
Vector Quantization Nets

Introduction (p. 7-2)

Competitive Learning (p. 7-3)

Self-Organizing Feature Maps (p. 7-9)

Learning Vector Quantization Networks (p. 7-35)



7 Self-Organizing and Learning Vector Quantization Nets

7-2

Introduction
Self-organizing in networks is one of the most fascinating topics in the neural 
network field. Such networks can learn to detect regularities and correlations 
in their input and adapt their future responses to that input accordingly. The 
neurons of competitive networks learn to recognize groups of similar input 
vectors. Self-organizing maps learn to recognize groups of similar input vectors 
in such a way that neurons physically near each other in the neuron layer 
respond to similar input vectors. Self-organizing maps do not have target 
vectors, since their purpose is to divide the input vectors into clusters of similar 
vectors. There is no desired output for these types of networks.

Learning vector quantization (LVQ) is a method for training competitive layers 
in a supervised manner (with target outputs). A competitive layer 
automatically learns to classify input vectors. However, the classes that the 
competitive layer finds are dependent only on the distance between input 
vectors. If two input vectors are very similar, the competitive layer probably 
will put them in the same class. There is no mechanism in a strictly competitive 
layer design to say whether or not any two input vectors are in the same class 
or different classes.

LVQ networks, on the other hand, learn to classify input vectors into target 
classes chosen by the user.

You might consult the following reference: Kohonen, T., Self-Organization and 
Associative Memory, 2nd Edition, Berlin: Springer-Verlag, 1987.

Important Self-Organizing and LVQ Functions
You can create competitive layers and self-organizing maps with newc and 
newsom, respectively. You can type help selforg to find a listing of all 
self-organizing functions and demonstrations.

You can create an LVQ network with the function newlvq. For a list of all LVQ 
functions and demonstrations, type help lvq.



Competitive Learning

7-3

Competitive Learning
The neurons in a competitive layer distribute themselves to recognize 
frequently presented input vectors. 

Architecture
The architecture for a competitive network is shown below.

The || dist || box in this figure accepts the input vector p and the input 
weight matrix IW1,1, and produces a vector having S1 elements. The elements 
are the negative of the distances between the input vector and vectors iIW1,1 
formed from the rows of the input weight matrix.

Compute the net input n1 of a competitive layer by finding the negative 
distance between input vector p and the weight vectors and adding the biases 
b. If all biases are zero, the maximum net input a neuron can have is 0. This 
occurs when the input vector p equals that neuron’s weight vector.

The competitive transfer function accepts a net input vector for a layer and 
returns neuron outputs of 0 for all neurons except for the winner, the neuron 
associated with the most positive element of net input n1. The winner’s output 
is 1. If all biases are 0, then the neuron whose weight vector is closest to the 
input vector has the least negative net input and, therefore, wins the 
competition to output a 1.

Reasons for using biases with competitive layers are introduced in “Bias 
Learning Rule (learncon)” on page 7-5.

p
 R x 1

R

Input 

S 1 x R 

n1

 S 1 x 1

 S 1 x 1

S 1 x 1

��
��

IW1,1

��
��b1

a1

1

S1

Competitive Layer

��
��  S 1 x 1

 
|| ndist ||

��
��
��

C



7 Self-Organizing and Learning Vector Quantization Nets

7-4

Creating a Competitive Neural Network (newc)
You can create a competitive neural network with the function newc. A simple 
example shows how this works.

Suppose you want to divide the following four two-element vectors into two 
classes.

p = [.1 .8 .1 .9; .2 .9 .1 .8]
p =
    0.1000    0.8000    0.1000    0.9000
    0.2000    0.9000    0.1000    0.8000

There are two vectors near the origin and two vectors near (1,1).

First, create a two-neuron layer with two input elements ranging from 0 to 1. 
The first argument gives the ranges of the two input vectors, and the second 
argument says that there are to be two neurons.

net = newc([0 1; 0 1],2);

The weights are initialized to the centers of the input ranges with the function 
midpoint. You can check to see these initial values as follows:

wts = net.IW{1,1}
wts =
    0.5000    0.5000
    0.5000    0.5000

These weights are indeed the values at the midpoint of the range (0 to 1) of the 
inputs, as you would expect when using midpoint for initialization.

The biases are computed by initcon, which gives

biases = net.b{1}
biases =
    5.4366
    5.4366

Now you have a network, but you need to train it to do the classification job.

Recall that each neuron competes to respond to an input vector p. If the biases 
are all 0, the neuron whose weight vector is closest to p gets the highest net 
input and, therefore, wins the competition and outputs 1. All other neurons 
output 0. You want to adjust the winning neuron so as to move it closer to the 
input. A learning rule to do this is discussed in the next section.



Competitive Learning

7-5

Kohonen Learning Rule (learnk)
The weights of the winning neuron (a row of the input weight matrix) are 
adjusted with the Kohonen learning rule. Supposing that the ith neuron wins, 
the elements of the ith row of the input weight matrix are adjusted as shown 
below.

The Kohonen rule allows the weights of a neuron to learn an input vector, and 
because of this it is useful in recognition applications. 

Thus, the neuron whose weight vector was closest to the input vector is 
updated to be even closer. The result is that the winning neuron is more likely 
to win the competition the next time a similar vector is presented, and less 
likely to win when a very different input vector is presented. As more and more 
inputs are presented, each neuron in the layer closest to a group of input 
vectors soon adjusts its weight vector toward those input vectors. Eventually, 
if there are enough neurons, every cluster of similar input vectors will have a 
neuron that outputs 1 when a vector in the cluster is presented, while 
outputting a 0 at all other times. Thus, the competitive network learns to 
categorize the input vectors it sees.

The function learnk is used to perform the Kohonen learning rule in this 
toolbox.

Bias Learning Rule (learncon)
One of the limitations of competitive networks is that some neurons might not 
always be allocated. In other words, some neuron weight vectors might start 
out far from any input vectors and never win the competition, no matter how 
long the training is continued. The result is that their weights do not get to 
learn and they never win. These unfortunate neurons, referred to as dead 
neurons, never perform a useful function.

To stop this, use biases to give neurons that only win the competition rarely (if 
ever) an advantage over neurons that win often. A positive bias, added to the 
negative distance, makes a distant neuron more likely to win. 

To do this job a running average of neuron outputs is kept. It is equivalent to 
the percentages of times each output is 1. This average is used to update the 
biases with the learning function learncon so that the biases of frequently 

IW1 1, q( )i IW1 1, q 1–( )i α p q( ) IW1 1, q 1–( )i–( )+=



7 Self-Organizing and Learning Vector Quantization Nets

7-6

active neurons become smaller, and biases of infrequently active neurons 
become larger.

As the biases of infrequently active neurons increase, the input space to which 
those neurons respond increases. As that input space increases, the 
infrequently active neuron responds and moves toward more input vectors. 
Eventually, the neuron responds to the same number of vectors as other 
neurons.

This has two good effects. First, if a neuron never wins a competition because 
its weights are far from any of the input vectors, its bias eventually becomes 
large enough so that it can win. When this happens, it moves toward some 
group of input vectors. Once the neuron’s weights have moved into a group of 
input vectors and the neuron is winning consistently, its bias will decrease to 
0. Thus, the problem of dead neurons is resolved.

The second advantage of biases is that they force each neuron to classify 
roughly the same percentage of input vectors. Thus, if a region of the input 
space is associated with a larger number of input vectors than another region, 
the more densely filled region will attract more neurons and be classified into 
smaller subsections.

The learning rates for learncon are typically set an order of magnitude or more 
smaller than for learnk to make sure that the running average is accurate. 

Training
Now train the network for 500 epochs. You can use either train or adapt.

net.trainParam.epochs = 500;
net = train(net,p);

Note that train for competitive networks uses the training function trainr. 
You can verify this by executing the following code after creating the network. 

net.trainFcn

This code produces

ans =
trainr

For each epoch, all training vectors (or sequences) are each presented once in 
a different random order with the network and weight and bias values updated 
after each individual presentation. 



Competitive Learning

7-7

Next, supply the original vectors as input to the network, simulate the 
network, and finally convert its output vectors to class indices.

a = sim(net,p)
ac = vec2ind(a)

This yields 

ac =
     1     2     1     2

You see that the network is trained to classify the input vectors into two 
groups, those near the origin, class 1, and those near (1,1), class 2.

It might be interesting to look at the final weights and biases. They are

wts =
    0.1000    0.1467
    0.8474    0.8525
biases =
    5.4961
    5.3783

(You might get different answers when you run this problem, because a 
random seed is used to pick the order of the vectors presented to the network 
for training.) Note that the first vector (formed from the first row of the weight 
matrix) is near the input vectors close to the origin, while the vector formed 
from the second row of the weight matrix is close to the input vectors near (1,1). 
Thus, the network has been trained—just by exposing it to the inputs—to 
classify them.

During training each neuron in the layer closest to a group of input vectors 
adjusts its weight vector toward those input vectors. Eventually, if there are 
enough neurons, every cluster of similar input vectors has a neuron that 
outputs 1 when a vector in the cluster is presented, while outputting a 0 at all 
other times. Thus, the competitive network learns to categorize the input.

Graphical Example
Competitive layers can be understood better when their weight vectors and 
input vectors are shown graphically. The diagram below shows 48 two-element 
input vectors represented with + markers. 



7 Self-Organizing and Learning Vector Quantization Nets

7-8

The input vectors above appear to fall into clusters. You can use a competitive 
network of eight neurons to classify the vectors into such clusters.

Try democ1 to see a dynamic example of competitive learning.

-0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Input Vectors



Self-Organizing Feature Maps

7-9

Self-Organizing Feature Maps
Self-organizing feature maps (SOFM) learn to classify input vectors according 
to how they are grouped in the input space. They differ from competitive layers 
in that neighboring neurons in the self-organizing map learn to recognize 
neighboring sections of the input space. Thus, self-organizing maps learn both 
the distribution (as do competitive layers) and topology of the input vectors 
they are trained on.

The neurons in the layer of an SOFM are arranged originally in physical 
positions according to a topology function. The function gridtop, hextop, or 
randtop can arrange the neurons in a grid, hexagonal, or random topology. 
Distances between neurons are calculated from their positions with a distance 
function. There are four distance functions, dist, boxdist, linkdist, and 
mandist. Link distance is the most common. These topology and distance 
functions are described in “Topologies (gridtop, hextop, randtop)” on page 7-10 
and “Distance Functions (dist, linkdist, mandist, boxdist)” on page 7-14.

Here a self-organizing feature map network identifies a winning neuron i* 
using the same procedure as employed by a competitive layer. However, 
instead of updating only the winning neuron, all neurons within a certain 
neighborhood Ni* (d) of the winning neuron are updated, using the Kohonen 
rule. Specifically, all such neurons i ∈ Ni*(d) are adjusted as follows:

 or 

Here the neighborhood Ni* (d) contains the indices for all of the neurons that lie 
within a radius d of the winning neuron i*.

Thus, when a vector p is presented, the weights of the winning neuron and its 
close neighbors move toward p. Consequently, after many presentations, 
neighboring neurons have learned vectors similar to each other.

Another version of SOFM training, called the batch algorithm, presents the 
whole data set to the network before any weights are updated. The algorithm 
then determines a winning neuron for each input vector. Each weight vector 
then moves to the average position of all of the input vectors for which it is a 
winner, or for which it is in the neighborhood of a winner.

wi q( ) wi q 1–( ) α p q( ) wi q 1–( )–( )+=

wi q( ) 1 α–( ) wi q 1–( ) αp q( )+=

Ni d( ) j dij d≤,{ }=



7 Self-Organizing and Learning Vector Quantization Nets

7-10

To illustrate the concept of neighborhoods, consider the figure below. The left 
diagram shows a two-dimensional neighborhood of radius d = 1 around neuron 
13. The right diagram shows a neighborhood of radius d = 2. 

These neighborhoods could be written as

 and 

The neurons in an SOFM do not have to be arranged in a two-dimensional 
pattern. You can use a one-dimensional arrangement, or three or more 
dimensions. For a one-dimensional SOFM, a neuron has only two neighbors 
within a radius of 1 (or a single neighbor if the neuron is at the end of the line). 
You can also define distance in different ways, for instance, by using 
rectangular and hexagonal arrangements of neurons and neighborhoods. The 
performance of the network is not sensitive to the exact shape of the 
neighborhoods.

Topologies (gridtop, hextop, randtop)
You can specify different topologies for the original neuron locations with the 
functions gridtop, hextop, and randtop. 

The gridtop topology starts with neurons in a rectangular grid similar to that 
shown in the previous figure. For example, suppose that you want a 2-by-3 
array of six neurons. You can get this with

pos = gridtop(2,3)
pos =
     0     1     0     1     0     1
     0     0     1     1     2     2

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

N
13

(1) N
13

(2)

N13 1( ) 8 12 13 14 18, , , ,{ }=

N13 2( ) 3 7 8 9 11 12 13 14 15 17 18 19 23, , , , , , , , , , , ,{ }=



Self-Organizing Feature Maps

7-11

Here neuron 1 has the position (0,0), neuron 2 has the position (1,0), and 
neuron 3 has the position (0,1), etc.

Note that had you asked for a gridtop with the arguments reversed, you would 
have gotten a slightly different arrangement:

pos = gridtop(3,2)
pos =
     0     1     2     0     1     2
     0     0     0     1     1     1

An 8-by-10 set of neurons in a gridtop topology can be created and plotted with 
the following code:

pos = gridtop(8,10);
plotsom(pos)

to give the following graph.

1 2

3 4

5 6

0 1

0

2

1

gridtop(2,3)



7 Self-Organizing and Learning Vector Quantization Nets

7-12

As shown, the neurons in the gridtop topology do indeed lie on a grid.

The hextop function creates a similar set of neurons, but they are in a 
hexagonal pattern. A 2-by-3 pattern of hextop neurons is generated as follows:

pos = hextop(2,3)
pos =
         0    1.0000    0.5000    1.5000         0    1.0000
         0         0    0.8660    0.8660    1.7321    1.7321 

Note that hextop is the default pattern for SOFM networks generated with 
newsom.

You can create and plot an 8-by-10 set of neurons in a hextop topology with the 
following code:

pos = hextop(8,10);

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

position(1,i)

po
si

tio
n(

2,
i)

Neuron Positions



Self-Organizing Feature Maps

7-13

plotsom(pos)

to give the following graph.

Note the positions of the neurons in a hexagonal arrangement.

Finally, the randtop function creates neurons in an N-dimensional random 
pattern. The following code generates a random pattern of neurons.

pos = randtop(2,3)
pos =
         0    0.7620    0.6268    1.4218    0.0663    0.7862
    0.0925         0    0.4984    0.6007    1.1222    1.4228

You can create and plot an 8-by-10 set of neurons in a randtop topology with 
the following code:

pos = randtop(8,10);

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

position(1,i)

po
si

tio
n(

2,
i)

Neuron Positions



7 Self-Organizing and Learning Vector Quantization Nets

7-14

plotsom(pos)

to give the following graph.

For examples, see the help for these topology functions. 

Distance Functions (dist, linkdist, mandist, boxdist)
In this toolbox, there are four ways to calculate distances from a particular 
neuron to its neighbors. Each calculation method is implemented with a special 
function.

The dist function has been discussed before. It calculates the Euclidean 
distance from a home neuron to any other neuron. Suppose you have three 
neurons:

pos2 = [0 1 2; 0 1 2]
pos2 =

0 1 2 3 4 5 6
0

1

2

3

4

5

6

position(1,i)

po
si

tio
n(

2,
i)

Neuron Positions



Self-Organizing Feature Maps

7-15

     0     1     2
     0     1     2

You find the distance from each neuron to the other with

D2 = dist(pos2)
D2 =
         0    1.4142    2.8284
    1.4142         0    1.4142
    2.8284    1.4142         0

Thus, the distance from neuron 1 to itself is 0, the distance from neuron 1 to 
neuron 2 is 1.414, etc. These are indeed the Euclidean distances as you know 
them.

The graph below shows a home neuron in a two-dimensional (gridtop) layer of 
neurons. The home neuron has neighborhoods of increasing diameter 
surrounding it. A neighborhood of diameter 1 includes the home neuron and its 
immediate neighbors. The neighborhood of diameter 2 includes the diameter 1 
neurons and their immediate neighbors. 

As for the dist function, all the neighborhoods for an S-neuron layer map are 
represented by an S-by-S matrix of distances. The particular distances shown 
above (1 in the immediate neighborhood, 2 in neighborhood 2, etc.), are 
generated by the function boxdist. Suppose that you have six neurons in a 
gridtop configuration.

2-Dimensional 
Layer of Neurons

Home Neuron

Neighborhood 1

Neighborhood 2

Neighborhood 3

Columns



7 Self-Organizing and Learning Vector Quantization Nets

7-16

pos = gridtop(2,3)
pos =
     0     1     0     1     0     1
     0     0     1     1     2     2

Then the box distances are

d = boxdist(pos)
d =
     0     1     1     1     2     2
     1     0     1     1     2     2
     1     1     0     1     1     1
     1     1     1     0     1     1
     2     2     1     1     0     1
     2     2     1     1     1     0

The distance from neuron 1 to 2, 3, and 4 is just 1, for they are in the immediate 
neighborhood. The distance from neuron 1 to both 5 and 6 is 2. The distance 
from both 3 and 4 to all other neurons is just 1.

The link distance from one neuron is just the number of links, or steps, that 
must be taken to get to the neuron under consideration. Thus, if you calculate 
the distances from the same set of neurons with linkdist, you get

dlink =
     0     1     1     2     2     3
     1     0     2     1     3     2
     1     2     0     1     1     2
     2     1     1     0     2     1
     2     3     1     2     0     1
     3     2     2     1     1     0

The Manhattan distance between two vectors x and y is calculated as 

D = sum(abs(x-y))

Thus if you have 

W1 = [1 2; 3 4; 5 6]
W1 =
     1     2
     3     4
     5     6



Self-Organizing Feature Maps

7-17

and 

P1 = [1;1]
P1 =
     1
     1

then you get for the distances

Z1 = mandist(W1,P1)
Z1 =
     1
     5
     9

The distances calculated with mandist do indeed follow the mathematical 
expression given above.

Architecture
The architecture for this SOFM is shown below.

This architecture is like that of a competitive network, except no bias is used 
here. The competitive transfer function produces a 1 for output element a1

i 
corresponding to i*, the winning neuron. All other output elements in a1 are 0.

Now, however, as described above, neurons close to the winning neuron are 
updated along with the winning neuron. You can choose from various 
topologies of neurons. Similarly, you can choose from various distance 
expressions to calculate neurons that are close to the winning neuron.

n1

 S 1 x 1

Input 

S 1 x R 
��IW1,1

R

Self Organizing Map Layer

a1 = compet (n1)

p
 R  x 1

a1

S 1 x 1

S1���
���|| ndist ||

��
��
��

C

n
i
1 = - || 

i
IW1,1 - p ||



7 Self-Organizing and Learning Vector Quantization Nets

7-18

Creating a Self-Organizing MAP Neural Network 
(newsom)
You can create a new SOM network with the function newsom. This function 
defines variables used in two phases of learning:

•  Ordering-phase learning rate

•  Ordering-phase steps

•  Tuning-phase learning rate

•  Tuning-phase neighborhood distance

These values are used for training and adapting. 

Consider the following example.

Suppose that you want to create a network having input vectors with two 
elements that fall in the ranges 0 to 2 and 0 to 1, respectively. Further suppose 
that you want to have six neurons in a hexagonal 2-by-3 network. The code to 
obtain this network is 

net = newsom([0 2; 0 1],[2 3]);

Suppose also that the vectors to train on are

P = [.1 .3 1.2 1.1 1.8 1.7 .1 .3 1.2 1.1 1.8 1.7;...
0.2 0.1 0.3 0.1 0.3 0.2 1.8 1.8 1.9 1.9 1.7 1.8]

You can plot all of this with 

plot(P(1,:),P(2,:),'.g','markersize',20)
hold on
plotsom(net.iw{1,1},net.layers{1}.distances)
hold off

to give



Self-Organizing Feature Maps

7-19

The various training vectors are seen as fuzzy gray spots around the perimeter 
of this figure. The initialization for newsom is midpoint. Thus, the initial 
network neurons are all concentrated at the black spot at (1, 0.5). 

When simulating a network, the negative distances between each neuron’s 
weight vector and the input vector are calculated (negdist) to get the weighted 
inputs. The weighted inputs are also the net inputs (netsum). The net inputs 
compete (compete) so that only the neuron with the most positive net input will 
output a 1.

Training (learnsomb)
The default learning in a self-organizing feature map occurs in the batch mode 
(trainbuwb). The weight learning function for the self-organizing map is 
learnsomb.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W(i,1)

W
(i,

2)

Weight Vectors



7 Self-Organizing and Learning Vector Quantization Nets

7-20

First, the network identifies the winning neuron for each input vector. Each 
weight vector then moves to the average position of all of the input vectors for 
which it is a winner or for which it is in the neighborhood of a winner. The 
distance that defines the size of the neighborhood is altered during training 
through two phases.

Ordering Phase
This phase lasts for the given number of steps. The neighborhood distance 
starts at a given initial distance, and decreases to the tuning neighborhood 
distance (1.0). As the neighborhood distance decreases over this phase, the 
neurons of the network typically order themselves in the input space with the 
same topology in which they are ordered physically. 

Tuning Phase 
This phase lasts for the rest of training or adaption. The neighborhood distance 
stays at the tuning neighborhood distance, (which should include only close 
neighbors, i.e., typically 1.0). The small neighborhood fine-tunes the network, 
while keeping the ordering learned in the previous phase stable.

Now take a look at some of the specific values commonly used in these 
networks.

Learning occurs according to the learnsomb learning parameter, shown here 
with its default value.

The neighborhood size NS is altered through two phases: an ordering phase and 
a tuning phase.

The ordering phase lasts as many steps as LP.steps. During this phase, the 
algorithm adjusts ND from the initial neighborhood size LP.init_neighborhood 
down to 1. It is during this phase that neuron weights order themselves in the 
input space consistent with the associated neuron positions.

Learning Parameter Default 
Value

Purpose

LP.init_neighborhood 3 Initial neighborhood size

LP.steps 100 Ordering phase steps



Self-Organizing Feature Maps

7-21

During the tuning phase, ND is always set to 1. During this phase, the weights 
are expected to spread out relatively evenly over the input space while 
retaining their topological order found during the ordering phase.

Thus, the neuron’s weight vectors initially take large steps all together toward 
the area of input space where input vectors are occurring. Then as the 
neighborhood size decreases to 1, the map tends to order itself topologically 
over the presented input vectors. Once the neighborhood size is 1, the network 
should be fairly well ordered. The training continues in order to give the 
neurons time to spread out evenly across the input vectors.

As with competitive layers, the neurons of a self-organizing map will order 
themselves with approximately equal distances between them if input vectors 
appear with even probability throughout a section of the input space. If input 
vectors occur with varying frequency throughout the input space, the feature 
map layer tends to allocate neurons to an area in proportion to the frequency 
of input vectors there.

Thus, feature maps, while learning to categorize their input, also learn both 
the topology and distribution of their input.

You can train the network for 1000 epochs with

net.trainParam.epochs = 1000;
net = train(net,P);

Call plotsom to see the data produced by the training procedure, shown in the 
following plot.



7 Self-Organizing and Learning Vector Quantization Nets

7-22

You can see that the neurons have started to move toward the various training 
groups. Additional training is required to get the neurons closer to the various 
groups.

As noted previously, self-organizing maps differ from conventional competitive 
learning in terms of which neurons get their weights updated. Instead of 
updating only the winner, feature maps update the weights of the winner and 
its neighbors. The result is that neighboring neurons tend to have similar 
weight vectors and to be responsive to similar input vectors.

Examples
Two examples are described briefly below. You might try the demonstrations 
demosm1 and demosm2 to see similar examples.

One-Dimensional Self-Organizing Map
Consider 100 two-element unit input vectors spread evenly between 0° and 90°.

angles = 0:0.5∗pi/99:0.5∗pi;

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

W(i,1)

W
(i,

2)

Weight Vectors



Self-Organizing Feature Maps

7-23

Here is a plot of the data.

P = [sin(angles); cos(angles)];

A a self-organizing map is defined as a one-dimensional layer of 10 neurons. 
This map is to be trained on these input vectors shown above. Originally these 
neurons are at the center of the figure.

0 0.5 1
0

0.2

0.4

0.6

0.8

1



7 Self-Organizing and Learning Vector Quantization Nets

7-24

Of course, because all the weight vectors start in the middle of the input vector 
space, all you see now is a single circle.

As training starts the weight vectors move together toward the input vectors. 
They also become ordered as the neighborhood size decreases. Finally the layer 
adjusts its weights so that each neuron responds strongly to a region of the 
input space occupied by input vectors. The placement of neighboring neuron 
weight vectors also reflects the topology of the input vectors. 

-1 0 1 2
-0.5

0

0.5

1

1.5

W(i,1)

W
(i,

2)



Self-Organizing Feature Maps

7-25

Note that self-organizing maps are trained with input vectors in a random 
order, so starting with the same initial vectors does not guarantee identical 
training results.

Two-Dimensional Self-Organizing Map
This example shows how a two-dimensional self-organizing map can be 
trained.

First some random input data is created with the following code:

P = rands(2,1000);

Here is a plot of these 1000 input vectors.

W
(i,

2)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

W(i,1)



7 Self-Organizing and Learning Vector Quantization Nets

7-26

A 5-by-6 two-dimensional map of 30 neurons is used to classify these input 
vectors. The two-dimensional map is five neurons by six neurons, with 
distances calculated according to the Manhattan distance neighborhood 
function mandist. 

The map is then trained for 5000 presentation cycles, with displays every 20 
cycles.

Here is what the self-organizing map looks like after 40 cycles.

-1 0 1
-1

-0.5

0

0.5

1

W
(i,

2)

-0.5 0 0.5 1
-1

-0.5

0

0.5

1

W(i,1)



Self-Organizing Feature Maps

7-27

The weight vectors, shown with circles, are almost randomly placed. However, 
even after only 40 presentation cycles, neighboring neurons, connected by 
lines, have weight vectors close together.

Here is the map after 120 cycles.

After 120 cycles, the map has begun to organize itself according to the topology 
of the input space, which constrains input vectors.

The following plot, after 500 cycles, shows the map more evenly distributed 
across the input space.

W
(i,

2)

-1 0 1
-1

-0.5

0

0.5

1

W(i,1)



7 Self-Organizing and Learning Vector Quantization Nets

7-28

Finally, after 5000 cycles, the map is rather evenly spread across the input 
space. In addition, the neurons are very evenly spaced, reflecting the even 
distribution of input vectors in this problem.

Thus a two-dimensional self-organizing map has learned the topology of its 
inputs’ space.

W
(i,

2)

-1 0 1
-1

-0.5

0

0.5

1

W(i,1)

W
(i,

2)

-1 0 1
-1

-0.5

0

0.5

1

W(i,1)



Self-Organizing Feature Maps

7-29

It is important to note that while a self-organizing map does not take long to 
organize itself so that neighboring neurons recognize similar inputs, it can take 
a long time for the map to finally arrange itself according to the distribution of 
input vectors.

Training with the Batch Algorithm
The batch training algorithm is generally much faster than the incremental 
algorithm, and it is the default algorithm for SOFM training. You can 
experiment with this algorithm on a simple data set with the following 
commands:

load simplecluster_dataset
net = newsom(simpleclusterInputs,[6 6]);
[net2,tr] = train(net,simpleclusterInputs);

This command sequence creates and trains a 6-by-6 two-dimensional map of 36 
neurons. During training, the following figure appears.



7 Self-Organizing and Learning Vector Quantization Nets

7-30

There are several useful visualizations that you can access from this window. 
If you click SOM Weight Positions, the following figure appears, which shows 
the locations of the data points and the weight vectors. As the figure indicates, 
after only 200 iterations of the batch algorithm, the map is well distributed 
through the input space.



Self-Organizing Feature Maps

7-31

When the input space is high dimensional, you cannot visualize all the weights 
at the same time. In this case, click SOM Neighbor Distances. The following 
figure appears, which indicates the distances between neighboring neurons. 

This figure uses the following color coding:

• The blue hexagons represent the neurons. 

• The red lines connect neighboring neurons. 

• The colors in the regions containing the red lines indicate the distances 
between neurons. 

• The darker colors represent larger distances. 

• The lighter colors represent smaller distances. 

A group of light segments appear in the upper-left region, bounded by some 
darker segments. This grouping indicates that the network has clustered the 
data into two groups. These two groups can be seen in the previous weight 
position figure. The lower-right region of that figure contains a small group of 



7 Self-Organizing and Learning Vector Quantization Nets

7-32

tightly clustered data points. The corresponding weights are closer together in 
this region, which is indicated by the lighter colors in the neighbor distance 
figure. Where weights in this small region connect to the larger region, the 
distances are larger, as indicated by the darker band in the neighbor distance 
figure. The segments in the lower-right region of the neighbor distance figure 
are darker than those in the upper left. This color difference indicates that data 
points in this region are farther apart. This distance is confirmed in the weight 
positions figure.

Another useful figure can tell you how many data points are associated with 
each neuron. Click SOM Sample Hits to see the following figure. It is best if 
the data are fairly evenly distributed across the neurons. In this example, the 
data are concentrated a little more in the upper-left neurons, but overall the 
distribution is fairly even.



Self-Organizing Feature Maps

7-33

You can also visualize the weights themselves using the weight plane figure. 
Click SOM Weight Planes in the training window to obtain the next figure. 
There is a weight plane for each element of the input vector (two, in this case). 
They are visualizations of the weights that connect each input to each of the 
neurons. (Darker colors represent larger weights.) If the connection patterns of 
two inputs are very similar, you can assume that the inputs were highly 
correlated. In this case, input 1 has connections that are very different than 
those of input 2.



7 Self-Organizing and Learning Vector Quantization Nets

7-34

You can also produce all of the previous figures from the command line. Try 
these plotting commands: plotsomhits, plotsomnc, plotsomnd, 
plotsomplanes, plotsompos, and plotsomtop. (See their reference pages for 
details.)



Learning Vector Quantization Networks

7-35

Learning Vector Quantization Networks

Architecture
The LVQ network architecture is shown below.

An LVQ network has a first competitive layer and a second linear layer. The 
competitive layer learns to classify input vectors in much the same way as the 
competitive layers of “Self-Organizing and Learning Vector Quantization Nets” 
described in this chapter. The linear layer transforms the competitive layer’s 
classes into target classifications defined by the user. The classes learned by 
the competitive layer are referred to as subclasses and the classes of the linear 
layer as target classes.

Both the competitive and linear layers have one neuron per (sub or target) 
class. Thus, the competitive layer can learn up to S1 subclasses. These, in turn, 
are combined by the linear layer to form S2 target classes. (S1 is always larger 
than S2.)

For example, suppose neurons 1, 2, and 3 in the competitive layer all learn 
subclasses of the input space that belongs to the linear layer target class 2. 
Then competitive neurons 1, 2, and 3 will have LW2,1 weights of 1.0 to neuron 
n2 in the linear layer, and weights of 0 to all other linear neurons. Thus, the 
linear neuron produces a 1 if any of the three competitive neurons (1, 2, or 3) 
wins the competition and outputs a 1. This is how the subclasses of the 
competitive layer are combined into target classes in the linear layer.

In short, a 1 in the ith row of a1 (the rest to the elements of a1 will be zero) 
effectively picks the ith column of LW2,1 as the network output. Each such 

1

n2

S 2 x 1

 S 2 x 1n1

 S 1 x 1

Input 

S 1 x R ��
��IW1,1

S 2 x S 1��
��

LW2,1

R S2

Competitive  Layer Linear Layer

a1 = compet (n1)

a2 = purelin(LW2,1 a1)

p
 R  x 1

a1

S 1 x 1

S1

��
��

|| ndist ||

��
��
��
C

��
��
��

Where...

R  = number of   
elements in 
input vector

S1= number of 
competitive 
neurons

S2= number of 
linear neuronsn

i
1 = - || 

i
IW1,1 - p ||

a2 = y



7 Self-Organizing and Learning Vector Quantization Nets

7-36

column contains a single 1, corresponding to a specific class. Thus, subclass 1’s 
from layer 1 are put into various classes by the LW2,1a1 multiplication in 
layer 2.

You know ahead of time what fraction of the layer 1 neurons should be 
classified into the various class outputs of layer 2, so you can specify the 
elements of LW2,1 at the start. However, you have to go through a training 
procedure to get the first layer to produce the correct subclass output for each 
vector of the training set. This training is discussed in “Training” on page 7-40. 
First, consider how to create the original network.

Creating an LVQ Network (newlvq)
You can create an LVQ network with the function newlvq, 

net = newlvq(PR,S1,PC,LR,LF)

where

• PR is an R-by-2 matrix of minimum and maximum values for R input 
elements. 

• S1 is the number of first-layer hidden neurons. 

• PC is an S2-element vector of typical class percentages.

• LR is the learning rate (default 0.01).

• LF is the learning function (default is learnlv1).

Suppose you have 10 input vectors. Create a network that assigns each of these 
input vectors to one of four subclasses. Thus, there are four neurons in the first 
competitive layer. These subclasses are then assigned to one of two output 
classes by the two neurons in layer 2. The input vectors and targets are 
specified by

P = [-3 -2 -2 0 0 0 0 2 2 3; 0 1 -1 2 1 -1 -2 1 -1 0];
and 

Tc = [1 1 1 2 2 2 2 1 1 1];

It might help to show the details of what you get from these two lines of code.



Learning Vector Quantization Networks

7-37

P =
    -3    -2    -2     0     0     0     0     2     2     3
     0     1    -1     2     1    -1    -2     1    -1     0
Tc =
     1     1     1     2     2     2     2     1     1     1

A plot of the input vectors follows.

As you can see, there are four subclasses of input vectors. You want a network 
that classifies p1, p2, p3, p8, p9, and p10 to produce an output of 1, and that 
classifies vectors p4, p5, p6, and p7 to produce an output of 2. Note that this 
problem is nonlinearly separable, and so cannot be solved by a perceptron, but 
an LVQ network has no difficulty.

Next convert the Tc matrix to target vectors.

T = ind2vec(Tc);

This gives a sparse matrix T that can be displayed in full with

targets = full(T)

which gives

-5 0 5
-3

-2

-1

0

1

2

3

Input Vectors

p
4

p
5

p
6

p
7

p
1

p
2

p
3

p
9

p
10

p
8



7 Self-Organizing and Learning Vector Quantization Nets

7-38

targets =
     1     1     1     0     0     0     0     1     1     1
     0     0     0     1     1     1     1     0     0     0

This looks right. It says, for instance, that if you have the first column of P as 
input, you should get the first column of targets as an output; and that output 
says the input falls in class 1, which is correct. Now you are ready to call 
newlvq.

Call newlvq with the proper arguments so that it creates a network with four 
neurons in the first layer and two neurons in the second layer. The first-layer 
weights are initialized to the centers of the input ranges with the function 
midpoint. The second-layer weights have 60% (6 of the 10 in Tc above) of its 
columns with a 1 in the first row, (corresponding to class 1), and 40% of its 
columns will have a 1 in the second row (corresponding to class 2). 

net = newlvq(P,4,[.6 .4]);

Confirm the initial values of the first-layer weight matrix.

net.IW{1,1}
ans =
     0     0
     0     0
     0     0
     0     0

These zero weights are indeed the values at the midpoint of the ranges (-3 to 
+3) of the inputs, as you would expect when using midpoint for initialization.

You can look at the second-layer weights with 

net.LW{2,1}
ans =
     1     1     0     0
     0     0     1     1

This makes sense too. It says that if the competitive layer produces a 1 as the 
first or second element, the input vector is classified as class 1; otherwise it is 
a class 2.

You might notice that the first two competitive neurons are connected to the 
first linear neuron (with weights of 1), while the second two competitive 
neurons are connected to the second linear neuron. All other weights between 



Learning Vector Quantization Networks

7-39

the competitive neurons and linear neurons have values of 0. Thus, each of the 
two target classes (the linear neurons) is, in fact, the union of two subclasses 
(the competitive neurons).

You can simulate the network with sim. Use the original P matrix as input just 
to see what you get.

Y = sim(net,P);
Yc = vec2ind(Y)
Yc =
     1     1     1     1     1     1     1     1     1     1

The network classifies all inputs into class 1. Because this is not what you 
want, you have to train the network (adjusting the weights of layer 1 only), 
before you can expect a good result. The next two sections discuss two LVQ 
learning rules and the training process.

LVQ1 Learning Rule (learnlv1)
LVQ learning in the competitive layer is based on a set of input/target pairs.

Each target vector has a single 1. The rest of its elements are 0. The 1 tells the 
proper classification of the associated input. For instance, consider the 
following training pair.

Here there are input vectors of three elements, and each input vector is to be 
assigned to one of four classes. The network is to be trained so that it classifies 
the input vector shown above into the third of four classes.

To train the network, an input vector p is presented, and the distance from p 
to each row of the input weight matrix IW1,1 is computed with the function 
ndist. The hidden neurons of layer 1 compete. Suppose that the ith element of 
n1 is most positive, and neuron i* wins the competition. Then the competitive 

p1 t1,{ } p2 t2,{ } … pQ tQ,{ }, , ,

p1

2
1–

0

= t1

0
0
1
0

=,

 
 
 
 
 
 
 



7 Self-Organizing and Learning Vector Quantization Nets

7-40

transfer function produces a 1 as the i*th element of a1. All other elements of 
a1 are 0. 

When a1 is multiplied by the layer 2 weights LW2,1, the single 1 in a1 selects 
the class k* associated with the input. Thus, the network has assigned the 
input vector p to class k* and  will be 1. Of course, this assignment can be 
a good one or a bad one, for tk* can be 1 or 0, depending on whether the input 
belonged to class k* or not. 

Adjust the i*th row of IW1,1 in such a way as to move this row closer to the input 
vector p if the assignment is correct, and to move the row away from p if the 
assignment is incorrect. If p is classified correctly, 

compute the new value of the i*th row of IW1,1 as

On the other hand, if p is classified incorrectly,

compute the new value of the i*th row of IW1,1 as

You can make these corrections to the i*th row of IW1,1 automatically, without 
affecting other rows of IW1,1, by back propagating the output errors to layer 1. 

Such corrections move the hidden neuron toward vectors that fall into the class 
for which it forms a subclass, and away from vectors that fall into other classes.

The learning function that implements these changes in the layer 1 weights in 
LVQ networks is learnlv1. It can be applied during training. 

Training
Next you need to train the network to obtain first-layer weights that lead to the 
correct classification of input vectors. You do this with train as with the 
following commands. First, set the training epochs to 150. Then, use train:

net.trainParam.epochs = 150;

ak∗
2

ak∗
2 tk∗ 1= =( )

IW1 1,
i∗ q( ) IW1 1,

i∗ q 1–( ) α p q( ) IW1 1,
i∗ q 1–( )–( )+=

ak∗
2 1 tk∗≠ 0= =( )

IW1 1,
i∗ q( ) IW1 1,

i∗ q 1–( )  α p q( ) IW1 1,
i∗ q 1–( )–( )–   =



Learning Vector Quantization Networks

7-41

net = train(net,P,T);

Now confirm the first-layer weights.

net.IW{1,1}
ans =
    0.3283    0.0051
   -0.1366    0.0001
   -0.0263    0.2234
         0   -0.0685

The following plot shows that these weights have moved toward their 
respective classification groups.

To confirm that these weights do indeed lead to the correct classification, take 
the matrix P as input and simulate the network. Then see what classifications 
are produced by the network.

Y = sim(net,P);
Yc = vec2ind(Y)

This gives

Yc =

-5 0 5
-3

-2

-1

0

1

2

3

Weights (circles) after training



7 Self-Organizing and Learning Vector Quantization Nets

7-42

     1     1     1     2     2     2     2     1     1     1

which is expected. As a last check, try an input close to a vector that was used 
in training.

pchk1 = [0; 0.5];
Y = sim(net,pchk1);
Yc1 = vec2ind(Y)

This gives

Yc1 =
     2

This looks right, because pchk1 is close to other vectors classified as 2. 
Similarly,

pchk2 = [1; 0];
Y = sim(net,pchk2);
Yc2 = vec2ind(Y)

gives

Yc2 =
     1

This looks right too, because pchk2 is close to other vectors classified as 1.

You might want to try the demonstration program demolvq1. It follows the 
discussion of training given above. 

Supplemental LVQ2.1 Learning Rule (learnlv2)
The following learning rule is one that might be applied after first applying 
LVQ1. It can improve the result of the first learning. This particular version of 
LVQ2 (referred to as LVQ2.1 in the literature [Koho97]) is embodied in the 
function learnlv2. Note again that LVQ2.1 is to be used only after LVQ1 has 
been applied.

Learning here is similar to that in learnlv1 except now two vectors of layer 1 
that are closest to the input vector can be updated, provided that one belongs 
to the correct class and one belongs to a wrong class, and further provided that 
the input falls into a “window” near the midplane of the two vectors. 



Learning Vector Quantization Networks

7-43

The window is defined by

 

(where di and dj are the Euclidean distances of p from i*IW1,1 and j*IW1,1, 
respectively). Take a value for w in the range 0.2 to 0.3. If you pick, for instance, 
0.25, then s = 0.6. This means that if the minimum of the two distance ratios is 
greater than 0.6, the two vectors are adjusted. That is, if the input is near the 
midplane, adjust the two vectors, provided also that the input vector p and 

j*IW1,1 belong to the same class, and p and i*IW1,1 do not belong in the same 
class.

The adjustments made are

and

Thus, given two vectors closest to the input, as long as one belongs to the wrong 
class and the other to the correct class, and as long as the input falls in a 
midplane window, the two vectors are adjusted. Such a procedure allows a 
vector that is just barely classified correctly with LVQ1 to be moved even closer 
to the input, so the results are more robust.

min
di
dj
-----,

dj
di
----- 

  s    where    s 1 w–
1 w+
--------------≡>

IW1 1,
i∗ q( ) IW1 1,

i∗ q 1–( )  α p q( ) IW1 1,
i∗ q 1–( )–( )–   =

IW1 1,
j∗ q( ) IW1 1,

j∗ q 1–( ) α p q( ) IW1 1,
j∗ q 1–( )–( )+=



7 Self-Organizing and Learning Vector Quantization Nets

7-44



 

8
Adaptive Filters and 
Adaptive Training

Introduction (p. 8-2)

Linear Neuron Model (p. 8-3)

Adaptive Linear Network Architecture (p. 8-4)

Least Mean Square Error (p. 8-7)

LMS Algorithm (learnwh) (p. 8-8)

Adaptive Filtering (adapt) (p. 8-9)



8 Adaptive Filters and Adaptive Training

8-2

Introduction
The ADALINE (adaptive linear neuron) networks discussed in this chapter are 
similar to the perceptron, but their transfer function is linear rather than 
hard-limiting. This allows their outputs to take on any value, whereas the 
perceptron output is limited to either 0 or 1. Both the ADALINE and the 
perceptron can only solve linearly separable problems. However, here the LMS 
(least mean squares) learning rule, which is much more powerful than the 
perceptron learning rule, is used. The LMS, or Widrow-Hoff, learning rule 
minimizes the mean square error and thus moves the decision boundaries as 
far as it can from the training patterns.

In this chapter, you design an adaptive linear system that responds to changes 
in its environment as it is operating. Linear networks that are adjusted at each 
time step based on new input and target vectors can find weights and biases 
that minimize the network’s sum-squared error for recent input and target 
vectors. Networks of this sort are often used in error cancellation, signal 
processing, and control systems.

The pioneering work in this field was done by Widrow and Hoff, who gave the 
name ADALINE to adaptive linear elements. The basic reference on this 
subject is Widrow, B., and S.D. Sterns, Adaptive Signal Processing, New York, 
Prentice-Hall, 1985.

The adaptive training of self-organizing and competitive networks is also 
considered in this chapter.

Important Adaptive Functions
This chapter introduces the function adapt, which changes the weights and 
biases of a network incrementally during training.

You can type help linnet to see a list of linear and adaptive network 
functions, demonstrations, and applications.



Linear Neuron Model

8-3

Linear Neuron Model
A linear neuron with R inputs is shown below.

This network has the same basic structure as the perceptron. The only 
difference is that the linear neuron uses a linear transfer function, named 
purelin. 

The linear transfer function calculates the neuron’s output by simply returning 
the value passed to it.

This neuron can be trained to learn an affine function of its inputs, or to find a 
linear approximation to a nonlinear function. A linear network cannot, of 
course, be made to perform a nonlinear computation.

Input

p
1

an
p

2p
3

p
R

w
1,

 
R

w
1,1

��
�� f

b

1

Where...

R = number of 
elements in
input vector

Linear Neuron with 
     Vector Input 

��
��
��
��

a = purelin (Wp + b)

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

a purelin n( ) purelin Wp b+( ) Wp b   += = =



8 Adaptive Filters and Adaptive Training

8-4

Adaptive Linear Network Architecture
The ADALINE network shown below has one layer of S neurons connected to 
R inputs through a matrix of weights W.

This network is sometimes called a MADALINE for Many ADALINEs. Note 
that the figure on the right defines an S-length output vector a.

The Widrow-Hoff rule can only train single-layer linear networks. This is not 
much of a disadvantage, however, as single-layer linear networks are just as 
capable as multilayer linear networks. For every multilayer linear network, 
there is an equivalent single-layer linear network.

Single ADALINE (newlin)
Consider a single ADALINE with two inputs. The following figure shows the 
diagram for this network.

p
1

a
2

n
2

Input

p
2

p
3

p
R

w
S, 

 
R

w
1,

 
1

b
2

b
1

b
S

a
S

n
S

a
1

n
1

1

1

1

��
��

��

��

Layer of Linear 
Neurons

p a

1

n��W

��
��b

R x 1
S x R

S x 1

S  x  1

Input Layer of Linear Neurons

R S

S x 1

��

��
��
��

��

��
��

a= purelin (Wp + b)

Where...

 
 

R = number of 
elements in
 input vector 

S = number of 
neurons in layer a= purelin (Wp + b)



Adaptive Linear Network Architecture

8-5

The weight matrix W in this case has only one row. The network output is

or

Like the perceptron, the ADALINE has a decision boundary that is determined 
by the input vectors for which the net input n is zero. For n = 0 the equation 
Wp + b = 0 specifies such a decision boundary, as shown below (adapted with 
thanks from [HDB96]).
.

Input vectors in the upper right gray area lead to an output greater than 0. 
Input vectors in the lower left white area lead to an output less than 0. Thus, 
the ADALINE can be used to classify objects into two categories.

p
1 an

Input

bp
2 w

1,2

w
1,1

1

��
��

a = purelin(Wp+b)

�
�

Simple ADALINE

a purelin n( ) purelin Wp b+( ) Wp b  += = =

a w1 1, p1 w1 2, p2 b+ +=

p
1-b/w

1,1

p
2

-b/w
1,2

Wp+b=0

a>0a<0

W



8 Adaptive Filters and Adaptive Training

8-6

However, ADALINE can classify objects in this way only when the objects are 
linearly separable. Thus, ADALINE has the same limitation as the perceptron.

We can create a network similar to the one shown using this command:

net = newlin([-1 1; -1 1],1);

The first matrix of arguments specifies typical two-element input vectors, and 
the last argument 1 indicates that the network has a single output.

The network weights and biases are set to zero, by default. You can see the 
current values using the commands:

W = net.IW{1,1}
W =

 0  0

and

b = net.b{1}
b =

 0

You can also assign arbitrary values to the weights and bias, such as 2 and 3 
for the weights and -4 for the bias:

net.IW{1,1} = [2 3];
net.b{1} = -4;

You can simulate the ADAPLINE for a particular input vector.

p = [5; 6];
a = sim(net,p)
a =
    24

To summarize, you can create an ADALINE network with newlin, adjust its 
elements as you want, and simulate it with sim. You can find more about 
newlin by typing help newlin.



Least Mean Square Error

8-7

Least Mean Square Error
Like the perceptron learning rule, the least mean square error (LMS) 
algorithm is an example of supervised training, in which the learning rule is 
provided with a set of examples of desired network behavior.

Here pq is an input to the network, and tq is the corresponding target output. 
As each input is applied to the network, the network output is compared to the 
target. The error is calculated as the difference between the target output and 
the network output. The goal is to minimize the average of the sum of these 
errors.

The LMS algorithm adjusts the weights and biases of the ADALINE so as to 
minimize this mean square error. 

Fortunately, the mean square error performance index for the ADALINE 
network is a quadratic function. Thus, the performance index will either have 
one global minimum, a weak minimum, or no minimum, depending on the 
characteristics of the input vectors. Specifically, the characteristics of the input 
vectors determine whether or not a unique solution exists.

You can learn more about this topic in Chapter 10 of [HDB96].

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

mse 1
Q
---- e k( )2

k 1=

Q


1
Q
---- t k( ) a k( )–( )2

k 1=

Q

= =



8 Adaptive Filters and Adaptive Training

8-8

LMS Algorithm (learnwh)
Adaptive networks will use the LMS algorithm or Widrow-Hoff learning 
algorithm based on an approximate steepest descent procedure. Here again, 
adaptive linear networks are trained on examples of correct behavior.

The LMS algorithm, shown below, is discussed in detail in “Linear Networks” 
on page 10-18.

W k 1+( ) W k( ) 2αe k( )pT k( )+=

b k 1+( ) b k( ) 2αe k( )+=



Adaptive Filtering (adapt)

8-9

Adaptive Filtering (adapt)
The ADALINE network, much like the perceptron, can only solve linearly 
separable problems. It is, however, one of the most widely used neural 
networks found in practical applications. Adaptive filtering is one of its major 
application areas. 

Tapped Delay Line
You need a new component, the tapped delay line, to make full use of the 
ADALINE network. Such a delay line is shown in the next figure. The input 
signal enters from the left and passes through N-1 delays. The output of the 
tapped delay line (TDL) is an N-dimensional vector, made up of the input 
signal at the current time, the previous input signal, etc.

Adaptive Filter
You can combine a tapped delay line with an ADALINE network to create the 
adaptive filter shown in the next figure.

��
��D

��D

pd
1
(k)

pd
2
(k)

pd
N 

(k)

N

TDL



8 Adaptive Filters and Adaptive Training

8-10

The output of the filter is given by

In digital signal processing, this network is referred to as a finite impulse 
response (FIR) filter [WiSt85]. Take a look at the code used to generate and 
simulate such an adaptive network.

Adaptive Filter Example
First define a new linear network using newlin.

Linear Layer

a(k)n(k)
SxR

��
��

w
1, N

w
1,1

b
1
�
�w

1,2

p(k)

��
��D

��D

p(k - 1)

pd
1
(k)

pd
2
(k)

pd
N 

(k)

N

TDL

a k( ) purelin Wp b+( ) w1 i, a k i– 1+( )

i 1=

R

 b+= =



Adaptive Filtering (adapt)

8-11

Assume that the input values have a range from 0 to 10. You can now define 
the single output network.

net = newlin([0,10],1);

Specify the delays in the tapped delay line with

net.inputWeights{1,1}.delays = [0 1 2];

This definition indicates that the delay line connects to the network weight 
matrix through delays of 0, 1, and 2 time units. (You can specify as many delays 
as you want, and can omit some values if you like. They must be in ascending 
order.)

You can give the various weights and the bias values with

net.IW{1,1} = [7 8 9];
net.b{1} = [0];

Finally, define the initial values of the outputs of the delays as

pi = {1 2};

These are ordered from left to right to correspond to the delays taken from top 
to bottom in the figure. This concludes the setup of the network. 

To set up the input, assume that the input scalars arrive in a sequence: first 
the value 3, then the value 4, next the value 5, and finally the value 6. You can 

Input

w
1,1

p
1
(t) = p(t)

��
��D

��D
p

2
(t) = p(t - 1)

p
3
(t) = p(t - 2)

w
1,2

w
1,3

- Exp -a = purelin (Wp + b)

Linear  Digital Filter

a(t)n(t)

b ��
1

��



8 Adaptive Filters and Adaptive Training

8-12

indicate this sequence by defining the values as elements of a cell array in curly 
braces.

p = {3 4 5 6};

Now, you have a network and a sequence of inputs. Simulate the network to 
see what its output is as a function of time.

[a,pf] = sim(net,p,pi)

This simulation yields an output sequence 

a = 
    [46]    [70]    [94]    [118]

and final values for the delay outputs of

pf = 
    [5]    [6]

The example is sufficiently simple that you can check it without a calculator to 
make sure that you understand the inputs, initial values of the delays, etc.

The network just defined can be trained with the function adapt to produce a 
particular output sequence. Suppose, for instance, you want the network to 
produce the sequence of values 10, 20, 30, 40. 

t = {10 20 30 40};

You can train the defined network to do this, starting from the initial delay 
conditions used above. Specify 10 passes through the input sequence with

net.adaptParam.passes = 10;

Then launch the training with

[net,y,E,pf,af] = adapt(net,p,t,pi);

This code returns the final weights, bias, and output sequence shown here.

wts = net.IW{1,1}
wts =
    0.5059    3.1053    5.7046
bias = net.b{1}
bias =
   -1.5993
y



Adaptive Filtering (adapt)

8-13

y = 
    [11.8558]    [20.7735]    [29.6679]    [39.0036]

Presumably, if you ran additional passes the output sequence would have been 
even closer to the desired values of 10, 20, 30, and 40.

Thus, adaptive networks can be specified, simulated, and finally trained with 
adapt. However, the outstanding value of adaptive networks lies in their use 
to perform a particular function, such as prediction or noise cancellation.

Prediction Example
Suppose that you want to use an adaptive filter to predict the next value of a 
stationary random process, p(t). You can use the network shown in the 
following figure to do this prediction.

The signal to be predicted, p(t), enters from the left into a tapped delay line. 
The previous two values of p(t) are available as outputs from the tapped delay 
line. The network uses adapt to change the weights on each time step so as to 
minimize the error e(t) on the far right. If this error is 0, the network output 
a(t) is exactly equal to p(t), and the network has done its prediction properly.

Given the autocorrelation function of the stationary random process p(t), you 
can calculate the error surface, the maximum learning rate, and the optimum 
values of the weights. Commonly, of course, you do not have detailed 
information about the random process, so these calculations cannot be 

Input

p
1
(t) = p(t)

��
��D

��D

p
2
(t) = p(t - 1)

p
3
(t) = p(t - 2)

w
1,2

w
1,3

a = purelin (Wp + b)

Linear  Digital Filter

a(t)n(t)

b ��
1

��
Adjust weights

 e(t)

Predictive Filter:    a(t) is approximation to p(t)

+

-

Target =  p(t) 



8 Adaptive Filters and Adaptive Training

8-14

performed. This lack does not matter to the network. After it is initialized and 
operating, the network adapts at each time step to minimize the error and in a 
relatively short time is able to predict the input p(t). 

Chapter 10 of [HDB96] presents this problem, goes through the analysis, and 
shows the weight trajectory during training. The network finds the optimum 
weights on its own without any difficulty whatsoever. 

You also can try demonstration nnd10nc to see an adaptive noise cancellation 
program example in action. This demonstration allows you to pick a learning 
rate and momentum (see Chapter 3, “Multilayer Networks and 
Backpropagation Training”), and shows the learning trajectory, and the 
original and cancellation signals versus time.

Noise Cancellation Example
Consider a pilot in an airplane. When the pilot speaks into a microphone, the 
engine noise in the cockpit combines with the voice signal. This additional 
noise makes the resultant signal heard by passengers of low quality. The goal 
is to obtain a signal that contains the pilot’s voice, but not the engine noise. You 
can cancel the noise with an adaptive filter if you obtain a sample of the engine 
noise and apply it as the input to the adaptive filter.



Adaptive Filtering (adapt)

8-15

As the preceding figure shows, you adaptively train the neural linear network 
to predict the combined pilot/engine signal m from an engine signal n. The 
engine signal n does not tell the adaptive network anything about the pilot’s 
voice signal contained in m. However, the engine signal n does give the network 
information it can use to predict the engine’s contribution to the pilot/engine 
signal m. 

The network does its best to output m adaptively. In this case, the network can 
only predict the engine interference noise in the pilot/engine signal m. The 
network error e is equal to m, the pilot/engine signal, minus the predicted 
contaminating engine noise signal. Thus, e contains only the pilot’s voice. The 
linear adaptive network adaptively learns to cancel the engine noise. 

Such adaptive noise canceling generally does a better job than a classical filter, 
because it subtracts from the signal rather than filtering it out the noise of the 
signal m.

Adaptive
   Filter Engine Noise

Noise Path
    Filter

Pilot’s 
Voice

Contaminating
Noise       

Pilot’s Voice 
Contaminated with 
Engine Noise

"Error"

Restored Signal

+
-

Adaptive Filter Adjusts to Minimize Error. 
This removes the engine noise from contaminated 
signal, leaving the pilot’s voice as the “error.”

Filtered Noise to Cancel
Contamination

n

c

v

a

e

m



8 Adaptive Filters and Adaptive Training

8-16

Try demolin8 for an example of adaptive noise cancellation.

Multiple Neuron Adaptive Filters
You might want to use more than one neuron in an adaptive system, so you 
need some additional notation. You can use a tapped delay line with S linear 
neurons, as shown in the next figure.

Alternatively, you can represent this same network in abbreviated form.

a2(k)n2(k)

wS, N

w1,1

b2

b1

bS

a1(k)n1(k)

1

1

1
��
��

��
��

��
��

��
��p(k)

��
��D

��D

p(k - 1)

N

TDL

��
��

��
��

Linear Layer

pd1(k)

pdN (k)

pd2(k)

nS (k) aS (k)

pd(k) a(k)

1

p(k)

n(k)Q
 
x

 
1 (Q*N)

 
x

 
1

S x
 
(Q*N)

S 
 
x

 
1

S 
 
x

 
1

S 
 
x

 
1

N

Linear Layer of S Neurons

��
��

W

��
��b

��
��

TDL

S��
��
��
��



Adaptive Filtering (adapt)

8-17

If you want to show more of the detail of the tapped delay line—and there are 
not too many delays—you can use the following notation:

Here, a tapped delay line sends to the weight matrix:

• The current signal

• The previous signal

• The signal delayed before that

You could have a longer list, and some delay values could be omitted if desired. 
The only requirement is that the delays must appears in increasing order as 
they go from top to bottom.

pd(k) a(k)

��W

��
��b1

p(k)

n(k)1
 
x

 
1 3

 
x

 
1

3
 
x

 
2

3
 
x

 
1

3
 
x

 
1

3
 
x

 
1

�
�
�

Abreviated Notation

Linear layer2

��
��
��
��TDL

0

1

2



8 Adaptive Filters and Adaptive Training

8-18



 

9

Advanced Topics

Custom Networks (p. 9-2)

Additional Toolbox Functions (p. 9-15)

Speed and Memory Comparison for Training Multilayer Networks (p. 9-16)

Improving Generalization (p. 9-34)

Custom Functions (p. 9-45)



9 Advanced Topics

9-2

Custom Networks
Neural Network Toolbox™ software provides a flexible network object type 
that allows many kinds of networks to be created and then used with functions 
such as init, sim, and train.

Type the following to see all the network creation functions in the toolbox.

help nnnetwork

This flexibility is possible because networks have an object-oriented 
representation. The representation allows you to define various architectures 
and assign various algorithms to those architectures.

To create custom networks, start with an empty network (obtained with the 
network function) and set its properties as desired.

net = network

The network object consists of many properties that you can set to specify the 
structure and behavior of your network. See Chapter 11, “Network Object 
Reference,” for descriptions of all network properties.

The following sections demonstrate how to create a custom network by using 
these properties.

Custom Network
Before you can build a network you need to know what it looks like. For 
dramatic purposes (and to give the toolbox a workout) this section leads you 
through the creation of the wild and complicated network shown below.



Custom Networks

9-3

Each of the two elements of the first network input is to accept values ranging 
between 0 and 10. Each of the five elements of the second network input ranges 
from -2 to 2.

Before you can complete your design of this network, the algorithms it employs 
for initialization and training must be specified.

Each layer’s weights and biases are initialized with the Nguyen-Widrow layer 
initialization method (initnw). The network is trained with 
Levenberg-Marquardt backpropagation (trainlm), so that, given example 
input vectors, the outputs of the third layer learn to match the associated 
target vectors with minimal mean squared error (mse).

Network Definition
The first step is to create a new network. Type the following code to create a 
network and view its many properties.

net = network

p1(k)

a1(k)1

n1(k) 2 x 1
4 x 2

 4 x 1

 4 x 1

4 x 1

Inputs 

��
��IW1,1

��b1

2 4

Layers 1 and 2 Layer 3

a1(k) = tansig (IW1,1p1(k) +b1)

��
��
��

5

3 x (2*2)
��IW2,1

3 x (1*5)��
��IW2,2

n2(k)

3 x 1

3��
��
����

TDL

p2(k)

 5 x 1

��
��TDL

1 x 4

��
��LW3,1

1 x 3��
��

1 x (1*1)��

1
1 x 1��
��b3

��
TDL

3 x 1

a2(k)

a3(k)n3(k)
1 x 1 1 x 1

1��
��
��

a2(k) = logsig (IW2,1 [p1(k);p1(k-1) ]+ IW2,2p2(k-1))

0,1

1

1

a3(k)=purelin(LW3,3a3(k-1)+LW3,1 a1 (k)+b3+LW3,2a2 (k))

LW3,2

LW3,3

y2(k)
1 x 1

y1(k)

3 x 1

Outputs



9 Advanced Topics

9-4

Architecture Properties
The first group of properties displayed is labeled architecture properties. 
These properties allow you to select the number of inputs and layers and their 
connections.

Number of Inputs and Layers. The first two properties displayed are numInputs 
and numLayers. These properties allow you to select how many inputs and 
layers you want the network to have.

net =

Neural Network object:

    architecture:

         numInputs: 0
         numLayers: 0

...

Note that the network has no inputs or layers at this time.

Change that by setting these properties to the number of inputs and number of 
layers in the custom network diagram.

net.numInputs = 2;
net.numLayers = 3;

net.numInputs is the number of input sources, not the number of elements in 
an input vector (net.inputs{i}.size).

Bias Connections. Type net and press Enter to view its properties again. The 
network now has two inputs and three layers.

net =

Neural Network object:

    architecture:

         numInputs: 2
         numLayers: 3

Examine the next four properties:

biasConnect: [0; 0; 0]
      inputConnect: [0 0; 0 0; 0 0]



Custom Networks

9-5

      layerConnect: [0 0 0; 0 0 0; 0 0 0]
     outputConnect: [0 0 0]

These matrices of 1’s and 0’s represent the presence and absence of bias, input 
weight, layer weight, and output connections. They are currently all zeros, 
indicating that the network does not have any such connections.

The bias connection matrix is a 3-by-1 vector. To create a bias connection to the 
ith layer you can set net.biasConnect(i) to 1. Specify that the first and third 
layers are to have bias connections, as the diagram indicates, by typing the 
following code:

net.biasConnect(1) = 1;
net.biasConnect(3) = 1;

You could also define those connections with a single line of code.

net.biasConnect = [1; 0; 1];

Input and Layer Weight Connections. The input connection matrix is 3-by-2, 
representing the presence of connections from two sources (the two inputs) to 
three destinations (the three layers). Thus, net.inputConnect(i,j) 
represents the presence of an input weight connection going to the ith layer 
from the jth input.

To connect the first input to the first and second layers, and the second input 
to the second layer (as indicated by the custom network diagram), type

net.inputConnect(1,1) = 1;
net.inputConnect(2,1) = 1;
net.inputConnect(2,2) = 1;

or this single line of code:

net.inputConnect = [1 0; 1 1; 0 0];

Similarly, net.layerConnect(i.j) represents the presence of a layer-weight 
connection going to the ith layer from the jth layer. Connect layers 1, 2, and 3 
to layer 3 as follows:

net.layerConnect = [0 0 0; 0 0 0; 1 1 1];

Output Connections. The output connections are a 1-by-3 matrix, indicating that 
they connect to one destination (the external world) from three sources (the 
three layers).



9 Advanced Topics

9-6

To connect layers 2 and 3 to the network output, type

net.outputConnect = [0 1 1];

Number of Outputs
Type net and press Enter to view the updated properties. The final three 
architecture properties are read-only values, which means their values are 
determined by the choices made for other properties. The first read-only 
property is the number of outputs:

numOutputs: 2 (read-only)

By defining output connection from layers 2 and 3, you specified that the 
network has two outputs.

Subobject Properties
The next group of properties is

subobject structures:

inputs: {2x1 cell} of inputs
layers: {3x1 cell} of layers
outputs: {1x3 cell} containing 1 output
biases: {3x1 cell} containing 2 biases

inputWeights: {3x2 cell} containing 3 input weights
layerWeights: {3x3 cell} containing 3 layer weights

Inputs
When you set the number of inputs (net.numInputs) to 2, the inputs property 
becomes a cell array of two input structures. Each ith input structure 
(net.inputs{i}) contains additional properties associated with the ith input.

To see how the input structures are arranged, type

net.inputs
ans = 

    [1x1 struct]
    [1x1 struct]

To see the properties associated with the first input, type

net.inputs{1}



Custom Networks

9-7

The properties appear as follows:

ans = 

exampleInput: [0 1]
processFcns: {}

processParams: {}
processSettings: {}
processedRange: [0 1]
processedSize: 1

range: [0 1]
size: 1

userdata: [1x1 struct]

If you set the exampleInput property, the range, size, processedSize, and 
processedRange properties will automatically be updated to match the 
properties of the value of exampleInput.

Set the exampleInput property as follows:

net.inputs{1}.exampleInput = [0 10 5; 0 3 10];

If you examine the structure of the first input again, you see that it now has 
new values.

The property processFcns can be set to one or more processing functions. Type 
help nnprocess to see a list of these functions.

Set the second input vector ranges to be from -2 to 2 for five elements as follows:

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};

View the new input properties. You will see that processParams, 
processSettings, processedRange and processedSize have all been updated 
to reflect that inputs will be processed using removeconstantrows and 
mapminmax before being given to the network when the network is simulated or 
trained. The property processParams contains the default parameters for each 
processing function. You can alter these values, if you like. See the reference 
pages for each processing function to learn more about the function 
parameters.

You can set the size of an input directly when no processing functions are used:

net.inputs{2}.size = 5;



9 Advanced Topics

9-8

Layers. When you set the number of layers (net.numLayers) to 3, the layers 
property becomes a cell array of three-layer structures. Type the following line 
of code to see the properties associated with the first layer.

net.layers{1}

ans = 

     dimensions: 1
    distanceFcn: 'dist'
      distances: 0
        initFcn: 'initwb'
    netInputFcn: 'netsum'
netInputParam: [1x1 struct]

      positions: 0
           size: 1
    topologyFcn: 'hextop'
    transferFcn: 'purelin'
transferParam: [1x1 struct]

       userdata: [1x1 struct]

Type the following three lines of code to change the first layer’s size to 4 
neurons, its transfer function to tansig, and its initialization function to the 
Nguyen-Widrow function, as required for the custom network diagram.

net.layers{1}.size = 4;
net.layers{1}.transferFcn = 'tansig';
net.layers{1}.initFcn = 'initnw';

The second layer is to have three neurons, the logsig transfer function, and be 
initialized with initnw. Set the second layer’s properties to the desired values 
as follows:

net.layers{2}.size = 3;
net.layers{2}.transferFcn = 'logsig';
net.layers{2}.initFcn = 'initnw';

The third layer’s size and transfer function properties don’t need to be changed, 
because the defaults match those shown in the network diagram. You only 
need to set its initialization function, as follows:

net.layers{3}.initFcn = 'initnw';

Outputs. Look at how the outputs property is arranged with this line of code.



Custom Networks

9-9

net.outputs
ans = 

     []    [1x1 struct]    [1x1 struct]

Note that outputs contains two output structures, one for layer 2 and one for 
layer 3. This arrangement occurs automatically when net.outputConnect is 
set to [0 1 1].

View the second layer’s output structure with the following expression:

net.outputs{2}
ans = 

exampleOutput: []
processFcns: {}

processParams: {}
processSettings: {}
processedRange: []
processedSize: 1

range: []
size: 3

userdata: [1x1 struct]

The size is automatically set to 3 when the second layer’s size 
(net.layers{2}.size) is set to that value. Look at the third layer’s output 
structure if you want to verify that it also has the correct size.

Outputs have processing properties that are automatically applied to target 
values before they are used by the network during training. The same 
processing settings are applied in reverse on layer output values before they 
are returned as network output values during network simulation or training.

Similar to input-processing properties, setting the exampleOutput property 
automatically causes size, range, processedSize and processedRange to be 
updated. Setting processFcns to a cell array list of processing function names 
causes processParams, processSettings, processedRange to be updated.You 
can then alter the processParam values, if you like.

Biases, Input Weights, and Layer Weights. Enter the following commands to see how 
bias and weight structures are arranged:

net.biases
net.inputWeights



9 Advanced Topics

9-10

net.layerWeights

Here are the results of typing net.biases:

ans = 
    [1x1 struct]
              []
    [1x1 struct]

Each contains a structure where the corresponding connections 
(net.biasConnect, net.inputConnect, and net.layerConnect) contain a 1.

Look at their structures with these lines of code:

net.biases{1}
net.biases{3}
net.inputWeights{1,1}
net.inputWeights{2,1}
net.inputWeights{2,2}
net.layerWeights{3,1}
net.layerWeights{3,2}
net.layerWeights{3,3}

For example, typing net.biases{1} results in the following output:

ans = 
       initFcn: ''
         learn: 1
      learnFcn: ''
    learnParam: ''
          size: 4
      userdata: [1x1 struct]

Specify the weights’ tap delay lines in accordance with the network diagram by 
setting each weight’s delays property:

net.inputWeights{2,1}.delays = [0 1];
net.inputWeights{2,2}.delays = 1;
net.layerWeights{3,3}.delays = 1;

Network Functions
Type net and press Return again to see the next set of properties.

functions:



Custom Networks

9-11

adaptFcn: (none)
divideFcn: (none)

gradientFcn: (none)
           initFcn: (none)
        performFcn: (none)

plotFcns: {}
          trainFcn: (none)

Each of these properties defines a function for a basic network operation.

Set the initialization function to initlay so the network initializes itself 
according to the layer initialization functions already set to initnw, the 
Nguyen-Widrow initialization function.

net.initFcn = 'initlay';

This meets the initialization requirement of the network.

Set the performance function to mse (mean squared error) and the training 
function to trainlm (Levenberg-Marquardt backpropagation) to meet the final 
requirement of the custom network.

net.performFcn = 'mse';
net.trainFcn = 'trainlm';

Set the divide function to dividerand (divide training data randomly).

net.divideFcn = 'dividerand';

During supervised training, the input and target data are randomly divided 
into training, test, and validation data sets. The network is trained on the 
training data until its performance begins to decrease on the validation data, 
which signals that generalization has peaked. The test data provides a 
completely independent test of network generalization.

Set the plot functions to plotperform (plot training, validation and test 
performance) and plottrainstate (plot the state of the training algorithm 
with respect to epochs).

net.plotFcns = {'plotperform','plottrainstate'};

Weight and Bias Values
Before initializing and training the network, look at the final group of network 
properties (aside from the userdata property).



9 Advanced Topics

9-12

weight and bias values:

                IW: {3x2 cell} containing 3 input weight matrices
                LW: {3x3 cell} containing 3 layer weight matrices
                 b: {3x1 cell} containing 2 bias vectors

These cell arrays contain weight matrices and bias vectors in the same 
positions that the connection properties (net.inputConnect, 
net.layerConnect, net.biasConnect) contain 1’s and the subobject properties 
(net.inputWeights, net.layerWeights, net.biases) contain structures.

Evaluating each of the following lines of code reveals that all the bias vectors 
and weight matrices are set to zeros.

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
net.LW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

Each input weight net.IW{i,j}, layer weight net.LW{i,j}, and bias vector 
net.b{i} has as many rows as the size of the ith layer (net.layers{i}.size). 

Each input weight net.IW{i,j} has as many columns as the size of the jth 
input (net.inputs{j}.size) multiplied by the number of its delay values 
(length(net.inputWeights{i,j}.delays)).

Likewise, each layer weight has as many columns as the size of the jth layer 
(net.layers{j}.size) multiplied by the number of its delay values 
(length(net.layerWeights{i,j}.delays)).

Network Behavior

Initialization
Initialize your network with the following line of code:

net = init(net);

Check the network’s biases and weights again to see how they have changed.

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
net.LW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

For example,



Custom Networks

9-13

net.IW{1,1}

ans =
   -0.3040    0.4703
   -0.5423   -0.1395
    0.5567    0.0604
    0.2667    0.4924

Training
Define the following cell array of two input vectors (one with two elements, one 
with five) for two time steps (i.e., two columns).

X = {[0; 0] [2; 0.5]; [2; -2; 1; 0; 1] [-1; -1; 1; 0; 1]};

You want the network to respond with the following target sequences for the 
second layer, which has three neurons, and the third layer with one neuron:

T = {[1; 1; 1] [0; 0; 0]; 1 -1};

Before training, you can simulate the network to see whether the initial 
network’s response Y is close to the target T.

Y = sim(net,X)

Y = 
[3x1 double]    [3x1 double]
[ 1.7148]    [ 2.2726]

The cell array Y is the output sequence of the network, which is also the output 
sequence of the second and third layers. The values you got for the second row 
can differ from those shown because of different initial weights and biases. 
However, they will almost certainly not be equal to targets T, which is also true 
of the values shown.

The next task is optional. On some occasions you may wish to alter the training 
parameters before training. The following line of code displays the default 
Levenberg-Marquardt training parameters (defined when you set 
net.trainFcn to trainlm).

net.trainParam

The following properties should be displayed.

ans = 



9 Advanced Topics

9-14

       epochs: 100
         goal: 0
     max_fail: 5
    mem_reduc: 1
     min_grad: 1.0000e-10
           mu: 1.0000e-03
       mu_dec: 0.1000
       mu_inc: 10
       mu_max: 1.0000e+10
         show: 25
         time: 

You will not often need to modify these values. See the documentation for the 
training function for information about what each of these mean. They have 
been initialized with default values that work well for a large range of 
problems, so we will not change them here.

Next, train the network with the following call:

net = train(net,X,T);

Training launches the neural network training window. To open the 
performance and training state plots, click the plot buttons.

After training, you can simulate the network to see if it has learned to respond 
correctly.

Y = sim(net,X)

[3x1 double]    [3x1 double]
[ 1.0000]    [ -1.0000]

The second network output (i.e., the second row of the cell array Y), which is 
also the third layer’s output, matches the target sequence T.



Additional Toolbox Functions

9-15

Additional Toolbox Functions
Most toolbox functions are explained in chapters dealing with networks that 
use them. However, some functions are not used by toolbox networks, but are 
included because they might be useful to you in creating custom networks.

For instance, satlin and softmax are two transfer functions not used by any 
standard network in the toolbox, but which you can use in your custom 
networks. See the reference pages for more information. 



9 Advanced Topics

9-16

Speed and Memory Comparison for Training Multilayer 
Networks

It is very difficult to know which training algorithm will be the fastest for a 
given problem. It depends on many factors, including the complexity of the 
problem, the number of data points in the training set, the number of weights 
and biases in the network, the error goal, and whether the network is being 
used for pattern recognition (discriminant analysis) or function approximation 
(regression). This section compares the various training algorithms. 
Feedforward networks are trained on six different problems. Three of the 
problems fall in the pattern recognition category and the three others fall in the 
function approximation category. Two of the problems are simple “toy” 
problems, while the other four are “real world” problems. Networks with a 
variety of different architectures and complexities are used, and the networks 
are trained to a variety of different accuracy levels.

The following table lists the algorithms that are tested and the acronyms used 
to identify them.

Acronym Algorithm

LM trainlm Levenberg-Marquardt

BFG trainbfg BFGS Quasi-Newton

RP trainrp Resilient Backpropagation

SCG trainscg Scaled Conjugate Gradient

CGB traincgb Conjugate Gradient with Powell/Beale Restarts

CGF traincgf Fletcher-Powell Conjugate Gradient

CGP traincgp Polak-Ribiére Conjugate Gradient

OSS trainoss One Step Secant

GDX traingdx Variable Learning Rate Backpropagation



Speed and Memory Comparison for Training Multilayer Networks

9-17

The following table lists the six benchmark problems and some characteristics 
of the networks, training processes, and computers used.

SIN Data Set
The first benchmark data set is a simple function approximation problem. A 
1-5-1 network, with tansig transfer functions in the hidden layer and a linear 
transfer function in the output layer, is used to approximate a single period of 
a sine wave. The following table summarizes the results of training the 
network using nine different training algorithms. Each entry in the table 
represents 30 different trials, where different random initial weights are used 
in each trial. In each case, the network is trained until the squared error is less 
than 0.002. The fastest algorithm for this problem is the Levenberg-Marquardt 
algorithm. On the average, it is over four times faster than the next fastest 
algorithm. This is the type of problem for which the LM algorithm is best 
suited—a function approximation problem where the network has fewer than 
one hundred weights and the approximation must be very accurate.

Problem Title Problem Type Network 
Structure

Error 
Goal

Computer

SIN Function approximation 1-5-1 0.002 Sun Sparc 2

PARITY Pattern recognition 3-10-10-1 0.001 Sun Sparc 2

ENGINE Function approximation 2-30-2 0.005 Sun Enterprise 4000

CANCER Pattern recognition 9-5-5-2 0.012 Sun Sparc 2

CHOLESTEROL Function approximation 21-15-3 0.027 Sun Sparc 20

DIABETES Pattern recognition 8-15-15-2 0.05 Sun Sparc 20

Algorithm Mean 
Time (s)

Ratio Min. 
Time (s) 

Max. 
Time (s)

Std. 
(s)

LM      1.14       1.00       0.65       1.83     0.38

BFG      5.22       4.58       3.17     14.38     2.08

RP      5.67       4.97       2.66     17.24     3.72



9 Advanced Topics

9-18

The performance of the various algorithms can be affected by the accuracy 
required of the approximation. This is demonstrated in the following figure, 
which plots the mean square error versus execution time (averaged over the 30 
trials) for several representative algorithms. Here you can see that the error in 
the LM algorithm decreases much more rapidly with time than the other 
algorithms shown.

The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 

SCG      6.09       5.34       3.18 23.64 3.81

CGB      6.61       5.80       2.99 23.65 3.67

CGF      7.86       6.89       3.57 31.23 4.76

CGP      8.24       7.23       4.07 32.32 5.03

OSS      9.64       8.46       3.97 59.63 9.79

GDX    27.69     24.29     17.21 258.15 43.65

Algorithm Mean 
Time (s)

Ratio Min. 
Time (s) 

Max. 
Time (s)

Std. 
(s)

10
−1

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on SIN

lm 
scg
oss
gdx



Speed and Memory Comparison for Training Multilayer Networks

9-19

convergence goal. Here you can see that as the error goal is reduced, the 
improvement provided by the LM algorithm becomes more pronounced. Some 
algorithms perform better as the error goal is reduced (LM and BFG), and 
other algorithms degrade as the error goal is reduced (OSS and GDX).

PARITY Data Set
The second benchmark problem is a simple pattern recognition problem—
detect the parity of a 3-bit number. If the number of ones in the input pattern 
is odd, then the network should output a 1; otherwise, it should output a -1. The 
network used for this problem is a 3-10-10-1 network with tansig neurons in 
each layer. The following table summarizes the results of training this network 
with the nine different algorithms. Each entry in the table represents 30 
different trials, where different random initial weights are used in each trial. 
In each case, the network is trained until the squared error is less than 0.001. 
The fastest algorithm for this problem is the resilient backpropagation 
algorithm, although the conjugate gradient algorithms (in particular, the 
scaled conjugate gradient algorithm) are almost as fast. Notice that the LM 
algorithm does not perform well on this problem. In general, the LM algorithm 
does not perform as well on pattern recognition problems as it does on function 
approximation problems. The LM algorithm is designed for least squares 
problems that are approximately linear. Because the output neurons in pattern 

10
−4

10
−3

10
−2

10
−1

10
−1

10
0

10
1

10
2

10
3

mean−square−error

tim
e 

(s
)

Speed Comparison on SIN

lm 
bfg
scg
gdx
cgb
oss
rp 



9 Advanced Topics

9-20

recognition problems are generally saturated, you will not be operating in the 
linear region.

As with function approximation problems, the performance of the various 
algorithms can be affected by the accuracy required of the network. This is 
demonstrated in the following figure, which plots the mean square error versus 
execution time for some typical algorithms. The LM algorithm converges 
rapidly after some point, but only after the other algorithms have already 
converged.

Algorithm Mean 
Time (s)

Ratio Min. Time 
(s) 

Max. Time 
(s)

Std. 
(s)

RP 3.73 1.00    2.35 6.89 1.26

SCG 4.09 1.10    2.36 7.48 1.56

CGP 5.13 1.38    3.50 8.73 1.05

CGB 5.30 1.42    3.91 11.59 1.35

CGF 6.62 1.77    3.96 28.05 4.32

OSS 8.00 2.14    5.06 14.41 1.92

LM 13.07 3.50    6.48 23.78 4.96

BFG 19.68 5.28  14.19 26.64 2.85

GDX 27.07 7.26  25.21 28.52 0.86



Speed and Memory Comparison for Training Multilayer Networks

9-21

The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 
convergence goal. Again you can see that some algorithms degrade as the error 
goal is reduced (OSS and BFG).

10
−1

10
0

10
1

10
2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on PARITY

lm 
scg
cgb
gdx

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Speed (time) Comparison on PARITY

tim
e 

(s
)

mean−square−error

lm 
bfg
scg
gdx
cgb
oss
rp 



9 Advanced Topics

9-22

ENGINE Data Set
The third benchmark problem is a realistic function approximation (or 
nonlinear regression) problem. The data is obtained from the operation of an 
engine. The inputs to the network are engine speed and fueling levels and the 
network outputs are torque and emission levels. The network used for this 
problem is a 2-30-2 network with tansig neurons in the hidden layer and linear 
neurons in the output layer. The following table summarizes the results of 
training this network with the nine different algorithms. Each entry in the 
table represents 30 different trials (10 trials for RP and GDX because of time 
constraints), where different random initial weights are used in each trial. In 
each case, the network is trained until the squared error is less than 0.005. The 
fastest algorithm for this problem is the LM algorithm, although the BFGS 
quasi-Newton algorithm and the conjugate gradient algorithms (the scaled 
conjugate gradient algorithm in particular) are almost as fast. Although this is 
a function approximation problem, the LM algorithm is not as clearly superior 
as it was on the SIN data set. In this case, the number of weights and biases in 
the network is much larger than the one used on the SIN problem (152 versus 
16), and the advantages of the LM algorithm decrease as the number of 
network parameters increases.

Algorithm Mean 
Time (s)

Ratio Min. Time 
(s) 

Max. 
Time (s)

Std. 
(s)

LM      18.45       1.00       12.01       30.03 4.27

BFG      27.12       1.47       16.42       47.36 5.95

SCG      36.02       1.95       19.39       52.45 7.78

CGF      37.93       2.06       18.89       50.34 6.12

CGB      39.93       2.16       23.33       55.42 7.50

CGP      44.30       2.40       24.99       71.55 9.89

OSS      48.71       2.64       23.51       80.90 12.33

RP      65.91       3.57       31.83     134.31 34.24

GDX    188.50     10.22       81.59     279.90 66.67



Speed and Memory Comparison for Training Multilayer Networks

9-23

The following figure plots the mean square error versus execution time for 
some typical algorithms. The performance of the LM algorithm improves over 
time relative to the other algorithms.

The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 
convergence goal. Again you can see that some algorithms degrade as the error 
goal is reduced (GDX and RP), while the LM algorithm improves.

10
−1

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on ENGINE

lm 
scg
rp 
gdx

10
−1

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on ENGINE

lm 
scg
rp 
gdx



9 Advanced Topics

9-24

CANCER Data Set
The fourth benchmark problem is a realistic pattern recognition (or nonlinear 
discriminant analysis) problem. The objective of the network is to classify a 
tumor as either benign or malignant based on cell descriptions gathered by 
microscopic examination. Input attributes include clump thickness, uniformity 
of cell size and cell shape, the amount of marginal adhesion, and the frequency 
of bare nuclei. The data was obtained from the University of Wisconsin 
Hospitals, Madison, from Dr. William H. Wolberg. The network used for this 
problem is a 9-5-5-2 network with tansig neurons in all layers. The following 
table summarizes the results of training this network with the nine different 
algorithms. Each entry in the table represents 30 different trials, where 
different random initial weights are used in each trial. In each case, the 
network is trained until the squared error is less than 0.012. A few runs failed 
to converge for some of the algorithms, so only the top 75% of the runs from 
each algorithm were used to obtain the statistics.

The conjugate gradient algorithms and resilient backpropagation all provide 
fast convergence, and the LM algorithm is also reasonably fast. As with the 

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

mean−square−error

tim
e 

(s
)

Time Comparison on ENGINE

lm 
bfg
scg
gdx
cgb
oss
rp 



Speed and Memory Comparison for Training Multilayer Networks

9-25

parity data set, the LM algorithm does not perform as well on pattern 
recognition problems as it does on function approximation problems.

The following figure plots the mean square error versus execution time for 
some typical algorithms. For this problem there is not as much variation in 
performance as in previous problems.

Algorithm Mean 
Time (s)

Ratio Min. Time 
(s) 

Max. 
Time (s)

Std. 
(s)

CGB       80.27     1.00        55.07 102.31      13.17

RP       83.41     1.04        59.51 109.39      13.44

SCG       86.58     1.08        41.21 112.19      18.25

CGP       87.70     1.09        56.35 116.37      18.03

CGF     110.05     1.37        63.33 171.53      30.13

LM     110.33     1.37        58.94 201.07      38.20

BFG     209.60     2.61      118.92 318.18      58.44

GDX     313.22     3.90      166.48 446.43      75.44

OSS     463.87     5.78      250.62 599.99      97.35



9 Advanced Topics

9-26

The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 
convergence goal. Again you can see that some algorithms degrade as the error 
goal is reduced (OSS and BFG) while the LM algorithm improves. It is typical 
of the LM algorithm on any problem that its performance improves relative to 
other algorithms as the error goal is reduced.

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on CANCER

bfg
oss
cgb
gdx



Speed and Memory Comparison for Training Multilayer Networks

9-27

CHOLESTEROL Data Set
The fifth benchmark problem is a realistic function approximation (or 
nonlinear regression) problem. The objective of the network is to predict 
cholesterol levels (ldl, hdl, and vldl) based on measurements of 21 spectral 
components. The data was obtained from Dr. Neil Purdie, Department of 
Chemistry, Oklahoma State University [PuLu92]. The network used for this 
problem is a 21-15-3 network with tansig neurons in the hidden layers and 
linear neurons in the output layer. The following table summarizes the results 
of training this network with the nine different algorithms. Each entry in the 
table represents 20 different trials (10 trials for RP and GDX), where different 
random initial weights are used in each trial. In each case, the network is 
trained until the squared error is less than 0.027. 

The scaled conjugate gradient algorithm has the best performance on this 
problem, although all the conjugate gradient algorithms perform well. The LM 
algorithm does not perform as well on this function approximation problem as 
it did on the other two. That is because the number of weights and biases in the 
network has increased again (378 versus 152 versus 16). As the number of 
parameters increases, the computation required in the LM algorithm increases 
geometrically.

10
−2

10
−1

10
0

10
1

10
2

10
3

mean−square−error

tim
e 

(s
)

Time Comparison on CANCER

lm 
bfg
scg
gdx
cgb
oss
rp 



9 Advanced Topics

9-28

The following figure plots the mean square error versus execution time for 
some typical algorithms. For this problem, you can see that the LM algorithm 
is able to drive the mean square error to a lower level than the other 
algorithms. The SCG and RP algorithms provide the fastest initial 
convergence.

Algorithm Mean 
Time (s)

Ratio Min. Time 
(s) 

Max. 
Time (s)

Std. 
(s)

SCG       99.73      1.00        83.10       113.40        9.93

CGP     121.54      1.22      101.76       162.49      16.34

CGB     124.06      1.24      107.64       146.90      14.62

CGF     136.04      1.36      106.46       167.28      17.67

LM     261.50      2.62      103.52       398.45    102.06

OSS     268.55      2.69      197.84       372.99      56.79

BFG     550.92      5.52      471.61       676.39      46.59

RP  1519.00    15.23      581.17     2256.10    557.34

GDX  3169.50    31.78    2514.90     4168.20    610.52



Speed and Memory Comparison for Training Multilayer Networks

9-29

The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 
convergence goal. You can see that the LM and BFG algorithms improve 
relative to the other algorithms as the error goal is reduced.

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
−2

10
−1

10
0

10
1

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on CHOLEST

lm 
scg
rp 
gdx

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

mean−square−error

tim
e 

(s
)

Time Comparison on CHOLEST

lm 
bfg
scg
gdx
cgb
oss
rp 



9 Advanced Topics

9-30

DIABETES Data Set
The sixth benchmark problem is a pattern recognition problem. The objective 
of the network is to decide whether an individual has diabetes, based on 
personal data (age, number of times pregnant) and the results of medical 
examinations (e.g., blood pressure, body mass index, result of glucose tolerance 
test, etc.). The data was obtained from the University of California, Irvine, 
machine learning data base. The network used for this problem is an 8-15-15-2 
network with tansig neurons in all layers. The following table summarizes the 
results of training this network with the nine different algorithms. Each entry 
in the table represents 10 different trials, where different random initial 
weights are used in each trial. In each case, the network is trained until the 
squared error is less than 0.05. 

The conjugate gradient algorithms and resilient backpropagation all provide 
fast convergence. The results on this problem are consistent with the other 
pattern recognition problems considered. The RP algorithm works well on all 
the pattern recognition problems. This is reasonable, because that algorithm 
was designed to overcome the difficulties caused by training with sigmoid 
functions, which have very small slopes when operating far from the center 
point. For pattern recognition problems, you use sigmoid transfer functions in 
the output layer, and you want the network to operate at the tails of the 
sigmoid function.

Algorithm Mean 
Time (s)

Ratio Min. Time 
(s) 

Max. 
Time (s)

Std. 
(s)

RP       323.90      1.00       187.43       576.90      111.37

SCG       390.53      1.21       267.99       487.17        75.07

CGB       394.67      1.22       312.25       558.21        85.38

CGP       415.90      1.28       320.62       614.62        94.77

OSS       784.00      2.42       706.89       936.52        76.37

CGF       784.50      2.42       629.42     1082.20      144.63

LM     1028.10      3.17       802.01     1269.50      166.31



Speed and Memory Comparison for Training Multilayer Networks

9-31

The following figure plots the mean square error versus execution time for 
some typical algorithms. As with other problems, you see that the SCG and RP 
have fast initial convergence, while the LM algorithm is able to provide smaller 
final error.

The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 
convergence goal. In this case, you can see that the BFG algorithm degrades as 
the error goal is reduced, while the LM algorithm improves. The RP algorithm 
is best, except at the smallest error goal, where SCG is better.

BFG     1821.00      5.62     1415.80     3254.50      546.36 

GDX     7687.00    23.73     5169.20  10350.00    2015.00

Algorithm Mean 
Time (s)

Ratio Min. Time 
(s) 

Max. 
Time (s)

Std. 
(s)

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on DIABETES

lm 
scg
rp 
bfg



9 Advanced Topics

9-32

Summary
There are several algorithm characteristics that can be deduced from the 
experiments described. In general, on function approximation problems, for 
networks that contain up to a few hundred weights, the Levenberg-Marquardt 
algorithm will have the fastest convergence. This advantage is especially 
noticeable if very accurate training is required. In many cases, trainlm is able 
to obtain lower mean square errors than any of the other algorithms tested. 
However, as the number of weights in the network increases, the advantage of 
trainlm decreases. In addition, trainlm performance is relatively poor on 
pattern recognition problems. The storage requirements of trainlm are larger 
than the other algorithms tested. By adjusting the mem_reduc parameter, 
discussed earlier, the storage requirements can be reduced, but at the cost of 
increased execution time.

The trainrp function is the fastest algorithm on pattern recognition problems. 
However, it does not perform well on function approximation problems. Its 
performance also degrades as the error goal is reduced. The memory 
requirements for this algorithm are relatively small in comparison to the other 
algorithms considered.

The conjugate gradient algorithms, in particular trainscg, seem to perform 
well over a wide variety of problems, particularly for networks with a large 

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

10
5

mean−square−error

tim
e 

(s
)

Time Comparison on DIABETES

lm 
bfg
scg
gdx
cgb
oss
rp 



Speed and Memory Comparison for Training Multilayer Networks

9-33

number of weights. The SCG algorithm is almost as fast as the LM algorithm 
on function approximation problems (faster for large networks) and is almost 
as fast as trainrp on pattern recognition problems. Its performance does not 
degrade as quickly as trainrp performance does when the error is reduced. 
The conjugate gradient algorithms have relatively modest memory 
requirements.

The performance of trainbfg is similar to that of trainlm. It does not require 
as much storage as trainlm, but the computation required does increase 
geometrically with the size of the network, because the equivalent of a matrix 
inverse must be computed at each iteration.

The variable learning rate algorithm traingdx is usually much slower than the 
other methods, and has about the same storage requirements as trainrp, but 
it can still be useful for some problems. There are certain situations in which 
it is better to converge more slowly. For example, when using early stopping 
you can have inconsistent results if you use an algorithm that converges too 
quickly. You might overshoot the point at which the error on the validation set 
is minimized.



9 Advanced Topics

9-34

Improving Generalization
One of the problems that occur during neural network training is called 
overfitting. The error on the training set is driven to a very small value, but 
when new data is presented to the network the error is large. The network has 
memorized the training examples, but it has not learned to generalize to new 
situations. 

The following figure shows the response of a 1-20-1 neural network that has 
been trained to approximate a noisy sine function. The underlying sine 
function is shown by the dotted line, the noisy measurements are given by the 
‘+’ symbols, and the neural network response is given by the solid line. Clearly 
this network has overfitted the data and will not generalize well.

One method for improving network generalization is to use a network that is 
just large enough to provide an adequate fit. The larger network you use, the 
more complex the functions the network can create. If you use a small enough 
network, it will not have enough power to overfit the data. Run the Neural 
Network Design demonstration nnd11gn [HDB96] to investigate how reducing 
the size of a network can prevent overfitting.

Unfortunately, it is difficult to know beforehand how large a network should be 
for a specific application. There are two other methods for improving 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

Input

O
ut

pu
t

Function Approximation



Improving Generalization

9-35

generalization that are implemented in Neural Network Toolbox™ software: 
regularization and early stopping. The next sections describe these two 
techniques and the routines to implement them.

Note that if the number of parameters in the network is much smaller than the 
total number of points in the training set, then there is little or no chance of 
overfitting. If you can easily collect more data and increase the size of the 
training set, then there is no need to worry about the following techniques to 
prevent overfitting. The rest of this section only applies to those situations in 
which you want to make the most of a limited supply of data.

Early Stopping
The default method for improving generalization is called early stopping. This 
technique is automatically provided for all of the supervised network creation 
functions, including the backpropagation network creation functions such as 
newff.

In this technique the available data is divided into three subsets. The first 
subset is the training set, which is used for computing the gradient and 
updating the network weights and biases. The second subset is the validation 
set. The error on the validation set is monitored during the training process. 
The validation error normally decreases during the initial phase of training, as 
does the training set error. However, when the network begins to overfit the 
data, the error on the validation set typically begins to rise. When the 
validation error increases for a specified number of iterations 
(net.trainParam.max_fail), the training is stopped, and the weights and 
biases at the minimum of the validation error are returned.

The test set error is not used during training, but it is used to compare different 
models. It is also useful to plot the test set error during the training process. If 
the error in the test set reaches a minimum at a significantly different iteration 
number than the validation set error, this might indicate a poor division of the 
data set.

There are four functions provided for dividing data into training, validation 
and test sets. They are dividerand (the default), divideblock, divideint, and 
divideind. You can access or change the division function for your network 
with this property:

net.divideFcn



9 Advanced Topics

9-36

Each of these functions takes parameters that customize its behavior. These 
values are stored and can be changed with the following network property:

net.divideParam

Index Data Division (divideind)
Create a simple test problem. For the full data set, generate a noisy sine wave 
with 201 input points ranging from -1 to 1 at steps of 0.01:

p = [-1:0.01:1];
t = sin(2*pi*p)+0.1*randn(size(p));

Divide the data by index so that successive samples are assigned to the 
training set, validation set, and test set successively:

trainInd = 1:3:201
valInd = 2:3:201;
testInd = 3:3:201;
[trainP,valP,testP] = divideind(p,trainInd,valInd,testInd);
[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);

Random Data Division (dividerand)
You can divide the input data randomly so that 60% of the samples are 
assigned to the training set, 20% to the validation set, and 20% to the test set, 
as follows:

[trainP,valP,testP,trainInd,valInd,testInd] = dividerand(p);

This function not only divides the input data, but also returns indices so that 
you can divide the target data accordingly using divideind:

[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);

Block Data Division (divideblock)
You can also divide the input data randomly such that the first 60% of the 
samples are assigned to the training set, the next 20% to the validation set, and 
the last 20% to the test set, as follows:

[trainP,valP,testP,trainInd,valInd,testInd] = divideblock(p);

Divide the target data accordingly using divideind:



Improving Generalization

9-37

[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);

Interleaved Data Division (divideint)
Another way to divide the input data is to cycle samples between the training 
set, validation set, and test set according to percentages. You can interleave 
60% of the samples to the training set, 20% to the validation set and 20% to the 
test set as follows:

[trainP,valP,testP,trainInd,valInd,testInd] = divideint(p);

Divide the target data accordingly using divideind.

[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);

Regularization
Another method for improving generalization is called regularization. This 
involves modifying the performance function, which is normally chosen to be 
the sum of squares of the network errors on the training set. The next section 
explains how the performance function can be modified, and the following 
section describes a routine that automatically sets the optimal performance 
function to achieve the best generalization.

Modified Performance Function
The typical performance function used for training feedforward neural 
networks is the mean sum of squares of the network errors.

It is possible to improve generalization if you modify the performance function 
by adding a term that consists of the mean of the sum of squares of the network 
weights and biases

where γ is the performance ratio, and 

F mse 1
N
---- ei( )2

i 1=

N


1
N
---- ti ai–( )2

i 1=

N

= = =

msereg γmse 1 γ–( )msw+=

msw 1
n
--- wj

2

j 1=

n

=



9 Advanced Topics

9-38

Using this performance function causes the network to have smaller weights 
and biases, and this forces the network response to be smoother and less likely 
to overfit.

The following code reinitializes the previous network and retrains it using the 
BFGS algorithm with the regularized performance function. Here the 
performance ratio is set to 0.5, which gives equal weight to the mean square 
errors and the mean square weights. (Data division is cancelled by setting 
net.divideFcn so that the effects of msereg are isolated from early stopping.)

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(p,t,3,{},'trainbfg');
net.divideFcn = '';
net.performFcn = 'msereg';
net.performParam.ratio = 0.5;
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

The problem with regularization is that it is difficult to determine the optimum 
value for the performance ratio parameter. If you make this parameter too 
large, you might get overfitting. If the ratio is too small, the network does not 
adequately fit the training data. The next section describes a routine that 
automatically sets the regularization parameters.

Automated Regularization (trainbr)
It is desirable to determine the optimal regularization parameters in an 
automated fashion. One approach to this process is the Bayesian framework of 
David MacKay [MacK92]. In this framework, the weights and biases of the 
network are assumed to be random variables with specified distributions. The 
regularization parameters are related to the unknown variances associated 
with these distributions. You can then estimate these parameters using 
statistical techniques.

A detailed discussion of Bayesian regularization is beyond the scope of this 
user guide. A detailed discussion of the use of Bayesian regularization, in 
combination with Levenberg-Marquardt training, can be found in [FoHa97].

Bayesian regularization has been implemented in the function trainbr. The 
following code shows how you can train a 1-20-1 network using this function to 



Improving Generalization

9-39

approximate the noisy sine wave shown on page 9-34. (Data division is 
cancelled by setting net.divideFcn so that the effects of trainbr are isolated 
from early stopping.)

p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));
net=newff(p,t,20,{},'trainbr');
net.divideFcn ='';
net.trainParam.show = 10;
net.trainParam.epochs = 50;
randn('seed',192736547);
net = init(net);
[net,tr]=train(net,p,t);

One feature of this algorithm is that it provides a measure of how many 
network parameters (weights and biases) are being effectively used by the 
network. In this case, the final trained network uses approximately 12 
parameters (indicated by #Par in the printout) out of the 61 total weights and 
biases in the 1-20-1 network. This effective number of parameters should 
remain approximately the same, no matter how large the number of 
parameters in the network becomes. (This assumes that the network has been 
trained for a sufficient number of iterations to ensure convergence.)

The trainbr algorithm generally works best when the network inputs and 
targets are scaled so that they fall approximately in the range [-1,1]. That is 
the case for the test problem here. If your inputs and targets do not fall in this 
range, you can use the function mapminmax or mapstd to perform the scaling, as 
described in “Preprocessing and Postprocessing” on page 3-7.

The following figure shows the response of the trained network. In contrast to 
the previous figure, in which a 1-20-1 network overfits the data, here you see 
that the network response is very close to the underlying sine function (dotted 
line), and, therefore, the network will generalize well to new inputs. You could 
have tried an even larger network, but the network response would never 
overfit the data. This eliminates the guesswork required in determining the 
optimum network size.

When using trainbr, it is important to let the algorithm run until the effective 
number of parameters has converged. The training might stop with the 
message “Maximum MU reached.” This is typical, and is a good indication that 
the algorithm has truly converged. You can also tell that the algorithm has 
converged if the sum squared error (SSE) and sum squared weights (SSW) are 



9 Advanced Topics

9-40

relatively constant over several iterations. When this occurs you might want to 
click the Stop Training button in the training window.

Summary and Discussion of Early Stopping 
and Regularization
Early stopping and regularization can ensure network generalization when 
you apply them properly. 

For early stopping, you must be careful not to use an algorithm that converges 
too rapidly. If you are using a fast algorithm (like trainlm), set the training 
parameters so that the convergence is relatively slow. For example, set mu to a 
relatively large value, such as 1, and set mu_dec and mu_inc to values close to 
1, such as 0.8 and 1.5, respectively. The training functions trainscg and 
trainrp usually work well with early stopping. 

With early stopping, the choice of the validation set is also important. The 
validation set should be representative of all points in the training set.

When you use Bayesian regularization, it is important to train the network 
until it reaches convergence. The sum-squared error, the sum-squared weights, 
and the effective number of parameters should reach constant values when the 
network has converged. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

Input

O
ut

pu
t

Function Approximation



Improving Generalization

9-41

With both early stopping and regularization, it is a good idea to train the 
network starting from several different initial conditions. It is possible for 
either method to fail in certain circumstances. By testing several different 
initial conditions, you can verify robust network performance.

When the data set is small and you are training function approximation 
networks, Bayesian regularization provides better generalization performance 
than early stopping. This is because Bayesian regularization does not require 
that a validation data set be separate from the training data set; it uses all the 
data.

To provide some insight into the performance of the algorithms, both early 
stopping and Bayesian regularization were tested on several benchmark data 
sets, which are listed in the following table.

These data sets are of various sizes, with different numbers of inputs and 
targets. With two of the data sets the networks were trained once using all the 
data and then retrained using only a fraction of the data. This illustrates how 
the advantage of Bayesian regularization becomes more noticeable when the 
data sets are smaller. All the data sets are obtained from physical systems 
except for the SINE data sets. These two were artificially created by adding 

Data Set Title Number 
of Points

Network Description

BALL 67 2-10-1 Dual-sensor calibration for a ball position 
measurement

SINE (5% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at 5% 
level

SINE (2% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at 2% 
level

ENGINE (ALL) 1199 2-30-2 Engine sensor—full data set

ENGINE (1/4) 300 2-30-2 Engine sensor—1/4 of data set

CHOLEST 
(ALL)

264 5-15-3 Cholesterol measurement—full data set

CHOLEST (1/2) 132 5-15-3 Cholesterol measurement—1/2 data set



9 Advanced Topics

9-42

various levels of noise to a single cycle of a sine wave. The performance of the 
algorithms on these two data sets illustrates the effect of noise.

The following table summarizes the performance of early stopping (ES) and 
Bayesian regularization (BR) on the seven test sets. (The trainscg algorithm 
was used for the early stopping tests. Other algorithms provide similar 
performance.)

Mean Squared Test Set Error

You can see that Bayesian regularization performs better than early stopping 
in most cases. The performance improvement is most noticeable when the data 
set is small, or if there is little noise in the data set. The BALL data set, for 
example, was obtained from sensors that had very little noise.

Although the generalization performance of Bayesian regularization is often 
better than early stopping, this is not always the case. In addition, the form of 
Bayesian regularization implemented in the toolbox does not perform as well 
on pattern recognition problems as it does on function approximation 
problems. This is because the approximation to the Hessian that is used in the 
Levenberg-Marquardt algorithm is not as accurate when the network output is 
saturated, as would be the case in pattern recognition problems. Another 
disadvantage of the Bayesian regularization method is that it generally takes 
longer to converge than early stopping.

Posttraining Analysis (postreg)
The performance of a trained network can be measured to some extent by the 
errors on the training, validation, and test sets, but it is often useful to 
investigate the network response in more detail. One option is to perform a 
regression analysis between the network response and the corresponding 
targets. The routine postreg is designed to perform this analysis. 

Method Ball Engine 
(All)

Engine 
(1/4)

Choles 
(All)

Choles 
(1/2)

Sine 
(5% N)

Sine 
(2% N)

ES 1.2e-1 1.3e-2 1.9e-2 1.2e-1 1.4e-1 1.7e-1 1.3e-1

BR 1.3e-3 2.6e-3 4.7e-3 1.2e-1 9.3e-2 3.0e-2 6.3e-3

ES/BR 92 5 4 1 1.5 5.7 21



Improving Generalization

9-43

The following commands illustrate how to perform a regression analysis on the 
network trained in “Summary and Discussion of Early Stopping and 
Regularization” on page 9-40. 

a = sim(net,p);
[m,b,r] = postreg(a,t)
m =
    0.9874
b =
   -0.0067
r =
    0.9935

The network output and the corresponding targets are passed to postreg. It 
returns three parameters. The first two, m and b, correspond to the slope and 
the y-intercept of the best linear regression relating targets to network outputs. 
If there were a perfect fit (outputs exactly equal to targets), the slope would be 
1, and the y-intercept would be 0. In this example, you can see that the 
numbers are very close. The third variable returned by postreg is the 
correlation coefficient (R-value) between the outputs and targets. It is a 
measure of how well the variation in the output is explained by the targets. If 
this number is equal to 1, then there is perfect correlation between targets and 
outputs. In the example, the number is very close to 1, which indicates a good 
fit.

The following figure illustrates the graphical output provided by postreg. The 
network outputs are plotted versus the targets as open circles. The best linear 
fit is indicated by a dashed line. The perfect fit (output equal to targets) is 
indicated by the solid line. In this example, it is difficult to distinguish the best 
linear fit line from the perfect fit line because the fit is so good.



9 Advanced Topics

9-44

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

T

A

Best Linear Fit:  A = (0.987) T + (-0.00667)

R = 0.994

Data Points    
A = T          
Best Linear Fit



Custom Functions

9-45

Custom Functions
The toolbox allows you to create and use your own custom functions. This gives 
you a great deal of control over the algorithms used to initialize, simulate, and 
train your networks.

Template functions are available for you to copy, rename and customize, to 
create your own versions of these kinds of functions. You can see the list of all 
template functions by typing the following:

help nncustom

Each template a simple version of a different type of function that you can use 
with your own custom networks.

For instance, make a copy of the file template_transfer.m. Rename the new 
file mytransfer. Start editing the file by changing the function name at the top 
from template_transfer to mytransfer.

You can now edit each of the sections of code that make up a transfer function, 
using the help comments in each of those sections to guide you.

Once you are done, store the new function in your working directory, and 
assign the name of your transfer function to the transferFcn property of any 
layer of any network object to put it to use.



9 Advanced Topics

9-46



 

10

Historical Networks

Introduction (p. 10-2)

Perceptron Networks (p. 10-3)

Linear Networks (p. 10-18)

Elman Networks (p. 10-32)

Hopfield Network (p. 10-37)



10 Historical Networks

10-2

Introduction
This chapter covers networks that are of historical interest, but that are not as 
actively used today as networks presented in earlier chapters. Two of the 
networks are single-layer networks that were the first neural networks for 
which practical training algorithms were developed: perceptron networks and 
ADALINE networks. This chapter also covers two recurrent networks: Elman 
and Hopfield networks.

The perceptron network is single-layer network whose weights and biases can 
be trained to produce a correct target vector when presented with the 
corresponding input vector. This perceptron rule was the first training 
algorithm developed for neural networks. The original book on the perceptron 
is Rosenblatt, F., Principles of Neurodynamics, Washington D.C., Spartan 
Press, 1961 [Rose61].

At about the same time that Rosenblatt developed the perceptron network, 
Widrow and Hoff developed a single-layer linear network and associated 
learning rule, which they called the ADALINE (Adaptive Linear Neuron). This 
network was used to implement adaptive filters, which are still actively used 
today. The original paper describing this network is Widrow, B., and M.E. Hoff, 
“Adaptive switching circuits,” 1960 IRE WESCON Convention Record, New 
York IRE, 1960, pp. 96–104.

Elman networks are two-layer backpropagation networks, with the addition of 
a feedback connection from the output of the hidden layer to its input. This 
feedback path allows Elman networks to learn to recognize and generate 
temporal patterns, as well as spatial patterns. The best paper on the Elman 
network is Elman, J.L., “Finding structure in time,” Cognitive Science, Vol. 14, 
1990, pp. 179–211.

The Hopfield network is used to store one or more stable target vectors. These 
stable vectors can be viewed as memories that the network recalls when 
provided with similar vectors that act as a cue to the network memory. You 
might want to peruse a basic paper in this field: 

Li, J., A.N. Michel, and W. Porod, “Analysis and synthesis of a class of neural 
networks: linear systems operating on a closed hypercube,” IEEE Transactions 
on Circuits and Systems, Vol. 36, No. 11, November 1989, pp. 1405–1422.



Perceptron Networks

10-3

Perceptron Networks
Rosenblatt [Rose61] created many variations of the perceptron. One of the 
simplest was a single-layer network whose weights and biases could be trained 
to produce a correct target vector when presented with the corresponding input 
vector. The training technique used is called the perceptron learning rule. The 
perceptron generated great interest due to its ability to generalize from its 
training vectors and learn from initially randomly distributed connections. 
Perceptrons are especially suited for simple problems in pattern classification. 
They are fast and reliable networks for the problems they can solve. In 
addition, an understanding of the operations of the perceptron provides a good 
basis for understanding more complex networks. 

The discussion of perceptrons in this chapter is necessarily brief. For a more 
thorough discussion, see Chapter 4, “Perceptron Learning Rule,” of 
[HDB1996], which discusses the use of multiple layers of perceptrons to solve 
more difficult problems beyond the capability of one layer.

Neuron Model
A perceptron neuron, which uses the hard-limit transfer function hardlim, is 
shown below.

Each external input is weighted with an appropriate weight w1j, and the sum 
of the weighted inputs is sent to the hard-limit transfer function, which also 

Input

p
1

an
p

2p
3

p
R

w
1,

 
R

w
1,1

�
� f

 a = hardlim (Wp + b)

b

1

Where

R = number of 
elements in
input vector

Perceptron Neuron 

��
��

�
�



10 Historical Networks

10-4

has an input of 1 transmitted to it through the bias. The hard-limit transfer 
function, which returns a 0 or a 1, is shown below.

The perceptron neuron produces a 1 if the net input into the transfer function 
is equal to or greater than 0; otherwise it produces a 0.

The hard-limit transfer function gives a perceptron the ability to classify input 
vectors by dividing the input space into two regions. Specifically, outputs will 
be 0 if the net input n is less than 0, or 1 if the net input n is 0 or greater. The 
following figure show the input space of a two-input hard limit neuron with the 
weights  and a bias .

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

w1 1, 1,  w1 2,– 1= = b 1=

W

Wp+b = 0

Wp+b > 0

Wp+b < 0

p
1

p
2

-b/w
1,1

-b/w
1,2

Where... w
1,1

 = -1     and    b = +1

w
1,2

 = +1

+1

-1

-1

+1

L

a = 0

a = 1

a = 0



Perceptron Networks

10-5

Two classification regions are formed by the decision boundary line L at 
. This line is perpendicular to the weight matrix W and shifted 

according to the bias b. Input vectors above and to the left of the line L will 
result in a net input greater than 0 and, therefore, cause the hard-limit neuron 
to output a 1. Input vectors below and to the right of the line L cause the neuron 
to output 0. You can pick weight and bias values to orient and move the 
dividing line so as to classify the input space as desired.

Hard-limit neurons without a bias will always have a classification line going 
through the origin. Adding a bias allows the neuron to solve problems where 
the two sets of input vectors are not located on different sides of the origin. The 
bias allows the decision boundary to be shifted away from the origin, as shown 
in the plot above.

You might want to run the demonstration program nnd4db. With it you can 
move a decision boundary around, pick new inputs to classify, and see how the 
repeated application of the learning rule yields a network that does classify the 
input vectors properly.

Perceptron Architecture
The perceptron network consists of a single layer of S perceptron neurons 
connected to R inputs through a set of weights wi,j, as shown below in two 

Wp b+ 0=



10 Historical Networks

10-6

forms. As before, the network indices i and j indicate that wi,j is the strength of 
the connection from the jth input to the ith neuron.

The perceptron learning rule described shortly is capable of training only a 
single layer. Thus only one-layer networks are considered here. This restriction 
places limitations on the computation a perceptron can perform. The types of 
problems that perceptrons are capable of solving are discussed in “Limitations 
and Cautions” on page 10-16.

Creating a Perceptron (newp)
A perceptron can be created with the newp function:

net = newp(P,T)

where input arguments are as follows:

• P is an R-by-Q matrix of Q input vectors of R elements each.

• T is an S-by-Q matrix of Q target vectors of S elements each.

Commonly, the hardlim function is used in perceptrons, so it is the default.

w1,1

wS R,

S

S

S

n1

p1

p2

p3

pR

n2

nS

b1

b2

bS

a1

a2

aS

1

1

1

Input Perceptron Layer

S x 1

S x 1

S x 1

R x 1

S x R

S

n

p a
W

b1

R

Input Perceptron Layer

Where

= number of elements in input

= number of neurons in layer

R

S

a = hardlim(Wp + b)

a = hardlim(Wp + b)



Perceptron Networks

10-7

The following commands create a perceptron network with a single 
one-element input vector with the values 0 and 2, and one neuron with outputs 
that can be either 0 or 1:

P = [0 2];
T = [0 1];
net = newp(P,T);

You can see what network has been created by executing the following 
command:

inputweights = net.inputweights{1,1}

which yields

inputweights = 
        delays: 0
       initFcn: 'initzero'
         learn: 1
      learnFcn: 'learnp'
    learnParam: []
          size: [1 1]
      userdata: [1x1 struct]
     weightFcn: 'dotprod'
   weightParam: [1x1 struct]

The default learning function is learnp, which is discussed in “Perceptron 
Learning Rule (learnp)” on page 10-8. The net input to the hardlim transfer 
function is dotprod, which generates the product of the input vector and weight 
matrix and adds the bias to compute the net input.

The default initialization function initzero is used to set the initial values of 
the weights to zero. 

Similarly, 

biases = net.biases{1}

gives

biases = 
       initFcn: 'initzero'
         learn: 1
      learnFcn: 'learnp'
    learnParam: []



10 Historical Networks

10-8

          size: 1
      userdata: [1x1 struct]

You can see that the default initialization for the bias is also 0.

Perceptron Learning Rule (learnp)
Perceptrons are trained on examples of desired behavior. The desired behavior 
can be summarized by a set of input, output pairs

where p is an input to the network and t is the corresponding correct (target) 
output. The objective is to reduce the error e, which is the difference  
between the neuron response a and the target vector t. The perceptron learning 
rule learnp calculates desired changes to the perceptron’s weights and biases, 
given an input vector p and the associated error e. The target vector t must 
contain values of either 0 or 1, because perceptrons (with hardlim transfer 
functions) can only output these values.

Each time learnp is executed, the perceptron has a better chance of producing 
the correct outputs. The perceptron rule is proven to converge on a solution in 
a finite number of iterations if a solution exists.

If a bias is not used, learnp works to find a solution by altering only the weight 
vector w to point toward input vectors to be classified as 1 and away from 
vectors to be classified as 0. This results in a decision boundary that is 
perpendicular to w and that properly classifies the input vectors.

There are three conditions that can occur for a single neuron once an input 
vector p is presented and the network’s response a is calculated:

CASE 1. If an input vector is presented and the output of the neuron is correct 
(a = t and e = t – a = 0), then the weight vector w is not altered.

CASE 2. If the neuron output is 0 and should have been 1 (a = 0 and t = 1, and 
e = t – a = 1), the input vector p is added to the weight vector w. This makes 
the weight vector point closer to the input vector, increasing the chance that 
the input vector will be classified as a 1 in the future.

CASE 3. If the neuron output is 1 and should have been 0 (a = 1 and t = 0, and 
e = t – a = –1), the input vector p is subtracted from the weight vector w. This 

p1t1,p2t1,..., pQtQ

t a–



Perceptron Networks

10-9

makes the weight vector point farther away from the input vector, increasing 
the chance that the input vector will be classified as a 0 in the future.

The perceptron learning rule can be written more succinctly in terms of the 
error e = t – a and the change to be made to the weight vector Δw:

CASE 1. If e = 0, then make a change Δw equal to 0.

CASE 2. If e = 1, then make a change Δw equal to pT.

CASE 3. If e = –1, then make a change Δw equal to –pT.

All three cases can then be written with a single expression:

You can get the expression for changes in a neuron’s bias by noting that the 
bias is simply a weight that always has an input of 1:

For the case of a layer of neurons you have

 

and

The perceptron learning rule can be summarized as follows:

 

and 

where .

Now try a simple example. Start with a single neuron having an input vector 
with just two elements. Here are input vectors with the values -2 and 2, and 
outputs with values 0 and 1.

net = newp([-2 2;-2 2],[0 1]);

To simplify matters, set the bias equal to 0 and the weights to 1 and -0.8:

Δw t a–( )pT epT= =

Δb t a–( ) 1( ) e= =

ΔW t a–( ) p( )T e p( )T= =

Δb t a–( ) e= =

Wnew Wold epT
+=

bnew bold e+=

e t a–=



10 Historical Networks

10-10

net.b{1} =  [0];
w = [1 -0.8];
net.IW{1,1} = w;

The input target pair is given by

p = [1; 2];
t = [1];

You can compute the output and error with

a = sim(net,p)
a =
     0
e = t-a
e =
     1

and use the function learnp to find the change in the weights.

dw = learnp(w,p,[],[],[],[],e,[],[],[])
dw =
     1     2

The new weights, then, are obtained as

w = w + dw
w =
    2.0000    1.2000

The process of finding new weights (and biases) can be repeated until there are 
no errors. Recall that the perceptron learning rule is guaranteed to converge in 
a finite number of steps for all problems that can be solved by a perceptron. 
These include all classification problems that are linearly separable. The 
objects to be classified in such cases can be separated by a single line.

You might want to try demo nnd4pr. It allows you to pick new input vectors and 
apply the learning rule to classify them.

Training (train)
If sim and learnp are used repeatedly to present inputs to a perceptron, and to 
change the perceptron weights and biases according to the error, the 



Perceptron Networks

10-11

perceptron will eventually find weight and bias values that solve the problem, 
given that the perceptron can solve it. Each traversal through all the training 
input and target vectors is called a pass. 

The function train carries out such a loop of calculation. In each pass the 
function train proceeds through the specified sequence of inputs, calculating 
the output, error, and network adjustment for each input vector in the 
sequence as the inputs are presented. 

Note that train does not guarantee that the resulting network does its job. You 
must check the new values of W and b by computing the network output for 
each input vector to see if all targets are reached. If a network does not perform 
successfully you can train it further by calling train again with the new 
weights and biases for more training passes, or you can analyze the problem to 
see if it is a suitable problem for the perceptron. Problems that cannot be solved 
by the perceptron network are discussed in “Limitations and Cautions” on 
page 10-16.

To illustrate the training procedure, work through a simple problem. Consider 
a one-neuron perceptron with a single vector input having two elements:

This network, and the problem you are about to consider, are simple enough 
that you can follow through what is done with hand calculations if you want. 
The problem discussed below follows that found in [HDB1996].

Suppose you have the following classification problem and would like to solve 
it with a single vector input, two-element perceptron network.

Input

- Exp -

p
1

an

p
2

w
1,

 

2

w
1,1

�
� f

a = hardlim (Wp + b)

b

1

Perceptron Neuron 

��
��
�
�



10 Historical Networks

10-12

Use the initial weights and bias. Denote the variables at each step of this 
calculation by using a number in parentheses after the variable. Thus, above, 
the initial values are W(0) and b(0).

Start by calculating the perceptron’s output a for the first input vector p1, 
using the initial weights and bias.

The output a does not equal the target value t1, so use the perceptron rule to 
find the incremental changes to the weights and biases based on the error.

You can calculate the new weights and bias using the perceptron update rules. 

p1
2
2

= t1 0=,
 



  p2

1
2–

= t2 1=,
 
 
 

  p3
2–

2
= t3 0=,

 
 
 

  p4
1–

1
= t4 1=,





W 0( ) 0 0= b 0( ) 0=

a hardlim W 0( )p1 b 0( )+( )

hardlim 0 0
2
2

0+
 
 
 

hardlim 0( ) 1

=

= = =

e t1 a– 0 1– 1

ΔW

–

ep1
T 1–( ) 2 2 2– 2–

Δb e 1–( ) 1–

= = =

= = =

= = =

Wnew Wold epT
+ 0 0 2– 2–+ 2– 2– W 1( )= = = =

bnew bold e+ 0 1–( )+ 1– b 1( )= = = =



Perceptron Networks

10-13

Now present the next input vector, p2. The output is calculated below.

On this occasion, the target is 1, so the error is zero. Thus there are no changes 
in weights or bias, so  and .

You can continue in this fashion, presenting p3 next, calculating an output and 
the error, and making changes in the weights and bias, etc. After making one 
pass through all of the four inputs, you get the values  and 

. To determine whether a satisfactory solution is obtained, make one 
pass through all input vectors to see if they all produce the desired target 
values. This is not true for the fourth input, but the algorithm does converge on 
the sixth presentation of an input. The final values are

 and 

This concludes the hand calculation. Now, how can you do this using the train 
function?

The following code defines a perceptron like that shown in the previous figure, 
with initial weights and bias values of 0. 

net = newp([-2 2;-2 2],[0 1]);

Consider the application of a single input. 

p = [2; 2];

having the target

t = [0];

Set epochs to 1, so that train goes through the input vectors (only one here) 
just one time.

net.trainParam.epochs = 1;
net = train(net,p,t);

a hardlim W 1( )p2 b 1( )+( )

hardlim 2– 2–
2–

2–
1–

 
 
 

hardlim 1( ) 1

=

= = =

W 2( ) W 1( ) 2– 2–= = p 2( ) p 1( ) 1–= =

W 4( ) 3– 1–=
b 4( ) 0=

W 6( ) 2– 3–= b 6( ) 1=



10 Historical Networks

10-14

The new weights and bias are

w = net.iw{1,1}, b = net.b{1}
w =
    -2    -2
b =
    -1

Thus, the initial weights and bias are 0, and after training on only the first 
vector, they have the values [-2 -2] and -1, just as you hand calculated.

Now apply the second input vector . The output is 1, as it will be until the 
weights and bias are changed, but now the target is 1, the error will be 0, and 
the change will be zero. You could proceed in this way, starting from the 
previous result and applying a new input vector time after time. But you can 
do this job automatically with train.

Apply train for one epoch, a single pass through the sequence of all four input 
vectors. Start with the network definition.

net = newp([-2 2;-2 2],[0 1]);
net.trainParam.epochs = 1;

The input vectors and targets are

p = [[2;2] [1;-2] [-2;2] [-1;1]]
t = [0 1 0 1]

Now train the network with

net = train(net,p,t);

The new weights and bias are

w = net.iw{1,1}, b = net.b{1}
w =
    -3    -1
b =
     0

This is the same result as you got previously by hand. 

Finally, simulate the trained network for each of the inputs.

a = sim(net,p)
a = 

p2



Perceptron Networks

10-15

0     0     1     1

The outputs do not yet equal the targets, so you need to train the network for 
more than one pass. Try more epochs. This run gives a mean absolute error 
performance of 0 after two epochs:

net.trainParam.epochs = 1000;
net = train(net,p,t);

Thus, the network was trained by the time the inputs were presented on the 
third epoch. (As you know from hand calculation, the network converges on the 
presentation of the sixth input vector. This occurs in the middle of the second 
epoch, but it takes the third epoch to detect the network convergence.) The final 
weights and bias are

w = net.iw{1,1}, b = net.b{1}
w =
    -2    -3
b =
     1

The simulated output and errors for the various inputs are

a = sim(net,p)
a =
             0             1             0             1
error = a-t
error =
             0             0             0             0

You confirm that the training procedure is successful. The network converges 
and produces the correct target outputs for the four input vectors. 

The default training function for networks created with newp is trainc. (You 
can find this by executing net.trainFcn.) This training function applies the 
perceptron learning rule in its pure form, in that individual input vectors are 
applied individually, in sequence, and corrections to the weights and bias are 
made after each presentation of an input vector. Thus, perceptron training 
with train will converge in a finite number of steps unless the problem 
presented cannot be solved with a simple perceptron.

The function train can be used in various ways by other networks as well. Type 
help train to read more about this basic function.



10 Historical Networks

10-16

You might want to try various demonstration programs. For instance, demop1 
illustrates classification and training of a simple perceptron. 

Limitations and Cautions
Perceptron networks should be trained with adapt, which presents the input 
vectors to the network one at a time and makes corrections to the network 
based on the results of each presentation. Use of adapt in this way guarantees 
that any linearly separable problem is solved in a finite number of training 
presentations. 

As noted in the previous pages, perceptrons can also be trained with the 
function train, which is discussed in detail in the next chapter. Commonly 
when train is used for perceptrons, it presents the inputs to the network in 
batches, and makes corrections to the network based on the sum of all the 
individual corrections. Unfortunately, there is no proof that such a training 
algorithm converges for perceptrons. On that account the use of train for 
perceptrons is not recommended.

Perceptron networks have several limitations. First, the output values of a 
perceptron can take on only one of two values (0 or 1) because of the hard-limit 
transfer function. Second, perceptrons can only classify linearly separable sets 
of vectors. If a straight line or a plane can be drawn to separate the input 
vectors into their correct categories, the input vectors are linearly separable. If 
the vectors are not linearly separable, learning will never reach a point where 
all vectors are classified properly. However, it has been proven that if the 
vectors are linearly separable, perceptrons trained adaptively will always find 
a solution in finite time. You might want to try demop6. It shows the difficulty 
of trying to classify input vectors that are not linearly separable.

It is only fair, however, to point out that networks with more than one 
perceptron can be used to solve more difficult problems. For instance, suppose 
that you have a set of four vectors that you would like to classify into distinct 
groups, and that two lines can be drawn to separate them. A two-neuron 
network can be found such that its two decision boundaries classify the inputs 
into four categories. For additional discussion about perceptrons and to 
examine more complex perceptron problems, see [HDB1996].

Outliers and the Normalized Perceptron Rule
Long training times can be caused by the presence of an outlier input vector 
whose length is much larger or smaller than the other input vectors. Applying 



Perceptron Networks

10-17

the perceptron learning rule involves adding and subtracting input vectors 
from the current weights and biases in response to error. Thus, an input vector 
with large elements can lead to changes in the weights and biases that take a 
long time for a much smaller input vector to overcome. You might want to try 
demop4 to see how an outlier affects the training.

By changing the perceptron learning rule slightly, you can make training times 
insensitive to extremely large or small outlier input vectors. 

Here is the original rule for updating weights: 

As shown above, the larger an input vector p, the larger its effect on the weight 
vector w. Thus, if an input vector is much larger than other input vectors, the 
smaller input vectors must be presented many times to have an effect.

The solution is to normalize the rule so that the effect of each input vector on 
the weights is of the same magnitude: 

The normalized perceptron rule is implemented with the function learnpn, 
which is called exactly like learnp. The normalized perceptron rule function 
learnpn takes slightly more time to execute, but reduces the number of epochs 
considerably if there are outlier input vectors. You might try demop5 to see how 
this normalized training rule works.

Δw t a–( )pT epT= =

Δw t a–( ) pT

p
-------- e pT

p
--------= =



10 Historical Networks

10-18

Linear Networks
The linear networks discussed in this section are similar to the perceptron, but 
their transfer function is linear rather than hard-limiting. This allows their 
outputs to take on any value, whereas the perceptron output is limited to either 
0 or 1. Linear networks, like the perceptron, can only solve linearly separable 
problems. 

Here you design a linear network that, when presented with a set of given 
input vectors, produces outputs of corresponding target vectors. For each input 
vector, you can calculate the network’s output vector. The difference between 
an output vector and its target vector is the error. You would like to find values 
for the network weights and biases such that the sum of the squares of the 
errors is minimized or below a specific value. This problem is manageable 
because linear systems have a single error minimum. In most cases, you can 
calculate a linear network directly, such that its error is a minimum for the 
given input vectors and target vectors. In other cases, numerical problems 
prohibit direct calculation. Fortunately, you can always train the network to 
have a minimum error by using the least mean squares (Widrow-Hoff) 
algorithm.

This section introduces newlin, a function that creates a linear layer, and 
newlind, a function that designs a linear layer for a specific purpose.

You can type help linnet to see a list of linear network functions, 
demonstrations, and applications.

The use of linear filters in adaptive systems is discussed in Chapter 8, 
“Adaptive Filters and Adaptive Training.”

Neuron Model
A linear neuron with R inputs is shown below.



Linear Networks

10-19

This network has the same basic structure as the perceptron. The only 
difference is that the linear neuron uses a linear transfer function purelin.

The linear transfer function calculates the neuron’s output by simply returning 
the value passed to it.

This neuron can be trained to learn an affine function of its inputs, or to find a 
linear approximation to a nonlinear function. A linear network cannot, of 
course, be made to perform a nonlinear computation.

Network Architecture
The linear network shown below has one layer of S neurons connected to R 
inputs through a matrix of weights W.

Input

p
1

an
p

2p
3

p
R

w
1,

 
R

w
1,1

��
�� f

b

1

Where...

R = number of 
elements in
input vector

Linear Neuron with 
     Vector Input 

��
��
��
��

a = purelin (Wp + b)

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

a purelin n( ) purelin Wp b+( ) Wp b      += = =



10 Historical Networks

10-20

Note that the figure on the right defines an S-length output vector a.

A single-layer linear network is shown. However, this network is just as 
capable as multilayer linear networks. For every multilayer linear network, 
there is an equivalent single-layer linear network.

Creating a Linear Neuron (newlin)
Consider a single linear neuron with two inputs. The following figure shows the 
diagram for this network.

The weight matrix W in this case has only one row. The network output is

p
1

a
2

n
2

Input

p
2

p
3

p
R

w
S, 

 
R

w
1,

 
1

b
2

b
1

b
S

a
S

n
S

a
1

n
1

1

1

1

��
��

��

��

Layer of Linear 
Neurons

p a

1

n��W

��
��b

R x 1
S x R

S x 1

S  x  1

Input Layer of Linear Neurons

R S

S x 1

��

��
��
��

��

��
��

a= purelin (Wp + b)

Where...

 
 

R = number of 
elements in
 input vector 

S = number of 
neurons in layer a= purelin (Wp + b)

p
1 an

Input

bp
2 w

1,2

w
1,1

1

��
��

a = purelin(Wp+b)

�
�

Simple Linear Network



Linear Networks

10-21

 

or 

Like the perceptron, the linear network has a decision boundary that is 
determined by the input vectors for which the net input n is zero. For n = 0 the 
equation Wp + b = 0 specifies such a decision boundary, as shown below 
(adapted with thanks from [HDB96]).

Input vectors in the upper right gray area lead to an output greater than 0. 
Input vectors in the lower left white area lead to an output less than 0. Thus, 
the linear network can be used to classify objects into two categories. However, 
it can classify in this way only if the objects are linearly separable. Thus, the 
linear network has the same limitation as the perceptron.

You can create this network using the following command, which specifies 
typical input vectors of [-1; -1] and [1; 1] and typical outputs of [-1 1]. (These 
values are arbitrary. For a real problem, use real values.)

net = newlin([-1 1; -1 1],[-1 1]);

The network weights and biases are set to zero by default. You can see the 
current values with the commands

W = net.IW{1,1}
W =
     0     0

and 

a purelin n( ) purelin Wp b+( ) Wp b      += = =

a w1 1, p1 w1 2, p2 b+ +=

p
1-b/w

1,1

p
2

-b/w
1,2

Wp+b=0

a>0a<0

W



10 Historical Networks

10-22

b= net.b{1}
b =
     0

However, you can give the weights any values that you want, such as 2 and 3, 
respectively, with

net.IW{1,1} = [2 3];
W = net.IW{1,1}
W =
     2     3

You can set and check the bias in the same way.

net.b{1} = [-4];
b = net.b{1}
b =
     -4

You can simulate the linear network for a particular input vector. Try

p = [5;6];

You can find the network output with the function sim.

a = sim(net,p)
a =
    24

To summarize, you can create a linear network with newlin, adjust its 
elements as you want, and simulate it with sim. You can find more about 
newlin by typing help newlin.

Least Mean Square Error
Like the perceptron learning rule, the least mean square error (LMS) 
algorithm is an example of supervised training, in which the learning rule is 
provided with a set of examples of desired network behavior:

Here  is an input to the network, and  is the corresponding target output. 
As each input is applied to the network, the network output is compared to the 
target. The error is calculated as the difference between the target output and 

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

pq tq



Linear Networks

10-23

the network output. The goal is to minimize the average of the sum of these 
errors.

The LMS algorithm adjusts the weights and biases of the linear network so as 
to minimize this mean square error. 

Fortunately, the mean square error performance index for the linear network 
is a quadratic function. Thus, the performance index will either have one global 
minimum, a weak minimum, or no minimum, depending on the characteristics 
of the input vectors. Specifically, the characteristics of the input vectors 
determine whether or not a unique solution exists.

You can find more about this topic in Chapter 10 of [HDB96].

Linear System Design (newlind)
Unlike most other network architectures, linear networks can be designed 
directly if input/target vector pairs are known. You can obtain specific network 
values for weights and biases to minimize the mean square error by using the 
function newlind.

Suppose that the inputs and targets are

P = [1 2 3];
T= [2.0 4.1 5.9];

Now you can design a network.

net = newlind(P,T);

You can simulate the network behavior to check that the design was done 
properly.

Y = sim(net,P)
Y =
    2.0500    4.0000    5.9500

Note that the network outputs are quite close to the desired targets.

You might try demolin1. It shows error surfaces for a particular problem, 
illustrates the design, and plots the designed solution.

mse 1
Q
---- e k( )2

k 1=

Q


1
Q
---- t k( ) a k( )–( )2

k 1=

Q

= =



10 Historical Networks

10-24

You can also use the function newlind to design linear networks having delays 
in the input. Such networks are discussed in “Linear Networks with Delays” on 
page 10-24. First, however, delays must be discussed.

Linear Networks with Delays 

Tapped Delay Line
You need a new component, the tapped delay line, to make full use of the linear 
network. Such a delay line is shown below. There the input signal enters from 
the left and passes through N-1 delays. The output of the tapped delay line 
(TDL) is an N-dimensional vector, made up of the input signal at the current 
time, the previous input signal, etc.

Linear Filter
You can combine a tapped delay line with a linear network to create the linear 
filter shown.

��
��D

��D

pd
1
(k)

pd
2
(k)

pd
N 

(k)

N

TDL



Linear Networks

10-25

The output of the filter is given by

The network shown is referred to in the digital signal processing field as a 
finite impulse response (FIR) filter [WiSt85]. Look at the code used to generate 
and simulate such a network.

Suppose that you want a linear layer that outputs the sequence T, given the 
sequence P and two initial input delay states Pi. 

P = {1 2 1 3 3 2};
Pi = {1 3};
T = {5 6 4 20 7 8};

Linear Layer

a(k)n(k)
SxR

��
��

w
1, N

w
1,1

b
1
�
�w

1,2

p(k)

��
��D

��D

p(k - 1)

pd
1
(k)

pd
2
(k)

pd
N 

(k)

N

TDL

a k( ) purelin Wp b+( ) w1 i, p k i– 1+( )

i 1=

R

 b+= =



10 Historical Networks

10-26

You can use newlind to design a network with delays to give the appropriate 
outputs for the inputs. The delay initial outputs are supplied as a third 
argument, as shown below. 

net = newlind(P,T,Pi);

You can obtain the output of the designed network with 

Y = sim(net,P,Pi)

to give

Y = [2.7297] [10.5405] [5.0090] [14.9550] [10.7838] [5.9820]

As you can see, the network outputs are not exactly equal to the targets, but 
they are close and the mean square error is minimized.

LMS Algorithm (learnwh)
The LMS algorithm, or Widrow-Hoff learning algorithm, is based on an 
approximate steepest descent procedure. Here again, linear networks are 
trained on examples of correct behavior. 

Widrow and Hoff had the insight that they could estimate the mean square 
error by using the squared error at each iteration. If you take the partial 
derivative of the squared error with respect to the weights and biases at the kth 
iteration, you have

for  and

Next look at the partial derivative with respect to the error.

 

or 

e2 k( )∂
w1 j,∂

----------------- 2e k( ) e k( )∂
w1 j,∂

--------------=

j 1 2 … R, , ,=

e2 k( )∂
b∂

----------------- 2e k( ) e k( )∂
b∂

--------------=

e k( )∂
w1 j,∂

-------------- t k( ) a k( )–[ ]∂
w1 j,∂

------------------------------------
w1 j,∂
∂ t k( ) Wp k( ) b+( )–[ ]= =



Linear Networks

10-27

Here pi(k) is the ith element of the input vector at the kth iteration.

This can be simplified to

 

and 

Finally, change the weight matrix, and the bias will be

 

and

 

These two equations form the basis of the Widrow-Hoff (LMS) learning 
algorithm. 

These results can be extended to the case of multiple neurons, and written in 
matrix form as

Here the error e and the bias b are vectors, and  is a learning rate. If  is 
large, learning occurs quickly, but if it is too large it can lead to instability and 
errors might even increase. To ensure stable learning, the learning rate must 
be less than the reciprocal of the largest eigenvalue of the correlation matrix 
pTp of the input vectors. 

You might want to read some of Chapter 10 of [HDB96] for more information 
about the LMS algorithm and its convergence.

e k( )∂
w1 j,∂

--------------
w1 j,∂
∂  t k( )  w1 i, pi k( )

i 1=

R

 b+
 
 
 
 

–=

e k( )∂
w1 j,∂

-------------- pj k( )–=

e k( )∂
b∂

-------------- 1–=

2αe k( )p k( )

2αe k( )

W k 1+( ) W k( ) 2αe k( )pT k( )+=

b k 1+( ) b k( ) 2αe k( )+=

α α



10 Historical Networks

10-28

Fortunately, there is a toolbox function, learnwh, that does all the calculation 
for you. It calculates the change in weights as 

dw = lr*e*p' 

and the bias change as 

db = lr*e

The constant 2, shown a few lines above, has been absorbed into the code 
learning rate lr. The function maxlinlr calculates this maximum stable 
learning rate lr as 0.999 * P'*P. 

Type help learnwh and help maxlinlr for more details about these two 
functions.

Linear Classification (train)
Linear networks can be trained to perform linear classification with the 
function train. This function applies each vector of a set of input vectors and 
calculates the network weight and bias increments due to each of the inputs 
according to learnp. Then the network is adjusted with the sum of all these 
corrections. Each pass through the input vectors is called an epoch. This 
contrasts with adapt, discussed in Chapter 8, “Adaptive Filters and Adaptive 
Training,” which adjusts weights for each input vector as it is presented.

Finally, train applies the inputs to the new network, calculates the outputs, 
compares them to the associated targets, and calculates a mean square error. 
If the error goal is met, or if the maximum number of epochs is reached, the 
training is stopped, and train returns the new network and a training record. 
Otherwise train goes through another epoch. Fortunately, the LMS algorithm 
converges when this procedure is executed. 

A simple problem illustrates this procedure. Consider the linear network 
introduced earlier.



Linear Networks

10-29

Suppose you have the following classification problem.

Here there are four input vectors, and you want a network that produces the 
output corresponding to each input vector when that vector is presented.

Use train to get the weights and biases for a network that produces the correct 
targets for each input vector. The initial weights and bias for the new network 
are 0 by default. Set the error goal to 0.1 rather than accept its default of 0.

P = [2 1 -2 -1;2 -2 2 1];
T = [0 1 0 1];
net = newlin(P,T);
net.trainParam.goal= 0.1;
net = train(net,P,T); 

The problem runs for 64 epochs, achieving a mean square error of 0.0999. The 
new weights and bias are

weights = net.iw{1,1}
weights =
   -0.0615   -0.2194
bias = net.b(1)
bias =
    [0.5899]

You can simulate the new network as shown below.

A = sim(net, P)

p
1 an

Input

bp
2 w

1,2

w
1,1

1

��
��

a = purelin(Wp+b)

�
�

Simple Linear Network

p1
2
2

= t1 0=,
 
 
 

  p2
1
2–

= t2 1=,
 
 
 

  p3
2–

2
= t3 0=,

 
 
 

  p4
1–

1
= t4 1=,

 
 
 



10 Historical Networks

10-30

A =
    0.0282    0.9672    0.2741    0.4320

You can also calculate the error.

err = T - sim(net,P)
err =
   -0.0282    0.0328   -0.2741    0.5680

Note that the targets are not realized exactly. The problem would have run 
longer in an attempt to get perfect results had a smaller error goal been chosen, 
but in this problem it is not possible to obtain a goal of 0. The network is limited 
in its capability. See “Limitations and Cautions” on page 10-30 for examples of 
various limitations.

This demonstration program, demolin2, shows the training of a linear neuron 
and plots the weight trajectory and error during training.

You might also try running the demonstration program nnd10lc. It addresses 
a classic and historically interesting problem, shows how a network can be 
trained to classify various patterns, and shows how the trained network 
responds when noisy patterns are presented.

Limitations and Cautions
Linear networks can only learn linear relationships between input and output 
vectors. Thus, they cannot find solutions to some problems. However, even if a 
perfect solution does not exist, the linear network will minimize the sum of 
squared errors if the learning rate lr is sufficiently small. The network will 
find as close a solution as is possible given the linear nature of the network’s 
architecture. This property holds because the error surface of a linear network 
is a multidimensional parabola. Because parabolas have only one minimum, a 
gradient descent algorithm (such as the LMS rule) must produce a solution at 
that minimum.

Linear networks have various other limitations. Some of them are discussed 
below.

Overdetermined Systems
Consider an overdetermined system. Suppose that you have a network to be 
trained with four one-element input vectors and four targets. A perfect solution 
to wp + b = t for each of the inputs might not exist, for there are four 
constraining equations, and only one weight and one bias to adjust. However, 



Linear Networks

10-31

the LMS rule still minimizes the error. You might try demolin4 to see how this 
is done.

Underdetermined Systems
Consider a single linear neuron with one input. This time, in demolin5, train 
it on only one one-element input vector and its one-element target vector:

P = [1.0];
T = [0.5];

Note that while there is only one constraint arising from the single input/target 
pair, there are two variables, the weight and the bias. Having more variables 
than constraints results in an underdetermined problem with an infinite 
number of solutions. You can try demolin5 to explore this topic.

Linearly Dependent Vectors 
Normally it is a straightforward job to determine whether or not a linear 
network can solve a problem. Commonly, if a linear network has at least as 
many degrees of freedom (S*R+S = number of weights and biases) as 
constraints (Q = pairs of input/target vectors), then the network can solve the 
problem. This is true except when the input vectors are linearly dependent and 
they are applied to a network without biases. In this case, as shown with 
demonstration demolin6, the network cannot solve the problem with zero 
error. You might want to try demolin6.

Too Large a Learning Rate 
You can always train a linear network with the Widrow-Hoff rule to find the 
minimum error solution for its weights and biases, as long as the learning rate 
is small enough. Demonstration demolin7 shows what happens when a neuron 
with one input and a bias is trained with a learning rate larger than that 
recommended by maxlinlr. The network is trained with two different learning 
rates to show the results of using too large a learning rate.



10 Historical Networks

10-32

Elman Networks

Architecture
The Elman network commonly is a two-layer network with feedback from the 
first-layer output to the first-layer input. This recurrent connection allows the 
Elman network to both detect and generate time-varying patterns. A two-layer 
Elman network is shown below.

The Elman network has tansig neurons in its hidden (recurrent) layer, and 
purelin neurons in its output layer. This combination is special in that 
two-layer networks with these transfer functions can approximate any 
function (with a finite number of discontinuities) with arbitrary accuracy. The 
only requirement is that the hidden layer must have enough neurons. More 
hidden neurons are needed as the function being fitted increases in complexity.

Note that the Elman network differs from conventional two-layer networks in 
that the first layer has a recurrent connection. The delay in this connection 
stores values from the previous time step, which can be used in the current 
time step.

Thus, even if two Elman networks, with the same weights and biases, are given 
identical inputs at a given time step, their outputs can be different because of 
different feedback states.

��
��D

n1

 S 1 x 1

a1(k)

S 1 x 1
S 1 x R1

��
��IW1,1

1
 S 1 x 1��
��

b1

p
 R1 x 1

R1 S1�
�
�

a1(k) = tansig (IW1,1p +LW1,1a1(k-1) + b1) a2(k) = purelin (LW2,1a1(k) + b2)

n2
S 2 x S 1

S 2 x 1��
��LW2,1

S2

 S 2 x 1

a2(k) = y

1
 S 1 x 1��
��

b2

��
��
��

Input Recurrent tansig layer Output purelin layer

��
��

a1(k-1)

LW1,1



Elman Networks

10-33

Because the network can store information for future reference, it is able to 
learn temporal patterns as well as spatial patterns. The Elman network can be 
trained to respond to, and to generate, both kinds of patterns.

Creating an Elman Network (newelm)
You can use the function newelm to create an Elman network with two or more 
layers. The hidden layers commonly have tansig transfer functions and this is 
the default for newelm. The architecture diagram shows that purelin is 
commonly the output-layer transfer function.

The default backpropagation training function is trainbfg. You might use 
trainlm, but it tends to proceed so rapidly that it does not necessarily do well 
in the Elman network. The backpropagation weight/bias learning function 
default is learngdm, and the default performance function is mse.

When the network is created, the weights and biases of each layer are 
initialized with the Nguyen-Widrow layer-initialization method, which is 
implemented in the function initnw.

For example, consider a sequence of single-element input vectors in the range 
from 0 to 1 and with outputs in the same range. Suppose that you want to have 
five hidden-layer tansig neurons and a single logsig output layer. The 
following command creates this network:

net = newelm([0 1],[0 1],5,{'tansig','logsig'});

Simulation
Suppose that you want to find the response of this network to an input 
sequence of eight digits that are either 0 or 1:

P = round(rand(1,8))
P =
     0     1     0     1     1     0     0     0

Recall that a sequence to be presented to a network is to be in cell array form. 
Convert P to this form:

Pseq = con2seq(P)
Pseq = 
    [0]    [1]    [0]    [1]    [1]    [0]    [0]    [0]

Now you can find the output of the network with the function sim:



10 Historical Networks

10-34

Y = sim(net,Pseq)
Y = 
Columns 1 through 5
    [1.9875e-04]    [0.1146]    [5.0677e-05]    [0.0017]    [0.9544]
Columns 6 through 8
    [0.0014]    [5.7241e-05]    [3.6413e-05]

Convert this back to concurrent form with

z = seq2con(Y);

and display the output in concurrent form with 

z{1,1}
ans =
  Columns 1 through 7 
    0.0002    0.1146    0.0001    0.0017    0.9544    0.0014    0.0001
Column 8 
    0.0000

Thus, once the network is created and the input specified, you need only call 
sim.

Training an Elman Network
Elman networks can be trained with either of two functions, train or adapt.

When you use the function train to train an Elman network the following 
occurs:

At each epoch,

1 The entire input sequence is presented to the network, and its outputs are 
calculated and compared with the target sequence to generate an error 
sequence.

2 For each time step, the error is backpropagated to find gradients of errors 
for each weight and bias. This gradient is actually an approximation, 
because the contributions of weights and biases to errors via the delayed 
recurrent connection are ignored. 

3 This gradient is then used to update the weights with the chosen backprop 
training function. The function traingdx is recommended. 



Elman Networks

10-35

When you use the function adapt to train an Elman network, the following 
occurs:

At each time step,

1 Input vectors are presented to the network, and it generates an error. 

2 The error is backpropagated to find gradients of errors for each weight and 
bias. This gradient is actually an approximation, because the contributions 
of weights and biases to the error, via the delayed recurrent connection, are 
ignored. 

3 This approximate gradient is then used to update the weights with the 
chosen learning function. The function learngdm is recommended. 

Elman networks are not as reliable as some other kinds of networks, because 
both training and adaptation happen using an approximation of the error 
gradient.

For an Elman to have the best chance at learning a problem, it needs more 
hidden neurons in its hidden layer than are actually required for a solution by 
another method. While a solution might be available with fewer neurons, the 
Elman network is less able to find the most appropriate weights for hidden 
neurons because the error gradient is approximated. Therefore, having a fair 
number of neurons to begin with makes it more likely that the hidden neurons 
will start out dividing up the input space in useful ways. 

The function train trains an Elman network to generate a sequence of target 
vectors when it is presented with a given sequence of input vectors. The input 
vectors and target vectors are passed to train as matrices P and T. Train takes 
these vectors and the initial weights and biases of the network, trains the 
network using backpropagation with momentum and an adaptive learning 
rate, and returns new weights and biases.

Continue with the example, and suppose that you want to train a network with 
an input P and targets T as defined below,

P = round(rand(1,8))
P =
     1     0     1     1     1     0     1     1



10 Historical Networks

10-36

and

T = [0 (P(1:end-1)+P(2:end) == 2)]
T =
     0     0     0     1     1     0     0     1

Here T is defined to be 0, except when two 1’s occur in P, in which case T is 1.

As noted previously, the network has five hidden neurons in the first layer.

net = newelm(P,T,5,{'tansig','logsig'});

Use trainbfg as the training function and train for 100 epochs. After training, 
simulate the network with the input P and calculate the difference between the 
target output and the simulated network output.

Pseq = con2seq(P);
Tseq = con2seq(T);
net = train(net,Pseq,Tseq); 
Y = sim(net,Pseq);
z = seq2con(Y);
z{1,1};
diff1 = T - z{1,1};

Note that the difference between the target and the simulated output of the 
trained network is very small. Thus, the network is trained to produce the 
desired output sequence on presentation of the input vector P.



Hopfield Network

10-37

Hopfield Network

Fundamentals
The goal here is to design a network that stores a specific set of equilibrium 
points such that, when an initial condition is provided, the network eventually 
comes to rest at such a design point. The network is recursive in that the output 
is fed back as the input, once the network is in operation. Hopefully, the 
network output will settle on one of the original design points.

The design method presented is not perfect in that the designed network can 
have spurious undesired equilibrium points in addition to the desired ones. 
However, the number of these undesired points is made as small as possible by 
the design method. Further, the domain of attraction of the designed 
equilibrium points is as large as possible.

The design method is based on a system of first-order linear ordinary 
differential equations that are defined on a closed hypercube of the state space. 
The solutions exist on the boundary of the hypercube. These systems have the 
basic structure of the Hopfield model, but are easier to understand and design 
than the Hopfield model.

The material in this section is based on the following paper: Jian-Hua Li, 
Anthony N. Michel, and Wolfgang Porod, “Analysis and synthesis of a class of 
neural networks: linear systems operating on a closed hypercube,” IEEE 
Trans. on Circuits and Systems, Vol. 36, No. 11, November 1989, pp. 1405–22.

For further information on Hopfield networks, read Chapter 18 of the Hopfield 
Network [HDB96].

Architecture
The architecture of the Hopfield network follows. 



10 Historical Networks

10-38

As noted, the input p to this network merely supplies the initial conditions.

The Hopfield network uses the saturated linear transfer function satlins.

For inputs less than -1 satlins produces -1. For inputs in the range -1 to +1 it 
simply returns the input value. For inputs greater than +1 it produces +1. 

This network can be tested with one or more input vectors that are presented 
as initial conditions to the network. After the initial conditions are given, the 
network produces an output that is then fed back to become the input. This 
process is repeated over and over until the output stabilizes. Hopefully, each 

Initial
conditions

p

 R1 x 1

R1

a1(k-1)

1

 S 1 x 1
��b1

��
��D

n1

 S 1 x 1

a1(k)

S 1 x 1
S 1 x R1��
��LW1,1

S1

Symmetric saturated linear layer 

��
��
��

a1(k) = satlins (LW1,1a1(k-1)) + b1)

a1(0) = p   and then for k = 1, 2, ...  

a1(0)

��
��

a = satlins(n)

n
0

-1

+1

+1-1

Satlins Transfer Function

a



Hopfield Network

10-39

output vector eventually converges to one of the design equilibrium point 
vectors that is closest to the input that provoked it.

Design (newhop)
Li et al. [LiMi89] have studied a system that has the basic structure of the 
Hopfield network but is, in Li’s own words, “easier to analyze, synthesize, and 
implement than the Hopfield model.” The authors are enthusiastic about the 
reference article, as it has many excellent points and is one of the most 
readable in the field. However, the design is mathematically complex, and even 
a short justification of it would burden this guide. Thus the Li design method 
is presented, with thanks to Li et al., as a recipe that is found in the function 
newhop.

Given a set of target equilibrium points represented as a matrix T of vectors, 
newhop returns weights and biases for a recursive network. The network is 
guaranteed to have stable equilibrium points at the target vectors, but it could 
contain other spurious equilibrium points as well. The number of these 
undesired points is made as small as possible by the design method. 

Once the network has been designed, it can be tested with one or more input 
vectors. Hopefully those input vectors close to target equilibrium points will 
find their targets. As suggested by the network figure, an array of input vectors 
is presented one at a time or in a batch. The network proceeds to give output 
vectors that are fed back as inputs. These output vectors can be can be 
compared to the target vectors to see how the solution is proceeding.

The ability to run batches of trial input vectors quickly allows you to check the 
design in a relatively short time. First you might check to see that the target 
equilibrium point vectors are indeed contained in the network. Then you could 
try other input vectors to determine the domains of attraction of the target 
equilibrium points and the locations of spurious equilibrium points if they are 
present.

Consider the following design example. Suppose that you want to design a 
network with two stable points in a three-dimensional space.

T = [-1 -1 1; 1 -1 1]'
T =
    -1     1
    -1    -1
     1     1



10 Historical Networks

10-40

You can execute the design with 

net = newhop(T);

Next, check to make sure that the designed network is at these two points, as 
follows. (Because Hopfield networks have no inputs, the second argument to 
sim below is Q = 2 when you are using matrix notation.)

Ai = T;
[Y,Pf,Af] = sim(net,2,[],Ai);
Y

This gives you

Y =
    -1     1
    -1    -1
     1     1

Thus, the network has indeed been designed to be stable at its design points. 
Next you can try another input condition that is not a design point, such as

Ai = {[-0.9; -0.8; 0.7]};

This point is reasonably close to the first design point, so you might anticipate 
that the network would converge to that first point. To see if this happens, run 
the following code. Note, incidentally, that the original point was specified in 
cell array form. This allows you to run the network for more than one step.

[Y,Pf,Af] = sim(net,{1 5},{},Ai);
Y{1}

This produces

ans =
    -1
    -1
     1

Thus, an original condition close to a design point did converge to that point.

This is, of course, the hope for all such inputs. Unfortunately, even the best 
known Hopfield designs occasionally include spurious undesired stable points 
that attract the solution.



Hopfield Network

10-41

Example 
Consider a Hopfield network with just two neurons. Each neuron has a bias 
and weights to accommodate two-element input vectors weighted. The target 
equilibrium points are defined to be stored in the network as the two columns 
of the matrix T.

T = [1 -1; -1 1]'
T =
     1    -1
    -1     1

Here is a plot of the Hopfield state space with the two stable points labeled with 
‘*’ markers.

These target stable points are given to newhop to obtain weights and biases of 
a Hopfield network. 

net = newhop(T);

The design returns a set of weights and a bias for each neuron. The results are 
obtained from

W= net.LW{1,1}

-1 0 1

-1

-0.5

0

0.5

1

a(1)

Hopfield Network State Space

a(
2 )



10 Historical Networks

10-42

which gives

W =
    0.6925   -0.4694
   -0.4694    0.6925

and from 

b = net.b{1,1}

which gives

b =
    0
    0

Next test the design with the target vectors T to see if they are stored in the 
network. The targets are used as inputs for the simulation function sim.

Ai = T;
[Y,Pf,Af] = sim(net,2,[],Ai);
Y

Y =
     1    -1
    -1     1

As hoped, the new network outputs are the target vectors. The solution stays 
at its initial conditions after a single update and, therefore, will stay there for 
any number of updates.



Hopfield Network

10-43

Now you might wonder how the network performs with various random input 
vectors. Here is a plot showing the paths that the network took through its 
state space to arrive at a target point.

This plot show the trajectories of the solution for various starting points. You 
can try demonstration demohop1 to see more of this kind of network behavior.

Hopfield networks can be designed for an arbitrary number of dimensions. You 
can try demohop3 to see a three-dimensional design.

Unfortunately, Hopfield networks can have both unstable equilibrium points 
and spurious stable points. You can try demonstrations demohop2 and 
demohop4 to investigate these issues.

a(
2 )

-1 0 1

-1

-0.5

0

0.5

1

a(1)

Hopfield Network State Space



10 Historical Networks

10-44



 

11

Network Object Reference

Network Properties (p. 11-2)

Subobject Properties (p. 11-13)



11 Network Object Reference

11-2

Network Properties
These properties define the basic features of a network. “Subobject Properties” 
on page 11-13 describes properties that define network details.

General
Here are two general properties of neural networks.

net.name
This property consists of a string defining the network name. Network creation 
functions such as feedforwardnet, define this appropriately. But it can be set 
to any string as desired.

net.userdata
This property provides a place for users to add custom information to a network 
object. Only one field is predefined. It contains a secret message to all Neural 
Network Toolbox™ software users:

net.userdata.note

Efficiency
Here are two efficiency properties of neural networks.

net.efficiency.cacheDelayedInput
This property can be set to true (the default) or false. If true then the delayed 
inputs of each input weight are calculated once during training and reused, 
instead of recalculated each time they are needed. This results in faster 
training, but at the expense of memory efficiency. For greater memory 
efficiency set this property to false.

net.efficiency.flattenTime
This property can be set to true (the default) or false. If true then time series 
data used to train static networks will be reformatted as static data before 
training. This results in faster training at the expense of memory efficiency. 
For greater memory efficiency, either only use static data for static networks, 
or set this property to false.



Network Properties

11-3

net.efficiency.memoryReduction
This property can be set to 1 (the default) or any integer greater than 1. If set 
to an integer N, then simulation and error gradient and Jacobian calculations 
will be split in time into N subcalculations by groups of samples. This will 
result in greater time overhead but result in reduced memory requirements for 
storing intermediate values. For greater memory efficiency set this to higher 
values.

Architecture
These properties determine the number of network subobjects (which include 
inputs, layers, outputs, targets, biases, and weights), and how they are 
connected.

net.numInputs
This property defines the number of inputs a network receives. It can be set to 
0 or a positive integer.

Clarification. The number of network inputs and the size of a network input are 
not the same thing. The number of inputs defines how many sets of vectors the 
network receives as input. The size of each input (i.e., the number of elements 
in each input vector) is determined by the input size (net.inputs{i}.size).

Most networks have only one input, whose size is determined by the problem.

Side Effects. Any change to this property results in a change in the size of the 
matrix defining connections to layers from inputs, (net.inputConnect) and the 
size of the cell array of input subobjects (net.inputs). 

net.numLayers
This property defines the number of layers a network has. It can be set to 0 or 
a positive integer.

Side Effects. Any change to this property changes the size of each of these 
Boolean matrices that define connections to and from layers:

net.biasConnect
net.inputConnect
net.layerConnect
net.outputConnect



11 Network Object Reference

11-4

and changes the size of each cell array of subobject structures whose size 
depends on the number of layers:

net.biases
net.inputWeights
net.layerWeights
net.outputs

and also changes the size of each of the network’s adjustable parameter’s 
properties:

net.IW
net.LW
net.b

net.biasConnect
This property defines which layers have biases. It can be set to any N-by-1 
matrix of Boolean values, where Nl is the number of network layers 
(net.numLayers). The presence (or absence) of a bias to the ith layer is 
indicated by a 1 (or 0) at

net.biasConnect(i)

Side Effects. Any change to this property alters the presence or absence of 
structures in the cell array of biases (net.biases) and, in the presence or 
absence of vectors in the cell array, of bias vectors (net.b).

net.inputConnect
This property defines which layers have weights coming from inputs.

It can be set to any Nl x Ni matrix of Boolean values, where Nl is the number of 
network layers (net.numLayers), and Ni is the number of network inputs 
(net.numInputs). The presence (or absence) of a weight going to the ith layer 
from the jth input is indicated by a 1 (or 0) at net.inputConnect(i,j).

Side Effects. Any change to this property alters the presence or absence of 
structures in the cell array of input weight subobjects (net.inputWeights) and 
the presence or absence of matrices in the cell array of input weight matrices 
(net.IW).



Network Properties

11-5

net.layerConnect
This property defines which layers have weights coming from other layers. It 
can be set to any Nl x Nl matrix of Boolean values, where Nl is the number of 
network layers (net.numLayers). The presence (or absence) of a weight going 
to the ith layer from the jth layer is indicated by a 1 (or 0) at

net.layerConnect(i,j)

Side Effects. Any change to this property alters the presence or absence of 
structures in the cell array of layer weight subobjects (net.layerWeights) and 
the presence or absence of matrices in the cell array of layer weight matrices 
(net.LW).

net.outputConnect
This property defines which layers generate network outputs. It can be set to 
any 1 x Nl matrix of Boolean values, where Nl is the number of network layers 
(net.numLayers). The presence (or absence) of a network output from the ith 
layer is indicated by a 1 (or 0) at net.outputConnect(i).

Side Effects. Any change to this property alters the number of network outputs 
(net.numOutputs) and the presence or absence of structures in the cell array of 
output subobjects (net.outputs).

net.numOutputs (read-only)
This property indicates how many outputs the network has. It is always equal 
to the number of 1s in net.outputConnect.

net.numInputDelays (read-only)
This property indicates the number of time steps of past inputs that must be 
supplied to simulate the network. It is always set to the maximum delay value 
associated with any of the network’s input weights:

numInputDelays = 0;
for i=1:net.numLayers
for j=1:net.numInputs

if net.inputConnect(i,j)
numInputDelays = max( ...
[numInputDelays net.inputWeights{i,j}.delays]);

end
end



11 Network Object Reference

11-6

end

net.numLayerDelays (read-only)
This property indicates the number of time steps of past layer outputs that 
must be supplied to simulate the network. It is always set to the maximum 
delay value associated with any of the network’s layer weights:

numLayerDelays = 0;
for i=1:net.numLayers
for j=1:net.numLayers

if net.layerConnect(i,j)
numLayerDelays = max( ...
[numLayerDelays net.layerWeights{i,j}.delays]);

end
end

end

net.numWeightElements (read-only)
This property indicates the number of weight and bias values in the network. 
It is the sum of the number of elements in the matrices stored in the two cell 
arrays:

net.IW
new.b

Subobject Structures
These properties consist of cell arrays of structures that define each of the 
network’s inputs, layers, outputs, targets, biases, and weights.

The properties for each kind of subobject are described in “Subobject 
Properties” on page 11-13.

net.inputs
This property holds structures of properties for each of the network’s inputs. It 
is always an Ni x 1 cell array of input structures, where Ni is the number of 
network inputs (net.numInputs).

The structure defining the properties of the ith network input is located at

net.inputs{i}



Network Properties

11-7

Input Properties. See “Inputs” on page 11-13 for descriptions of input properties.

net.layers
This property holds structures of properties for each of the network’s layers. It 
is always an Nl x 1 cell array of layer structures, where Nl is the number of 
network layers (net.numLayers).

The structure defining the properties of the ith layer is located at 
net.layers{i}.

Layer Properties. See “Layers” on page 11-15 for descriptions of layer properties.

net.outputs
This property holds structures of properties for each of the network’s outputs. 
It is always a 1 x Nl cell array, where Nl is the number of network outputs 
(net.numOutputs).

The structure defining the properties of the output from the ith layer (or a null 
matrix []) is located at net.outputs{i} if net.outputConnect(i) is 1 (or 0).

Output Properties. See “Outputs” on page 11-20 for descriptions of output 
properties.

net.biases
This property holds structures of properties for each of the network’s biases. It 
is always an Nl x 1 cell array, where Nl is the number of network layers 
(net.numLayers).

The structure defining the properties of the bias associated with the ith layer 
(or a null matrix []) is located at net.biases{i} if net.biasConnect(i) is 1 
(or 0).

Bias Properties. See “Biases” on page 11-22 for descriptions of bias properties.

net.inputWeights
This property holds structures of properties for each of the network’s input 
weights. It is always an Nl x Ni cell array, where Nl is the number of network 
layers (net.numLayers), and Ni is the number of network inputs 
(net.numInputs).



11 Network Object Reference

11-8

The structure defining the properties of the weight going to the ith layer from 
the jth input (or a null matrix []) is located at net.inputWeights{i,j} if 
net.inputConnect(i,j) is 1 (or 0).

Input Weight Properties. See “Input Weights” on page 11-23 for descriptions of 
input weight properties.

net.layerWeights
This property holds structures of properties for each of the network’s layer 
weights. It is always an Nl x Nl cell array, where Nl is the number of network 
layers (net.numLayers).

The structure defining the properties of the weight going to the ith layer from 
the jth layer (or a null matrix []) is located at net.layerWeights{i,j} if 
net.layerConnect(i,j) is 1 (or 0).

Layer Weight Properties. See “Layer Weights” on page 11-25 for descriptions of 
layer weight properties.

Functions
These properties define the algorithms to use when a network is to adapt, is to 
be initialized, is to have its performance measured, or is to be trained.

net.adaptFcn
This property defines the function to be used when the network adapts. It can 
be set to the name of any network adapt function. The network adapt function 
is used to perform adaption whenever adapt is called.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

For a list of functions type help nntrain.

Side Effects. Whenever this property is altered, the network’s adaption 
parameters (net.adaptParam) are set to contain the parameters and default 
values of the new function.

net.adaptParam
This property defines the parameters and values of the current adapt function. 
Call help on the current adapt function to get a description of what each field 
means:



Network Properties

11-9

help(net.adaptFcn)

net.derivFcn
This property defines the derivative function to be used to calculate error 
gradients and Jacobians when the network is trained using a supervised 
algorithm, such as backpropagation. You can set this property to the name of 
any derivative function.

For a list of functions type help nnderivative.

net.divideFcn
This property defines the data division function to be used when the network 
is trained using a supervised algorithm, such as backpropagation. You can set 
this property to the name of a division function.

For a list of functions type help nndivision.

Side Effects. Whenever this property is altered, the network’s adaption 
parameters (net.divideParam) are set to contain the parameters and default 
values of the new function.

net.divideParam
This property defines the parameters and values of the current data-division 
function. To get a description of what each field means, type the following 
command:

help(net.divideParam)

net.divideMode
This property defines the target data dimensions which to divide up when the 
data division function is called. Its default value is 'sample' for static 
networks and 'time' for dynamic networks. It may also be set to 'sampletime' 
to divide targets by both sample and timestep, 'all' to divide up targets by 
every scalar value, or 'none' to not divide up data at all (in which case all data 
us used for training, none for validation or testing).

net.initFcn
This property defines the function used to initialize the network’s weight 
matrices and bias vectors. The initialization function is used to initialize the 
network whenever init is called:



11 Network Object Reference

11-10

net = init(net)

For a list of functions, type

help nninit

Side Effects. Whenever this property is altered, the network’s initialization 
parameters (net.initParam) are set to contain the parameters and default 
values of the new function.

net.initParam
This property defines the parameters and values of the current initialization 
function. Call help on the current initialization function to get a description of 
what each field means:

help(net.initFcn)

net.performFcn
This property defines the function used to measure the network’s performance. 
The performance function is used to calculate network performance during 
training whenever train is called.

[net,tr] = train(NET,P,T,Pi,Ai)

For a list of functions, type

help nnperformance

Side Effects. Whenever this property is altered, the network’s performance 
parameters (net.performParam) are set to contain the parameters and default 
values of the new function.

net.performParam
This property defines the parameters and values of the current performance 
function. Call help on the current performance function to get a description of 
what each field means:

help(net.performFcn)

net.plotFcns
This property consists of a row cell array of strings, defining the plot functions 
associated with a network. The neural network training window, which is 



Network Properties

11-11

launched by the train function, shows a button for each plotting function. 
Click the button during or after training to open the desired plot.

net.plotParams
This property consists of a row cell array of structures, defining the parameters 
and values of each plot function in net.plotFcns. Call help on the each plot 
function to get a description of what each field means:

help(net.plotFcns{i})

net.trainFcn
This property defines the function used to train the network.  The training 
function is used to train the network whenever train is called.

[net,tr] = train(NET,P,T,Pi,Ai)

For a list of functions, type 

help nntrain

Side Effects. Whenever this property is altered, the network’s training 
parameters (net.trainParam) are set to contain the parameters and default 
values of the new function.

net.trainParam
This property defines the parameters and values of the current training 
function. Call help on the current training function to get a description of what 
each field means:

help(net.trainFcn)

Weight and Bias Values
These properties define the network’s adjustable parameters: its weight 
matrices and bias vectors.

net.IW
This property defines the weight matrices of weights going to layers from 
network inputs. It is always an Nl x Ni cell array, where Nl is the number of 
network layers (net.numLayers), and Ni is the number of network inputs 
(net.numInputs).



11 Network Object Reference

11-12

The weight matrix for the weight going to the ith layer from the jth input (or a 
null matrix []) is located at net.IW{i,j} if net.inputConnect(i,j) is 1 (or 0).

The weight matrix has as many rows as the size of the layer it goes to 
(net.layers{i}.size). It has as many columns as the product of the input size 
with the number of delays associated with the weight:

net.inputs{j}.size * length(net.inputWeights{i,j}.delays)

These dimensions can also be obtained from the input weight properties:

net.inputWeights{i,j}.size

net.LW
This property defines the weight matrices of weights going to layers from other 
layers. It is always an Nl x Nl cell array, where Nl is the number of network 
layers (net.numLayers).

The weight matrix for the weight going to the ith layer from the jth layer (or a 
null matrix []) is located at net.LW{i,j} if net.layerConnect(i,j) is 1 (or 0).

The weight matrix has as many rows as the size of the layer it goes to 
(net.layers{i}.size). It has as many columns as the product of the size of the 
layer it comes from with the number of delays associated with the weight:

net.layers{j}.size * length(net.layerWeights{i,j}.delays)

These dimensions can also be obtained from the layer weight properties:

net.layerWeights{i,j}.size

net.b
This property defines the bias vectors for each layer with a bias. It is always an 
Nl x 1 cell array, where Nl is the number of network layers (net.numLayers).

The bias vector for the ith layer (or a null matrix []) is located at net.b{i} if 
net.biasConnect(i) is 1 (or 0).

The number of elements in the bias vector is always equal to the size of the 
layer it is associated with (net.layers{i}.size).

This dimension can also be obtained from the bias properties:

net.biases{i}.size



Subobject Properties

11-13

Subobject Properties
These properties define the details of a network’s inputs, layers, outputs, 
targets, biases, and weights.

Inputs
These properties define the details of each ith network input.

net.inputs{1}.name
This property consists of a string defining the input name. Network creation 
functions such as feedforwardnet, define this appropriately. But it can be set 
to any string as desired.

net.inputs{i}.feedbackInput (read-only)
If this network is associated with an open loop feedback output, then this 
property will indicate the index of that output. Otherwise it will be an empty 
matrix.

net.inputs{i}.processFcns
This property defines a row cell array of processing function names to be used 
by ith network input. The processing functions are applied to input values 
before the network uses them.

Side Effects. Whenever this property is altered, the input processParams are set 
to default values for the given processing functions, processSettings, 
processedSize, and processedRange are defined by applying the process 
functions and parameters to exampleInput.

For a list of processing functions, type

help nnprocess

net.inputs{i}.processParams
This property holds a row cell array of processing function parameters to be 
used by ith network input. The processing parameters are applied by the 
processing functions to input values before the network uses them.



11 Network Object Reference

11-14

Side Effects. Whenever this property is altered, the input processSettings, 
processedSize, and processedRange are defined by applying the process 
functions and parameters to exampleInput.

net.inputs{i}.processSettings (read-only)
This property holds a row cell array of processing function settings to be used 
by ith network input. The processing settings are found by applying the 
processing functions and parameters to the exampleInput and then used to 
provide consistent results to new input values before the network uses them.

net.inputs{i}.processedRange (read-only)
This property defines the range of exampleInput values after they have been 
processed with the processingFcns and processingParams.

net.inputs{i}.processedSize (read-only)
This property defines the number of rows in the exampleInput values after 
they have been processed with the processingFcns and processingParams.

net.inputs{i}.range
This property defines the range of each element of the ith network input.

It can be set to any Ri x 2 matrix, where Ri is the number of elements in the 
input (net.inputs{i}.size), and each element in column 1 is less than the 
element next to it in column 2.

Each jth row defines the minimum and maximum values of the jth input 
element, in that order:

net.inputs{i}(j,:)

Uses. Some initialization functions use input ranges to find appropriate initial 
values for input weight matrices.

Side Effects. Whenever the number of rows in this property is altered, the input 
size, processedSize, and processedRange change to remain consistent. The 
sizes of any weights coming from this input and the dimensions of the weight 
matrices also change.



Subobject Properties

11-15

net.inputs{i}.size
This property defines the number of elements in the ith network input. It can 
be set to 0 or a positive integer.

Side Effects. Whenever this property is altered, the input range, 
processedRange, and processedSize are updated. Any associated input 
weights change size accordingly.

net.inputs{i}.userdata
This property provides a place for users to add custom information to the ith 
network input.

Layers
These properties define the details of each ith network layer.

net.layers{i}.name
This property consists of a string defining the layer name. Network creation 
functions such as feedforwardnet, define this appropriately. But it can be set 
to any string as desired.

net.layers{i}.dimensions
This property defines the physical dimensions of the ith layer’s neurons. Being 
able to arrange a layer’s neurons in a multidimensional manner is important 
for self-organizing maps.

It can be set to any row vector of 0 or positive integer elements, where the 
product of all the elements becomes the number of neurons in the layer 
(net.layers{i}.size).

Uses. Layer dimensions are used to calculate the neuron positions within the 
layer (net.layers{i}.positions) using the layer’s topology function 
(net.layers{i}.topologyFcn).

Side Effects. Whenever this property is altered, the layer’s size 
(net.layers{i}.size) changes to remain consistent. The layer’s neuron 
positions (net.layers{i}.positions) and the distances between the neurons 
(net.layers{i}.distances) are also updated.



11 Network Object Reference

11-16

net.layers{i}.distanceFcn
This property defines which of the is used to calculate distances between 
neurons in the ith layer from the neuron positions. Neuron distances are used 
by self-organizing maps. It can be set to the name of any distance function.

For a list of functions, type

help nndistance

Side Effects. Whenever this property is altered, the distances between the 
layer’s neurons (net.layers{i}.distances) are updated.

net.layers{i}.distances (read-only)
This property defines the distances between neurons in the ith layer. These 
distances are used by self-organizing maps:

net.layers{i}.distances

It is always set to the result of applying the layer’s distance function 
(net.layers{i}.distanceFcn) to the positions of the layer’s neurons 
(net.layers{i}.positions).

net.layers{i}.initFcn
This property defines which of the are used to initialize the ith layer, if the 
network initialization function (net.initFcn) is initlay. If the network 
initialization is set to initlay, then the function indicated by this property is 
used to initialize the layer’s weights and biases.

For a list of functions, type

help nninit

net.layers{i}.netInputFcn
This property defines which of the is used to calculate the ith layer’s net input, 
given the layer’s weighted inputs and bias during simulating and training.

For a list of functions, type

help nnnetinput



Subobject Properties

11-17

net.layers{i}.netInputParam
This property defines the parameters of the layer’s net input function. Call 
help on the current net input function to get a description of each field:

help(net.layers{i}.netInputFcn)

net.layers{i}.positions (read-only)
This property defines the positions of neurons in the ith layer. These positions 
are used by self-organizing maps.

It is always set to the result of applying the layer’s topology function 
(net.layers{i}.topologyFcn) to the positions of the layer’s dimensions 
(net.layers{i}.dimensions).

Plotting. Use plotsom to plot the positions of a layer’s neurons.

For instance, if the first-layer neurons of a network are arranged with 
dimensions (net.layers{1}.dimensions) of [4 5], and the topology function 
(net.layers{1}.topologyFcn) is hextop, the neurons’ positions can be plotted 
as follows:

plotsom(net.layers{1}.positions)

0 1 2 3
0

0.5

1

1.5

2

2.5

3

position(1,i)

po
si

tio
n(

2,
i)

Neuron Positions



11 Network Object Reference

11-18

net.layers{i}.range (read-only)
This property defines the output range of each neuron of the ith layer.

It is set to an Si x 2 matrix, where Si is the number of neurons in the layer 
(net.layers{i}.size), and each element in column 1 is less than the element 
next to it in column 2.

Each jth row defines the minimum and maximum output values of the layer’s 
transfer function net.layers{i}.transferFcn.

net.layers{i}.size
This property defines the number of neurons in the ith layer. It can be set to 0 
or a positive integer.

Side Effects. Whenever this property is altered, the sizes of any input weights 
going to the layer (net.inputWeights{i,:}.size), any layer weights going to 
the layer (net.layerWeights{i,:}.size) or coming from the layer 
(net.inputWeights{i,:}.size), and the layer’s bias (net.biases{i}.size), 
change.

The dimensions of the corresponding weight matrices (net.IW{i,:}, 
net.LW{i,:}, net.LW{:,i}), and biases (net.b{i}) also change.

Changing this property also changes the size of the layer’s output 
(net.outputs{i}.size) and target (net.targets{i}.size) if they exist.

Finally, when this property is altered, the dimensions of the layer’s neurons 
(net.layers{i}.dimension) are set to the same value. (This results in a 
one-dimensional arrangement of neurons. If another arrangement is required, 
set the dimensions property directly instead of using size.)

net.layers{i}.topologyFcn
This property defines which of the are used to calculate the ith layer’s neuron 
positions (net.layers{i}.positions) from the layer’s dimensions 
(net.layers{i}.dimensions).

For a list of functions, type

help nntopology

Side Effects. Whenever this property is altered, the positions of the layer’s 
neurons (net.layers{i}.positions) are updated.



Subobject Properties

11-19

Use plotsom to plot the positions of the layer neurons. For instance, if the 
first-layer neurons of a network are arranged with dimensions 
(net.layers{1}.dimensions) of [8 10] and the topology function 
(net.layers{1}.topologyFcn) is randtop, the neuron positions are arranged 
to resemble the following plot:

plotsom(net.layers{1}.positions)

net.layers{i}.transferFcn
This function defines which of the is used to calculate the ith layer’s output, 
given the layer’s net input, during simulation and training.

For a list of functions type: help nntransfer

net.layers{i}.transferParam
This property defines the parameters of the layer’s transfer function. Call help 
on the current transfer function to get a description of what each field means.

help(net.layers{i}.transferFcn)

0 5 10 15
0

2

4

6

8

10

12

position(1,i)

p
o
si

tio
n
(2

,i)

Neuron Positions



11 Network Object Reference

11-20

net.layers{i}.userdata
This property provides a place for users to add custom information to the ith 
network layer.

Outputs

net.outputs{i}.name
This property consists of a string defining the output name. Network creation 
functions such as feedforwardnet, define this appropriately. But it can be set 
to any string as desired.

net.outputs{i}.feedbackInput
If the output implements open loop feedback (net.outputs{i}.feedbackMode 
= 'open') then this property indicates the index of the associated feedback 
input, otherwise it will be an empty matrix.

net.outputs{i}.feedbackDelay
This property defines the timestep difference between this output and network 
inputs. Input-to-output network delays can be removed and added with 
removedelay and adddelay functions resulting in this property being 
incremented or decremented respectively. The difference in timing between 
inputs and outputs is used by preparets to properly format simulation and 
training data, and used by closeloop to add the correct number of delays when 
closing an open loop output, and openloop to remove delays when opening a 
closed loop.

net.outputs{i}.feedbackMode
This property is set to the string 'none' for non-feedback outputs. For feedback 
outputs it can either be set to 'open' or 'closed'. If it is set to 'open' then the 
output will be associated with a feedback input, with the property 
feedbackInput indicating the input’s index.

net.outputs{i}.processFcns
This property defines a row cell array of processing function names to be used 
by the ith network output. The processing functions are applied to target 
values before the network uses them, and applied in reverse to layer output 
values before being returned as network output values.



Subobject Properties

11-21

Side Effects. When you change this property, you also affect the following 
settings: the output parameters processParams are modified to the default 
values of the specified processing functions; processSettings, processedSize, 
and processedRange are defined using the results of applying the process 
functions and parameters to exampleOutput; the ith layer size is updated to 
match the processedSize.

For a list of functions, type

help nnprocess

net.outputs{i}.processParams
This property holds a row cell array of processing function parameters to be 
used by ith network output on target values. The processing parameters are 
applied by the processing functions to input values before the network uses 
them.

Side Effects. Whenever this property is altered, the output processSettings, 
processedSize and processedRange are defined by applying the process 
functions and parameters to exampleOutput. The ith layer’s size is also 
updated to match the processedSize.

net.outputs{i}.processSettings (read-only)
This property holds a row cell array of processing function settings to be used 
by ith network output. The processing settings are found by applying the 
processing functions and parameters to the exampleOutput and then used to 
provide consistent results to new target values before the network uses them. 
The processing settings are also applied in reverse to layer output values before 
being returned by the network.

net.outputs{i}.processedRange (read-only)
This property defines the range of exampleOutput values after they have been 
processed with the processingFcns and processingParams.

net.outputs{i}.processedSize (read-only)
This property defines the number of rows in the exampleOutput values after 
they have been processed with the processingFcns and processingParams.



11 Network Object Reference

11-22

net.outputs{i}.size (read-only)
This property defines the number of elements in the ith layer’s output. It is 
always set to the size of the ith layer (net.layers{i}.size).

net.outputs{i}.userdata
This property provides a place for users to add custom information to the ith 
layer’s output.

Biases

net.biases{i}.initFcn
This property defines the used to set the ith layer’s bias vector (net.b{i}) if the 
network initialization function is initlay and the ith layer’s initialization 
function is initwb.

For a list of functions, type

help nninit

net.biases{i}.learn
This property defines whether the ith bias vector is to be altered during 
training and adaption. It can be set to 0 or 1.

It enables or disables the bias’s learning during calls to adapt and train.

net.biases{i}.learnFcn
This property defines which of the is used to update the ith layer’s bias vector 
(net.b{i}) during training, if the network training function is trainb, trainc, 
or trainr, or during adaption, if the network adapt function is trains.

For a list of functions, type

help nnlearn

Side Effects. Whenever this property is altered, the biases learning parameters 
(net.biases{i}.learnParam) are set to contain the fields and default values of 
the new function.



Subobject Properties

11-23

net.biases{i}.learnParam
This property defines the learning parameters and values for the current 
learning function of the ith layer’s bias. The fields of this property depend on 
the current learning function. Call help on the current learning function to get 
a description of what each field means.

net.biases{i}.size (read-only)
This property defines the size of the ith layer’s bias vector. It is always set to 
the size of the ith layer (net.layers{i}.size).

net.biases{i}.userdata
This property provides a place for users to add custom information to the ith 
layer’s bias.

Input Weights

net.inputWeights{i,j}.delays
This property defines a tapped delay line between the jth input and its weight 
to the ith layer. It must be set to a row vector of increasing values. The 
elements must be either 0 or positive integers.

Side Effects. Whenever this property is altered, the weight’s size 
(net.inputWeights{i,j}.size) and the dimensions of its weight matrix 
(net.IW{i,j}) are updated.

net.inputWeights{i,j}.initFcn
This property defines which of the is used to initialize the weight matrix 
(net.IW{i,j}) going to the ith layer from the jth input, if the network 
initialization function is initlay, and the ith layer’s initialization function is 
initwb. This function can be set to the name of any weight initialization 
function.

For a list of functions, type

help nninit



11 Network Object Reference

11-24

net.inputWeights{i,j}.initSettings (read-only)
This property is set to values useful for initializing the weight as part of the 
configuration process that occurs automatically the first time a network is 
trained, or when the function configure is called on a network directly.

net.inputWeights{i,j}.learn
This property defines whether the weight matrix to the ith layer from the jth 
input is to be altered during training and adaption. It can be set to 0 or 1.

net.inputWeights{i,j}.learnFcn
This property defines which of the is used to update the weight matrix 
(net.IW{i,j}) going to the ith layer from the jth input during training, if the 
network training function is trainb, trainc, or trainr, or during adaption, if 
the network adapt function is trains. It can be set to the name of any weight 
learning function.

For a list of functions, type

help nnlearn

net.inputWeights{i,j}.learnParam
This property defines the learning parameters and values for the current 
learning function of the ith layer’s weight coming from the jth input.

The fields of this property depend on the current learning function 
(net.inputWeights{i,j}.learnFcn). Evaluate the above reference to see the 
fields of the current learning function.

Call help on the current learning function to get a description of what each 
field means.

net.inputWeights{i,j}.size (read-only)
This property defines the dimensions of the ith layer’s weight matrix from the 
jth network input. It is always set to a two-element row vector indicating the 
number of rows and columns of the associated weight matrix (net.IW{i,j}). 
The first element is equal to the size of the ith layer (net.layers{i}.size). 
The second element is equal to the product of the length of the weight’s delay 
vectors and the size of the jth input:

length(net.inputWeights{i,j}.delays) * net.inputs{j}.size



Subobject Properties

11-25

net.inputWeights{i,j}.userdata
This property provides a place for users to add custom information to the (i,j)th 
input weight.

net.inputWeights{i,j}.weightFcn
This property defines which of the is used to apply the ith layer’s weight from 
the jth input to that input. It can be set to the name of any weight function. The 
weight function is used to transform layer inputs during simulation and 
training.

For a list of functions, type

help nnweight

net.inputWeights{i,j}.weightParam
This property defines the parameters of the layer’s net input function. Call 
help on the current net input function to get a description of each field.

Layer Weights

net.layerWeights{i,j}.delays
This property defines a tapped delay line between the jth layer and its weight 
to the ith layer. It must be set to a row vector of increasing values. The 
elements must be either 0 or positive integers.

net.layerWeights{i,j}.initFcn
This property defines which of the is used to initialize the weight matrix 
(net.LW{i,j}) going to the ith layer from the jth layer, if the network 
initialization function is initlay, and the ith layer’s initialization function is 
initwb. This function can be set to the name of any weight initialization 
function.

For a list of functions, type

help nninit

net.layerWeights{i,j}.initSettings (read-only)
This property is set to values useful for initializing the weight as part of the 
configuration process that occurs automatically the first time a network is 
trained, or when the function configure is called on a network directly.



11 Network Object Reference

11-26

net.layerWeights{i,j}.learn
This property defines whether the weight matrix to the ith layer from the jth 
layer is to be altered during training and adaption. It can be set to 0 or 1.

net.layerWeights{i,j}.learnFcn
This property defines which of the is used to update the weight matrix 
(net.LW{i,j}) going to the ith layer from the jth layer during training, if the 
network training function is trainb, trainc, or trainr, or during adaption, if 
the network adapt function is trains. It can be set to the name of any weight 
learning function.

For a list of functions, type

help nnlearn

net.layerWeights{i,j}.learnParam
This property defines the learning parameters fields and values for the current 
learning function of the ith layer’s weight coming from the jth layer. The fields 
of this property depend on the current learning function. Call help on the 
current net input function to get a description of each field.

net.layerWeights{i,j}.size (read-only)
This property defines the dimensions of the ith layer’s weight matrix from the 
jth layer. It is always set to a two-element row vector indicating the number of 
rows and columns of the associated weight matrix (net.LW{i,j}). The first 
element is equal to the size of the ith layer (net.layers{i}.size). The second 
element is equal to the product of the length of the weight’s delay vectors and 
the size of the jth layer.

net.layerWeights{i,j}.userdata
This property provides a place for users to add custom information to the (i,j)th 
layer weight.

net.layerWeights{i,j}.weightFcn
This property defines which of the is used to apply the ith layer’s weight from 
the jth layer to that layer’s output. It can be set to the name of any weight 
function. The weight function is used to transform layer inputs when the 
network is simulated.

For a list of functions, type



Subobject Properties

11-27

help nnweight

net.layerWeights{i,j}.weightParam
This property defines the parameters of the layer’s net input function. Call 
help on the current net input function to get a description of each field.



11 Network Object Reference

11-28



 

12

Function Reference

“DataFunctions” on page 12-3 Analyze network properties

“Distance Functions” on page 12-6 Compute distance between two vectors

“Graphical Interface Functions” on 
page 12-7

Open GUIs for building neural networks

“Layer Initialization Functions” on 
page 12-8

Initialize layer weights

“Learning Functions” on page 12-9 Learning algorithms used to adapt networks

“Line Search Functions” on page 12-10 Line-search algorithms

“Net Input Functions” on page 12-11 Sum excitations of layer

“Network Initialization Function” on 
page 12-12

Initialize network weights

“New Networks Functions” on page 12-14 Create network architectures

“Network Use Functions” on page 12-13 High-level functions to manipulate networks

“Performance Functions” on page 12-15 Measure network performance

“Plotting Functions” on page 12-16 Plot and analyze networks and network 
performance

“Processing Functions” on page 12-17 Preprocess and postprocess data

“Simulink® Support Function” on 
page 12-18

Generate Simulink block for network simulation

“Topology Functions” on page 12-19 Arrange neurons of layer according to specific 
topology

“Training Functions” on page 12-20 Train networks



12 Function Reference

12-2

“Transfer Functions” on page 12-21 Transform output of network layer

“Weight and Bias Initialization Functions” 
on page 12-22

Internal functions for network computations

“Weight and Bias Initialization Functions” 
on page 12-22

Initialize weights and biases

“Weight Functions” on page 12-23 Convolution, dot product, scalar product, and 
distances weight functions



DataFunctions

12-3

DataFunctions

catelements Concatenate neural network data elements

catsamples Concatenate neural network data samples

catsignals Concatenate neural network data signals

cattimesteps Concatenate neural network data timesteps

cellmat Create a cell array of matrices

combvec Create all combinations of vectors

con2seq Convert concurrent vectors to sequential vectors

concur Create concurrent bias vectors

confusion Classification confusion matrix

errsurf Error surface of single-input neuron

extendts Extend time seriess data to a given number of timesteps

fromnndata Convert data from standard neural network cell array form

gadd Generalized addition

gdivide Generalized division

getelements Get neural network data elements

getsamples Get neural network data samples

getsignals Get neural network data signals

gettimesteps Get neural network data timesteps

gmultiply Generalized multiply

gnegate Generalized negate

gsqrt Generalized square root

gsubtract Generalized subtract

ind2vec Convert indices to vectors

maxlinlr Maximum learning rate for a linear layer

meanabs Mean of absolute elements of a matrix or matrices



12 Function Reference

12-4

meansqr Mean of squared elements of a matrix or matrices

minmax Ranges of matrix rows

nncell2mat Combines neural network cell data into a matrix

nncorr Cross-correlation between neural time series

nndata Create neural network data

nndata2sim Convert neural network data to Simulink time series

nnsize Number of neural data elements, samples, timesteps and 
signals

normc Normalize columns of a matrix or matrices

normr Normalize rows of a matrix or matrices

numelements Number of elements in neural network data

numfinite Number of finite elements in neural network data

numnan Number of NaN elements in neural network data

numsamples Number of samples in neural network data

numsignals Number of signals in neural network data

numtimesteps Number of timesteps in neural network data

plotep Plot a weight-bias position on an error surface

plotes Plot the error surface of a single input neuron

plotpc Plot a classification line on a perceptron vector plot

plotpv Plot perceptron input/target vectors

plotv Plot vectors as lines from the origin

plotvec Plot vectors with different colors

pnormc Psuedo-normalize columns of a matrix

preparets Prepare time series data for network simulation or training

prunedata Prune data for a pruned network

quant Discretize neural network data as multiples of a quantity

regression Linear regression



DataFunctions

12-5

roc Reciever Operating Characteristic

seq2con Convert sequential vectors to concurrent vectors

setelements Set neural network data elements

setsamples Set neural network data samples

setsignals Set neural network data signals

settimesteps Set neural network data timesteps

sim2nndata Convert Simulink time series to neural network data

sumabs Sum of absolute elements of a matrix or matrices

sumsqr Sum of squared elements of matrix or matrices

tapdelay Shift neural network time series data for a tap delay

tonndata Convert data to standard neural network cell array form

vec2ind Convert vectors to indices



12 Function Reference

12-6

Distance Functions

boxdist Distance between two position vectors

dist Euclidean distance weight function

linkdist Link distance function

mandist Manhattan distance weight function



Graphical Interface Functions

12-7

Graphical Interface Functions

nctool Neural network classification tool

nftool Open Neural Network Fitting Tool

nntool Open Network/Data Manager

nntraintool Neural network training tool

nprtool Neural network pattern recognition tool

ntstool Neural network time series tool

view View neural network



12 Function Reference

12-8

Layer Initialization Functions

initnw Nguyen-Widrow layer initialization function

initwb By-weight-and-bias layer initialization function



Learning Functions

12-9

Learning Functions

learncon Conscience bias learning function

learngd Gradient descent weight/bias learning function

learngdm Gradient descent with momentum weight/bias learning 
function

learnh Hebb weight learning function

learnhd Hebb with decay weight learning rule

learnis Instar weight learning function

learnk Kohonen weight learning function

learnlv1 LVQ1 weight learning function

learnlv2 LVQ2 weight learning function

learnos Outstar weight learning function

learnp Perceptron weight and bias learning function

learnpn Normalized perceptron weight and bias learning function

learnsom Self-organizing map weight learning function

learnsomb Batch self-organizing map weight learning function

learnwh Widrow-Hoff weight and bias learning rule



12 Function Reference

12-10

Line Search Functions

srchbac 1-D minimization using backtracking search

srchbre 1-D interval location using Brent’s method 

srchcha 1-D minimization using Charalambous’ method

srchgol 1-D minimization using golden section search

srchhyb 1-D minimization using hybrid bisection/cubic search



Net Input Functions

12-11

Net Input Functions

netprod Product net input function

netsum Sum net input function



12 Function Reference

12-12

Network Initialization Function

init Initialize neural network

initlay Layer-by-layer network initialization function



Network Use Functions

12-13

Network Use Functions

adapt Allow neural network to change weights and biases on 
inputs

adddelay Add a delay to a neural network’s response

closeloop Convert neural network open loop feedback to closed loop

configure Configure neural network inputs and outputs

disp Neural network properties

display Name and properties of neural network variables

formwb Form bias and weights into a single vector

getwb Get all network weight and bias values as a single vector

init Initialize neural network

isconfigured Is neural network configured?

noloop Remove neural network open and closed feedback loops

openloop Convert neural network closed loop feedback to open loop

perform Neural network performance

prune Delete neural inputs, layers and outputs with sizes of zero

removedelay Remove a delay from a neural network’s response

separatewb Separate biases and weights from a weight/bias vector

setwb Set all network weight and bias values with a single vector

sim Simulate neural network

train Train neural network

unconfigure Unconfigured neural network inputs and outputs

view View a neural network



12 Function Reference

12-14

New Networks Functions

network Create custom neural network

cascadeforwar
dnet

Cascade-forward neural network

competlayer Competitive neural layer

distdelaynet Distributed delay neural network

elmannet Elman neural network

feedforwardne
t

Feed-forward neural network

fitnet Function fitting neural network

layrecnet Layer recurrent neural network

linearlayer Linear neural layer

lvqnet Learning vector quantization (LVQ) neural network

narnet Nonlinear auto-associative time series network

narxnet Nonlinear auto-associative time series network with 
external input

newgrnn Generalized regression neural network

newlind Designed linear layer

newpnn Probabilistic neural network

newrb Radial basis network

newrbe Exact radial basis network

patternnet Pattern recognition network

perceptron Perceptron

selforgmap Self-organizing map

timedelaynet Time-delay neural network



Performance Functions

12-15

Performance Functions

mae Mean absolute error performance function

mse Mean squared error performance function

sse Sum squared error performance function



12 Function Reference

12-16

Plotting Functions

plotconfusion Plot classification confusion matrix

plotep Plot weight and bias position on error surface

ploterrcorr Plot autocorrelation of error time series

ploterrhist Plot error histogram

plotes Plot error surface of single-input neuron

plotfit Plot function fit

plotinerrcorr Plot input to error time series cross-correlation

plotpc Plot classification line on perceptron vector plot

plotperform Plot network performance

plotpv Plot perceptron input target vectors

plotregression Plot linear regression

plotroc Plot receiver operating characteristic

plotsomhits Plot self-organizing map sample hits

plotsomnc Plot self-organizing map neighbor connections

plotsomnd Plot self-organizing map neighbor distances

plotsomplanes Plot self-organizing map weight planes

plotsompos Plot self-organizing map weight positions

plotsomtop Plot self-organizing map topology

plottrainstate Plot training state values

plotv Plot vectors as lines from origin

plotvec Plot vectors with different colors

plotwb Plot Hinton diagram of weight and bias values



Processing Functions

12-17

Processing Functions

fixunknowns Process data by marking rows with unknown values

lvqoutputs Define settings for LVQ outputs

mapminmax Process matrices by mapping row minimum and 
maximum values to [-1 1]

mapstd Process matrices by mapping each row’s means to 0 and 
deviations to 1

processpca Process columns of matrix with principal component 
analysis

removeconstantrows Process matrices by removing rows with constant values

removerows Process matrices by removing rows with specified 
indices



12 Function Reference

12-18

Simulink® Support Function

getsiminit Get neural network Simulink block initial conditions

gensim Generate Simulink block for neural network simulation

nndata2sim Convert neural network data to Simulink time series

setsiminit Set neural network Simulink block initial conditions

sim2nndata Convert Simulink time series to neural network data



Topology Functions

12-19

Topology Functions

gridtop Grid layer topology function

hextop Hexagonal layer topology function

randtop Random layer topology function

tritop Triangle layer topology function



12 Function Reference

12-20

Training Functions

train Train neural network

trainb Batch training with weight and bias learning rules

trainbfg BFGS quasi-Newton backpropagation

trainbfgc BFGS quasi-Newton backpropagation for use with NN model 
reference adaptive controller

trainbr Bayesian regularization

trainbu Batch unsupervised weight/bias training

trainc Cyclical order incremental update

traincgb Powell-Beale conjugate gradient backpropagation

traincgf Fletcher-Powell conjugate gradient backpropagation

traincgp Polak-Ribiére conjugate gradient backpropagation

traingd Gradient descent backpropagation

traingda Gradient descent with adaptive learning rule 
backpropagation

traingdm Gradient descent with momentum backpropagation

traingdx Gradient descent with momentum and adaptive learning 
rule backpropagation

trainlm Levenberg-Marquardt backpropagation

trainoss One step secant backpropagation

trainr Random order incremental training with learning functions

trainrp Resilient backpropagation (Rprop)

trainru Random order unsupervised weight/bias training

trains Sequential order incremental training with learning 
functions

trainscg Scaled conjugate gradient backpropagation



Transfer Functions

12-21

Transfer Functions

compet  Competitive transfer function

hardlim  Hard-limit transfer function

hardlims  Symmetric hard-limit transfer function

logsig  Log-sigmoid transfer function

netinv  Inverse transfer function

poslin  Positive linear transfer function

purelin  Linear transfer function

radbas  Radial basis transfer function

radbasn  Normalized radial basis transfer function

satlin  Saturating linear transfer function

satlins  Symmetric saturating linear transfer function

softmax  Softmax transfer function

tansig  Hyperbolic tangent sigmoid transfer function

tribas  Triangular basis transfer function

C

��
��

S



12 Function Reference

12-22

Weight and Bias Initialization Functions

initcon Conscience bias initialization function

initlvq LVQ weight initialization function

initsompc Initialize SOM weights with principal components

initzero Zero weight and bias initialization function

midpoint Midpoint weight initialization function

randnc Normalized column weight initialization function

randnr Normalized row weight initialization function

rands Symmetric random weight/bias initialization function

randsmall Small random weight/bias initialization function



Weight Functions

12-23

Weight Functions

convwf Convolution weight function

dist Euclidean distance weight function

dotprod Dot product weight function

mandist Manhattan distance weight function

negdist Negative distance weight function

normprod Normalized dot product weight function

scalprod Scalar product weight function



12 Function Reference

12-24

Transfer Function Graphs 12

Compet Transfer Function

C
2 1 4 3

Input  n

0 0 1 0

Output  a

a = compet(n)

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

�
�

a = hardlims(n)

Symmetric Hard-Limit Transfer Function

-1

n
0

+1
a



Transfer Function Graphs

12-25

-1

n
0

+1

��
��

a 

Log-Sigmoid Transfer Function

a = logsig(n)

n
0

-1

+1

a = poslin(n)

Positive Linear Transfer Function

a

��1

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a



12 Function Reference

12-26

a = radbas(n)

Radial Basis Function

n0.0

1.0

+0.833-0.833

a

0.5 ��

a = satlin(n)

n
0

-1

+1

+1-1

Satlin Transfer Function

�
�

a
   

��
��

a = satlins(n)

n
0

-1

+1

+1-1

Satlins Transfer Function

a

Softmax Transfer Function

S
0 1

-0.5
0.5

Input  n

0.17 0.46 0.1 0.28

Output  a

a = softmax(n)



Transfer Function Graphs

12-27

Tan-Sigmoid Transfer Function

a = tansig(n)

n
0

-1

+1

a

n
0

-1

+1

a = tribas(n)

Triangular Basis Function

a

-1 +1

n

-2

+2

a = netinv(n)

Netinv Transfer Function

a

0 ��
+2-2



12 Function Reference

12-28



 

13

Functions — Alphabetical 
List



adapt

13-2

13adaptPurpose Adapt neural network to data as it is simulated

Syntax [net,Y,E,Pf,Af] = adapt(net,P,T,Pi,Ai)

To Get Help Type help network/adapt.

Description This function calculates network outputs and errors after each presentation of 
an input.

[net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai) takes

and returns the following after applying the adapt function net.adaptFcn with 
the adaption parameters net.adaptParam:

Note that T is optional and is only needed for networks that require targets. Pi 
and Pf are also optional and only need to be used for networks that have input 
or layer delays.

adapt’s signal arguments can have two formats: cell array or matrix.

net Network

P Network inputs

T Network targets (default = zeros)

Pi Initial input delay conditions (default = zeros)

Ai Initial layer delay conditions (default = zeros)

net Updated network

Y Network outputs

E Network errors

Pf Final input delay conditions

Af Final layer delay conditions

tr Training record (epoch and perf)



adapt

13-3

The cell array format is easiest to describe. It is most convenient for networks 
with multiple inputs and outputs, and allows sequences of inputs to be 
presented,

where

P Ni x TS cell array Each element P{i,ts} is an Ri x Q matrix.

T Nt x TS cell array Each element T{i,ts} is a Vi x Q matrix.

Pi Ni x ID cell array Each element Pi{i,k} is an Ri x Q matrix.

Ai Nl x LD cell array Each element Ai{i,k} is an Si x Q matrix.

Y No x TS cell array Each element Y{i,ts} is a Ui x Q matrix.

E No x TS cell array Each element E{i,ts} is a Ui x Q matrix.

Pf Ni x ID cell array Each element Pf{i,k} is an Ri x Q matrix.

Af Nl x LD cell array Each element Af{i,k} is an Si x Q matrix.

Ni = net.numInputs

Nl = net.numLayers

No = net.numOutputs

ID = net.numInputDelays

LD = net.numLayerDelays

TS = Number of time steps

Q = Batch size

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Ui = net.outputs{i}.size



adapt

13-4

The columns of Pi, Pf, Ai, and Af are ordered from oldest delay condition to 
most recent:

The matrix format can be used if only one time step is to be simulated (TS = 1). 
It is convenient for networks with only one input and output, but can be used 
with networks that have more. 

Each matrix argument is found by storing the elements of the corresponding 
cell array argument in a single matrix:

Examples Here two sequences of 12 steps (where T1 is known to depend on P1) are used 
to define the operation of a filter.

p1 = {-1  0 1 0 1 1 -1  0 -1 1 0 1};
t1 = {-1 -1 1 1 1 2  0 -1 -1 0 1 1};

Here linearlayer is used to create a layer with an input range of [-1 1], one 
neuron, input delays of 0 and 1, and a learning rate of 0.5. The linear layer is 
then simulated.

net = linearlayer([0 1],0.5);

Pi{i,k} = Input i at time ts = k - ID

Pf{i,k} = Input i at time ts = TS + k - ID

Ai{i,k} = Layer output i at time ts = k - LD

Af{i,k} = Layer output i at time ts = TS + k - LD

P (sum of Ri) x Q matrix

T (sum of Vi) x Q matrix

Pi (sum of Ri) x (ID*Q) matrix

Ai (sum of Si) x (LD*Q) matrix

Y (sum of Ui) x Q matrix

E (sum of Ui) x Q matrix

Pf (sum of Ri) x (ID*Q) matrix

Af (sum of Si) x (LD*Q) matrix



adapt

13-5

Here the network adapts for one pass through the sequence.

The network’s mean squared error is displayed. (Because this is the first call to 
adapt, the default Pi is used.)

[net,y,e,pf] = adapt(net,p1,t1);
mse(e)

Note that the errors are quite large. Here the network adapts to another 12 
time steps (using the previous Pf as the new initial delay conditions).

p2 = {1 -1 -1 1 1 -1  0 0 0 1 -1 -1};
t2 = {2  0 -2 0 2  0 -1 0 0 1  0 -1};
[net,y,e,pf] = adapt(net,p2,t2,pf);
mse(e)

Here the network adapts for 100 passes through the entire sequence.

p3 = [p1 p2];
t3 = [t1 t2];
net.adaptParam.passes = 100;
[net,y,e] = adapt(net,p3,t3);
mse(e)

The error after 100 passes through the sequence is very small. The network has 
adapted to the relationship between the input and target signals.

Algorithm adapt calls the function indicated by net.adaptFcn, using the adaption 
parameter values indicated by net.adaptParam.

Given an input sequence with TS steps, the network is updated as follows: Each 
step in the sequence of inputs is presented to the network one at a time. The 
network’s weight and bias values are updated after each step, before the next 
step in the sequence is presented. Thus the network is updated TS times.

See Also sim, init, train, revert



adaptwb

13-6

13adaptwbPurpose Adapt network with weight and bias learning rules

Syntax [net,ar,Ac] = adapt(net,Pd,T,Ai)

Description This function is normally not called directly, but instead called indirectly 
through the function adapt after setting a network’s adaption function 
(net.adaptFcn) to this function.

adapt(net,Pd,T,Ai)

Returns

Examples Linear layers use this adaption function. Here a linear layer with input delays 
of 0 and 1, and a learning rate of 0.5, is created and adapted to produce some 
target data t when given some input data x. The response is then plotted, 
showing the network’s error going down over time.

x = {-1  0 1 0 1 1 -1  0 -1 1 0 1};
t = {-1 -1 1 1 1 2  0 -1 -1 0 1 1};
net = linearlayer([0 1],0.5);
net.adaptFcn
[net,y,e,xf] = adapt(net,x,t);
plotresponse(t,y)

See Also adapt

net Neural network

Pd Delayed processed input states and inputs

T Targets

Ai Initial layer delay states

net Neural network after adaption

ar Adaption record

Ac Combined initial layer states and layer outputs



adddelay

13-7

13adddelayPurpose Add delay to neural network’s response

Syntax net = adddelay(net)
net = adddelay(net,delay)

Description adddelay(net,n) takes these arguments,

and returns the network with input delay connections increased, and output 
feedback delays decreased, by the specified number of delays n. The result is a 
network which behaves identically, except that outputs are produced n 
timesteps later.

If the number of delays n is not specified, a default of one delay is used.

Examples Here a time delay network is created, trained and simulated in its original form 
on an input time series X and target series T. It is then simulated with a delay 
removed and then added back. These first and third outputs will be identical, 
while the second will be shifted by one timestep.

[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi);
y1 = net(Xs)
net2 = removedelay(net);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi)
net3 = adddelay(net2)
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi)

See Also closeloop, openloop, removedelay

net Neural network

n Number of delays



boxdist

13-8

13boxdistPurpose Distance between two position vectors

Syntax d = boxdist(pos);

Description boxdist is a layer distance function that is used to find the distances between 
the layer’s neurons, given their positions.

boxdist(pos) takes one argument,

and returns the S x S matrix of distances.

boxdist is most commonly used with layers whose topology function is 
gridtop.

Examples Here you define a random matrix of positions for 10 neurons arranged in 
three-dimensional space and then find their distances.

pos = rand(3,10);
d = boxdist(pos)

Network Use You can create a standard network that uses boxdist as a distance function by 
calling newsom.

To change a network so that a layer’s topology uses boxdist, set 
net.layers{i}.distanceFcn to 'boxdist'.

In either case, call sim to simulate the network with boxdist.

Algorithm The box distance D between two position vectors Pi and Pj from a set of S 
vectors is

Dij = max(abs(Pi-Pj))

See Also sim, dist, mandist, linkdist

pos N x S matrix of neuron positions



bttderiv

13-9

13bttderivPurpose Backpropagation through time derivative function

Syntax bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
bttderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function calculates derivatives using the chain rule from a network’s 
performance back through the network, and in the case of dynamic networks, 
back through time.

bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

Returns the gradient of performance with respect to the network’s weights and 
biases, where R and S are the number of input and output elements and Q is 
the number of samples (and N and M are the number of input and output 
signals, Ri and Si are the number of each input and outputs elements, and TS 
is the number of timesteps).

bttderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with 
respect to the network’s weights and biases.

Examples Here a feedforward network is trained and both the gradient and Jacobian are 
calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = bttderiv('dperf_dwb',net,x,t)
jwb = bttderiv('de_dwb',net,x,t)

net Neural network

X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)

T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)



bttderiv

13-10

See Also defaultderiv, fpderiv, num2deriv, num5deriv, staticderiv



cascadeforwardnet

13-11

13cascadeforwardnetPurpose Cascade-forward neural network

Syntax cascadeforwardnet(hiddenSizes,trainFcn)

Description Cascade-forward networks are similar to feed-forward networks, but include a 
connection from the input and every previous layer to following layers.

As with feed-forward networks, a two-or more layer cascade-network can learn 
any finite input-output relationship arbitrarily well given enough hidden 
neurons.

cascadeforwardnet(hiddenSizes,trainFcn) takes these arguments,

and returns a new cascade-forward neural network.

Examples Here a cascade network is created and trained on a simple fitting problem.

[x,t] = simplefit_dataset;
net = cascadeforwardnet(10);
net = train(net,x,t);
view(net)
y = net(x)
perf = perform(net,y,t)

See Also feedforwardnet

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)

trainFcn Training function (default = 'trainlm')



catelements

13-12

13catelementsPurpose Concatenate neural network data elements

Syntax catelements(x1,x2,...,xn)

Description catelements takes any number of neural network data values, and merges 
them along the element dimension (i.e., the matrix row dimension).

If all arguments are matrices, this operation is the same as [x1; x2; ... xn].

If any argument is a cell array, then all non-cell array arguments are enclosed 
in cell arrays, and then the matrices in the same positions in each argument 
are concatenated.

Examples This code concatenates the elements of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6; 2 9 1]
y = catelements(x1,x2)

This code concatenates the elements of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3] [4 5 6]; [2 5 4] [9 7 5]}
y = catelements(x1,x2)

See Also nndata, numelements, getelements, setelements, catsignals, catsamples, 
cattimesteps



catsamples

13-13

13catsamplesPurpose Concatenate neural network data samples

Syntax catsamples(x1,x2,...,xn)
catsamples(x1,x2,...,'pad')
catsamples(x1,x2,...,'pad',v)

Description catsamples takes any number of neural network data values, and merges them 
along the samples dimension (i.e., the matrix column dimension).

If all arguments are matrices, this operation is the same as [x1 x2 ... xn].

If any argument is a cell array, then all non-cell array arguments are enclosed 
in cell arrays, and then the matrices in the same positions in each argument 
are concatenated.

catsamples(x1,x2,...,xn,'pad',v) allows samples with varying numbers of 
timesteps (columns of cell arrays) to be concatenated by padding the shorter 
time series with the value v, until they are the same length as the longest 
series. If v is not specified, then the value NaN is used, which is often used to 
represent unknown or don’t-care inputs or targets.

Examples This code concatenates the samples of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = catsamples(x1,x2)

This code concatenates the samples of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = catsamples(x1,x2)

Here the samples of two cell array data values, with unequal numbers of 
timesteps, are concatenated.

x1 = {1 2 3 4 5};
x2 = {10 11 12};
y = catsamples(x1,x2,'pad')

See Also nndata, numsamples, getsamples, setsamples, catelements, catsignals, 
cattimesteps



catsignals

13-14

13catsignalsPurpose Concatenate neural network data signals

Syntax catsignals(x1,x2,...,xn)

Description catsignals takes any number of neural network data values, and merges them 
along the element dimension (i.e., the cell row dimension).

If all arguments are matrices, this operation is the same as {x1; x2; ...; xn}.

If any argument is a cell array, then all non-cell array arguments are enclosed 
in cell arrays, and the cell arrays are concatenated as [x1; x2; ...; xn].

Examples This code concatenates the signals of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = catsignals(x1,x2)

This code concatenates the signals of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = catsignals(x1,x2)

See Also nndata, numsignals, getsignals, setsignals, catelements, catsamples, 
cattimesteps



cattimesteps

13-15

13cattimestepsPurpose Concatenate neural network data timesteps

Syntax cattimesteps(x1,x2,...,xn)

Description cattimesteps takes any number of neural network data values, and merges 
them along the element dimension (i.e., the cell column dimension).

If all arguments are matrices, this operation is the same as {x1 x2 ... xn}.

If any argument is a cell array, all non-cell array arguments are enclosed in cell 
arrays, and the cell arrays are concatenated as [x1 x2 ... xn].

Examples This code concatenates the elements of two matrix data values.

x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = cattimesteps(x1,x2)

This code concatenates the elements of two cell array data values.

x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = cattimesteps(x1,x2)

See Also nndata, numtimesteps, gettimesteps, settimesteps, catelements, 
catsignals, catsamples



cellmat

13-16

13cellmatPurpose Create cell array of matrices

Syntax cellmat(A,B,C,D)
cellmat(A,B,C,D,v)

Description cellmat(A,B,C,D,v) takes four integer values and one scalar value v, and 
returns an A-by-B cell array of C-by-D matrices of value v. If the value v is not 
specified, zero is used.

Examples Here two cell arrays of matrices are created.

cm1 = cellmat(2,3,5,4)
cm2 = cellmat(3,4,2,2,pi)

See Also nndata



closeloop

13-17

13closeloopPurpose Convert neural network open-loop feedback to closed loop

Syntax net = closeloop(net)

Description closeloop(net) takes a neural network and closes any open-loop feedback. 
For each feedback output i whose property net.outputs{i}.feedbackMode is 
'open', it replaces its associated feedback input and their input weights with 
layer weight connections coming from the output. The 
net.outputs{i}.feedbackMode property is set to 'closed', and the 
net.outputs{i}.feedbackInput property is set to an empty matrix. Finally, 
the value of net.outputs{i}.feedbackDelays is added to the delays of the 
feedback layer weights (i.e., to the delays values of the replaced input weights).

Examples Here a NARX network is designed in open-loop form and then converted to 
closed-loop form.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Yopen = net(Xs,Xi,Ai)
net = closeloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Ycloesed = net(Xs,Xi,Ai);

See Also noloop, openloop



combvec

13-18

13combvecPurpose Create all combinations of vectors

Syntax combvec(a1,a2...)

Description combvec(A1,A2...) takes any number of inputs,

and returns a matrix of (N1*N2*...) column vectors, where the columns 
consist of all possibilities of A2 vectors, appended to A1 vectors, etc.

Examples a1 = [1 2 3; 4 5 6];
a2 = [7 8; 9 10];
a3 = combvec(a1,a2)

A1 Matrix of N1 (column) vectors

A2 Matrix of N2 (column) vectors



compet

13-19

13competPurpose Competitive transfer function

Graph and 
Symbol

Syntax A = compet(N,FP)
dA_dN = compet('dn',N,A,FP)
info = compet(code)

Description compet is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input. 

compet(N,FP) takes N and optional function parameters,

and returns the S x Q matrix A with a 1 in each column where the same column 
of N has its maximum value, and 0 elsewhere.

compet('dn',N,A,FP) returns the derivative of A with respect to N. If A or FP is 
not supplied or is set to [], FP reverts to the default parameters, and A is 
calculated from N.

compet('name') returns the name of this function.

compet('output',FP) returns the [min max] output range.

compet('active',FP) returns the [min max] active input range.

compet('fullderiv') returns 1 or 0, depending on whether dA_dN is 
S-by-S-by-Q or S-by-Q.

compet('fpnames') returns the names of the function parameters.

compet('fpdefaults') returns the default function parameters. 

Compet Transfer Function

C
2 1 4 3

Input  n

0 0 1 0

Output  a

a = compet(n)

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



compet

13-20

Examples Here you define a net input vector N, calculate the output, and plot both with 
bar graphs. 

n = [0; 1; -0.5; 0.5];
a = compet(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'compet';

See Also sim, softmax



competlayer

13-21

13competlayerPurpose Competitive layer

Syntax competlayer(numClasses,kohonenLR,conscienceLR)

Description Competitive layers learn to classify input vectors into a given number of 
classes, according to similarity between vectors, with a preference for equal 
numbers of vectors per class.

competlayer(numClasses,kohonenLR,conscienceLR) takes these arguments,

and returns a competitive layer with numClasses neurons.

Examples Here a competitive layer is trained to classify 150 iris flowers into 6 classes.

inputs = iris_dataset;
net = competlayer(6);
net = train(net,inputs);
view(net)
outputs = net(inputs);
classes = vec2ind(outputs);

See Also selforgmap, patternnet, lvqnet

numClasses Number of classes to classify inputs (default = 5)

kohonenLR Learning rate for Kohonen weights (default = 0.01)

conscienceLR Learning rate for conscience bias (default = 0.001)



con2seq

13-22

13con2seqPurpose Convert concurrent vectors to sequential vectors

Syntax s = con2seq(b)

Description Neural Network Toolbox™ software arranges concurrent vectors with a 
matrix, and sequential vectors with a cell array (where the second index is the 
time step).

con2seq and seq2con allow concurrent vectors to be converted to sequential 
vectors, and back again.

con2seq(b) takes one input,

and returns one output,

con2seq(b,TS) can also convert multiple batches,

and returns

Examples Here a batch of three values is converted to a sequence.

p1 = [1 4 2]
p2 = con2seq(p1)

Here, two batches of vectors are converted to two sequences with two time 
steps.

p1 = {[1 3 4 5; 1 1 7 4]; [7 3 4 4; 6 9 4 1]}
p2 = con2seq(p1,2)

See Also seq2con, concur 

b R x TS matrix

S 1 x TS cell array of R x 1 vectors

b N x 1 cell array of matrices with M*TS columns

TS Time steps

S N x TS cell array of matrices with M columns



concur

13-23

13concurPurpose Create concurrent bias vectors

Syntax concur(B,Q)

Description concur(B,Q)

Returns an S x B matrix of copies of B (or Nl x 1 cell array of matrices).

Examples Here concur creates three copies of a bias vector.

b = [1; 3; 2; -1];
concur(b,3)

Network Use To calculate a layer’s net input, the layer’s weighted inputs must be combined 
with its biases. The following expression calculates the net input for a layer 
with the netsum net input function, two input weights, and a bias:

n = netsum(z1,z2,b)

The above expression works if Z1, Z2, and B are all S x 1 vectors. However, if the 
network is being simulated by sim (or adapt or train) in response to Q 
concurrent vectors, then Z1 and Z2 will be S x Q matrices. Before B can be 
combined with Z1 and Z2, you must make Q copies of it.

n = netsum(z1,z2,concur(b,q))

See Also netsum, netprod, sim, seq2con, con2seq

B S x 1 bias vector (or Nl x 1 cell array of vectors)

Q Concurrent size



configure

13-24

13configurePurpose Configure network inputs and outputs to best match input and target data

Syntax net = configure(net,x,t)
net = configure(net,x)
net = configure(net,'inputs',x)
net = configure(net,'outputs',t)
net = configure('inputs',x,i)
net = configure('outputs',t,i)

Description Configuration is the process of setting network input and output sizes and 
ranges, input preprocessing settings and output postprocessing settings, and 
weight initialization settings to match input and target data.

Configuration must happen before a network’s weights and biases can be 
initialized. Unconfigured networks are automatically configured and 
initialized the first time train is called. Alternately, a network can be 
configured manually either by calling this function or by setting a network’s 
input and output sizes, ranges, processing settings, and initialization settings 
properties manually.

configure(net,x,t) takes input data x and target data t, and configures the 
network’s inputs and outputs to match. 

configure(net,x) configures only inputs.

configure(net,'inputs',x,i) configures the inputs specified with the index 
vector i. If i is not specified all inputs are configured.

configure(net,'outputs',t,i) configures the outputs specified with the 
index vector i. If i is not specified all targets are configured.

Examples Here a feedforward network is created and manually configured for a simple 
fitting problem (as opposed to allowing train to configure it).

[x,t] = simplefit_dataset;
net = feedforwardnet(20); view(net)
net = configure(net,x,t); view(net)

See Also isconfigured, unconfigure, init, train



confusion

13-25

13confusionPurpose Classification confusion matrix

Syntax [c,cm,ind,per] = confusion(targets,outputs)

Description [c,cm,ind,per] = confusion(targets,outputs) takes these values:

and returns these values:

[c,cm,ind,per] = confusion(TARGETS,OUTPUTS) takes these values:

and returns these values:

targets S x Q matrix, where each column vector contains a single 1 
value, with all other elements 0. The index of the 1 indicates 
which of S categories that vector represents.

outputs S x Q matrix, where each column contains values in the range 
[0.1]. The index of the largest element in the column indicates 
which of S categories that vector represents.

c Confusion value = fraction of samples misclassified

cm S x S confusion matrix, where cm(i,j) is the number of samples whose 
target is the ith class that was classified as j

ind S x S cell array, where ind{i,j} contains the indices of samples with 
the ith target class, but jth output class

per S x 3 matrix, where each ith row represents the percentage of false 
negatives, false positives, and true positives for the ith category

targets 1 x Q vector of 1/0 values representing membership

outputs S x Q matrix, of value in [0.1] interval, where values greater 
than or equal to 0.5 indicate class membership

c Confusion value = fraction of samples misclassified

cm 2 x 2 confusion matrix



confusion

13-26

Examples load simpleclass_dataset
net = newpr(simpleclassInputs,simpleclassTargets,20);
net = train(net,simpleclassInputs,simpleclassTargets);
simpleclassOutputs = sim(net,simpleclassInputs);
[c,cm,ind,per] = ... 
confusion(simpleclassTargets,simpleclassOutputs)

See Also plotconfusion, roc

ind 2 x 2 cell array, where ind{i,j} contains the indices of samples whose 
target is 1 versus 0, and whose output was greater than or equal to 0.5 
versus less than 0.5

per 2 x 3 matrix where each ith row represents the percentage of false 
negatives, false positives, and true positives for the class and 
out-of-class



convwf

13-27

13convwfPurpose Convolution weight function

Syntax Z = convwf(W,P)
dim = convwf('size',S,R,FP)
dp = convwf('dp',W,P,Z,FP)
dw = convwf('dw',W,P,Z,FP)
info = convwf(code)

Description convwf is the convolution weight function. Weight functions apply weights to 
an input to get weighted inputs.

convwf(code) returns information about this function. The following codes are 
defined:

convwf('size',S,R,FP) takes the layer dimension S, input dimension R, and 
function parameters, and returns the weight size.

convwf('dp',W,P,Z,FP) returns the derivative of Z with respect to P.

convwf('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

Examples Here you define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,1);
P = rand(8,1);

'deriv' Name of derivative function

'fullderiv' Reduced derivative = 2, full derivative = 1, linear 
derivative = 0

'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear 
derivative = 0

'wfullderiv' Weight: reduced derivative = 2, full derivative = 1, linear 
derivative = 0

'name' Full name

'fpnames' Returns names of function parameters

'fpdefaults' Returns default function parameters



convwf

13-28

Z = convwf(W,P)

Network Use To change a network so an input weight uses convwf, set 
net.inputWeight{i,j}.weightFcn to 'convwf'. For a layer weight, set 
net.layerWeight{i,j}.weightFcn to 'convwf'.

In either case, call sim to simulate the network with convwf.



defaultderiv

13-29

13defaultderivPurpose Default derivative function

Syntax defaultderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
defaultderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function chooses the recommended derivative algorithm for the type of 
network whose derivatives are being calculated. For static networks, 
defaultderiv calls staticderiv; for dynamic networks it calls bttderiv to 
calculate the gradient and fpderiv to calculate the Jacobian.

bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

Returns the gradient of performance with respect to the network’s weights and 
biases, where R and S are the number of input and output elements and Q is 
the number of samples (or N and M are the number of input and output signals, 
Ri and Si are the number of each input and outputs elements, and TS is the 
number of timesteps).

bttderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with 
respect to the network’s weights and biases.

Examples Here a feedforward network is trained and both the gradient and Jacobian are 
calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = fpderiv('dperf_dwb',net,x,t)
jwb = fpderiv('de_dwb',net,x,t)

net Neural network

X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)

T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)



defaultderiv

13-30

See Also bttderiv, defaultderiv, num2deriv, num5deriv, staticderiv



disp

13-31

13dispPurpose Neural network properties

Syntax disp(net)

To Get Help Type help network/disp.

Description disp(net) displays a network’s properties.

Examples Here a perceptron is created and displayed.

net = newp([-1 1; 0 2],3);
disp(net)

See Also display, sim, init, train, adapt



display

13-32

13displayPurpose Name and properties of neural network variables

Syntax display(net)

To Get Help Type help network/display.

Description display(net) displays a network variable’s name and properties.

Examples Here a perceptron variable is defined and displayed.

net = newp([-1 1; 0 2],3);
display(net)

display is automatically called as follows:

net

See Also disp, sim, init, train, adapt



dist

13-33

13distPurpose Euclidean distance weight function

Syntax Z = dist(W,P,FP)
info = dist(code)
dim = dist('size',S,R,FP)
dp = dist('dp',W,P,Z,FP)
dw = dist('dw',W,P,Z,FP)
D = dist(pos)

Description dist is the Euclidean distance weight function. Weight functions apply weights 
to an input to get weighted inputs.

 dist(W,P,FP) takes these inputs,

and returns the S x Q matrix of vector distances.

dist(code) returns information about this function. The following codes are 
defined:

dist('size',S,R,FP) takes the layer dimension S, input dimension R, and 
function parameters, and returns the weight size [S x R].

dist('dp',W,P,Z,FP) returns the derivative of Z with respect to P.

dist('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

W S x R weight matrix

P R x Q matrix of Q input (column) vectors

FP Struct of function parameters (optional, ignored)

'deriv' Name of derivative function

'fullderiv' Full derivative = 1, linear derivative = 0

'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear 
derivative = 0

'name' Full name

'fpnames' Returns names of function parameters

'fpdefaults' Returns default function parameters



dist

13-34

dist is also a layer distance function which can be used to find the distances 
between neurons in a layer.

dist(pos) takes one argument,

and returns the S x S matrix of distances.

Examples Here you define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dist(W,P)

Here you define a random matrix of positions for 10 neurons arranged in 
three-dimensional space and find their distances.

pos = rand(3,10);
D = dist(pos)

Network Use You can create a standard network that uses dist by calling newpnn or 
newgrnn.

To change a network so an input weight uses dist, set 
net.inputWeight{i,j}.weightFcn to 'dist'. 
For a layer weight, set net.layerWeight{i,j}.weightFcn to 'dist'.

To change a network so that a layer’s topology uses dist, set 
net.layers{i}.distanceFcn to 'dist'.

In either case, call sim to simulate the network with dist. 

See newpnn or newgrnn for simulation examples.

Algorithm The Euclidean distance d between two vectors X and Y is

d = sum((x-y).^2).^0.5

See Also sim, dotprod, negdist, normprod, mandist, linkdist

pos N x S matrix of neuron positions



distdelaynet

13-35

13distdelaynetPurpose Distributed delay network

Syntax distdelaynet(delays,hiddenSizes,trainFcn)

Description Distributed delay networks are similar to feedforward networks, except that 
each input and layer weights has a tap delay line associated with it. This allows 
the network to have a finite dynamic response to time series input data. This 
network is also similar to the time delay neural network (timedelaynet), 
which only has delays on the input weight.

timedelaynet(delays,hiddenSizes,trainFcn) takes these arguments,

and returns a distributed delay neural network.

Examples Here a distributed delay neural network is used to solve a simple time series 
problem.

[X,T] = simpleseries_dataset;
net = distdelaynet({1:2,1:2},10)
[Xs,Xi,Ai,Ts] = preparets(net,X,T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)

See Also preparets, removedelay, timedelaynet, narnet, narxnet

delays Row vector of increasing 0 or positive delays (default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)

trainFcn Training function (default = 'trainlm')



divideblock

13-36

13divideblockPurpose Divide targets into three sets using blocks of indices

Syntax [trainInd,valInd,testInd] = 
divideblock(Q,trainRatio,valRatio,testRatio)

Description divideblock is used to separate targets into three sets: training, validation, 
and testing. It takes the following inputs: 

and returns

Examples [trainInd,valInd,testInd] = divideblock(3000,0.6,0.2,0.2);

Network Use Here are the network properties that define which data division function to 
use, what its parameters are, and what aspects of targets are divided up, when 
train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also divideind, divideint, dividerand, dividetrain

Q Number of targets to divide up.

trainRatio Ratio of targets for training. Default = 0.7.

valRatio Ratio of targets for validation. Default = 0.15.

testRatio Ratio of targets for testing. Default = 0.15.

trainInd Training indices

valInd Validation indices

testInd Test indices



divideind

13-37

13divideindPurpose Divide targets into three sets using specified indices

Syntax [trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd)

Description divideind is used to separate targets into three sets: training, validation, and 
testing according to indices provided. It actually returns the same indices it 
receives as arguments, its purpose is to allow the indices to be used for 
training, validation and testing for a network to be set manually.

It takes the following inputs, 

and returns

Examples [trainInd,valInd,testInd] = 
divideind(3000,1:12000,2001:2500,2501:3000);

Network Use Here are the network properties that define which data division function to 
use, what its parameters are, and what aspects of targets are divided up, when 
train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also divideblock, divideint, dividerand, dividetrain

Q Number of targets to divide up

trainInd Training indices

valInd Validation indices

testInd Test indices

trainInd Training indices (unchanged)

valInd Validation indices (unchanged)

testInd Test indices (unchanged)



divideint

13-38

13divideintPurpose Divide targets into three sets using interleaved indices

Syntax [trainInd,valInd,testInd] = 
divideint(Q,trainRatio,valRatio,testRatio)

Description divideint is used to separate targets into three sets: training, validation, and 
testing. It takes the following inputs, 

and returns

Examples [trainInd,valInd,testInd] = divideint(3000,0.6,0.2,0.2);

Network Use Here are the network properties that define which data division function to 
use, what its parameters are, and what aspects of targets are divided up, when 
train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also divideblock, divideind, dividerand, dividetrain

Q Number of targets to divide up.

trainRatio Ratio of vectors for training. Default = 0.7.

valRatio Ratio of vectors for validation. Default = 0.15.

testRatio Ratio of vectors for testing. Default = 0.15.

trainInd Training indices

valInd Validation indices

testInd Test indices



dividerand

13-39

13dividerandPurpose Divide targets into three sets using random indices

Syntax [trainInd,valInd,testInd] = 
dividerand(Q,trainRatio,valRatio,testRatio)

Description dividerand is used to separate targets into three sets: training, validation, and 
testing. It takes the following inputs, 

and returns

Examples [trainInd,valInd,testInd] = dividerand(3000,0.6,0.2,0.2);

Network Use Here are the network properties that define which data division function to 
use, what its parameters are, and what aspects of targets are divided up, when 
train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also divideblock, divideind, divideint, dividetrain

Q Number of targets to divide up.

trainRatio Ratio of vectors for training. Default = 0.7.

valRatio Ratio of vectors for validation. Default = 0.15.

testRatio Ratio of vectors for testing. Default = 0.15.

trainInd Training indices

valInd Validation indices

testInd Test indices



dividetrain

13-40

13dividetrainPurpose Assign all targets to training set

Syntax [trainInd,valInd,testInd] = 
dividetrain(Q,trainRatio,valRatio,testRatio)

Description dividetrain is used to assign all targets to the training set and no targets to 
either the validation or test sets. It takes the following inputs, 

and returns

Examples [trainInd,valInd,testInd] = dividetrain(3000);

Network Use Here are the network properties that define which data division function to 
use, what its parameters are, and what aspects of targets are divided up, when 
train is called.

net.divideFcn
net.divideParam
net.divideMode

See Also divideblock, divideind, divideint, dividerand

Q Number of targets to divide up.

trainInd Training indices equal to 1:Q

valInd Empty validation indices, []

testInd Empty test indices, []



dotprod

13-41

13dotprodPurpose Dot product weight function

Syntax Z = dotprod(W,P,FP)
info = dotprod(code)
dim = dotprod('size',S,R,FP)
dp = dotprod('dp',W,P,Z,FP)
dw = dotprod('dw',W,P,Z,FP)

Description dotprod is the dot product weight function. Weight functions apply weights to 
an input to get weighted inputs.

dotprod(W,P,FP) takes these inputs,

and returns the S x Q dot product of W and P.

dotprod(code) returns information about this function. The following codes 
are defined:

dotprod('size',S,R,FP) takes the layer dimension S, input dimension R, and 
function parameters, and returns the weight size [S x R].

dotprod('dp',W,P,Z,FP) returns the derivative of Z with respect to P.

dotprod('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

W S x R weight matrix

P R x Q matrix of Q input (column) vectors

FP Struct of function parameters (optional, ignored)

'deriv' Name of derivative function

'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear 
derivative = 0

'wfullderiv' Weight: reduced derivative = 2, full derivative = 1, linear 
derivative = 0

'name' Full name

'fpnames' Returns names of function parameters

'fpdefaults' Returns default function parameters



dotprod

13-42

Examples Here you define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dotprod(W,P)

Network Use You can create a standard network that uses dotprod by calling newp or 
newlin.

To change a network so an input weight uses dotprod, set 
net.inputWeight{i,j}.weightFcn to 'dotprod'. 
For a layer weight, set net.layerWeight{i,j}.weightFcn to 'dotprod'.

In either case, call sim to simulate the network with dotprod.

See help newp and help newlin for simulation examples.

See Also sim, dist, negdist, normprod



elmannet

13-43

13elmannetPurpose Elman neural network

Syntax elmannet(layerDelays,hiddenSizes,trainFcn)

Description Elman networks are feedforward networks (feedforwardnet) with the 
addition of layer recurrent connections with tap delays.

With the availability of full dynamic derivative calculations (fpderiv and 
bttderiv), the Elman network is no longer recommended except for historical 
and research purposes. For more accurate learning try time delay 
(timedelaynet), layer recurrent (layrecnet), NARX (narxnet), and NAR 
(narnet) neural networks.

Elman networks with one or more hidden layers can learn any dynamic 
input-output relationship arbitrarily well, given enough neurons in the hidden 
layers. However, Elman networks use simplified derivative calculations (using 
staticderiv, which ignores delayed connections) at the expense of less reliable 
learning.

elmannet(delays,hiddenSizes,trainFcn) takes these arguments,

and returns an Elman neural network.

Examples Here an Elman neural network is used to solve a simple time series problem.

[X,T] = simpleseries_dataset;
net = elmannet(1:2,10)
[shift,Xs,Xi,Ai,Ts] = preparets(net,X,T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)

See Also preparets, removedelay, timedelaynet, layrecnet, narnet, narxnet

layerdelays Row vector of increasing 0 or positive delays (default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)

trainFcn Training function (default = 'trainlm')



errsurf

13-44

13errsurfPurpose Error surface of single-input neuron

Syntax errsurf(P,T,WV,BV,F)

Description errsurf(P,T,WV,BV,F) takes these arguments,

and returns a matrix of error values over WV and BV.

Examples p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];
t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
wv = -1:.1:1; bv = -2.5:.25:2.5;
es = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,es,[60 30])

See Also plotes

P 1 x Q matrix of input vectors

T 1 x Q matrix of target vectors

WV Row vector of values of W

BV Row vector of values of B

F Transfer function (string)



extendts

13-45

13extendtsPurpose Extend time series data to given number of timesteps

Syntax extendts(x,ts,v)
extendts(x,ts)

Description extendts(x,ts,v) takes these values,

and returns the time series data either extended or truncated to match the 
specified number of timesteps. If the value v is specified, then extended series 
are filled in with that value, otherwise they are extended with random values.

Examples Here, a 20-timestep series is created and then extended to 25 timesteps with 
the value zero.

x = nndata(5,4,20);
y = nndata(x,25,0)

See Also nndata, catsamples, preparets

x Neural network time series data

ts Number of timesteps

v Value



feedforwardnet

13-46

13feedforwardnetPurpose Feedforward neural network

Syntax feedforwardnet(hiddenSizes,trainFcn)

Description Feedforward networks consist of a series of layers. The first layer has a 
connection from the network input. Each subsequent layer has a connection 
from the previous layer. The final layer produces the network’s output.

Feedforward networks can be used for any kind of input to output mapping. A 
feedforward network with one hidden layer and enough neurons in the hidden 
layers, can fit any finite input-output mapping problem.

Specialized versions of the feedforward network include fitting (fitnet) and 
pattern recognition (patternnet) networks. A variation on the feedforward 
network is the cascade forward network (cascadeforwardnet) which has 
additional connections from the input to every layer, and from each layer to all 
following layers.

feedforwardnet(hiddenSizes,trainFcn) takes these arguments,

and returns a feedforward neural network.

Examples Here a feedforward neural network is used to solve a simple problem.

[x,t] = simplefit_dataset;
net = feedforwardnet(10)
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)

See Also fitnet, patternnet, cascadeforwardnet

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)

trainFcn Training function (default = 'trainlm')



fitnet

13-47

13fitnetPurpose Function fitting neural network

Syntax fitnet(hiddenSizes,trainFcn)

Description Fitting networks are feedforward neural networks (feedforwardnet) used to 
fit an input-output relationship.

fitnet(hiddenSizes,trainFcn) takes these arguments,

and returns a fitting neural network.

Examples Here a fitting neural network is used to solve a simple problem.

[x,t] = simplefit_dataset;
net = fitnet(10)
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)

See Also feedforwardnet, nftool

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)

trainFcn Training function (default = 'trainlm')



fixunknowns

13-48

13fixunknownsPurpose Process data by marking rows with unknown values

Syntax [y,ps] = fixunknowns(x)
[y,ps] = fixunknowns(x,fp)
y = fixunknowns('apply',x,ps)
x = fixunknowns('reverse',y,ps)
dx_dy = fixunknowns('dx',x,y,ps)
dx_dy = fixunknowns('dx',x,[],ps)
name = fixunknowns('name');
fp = fixunknowns('pdefaults');
names = fixunknowns('pnames');
fixunknowns('pcheck',fp);

Description fixunknowns processes matrixes by replacing each row containing unknown 
values (represented by NaN) with two rows of information.

The first row contains the original row, with NaN values replaced by the row’s 
mean. The second row contains 1 and 0 values, indicating which values in the 
first row were known or unknown, respectively.

fixunknowns(X) takes these inputs,

and returns

fixunknowns(X,FP) takes an empty struct FP of parameters.

fixunknowns('apply',X,PS) returns Y, given X and settings PS.

fixunknowns('reverse',Y,PS) returns X, given Y and settings PS.

fixunknowns('dx',X,Y,PS) returns the M x N x Q derivative of Y with respect 
to X.

fixunknowns('dx',X,[],PS) returns the derivative, less efficiently.

fixunknowns('name') returns the name of this process method.

X Single N x Q matrix or a 1 x TS row cell array of N x Q matrices

Y Each M x Q matrix with M - N rows added (optional)

PS Process settings that allow consistent processing of values



fixunknowns

13-49

fixunknowns('pdefaults') returns the default process parameter structure.

fixunknowns('pdesc') returns the process parameter descriptions.

fixunknowns('pcheck',fp) throws an error if any parameter is illegal.

Examples Here is how to format a matrix with a mixture of known and unknown values 
in its second row:

x1 = [1 2 3 4; 4 NaN 6 5; NaN 2 3 NaN]
[y1,ps] = fixunknowns(x1)

Next, apply the same processing settings to new values:

x2 = [4 5 3 2; NaN 9 NaN 2; 4 9 5 2]
y2 = fixunknowns('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = fixunknowns('reverse',y1,ps)

See Also mapminmax, mapstd, processpca

Definition If you have input data with unknown values, you can represent them with NaN 
values. For example, here are five 2-element vectors with unknown values in 
the first element of two of the vectors:

p1 = [1 NaN 3 2 NaN; 3 1 -1 2 4];

The network will not be able to process the NaN values properly. Use the 
function fixunknowns to transform each row with NaN values (in this case only 
the first row) into two rows that encode that same information numerically.

[p2,ps] = fixunknowns(p1);

Here is how the first row of values was recoded as two rows.

p2 =
1 2 3 2 2
1 0 1 1 0
3 1 -1 2 4

The first new row is the original first row, but with the mean value for that row 
(in this case 2) replacing all NaN values. The elements of the second new row are 
now either 1, indicating the original element was a known value, or 0 



fixunknowns

13-50

indicating that it was unknown. The original second row is now the new third 
row. In this way both known and unknown values are encoded numerically in 
a way that lets the network be trained and simulated.

Whenever supplying new data to the network, you should transform the inputs 
in the same way, using the settings ps returned by fixunknowns when it was 
used to transform the training input data.

p2new = fixunknowns('apply',p1new,ps);

The function fixunkowns is only recommended for input processing. Unknown 
targets represented by NaN values can be handled directly by the toolbox 
learning algorithms. For instance, performance functions used by 
backpropagation algorithms recognize NaN values as unknown or unimportant 
values.



formwb

13-51

13formwbPurpose Form bias and weights into single vector

Syntax wb = formwb(net,b,iw,lw)

Description formwb(net,b,IW,LW) takes a neural network and bias b, input weight IW, and 
layer weight LW values, and combines the values into a single vector.

Examples Here a network is created, configured, and its weights and biases formed into 
a vector.

[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = configure(net,x,t);
wb = formwb(net,net.b,net.IW,net.LW)

See Also getwb, setwb, separatewb



fpderiv

13-52

13fpderivPurpose Forward propagation derivative function

Syntax fpderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
fpderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function calculates derivatives using the chain rule from inputs to 
outputs, and in the case of dynamic networks, forward through time.

fpderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

Returns the gradient of performance with respect to the network’s weights and 
biases, where R and S are the number of input and output elements and Q is 
the number of samples (or N and M are the number of input and output signals, 
Ri and Si are the number of each input and outputs elements, and TS is the 
number of timesteps).

fpderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with 
respect to the network’s weights and biases.

Examples Here a feedforward network is trained and both the gradient and Jacobian are 
calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = fpderiv('dperf_dwb',net,x,t)
jwb = fpderiv('de_dwb',net,x,t)

See Also bttderiv, defaultderiv, num2deriv, num5deriv, staticderiv

net Neural network

X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)

T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)



fromnndata

13-53

13fromnndataPurpose Convert data from standard neural network cell array form

Syntax y = fromnndata(x,columnSample,cellTime)

Description fromnndata(x,columnSample,cellTime) takes these arguments,

and returns the original data reformatted accordingly.

Examples Here time-series data is converted from a matrix representation to standard 
cell array representation, and back. The original data consists of a 5-by-6 
matrix representing one time-series sample consisting of a 5-element vector 
over 6 timesteps arranged in a matrix with the samples as columns.

x = rands(5,6)
columnSamples = true; % samples are by columns.
cellTime = false; % time-steps represented by a matrix, not cell.
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)

Here data is defined in standard neural network data cell form. Converting 
this data does not change it. The data consists of three time series samples of 
2-element signals over 3 timesteps.

x = {rands(2,3); rands(2,3); rands(2,3)}
columnSamples = true;
cellTime = true;
[y,wasMatrix] = tonndata(x)
x2 = fromnndata(y,wasMatrix,columnSamples)

See Also tonndata

net Neural network

columnSample True if samples are to be represented as columns, false if rows

cellTime True if time series are to be represented as a cell array, false 
if represented with a matrix



gadd

13-54

13gaddPurpose Generalized addition

Syntax gadd(a,b)

Description This function generalizes matrix addition to the addition of cell arrays of 
matrices combined in an element-wise fashion.

gadd(a,b) takes two matrices or cell arrays, and adds them in an element-wise 
manner.

Examples Here matrix and cell array values are added.

gadd([1 2 3; 4 5 6],[10;20])
gadd({1 2; 3 4},{1 3; 5 2})
gadd({1 2 3 4},{10;20;30})

See Also gsubtract, gmultiply, gdivide, gnegate, gsqrt



gdivide

13-55

13gdividePurpose Generalized division

Syntax gdivide(a,b)

Description This function generalizes matrix element-wise division to the division of cell 
arrays of matrices combined in an element-wise fashion.

gdivide(a,b) takes two matrices or cell arrays, and divides them in an 
element-wise manner.

Examples Here matrix and cell array values are added.

gdivide([1 2 3; 4 5 6],[10;20])
gdivide({1 2; 3 4},{1 3; 5 2})
gdivide({1 2 3 4},{10;20;30})

See Also gadd, gsubtract, gmultiply, gnegate, gsqrt



gensim

13-56

13gensimPurpose Generate Simulink block for neural network simulation

Syntax gensim(net,st)

To Get Help Type help network/gensim.

Description gensim(net,st) creates a Simulink system containing a block that simulates 
neural network net.

gensim(net,st) takes these inputs:

and creates a Simulink system containing a block that simulates neural 
network net with a sampling time of st.

If net has no input or layer delays (net.numInputDelays and 
net.numLayerDelays are both 0), you can use -1 for st to get a network that 
samples continuously. 

Examples [x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t)
gensim(net)

net Neural network

st Sample time (default = 1)



getelements

13-57

13getelementsPurpose Get neural network data elements

Syntax getelements(x,ind)

Description getelements(x,ind) returns the elements of neural network data x indicated 
by the indices ind. The neural network data may be in matrix or cell array 
form.

If x is a matrix, the result is the ind rows of x.

If x is a cell array, the result is a cell array with as many columns as x, whose 
elements (1,i) are matrices containing the ind rows of [x{:,i}].

Examples This code gets elements 1 and 3 from matrix data:

x = [1 2 3; 4 7 4]
y = getelements(x,[1 3])

This code gets elements 1 and 3 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getelements(x,[1 3])

See Also nndata, numelements, setelements, catelements, getsamples, gettimesteps, 
getsignals



getsamples

13-58

13getsamplesPurpose Get neural network data samples

Syntax getsamples(x,ind)

Description getsamples(x,ind) returns the samples of neural network data x indicated by 
the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind columns of x.

If x is a cell array, the result is a cell array the same size as x, whose elements 
are the ind columns of the matrices in x.

Examples This code gets samples 1 and 3 from matrix data:

x = [1 2 3; 4 7 4]
y = getsamples(x,[1 3])

This code gets elements 1 and 3 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getsamples(x,[1 3])

See Also nndata, numsamples, setsamples, catsamples, getelements, gettimesteps, 
getsignals



getsignals

13-59

13getsignalsPurpose Get neural network data signals

Syntax getsignals(x,ind)

Description getsignals(x,ind) returns the signals of neural network data x indicated by 
the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, ind may only be 1, which will return x, or [] which will return 
an empty matrix.

If x is a cell array, the result is the ind rows of x.

Examples This code gets signal 2 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getsignals(x,2)

See Also nndata, numsignals, setsignals, catsignals, getelements, getsamples, 
gettimesteps



getsiminit

13-60

13getsiminitPurpose Get Simulink neural network block initial input and layer delays states

Syntax [xi,ai] = getsimitinit(sysName,netName,net)

Description getsiminit(sysName,netName,net) takes these arguments,

and returns,

Examples Here a NARX network is designed. The NARX network has a standard input 
and an open-loop feedback output to an associated feedback input.

[x,t] = simplenarx_dataset;
     net = narxnet(1:2,1:2,20);
     view(net)
     [xs,xi,ai,ts] = preparets(net,x,{},t);
     net = train(net,xs,ts,xi,ai);
     y = net(xs,xi,ai);

Now the network is converted to closed-loop, and the data is reformatted to 
simulate the network's closed-loop response.

net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);

Here the network is converted to a Simulink system with workspace input and 
output ports. Its delay states are initialized, inputs X1 defined in the 
workspace, and it is ready to be simulated in Simulink.

[sysName,netName] = gensim(net,'InputMode','Workspace',...
'OutputMode','WorkSpace','SolverMode','Discrete');

sysName The name of the Simulink® system containing the neural 
network block

netName The name of the Simulink neural network block

net The original neural network

xi Initial input delay states

ai Initial layer delay states



getsiminit

13-61

setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);

Finally the initial input and layer delays are obtained from the Simulink 
model. (They will be identical to the values set with setsiminit.)

[xi,ai] = getsiminit(sysName,netName,net);

See Also gensim, setsiminit, nndata2sim, sim2nndata



gettimesteps

13-62

13gettimestepsPurpose Get neural network data timesteps

Syntax gettimesteps(x,ind)

Description gettimesteps(x,ind) returns the timesteps of neural network data x 
indicated by the indices ind. The neural network data may be in matrix or cell 
array form.

If x is a matrix, ind can only be 1, which will return x; or [], which will return 
an empty matrix.

If x is a cell array the result is the ind columns of x.

Examples This code gets timestep 2 from cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = gettimesteps(x,2)

See Also nndata, numtimesteps, settimesteps, cattimesteps, getelements, 
getsamples, getsignals



getwb

13-63

13getwbPurpose Get network weight and bias values as single vector

Syntax getwb(net)

Description getwb(net) returns a neural network’s weight and bias values as a single 
vector.

Examples Here a feedforward network is trained to fit some data, then its bias and weight 
values are formed into a vector.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = getwb(net,net.b,net.iw,net.lw)

See Also setwb, formwb, separatewb



gmultiply

13-64

13gmultiplyPurpose Generalized multiplication

Syntax gmultiply(a,b)

Description This function generalizes matrix multiplication to the multiplication of cell 
arrays of matrices combined in an element-wise fashion.

gmultiply(a,b) takes two matrices or cell arrays, and multiplies them in an 
element-wise manner.

Examples Here matrix and cell array values are added.

gmulitiply([1 2 3; 4 5 6],[10;20])
gmultiply({1 2; 3 4},{1 3; 5 2})
gmultiply({1 2 3 4},{10;20;30})

See Also gadd, gsubtract, gdivide, gnegate, gsqrt



gnegate

13-65

13gnegatePurpose Generalized negation

Syntax gnegate(x)

Description This function generalizes matrix negation to the negation of cell arrays of 
matrices combined in an element-wise fashion.

gnegate(x) takes a matrix or cell array of matrices, and negates the matrices.

Examples Here is an example of negating a cell array:

gnegate({1 2; 3 4},{1 3; 5 2})

See Also gadd, gsubtract, gdivide, gmultiply, gsqrt



gridtop

13-66

13gridtopPurpose Grid layer topology function

Syntax pos = gridtop(dim1,dim2,...,dimN)

Description gridtop calculates neuron positions for layers whose neurons are arranged in 
an N-dimensional grid.

gridtop(dim1,dim2,...,dimN) takes N arguments,

and returns an N x S matrix of N coordinate vectors where S is the product of 
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 40 neurons 
arranged in an 8-by-5 grid.

pos = gridtop(8,5);
plotsompos(pos)

See Also hextop, randtop, tritop

dimi Length of layer in dimension i



gsqrt

13-67

13gsqrtPurpose Generalized square root

Syntax gnegate(x)

Description This function generalizes matrix element-wise square root to the square root of 
cell arrays of matrices combined in an element-wise fashion.

gsqrt(x) takes a matrix or cell array of matrices, and takes the element-wise 
square root of the matrices.

Examples Here is an example of taking the element-wise square root of a cell array:

gsqrt({1 2; 3 4},{1 3; 5 2})

See Also gadd, gsubtract, gdivide, gmultiply, gnegate



gsubtract

13-68

13gsubtractPurpose Generalized subtraction

Syntax gsubtract(a,b)

Description This function generalizes matrix subtraction to the subtraction of cell arrays of 
matrices combined in an element-wise fashion.

gsubtract(a,b) takes two matrices or cell arrays, and subtracts them in an 
element-wise manner.

Examples Here matrix and cell array values are added.

gsubtract([1 2 3; 4 5 6],[10;20])
gsubtract({1 2; 3 4},{1 3; 5 2})
gsubtract({1 2 3 4},{10;20;30})

See Also gadd, gmultiply, gdivide, gnegate, gsqrt



hardlim

13-69

13hardlimPurpose Hard-limit transfer function

Graph and 
Symbol

Syntax A = hardlim(N,FP)
dA_dN = hardlim('dn',N,A,FP)
info = hardlim(code)

Description hardlim is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input.

hardlim(N,FP) takes N and optional function parameters,

and returns A, the S x Q Boolean matrix with 1s where N ≥ 0.

hardlim('dn',N,A,FP) returns the S x Q derivative of A with respect to N. If A 
or FP is not supplied or is set to [], FP reverts to the default parameters, and A 
is calculated from N.

hardlim('name') returns the name of this function.

hardlim('output',FP) returns the [min max] output range.

hardlim('active',FP) returns the [min max] active input range.

hardlim('fullderiv') returns 1 or 0, depending on whether dA_dN is S x S x 
Q or S x Q.

hardlim('fpnames') returns the names of the function parameters.

hardlim('fpdefaults') returns the default function parameters.

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



hardlim

13-70

Examples Here is how to create a plot of the hardlim transfer function.

n = -5:0.1:5;
a = hardlim(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlim';

Algorithm hardlim(n) = 1 if n ≥ 0

0 otherwise

See Also sim, hardlims



hardlims

13-71

13hardlimsPurpose Symmetric hard-limit transfer function

Graph and 
Symbol 

Syntax A = hardlims(N,FP)
dA_dN = hardlims('dn',N,A,FP)
info = hardlims(code)

Description hardlims is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input.

hardlims(N,FP) takes N and optional function parameters,

and returns A, the S x Q +1/-1 matrix with +1s where N ≥ 0.

hardlims('dn',N,A,FP) returns the S x Q derivative of A with respect to N. If A 
or FP is not supplied or is set to [], FP reverts to the default parameters, and A 
is calculated from N.

hardlims('name') returns the name of this function.

hardlims('output',FP) returns the [min max] output range.

hardlims('active',FP) returns the [min max] active input range.

hardlims('fullderiv') returns 1 or 0, depending on whether dA_dN is S x S x 
Q or S x Q.

hardlims('fpnames') returns the names of the function parameters.

hardlims('fpdefaults') returns the default function parameters.

�
�

a = hardlims(n)

Symmetric Hard-Limit Transfer Function

-1

n
0

+1
a

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



hardlims

13-72

Examples Here is how to create a plot of the hardlims transfer function.

n = -5:0.1:5;
a = hardlims(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'hardlims';

Algorithm hardlims(n) = 1 if n ≥ 0, -1 otherwise.

See Also sim, hardlim



hextop

13-73

13hextopPurpose Hexagonal layer topology function

Syntax pos = hextop(dim1,dim2,...,dimN)

Description hextop calculates the neuron positions for layers whose neurons are arranged 
in an N-dimensional hexagonal pattern.

hextop(dim1,dim2,...,dimN) takes N arguments,

and returns an N-by-S matrix of N coordinate vectors where S is the product of 
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 40 neurons 
arranged in an 8-by-5 hexagonal pattern.

pos = hextop(8,5);
plotsompos(pos)

See Also gridtop, randtop, tritop

dimi Length of layer in dimension i



ind2vec

13-74

13ind2vecPurpose Convert indices to vectors

Syntax vec = ind2vec(ind)

Description ind2vec and vec2ind allow indices to be represented either by themselves, or 
as vectors containing a 1 in the row of the index they represent.

ind2vec(ind) takes one argument,

and returns a sparse matrix of vectors, with one 1 in each column, as indicated 
by ind.

Examples Here four indices are defined and converted to vector representation.

ind = [1 3 2 3]
vec = ind2vec(ind)

See Also vec2ind

ind Row vector of indices



init

13-75

13initPurpose Initialize neural network

Syntax net = init(net)

To Get Help Type help network/init.

Description init(net) returns neural network net with weight and bias values updated 
according to the network initialization function, indicated by net.initFcn, and 
the parameter values, indicated by net.initParam.

Examples Here a perceptron is created with a two-element input (with ranges of 0 to 1 
and -2 to 2) and one neuron. Once it is created you can display the neuron’s 
weights and bias.

net = newp([0 1;-2 2],1);
net.iw{1,1}
net.b{1}

Training the perceptron alters its weight and bias values.

P = [0 1 0 1; 0 0 1 1];
T = [0 0 0 1];
net = train(net,P,T);
net.iw{1,1}
net.b{1}

init reinitializes those weight and bias values.

net = init(net);
net.iw{1,1}
net.b{1}

The weights and biases are zeros again, which are the initial values used by 
perceptron networks (see help newp).

Algorithm init calls net.initFcn to initialize the weight and bias values according to the 
parameter values net.initParam. 

Typically, net.initFcn is set to 'initlay', which initializes each layer’s 
weights and biases according to its net.layers{i}.initFcn. 



init

13-76

Backpropagation networks have net.layers{i}.initFcn set to 'initnw', 
which calculates the weight and bias values for layer i using the 
Nguyen-Widrow initialization method.

Other networks have net.layers{i}.initFcn set to 'initwb', which 
initializes each weight and bias with its own initialization function. The most 
common weight and bias initialization function is rands, which generates 
random values between -1 and 1.

See Also sim, adapt, train, initlay, initnw, initwb, rands, revert 



initcon

13-77

13initconPurpose Conscience bias initialization function

Syntax b = initcon(s,pr)

Description initcon is a bias initialization function that initializes biases for learning with 
the learncon learning function.

initcon (S,PR) takes two arguments,

and returns an S x 1 bias vector.

Note that for biases, R is always 1. initcon could also be used to initialize 
weights, but it is not recommended for that purpose.

Examples Here initial bias values are calculated for a five-neuron layer.

b = initcon(5)

Network Use You can create a standard network that uses initcon to initialize weights by 
calling newc.

To prepare the bias of layer i of a custom network to initialize with initcon,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes 
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set net.biases{i}.initFcn to 'initcon'.

To initialize the network, call init. See help help newc for initialization 
examples.

Algorithm learncon updates biases so that each bias value b(i) is a function of the 
average output c(i) of the neuron i associated with the bias.

initcon gets initial bias values by assuming that each neuron has responded 
to equal numbers of vectors in the past.

S Number of rows (neurons)

PR R x 2 matrix of R = [Pmin Pmax] (default = [1 1])



initcon

13-78

See Also initwb, initlay, init, learncon



initlay

13-79

13initlayPurpose Layer-by-layer network initialization function

Syntax net = initlay(net)
info = initlay(code)

Description initlay is a network initialization function that initializes each layer i 
according to its own initialization function net.layers{i}.initFcn.

initlay(net) takes

and returns the network with each layer updated. initlay(code) returns 
useful information for each code string:

initlay does not have any initialization parameters.

Network Use You can create a standard network that uses initlay by calling newp, newlin, 
newff, newcf, and many other new* network functions.

To prepare a custom network to be initialized with initlay,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty 
matrix [], because initlay has no initialization parameters.

2 Set each net.layers{i}.initFcn to a layer initialization function. 
(Examples of such functions are initwb and initnw.)

To initialize the network, call init. See help newp and help newlin for 
initialization examples.

Algorithm The weights and biases of each layer i are initialized according to 
net.layers{i}.initFcn.

See Also initwb, initnw, init

net Neural network

'pnames' Names of initialization parameters

'pdefaults' Default initialization parameters



initlvq

13-80

13initlvqPurpose LVQ weight initialization function

Syntax initlvq('configure',x)
initlvq('initialize',net,'IW',i,j,settings)
initlvq('initialize',net,'LW',i,j,settings)
initlvq('initialize',net,b,i)

Description initlvq('configure',x) takes input data x and returns initialization 
settings for an LVQ weights associated with that input.

initlvq('configure',net,'IW',i,j,settings) takes a network, and indices 
indicating an input weight to layer i from input j, and that weights settings, 
and returns new weight values.

initlvq('configure',net,'LW',i,j,settings) takes a network, and indices 
indicating a layer weight to layer i from layer j, and that weights settings, and 
returns new weight values.

initlvq('configure',net,'b',i,) takes a network, and an index indicating 
a bias for layer i, and returns new bias values.

See Also lvqnet, init



initnw

13-81

13initnwPurpose Nguyen-Widrow layer initialization function

Syntax net = initnw(net,i)

Description initnw is a layer initialization function that initializes a layer’s weights and 
biases according to the Nguyen-Widrow initialization algorithm. This 
algorithm chooses values in order to distribute the active region of each neuron 
in the layer approximately evenly across the layer’s input space. The values 
contain a degree of randomness, so they are not the same each time this 
function is called.

initnw requires that the layer it initializes have a transfer function with a 
finite active input range. This includes transfer functions such as tansig and 
satlin, but not purelin, whose active input range is the infinite interval 
[-inf, inf]. Transfer functions, such as tansig, will return their active input 
range as follows:

activeInputRange = tansig('active')
activeInputRange =
    -2     2

initnw(net,i) takes two arguments,

and returns the network with layer i’s weights and biases updated.

There is a random element to Nguyen-Widrow initialization. Unless the 
default random generator is set to the same seed before each call to initnw, it 
will generate different weight and bias values each time.

Network Use You can create a standard network that uses initnw by calling newff or newcf.

To prepare a custom network to be initialized with initnw,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty 
matrix [], because initlay has no initialization parameters.

2 Set net.layers{i}.initFcn to 'initnw'.

net Neural network

i Index of a layer



initnw

13-82

To initialize the network, call init. See help newff and help newcf for 
training examples.

Algorithm The Nguyen-Widrow method generates initial weight and bias values for a 
layer so that the active regions of the layer’s neurons are distributed 
approximately evenly over the input space.

Advantages over purely random weights and biases are

• Few neurons are wasted (because all the neurons are in the input space).

• Training works faster (because each area of the input space has neurons). 
The Nguyen-Widrow method can only be applied to layers

- With a bias

- With weights whose weightFcn is dotprod

- With netInputFcn set to netsum

- With transferFcn whose active region is finite

If these conditions are not met, then initnw uses rands to initialize the layer’s 
weights and biases.

See Also initwb, initlay, init



initsompc

13-83

13initsompcPurpose Initialize SOM weights with principal components

Syntax weights = initsom(inputs,dimensions,positions)
weights = initsom(inputs,dimensions,topologyFcn)

Description initsompc initializes the weights of an N-dimensional self-organizing map so 
that the initial weights are distributed across the space spanned by the most 
significant N principal components of the inputs. Distributing the weight 
significantly speeds up SOM learning, as the map starts out with a reasonable 
ordering of the input space.

initsompc takes these arguments:

and returns the following:

Alternatively, initsompc can be called with topologyfcn (the name of a layer 
topology function) instead of positions. topologyfcn is called with 
dimensions to obtain positions.

Examples inputs = rand(2,100)+[2;3]*ones(1,100);
dimensions = [3 4];
positions = gridtop(dimensions);
weights = initsompc(inputs,dimensions,positions);

See Also gridtop, hextop, randtop

inputs R x Q matrix of Q R-element input vectors

dimensions D x 1 vector of positive integer SOM dimensions

positions D x S matrix of S D-dimension neuron positions

weights S x R matrix of weights



initwb

13-84

13initwbPurpose By weight and bias layer initialization function

Syntax net = initwb(net,i)

Description initwb is a layer initialization function that initializes a layer’s weights and 
biases according to their own initialization functions.

initwb(net,i) takes two arguments,

and returns the network with layer i’s weights and biases updated.

Network Use You can create a standard network that uses initwb by calling newp or newlin.

To prepare a custom network to be initialized with initwb,

1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty 
matrix [], because initlay has no initialization parameters.

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to a weight initialization 
function. 
Set each net.layerWeights{i,j}.initFcn to a weight initialization 
function. 
Set each net.biases{i}.initFcn to a bias initialization function. 
(Examples of such functions are rands and midpoint.)

To initialize the network, call init.

See help newp and help newlin for training examples.

Algorithm Each weight (bias) in layer i is set to new values calculated according to its 
weight (bias) initialization function.

See Also initnw, initlay, init

net Neural network

i Index of a layer



initzero

13-85

13initzeroPurpose Zero weight and bias initialization function

Syntax W = initzero(S,PR)
b = initzero(S,[1 1])

Description initzero(S,PR) takes two arguments,

and returns an S x R weight matrix of zeros.

initzero(S,[1 1]) returns an S x 1 bias vector of zeros.

Examples Here initial weights and biases are calculated for a layer with two inputs 
ranging over [0 1] and [-2 2] and four neurons.

W = initzero(5,[0 1; -2 2])
b = initzero(5,[1 1])

Network Use You can create a standard network that uses initzero to initialize its weights 
by calling newp or newlin.

To prepare the weights and the bias of layer i of a custom network to be 
initialized with midpoint,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes 
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'initzero'. 
Set each net.layerWeights{i,j}.initFcn to 'initzero'. 
Set each net.biases{i}.initFcn to 'initzero'.

To initialize the network, call init.

See help newp and help newlin for initialization examples.

See Also initwb, initlay, init

S Number of rows (neurons)

PR R x 2 matrix of input value ranges = [Pmin Pmax]



isconfigured

13-86

13isconfiguredPurpose Indicate if network inputs and outputs are configured

Syntax [flag,inputflags,outputflags] = isconfigured(net)

Description isconfigured(net) takes a neural network and returns three values,

Examples Here are the flags returned for a new network before and after being 
configured:

net = feedforwardnet;
[flag,inputFlags,outputFlags] = isconfigured(net)
[x,t] = simplefit_dataset;
net = configure(net,x,t);
[flag,inputFlags,outputFlags] = isconfigured(net)

See Also configure, unconfigure

flag True if all network inputs and outputs are configured (have 
non-zero sizes)

inputflags Vector of true/false values for each configured/unconfigured 
input

outputflags Vector of true/false values for each configured/unconfigured 
output



layrecnet

13-87

13layrecnetPurpose Layer recurrent neural network

Syntax layrecnet(layerDelays,hiddenSizes,trainFcn)

Description Layer recurrent neural networks are similar to feedforward networks, except 
that each layer has a recurrent connection with a tap delay associated with it. 
This allows the network to have an infinite dynamic response to time series 
input data. This network is similar to the time delay (timedelaynet) and 
distributed delay (distdelaynet) neural networks, which have finite input 
responses.

layrecnet(layerDelays,hiddenSizes,trainFcn) takes these arguments,

and returns a layer recurrent neural network.

Examples Here a layer recurrent neural network is used to solve a simple time series 
problem.

[X,T] = simpleseries_dataset;
net = timedelay(1:2,10)
[Xs,Xi,Ai,Ts] = preparets(net,X,T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(X,Xi,Ai);
perf = perform(net,Y,Ts)

See Also preparets, removedelay, distdelaynet, timedelaynet, narnet, narxnet

layerDelays Row vector of increasing 0 or positive delays (default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)

trainFcn Training function (default = 'trainlm')



learncon

13-88

13learnconPurpose Conscience bias learning function

Syntax [dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learncon(code)

Description learncon is the conscience bias learning function used to increase the net input 
to neurons that have the lowest average output until each neuron responds 
approximately an equal percentage of the time.

learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

Learning occurs according to learncon’s learning parameter, shown here with 
its default value.

B S x 1 bias vector

P 1 x Q ones vector

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dB S x 1 weight (or bias) change matrix

LS New learning state

LP.lr - 0.001 Learning rate



learncon

13-89

learncon(code) returns useful information for each code string:

Neural Network Toolbox™ 2.0 compatibility: The LP.lr described above equals 
1 minus the bias time constant used by trainc in the Neural Network Toolbox 
2.0 software.

Examples Here you define a random output A and bias vector W for a layer with three 
neurons. You also define the learning rate LR.

a = rand(3,1);
b = rand(3,1);
lp.lr = 0.5;

Because learncon only needs these values to calculate a bias change (see 
“Algorithm” below), use them to do so.

dW = learncon(b,[],[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the bias of layer i of a custom network to learn with learncon,

1 Set net.trainFcn to 'trainr'. 
(net.trainParam automatically becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. 
(net.adaptParam automatically becomes trains’s default parameters.)

3 Set net.inputWeights{i}.learnFcn to 'learncon'. 
Set each net.layerWeights{i,j}.learnFcn to 'learncon'. 
(Each weight learning parameter property is automatically set to 
learncon’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learncon

13-90

Algorithm learncon calculates the bias change db for a given neuron by first updating 
each neuron’s conscience, i.e., the running average of its output:

c = (1-lr)*c + lr*a

The conscience is then used to compute a bias for the neuron that is greatest 
for smaller conscience values.

b = exp(1-log(c)) - b

(learncon recovers C from the bias values each time it is called.)

See Also learnk, learnos, adapt, train



learngd

13-91

13learngdPurpose Gradient descent weight and bias learning function

Syntax [dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
[db,LS] = learngd(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
info = learngd(code)

Description learngd is the gradient descent weight and bias learning function.

learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

Learning occurs according to learngd’s learning parameter, shown here with 
its default value.

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q output gradient with respect to performance x Q 
weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

LP.lr - 0.01 Learning rate



learngd

13-92

learngd(code) returns useful information for each code string:

Examples Here you define a random gradient gW for a weight going to a layer with three 
neurons from an input with two elements. Also define a learning rate of 0.5.

gW = rand(3,2);
lp.lr = 0.5;

Because learngd only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

dW = learngd([],[],[],[],[],[],[],gW,[],[],lp,[])

Network Use You can create a standard network that uses learngd with newff, newcf, or 
newelm. To prepare the weights and the bias of layer i of a custom network to 
adapt with learngd,

1 Set net.adaptFcn to 'trains'. 
net.adaptParam automatically becomes trains’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to 'learngd'. 
Set each net.layerWeights{i,j}.learnFcn to 'learngd'. 
Set net.biases{i}.learnFcn to 'learngd'. Each weight and bias learning 
parameter property is automatically set to learngd’s default parameters.

To allow the network to adapt,

1 Set net.adaptParam properties to desired values.

2 Call adapt with the network.

See help newff or help newcf for examples.

Algorithm learngd calculates the weight change dW for a given neuron from the neuron’s 
input P and error E, and the weight (or bias) learning rate LR, according to the 
gradient descent dw = lr*gW.

See Also adapt, learngdm, train

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learngdm

13-93

13learngdmPurpose Gradient descent with momentum weight and bias learning function

Syntax [dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
[db,LS] = learngdm(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
info = learngdm(code)

Description learngdm is the gradient descent with momentum weight and bias learning 
function.

learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state



learngdm

13-94

Learning occurs according to learngdm’s learning parameters, shown here with 
their default values.

learngdm(code) returns useful information for each code string:

Examples Here you define a random gradient G for a weight going to a layer with three 
neurons from an input with two elements. Also define a learning rate of 0.5 and 
momentum constant of 0.8:

gW = rand(3,2);
lp.lr = 0.5;
lp.mc = 0.8;

Because learngdm only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so. Use the default initial learning state.

ls = [];
[dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)

learngdm returns the weight change and a new learning state.

Network Use You can create a standard network that uses learngdm with newff, newcf, or 
newelm.

To prepare the weights and the bias of layer i of a custom network to adapt 
with learngdm,

1 Set net.adaptFcn to 'trains'. 
net.adaptParam automatically becomes trains’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to 'learngdm'. 
Set each net.layerWeights{i,j}.learnFcn to 'learngdm'. 

LP.lr - 0.01 Learning rate

LP.mc - 0.9 Momentum constant

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learngdm

13-95

Set net.biases{i}.learnFcn to 'learngdm'. Each weight and bias learning 
parameter property is automatically set to learngdm’s default parameters.

To allow the network to adapt,

1 Set net.adaptParam properties to desired values.

2 Call adapt with the network.

See help newff or help newcf for examples.

Algorithm learngdm calculates the weight change dW for a given neuron from the neuron’s 
input P and error E, the weight (or bias) W, learning rate LR, and momentum 
constant MC, according to gradient descent with momentum:

dW = mc*dWprev + (1-mc)*lr*gW

The previous weight change dWprev is stored and read from the learning state 
LS.

See Also adapt, learngd, train



learnh

13-96

13learnhPurpose Hebb weight learning rule

Syntax [dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnh(code)

Description learnh is the Hebb weight learning function.

learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

Learning occurs according to learnh’s learning parameter, shown here with its 
default value.

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

LP.lr - 0.01 Learning rate



learnh

13-97

learnh(code) returns useful information for each code string:

Examples Here you define a random input P and output A for a layer with a two-element 
input and three neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
lp.lr = 0.5;

Because learnh only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

dW = learnh([],p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with 
learnh,

1 Set net.trainFcn to 'trainr'. 
(net.trainParam automatically becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. 
(net.adaptParam automatically becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnh'. 
Set each net.layerWeights{i,j}.learnFcn to 'learnh'. 
(Each weight learning parameter property is automatically set to learnh’s 
default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnh calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, and learning rate LR according to the Hebb learning rule:

dw = lr*a*p'

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learnh

13-98

Reference Hebb, D.O., The Organization of Behavior, New York, Wiley, 1949

See Also learnhd, adapt, train



learnhd

13-99

13learnhdPurpose Hebb with decay weight learning rule

Syntax [dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnhd(code)

Description learnhd is the Hebb weight learning function.

learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

Learning occurs according to learnhd’s learning parameters, shown here with 
default values.

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

LP.dr - 0.01 Decay rate

LP.lr - 0.1 Learning rate



learnhd

13-100

learnhd(code) returns useful information for each code string:

Examples Here you define a random input P, output A, and weights W for a layer with a 
two-element input and three neurons. Also define the decay and learning rates.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.dr = 0.05;
lp.lr = 0.5;

Because learnhd only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with 
learnhd,

1 Set net.trainFcn to 'trainr'. 
(net.trainParam automatically becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. 
(net.adaptParam automatically becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnhd'. 
Set each net.layerWeights{i,j}.learnFcn to 'learnhd'. 
(Each weight learning parameter property is automatically set to learnhd’s 
default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.

2 Call train (adapt).

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learnhd

13-101

Algorithm learnhd calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, decay rate DR, and learning rate LR according to the Hebb 
with decay learning rule:

dw = lr*a*p' - dr*w

See Also learnh, adapt, train



learnis

13-102

13learnisPurpose Instar weight learning function

Syntax [dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnis(code)

Description learnis is the instar weight learning function.

learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

Learning occurs according to learnis’s learning parameter, shown here with 
its default value.

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

LP.lr - 0.01 Learning rate



learnis

13-103

learnis(code) returns useful information for each code string:

Examples Here you define a random input P, output A, and weight matrix W for a layer 
with a two-element input and three neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnis only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

dW = learnis(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network so that it 
can learn with learnis,

1 Set net.trainFcn to 'trainr'. 
(net.trainParam automatically becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. 
(net.adaptParam automatically becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnis'. 
Set each net.layerWeights{i,j}.learnFcn to 'learnis'. 
(Each weight learning parameter property is automatically set to learnis’s 
default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnis calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, and learning rate LR according to the instar learning rule:

dw = lr*a*(p'-w)

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learnis

13-104

Reference Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel 
Press, 1982

See Also learnk, learnos, adapt, train



learnk

13-105

13learnkPurpose Kohonen weight learning function

Syntax [dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnk(code)

Description learnk is the Kohonen weight learning function.

learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

Learning occurs according to learnk’s learning parameter, shown here with its 
default value.

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

LP.lr - 0.01 Learning rate



learnk

13-106

learnk(code) returns useful information for each code string:

Examples Here you define a random input P, output A, and weight matrix W for a layer 
with a two-element input and three neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnk only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

dW = learnk(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights of layer i of a custom network to learn with learnk,

1 Set net.trainFcn to 'trainr'. 
(net.trainParam automatically becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. 
(net.adaptParam automatically becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnk'. 
Set each net.layerWeights{i,j}.learnFcn to 'learnk'. 
(Each weight learning parameter property is automatically set to learnk’s 
default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learnk calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, and learning rate LR according to the Kohonen learning rule:

dw = lr*(p'-w), if a ~= 0; = 0, otherwise

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learnk

13-107

Reference Kohonen, T., Self-Organizing and Associative Memory, New York, 
Springer-Verlag, 1984

See Also learnis, learnos, adapt, train



learnlv1

13-108

13learnlv1Purpose LVQ1 weight learning function

Syntax [dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnlv1(code)

Description learnlv1 is the LVQ1 weight learning function.

learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

Learning occurs according to learnlv1’s learning parameter, shown here with 
its default value.

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

LP.lr - 0.01 Learning rate



learnlv1

13-109

learnlv1(code) returns useful information for each code string:

Examples Here you define a random input P, output A, weight matrix W, and output 
gradient gA for a layer with a two-element input and three neurons. Also define 
the learning rate LR.

p = rand(2,1);
w = rand(3,2);
a = compet(negdist(w,p));
gA = [-1;1; 1];
lp.lr = 0.5;

Because learnlv1 only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

dW = learnlv1(w,p,[],[],a,[],[],[],gA,[],lp,[])

Network Use You can create a standard network that uses learnlv1 with newlvq. To prepare 
the weights of layer i of a custom network to learn with learnlv1,

1 Set net.trainFcn to 'trainr'. 
(net.trainParam automatically becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. 
(net.adaptParam automatically becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv1'. 
Set each net.layerWeights{i,j}.learnFcn to 'learnlv1'. 
(Each weight learning parameter property is automatically set to 
learnlv1’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learnlv1

13-110

Algorithm learnlv1 calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, output gradient gA, and learning rate LR, according to the 
LVQ1 rule, given i, the index of the neuron whose output a(i) is 1:

dw(i,:) = +lr*(p-w(i,:)) if gA(i) = 0;= -lr*(p-w(i,:)) if gA(i) = -1

See Also learnlv2, adapt, train



learnlv2

13-111

13learnlv2Purpose LVQ2.1 weight learning function

Syntax [dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnlv2(code)

Description learnlv2 is the LVQ2 weight learning function.

learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

Learning occurs according to learnlv2’s learning parameter, shown here with 
its default value.

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R weight gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

LP.lr - 0.01 Learning rate

LP.window - 0.25 Window size (0 to 1, typically 0.2 to 0.3)



learnlv2

13-112

learnlv2(code) returns useful information for each code string:

Examples Here you define a sample input P, output A, weight matrix W, and output 
gradient gA for a layer with a two-element input and three neurons. Also define 
the learning rate LR.

p = rand(2,1);
w = rand(3,2);
n = negdist(w,p);
a = compet(n);
gA = [-1;1; 1];
lp.lr = 0.5;

Because learnlv2 only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

dW = learnlv2(w,p,[],n,a,[],[],[],gA,[],lp,[])

Network Use You can create a standard network that uses learnlv2 with newlvq.

To prepare the weights of layer i of a custom network to learn with learnlv2,

1 Set net.trainFcn to 'trainr'. 
(net.trainParam automatically becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. 
(net.adaptParam automatically becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv2'. 
Set each net.layerWeights{i,j}.learnFcn to 'learnlv2'. 
(Each weight learning parameter property is automatically set to 
learnlv2’s default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learnlv2

13-113

Algorithm learnlv2 implements Learning Vector Quantization 2.1, which works as 
follows:

For each presentation, if the winning neuron i should not have won, and the 
runnerup j should have, and the distance di between the winning neuron and 
the input p is roughly equal to the distance dj from the runnerup neuron to the 
input p according to the given window,

min(di/dj, dj/di) > (1-window)/(1+window)

then move the winning neuron i weights away from the input vector, and move 
the runnerup neuron j weights toward the input according to

dw(i,:) = - lp.lr*(p'-w(i,:))
dw(j,:) = + lp.lr*(p'-w(j,:))

See Also learnlv1, adapt, train



learnos

13-114

13learnosPurpose Outstar weight learning function

Syntax [dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnos(code)

Description learnos is the outstar weight learning function.

learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

Learning occurs according to learnos’s learning parameter, shown here with 
its default value.

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R weight gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

LP.lr - 0.01 Learning rate



learnos

13-115

learnos(code) returns useful information for each code string:

Examples Here you define a random input P, output A, and weight matrix W for a layer 
with a two-element input and three neurons. Also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Because learnos only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

dW = learnos(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with 
learnos,

1 Set net.trainFcn to 'trainr'. 
(net.trainParam automatically becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. 
(net.adaptParam automatically becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnos'. 
Set each net.layerWeights{i,j}.learnFcn to 'learnos'. 
(Each weight learning parameter property is automatically set to learnos’s 
default parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnos calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, and learning rate LR according to the outstar learning rule:

dw = lr*(a-w)*p'

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learnos

13-116

Reference Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel 
Press, 1982

See Also learnis, learnk, adapt, train



learnp

13-117

13learnpPurpose Perceptron weight and bias learning function

Syntax [dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
[db,LS] = learnp(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnp(code)

Description learnp is the perceptron weight/bias learning function.

learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

learnp(code) returns useful information for each code string:

W S x R weight matrix (or b, and S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R weight gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

'pnames' Names of learning parameters



learnp

13-118

Examples Here you define a random input P and error E for a layer with a two-element 
input and three neurons.

p = rand(2,1);
e = rand(3,1);

Because learnp only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])

Network Use You can create a standard network that uses learnp with newp.

To prepare the weights and the bias of layer i of a custom network to learn with 
learnp,

1 Set net.trainFcn to 'trainb'. 
(net.trainParam automatically becomes trainb’s default parameters.)

2 Set net.adaptFcn to 'trains'. 
(net.adaptParam automatically becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnp'. 
Set each net.layerWeights{i,j}.learnFcn to 'learnp'. 
Set net.biases{i}.learnFcn to 'learnp'. 
(Each weight and bias learning parameter property automatically becomes 
the empty matrix, because learnp has no learning parameters.) 

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.

2 Call train (adapt).

See help newp for adaption and training examples.

Algorithm learnp calculates the weight change dW for a given neuron from the neuron’s 
input P and error E according to the perceptron learning rule:

dw = 0, if e = 0

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learnp

13-119

= p', if e = 1
= -p', if e = -1

This can be summarized as

dw = e*p'

Reference Rosenblatt, F., Principles of Neurodynamics, Washington, D.C., Spartan Press, 
1961

See Also adapt, learnpn, train



learnpn

13-120

13learnpnPurpose Normalized perceptron weight and bias learning function

Syntax [dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnpn(code)

Description learnpn is a weight and bias learning function. It can result in faster learning 
than learnp when input vectors have widely varying magnitudes.

learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

learnpn(code) returns useful information for each code string:

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R weight gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learnpn

13-121

Examples Here you define a random input P and error E for a layer with a two-element 
input and three neurons.

p = rand(2,1);
e = rand(3,1);

Because learnpn only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

dW = learnpn([],p,[],[],[],[],e,[],[],[],[],[])

Network Use You can create a standard network that uses learnpn with newp.

To prepare the weights and the bias of layer i of a custom network to learn with 
learnpn,

1 Set net.trainFcn to 'trainb'. 
(net.trainParam automatically becomes trainb’s default parameters.)

2 Set net.adaptFcn to 'trains'. 
(net.adaptParam automatically becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnpn'. 
Set each net.layerWeights{i,j}.learnFcn to 'learnpn'. 
Set net.biases{i}.learnFcn to 'learnpn'. 
(Each weight and bias learning parameter property automatically becomes 
the empty matrix, because learnpn has no learning parameters.) 

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.

2 Call train (adapt).

See help newp for adaption and training examples.

Algorithm learnpn calculates the weight change dW for a given neuron from the neuron’s 
input P and error E according to the normalized perceptron learning rule:

pn = p / sqrt(1 + p(1)^2 + p(2)^2) + ... + p(R)^2)
dw = 0,  if e = 0

= pn', if e = 1
= -pn', if e = -1

The expression for dW can be summarized as



learnpn

13-122

dw = e*pn'

Limitations Perceptrons do have one real limitation. The set of input vectors must be 
linearly separable if a solution is to be found. That is, if the input vectors with 
targets of 1 cannot be separated by a line or hyperplane from the input vectors 
associated with values of 0, the perceptron will never be able to classify them 
correctly.

See Also adapt, learnp, train



learnsom

13-123

13learnsomPurpose Self-organizing map weight learning function

Syntax [dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnsom(code)

Description learnsom is the self-organizing map weight learning function.

learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

Learning occurs according to learnsom’s learning parameters, shown here with 
their default values.

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R weight gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

LP.order_lr 0.9 Ordering phase learning rate

LP.order_steps 1000 Ordering phase steps



learnsom

13-124

learnsom(code) returns useful information for each code string:

Examples Here you define a random input P, output A, and weight matrix W for a layer 
with a two-element input and six neurons. You also calculate positions and 
distances for the neurons, which are arranged in a 2-by-3 hexagonal pattern. 
Then you define the four learning parameters.

p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp.order_lr = 0.9;
lp.order_steps = 1000;
lp.tune_lr = 0.02;
lp.tune_nd = 1;

Because learnsom only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

ls = [];
[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)

Network Use You can create a standard network that uses learnsom with newsom.

1 Set net.trainFcn to 'trainr'. 
(net.trainParam automatically becomes trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. 
(net.adaptParam automatically becomes trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnsom'. 
Set each net.layerWeights{i,j}.learnFcn to 'learnsom'. 

LP.tune_lr 0.02 Tuning phase learning rate

LP.tune_nd 1 Tuning phase neighborhood distance

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learnsom

13-125

Set net.biases{i}.learnFcn to 'learnsom'.
(Each weight learning parameter property is automatically set to 
learnsom’s default parameters.)

To train the network (or enable it to adapt):

1 Set net.trainParam (or net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnsom calculates the weight change dW for a given neuron from the neuron’s 
input P, activation A2, and learning rate LR:

dw = lr*a2*(p'-w)

where the activation A2 is found from the layer output A, neuron distances D, 
and the current neighborhood size ND:

a2(i,q) = 1,  if a(i,q) = 1
 = 0.5, if a(j,q) = 1 and D(i,j) <= nd
 = 0, otherwise

The learning rate LR and neighborhood size NS are altered through two phases: 
an ordering phase and a tuning phase.

The ordering phases lasts as many steps as LP.order_steps. During this phase 
LR is adjusted from LP.order_lr down to LP.tune_lr, and ND is adjusted from 
the maximum neuron distance down to 1. It is during this phase that neuron 
weights are expected to order themselves in the input space consistent with the 
associated neuron positions.

During the tuning phase LR decreases slowly from LP.tune_lr, and ND is 
always set to LP.tune_nd. During this phase the weights are expected to 
spread out relatively evenly over the input space while retaining their 
topological order, determined during the ordering phase.

See Also adapt, train



learnsomb

13-126

13learnsombPurpose Batch self-organizing map weight learning function

Syntax [dW,LS] = learnsomb(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnsomb(code)

Description learnsomb is the batch self-organizing map weight learning function.

learnsomb(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs:

and returns the following:

Learning occurs according to learnsomb’s learning parameter, shown here with 
its default value:

W S x R weight matrix (or S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

LP.init_neighborhood 3 Initial neighborhood size

LP.steps 100 Ordering phase steps



learnsomb

13-127

learnsomb(code) returns useful information for each code string:

Examples This example defines a random input P, output A, and weight matrix W for a 
layer with a 2-element input and 6 neurons. This example also calculates the 
positions and distances for the neurons, which appear in a 2 x 3 hexagonal 
pattern.

p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp = learnsomb('pdefaults');

Because learnsom only needs these values to calculate a weight change (see 
Algorithm).

ls = [];
[dW,ls] = learnsomb(w,p,[],[],a,[],[],[],[],d,lp,ls)

Network Use You can create a standard network that uses learnsomb with newsom. To 
prepare the weights of layer i of a custom network to learn with learnsomb:

1 Set NET.trainFcn to 'trainr'. 
(NET.trainParam automatically becomes trainr’s default parameters.)

2 Set NET.adaptFcn to 'trains'. 
(NET.adaptParam automatically becomes trains’s default parameters.)

3 Set each NET.inputWeights{i,j}.learnFcn to 'learnsomb'.

4 Set each NET.layerWeights{i,j}.learnFcn to 'learnsomb'. 
(Each weight learning parameter property is automatically set to 
learnsomb’s default parameters.)

To train the network (or enable it to adapt):

1 Set NET.trainParam (or NET.adaptParam) properties as desired.

'pnames' Returns names of learning parameters.

'pdefaults' Returns default learning parameters.

'needg' Returns 1 if this function uses gW or gA.



learnsomb

13-128

2 Call train (or adapt).

Algorithm learnsomb calculates the weight changes so that each neuron’s new weight 
vector is the weighted average of the input vectors that the neuron and neurons 
in its neighborhood responded to with an output of 1.

The ordering phase lasts as many steps as LP.steps.

During this phase, the neighborhood is gradually reduced from a maximum 
size of LP.init_neighborhood down to 1, where it remains from then on.

See Also adapt, train



learnwh

13-129

13learnwhPurpose Widrow-Hoff weight/bias learning function

Syntax [dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
[db,LS] = learnwh(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnwh(code)

Description learnwh is the Widrow-Hoff weight/bias learning function, and is also known 
as the delta or least mean squared (LMS) rule.

learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

and returns

Learning occurs according to learnwh’s learning parameter, shown here with 
its default value.

W S x R weight matrix (or b, and S x 1 bias vector)

P R x Q input vectors (or ones(1,Q))

Z S x Q weighted input vectors

N S x Q net input vectors

A S x Q output vectors

T S x Q layer target vectors

E S x Q layer error vectors

gW S x R weight gradient with respect to performance

gA S x Q output gradient with respect to performance

D S x S neuron distances

LP Learning parameters, none, LP = []

LS Learning state, initially should be = []

dW S x R weight (or bias) change matrix

LS New learning state

LP.lr  0.01 Learning rate



learnwh

13-130

learnwh(code) returns useful information for each code string:

Examples Here you define a random input P and error E for a layer with a two-element 
input and three neurons. You also define the learning rate LR learning 
parameter.

p = rand(2,1);
e = rand(3,1);
lp.lr = 0.5;

Because learnwh only needs these values to calculate a weight change (see 
“Algorithm” below), use them to do so.

dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])

Network Use You can create a standard network that uses learnwh with newlin.

To prepare the weights and the bias of layer i of a custom network to learn with 
learnwh,

1 Set net.trainFcn to 'trainb'. 
net.trainParam automatically becomes trainb’s default parameters.

2 Set net.adaptFcn to 'trains'. 
net.adaptParam automatically becomes trains’s default parameters.

3 Set each net.inputWeights{i,j}.learnFcn to 'learnwh'. 
Set each net.layerWeights{i,j}.learnFcn to 'learnwh'. 
Set net.biases{i}.learnFcn to 'learnwh'. 
Each weight and bias learning parameter property is automatically set to 
learnwh’s default parameters.

To train the network (or enable it to adapt),

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

See help newlin for adaption and training examples.

'pnames' Names of learning parameters

'pdefaults' Default learning parameters

'needg' Returns 1 if this function uses gW or gA



learnwh

13-131

Algorithm learnwh calculates the weight change dW for a given neuron from the neuron’s 
input P and error E, and the weight (or bias) learning rate LR, according to the 
Widrow-Hoff learning rule:

dw = lr*e*pn'

References Widrow, B., and M.E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON 
Convention Record, New York IRE, pp. 96–104, 1960

Widrow, B., and S.D. Sterns, Adaptive Signal Processing, New York, 
Prentice-Hall, 1985

See Also adapt, train



linearlayer

13-132

13linearlayerPurpose Linear layer

Syntax linearlayer(inputDelays,widrowHoffLR)

Description Linear layers are single layers of linear neurons. They may be static, with 
input delays of 0, or dynamic, with input delays greater than 0. They can be 
trained on simple linear time series problems, but often are used adaptively to 
continue learning while deployed so they can adjust to changes in the 
relationship between inputs and outputs while being used.

If a network is needed to solve a nonlinear time series relationship, then better 
networks to try include timedelaynet, narxnet, and narnet.

linearlayer(inputDelays,widrowHoffLR) takes these arguments,

and returns a linear layer.

If the learning rate is too small, learning will happen very slowly. However, a 
greater danger is that it may be too large and learning will become unstable 
resulting in large changes to weight vectors and errors increasing instead of 
decreasing. If a data set is available which characterizes the relationship the 
layer is to learn, the maximum stable learning rate can be calculated with 
maxlinlr.

Examples Here a linear layer is trained on a simple time series problem.

x = {0 -1 1 1 0 -1 1 0 0 1};
t = {0 -1 0 2 1 -1 0 1 0 1}
net = linearlayer(1:2,0.01)
[Xs,Xi,Ai,Ts] = preparets(net,X,T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi);
perf = perform(net,Ts,Y)

See Also preparets, removedelay, timedelaynet, narnet, narxnet

inputDelays Row vector of increasing 0 or positive delays (default = 1:2)

widrowHoffLR Widrow-Hoff learning rate (default = 0.01)



linkdist

13-133

13linkdistPurpose Link distance function

Syntax d = linkdist(pos)

Description linkdist is a layer distance function used to find the distances between the 
layer’s neurons given their positions.

linkdist(pos) takes one argument,

and returns the S x S matrix of distances.

Examples Here you define a random matrix of positions for 10 neurons arranged in 
three-dimensional space and find their distances.

pos = rand(3,10);
D = linkdist(pos)

Network Use You can create a standard network that uses linkdist as a distance function 
by calling newsom.

To change a network so that a layer’s topology uses linkdist, set 
net.layers{i}.distanceFcn to 'linkdist'.

In either case, call sim to simulate the network with dist. See help newsom for 
training and adaption examples.

Algorithm The link distance D between two position vectors Pi and Pj from a set of S 
vectors is

Dij = 0, if i == j
= 1, if (sum((Pi-Pj).^2)).^0.5 is <= 1
= 2, if k exists, Dik = Dkj = 1
= 3, if k1, k2 exist, Dik1 = Dk1k2 = Dk2j = 1
= N, if k1..kN exist, Dik1 = Dk1k2 = ...= DkNj = 1
= S, if none of the above conditions apply

See Also sim, dist, mandist

pos N x S matrix of neuron positions



logsig

13-134

13logsigPurpose Log-sigmoid transfer function

Graph and 
Symbol 

Syntax A = logsig(N,FP)
dA_dN = logsig('dn',N,A,FP)
info = logsig(code)

Description logsig is a transfer function. Transfer functions calculate a layer’s output from 
its net input.

logsig(N,FP) takes N and optional function parameters,

and returns A, the S x Q matrix of N’s elements squashed into [0, 1].

logsig('dn',N,A,FP) returns the S x Q derivative of A with respect to N. If A or 
FP is not supplied or is set to [], FP reverts to the default parameters, and A is 
calculated from N.

logsig('name') returns the name of this function.

logsig('output',FP) returns the [min max] output range.

logsig('active',FP) returns the [min max] active input range.

logsig('fullderiv') returns 1 or 0, depending on whether dA_dN is S x S x Q 
or S x Q.

logsig('fpnames') returns the names of the function parameters.

logsig('fpdefaults') returns the default function parameters.

-1

n
0

+1

��
��

a 

Log-Sigmoid Transfer Function

a = logsig(n)

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



logsig

13-135

Examples Here is the code to create a plot of the logsig transfer function.

n = -5:0.1:5;
a = logsig(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'logsig';

Algorithm logsig(n) = 1 / (1 + exp(-n))

See Also sim, tansig



lvqnet

13-136

13lvqnetPurpose Learning vector quantization neural network

Syntax lvqnet(hiddenSize,lvqLR,lvqLF)

Description LVQ (learning vector quantization) neural networks consist of two layers. The 
first layer maps input vectors into clusters that are found by the network 
during training. The second layer maps merges groups of first layer clusters 
into the classes defined by the target data.

The total number of first layer clusters is determined by the number of hidden 
neurons. The larger the hidden layer the more clusters the first layer can learn, 
and the more complex mapping of input to target classes can be made. The 
relative number of first layer clusters assigned to each target class are 
determined according to the distribution of target classes at the time of 
network initialization. This occurs when the network is automatically 
configured the first time train is called, or manually configured with the 
function configure, or manually initialized with the function init is called.

lvqnet(hiddenSize,lvqLR,lvqLF) takes these arguments,

and returns an LVQ neural network.

The other option for the lvq learning function is learnlv2.

Examples Here, an LVQ network is trained to classify iris flowers.

[x,t] = iris_dataset;
net = lvqnet(10)
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
classes = vec2ind(y)

See Also preparets, removedelay, timedelaynet, narnet, narxnet

hiddenSize Size of hidden layer (default = 10)

lvqLR LVQ learning rate (default = 0.01)

lvqLF LVQ learning function (default = 'learnlv1')



lvqoutputs

13-137

13lvqoutputsPurpose LVQ outputs processing function

Syntax [X,PS] = lvqoutputs(X)
X = lvqoutputs('apply',X,PS)
X = lvqoutputs('reverse',X,PS)
dy_dx = lvqoutputs('dy_dx',X,X,PS)
dx_dy = lvqoutputs('dx_dy',X,X,PS)

Description [x,settings] = lvqoutputs(x) returns its argument unchanged, but stores 
the ratio of target classes in the settings for use by initlvq to initialize 
weights.

lvqoutputs('apply',X,PS) returns X.

lvqoutputs('reverse',X,PS) returns X.

lvqoutputs('dy_dx',X,X,PS) returns the identity derivative.

lvqoutputs('dx_dy',X,X,PS) returns the identity derivative.

See Also lvqnet, initlvq



mae

13-138

13maePurpose Mean absolute error performance function

Syntax perf = mae(E,Y,X,FP)
dPerf_dy = mae('dy',E,Y,X,perf,FP)
dPerf_dx = mae('dx',E,Y,X,perf,FP)
info = mae(code)

Description mae is a network performance function. It measures network performance as 
the mean of absolute errors.

mae(E,Y,X,FP) takes E and optional function parameters,

and returns the mean absolute error.

mae('dy',E,Y,X,[perf,FP) returns the derivative of perf with respect to Y.

mae('dx',E,Y,X,perf,FP) returns the derivative of perf with respect to X.

mae('name') returns the name of this function. 

mae('pnames') returns the names of the training parameters.

mae('pdefaults') returns the default function parameters.

Examples Here a perceptron is created with a one-element input ranging from -10 to 10 
and one neuron.

net = newp([-10 10],1);

The network is given a batch of inputs P. The error is calculated by subtracting 
the output A from target T. Then the mean absolute error is calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = sim(net,p)
e = t-y

E Matrix or cell array of error vectors

Y Matrix or cell array of output vectors (ignored)

X Vector of all weight and bias values (ignored)

FP Function parameters (ignored)



mae

13-139

perf = mae(e)

Note that mae can be called with only one argument because the other 
arguments are ignored. mae supports those arguments to conform to the 
standard performance function argument list.

Network Use You can create a standard network that uses mae with newp.

To prepare a custom network to be trained with mae, set net.performFcn to 
'mae'. This automatically sets net.performParam to the empty matrix [], 
because mae has no performance parameters.

In either case, calling train or adapt results in mae’s being used to calculate 
performance.

See help newp for examples.

See Also mse



mandist

13-140

13mandistPurpose Manhattan distance weight function

Syntax Z = mandist(W,P)
df = mandist('deriv')
D = mandist(pos);

Description mandist is the Manhattan distance weight function. Weight functions apply 
weights to an input to get weighted inputs.

mandist(W,P) takes these inputs,

and returns the S x Q matrix of vector distances.

mandist('deriv') returns '' because mandist does not have a derivative 
function.

mandist is also a layer distance function, which can be used to find the 
distances between neurons in a layer.

mandist(pos) takes one argument,

and returns the S x S matrix of distances.

Examples Here you define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = mandist(W,P)

Here you define a random matrix of positions for 10 neurons arranged in 
three-dimensional space and then find their distances.

pos = rand(3,10);
D = mandist(pos)

W S x R weight matrix

P R x Q matrix of Q input (column) vectors

pos S row matrix of neuron positions



mandist

13-141

Network Use You can create a standard network that uses mandist as a distance function by 
calling newsom.

To change a network so an input weight uses mandist, set 
net.inputWeight{i,j}.weightFcn to 'mandist'. 
For a layer weight, set net.layerWeight{i,j}.weightFcn to 'mandist'.

To change a network so a layer’s topology uses mandist, set 
net.layers{i}.distanceFcn to 'mandist'.

In either case, call sim to simulate the network with dist. See newpnn or 
newgrnn for simulation examples.

Algorithm The Manhattan distance D between two vectors X and Y is

D = sum(abs(x-y))

See Also sim, dist, linkdist



mapminmax

13-142

13mapminmaxPurpose Process matrices by mapping row minimum and maximum values to [-1 1]

Syntax [Y,PS] = mapminmax(X,YMIN,YMAX)
[Y,PS] = mapminmax(X,FP)
Y = mapminmax('apply',X,PS)
X = mapminmax('reverse',Y,PS)
dy_dx = mapminmax('dy_dx',X,Y,PS)
dx_dy = mapminmax('dx_dy',X,Y,PS)

Description mapminmax processes matrices by normalizing the minimum and maximum 
values of each row to [YMIN, YMAX].

mapminmax(X,YMIN,YMAX) takes X and optional parameters

and returns

mapminmax(X,FP) takes parameters as a struct: FP.ymin, FP.ymax.

mapminmax('apply',X,PS) returns Y, given X and settings PS.

mapminmax('reverse',Y,PS) returns X, given Y and settings PS.

mapminmax('dy_dx',X,Y,PS) returns the M x N x Q derivative of Y with respect 
to X.

mapminmax('dx_dy',X,Y,PS) returns the reverse derivative.

Examples Here is how to format a matrix so that the minimum and maximum values of 
each row are mapped to default interval [-1,+1].

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapminmax(x1)

X N x Q matrix or a 1 x TS row cell array of N x Q matrices

YMIN Minimum value for each row of Y (default is -1)

YMAX Maximum value for each row of Y (default is +1)

Y Each M x Q matrix (where M == N) (optional)

PS Process settings that allow consistent processing of values



mapminmax

13-143

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapminmax('apply',x2,PS)

Reverse the processing of y1 to get x1 again.

x1_again = mapminmax('reverse',y1,PS)

Algorithm It is assumed that X has only finite real values, and that the elements of each 
row are not all equal. (If xmax=xmin or if either xmax or xmin are non-finite, then 
y=x and no change occurs.)

y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;

See Also fixunknowns, mapstd, processpca

Definition Before training, it is often useful to scale the inputs and targets so that they 
always fall within a specified range. The function mapminmax scales inputs and 
targets so that they fall in the range [-1,1]. The following code illustrates how 
to use this function.

[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
net = train(net,pn,tn);

The original network inputs and targets are given in the matrices p and t. The 
normalized inputs and targets pn and tn that are returned will all fall in the 
interval [-1,1]. The structures ps and ts contain the settings, in this case the 
minimum and maximum values of the original inputs and targets. After the 
network has been trained, the ps settings should be used to transform any 
future inputs that are applied to the network. They effectively become a part of 
the network, just like the network weights and biases.

If mapminmax is used to scale the targets, then the output of the network will be 
trained to produce outputs in the range [-1,1]. To convert these outputs back 
into the same units that were used for the original targets, use the settings ts. 
The following code simulates the network that was trained in the previous 
code, and then converts the network output back into the original units.

an = sim(net,pn);
a = mapminmax('reverse',an,ts);



mapminmax

13-144

The network output an corresponds to the normalized targets tn. The 
unnormalized network output a is in the same units as the original targets t.

If mapminmax is used to preprocess the training set data, then whenever the 
trained network is used with new inputs they should be preprocessed with the 
minimum and maximums that were computed for the training set stored in the 
settings ps. The following code applies a new set of inputs to the network 
already trained.

pnewn = mapminmax('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapminmax('reverse',anewn,ts);

For most networks, including feedforwardnet, these steps are done 
automatically, so that you only need to use the sim command.



mapstd

13-145

13mapstdPurpose Process matrices by mapping each row’s means to 0 and deviations to 1

Syntax [Y,PS] = mapstd(ymean,ystd)
[Y,PS] = mapstd(X,FP)
Y = mapstd('apply',X,PS)
X = mapstd('reverse',Y,PS)
dy_dx = mapstd('dy_dx',X,Y,PS)
dx_dy = mapstd('dx_dy',X,[],PS)

Description mapstd processes matrices by transforming the mean and standard deviation 
of each row to ymean and ystd.

mapstd(X,ymean,ystd) takes X and optional parameters,

and returns

mapstd(X,FP) takes parameters as a struct: FP.ymean, FP.ystd.

mapstd('apply',X,PS) returns Y, given X and settings PS.

mapstd('reverse',Y,PS) returns X, given Y and settings PS.

mapstd('dy_dx',X,Y,PS) returns the M x N x Q derivative of Y with respect to X.

mapstd('dx_dy',X,Y,PS) returns the reverse derivative.

Examples Here you format a matrix so that the minimum and maximum values of each 
row are mapped to default mean and STD of 0 and 1.

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapstd(x1)

Next, apply the same processing settings to new values.

X N x Q matrix or a 1 x TS row cell array of N x Q matrices

ymean Mean value for each row of Y (default is 0)

ystd Standard deviation for each row of Y (default is 1)

Y Each M x Q matrix (where M == N) (optional)

PS Process settings that allow consistent processing of values



mapstd

13-146

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapstd('apply',x2,PS)

Reverse the processing of y1 to get x1 again.

x1_again = mapstd('reverse',y1,PS)

Algorithm It is assumed that X has only finite real values, and that the elements of each 
row are not all equal.

y = (x-xmean)*(ystd/xstd) + ymean;

See Also fixunknowns, mapminmax, processpca

Definition Another approach for scaling network inputs and targets is to normalize the 
mean and standard deviation of the training set. The function mapstd 
normalizes the inputs and targets so that they will have zero mean and unity 
standard deviation. The following code illustrates the use of mapstd.

[pn,ps] = mapstd(p);
[tn,ts] = mapstd(t);

The original network inputs and targets are given in the matrices p and t. The 
normalized inputs and targets pn and tn that are returned will have zero 
means and unity standard deviation. The settings structures ps and ts contain 
the means and standard deviations of the original inputs and original targets. 
After the network has been trained, you should use these settings to transform 
any future inputs that are applied to the network. They effectively become a 
part of the network, just like the network weights and biases.

If mapstd is used to scale the targets, then the output of the network is trained 
to produce outputs with zero mean and unity standard deviation. To convert 
these outputs back into the same units that were used for the original targets, 
use ts. The following code simulates the network that was trained in the 
previous code, and then converts the network output back into the original 
units.

an = sim(net,pn);
a = mapstd('reverse',an,ts);

The network output an corresponds to the normalized targets tn. The 
unnormalized network output a is in the same units as the original targets t.



mapstd

13-147

If mapstd is used to preprocess the training set data, then whenever the trained 
network is used with new inputs, you should preprocess them with the means 
and standard deviations that were computed for the training set using ps. The 
following commands apply a new set of inputs to the network already trained:

pnewn = mapstd('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapstd('reverse',anewn,ts);

For most networks, including feedforwardnet, these steps are done 
automatically, so that you only need to use the sim command.



maxlinlr

13-148

13maxlinlrPurpose Maximum learning rate for linear layer

Syntax lr = maxlinlr(P)
lr = maxlinlr(P,'bias')

Description maxlinlr is used to calculate learning rates for newlin.

maxlinlr(P) takes one argument,

and returns the maximum learning rate for a linear layer without a bias that 
is to be trained only on the vectors in P.

maxlinlr(P,'bias') returns the maximum learning rate for a linear layer 
with a bias.

Examples Here you define a batch of four two-element input vectors and find the 
maximum learning rate for a linear layer with a bias.

P = [1 2 -4 7; 0.1 3 10 6];
lr = maxlinlr(P,'bias')

See Also learnwh

P R x Q matrix of input vectors



meanabs

13-149

13meanabsPurpose Mean of absolute elements of matrix or matrices

Syntax [m,n] = meanabs(x)

Description meanabs(x) takes a matrix or cell array of matrices and returns,

If x contains no finite values, the mean returned is 0.

Examples m = meanabs([1 2;3 4])
[m,n] = meanabs({[1 2; NaN 4], [4 5; 2 3]})

See Also meansqr, sumabs, sumsqr

m Mean value of all absolute finite values

n Number of finite values



meansqr

13-150

13meansqrPurpose Mean of squared elements of matrix or matrices

Syntax [m,n] = meansqr(x)

Description meansqr(x) takes a matrix or cell array of matrices and returns,

If x contains no finite values, the mean returned is 0.

Examples m = meansqr([1 2;3 4])
[m,n] = meansqr({[1 2; NaN 4], [4 5; 2 3]})

See Also meanabs, sumabs, sumsqr

m Mean value of all squared finite values

n Number of finite values



midpoint

13-151

13midpointPurpose Midpoint weight initialization function

Syntax W = midpoint(S,PR)

Description midpoint is a weight initialization function that sets weight (row) vectors to 
the center of the input ranges.

midpoint(S,PR) takes two arguments,

and returns an S x R matrix with rows set to (Pmin+Pmax)'/2.

Examples Here initial weight values are calculated for a five-neuron layer with input 
elements ranging over [0 1] and [-2 2].

W = midpoint(5,[0 1; -2 2])

Network Use You can create a standard network that uses midpoint to initialize weights by 
calling newc.

To prepare the weights and the bias of layer i of a custom network to initialize 
with midpoint,

1 Set net.initFcn to 'initlay'. 
(net.initParam automatically becomes initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'midpoint'. 
Set each net.layerWeights{i,j}.initFcn to 'midpoint'.

To initialize the network, call init.

See Also initwb, initlay, init

S Number of rows (neurons)

PR R x Q matrix of input value ranges = [Pmin Pmax]



minmax

13-152

13minmaxPurpose Ranges of matrix rows

Syntax pr = minmax(P)

Description minmax(P) takes one argument,

and returns the R x 2 matrix PR of minimum and maximum values for each row 
of P.

Alternatively, P can be an M x N cell array of matrices. Each matrix P{i,j} 
should have Ri rows and Q columns. In this case, minmax returns an M x 1 cell 
array where the mth matrix is an Ri x 2 matrix of the minimum and maximum 
values of elements for the matrix on the ith row of P. 

Examples P = [0 1 2; -1 -2 -0.5]
pr = minmax(P)

P = {[0 1; -1 -2] [2 3 -2; 8 0 2]; [1 -2] [9 7 3]};
pr = minmax(P)

P R x Q matrix



mse

13-153

13msePurpose Mean squared normalized error performance function

Syntax perf = mse(E,Y,X,FP)
dPerf_dy = mse('dy',E,Y,X,perf,FP)
dPerf_dx = mse('dx',E,Y,X,perf,FP)
info = mse(code)

Description mse is a network performance function. It measures the network’s performance 
according to the mean of squared errors.

mse(E,Y,X,FP) takes E and optional function parameters,

and returns the mean squared error.

mse('dy',E,Y,X,perf,FP) returns the derivative of perf with respect to Y.

mse('dx',E,Y,X,perf,FP) returns the derivative of perf with respect to X.

mse('name') returns the name of this function. 

mse('pnames') returns the names of the training parameters.

mse('pdefaults') returns the default function parameters.

Examples Here a two-layer feed-forward network is created with a one-element input 
ranging from -10 to 10, four hidden tansig neurons, and one purelin output 
neuron.

net = newff([-10 10],[4 1],{'tansig','purelin'});

The network is given a batch of inputs P. The error is calculated by subtracting 
the output A from target T. Then the mean squared error is calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = sim(net,p)

E Matrix or cell array of error vectors

Y Matrix or cell array of output vectors (ignored)

X Vector of all weight and bias values (ignored)

FP Function parameters (ignored)



mse

13-154

e = t-y
perf = mse(e)

Note that mse can be called with only one argument because the other 
arguments are ignored. mse supports those ignored arguments to conform to 
the standard performance function argument list.

Network Use You can create a standard network that uses mse with newff, newcf, or newelm.

To prepare a custom network to be trained with mse, set net.performFcn to 
'mse'. This automatically sets net.performParam to the empty matrix [], 
because mse has no performance parameters.

In either case, calling train or adapt results in mse’s being used to calculate 
performance.

See help newff or help newcf for examples.

See Also mae



narnet

13-155

13narnetPurpose Nonlinear autoregressive neural network

Syntax narnet(inputDelays,hiddenSizes,trainFcn)

Description NAR (nonlinear autoregressive) neural networks can be trained to predict a 
time series from that series past values.

narnet(inputDelays,hiddenSizes,trainFcn) takes these arguments,

and returns a NAR neural network.

Examples Here a NAR network is used to solve a simple time series problem.

T = simplenar_dataset;
net = narnet(1:2,10)
[Xs,Xi,Ai,Ts] = preparets(net,{},{},T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi);
perf = perform(net,Ts,Y)

See Also preparets, removedelay, timedelaynet, narnet, narxnet

inputDelays Row vector of increasing 0 or positive delays (default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)

trainFcn Training function (default = 'trainlm')



narxnet

13-156

13narxnetPurpose Nonlinear autoregressive neural network with external input

Syntax narxnet(inputDelays,feedbackDelays,hiddenSizes,trainFcn)

Description NARX (Nonlinear autoregressive with external input) networks can learn to 
predict one time series given past values of the same time series, the feedback 
input, and another time series, called the external or exogenous time series.

narxnet(inputDelays,hiddenSizes,trainFcn) takes these arguments,

and returns a NARX neural network.

Examples Here a NARX neural network is used to solve a simple time series problem.

[X,T] = simpleseries_dataset;
net = narxnet(1:2,1:2,10)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)

Here the NARX network is simulated in closed loop form.

netc = closeloop(net);
view(netc)
[Xs,Xi,Ai,Ts] = preparets(netc,X,{},T);
y = netc(Xs,Xi,Ai)

Here the NARX network is used to predict the next output a timestep ahead of 
when it will actually appear.

netp = removedelay(net);
view(netp)
[Xs,Xi,Ai,Ts] = preparets(netp,X,{},T);

inputDelays Row vector of increasing 0 or positive delays (default = 1:2)

feedbackDelays Row vector of increasing 0 or positive delays (default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)

trainFcn Training function (default = 'trainlm')



narxnet

13-157

y = netp(Xs,Xi,Ai)

See Also closeloop, narnet, openloop, preparets, removedelay, timedelaynet



nctool

13-158

13nctoolPurpose Neural network classification or clustering tool

Syntax nctool

Description nctool opens the neural network clustering GUI.

Algorithm nctool leads you through solving a clustering problem using a self-organizing 
map. The map forms a compressed representation of the inputs space, 
reflecting both the relative density of input vectors in that space, and a 
two-dimensional compressed representation of the input-space topology.



negdist

13-159

13negdistPurpose Negative distance weight function

Syntax Z = negdist(W,P,FP)
info = negdist(code)
dim = negdist('size',S,R,FP)
dp = negdist('dp',W,P,Z,FP)
dw = negdist('dw',W,P,Z,FP)

Description negdist is a weight function. Weight functions apply weights to an input to get 
weighted inputs.

negdist(W,P) takes these inputs,

and returns the S x Q matrix of negative vector distances.

negdist(code) returns information about this function. The following codes 
are defined:

negdist('size',S,R,FP) takes the layer dimension S, input dimension R, and 
function parameters, and returns the weight size [S x R].

negdist('dp',W,P,Z,FP) returns the derivative of Z with respect to P.

negdist('size',S,R,FP) returns the derivative of Z with respect to W.

W S x R weight matrix

P R x Q matrix of Q input (column) vectors

FP Row cell array of function parameters (optional, ignored)

'deriv' Name of derivative function

'fullderiv' Full derivative = 1, linear derivative = 0

'name' Full name

'fpnames' Returns names of function parameters

'fpdefaults' Returns default function parameters



negdist

13-160

Examples Here you define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = negdist(W,P)

Network Use You can create a standard network that uses negdist by calling newc or 
newsom.

To change a network so an input weight uses negdist, set 
net.inputWeight{i,j}.weightFcn to 'negdist'. 
For a layer weight, set net.layerWeight{i,j}.weightFcn to 'negdist'.

In either case, call sim to simulate the network with negdist. See help newc 
or help newsom for simulation examples.

Algorithm negdist returns the negative Euclidean distance:

z = -sqrt(sum(w-p)^2)

See Also sim, dotprod, dist



netinv

13-161

13netinv Purpose Inverse transfer function

Syntax A = netinv(N,FP)
dA_dN = netinv('dn',N,A,FP)
info = netinv(code)

Description netinv is a transfer function. Transfer functions calculate a layer’s output from 
its net input.

netinv(N,FP) takes inputs

and returns 1/N.

netinv('dn',N,A,FP) returns the derivative of A with respect to N. If A or FP is 
not supplied or is set to [], FP reverts to the default parameters, and A is 
calculated from N.

netinv('name') returns the name of this function.

netinv('output',FP) returns the [min max] output range.

netinv('active',FP) returns the [min max] active input range.

netinv('fullderiv') returns 1 or 0, depending on whether dA_dN is S x S x Q 
or S x Q.

netinv('fpnames') returns the names of the function parameters.

netinv('fpdefaults') returns the default function parameters.

Examples Here you define 10 five-element net input vectors N and calculate A.

n = rand(5,10);
a = netinv(n);

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'netinv';

See Also tansig, logsig

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



netprod

13-162

13netprodPurpose Product net input function

Syntax N = netprod({Z1,Z2,...,Zn},FP)
dN_dZj = netprod('dz'j,Z,N,FP)
info = netprod(code)

Description netprod is a net input function. Net input functions calculate a layer’s net 
input by combining its weighted inputs and biases.

netprod(Z1,Z2,...,Zn) takes

and returns an elementwise product of Z1 to Zn.

netprod(code) returns information about this function. The following codes 
are defined:

Examples Here netprod combines two sets of weighted input vectors (user-defined).

z1 = [1 2 4;3 4 1];
z2 = [-1 2 2; -5 -6 1];
z = {z1,z2};
n = netprod({Z})

Here netprod combines the same weighted inputs with a bias vector. Because 
Z1 and Z2 each contain three concurrent vectors, three concurrent copies of B 
must be created with concur so that all sizes match.

b = [0; -1];
z = {z1, z2, concur(b,3)};
n = netprod(z)

Zi S x Q matrices in a row cell array

FP Row cell array of function parameters (optional, ignored)

'deriv' Name of derivative function

'fullderiv' Full N x S x Q derivative = 1, elementwise S x Q derivative = 0

'name' Full name

'fpnames' Returns names of function parameters

'fpdefaults' Returns default function parameters



netprod

13-163

Network Use You can create a standard network that uses netprod by calling newpnn or 
newgrnn.

To change a network so that a layer uses netprod, set 
net.layers{i}.netInputFcn to 'netprod'.

In either case, call sim to simulate the network with netprod. See newpnn or 
newgrnn for simulation examples.

See Also sim, netsum, concur



netsum

13-164

13netsumPurpose Sum net input function

Syntax N = netsum({Z1,Z2,...,Zn},FP)
dN_dZj = netsum('dz',j,Z,N,FP)
info = netsum(code)

Description netsum is a net input function. Net input functions calculate a layer’s net input 
by combining its weighted inputs and biases.

netsum({Z1,Z2,...,Zn},FP) takes Z1 to Zn and optional function parameters,

and returns the elementwise sum of Z1 to Zn.

netsum('dz',j,{Z1,...,Zn},N,FP) returns the derivative of N with respect to 
Zj. If FP is not supplied, the default values are used. If N is not supplied or is 
[], it is calculated for you.

netsum('name') returns the name of this function.

netsum('type') returns the type of this function.

netsum('fpnames') returns the names of the function parameters.

netsum('fpdefaults') returns default function parameter values.

netsum('fpcheck', FP) throws an error for illegal function parameters.

netsum('fullderiv') returns 0 or 1, depending on whether the derivative is 
S x Q or N x S x Q.

Examples Here netsum combines two sets of weighted input vectors and a bias. You must 
use concur to make B the same dimensions as Z1 and Z2. 

z1 = [1 2 4; 3 4 1}
z2 = [-1 2 2; -5 -6 1]
b = [0; -1]
n = netsum({z1,z2,concur(b,3)})

Assign this net input function to layer i of a network.

Zi S x Q matrices in a row cell array

FP Row cell array of function parameters (ignored)



netsum

13-165

net.layers(i).netFcn = 'compet';

Use newp or newlin to create a standard network that uses netsum.

See Also netprod, netinv



network

13-166

13networkPurpose Create custom neural network

Syntax net = network
net = network(numInputs,numLayers,biasConnect,inputConnect, 

layerConnect,outputConnect)

To Get Help Type help network/network.

Description network creates new custom networks. It is used to create networks that are 
then customized by functions such as newp, newlin, newff, etc.

network takes these optional arguments (shown with default values):

and returns

numInputs Number of inputs, 0

numLayers Number of layers, 0

biasConnect numLayers-by-1 Boolean vector, zeros

inputConnect numLayers-by-numInputs Boolean matrix, zeros

layerConnect numLayers-by-numLayers Boolean matrix, zeros

outputConnect 1-by-numLayers Boolean vector, zeros

net New network with the given property values



network

13-167

Properties Architecture Properties

net.numInputs 0 or a positive integer Number of inputs.

net.numLayers 0 or a positive integer Number of layers.

net.biasConnect numLayer-by-1 Boolean 
vector

If net.biasConnect(i) is 1, then layer i has a 
bias, and net.biases{i} is a structure 
describing that bias.

net.inputConnect numLayer-by-numInputs 
Boolean vector

If net.inputConnect(i,j) is 1, then layer i 
has a weight coming from input j, and 
net.inputWeights{i,j} is a structure 
describing that weight.

net.layerConnect numLayer-by-numLayers 
Boolean vector

If net.layerConnect(i,j) is 1, then layer i 
has a weight coming from layer j, and 
net.layerWeights{i,j} is a structure 
describing that weight.

net.numInputs 0 or a positive integer Number of inputs.

net.numLayers 0 or a positive integer Number of layers.

net.biasConnect numLayer-by-1 Boolean 
vector

If net.biasConnect(i) is 1, then layer i has a 
bias, and net.biases{i} is a structure 
describing that bias.

net.inputConnect numLayer-by-numInputs 
Boolean vector

If net.inputConnect(i,j) is 1, then layer i 
has a weight coming from input j, and 
net.inputWeights{i,j} is a structure 
describing that weight.

net.layerConnect numLayer-by-numLayers 
Boolean vector

If net.layerConnect(i,j) is 1, then layer i 
has a weight coming from layer j, and 
net.layerWeights{i,j} is a structure 
describing that weight.

net.outputConnect 1-by-numLayers Boolean 
vector

If net.outputConnect(i) is 1, then the 
network has an output from layer i, and 
net.outputs{i} is a structure describing that 
output.



network

13-168

Subobject Structure Properties

net.numOutputs 0 or a positive integer 
(read only)

Number of network outputs according to 
net.outputConnect.

net.numInputDelays 0 or a positive integer 
(read only)

Maximum input delay according to all 
net.inputWeight{i,j}.delays.

net.numLayerDelays 0 or a positive number 
(read only)

Maximum layer delay according to all 
net.layerWeight{i,j}.delays.

net.inputs numInputs-by-1 cell array net.inputs{i} is a structure defining input i.

net.layers numLayers-by-1 cell array net.layers{i} is a structure defining layer i.

net.biases numLayers-by-1 cell array If net.biasConnect(i) is 1, then net.biases{i} 
is a structure defining the bias for layer i.

net.inputWeights numLayers-by-numInputs 
cell array

If net.inputConnect(i,j) is 1, then 
net.inputWeights{i,j} is a structure defining 
the weight to layer i from input j.

net.layerWeights numLayers-by-numLayers 
cell array

If net.layerConnect(i,j) is 1, then 
net.layerWeights{i,j} is a structure defining 
the weight to layer i from layer j.

net.outputs 1-by-numLayers cell array If net.outputConnect(i) is 1, then 
net.outputs{i} is a structure defining the 
network output from layer i.



network

13-169

Function Properties

Parameter Properties

Weight and Bias Value Properties

Other Properties

Examples Here is the code to create a network without any inputs and layers, and then 
set its numbers of inputs and layers to 1 and 2 respectively.

net = network
net.numInputs = 1
net.numLayers = 2

Here is the code to create the same network with one line of code.

net = network(1,2)

Here is the code to create a one-input, two-layer, feed-forward network. Only 
the first layer has a bias. An input weight connects to layer 1 from input 1. A 

net.adaptFcn Name of a network adaption function or ''

net.initFcn Name of a network initialization function or ''

net.performFcn Name of a network performance function or ''

net.trainFcn Name of a network training function or ''

net.adaptParam Network adaption parameters

net.initParam Network initialization parameters

net.performParam Network performance parameters

net.trainParam Network training parameters

net.IW numLayers-by-numInputs cell array of input weight values

net.LW numLayers-by-numLayers cell array of layer weight values

net.b numLayers-by-1 cell array of bias values

net.userdata Structure you can use to store useful values



network

13-170

layer weight connects to layer 2 from layer 1. Layer 2 is a network output and 
has a target.

net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1])

You can see the properties of subobjects as follows:

net.inputs{1}
net.layers{1}, net.layers{2}
net.biases{1}
net.inputWeights{1,1}, net.layerWeights{2,1}
net.outputs{2}

You can get the weight matrices and bias vector as follows:

net.iw.{1,1}, net.iw{2,1}, net.b{1}

You can alter the properties of any of these subobjects. Here you change the 
transfer functions of both layers:

net.layers{1}.transferFcn = 'tansig';
net.layers{2}.transferFcn = 'logsig';

Here you change the number of elements in input 1 to 2 by setting each 
element’s range:

net.inputs{1}.range = [0 1; -1 1];

Next you can simulate the network for a two-element input vector:

p = [0.5; -0.1];
y = sim(net,p)

See Also sim



newgrnn

13-171

13newgrnnPurpose Design generalized regression neural network

Syntax net = newgrnn(P,T,spread)

Description Generalized regression neural networks (grnns) are a kind of radial basis 
network that is often used for function approximation. grnns can be designed 
very quickly.

newgrnn(P,T,spread) takes three inputs,

and returns a new generalized regression neural network.

The larger the spread, the smoother the function approximation. To fit data 
very closely, use a spread smaller than the typical distance between input 
vectors. To fit the data more smoothly, use a larger spread.

Properties newgrnn creates a two-layer network. The first layer has radbas neurons, and 
calculates weighted inputs with dist and net input with netprod. The second 
layer has purelin neurons, calculates weighted input with normprod, and net 
inputs with netsum. Only the first layer has biases.

newgrnn sets the first layer weights to P', and the first layer biases are all set 
to 0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted 
inputs of +/- spread. The second layer weights W2 are set to T.

Examples Here you design a radial basis network, given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newgrnn(P,T);

The network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

P R x Q matrix of Q input vectors

T S x Q matrix of Q target class vectors

spread Spread of radial basis functions (default = 1.0)



newgrnn

13-172

Reference Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van 
Nostrand Reinhold, 1993, pp. 155–61

See Also sim, newrb, newrbe, newpnn



newlind

13-173

13newlindPurpose Design linear layer

Syntax net = newlind(P,T,Pi)

Description newlind(P,T,Pi) takes these input arguments,

where each element Pi{i,k} is an Ri x Q matrix, and the default = []; and 
returns a linear layer designed to output T (with minimum sum square error) 
given input P.

newlind(P,T,Pi) can also solve for linear networks with input delays and 
multiple inputs and layers by supplying input and target data in cell array 
form:

and returns a linear network with ID input delays, Ni network inputs, and Nl 
layers, designed to output T (with minimum sum square error) given input P.

Examples You want a linear layer that outputs T given P for the following definitions:

P = [1 2 3];
T = [2.0 4.1 5.9];

Use newlind to design such a network and check its response.

net = newlind(P,T);
Y = sim(net,P)

You want another linear layer that outputs the sequence T given the sequence 
P and two initial input delay states Pi.

P R x Q matrix of Q input vectors

T S x Q matrix of Q target class vectors

Pi 1 x ID cell array of initial input delay states

P Ni x TS cell array Each element P{i,ts} is an Ri x Q input matrix

T Nt x TS cell array Each element P{i,ts} is a Vi x Q matrix

Pi Ni x ID cell array Each element Pi{i,k} is an Ri x Q matrix, 
default = []



newlind

13-174

P = {1 2 1 3 3 2};
Pi = {1 3};
T = {5.0 6.1 4.0 6.0 6.9 8.0};
net = newlind(P,T,Pi);
Y = sim(net,P,Pi)

You want a linear network with two outputs Y1 and Y2 that generate sequences 
T1 and T2, given the sequences P1 and P2, with three initial input delay states 
Pi1 for input 1 and three initial delays states Pi2 for input 2.

P1 = {1 2 1 3 3 2}; Pi1 = {1 3 0};
P2 = {1 2 1 1 2 1}; Pi2 = {2 1 2};
T1 = {5.0 6.1 4.0 6.0 6.9 8.0};
T2 = {11.0 12.1 10.1 10.9 13.0 13.0};
net = newlind([P1; P2],[T1; T2],[Pi1; Pi2]);
Y = sim(net,[P1; P2],[Pi1; Pi2]);
Y1 = Y(1,:)
Y2 = Y(2,:)

Algorithm newlind calculates weight W and bias B values for a linear layer from inputs P 
and targets T by solving this linear equation in the least squares sense:

[W b] * [P; ones] = T

See Also sim



newpnn

13-175

13newpnnPurpose Design probabilistic neural network

Syntax net = newpnn(P,T,spread)

Description Probabilistic neural networks (PNN) are a kind of radial basis network 
suitable for classification problems.

net = newpnn(P,T,spread) takes two or three arguments,

and returns a new probabilistic neural network.

If spread is near zero, the network acts as a nearest neighbor classifier. As 
spread becomes larger, the designed network takes into account several 
nearby design vectors.

Examples Here a classification problem is defined with a set of inputs P and class indices 
Tc.

P = [1 2 3 4 5 6 7];
Tc = [1 2 3 2 2 3 1];

The class indices are converted to target vectors, and a PNN is designed and 
tested.

T = ind2vec(Tc)
net = newpnn(P,T);
Y = sim(net,P)
Yc = vec2ind(Y)

Algorithm newpnn creates a two-layer network. The first layer has radbas neurons, and 
calculates its weighted inputs with dist and its net input with netprod. The 
second layer has compet neurons, and calculates its weighted input with 
dotprod and its net inputs with netsum. Only the first layer has biases.

P R x Q matrix of Q input vectors

T S x Q matrix of Q target class vectors

spread Spread of radial basis functions (default = 0.1)



newpnn

13-176

newpnn sets the first-layer weights to P', and the first-layer biases are all set to 
0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted 
inputs of +/- spread. The second-layer weights W2 are set to T.

Reference Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van 
Nostrand Reinhold, 1993, pp. 35–55

See Also sim, ind2vec, vec2ind, newrb, newrbe, newgrnn



newrb

13-177

13newrbPurpose Design radial basis network

Syntax [net,tr] = newrb(P,T,goal,spread,MN,DF)

Description Radial basis networks can be used to approximate functions. newrb adds 
neurons to the hidden layer of a radial basis network until it meets the 
specified mean squared error goal.

newrb(P,T,goal,spread,MN,DF) takes two of these arguments,

and returns a new radial basis network.

The larger spread is, the smoother the function approximation. Too large a 
spread means a lot of neurons are required to fit a fast-changing function. Too 
small a spread means many neurons are required to fit a smooth function, and 
the network might not generalize well. Call newrb with different spreads to find 
the best value for a given problem.

Examples Here you design a radial basis network, given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrb(P,T);

The network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithm newrb creates a two-layer network. The first layer has radbas neurons, and 
calculates its weighted inputs with dist and its net input with netprod. The 

P R x Q matrix of Q input vectors

T S x Q matrix of Q target class vectors

goal Mean squared error goal (default = 0.0)

spread Spread of radial basis functions (default = 1.0)

MN Maximum number of neurons (default is Q)

DF Number of neurons to add between displays (default = 25)



newrb

13-178

second layer has purelin neurons, and calculates its weighted input with 
dotprod and its net inputs with netsum. Both layers have biases.

Initially the radbas layer has no neurons. The following steps are repeated 
until the network’s mean squared error falls below goal.

1 The network is simulated.

2 The input vector with the greatest error is found.

3 A radbas neuron is added with weights equal to that vector.

4 The purelin layer weights are redesigned to minimize error.

See Also sim, newrbe, newgrnn, newpnn



newrbe

13-179

13newrbePurpose Design exact radial basis network

Syntax net = newrbe(P,T,spread)

Description Radial basis networks can be used to approximate functions. newrbe very 
quickly designs a radial basis network with zero error on the design vectors.

newrbe(P,T,spread) takes two or three arguments,

and returns a new exact radial basis network.

The larger the spread is, the smoother the function approximation will be. Too 
large a spread can cause numerical problems.

Examples Here you design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrbe(P,T);

The network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithm newrbe creates a two-layer network. The first layer has radbas neurons, and 
calculates its weighted inputs with dist and its net input with netprod. The 
second layer has purelin neurons, and calculates its weighted input with 
dotprod and its net inputs with netsum. Both layers have biases.

newrbe sets the first-layer weights to P', and the first-layer biases are all set to 
0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted 
inputs of +/- spread.

The second-layer weights IW{2,1} and biases b{2} are found by simulating the 
first-layer outputs A{1} and then solving the following linear expression:

P RxQ matrix of Q R-element input vectors

T SxQ matrix of Q S-element target class vectors

spread Spread of radial basis functions (default = 1.0)



newrbe

13-180

[W{2,1} b{2}] * [A{1}; ones] = T

See Also sim, newrb, newgrnn, newpnn



nftool

13-181

13nftoolPurpose Neural network fitting tool

Syntax nftool

Description nftool opens the neural network fitting tool GUI.

Algorithm nftool leads you through solving a data fitting problem, solving it with a 
two-layer feed-forward network trained with Levenberg-Marquardt.

See Also nntool



nncell2mat

13-182

13nncell2matPurpose Combine neural network cell data into matrix

Syntax [y,i,j] = nncell2mat(x)

Description [y,i,j] nncell2mat(x) takes a cell array of matrices and returns,

The row and column sizes returned by nncell2mat can be used to convert the 
returned matrix back into a cell of matrices with mat2cell.

Examples Here neural network data is converted to a matrix and back.

c = {rands(2,3) rands(2,3); rands(5,3) rands(5,3)};
[m,i,j] = nncell2mat(c)
c3 = mat2cell(m,i,j)

See Also nndata, nnsize

y Cell array formed by concatenating matrices

i Array of row sizes

ji Array of column sizes



nncorr

13-183

13nncorrPurpose Crross correlation between neural network time series

Syntax nncorr(a,b,maxlag,flag)

Description nncorr(a,b,maxlag,flag) takes these arguments,

and returns an N-by-M cell array where each {i,j} element is a 2*maxlag+1 
length row vector formed from the correllations of a elements (i.e., matrix row) 
i and b elements (i.e., matrix column) j.

If a and b are specified with row vectors, the result is returned in matrix form.

The options for the normalization flag are:

• 'biased' — scales the raw cross-correlation by 1/N.

• 'unbiased' — scales the raw correlation by 1/(N-abs(k)), where k is the 
index into the result.

• 'coeff' — normalizes the sequence so that the correlations at zero lag are 
1.0.

• 'none' — no scaling. This is the default.

Examples Here the autocorrelation of a random 1-element, 1-sample, 20-timestep signal 
is calculated with a maximum lag of 10.

a = nndata(1,1,20)
aa = nncorr(a,a,10)

Here the cross-correlation of the first signal with another random 2-element 
signal are found, with a maximum lag of 8.

b = nndata(2,1,20)
ab = nncorr(a,b,8)

a Matrix or cell array, with columns interpreted as timesteps, 
and having a total number of matrix rows of N.

b Matrix or cell array, with columns interpreted as timesteps, 
and having a total number of matrix rows of M.

maxlag Maximum number of time lags

flag Type of normalization (default = 'none')



nncorr

13-184

See Also confusion, regression



nndata

13-185

13nndataPurpose Create neural network data

Syntax nndata(N,Q,TS,v)
nndata(N,Q,TS)

Description nndata(N,Q,TS,v) takes these arguments,

Returns an M-by-TS cell array where each row i has N(i)-by-Q sized matrices of 
value v. If v is not specified, random values are returned.

You can access subsets of neural network data with getelements, getsamples, 
gettimesteps, and getsignals.

You can set subsets of neural network data with setelements, setsamples, 
settimesteps, and setsignals.

You can concatenate subsets of neural network data with catelements, 
catsamples, cattimesteps, and catsignals.

Examples Here four samples of five timesteps, for a 2-element signal consisting of zero 
values is created:

x = nndata(2,4,5,0)

To create random data with the same dimensions:

x = nndata(2,4,5)

Here static (1 timestep) data of 12 samples of 4 elements is created.

x = nndata(4,12)

See Also nnsize, tonndata, fromnndata, nndata2sim, sim2nndata

N Vector of M element sizes

Q Number of samples

TS Number of timesteps

v Scalar value



nndata2sim

13-186

13nndata2simPurpose Convert neural network data to Simulink time series

Syntax nndata2sim(x,i,q)

Description nndata2sim(x,i,q) 

and returns time series q of signal i as a Simulink time series structure.

Examples Here random neural network data is created with two signals having 4 and 3 
elements respectively, over 10 timesteps. Three such series are created.

x = nndata([4;3],3,10);

Now the second signal of the first series is converted to Simulink form.

y_2_1 = nndata2sim(x,2,1)

See Also nndata, sim2nndata, nnsize

x Neural network data

i Index of signal (default = 1)

q Index of sample (default = 1)



nnsize

13-187

13nnsizePurpose Number of neural data elements, samples, timesteps, and signals

Syntax [N,Q,TS,M] = nnsize(x)

Description nnsize(x) takes neural network data x and returns,

If X is a matrix, N is the number of rows of X, Q is the number of columns, and 
both TS and M are 1.

If X is a cell array, N is an Sx1 vector, where M is the number of rows in X, and 
N(i) is the number of rows in X{i,1}. Q is the number of columns in the 
matrices in X.

Examples This code gets the dimensions of matrix data:

x = [1 2 3; 4 7 4]
[n,q,ts,s] = nnsize(x)

This code gets the dimensions of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
[n,q,ts,s] = nnsize(x)

See Also nndata, numelements, numsamples, numsignals, numtimesteps

N Vector containing the number of element sizes for each of M 
signals

Q Number of samples

TS Number of timesteps

M Number of signals



nnstart

13-188

13nnstartPurpose Neural network getting started GUI

Syntax nnstart

Description nnstart opens a window with launch buttons for neural network fitting, 
pattern recognition, clustering and time series wizards. It also provides links 
to lists of datasets, demos, and other useful information for getting started.

See Also nctool, nftool, nprtool, ntstool



nntool

13-189

13nntoolPurpose Open Network/Data Manager 

Syntax nntool

Description nntool opens the Network/Data Manager window, which allows you to import, 
create, use, and export neural networks and data.



nntraintool

13-190

13nntraintoolPurpose Neural network training tool

Syntax nntraintool

Description nntraintool opens the neural network training GUI.

This function can be called to make the training GUI visible before training has 
occurred, after training if the window has been closed, or just to bring the 
training GUI to the front.

Network training functions handle all activity within the training window.

To access additional useful plots, related to the current or last network trained, 
during or after training, click their respective buttons in the training window.



noloop

13-191

13noloopPurpose Remove neural network open- and closed-loop feedback

Syntax net = noloop(net)

Description noloop(net) takes a neural network and returns the network with open- and 
closed-loop feedback removed.

For outputs i, where net.outputs{i}.feedbackMode is 'open', the feedback 
mode is set to 'none', outputs{i}.feedbackInput is set to the empty matrix, 
and the associated network input is deleted.

For outputs i, where net.outputs{i}.feedbackMode is 'closed', the 
feedback mode is set to 'none'.

Examples Here a NARX network is designed. The NARX network has a standard input 
and an open-loop feedback output to an associated feedback input.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
nnet = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai)

Now the network is converted to no loop form. The output and second input are 
no longer associated.

net = noloop(net);
view(net)
[xs,xi,ai] = preparets(net,x,{},t);
Y = net(Xs,Xi,Ai)

See Also closeloop, openloop



normc

13-192

13normcPurpose Normalize columns of matrix

Syntax normc(M)

Description normc(M) normalizes the columns of M to a length of 1.

Examples m = [1 2; 3 4];
normc(m)
ans =

0.3162 0.4472
0.9487 0.8944

See Also normr



normprod

13-193

13normprodPurpose Normalized dot product weight function

Syntax Z = normprod(W,P)
df = normprod('deriv')
dim = normprod('size',S,R,FP)
dp = normprod('dp',W,P,Z,FP)
dw = normprod('dw',W,P,Z,FP)

Description normprod is a weight function. Weight functions apply weights to an input to 
get weighted inputs.

normprod(W,P,FP) takes these inputs,

and returns the S x Q matrix of normalized dot products.

normprod(code) returns information about this function. The following codes 
are defined:

normprod('size',S,R,FP) takes the layer dimension S, input dimension R, 
and function parameters, and returns the weight size [S x R].

normprod('dp',W,P,Z,FP) returns the derivative of Z with respect to P.

normprod('size',S,R,FP) returns the derivative of Z with respect to W.

W S x R weight matrix

P R x Q matrix of Q input (column) vectors

FP Row cell array of function parameters (optional, ignored)

'deriv' Name of derivative function

'pfullderiv' Full input derivative = 1, linear input derivative = 0

'wfullderiv' Full weight derivative = 1, linear weight derivative = 0

'name' Full name

'fpnames' Returns names of function parameters

'fpdefaults' Returns default function parameters



normprod

13-194

Examples Here you define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = normprod(W,P)

Network Use You can create a standard network that uses normprod by calling newgrnn.

To change a network so an input weight uses normprod, set 
net.inputWeight{i,j}.weightFcn to 'normprod'. 
For a layer weight, set net.layerWeight{i,j}.weightFcn to 'normprod'.

In either case, call sim to simulate the network with normprod. See newgrnn for 
simulation examples.

Algorithm normprod returns the dot product normalized by the sum of the input vector 
elements.

z = w*p/sum(p)

See Also dotprod



normr

13-195

13normrPurpose Normalize rows of matrix

Syntax normr(M)

Description normr(M) normalizes the rows of M to a length of 1.

Examples m = [1 2; 3 4];
normr(m)
ans =

 0.4472 0.8944
0.6000 0.8000

See Also normc



nprtool

13-196

13nprtoolPurpose Neural network pattern recognition tool

Syntax nprtool

Description nprtool opens the neural network pattern-recognition GUI.

Algorithm nprtool leads you through solving a pattern-recognition classification problem 
using a two-layer feed-forward patternnet network with sigmoid output 
neurons.

See Also nftool, nctool, ntstool



ntstool

13-197

13ntstoolPurpose Neural network time series tool

Syntax nprtool

Description nprtool opens the neural network pattern-recognition GUI.

Algorithm ntstool leads you through solving time series problems using narxnet, narnet 
and timedelaynet neural networks.

See Also nftool, nctool, nprtool



num2deriv

13-198

13num2derivPurpose Numeric two-point network derivative function

Syntax num2deriv('dperf_dwb',net,X,T,Xi,Ai,EW)
num2deriv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function calculates derivatives using the two-point numeric derivative 
rule.

This function is much slower than the analytical (non-numerical) derivative 
functions, but is provided as a means of checking the analytical derivative 
functions. The other numerical function, num5deriv, is slower but more 
accurate.

bttderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

Returns the gradient of performance with respect to the network’s weights and 
biases, where R and S are the number of input and output elements and Q is 
the number of samples (and N and M are the number of input and output 
signals, Ri and Si are the number of each input and outputs elements, and TS 
is the number of timesteps).

num2deriv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with 
respect to the network’s weights and biases.

Examples Here a feedforward network is trained and both the gradient and Jacobian are 
calculated.

[x,t] = simplefit_dataset;

net Neural network

X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)

T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)

dy
dx
------- y x dx+( ) y x( )–

dx
-----------------------------------------=



num2deriv

13-199

net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = num2deriv('dperf_dwb',net,x,t)
jwb = num2deriv('de_dwb',net,x,t)

See Also bttderiv, defaultderiv, fpderiv, num5deriv, staticderiv



num5deriv

13-200

13num5derivPurpose Numeric five-point stencil neural network derivative function

Syntax num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW)
num5deriv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function calculates derivatives using the five-point numeric derivative 
rule.

This function is much slower than the analytical (non-numerical) derivative 
functions, but is provided as a means of checking the analytical derivative 
functions. The other numerical function, num2deriv, is faster but less accurate.

num5deriv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

Returns the gradient of performance with respect to the network’s weights and 
biases, where R and S are the number of input and output elements and Q is 
the number of samples (and N and M are the number of input and output 
signals, Ri and Si are the number of each input and outputs elements, and TS 
is the number of timesteps).

net Neural network

X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)

T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)

y1 y x 2dx+( )=

y2 y x dx+( )=

y3 y x dx–( )=

y4 y x 2dx–( )=

dy
dx
-------

y1 8y2– 8y3 y4–+

dx
-------------------------------------------------=



num5deriv

13-201

num5deriv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors with 
respect to the network’s weights and biases.

Examples Here a feedforward network is trained and both the gradient and Jacobian are 
calculated.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = num5deriv('dperf_dwb',net,x,t)
jwb = num5deriv('de_dwb',net,x,t)

See Also bttderiv, defaultderiv, fpderiv, num2deriv, staticderiv



numelements

13-202

13numelementsPurpose Number of elements in neural network data

Syntax numelements(x)

Description numelements(x) takes neural network data x in matrix or cell array form, and 
returns the number of elements in each signal.

If x is a matrix the result is the number of rows of x.

If x is a cell array the result is an Sx1 vector, where S is the number of signals 
(i.e., rows of X), and each element S(i) is the number of elements in each 
signal i (i.e., rows of x{i,1}.

Examples This code calculates the number of elements represented by matrix data:

x = [1 2 3; 4 7 4]
n = numelements(x)

This code calculates the number of elements represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numelements]](x)

See Also nndata, nnsize, getelements, setelements, catelements, numsamples, 
numsignals, numtimesteps



numfinite

13-203

13numfinitePurpose Number of finite values in neural network data

Syntax numfinite(x)

Description numfinite(x) takes a matrix or cell array of matrices and returns the number 
of finite elements in it.

Examples x = [1 2; 3 NaN]
n = numfinite(x)
 
x = {[1 2; 3 NaN] [5 NaN; NaN 8]}
n = numfinite(x)

See Also numnan, nndata, nnsize



numnan

13-204

13numnanPurpose Number of NaN values in neural network data

Syntax numnan(x)

Description numnan(x) takes a matrix or cell array of matrices and returns the number of 
NaN elements in it.

Examples x = [1 2; 3 NaN]
n = numnan(x)
 
x = {[1 2; 3 NaN] [5 NaN; NaN 8]}
n = numnan(x)

See Also numnan, nndata, nnsize



numsamples

13-205

13numsamplesPurpose Number of samples in neural network data

Syntax numsamples(x)

Description numsamples(x) takes neural network data x in matrix or cell array form, and 
returns the number of samples.

If x is a matrix, the result is the number of columns of x.

If x is a cell array, the result is the number of columns of the matrices in x.

Examples This code calculates the number of samples represented by matrix data:

x = [1 2 3; 4 7 4]
n = numsamples(x)

This code calculates the number of samples represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsamples(x)

See Also nndata, nnsize, getsamples, setsamples, catsamples, numelements, 
numsignals, numtimesteps



numsignals

13-206

13numsignalsPurpose Number of signals in neural network data

Syntax numsignals(x)

Description numsignals(x) takes neural network data x in matrix or cell array form, and 
returns the number of signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of rows in x.

Examples This code calculates the number of signals represented by matrix data:

x = [1 2 3; 4 7 4]
n = numsignals(x)

This code calculates the number of signals represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsignals(x)

See Also nndata, nnsize, getsignals, setsignals, catsignals, numelements, 
numsamples, numtimesteps



numtimesteps

13-207

13numtimestepsPurpose Number of timesteps in neural network data

Syntax numtimesteps(x)

Description numtimesteps(x) takes neural network data x in matrix or cell array form, and 
returns the number of signals.

If x is a matrix, the result is 1.

If x is a cell array, the result is the number of columns in x.

Examples This code calculates the number of timesteps represented by matrix data:

x = [1 2 3; 4 7 4]
n = numtimesteps(x)

This code calculates the number of timesteps represented by cell data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numtimesteps(x)

See Also nndata, nnsize, gettimesteps, settimesteps, cattimesteps, numelements, 
numsamples, numsignals



openloop

13-208

13openloopPurpose Convert neural network closed loop feedback to open loop

Syntax net = openloop(net)

Description openloop(net) takes a neural network and opens any closed loop feedback. For 
each feedback output i whose property net.outputs{i}.feedbackMode is 
'closed', it replaces its associated feedback layer weights with a new input 
and input weight connections. The net.outputs{i}.feedbackMode property is 
set to 'open', and the net.outputs{i}.feedbackInput property is set to the 
index of the new input. Finally, the value of net.outputs{i}.feedbackDelays 
is subtracted from the delays of the feedback input weights (i.e., to the delays 
values of the replaced layer weights).

Examples Here a NARX network is designed in open-loop form and then converted to 
closed-loop form, then converted back.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Yopen = net(Xs,Xi,Ai)
net = closeloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Ycloseed = net(Xs,Xi,Ai);
net = openloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yopen = net(Xs,Xi,Ai)

See Also closeloop, noloop



patternnet

13-209

13patternnetPurpose Pattern recognition network

Syntax patternnet(hiddenSizes,trainFcn)

Description Pattern recognition networks are feedforward networks that can be trained to 
classify inputs according to target classes. The target data for pattern 
recognition networks should consist of vectors of all zero values except for a 1 
in element i, where i is the class they are to represent.

patternnet(hiddenSizes,trainFcn) takes these arguments,

and returns a pattern recognition neural network.

Examples Here a pattern recognition network is designed to classify iris flowers.

[x,t] = iris_dataset;
net = patternnet(10)
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,t,y)
classes = vec2ind(y)

See Also lvqnet, competlayer, selforgmap, nprtool

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)

trainFcn Training function (default = 'trainlm')



perceptron

13-210

13perceptronPurpose Perceptron

Syntax perceptron(hardlimitTF,perceptronLF)

Description Perceptrons are simple single-layer binary classifiers, which divide the input 
space with a linear decision boundary.

Perceptrons are provide for historical interest. For much better results use 
patternnet, which can solve non-linearly separable problems. Sometimes 
when people refer to perceptrons they are referring to feed-forward pattern 
recognition networks, such as patternnet. But the original perceptron, 
described here, can solve only very simple problems.

Perceptrons can learn to solve a narrow class of classification problems. Their 
significance is they have a simple learning rule and were one of the first neural 
networks to reliably solve a given class of problems.

perceptron(hardlimitTF,perceptronLF) takes these arguments,

and returns a perceptron.

In addition to the default hard limit transfer functions, perceptrons can be 
created with the hardlims transfer function. The other option for the 
perceptron learning rule is learnpn.

Examples Here a perceptron is used to solve a very simple classification logical-OR 
problem.

x = [0 0 1 1; 0 1 0 1];
t = [0 1 1 1];
net = perceptron;
net = train(net,x,t);
view(net)
y = net(x);

See Also preparets, removedelay, timedelaynet, narnet, narxnet

hardlimitTF Hard limit transfer function (default = 'hardlim')

perceptronLF Perceptron learning rule (default = 'learnp')



perform

13-211

13performPurpose Calculate network performance

Syntax perform(net,t,y,ew)

Description perform(net,t,y,ew) takes these arguments,

and returns network performance calculated according to the net.performFcn 
and net.performParam property values.

The target and output data must have the same dimensions. The error weights 
may be the same dimensions as the targets, in the most general case, but may 
also have any of its dimension be 1. This gives the flexibilty of defining error 
weights across any dimension desired.

Error weights can be defined by sample, output element, time step, or network 
output:

ew = [1.0 0.5 0.7 0.2]; % Across 4 samples
ew = [0.1; 0.5; 1.0]; % Across 3 elements
ew = {0.1 0.2 0.3 0.5 1.0}; % Across 5 timesteps
ew = {1.0; 0.5}; % Across 2 outputs

The may also be defined across any combination, such as across two time-series 
(i.e. two samples) over four timesteps.

ew = {[0.5 0.4],[0.3 0.5],[1.0 1.0],[0.7 0.5]};

In the general case, error weights may have exactly the same dimensions as 
targets, in which case each target value will have an associated error weight.

The default error weight treats all errors the same.

ew = {1}

Examples Here a simple fitting problem is solved with a feed-forward network and its 
performance calculated.

net Neural network

t Target data

y Output data

ew Error weights (default = {1})



perform

13-212

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y)

See Also train, configure, init



plotconfusion

13-213

13plotconfusionPurpose Plot classification confusion matrix

Syntax plotconfusion(targets,outputs)
plotconfusion(targets1,outputs1,'name1',targets,outputs2,'name2', 

...)

Description plotconfusion(targets,outputs) displays the classification confusion grid.

plotconfusion(targets1,outputs1,'name1',...) plots a series of plots.

Examples load simpleclass_dataset
net = newpr(simpleclassInputs,simpleclassTargets,20);
net = train(net,simpleclassInputs,simpleclassTargets);
simpleclassOutputs = sim(net,simpleclassInputs);
plotconfusion(simpleclassTargets,simpleclassOutputs);



plotep

13-214

13plotepPurpose Plot weight-bias position on error surface

Syntax h = plotep(W,B,E)
h = plotep(W,B,E,H)

Description plotep is used to show network learning on a plot already created by plotes.

plotep(W,B,E) takes these arguments,

and returns a vector H, containing information for continuing the plot.

plotep(W,B,E,H) continues plotting using the vector H returned by the last call 
to plotep.

H contains handles to dots plotted on the error surface, so they can be deleted 
next time, as well as points on the error contour, so they can be connected.

See Also errsurf, plotes

W Current weight value

B Current bias value

E Current error



ploterrcorr

13-215

13ploterrcorrPurpose Plot autocorrelation of error time series

Syntax ploterrcorr(e)
ploterrcorr(...,'outputIndex',outputIndex)

Description ploterrcorr(e) takes an error time series and plots the autocorrelation of 
errors across varying lags.

ploterrcorr may also take an optional property name/value pair 
'outputIndex', which defines which output whose error autocorrelation is 
being plotted. The default is 1.

Examples Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
ploterrcorr(E)

See Also plotinerrcorr, plotresponse



ploterrhist

13-216

13ploterrhistPurpose Plot error histogram

Syntax ploterrhist(e)
ploterrhist(e1,'name1',e2,'name2',...)
ploterrhist(...,'bins',bins)

Description ploterrhist(e) plots a histogram of error values e.

ploterrhist(e1,'name1',e2,'name2',...) takes any number of errors and 
names and plots each pair.

ploterrhist(...,'bins',bins) takes an optional property name/value pair 
which defines the number of bins to use in the histogram plot. The default is 20.

Examples Here a feedforward network is used to solve a simple fitting problem:

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
e = t - y;
ploterrhist(e,'bins',30)

See Also plotconfusion, ploterrcorr, plotinerrcorr



plotes

13-217

13plotesPurpose Plot error surface of single-input neuron

Syntax plotes(WV,BV,ES,V)

Description plotes(WV,BV,ES,V) takes these arguments,

and plots the error surface with a contour underneath.

Calculate the error surface ES with errsurf.

Examples p = [3 2];
t = [0.4 0.8];
wv = -4:0.4:4; bv = wv;
ES = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])

See Also errsurf

WV 1 x N row vector of values of W

BV 1 x M row vector of values of B

ES M x N matrix of error vectors

V View (default = [-37.5, 30])



plotfit

13-218

13plotfitPurpose Plot function fit

Syntax plotfit(net,inputs,targets)
plotfit(net,inputs1,targets1,'name1',inputs2,targets2,'name2',...)

Description plotfit(NET,INPUTS,TARGETS) plots the output function of a network across 
the range of the inputs X and also plots target T and output data points 
associated with values in X. Error bars show the difference between outputs 
and T.

The plot appears only for networks with one input.

Only the first output/targets appear if the network has more than one output.

plotfit(targets1,outputs1,'name1',...) plots a series of plots.

Examples load simplefit_dataset
net = newfit(simplefitInputs,simplefitTargets,20);
[net,tr] = train(net,simplefitInputs,simplefitTargets);
plotfit(net,simplefitInputs,simplefitTargets);

See Also plottrainstate



plotinerrcorr

13-219

13plotinerrcorrPurpose Plot input to error time series cross-correlation

Syntax plotinerrcorr(x,e)
plotinerrcorr(...,'inputIndex',inputIndex)
plotinerrcorr(...,'outputIndex',outputIndex)

Description plotinerrcorr(x,e) takes an input time series x and an error time series e, 
and plots the autocorrelation of inputs to errors across varying lags.

plotinerrcorr(...,'inputIndex',inputIndex) optionally defines which 
input element is being correlated and plotted. The default is 1.

plotinerrcorr(...,'outputIndex',outputIndex) optionally defines which 
error element is being correlated and plotted. The default is 1.

Examples Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
ploterrcorr(E)
plotinerrcorr(Xs,E)

See Also ploterrcorr, plotresponse, ploterrhist



plotpc

13-220

13plotpcPurpose Plot classification line on perceptron vector plot

Syntax plotpc(W,B)
plotpc(W,B,H)

Description plotpc(W,B) takes these inputs,

and returns a handle to a plotted classification line.

plotpc(W,B,H) takes an additional input,

and deletes the last line before plotting the new one.

This function does not change the current axis and is intended to be called after 
plotpv.

Examples The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)

The following code creates a perceptron with inputs ranging over the values in 
P, assigns values to its weights and biases, and plots the resulting classification 
line.

net = newp(minmax(p),1);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})

See Also plotpv

W S x R weight matrix (R must be 3 or less)

B S x 1 bias vector

H Handle to last plotted line



plotperform

13-221

13plotperformPurpose Plot network performance

Syntax plotperform(tr)

Description plotperform(TR) plots the training, validation, and test performances given 
the training record TR returned by the function train.

Examples load simplefit_dataset
net = newff(simplefitInputs,simplefitTargets,20);
[net,tr] = train(net,simplefitInputs,simplefitTargets);
plotperform(tr);

See Also plottrainstate

0 1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Best Validation Performance is 0.4788 at epoch 4

M
ea

n 
S

qu
ar

ed
 E

rr
or

  (
m

se
)

10 Epochs

 

 
Train
Validation
Test
Best



plotpv

13-222

13plotpvPurpose Plot perceptron input/target vectors

Syntax plotpv(P,T)
plotpv(P,T,V)

Description plotpv(P,T) takes these inputs,

and plots column vectors in P with markers based on T.

plotpv(P,T,V) takes an additional input,

and plots the column vectors with limits set by V.

Examples The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)

The following code creates a perceptron with inputs ranging over the values in 
P, assigns values to its weights and biases, and plots the resulting classification 
line.

net = newp(minmax(p),1);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})

See Also plotpc

P R x Q matrix of input vectors (R must be 3 or less)

T S x Q matrix of binary target vectors (S must be 3 or less)

V Graph limits = [x_min x_max y_min y_max]



plotregression

13-223

13plotregressionPurpose Plot linear regression

Syntax plotregression(targets,outputs)
plotregression(targets1,outputs1,'name1',targets,outputs2,'name2', 

...)

Description plotregression(targets,outputs) plots the linear regression of targets 
relative to outputs.

plotregression(targets1,outputs2,'name1',...) generates multiple plots.

Examples load simplefit_dataset
net = newff(simplefitInputs,simplefitTargets,20);
[net,tr] = train(net,simplefitInputs,simplefitTargets);
simplefitOutputs = sim(net,simplefitInputs);
plotregression(simplefitTargets,simplefitOutputs);



plotregression

13-224

See Also plottrainstate

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Target

O
ut

pu
t~

=
1*

T
ar

ge
t+

−
0.

00
09

2

Regression: R=0.99998

 

 
Data
Fit
Y = T



plotresponse

13-225

13plotresponsePurpose Plot dynamic network time series response

Syntax plotresponse(t,y)
plotresponse(t1,'name1',t2,name2,...,y)
plotresponse(...,'outputIndex',outputIndex)

Description plotresponse(t,y) takes a target time series t and an output time series y, 
and plots them on the same axis showing the errors between them.

plotresponse(t1,'name',t2,'name2',...,y) takes multiple target/name 
pairs, typically defining training, validation and testing targets, and the 
output. It plots the responses with colors indicating the different target sets.

plotresponse(...,'outputIndex',outputIndex) optionally defines which 
error element is being correlated and plotted. The default is 1.

Examples Here a NARX network is used to solve a time series problem.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
plotresponse(Ts,Y)

See Also ploterrcorr, plotinerrcorr, ploterrhist



plotroc

13-226

13plotrocPurpose Plot receiver operating characteristic

Syntax plotroc(targets,outputs)
plotroc(targets1,outputs1,'name1',targets,outputs2,'name2', ...)

Description plotroc(targets,outputs) plots the receiver operating characteristic for each 
output class. The more each curve hugs the left and top edges of the plot, the 
better the classification.

plotroc(targets1,outputs2,'name1',...) generates multiple plots.

Examples load simplecluster_dataset
net = newpr(simpleclusterInputs,simpleclusterTargets,20);
net = train(net,simpleclusterInputs,simpleclusterTargets);
simpleclusterOutputs = sim(net,simpleclusterInputs);
plotroc(simpleclusterTargets,simpleclusterOutputs);



plotroc

13-227

See Also roc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e



plotsom

13-228

13plotsomPurpose Plot self-organizing map

Syntax plotsom(pos)
plotsom(W,D,ND)

Description plotsom(pos) takes one argument,

and plots the neuron positions with red dots, linking the neurons within a 
Euclidean distance of 1.

plotsom(W,D,ND) takes three arguments,

and plots the neuron’s weight vectors with connections between weight vectors 
whose neurons are within a distance of 1.

Examples Here are some neat plots of various layer topologies.

pos = hextop(5,6); plotsom(pos)
pos = gridtop(4,5); plotsom(pos)
pos = randtop(18,12); plotsom(pos)
pos = gridtop(4,5,2); plotsom(pos)
pos = hextop(4,4,3); plotsom(pos)

See newsom for an example of plotting a layer’s weight vectors with the input 
vectors they map.

See Also initsompc, learnsom

POS N x S matrix of S N-dimension neural positions

W S x R weight matrix

D S x S distance matrix

ND Neighborhood distance (default = 1)



plotsomhits

13-229

13plotsomhitsPurpose Plot self-organizing map sample hits

Syntax plotsomhits(net,inputs)
plotsomhits(net,inputs,targets)

Description plotsomhits(net,inputs) plots a SOM layer, with each neuron showing the 
number of input vectors that it classifies. The relative number of vectors for 
each neuron is shown via the size of a colored patch.

Examples load iris_dataset
net = newsom(irisInputs,[5 5]);
[net,tr] = train(net,irisInputs);
plotsomhits(net,irisInputs);



plotsomhits

13-230

See Also plotsomplanes

−1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

6 5 0 7 16

8 6 0 7 20

3 5 5 2 0

7 6 2 10 4

5 6 8 11 1

Hits



plotsomnc

13-231

13plotsomncPurpose Plot self-organizing map neighbor connections

Syntax plotsomnc(net)

Description plotsomnc(net) plots a SOM layer showing neurons as gray-blue patches and 
their direct neighbor relations with red lines.

Examples load iris_dataset
net = newsom(irisInputs,[5 5]);
plotsomnc(net);

See Also plotsomnd, plotsomplanes, plotsomhits

−1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

SOM Neighbor Connections



plotsomnd

13-232

13plotsomndPurpose Plot self-organizing map neighbor distances

Syntax plotsomnd(net)

Description plotsomnd(net) plots a SOM layer showing neurons as gray-blue patches and 
their direct neighbor relations with red lines. The neighbor patches are colored 
from black to yellow to show how close each neuron’s weight vector is to its 
neighbors.

Examples load iris_dataset
net = newsom(irisInputs,[5 5]);
[net,tr] = train(net,irisInputs);
plotsomnd(net);



plotsomnd

13-233

See Also plotsomhits, plotsomnc, plotsomplanes

−1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

SOM Neighbor Weight Distances



plotsomplanes

13-234

13plotsomplanesPurpose Plot self-organizing map weight planes

Syntax plotsomplanes(net)

Description plotsomplanes(net) generates a set of subplots. Each ith subplot shows the 
weights from the ith input to the layer’s neurons, with the most negative 
connections shown as blue, zero connections as black, and the strongest 
positive connections as red.

The plot is only shown for layers organized in one or two dimensions.

This function can also be called with standardized plotting function arguments 
used by the function train.

Examples load iris_dataset
net = newsom(irisInputs,[5 5]);
[net,tr] = train(net,irisInputs);
plotsomplanes(net);



plotsomplanes

13-235

See Also plotsomhits, plotsomnc, plotsomnd

0 2 4
−1

0

1

2

3

4

Weights from Input 1

0 2 4
−1

0

1

2

3

4

Weights from Input 2

0 2 4
−1

0

1

2

3

4

Weights from Input 3

0 2 4
−1

0

1

2

3

4

Weights from Input 4



plotsompos

13-236

13plotsomposPurpose Plot self-organizing map weight positions

Syntax plotsompos(net)
plotsompos(net,inputs)

Description plotsompos(net) plots the input vectors as green dots and shows how the SOM 
classifies the input space by showing blue-gray dots for each neuron’s weight 
vector and connecting neighboring neurons with red lines.

Examples load simplecluster_dataset
net = newsom(simpleclusterInputs,[10 10]);
net = train(net,simpleclusterInputs);
plotsompos(net,simpleclusterInputs);



plotsompos

13-237

See Also plotsomnd, plotsomplanes, plotsomhits

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2
SOM Weight Positions

Weight 1

W
ei

gh
t 2



plotsomtop

13-238

13plotsomtopPurpose Plot self-organizing map topology

Syntax plotsomtop(net)

Description plotsomtop(net) plots the topology of a SOM layer.

Examples load iris_dataset
net = newsom(irisInputs,[8 8]);
plotsomtop(net);

See Also plotsomnd, plotsomplanes, plotsomhits

−1 0 1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

6

SOM Topology



plottrainstate

13-239

13plottrainstatePurpose Plot training state values

Syntax plottrainstate(tr)

Description plottrainstate(tr) plots the training state from a training record TR 
returned by TRAIN.

Examples load housing
net = newff(p,t,20);
[net,tr] = train(net,p,t);
plottrainstate(tr);

See Also plotfit, plotperform, plotregression

10
0

10
2

10
4

gr
ad

ie
nt

Gradient = 19.9977, at epoch 14

10
−4

10
−2

10
0

m
u

Mu = 1, at epoch 14

0 2 4 6 8 10 12 14
0

2

4

6

va
l f

ai
l

14 Epochs

Validation Checks = 6, at epoch 14



plotv

13-240

13plotvPurpose Plot vectors as lines from origin

Syntax plotv(M,T)

Description plotv(M,T) takes two inputs,

and plots the column vectors of M.

R must be 2 or greater. If R is greater than 2, only the first two rows of M are 
used for the plot.

Examples plotv([-.4 0.7 .2; -0.5 .1 0.5],'-')

M R x Q matrix of Q column vectors with R elements

T The line plotting type (optional; default = '-')



plotvec

13-241

13plotvecPurpose Plot vectors with different colors

Syntax plotvec(X,C,M)

Description plotvec(X,C,M) takes these inputs,

and plots each ith vector in X with a marker M, using the ith value in C as the 
color coordinate.

plotvec(X) only takes a matrix X and plots each ith vector in X with marker 
'+' using the index i as the color coordinate.

Examples x = [0 1 0.5 0.7; -1 2 0.5 0.1];
c = [1 2 3 4];
plotvec(x,c)

X Matrix of (column) vectors

C Row vector of color coordinates

M Marker (default = '+')



plotwb

13-242

13plotwbPurpose Plot Hinton diagram of weight and bias values

Syntax plotwb(net)
plotwb(IW,LW,B)
plotwb(...,'toLayers',toLayers)
plotwb(...,'fromInputs',fromInputs)
plotwb(...,'fromLayers',fromLayers)
plotwb(...,'root',root)

Description plotwb(net) takes a neural network and plots all its weights and biases.

plotwb(IW,LW,B) takes a neural networks input weights, layer weights and 
biases and plots them.

plotwb(...,'toLayers',toLayers) optionally defines which destination 
layers whose input weights, layer weights and biases will be plotted.

plotwb(...,'fromInputs',fromInputs) optionally defines which inputs will 
have their weights plotted.

plotwb(...,'toLayers',toLayers) optionally defines which layers will have 
weights coming from them plotted.

plotwb(...,'root',root) optionally defines the root used to scale the 
weight/bias patch sizes. The default is 2, which makes the 2-dimensional patch 
sizes scale directly with absolute weight and bias sizes. Larger values of root 
magnify the relative patch sizes of smaller weights and biases, making 
differences in smaller values easier to see.

Examples Here a cascade-forward network is configured for particular data and its 
weights and biases are plotted in several ways.

[x,t] = simplefit_dataset;
net = cascadeforwardnet([15 5]);
net = configure(net,x,t);
plotwb(net)
plotwb(net,'root',3)
plotwb(net,'root',4)
plotwb(net,'toLayers',2)
plotwb(net,'fromLayers',1)
plotwb(net,'toLayers',2,'fromInputs',1)



plotwb

13-243

See Also plotsomplanes



pnormc

13-244

13pnormcPurpose Pseudonormalize columns of matrix

Syntax pnormc(X,R)

Description pnormc(X,R) takes these arguments,

and returns X with an additional row of elements, which results in new column 
vector lengths of R.

Caution  For this function to work properly, the columns of X must originally 
have vector lengths less than R.

Examples x = [0.1 0.6; 0.3 0.1];
y = pnormc(x)

See Also normc, normr

X M x N matrix

R (Optional) radius to normalize columns to (default = 1)



poslin

13-245

13poslinPurpose Positive linear transfer function

Graph and 
Symbol

Syntax A = poslin(N,FP)
dA_dN = poslin('dn',N,A,FP)
info = poslin(code)

Description poslin is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input.

poslin(N,FP) takes N and optional function parameters,

and returns A, the S x Q matrix of N’s elements clipped to [0, inf].

poslin('dn',N,A,FP) returns the S x Q derivative of A with respect to N. If A or 
FP is not supplied or is set to [], FP reverts to the default parameters, and A is 
calculated from N.

poslin('name') returns the name of this function.

poslin('output',FP) returns the [min max] output range.

poslin('active',FP) returns the [min max] active range.

poslin('fullderiv') returns 1 or 0, depending on whether dA_dN is S x S x Q 
or S x Q.

poslin('fpnames') returns the names of the function parameters.

poslin('fpdefaults') returns the default function parameters.

n
0

-1

+1

a = poslin(n)

Positive Linear Transfer Function

a

��1

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



poslin

13-246

Examples Here is the code to create a plot of the poslin transfer function.

n = -5:0.1:5;
a = poslin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'poslin';

Network Use To change a network so that a layer uses poslin, set 
net.layers{i}.transferFcn to 'poslin'.

Call sim to simulate the network with poslin.

Algorithm The transfer function poslin returns the output n if n is greater than or equal 
to zero and 0 if n is less than or equal to zero.

poslin(n) = n, if n >= 0
= 0, if n <= 0

See Also sim, purelin, satlin, satlins



preparets

13-247

13preparetsPurpose Prepare input and target time series data for network simulation or training

Syntax [Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW)

Description This function simplifies the normally complex and error prone task of 
reformatting input and target timeseries. It automatically shifts input and 
target time series as many steps as are needed to fill the initial input and layer 
delay states. If the network has open loop feedback, then it copies feedback 
targets into the inputs as needed to define the open loop inputs.

Each time a new network is designed, with different numbers of delays or 
feedback settings, preparets can be called to reformat input and target data 
accordingly. Also, each time a network is transformed with openloop, 
closeloop, removedelay or adddelay, this function can reformat the data 
accordingly.

preparets(net,Xnf,Tnf,Tf,EW) takes these arguments,

and returns,

net Neural network

Xnf Non-feedback inputs

Tnf Non-feedback targets

Tf Feedback targets

EW Error weights (default = {1})

Xs Shifted inputs

Xi Initial input delay states

Ai Initial layer delay states

Ts Shifted targets

EWs Shifted error weights

shift The number of timesteps truncated from the front of X and T 
in order to properly fill Xi and Ai.



preparets

13-248

Examples Here a time-delay network with 20 hidden neurons is created, trained and 
simulated.

net = timedelaynet(20);
view(net)
[X,T] = simpleseries_dataset;
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts);
Y = net(Xs,Xi,Ai)

Here a NARX network is designed. The NARX network has a standard input 
and an open-loop feedback output to an associated feedback input.

[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
y = net(Xs,Xi,Ai);

Now the network is converted to closed loop, and the data is reformatted to 
simulate the network's closed-loop response.

net = closeloop(net);
view(net)
[Xs,Xi,Ai] = preparets(net,X,{},T);
y = net(Xs,Xi,Ai);

See Also adddelay, closeloop, narnet, narxnet, openloop, removedelay, timedelaynet



processpca

13-249

13processpcaPurpose Process columns of matrix with principal component analysis

Syntax [y,ps] = processpca(maxfrac)
[y,ps] = processpca(x,fp)
y = processpca('apply',x,ps)
x = processpca('reverse',y,ps)
dx_dy = processpca('dx',x,y,ps)
dx_dy = processpca('dx',x,[],ps)
name = processpca('name');
fp = processpca('pdefaults');
names = processpca('pnames');
processpca('pcheck',fp);

Description processpca processes matrices using principal component analysis so that 
each row is uncorrelated, the rows are in the order of the amount they 
contribute to total variation, and rows whose contribution to total variation are 
less than maxfrac are removed.

processpca(X,maxfrac) takes X and an optional parameter,

and returns

processpca(X,FP) takes parameters as a struct: FP.maxfrac.

processpca('apply',X,PS) returns Y, given X and settings PS.

processpca('reverse',Y,PS) returns X, given Y and settings PS.

processpca('dx',X,Y,PS) returns the M x N x Q derivative of Y with respect to 
X.

processpca('dx',X,[],PS) returns the derivative, less efficiently.

processpca('name') returns the name of this process method.

X N x Q matrix or a 1 x TS row cell array of N x Q matrices

maxfrac Maximum fraction of variance for removed rows (default is 0)

Y Each N x Q matrix with N - M rows deleted (optional)

PS Process settings that allow consistent processing of values



processpca

13-250

processpca('pdefaults') returns default process parameter structure.

processpca('pdesc') returns the process parameter descriptions.

processpca('pcheck',fp) throws an error if any parameter is illegal.

Examples Here is how to format a matrix with an independent row, a correlated row, and 
a completely redundant row so that its rows are uncorrelated and the 
redundant row is dropped.

x1_independent = rand(1,5)
x1_correlated = rand(1,5) + x_independent;
x1_redundant = x_independent + x_correlated
x1 = [x1_independent; x1_correlated; x1_redundant]
[y1,ps] = processpca(x1)

Next, apply the same processing settings to new values.

x2_independent = rand(1,5)
x2_correlated = rand(1,5) + x_independent;
x2_redundant = x_independent + x_correlated
x2 = [x2_independent; x2_correlated; x2_redundant];
y2 = processpca('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = processpca('reverse',y1,ps)

Algorithm Values in rows whose elements are not all the same value are set to

y = 2*(x-minx)/(maxx-minx) - 1;

Values in rows with all the same value are set to 0.

See Also fixunknowns, mapminmax, mapstd

Definition In some situations, the dimension of the input vector is large, but the 
components of the vectors are highly correlated (redundant). It is useful in this 
situation to reduce the dimension of the input vectors. An effective procedure 
for performing this operation is principal component analysis. This technique 
has three effects: it orthogonalizes the components of the input vectors (so that 
they are uncorrelated with each other), it orders the resulting orthogonal 
components (principal components) so that those with the largest variation 



processpca

13-251

come first, and it eliminates those components that contribute the least to the 
variation in the data set. The following code illustrates the use of processpca, 
which performs a principal-component analysis using the processing setting 
maxfrac of 0.02.

[pn,ps1] = mapstd(p);
[ptrans,ps2] = processpca(pn,0.02);

The input vectors are first normalized, using mapstd, so that they have zero 
mean and unity variance. This is a standard procedure when using principal 
components. In this example, the second argument passed to processpca is 
0.02. This means that processpca eliminates those principal components that 
contribute less than 2% to the total variation in the data set. The matrix 
ptrans contains the transformed input vectors. The settings structure ps2 
contains the principal component transformation matrix. After the network 
has been trained, these settings should be used to transform any future inputs 
that are applied to the network. It effectively becomes a part of the network, 
just like the network weights and biases. If you multiply the normalized input 
vectors pn by the transformation matrix transMat, you obtain the transformed 
input vectors ptrans.

If processpca is used to preprocess the training set data, then whenever the 
trained network is used with new inputs, you should preprocess them with the 
transformation matrix that was computed for the training set, using ps2. The 
following code applies a new set of inputs to a network already trained.

pnewn = mapstd('apply',pnew,ps1);
pnewtrans = processpca('apply',pnewn,ps2);
a = sim(net,pnewtrans);

Principal component analysis is not reliably reversible. Therefore it is only 
recommended for input processing. Outputs require reversible processing 
functions.

Principal component analysis is not part of the default processing for 
feedforwardnet. If you wish to add this, you can use the following command:

net.inputs{1}.processFcns{end+1} = 'processpca';



prune

13-252

13prunePurpose Delete neural inputs, layers and outputs with sizes of zero

Syntax [net,pi,pl,po] = prune(net)

Description This function removes zero-sized inputs, layers, and outputs from a network. 
This leaves a network which may have fewer inputs and outputs, but which 
implements the same operations, as zero-sized inputs and outputs do not 
convey any information.

One use for this simplification is to prepare a network with zero sized 
subobjects for Simulink, where zero sized signals are not supported.

The companion function prunedata can prune data to remain consistent with 
the transformed network.

prune(net) takes a neural network and returns

Examples Here a NARX dynamic network is created which has one external input and a 
second input which feeds back from the output.

net = narxnet(20);
view(net)

The network is then trained on a single random time-series problem with 50 
timesteps. The external input happens to have no elements.

X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);

The network and data are then pruned before generating a Simulink diagram 
and initializing its input and layer states.

[net2,pi,pl,po] = prune(net);
view(net)

net The same network with zero-sized subobjects removed

pi Indices of pruned inputs

pl Indices of pruned layers

po Indices of pruned outputs



prune

13-253

[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)

See Also prunedata, gensim



prunedata

13-254

13prunedataPurpose Purpose

Syntax [Xp,Xip,Aip,Tp] = prunedata(pi,pl,po,X,Xi,Ai,T)

Description This function prunes data to be consistent with a network whose zero-sized 
inputs, layers, and outputs have been removed with prune.

One use for this simplification is to prepare a network with zero-sized 
subobjects for Simulink, where zero-sized signals are not supported.

prunedata(pi,pl,po,X,Xi,Ai,T) takes these arguments,

and returns the pruned inputs, input and layer delay states, and targets.

Examples Here a NARX dynamic network is created which has one external input and a 
second input which feeds back from the output.

net = narxnet(20);
view(net)

The network is then trained on a single random time-series problem with 50 
timesteps.  The external input happens to have no elements.

X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);

The network and data are then pruned before generating a Simulink diagram 
and initializing its input and layer states.

pi Indices of pruned inputs

pl Indices of pruned layers

po Indices of pruned outputs

X Input data

Xi Initial input delay states

Ai Initial layer delay states

T Target data



prunedata

13-255

[net2,pi,pl,po] = prune(net);
view(net)
[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)

See Also prune, gensim



purelin

13-256

13purelinPurpose Linear transfer function

Graph and 
Symbol

Syntax A = purelin(N,FP)
dA_dN = purelin('dn',N,A,FP)
info = purelin(code)

Description purelin is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input.

purelin(N,FP) takes N and optional function parameters,

and returns A, an S x Q matrix equal to N.

purelin('dn',N,A,FP) returns the S x Q derivative of A with respect to N. If A 
or FP is not supplied or is set to [], FP reverts to the default parameters, and A 
is calculated from N.

purelin('name') returns the name of this function.

purelin('output',FP) returns the [min max] output range.

purelin('active',FP) returns the [min max] active input range.

purelin('fullderiv') returns 1 or 0, depending on whether dA_dN is S x S x 
Q or S x Q.

purelin('fpnames') returns the names of the function parameters.

purelin('fpdefaults') returns the default function parameters.

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



purelin

13-257

Examples Here is the code to create a plot of the purelin transfer function.

n = -5:0.1:5;
a = purelin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'purelin';

Algorithm a = purelin(n) = n

See Also sim, satlin, satlins



quant

13-258

13quantPurpose Discretize values as multiples of quantity

Syntax quant(X,Q)

Description quant(X,Q) takes two inputs,

and returns values in X rounded to nearest multiple of Q.

Examples x = [1.333 4.756 -3.897];
y = quant(x,0.1)

X Matrix, vector, or scalar

Q Minimum value



radbas

13-259

13radbasPurpose Radial basis transfer function

Graph and 
Symbol

Syntax A = radbas(N,FP)
da_dn = radbas('da_dn',N,A,FP)

Description radbas is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input.

radbas(N,FP) takes one or two inputs,

and returns A, an S x Q matrix of the radial basis function applied to each 
element of N.

radbas('da_dn',N,A,FP) returns the S x Q derivative of A with respect to N. If 
A or FP is not supplied or is set to [], FP reverts to the default parameters, and 
A is calculated from N.

Examples Here you create a plot of the radbas transfer function.

n = -5:0.1:5;
a = radbas(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'radbas';

a = radbas(n)

Radial Basis Function

n0.0

1.0

+0.833-0.833

a

0.5 ��

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



radbas

13-260

Algorithm a = radbas(n) = exp(-n^2)

See Also sim, radbasn, tribas



radbasn

13-261

13radbasnPurpose Normalized radial basis transfer function

Graph and 
Symbol

Syntax A = radbasn(N,FP)
da_dn = radbasn('da_dn',N,A,FP)

Description radbasn is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input. This function is equivalent to radbas, except that 
output vectors are normalized by dividing by the sum of the pre-normalized 
values.

radbasn(N,FP) takes one or two inputs,

and returns A, an S x Q matrix of the radial basis function applied to each 
element of N.

radbasn('da_dn',N,A,FP) returns the S x Q derivative of A with respect to N. 
If A or FP is not supplied or is set to [], FP reverts to the default parameters, 
and A is calculated from N.

Examples Here six random 3-element vectors are passed through the radial basis 
transform and normalized.

n = rand(3,6)
a = radbasn(n)

Assign this transfer function to layer i of a network.

a = radbas(n)

Radial Basis Function

n0.0

1.0

+0.833-0.833

a

0.5 ��

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



radbasn

13-262

net.layers{i}.transferFcn = 'radbasn';

Algorithm a = radbasn(n) = exp(-n^2) / sum(exp(-n^2))

See Also sim, radbas, tribas



randnc

13-263

13randncPurpose Normalized column weight initialization function

Syntax W = randnc(S,PR)
W = randnc(S,R)

Description randnc is a weight initialization function.

randnc(S,P) takes two inputs,

and returns an S x R random matrix with normalized columns.

Can also be called as randnc(S,R).

Examples A random matrix of four normalized three-element columns is generated:

M = randnc(3,4)
M =

-0.6007   -0.4715   -0.2724    0.5596
-0.7628   -0.6967   -0.9172    0.7819
-0.2395    0.5406   -0.2907    0.2747

See Also randnr

S Number of rows (neurons)

PR R x 2 matrix of input value ranges = [Pmin Pmax]



randnr

13-264

13randnrPurpose Normalized row weight initialization function

Syntax W = randnr(S,PR)
W = randnr(S,R)

Description randnr is a weight initialization function.

randnr(S,PR) takes two inputs,

and returns an S x R random matrix with normalized rows.

Can also be called as randnr(S,R).

Examples A matrix of three normalized four-element rows is generated:

M = randnr(3,4)
M =

0.9713 0.0800 -0.1838 -0.1282
0.8228 0.0338 0.1797 0.5381
-0.3042 -0.5725 0.5436 0.5331

See Also randnc

S Number of rows (neurons)

PR R x 2 matrix of input value ranges = [Pmin Pmax]



rands

13-265

13randsPurpose Symmetric random weight/bias initialization function

Syntax W = rands(S,PR)
M = rands(S,R)
v = rands(S);

Description rands is a weight/bias initialization function.

rands(S,PR) takes

and returns an S-by-R weight matrix of random values between -1 and 1.

rands(S,R) returns an S-by-R matrix of random values. rands(S) returns an 
S-by-1 vector of random values.

Examples Here, three sets of random values are generated with rands.

rands(4,[0 1; -2 2])
rands(4)
rands(2,3)

Network Use To prepare the weights and the bias of layer i of a custom network to be 
initialized with rands,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes 
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'rands'. Set each 
net.layerWeights{i,j}.initFcn to 'rands'. Set each 
net.biases{i}.initFcn to 'rands'.

To initialize the network, call init.

See Also randsmall, randnr, randnc, initwb, initlay, init

S Number of neurons

PR R x 2 matrix of R input ranges



randsmall

13-266

13randsmallPurpose Small random weight/bias initialization function

Syntax W = randsmall(S,PR)
M = randsmall(S,R)
v = randsmall(S);

Description randsmall is a weight/bias initialization function.

randsmall(S,PR) takes

and returns an S-by-R weight matrix of small random values between -0.1 and 
0.1.

rands(S,R) returns an S-by-R matrix of random values. rands(S) returns an 
S-by-1 vector of random values.

Examples Here three sets of random values are generated with rands.

randsmall(4,[0 1; -2 2])
randsmall(4)
randsmall(2,3)

Network Use To prepare the weights and the bias of layer i of a custom network to be 
initialized with rands,

1 Set net.initFcn to 'initlay'. 
(net.initParam automatically becomes initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'randsmall'. 
Set each net.layerWeights{i,j}.initFcn to 'randsmall'. 
Set each net.biases{i}.initFcn to 'randsmall'.

To initialize the network, call init.

See Also rands, randnr, randnc, initwb, initlay, init

S Number of neurons

PR R x 2 matrix of R input ranges



randtop

13-267

13randtopPurpose Random layer topology function

Syntax pos = randtop(dim1,dim2,...,dimN)

Description randtop calculates the neuron positions for layers whose neurons are arranged 
in an N-dimensional random pattern.

randtop(dim1,dim2,...,dimN) takes N arguments,

and returns an N x S matrix of N coordinate vectors, where S is the product of 
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 192 neurons 
arranged in a 16-by-12 random pattern.

pos = randtop(8,5);
plotsompos(pos)

See Also gridtop, hextop, tritop

dimi Length of layer in dimension i



regression

13-268

13regressionPurpose Linear regression

Syntax [r,m,b] = regression(t,y)
[r,m,b] = regression(t,y,'one')

Description regression(t,y) takes these arguments,

and returns these outputs,

regression(t,y,'one') combines all matrix rows before regressing, returning 
single scalar regression, slope and offset values.

Examples Here a feedforward network is trained and regression performed on its targets 
and outputs.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
[r,m,b] = regression(t,y)
plotregression(t,y)

See Also plotregression, confusion

t Target matrix or cell array data with a total of N matrix rows

y Output matrix or cell array data of the same size

r Regression values for each of the N matrix rows

m Slope of regression fit for each of the N matrix rows

b Offset of regression fit for each of the N matrix rows



removeconstantrows

13-269

13removeconstantrowsPurpose Process matrices by removing rows with constant values

Syntax [Y,PS] = removeconstantrows(max_range)
[Y,PS] = removeconstantrows(X,FP)
Y = removeconstantrows('apply',X,PS)
X = removeconstantrows('reverse',Y,PS)
dy_dx = removeconstantrows('dy_dx',X,Y,PS)
dx_dy = removeconstantrows('dx_dy',X,Y,PS)

Description removeconstantrows processes matrices by removing rows with constant 
values.

removeconstantrows(X,max_range) takes X and an optional parameter,

and returns

removeconstantrows(X,FP) takes parameters as a struct: FP.max_range.

removeconstantrows('apply',X,PS) returns Y, given X and settings PS.

removeconstantrows('reverse',Y,PS) returns X, given Y and settings PS.

removeconstantrows('dy_dx',X,Y,PS) returns the M x N x Q derivative of Y 
with respect to X.

removeconstantrows('dx_dy',X,[],PS) returns the reverse derivative.

Examples Here is how to format a matrix so that the rows with constant values are 
removed.

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = removeconstantrows(x1)

Next, apply the same processing settings to new values.

X Single N x Q matrix or a 1 x TS row cell array of N x Q matrices

max_range Maximum range of values for row to be removed (default is 0)

Y Each M x Q matrix with N - M rows deleted (optional)

PS Process settings that allow consistent processing of values



removeconstantrows

13-270

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = removeconstantrows('apply',x2,PS)

Reverse the processing of y1 to get x1 again.

x1_again = removeconstantrows('reverse',y1,PS)

See Also fixunknowns, mapminmax, mapstd, processpca



removedelay

13-271

13removedelayPurpose Remove delay to neural network’s response

Syntax net = removedelay(net)
net = removedelay(net,delay)

Description removedelay(net,n) takes these arguments,

and returns the network with input delay connections decreased, and output 
feedback delays increased, by the specified number of delays n. The result is a 
network which behaves identically, except that outputs are produced n 
timesteps later.

If the number of delays n is not specified, a default of one delay is used.

Examples Here a time delay network is created, trained and simulated in its original form 
on an input time series X and target series T. It is then with a delay removed 
and then added back. These first and third outputs will be identical, while the 
second will be shifted by one timestep.

[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi);
y1 = net(Xs)
net2 = removedelay(net);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi)
net3 = adddelay(net2)
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi)

See Also adddelay, closeloop, openloop

net Neural network

n Number of delays



removerows

13-272

13removerowsPurpose Process matrices by removing rows with specified indices

Syntax [y,ps] = removerows(x,ind)
[y,ps] = removerows(x,fp)
y = removerows('apply',x,ps)
x = removerows('reverse',y,ps)
dx_dy = removerows('dx',x,y,ps)
dx_dy = removerows('dx',x,[],ps)
name = removerows('name');
fp = removerows('pdefaults');
names = removerows('pnames');
removerows('pcheck',fp);

Description removerows processes matrices by removing rows with the specified indices.

removerows(X,ind) takes X and an optional parameter,

and returns

removerows(X,FP) takes parameters as a struct: FP.ind.

removerows('apply',X,PS) returns Y, given X and settings PS.

removerows('reverse',Y,PS) returns X, given Y and settings PS.

removerows('dx',X,Y,PS) returns the M x N x Q derivative of Y with respect to 
X.

removerows('dx',X,[],PS) returns the derivative, less efficiently.

removerows('name') returns the name of this process method.

removerows('pdefaults') returns the default process parameter structure.

removerows('pdesc') returns the process parameter descriptions.

X N x Q matrix or a 1 x TS row cell array of N x Q matrices

ind Vector of row indices to remove (default is [])

Y Each M x Q matrix, where M == N-length(ind) (optional)

PS Process settings that allow consistent processing of values



removerows

13-273

removerows('pcheck',FP) throws an error if any parameter is illegal.

Examples Here is how to format a matrix so that rows 2 and 4 are removed:

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,ps] = removerows(x1,[2 4])

Next, apply the same processing settings to new values.

x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = removerows('apply',x2,ps)

Reverse the processing of y1 to get x1 again.

x1_again = removerows('reverse',y1,ps)

Algorithm In the reverse calculation, the unknown values of replaced rows are 
represented with NaN values.

See Also fixunknowns, mapminmax, mapstd, processpca



revert

13-274

13revertPurpose Change network weights and biases to previous initialization values

Syntax net = revert(net)

Description revert (net) returns neural network net with weight and bias values 
restored to the values generated the last time the network was initialized.

If the network is altered so that it has different weight and bias connections or 
different input or layer sizes, then revert cannot set the weights and biases to 
their previous values and they are set to zeros instead.

Examples Here a perceptron is created with a two-element input (with ranges of 0 to 1 
and -2 to 2) and one neuron. Once it is created, you can display the neuron’s 
weights and bias.

net = newp([0 1;-2 2],1);

The initial network has weights and biases with zero values.

net.iw{1,1}, net.b{1}

Change these values as follows:

net.iw{1,1} = [1 2]; 
net.b{1} = 5;
net.iw{1,1}, net.b{1}

You can recover the network’s initial values as follows:

net = revert(net);
net.iw{1,1}, net.b{1}

See Also init, sim, adapt, train



roc

13-275

13rocPurpose Receiver operating characteristic

Syntax [tpr,fpr,thresholds] = roc(targets,outputs)

Description The receiver operating characteristic is a metric used to check the quality of 
classifiers. For each class of a classifier, roc applies threshold values across the 
interval [0,1] to outputs. For each threshold, two values are calculated, the 
True Positive Ratio (the number of outputs greater or equal to the threshold, 
divided by the number of one targets), and the False Positive Ratio (the number 
of outputs less than the threshold, divided by the number of zero targets).

You can visualize the results of this function with plotroc.

roc(targets,outputs) takes these arguments:

and returns these values:

roc(targets,outputs) takes these arguments:

targets S x Q matrix, where each column vector contains a single 1 
value, with all other elements 0. The index of the 1 indicates 
which of S categories that vector represents.

outputs S x Q matrix, where each column contains values in the range 
[0,1]. The index of the largest element in the column indicates 
which of S categories that vector presents. Alternately, 1 x Q 
vector, where values greater or equal to 0.5 indicate class 
membership, and values below 0.5, nonmembership.

tpr S x 1 cell array of 1 x N true-positive/positive ratios.

fpr S x 1 cell array of 1 x N false-positive/negative ratios.

thresholds S x 1 cell array of 1 x N thresholds over interval [0,1].

targets 1 x Q matrix of Boolean values indicating class membership.

outputs S x Q matrix, of values in [0.1] interval, where values greater 
than or equal to 0.5 indicate class membership.



roc

13-276

and returns these values:

Examples load iris_dataset

net = newpr(irisInputs,irisTargets,20);

net = train(net,irisInputs,irisTargets);

irisOutputs = sim(net,irisInputs);

[tpr,fpr,thresholds] = roc(irisTargets,irisOutputs)

See Also plotroc, confusion

tpr 1 x N vector of true-positive/positive ratios.

fpr 1 x N vector of false-positive/negative ratios.

thresholds 1 x N vector of thresholds over interval [0,1].



sae

13-277

13saePurpose Sum absolute error performance function

Syntax perf = sae(net.t,y,ew)
dPerf_dy = sae('dperf_dy',t,y,ew);
dPerf_dx = sae('dperf_dwb',t,y,ew);
[...] = sae(...,'regularization',regularization)
[...] = sae(...,'normalization',normalization)
[...] = sae(...,'squaredWeighting',squaredWeighting)
[...] = sae(...,FP)

Description sae is a network performance function. It measures performance according to 
the sum of squared errors.

sae(net,t,y,ew) takes E and optional function parameters,

and returns the sum squared error.

sae('dperf_dy',E,Y,X,perf,FP) returns the derivative of perf with respect 
to Y.

sae('dperf_dwb',E,Y,X,perf,FP) returns the derivative of perf with respect 
to X.

This function has three optional function parameters which can be defined 
with parameter name/pair arguments, or as a structure FP argument with 
fields having the parameter name and assigned the parameter values. 

• regularization — can be set to any value between the default of 0 and 1. 
The greater the regularization value, the more squared weights and biases 
are taken into account in the performance calculation.

• normalization — can be set to the default 'absolute', or 'normalized' 
(which normalizes errors to the [+2 -2] range consistent with normalized 
output and target ranges of [-1 1]) or 'percent' (which normalizes errors 
to the range [-1 +1]).

net Neural network

t Matrix or cell array of target vectors

y Matrix or cell array of output vectors

ew Error weights (default = {1})



sae

13-278

• squaredWeighting — can be set to the default false, for applying error 
weights to absolute errors, or false for applying error weights to the squared 
errors before squaring.

Examples Here a network is trained to fit a simple data set and its performance 
calculated

[x,t] = simplefit_dataset;
net = fitnet(10);
net.performFcn = 'sae';
net = train(net,x,t)
y = sim(net,p)
e = t-y
perf = sae(net,t,y)

Network Use To prepare a custom network to be trained with sae, set net.performFcn to 
'sae'. This automatically sets net.performParam to the default function 
parameters.

Then calling train, adapt or perform will result in sae being used to calculate 
performance.



satlin

13-279

13satlinPurpose Saturating linear transfer function

Graph and 
Symbol

Syntax A = satlin(N,FP)
dA_dN = satlin('dn',N,A,FP)
info = satlin(code)

Description satlin is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input.

satlin(N,FP) takes one input,

and returns A, the S x Q matrix of N’s elements clipped to [0, 1].

satlin('dn',N,A,FP) returns the S x Q derivative of A with respect to N. If A or 
FP is not supplied or is set to [], FP reverts to the default parameters, and A is 
calculated from N.

satlin('name') returns the name of this function.

satlin('output',FP) returns the [min max] output range.

satlin('active',FP) returns the [min max] active input range.

satlin('fullderiv') returns 1 or 0, depending on whether dA_dN is S x S x Q 
or S x Q.

satlin('fpnames') returns the names of the function parameters.

a = satlin(n)

n
0

-1

+1

+1-1

Satlin Transfer Function

�
�

a
   

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



satlin

13-280

satlin('fpdefaults') returns the default function parameters.

Examples Here is the code to create a plot of the satlin transfer function.

n = -5:0.1:5;
a = satlin(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'satlin';

Algorithm a = satlin(n) = 0, if n <= 0
n, if 0 <= n <= 1
1, if 1 <= n

See Also sim, poslin, satlins, purelin



satlins

13-281

13satlinsPurpose Symmetric saturating linear transfer function

Graph and 
Symbol

Syntax A = satlins(N,FP)
dA_dN = satlins('dn',N,A,FP)
info = satlins(code)

Description satlins is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input.

satlins(N,FP) takes N and an optional argument,

and returns A, the S x Q matrix of N’s elements clipped to [-1, 1].

satlins('dn',N,A,FP) returns the S x Q derivative of A with respect to N. If A 
or FP is not supplied or is set to [], FP reverts to the default parameters, and A 
is calculated from N.

satlins('name') returns the name of this function.

satlins('output',FP) returns the [min max] output range.

satlins('active',FP) returns the [min max] active input range.

satlins('fullderiv') returns 1 or 0, depending on whether dA_dN is S x S x 
Q or S x Q.

satlins('fpnames') returns the names of the function parameters.

satlins('fpdefaults') returns the default function parameters.

��
��

a = satlins(n)

n
0

-1

+1

+1-1

Satlins Transfer Function

a

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (optional, ignored)



satlins

13-282

Examples Here is the code to create a plot of the satlins transfer function.

n = -5:0.1:5;
a = satlins(n);
plot(n,a)

Algorithm satlins(n) = -1, if n <= -1
n, if -1 <= n <= 1
1, if 1 <= n

See Also sim, satlin, poslin, purelin



scalprod

13-283

13scalprodPurpose Scalar product weight function

Syntax Z = scalprod(W,P,FP)
dim = scalprod('size',S,R,FP)
dp = scalprod('dp',W,P,Z,FP)
dw = scalprod('dw',W,P,Z,FP)
info = scalrod(code)

Description scalprod is the scalar product weight function. Weight functions apply weights 
to an input to get weighted inputs.

scalprod(W,P) takes these inputs,

and returns the R x Q scalar product of W and P defined by Z = w*P.

scalprod(code) returns information about this function. The following codes 
are defined:

scalprod('size',S,R,FP) takes the layer dimension S, input dimension R, 
and function parameters, and returns the weight size [1 x 1].

scalprod('dp',W,P,Z,FP) returns the derivative of Z with respect to P.

W 1 x 1 weight matrix

P R x Q matrix of Q input (column) vectors

'deriv' Name of derivative function

'fullderiv' Reduced derivative = 2, full derivative = 1, linear 
derivative = 0

'pfullderiv' Input: reduced derivative = 2, full derivative = 1, linear 
derivative = 0

'wfullderiv' Weight: reduced derivative = 2, full derivative = 1, linear 
derivative = 0

'name' Full name

'fpnames' Returns the names of function parameters

'fpdefaults' Returns the default function parameters



scalprod

13-284

scalprod('dw',W,P,Z,FP) returns the derivative of Z with respect to W.

Examples Here you define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(1,1);
P = rand(3,1);
Z = scalprod(W,P)

Network Use To change a network so an input weight uses scalprod, set 
net.inputWeight{i,j}.weightFcn to 'scalprod'. 
For a layer weight, set net.layerWeight{i,j}.weightFcn to 'scalprod'.

In either case, call sim to simulate the network with scalprod.

See help newp and help newlin for simulation examples.

See Also dotprod, sim, dist, negdist, normprod



selforgmap

13-285

13selforgmapPurpose Self-organizing map

Syntax selforgmap(dimensions,coverSteps,initNeighbor,topologyFcn,distance
Fcn)

Description Self-organizing maps learn to cluster data based on similarity, topology, with 
a preference (but no guarantee) of assigning the same number of instances to 
each class.

Self-organizing maps are used both to cluster data and to reduce the 
dimensionality of data. They are inspired by the sensory and motor mappings 
in the mammal brain, which also appear to automatically organizing 
information topologically.

selforgmap(dimensions,coverSteps,initNeighbor,topologyFcn,distance
Fcn) takes these arguments,

and returns a self-organizing map.

Examples Here a self-organizing map is used to cluster a simple set of data.

x = simplecluster_dataset;
net = selforgmap([8 8])
net = train(net,x);
view(net)
y = net(x);
classes = vec2ind(y)

See Also lvqnet, competlayer, selforgmap, nctool

dimensions Row vector of dimension sizes (default = [8 8])

coverSteps Number of training steps for initial covering of the input 
space (default = 100)

initNeighbor Initial neighborhood size (default = 3)

topologyFcn Layer topology function (default = 'hextop')

distanceFcn Neuron distance function (default = 'linkdist')



separatewb

13-286

13separatewbPurpose Separate biases and weight values from a weight/bias vector

Syntax [b,IW,LW] = separatewb(net,wb)

Description separatewb(net,wb) takes two arguments,

and returns

Examples Here a feedforward network is trained to fit some data, then its bias and weight 
values formed into a vector. The single vector is then redivided into the original 
biases and weights.

[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = formwb(net,net.b,net.iw,net.lw)
[b,iw,lw] = separatewb(net,wb)

See Also getwb, formwb, setwb

net Neural network

wb Weight/bias vector

b Cell array of bias vectors

IW Cell array of input weight matrices

LW Cell array of layer weight matrices



seq2con

13-287

13seq2conPurpose Convert sequential vectors to concurrent vectors

Syntax b = seq2con(s)

Description Neural Network Toolbox™ software represents batches of vectors with a 
matrix, and sequences of vectors with multiple columns of a cell array.

seq2con and con2seq allow concurrent vectors to be converted to sequential 
vectors, and back again.

seq2con(S) takes one input,

and returns

Examples Here three sequential values are converted to concurrent values.

p1 = {1 4 2}
p2 = seq2con(p1)

Here two sequences of vectors over three time steps are converted to concurrent 
vectors.

p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}
p2 = seq2con(p1)

See Also con2seq, concur

s N x TS cell array of matrices with M columns

b N x 1 cell array of matrices with M*TS columns



setelements

13-288

13setelementsPurpose Set neural network data elements

Syntax setelements(x,i,v)

Description setelements(x,i,v) takes these arguments,

and returns the original data x with the data v stored in the elements indicated 
by the indices i.

Examples This code sets elements 1 and 3 of matrix data:

x = [1 2 3; 4 7 4]
v = [10 11; 12 13];
y = setelements(x,[1 3],v)

This code sets elements 1 and 3 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21 22; 23 24 25] [26 27 28; 29 30 31]}
y = setelements(x,[1 3],v)

See Also nndata, numelements, getelements, catelements, setsamples, setsignals, 
settimesteps

x Neural network matrix or cell array data

i Indices

v Neural network data to store into x



setsamples

13-289

13setsamplesPurpose Set neural network data samples

Syntax setsamples(x,i,v)

Description setsamples(x,i,v) takes these arguments,

and returns the original data x with the data v stored in the samples indicated 
by the indices i.

Examples This code sets samples 1 and 3 of matrix data:

x = [1 2 3; 4 7 4]
v = [10 11; 12 13];
y = setsamples(x,[1 3],v)

This code sets samples 1 and 3 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21; 22 23] [24 25; 26 27]; [28 29] [30 31]}
y = setsamples(x,[1 3],v)

See Also nndata, numsamples, getsamples, catsamples, setelements, setsignals, 
settimesteps

x Neural network matrix or cell array data

i Indices

v Neural network data to store into x



setsignals

13-290

13setsignalsPurpose Set neural network data signals

Syntax setsignals(x,i,v)

Description setsignals(x,i,v) takes these arguments,

and returns the original data x with the data v stored in the signals indicated 
by the indices i.

Examples This code sets signal 2 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22] [23:25]}
y = setsignals(x,2,v)

See Also nndata, numsignals, getsignals, catsignals, setelements, setsamples, 
settimesteps

x Neural network matrix or cell array data

i Indices

v Neural network data to store into x



setsiminit

13-291

13setsiminitPurpose Set neural network Simulink block initial conditions

Syntax setsimitinit(sysName,netName,net,xi,ai,Q)

Description getsiminit(sysName,netName,net,xi,ai) takes these arguments,

and sets the Simulink neural network blocks initial conditions as specified.

Examples Here a NARX network is designed. The NARX network has a standard input 
and an open loop feedback output to an associated feedback input.

[x,t] = simplenarx_dataset;
     net = narxnet(1:2,1:2,20);
     view(net)
     [xs,xi,ai,ts] = preparets(net,x,{},t);
     net = train(net,xs,ts,xi,ai);
     y = net(xs,xi,ai);

Now the network is converted to closed loop, and the data is reformatted to 
simulate the network's closed loop response.

net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);

Here the network is converted to a Simulink system with workspace input and 
output ports. Its delay states are initialized, inputs X1 defined in the 
workspace, and it is ready to be simulated in Simulink.

[sysName,netName] = gensim(net,'InputMode','Workspace',...
'OutputMode','WorkSpace','SolverMode','Discrete');

sysName The name of the Simulink system containing the neural 
network block

netName The name of the Simulink neural network block

net The original neural network

xi Initial input delay states

ai Initial layer delay states



setsiminit

13-292

setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);

Finally the initial input and layer delays are obtained from the Simulink 
model. (They will be identical to the values set with setsiminit.)

[xi,ai] = getsiminit(sysName,netName,net);

See Also gensim, getsiminit, nndata2sim, sim2nndata



settimesteps

13-293

13settimestepsPurpose Set neural network data timesteps

Syntax settimesteps(x,i,v)

Description settimesteps(x,i,v) takes these arguments,

and returns the original data x with the data v stored in the timesteps 
indicated by the indices i.

Examples This code sets timestep 2 of cell array data:

x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22; 23:25]; [25:27]}
y = settimesteps(x,2,v)

See Also nndata, numtimesteps, gettimesteps, cattimesteps, setelements, 
setsamples, setsignals

x Neural network matrix or cell array data

i Indices

v Neural network data to store into x



setwb

13-294

13setwbPurpose Set all network weight and bias values with single vector

Syntax net = setwb(net,wb)

Description This function sets a network’s weight and biases to a vector of values.

net = setwb(net,wb) takes the following inputs: 

Examples Here you create a network with a two-element input and one layer of three 
neurons.

net = newff([0 1; -1 1],[3]);

The network has six weights (3 neurons * 2 input elements) and three biases 
(3 neurons) for a total of nine weight and bias values. You can set them to 
random values as follows:

net = setwb(net,rand(9,1));

You can then view the weight and bias values as follows:

net.iw{1,1}
net.b{1}

See Also getwb, formwb, separatewb

net Neural network

wb Vector of weight and bias values



sim

13-295

13simPurpose Simulate neural network

Syntax [Y,Pf,Af,E,perf] = sim(net,P,Pi,Ai,T)
[Y,Pf,Af,E,perf] = sim(net,{Q TS},Pi,Ai,T)
[Y,Pf,Af,E,perf] = sim(net,Q,Pi,Ai,T)

To Get Help Type help network/sim.

Description sim simulates neural networks.

[Y,Pf,Af,E,perf] = sim(net,P,Pi,Ai,T) takes

and returns

Note that arguments Pi, Ai, Pf, and Af are optional and need only be used for 
networks that have input or layer delays.

sim’s signal arguments can have two formats: cell array or matrix.

net Network

P Network inputs

Pi Initial input delay conditions (default = zeros)

Ai Initial layer delay conditions (default = zeros)

T Network targets (default = zeros)

Y Network outputs

Pf Final input delay conditions

Af Final layer delay conditions

E Network errors

perf Network performance



sim

13-296

The cell array format is easiest to describe. It is most convenient for networks 
with multiple inputs and outputs, and allows sequences of inputs to be 
presented:

where

The columns of Pi, Ai, Pf, and Af are ordered from oldest delay condition to 
most recent:

P Ni x TS cell array Each element P{i,ts} is an Ri x Q matrix.

Pi Ni x ID cell array Each element Pi{i,k} is an Ri x Q matrix.

Ai Nl x LD cell array Each element Ai{i,k} is an Si x Q matrix.

T No x TS cell array Each element P{i,ts} is a Ui x Q matrix.

Y No x TS cell array Each element Y{i,ts} is a Ui x Q matrix.

Pf Ni x ID cell array Each element Pf{i,k} is an Ri x Q matrix.

Af Nl x LD cell array Each element Af{i,k} is an Si x Q matrix.

E Nt x TS cell array Each element P{i,ts} is a Vi x Q matrix.

Ni = net.numInputs

Nl = net.numLayers

No = net.numOutputs

D = net.numInputDelays

LD = net.numLayerDelays

TS = Number of time steps

Q = Batch size

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Ui = net.outputs{i}.size

Pi{i,k} = Input i at time ts = k - ID

Pf{i,k} = Input i at time ts = TS + k - ID



sim

13-297

The matrix format can be used if only one time step is to be simulated (TS = 1). 
It is convenient for networks with only one input and output, but can also be 
used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding 
cell array argument in a single matrix:

[Y,Pf,Af] = sim(net,{Q TS},Pi,Ai) is used for networks that do not have an 
input, such as Hopfield networks, when cell array notation is used.

Examples Here newp is used to create a perceptron layer with a two-element input (with 
ranges of [0 1]) and a single neuron.

net = newp([0 1;0 1],1);

Here the perceptron is simulated for an individual vector, a batch of three 
vectors, and a sequence of three vectors.

p1 = [.2; .9]; a1 = sim(net,p1)
p2 = [.2 .5 .1; .9 .3 .7]; a2 = sim(net,p2)
p3 = {[.2; .9] [.5; .3] [.1; .7]}; a3 = sim(net,p3)

Here newlin is used to create a linear layer with a three-element input and two 
neurons.

Ai{i,k} = Layer output i at time ts = k - LD

Af{i,k} = Layer output i at time ts = TS + k - LD

P (sum of Ri) x Q matrix

Pi (sum of Ri) x (ID*Q) matrix

Ai (sum of Si) x (LD*Q) matrix

T (sum of Ui) x Q matrix

Y (sum of Ui) x Q matrix

Pf (sum of Ri) x (ID*Q) matrix

Af (sum of Si) x (LD*Q) matrix

E (sum of Ui) x Q matrix



sim

13-298

net = newlin([0 2;0 2;0 2],2,[0 1]);

The linear layer is simulated with a sequence of two input vectors using the 
default initial input delay conditions (all zeros).

p1 = {[2; 0.5; 1] [1; 1.2; 0.1]};
[y1,pf] = sim(net,p1)

The layer is simulated for three more vectors, using the previous final input 
delay conditions as the new initial delay conditions.

p2 = {[0.5; 0.6; 1.8] [1.3; 1.6; 1.1] [0.2; 0.1; 0]};
[y2,pf] = sim(net,p2,pf)

Here newelm is used to create an Elman network with a one-element input, and 
a layer 1 with three tansig neurons followed by a layer 2 with two purelin 
neurons. Because it is an Elman network, it has a tapped delay line with a 
delay of 1 going from layer 1 to layer 1.

net = newelm([0 1],[3 2],{'tansig','purelin'});

The Elman network is simulated for a sequence of three values, using default 
initial delay conditions.

p1 = {0.2 0.7 0.1};
[y1,pf,af] = sim(net,p1)

The network is simulated for four more values, using the previous final delay 
conditions as the new initial delay conditions.

p2 = {0.1 0.9 0.8 0.4};
[y2,pf,af] = sim(net,p2,pf,af)

Algorithm sim uses these properties to simulate a network net.

net.numInputs, net.numLayers
net.outputConnect, net.biasConnect
net.inputConnect, net.layerConnect

These properties determine the network’s weight and bias values and the 
number of delays associated with each weight:

net.IW{i,j}
net.LW{i,j}



sim

13-299

net.b{i}
net.inputWeights{i,j}.delays
net.layerWeights{i,j}.delays

These function properties indicate how sim applies weight and bias values to 
inputs to get each layer’s output:

net.inputWeights{i,j}.weightFcn
net.layerWeights{i,j}.weightFcn
net.layers{i}.netInputFcn
net.layers{i}.transferFcn

See Chapter 2, “Network Objects, Data and Training Styles,” for more 
information on network simulation.

See Also init, adapt, train, revert



sim2nndata

13-300

13sim2nndataPurpose Convert Simulink time series to neural network data

Syntax sim2nndata(x)

Description sim2nndata(x) takes either a column vector of values or a Simulink time series 
structure and converts it to a neural network data time series.

Examples Here a random Simulink 20-step time series is created and converted.

simts = rands(20,1);
nnts = sim2nndata(simts)

Here a similar time series is defined with a Simulink structure and converted.

simts.time = 0:19
simts.signals.values = rands(20,1);
simts.dimensions = 1;
nnts = sim2nndata(simts)

See Also nndata, nndata2sim



softmax

13-301

13softmaxPurpose Soft max transfer function

Graph and 
Symbol

Syntax A = softmax(N,FP)
dA_dN = softmax('dn',N,A,FP)
info = softmax(code)

Description softmax is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input.

softmax(N,FP) takes N and optional function parameters,

and returns A, the S x Q matrix of the softmax competitive function applied to 
each column of N.

softmax('dn',N,A,FP) returns the S x S x Q derivative of A with respect to N. 
If A or FP are not supplied or are set to [], FP reverts to the default parameters, 
and A is calculated from N.

softmax('name') returns the name of this function.

softmax('output',FP) returns the [min max] output range.

softmax('active',FP) returns the [min max] active input range.

softmax('fullderiv') returns 1 or 0, depending on whether dA_dN is S x S x 
Q or S x Q.

softmax('fpnames') returns the names of the function parameters.

softmax('fpdefaults') returns the default function parameters.

Softmax Transfer Function

S
0 1

-0.5
0.5

Input  n

0.17 0.46 0.1 0.28

Output  a

a = softmax(n)

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



softmax

13-302

Examples Here you define a net input vector N, calculate the output, and plot both with 
bar graphs.

n = [0; 1; -0.5; 0.5];
a = softmax(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'softmax';

Algorithm a = softmax(n) = exp(n)/sum(exp(n))

See Also sim, compet



srchbac

13-303

13srchbacPurpose 1-D minimization using backtracking

Syntax [a,gX,perf,retcode,delta,tol] = 
srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf)

Description srchbac is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
called backtracking.

srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf) 
takes these inputs,

and returns

net Neural network

X Vector containing current values of weights and biases

Pd Delayed input vectors

Tl Layer target vectors

Ai Initial input delay conditions

Q Batch size

TS Time steps

dX Search direction vector

gX Gradient vector

perf Performance value at current X

dperf Slope of performance value at current X in direction of dX

delta Initial step size

tol Tolerance on search

ch_perf Change in performance on previous step

a Step size that minimizes performance

gX Gradient at new minimum point

perf Performance value at new minimum point



srchbac

13-304

Parameters used for the backstepping algorithm are

The defaults for these parameters are set in the training function that calls 
them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

retcode Return code that has three elements. The first two elements 
correspond to the number of function evaluations in the two 
stages of the search. The third element is a return code. These 
have different meanings for different search algorithms. Some 
might not be used in this function.

0 Normal

1 Minimum step taken

2 Maximum step taken

3 Beta condition not met

delta New initial step size, based on the current step size

tol New tolerance on search

alpha Scale factor that determines sufficient reduction in perf

beta Scale factor that determines sufficiently large step size

low_lim Lower limit on change in step size

up_lim Upper limit on change in step size

maxstep Maximum step length

minstep Minimum step length

scale_tol Parameter that relates the tolerance tol to the initial step 
size delta, usually set to 20

Pd No x Ni x TS cell array Each element P{i,j,ts} is a Dij x Q matrix.

Tl Nl x TS cell array Each element P{i,ts} is a Vi x Q matrix.

V Nl x LD cell array Each element Ai{i,k} is an Si x Q matrix.



srchbac

13-305

where

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from 
[0 to 10]. The first layer has two tansig neurons, and the second layer has 
one logsig neuron. The traincgf network training function and the srchbac 
search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchbac';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchbac with newff, newcf, or 
newelm.

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi =  net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)



srchbac

13-306

To prepare a custom network to be trained with traincgf, using the line search 
function srchbac,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam.searchFcn to 'srchbac'. 

The srchbac function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchbac locates the minimum of the performance function in the search 
direction dX, using the backtracking algorithm described on page 126 and 328 
of Dennis and Schnabel’s book, noted below.

Reference Dennis, J.E., and R.B. Schnabel, Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations, Englewood Cliffs, NJ, Prentice-Hall, 
1983

See Also srchcha, srchgol, srchhyb

Definition The backtracking search routine srchbac is best suited to use with the 
quasi-Newton optimization algorithms. It begins with a step multiplier of 1 and 
then backtracks until an acceptable reduction in the performance is obtained. 
On the first step it uses the value of performance at the current point and a step 
multiplier of 1. It also uses the value of the derivative of performance at the 
current point to obtain a quadratic approximation to the performance function 
along the search direction. The minimum of the quadratic approximation 
becomes a tentative optimum point (under certain conditions) and the 
performance at this point is tested. If the performance is not sufficiently 
reduced, a cubic interpolation is obtained and the minimum of the cubic 
interpolation becomes the new tentative optimum point. This process is 
continued until a sufficient reduction in the performance is obtained.

The backtracking algorithm is described in [DeSc83]. It is used as the default 
line search for the quasi-Newton algorithms, although it might not be the best 
technique for all problems.



srchbre

13-307

13srchbrePurpose 1-D interval location using Brent’s method

Syntax [a,gX,perf,retcode,delta,tol] = 
srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchbre is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
called Brent’s technique.

srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

and returns

net Neural network

X Vector containing current values of weights and biases

Pd Delayed input vectors

Tl Layer target vectors

Ai Initial input delay conditions

Q Batch size

TS Time steps

dX Search direction vector

gX Gradient vector

perf Performance value at current X

dperf Slope of performance value at current X in direction of dX

delta Initial step size

tol Tolerance on search

ch_perf Change in performance on previous step

a Step size that minimizes performance

gX Gradient at new minimum point

perf Performance value at new minimum point



srchbre

13-308

Parameters used for the Brent algorithm are

The defaults for these parameters are set in the training function that calls 
them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

where

retcode Return code that has three elements. The first two elements 
correspond to the number of function evaluations in the two stages 
of the search. The third element is a return code. These have 
different meanings for different search algorithms. Some might not 
be used in this function.

0 Normal

1 Minimum step taken

2 Maximum step taken

3 Beta condition not met

delta New initial step size, based on the current step size

tol New tolerance on search

alpha Scale factor that determines sufficient reduction in perf

beta Scale factor that determines sufficiently large step size

bmax Largest step size

scale_tol Parameter that relates the tolerance tol to the initial step 
size delta, usually set to 20

Pd No x Ni x TS cell array Each element P{i,j,ts} is a Dij x Q matrix.

Tl Nl x TS cell array Each element P{i,ts} is a Vi x Q matrix.

Ai Nl x LD cell array Each element Ai{i,k} is an Si x Q matrix.

Ni = net.numInputs

Nl = net.numLayers



srchbre

13-309

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from 
[0 to 10]. The first layer has two tansig neurons, and the second layer has 
one logsig neuron. The traincgf network training function and the srchbac 
search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchbre';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchbre with newff, newcf, or 
newelm. To prepare a custom network to be trained with traincgf, using the 
line search function srchbre,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam.searchFcn to 'srchbre'. 

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi =  net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)



srchbre

13-310

The srchbre function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchbre brackets the minimum of the performance function in the search 
direction dX, using Brent’s algorithm, described on page 46 of Scales (see 
reference below). It is a hybrid algorithm based on the golden section search 
and the quadratic approximation.

Reference Scales, L.E., Introduction to Non-Linear Optimization, New York, 
Springer-Verlag, 1985

See Also srchbac, srchcha, srchgol, srchhyb

Definition Brent’s search is a linear search that is a hybrid of the golden section search 
and a quadratic interpolation. Function comparison methods, like the golden 
section search, have a first-order rate of convergence, while polynomial 
interpolation methods have an asymptotic rate that is faster than superlinear. 
On the other hand, the rate of convergence for the golden section search starts 
when the algorithm is initialized, whereas the asymptotic behavior for the 
polynomial interpolation methods can take many iterations to become 
apparent. Brent’s search attempts to combine the best features of both 
approaches.

For Brent’s search, you begin with the same interval of uncertainty used with 
the golden section search, but some additional points are computed. A 
quadratic function is then fitted to these points and the minimum of the 
quadratic function is computed. If this minimum is within the appropriate 
interval of uncertainty, it is used in the next stage of the search and a new 
quadratic approximation is performed. If the minimum falls outside the known 
interval of uncertainty, then a step of the golden section search is performed.

See [Bren73] for a complete description of this algorithm. This algorithm has 
the advantage that it does not require computation of the derivative. The 
derivative computation requires a backpropagation through the network, 
which involves more computation than a forward pass. However, the algorithm 
can require more performance evaluations than algorithms that use derivative 
information.



srchcha

13-311

13srchchaPurpose 1-D minimization using Charalambous’ method

Syntax [a,gX,perf,retcode,delta,tol] = 
srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchcha is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
based on Charalambous’ method.

srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

and returns

net Neural network

X Vector containing current values of weights and biases

Pd Delayed input vectors

Tl Layer target vectors

Ai Initial input delay conditions

Q Batch size

TS Time steps

dX Search direction vector

gX Gradient vector

perf Performance value at current X

dperf Slope of performance value at current X in direction of dX

delta Initial step size

tol Tolerance on search

ch_perf Change in performance on previous step

a Step size that minimizes performance

gX Gradient at new minimum point

perf Performance value at new minimum point



srchcha

13-312

Parameters used for the Charalambous algorithm are

The defaults for these parameters are set in the training function that calls 
them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

retcode Return code that has three elements. The first two elements 
correspond to the number of function evaluations in the two 
stages of the search. The third element is a return code. 
These have different meanings for different search 
algorithms. Some might not be used in this function.

0 Normal

1 Minimum step taken

2 Maximum step taken

3 Beta condition not met

delta New initial step size, based on the current step size

tol New tolerance on search

alpha Scale factor that determines sufficient reduction in perf

beta Scale factor that determines sufficiently large step size

gama Parameter to avoid small reductions in performance, usually 
set to 0.1

scale_tol Parameter that relates the tolerance tol to the initial step 
size delta, usually set to 20

Pd No x Ni x TS cell array Each element P{i,j,ts} is a Dij x Q matrix.

Tl Nl x TS cell array Each element P{i,ts} is a Vi x Q matrix.

Ai Nl x LD cell array Each element Ai{i,k} is an Si x Q matrix.



srchcha

13-313

where

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from 
[0 to 10]. The first layer has two tansig neurons, and the second layer has 
one logsig neuron. The traincgf network training function and the srchcha 
search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchcha';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchcha with newff, newcf, or 
newelm.

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)



srchcha

13-314

To prepare a custom network to be trained with traincgf, using the line search 
function srchcha,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam.searchFcn to 'srchcha'. 

The srchcha function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchcha locates the minimum of the performance function in the search 
direction dX, using an algorithm based on the method described in 
Charalambous (see reference below).

Reference Charalambous, C., “Conjugate gradient algorithm for efficient training of 
artificial neural networks,” IEEE Proceedings, Vol. 139, No. 3, June, 1992, 
pp. 301–310

See Also srchbac, srchbre, srchgol, srchhyb

Definition The method of Charalambous, srchcha, was designed to be used in 
combination with a conjugate gradient algorithm for neural network training. 
Like srchbre and srchhyb, it is a hybrid search. It uses a cubic interpolation 
together with a type of sectioning. 

See [Char92] for a description of Charalambous’ search. This routine is used as 
the default search for most of the conjugate gradient algorithms because it 
appears to produce excellent results for many different problems. It does 
require the computation of the derivatives (backpropagation) in addition to the 
computation of performance, but it overcomes this limitation by locating the 
minimum with fewer steps. This is not true for all problems, and you might 
want to experiment with other line searches.



srchgol

13-315

13srchgolPurpose 1-D minimization using golden section search

Syntax [a,gX,perf,retcode,delta,tol] = 
srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchgol is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
called the golden section search.

srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

and returns

net Neural network

X Vector containing current values of weights and biases

Pd Delayed input vectors

Tl Layer target vectors

Ai Initial input delay conditions

Q Batch size

TS Time steps

dX Search direction vector

gX Gradient vector

perf Performance value at current X

dperf Slope of performance value at current X in direction of dX

delta Initial step size

tol Tolerance on search

ch_perf Change in performance on previous step

a Step size that minimizes performance

gX Gradient at new minimum point

perf Performance value at new minimum point



srchgol

13-316

Parameters used for the golden section algorithm are

The defaults for these parameters are set in the training function that calls 
them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

where

retcode Return code that has three elements. The first two elements 
correspond to the number of function evaluations in the two 
stages of the search. The third element is a return code. 
These have different meanings for different search 
algorithms. Some might not be used in this function.

0 Normal

1 Minimum step taken

2 Maximum step taken

3 Beta condition not met

delta New initial step size, based on the current step size

tol New tolerance on search

alpha Scale factor that determines sufficient reduction in perf

bmax Largest step size

scale_tol Parameter that relates the tolerance tol to the initial step 
size delta, usually set to 20

Pd No x Ni x TS cell array Each element P{i,j,ts} is a Dij x Q matrix.

Tl Nl x TS cell array Each element P{i,ts} is a Vi x Q matrix.

Ai Nl x LD cell array Each element Ai{i,k} is an Si x Q matrix.

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays



srchgol

13-317

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from 
[0 to 10]. The first layer has two tansig neurons, and the second layer has 
one logsig neuron. The traincgf network training function and the srchgol 
search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchgol';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchgol with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line search 
function srchgol,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam.searchFcn to 'srchgol'. 

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)



srchgol

13-318

The srchgol function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchgol locates the minimum of the performance function in the search 
direction dX, using the golden section search. It is based on the algorithm as 
described on page 33 of Scales (see reference below).

Reference Scales, L.E., Introduction to Non-Linear Optimization, New York, 
Springer-Verlag, 1985

See Also srchbac, srchbre, srchcha, srchhyb

Definition The golden section search srchgol is a linear search that does not require the 
calculation of the slope. This routine begins by locating an interval in which the 
minimum of the performance function occurs. This is accomplished by 
evaluating the performance at a sequence of points, starting at a distance of 
delta and doubling in distance each step, along the search direction. When the 
performance increases between two successive iterations, a minimum has been 
bracketed. The next step is to reduce the size of the interval containing the 
minimum. Two new points are located within the initial interval. The values of 
the performance at these two points determine a section of the interval that can 
be discarded, and a new interior point is placed within the new interval. This 
procedure is continued until the interval of uncertainty is reduced to a width of 
tol, which is equal to delta/scale_tol.

See [HDB96], starting on page 12-16, for a complete description of the golden 
section search. Try the Neural Network Design demonstration nnd12sd1 
[HDB96] for an illustration of the performance of the golden section search in 
combination with a conjugate gradient algorithm.



srchhyb

13-319

13srchhybPurpose 1-D minimization using a hybrid bisection-cubic search

Syntax [a,gX,perf,retcode,delta,tol] = 
srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchhyb is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
that is a combination of a bisection and a cubic interpolation.

srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

and returns

net Neural network

X Vector containing current values of weights and biases

Pd Delayed input vectors

Tl Layer target vectors

Ai Initial input delay conditions

Q Batch size

TS Time steps

dX Search direction vector

gX Gradient vector

perf Performance value at current X

dperf Slope of performance value at current X in direction of dX

delta Initial step size

tol Tolerance on search

ch_perf Change in performance on previous step

a Step size that minimizes performance

gX Gradient at new minimum point

perf Performance value at new minimum point



srchhyb

13-320

Parameters used for the hybrid bisection-cubic algorithm are

The defaults for these parameters are set in the training function that calls 
them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

where

retcode Return code that has three elements. The first two 
elements correspond to the number of function evaluations 
in the two stages of the search. The third element is a 
return code. These have different meanings for different 
search algorithms. Some might not be used in this function.

0 Normal

1 Minimum step taken

2 Maximum step taken

3 Beta condition not met

delta New initial step size, based on the current step size

tol New tolerance on search

alpha Scale factor that determines sufficient reduction in perf

beta Scale factor that determines sufficiently large step size

bmax Largest step size

scale_tol Parameter that relates the tolerance tol to the initial step 
size delta, usually set to 20

Pd No x Ni x TS cell array Each element P{i,j,ts} is a Dij x Q matrix.

Tl Nl x TS cell array Each element P{i,ts} is a Vi x Q matrix.

Ai Nl x LD cell array Each element Ai{i,k} is an Si x Q matrix.

Ni = net.numInputs

Nl = net.numLayers



srchhyb

13-321

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from 
[0 to 10]. The first layer has two tansig neurons, and the second layer has 
one logsig neuron. The traincgf network training function and the srchhyb 
search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchhyb';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchhyb with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line search 
function srchhyb,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam.searchFcn to 'srchhyb'. 

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)



srchhyb

13-322

The srchhyb function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchhyb locates the minimum of the performance function in the search 
direction dX, using the hybrid bisection-cubic interpolation algorithm described 
on page 50 of Scales (see reference below).

Reference Scales, L.E., Introduction to Non-Linear Optimization, New York 
Springer-Verlag, 1985

See Also srchbac, srchbre, srchcha, srchgol

Definition Like Brent’s search, srchhyb is a hybrid algorithm. It is a combination of 
bisection and cubic interpolation. For the bisection algorithm, one point is 
located in the interval of uncertainty, and the performance and its derivative 
are computed. Based on this information, half of the interval of uncertainty is 
discarded. In the hybrid algorithm, a cubic interpolation of the function is 
obtained by using the value of the performance and its derivative at the two 
endpoints. If the minimum of the cubic interpolation falls within the known 
interval of uncertainty, then it is used to reduce the interval of uncertainty. 
Otherwise, a step of the bisection algorithm is used.

See [Scal85] for a complete description of the hybrid bisection-cubic search. 
This algorithm does require derivative information, so it performs more 
computations at each step of the algorithm than the golden section search or 
Brent’s algorithm.



sse

13-323

13ssePurpose Sum squared error performance function

Syntax perf = sse(net.t,y,ew)
dPerf_dy = sse('dperf_dy',t,y,ew);
dPerf_dx = sse('dperf_dwb',t,y,ew);
[...] = sse(...,'regularization',regularization)
[...] = sse(...,'normalization',normalization)
[...] = sse(...,'squaredWeighting',squaredWeighting)
[...] = sse(...,FP)

Description sse is a network performance function. It measures performance according to 
the sum of squared errors.

sse(net,t,y,ew) takes E and optional function parameters,

and returns the sum squared error.

sse('dperf_dy',E,Y,X,perf,FP) returns the derivative of perf with respect 
to Y.

sse('dperf_dwb',E,Y,X,perf,FP) returns the derivative of perf with respect 
to X.

This function has three optional function parameters which can be defined 
with parameter name/pair arguments, or as a structure FP argument with 
fields having the parameter name and assigned the parameter values. 

• regularization — can be set to any value between the default of 0 and 1. 
The greater the regularization value, the more squared weights and biases 
are taken into account in the performance calculation.

• normalization — can be set to the default 'absolute', or 'normalized' 
(which normalizes errors to the [+2 -2] range consistent with normalized 
output and target ranges of [-1 1]) or 'percent' (which normalizes errors 
to the range [-1 +1]).

net Neural network

t Matrix or cell array of target vectors

y Matrix or cell array of output vectors

ew Error weights (default = {1})



sse

13-324

• squaredWeighting — can be set to the default true, for applying error 
weights to squared errors; or false for applying error weights to the absolute 
errors before squaring.

Examples Here a network is trained to fit a simple data set and its performance 
calculated

[x,t] = simplefit_dataset;
net = fitnet(10);
net.performFcn = 'sse';
net = train(net,x,t)
y = sim(net,p)
e = t-y
perf = sse(net,t,y)

Network Use To prepare a custom network to be trained with sse, set net.performFcn to 
'sse'. This automatically sets net.performParam to the default function 
parameters.

Then calling train, adapt or perform will result in sse being used to calculate 
performance.



staticderiv

13-325

13staticderivPurpose Static derivative function

Syntax staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW)
staticderiv('de_dwb',net,X,T,Xi,Ai,EW)

Description This function calculates derivatives using the chain rule from the networks 
performance or outputs back to its inputs. For time series data and dynamic 
networks this function ignores the delay connections resulting in a 
approximation (which may be good or not) of the actual derivative. This 
function is used by Elman networks (elmannet) which is a dynamic network 
trained by the static derivative approximation when full derivative 
calculations are not available. As full derivatives are calculated by all the other 
derivative functions, this function is not recommended for dynamic networks 
except for research into training algorithms.

staticderiv('dperf_dwb',net,X,T,Xi,Ai,EW) takes these arguments,

Returns the gradient of performance with respect to the network’s weights and 
biases, where R and S are the number of input and output elements and Q is 
the number of samples (and N and M are the number of input and output 
signals, Ri and Si are the number of each input and outputs elements, and TS 
is the number of timesteps).

staticderiv('de_dwb',net,X,T,Xi,Ai,EW) returns the Jacobian of errors 
with respect to the network’s weights and biases.

Examples Here a feedforward network is trained and both the gradient and Jacobian are 
calculated.

[x,t] = simplefit_dataset;

net Neural network

X Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)

T Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)

Xi Initial input delay states (optional)

Ai Initial layer delay states (optional)

EW Error weights (optional)



staticderiv

13-326

net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = staticderiv('dperf_dwb',net,x,t)
jwb = staticderiv('de_dwb',net,x,t)

See Also bttderiv, defaultderiv, fpderiv, num2deriv, staticderiv



sumabs

13-327

13sumabsPurpose Sum of absolute elements of matrix or matrices

Syntax [s,n] = sumabs(x)

Description sumabs(x) takes a matrix or cell array of matrices and returns,

If x contains no finite values, the sum returned is 0.

Examples m = sumabs([1 2;3 4])
[m,n] = sumabs({[1 2; NaN 4], [4 5; 2 3]})

See Also meanabs, meansqr, sumsqr

s Sum of all absolute finite values

n Number of finite values



sumsqr

13-328

13sumsqrPurpose Sum of squared elements of matrix or matrices

Syntax [s,n] = sumsqr(x)

Description sumsqr(x) takes a matrix or cell array of matrices and returns,

If x contains no finite values, the sum returned is 0.

Examples m = sumsqr([1 2;3 4])
[m,n] = sumsqr({[1 2; NaN 4], [4 5; 2 3]})

See Also meanabs, meansqr, sumabs

s Sum of all squared finite values

n Number of finite values



tansig

13-329

13tansigPurpose Hyperbolic tangent sigmoid transfer function

Graph and 
Symbol 

Syntax A = tansig(N,FP)
dA_dN = tansig('dn',N,A,FP)

Description tansig is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input.

tansig(N,FP) takes N and optional function parameters,

and returns A, the S x Q matrix of N’s elements squashed into [-1 1].

tansig('dn',N,A,FP) returns the derivative of A with respect to N. If A or FP is 
not supplied or is set to [], FP reverts to the default parameters, and A is 
calculated from N.

Examples Here is the code to create a plot of the tansig transfer function.

n = -5:0.1:5;
a = tansig(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'tansig';

Algorithm a = tansig(n) = 2/(1+exp(-2*n))-1

Tan-Sigmoid Transfer Function

a = tansig(n)

n
0

-1

+1

a

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



tansig

13-330

This is mathematically equivalent to tanh(N). It differs in that it runs faster 
than the MATLAB® implementation of tanh, but the results can have very 
small numerical differences. This function is a good tradeoff for neural 
networks, where speed is important and the exact shape of the transfer 
function is not.

Reference Vogl, T.P., J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, “Accelerating 
the convergence of the backpropagation method,” Biological Cybernetics, 
Vol. 59, 1988, pp. 257–263

See Also sim, logsig



tapdelay

13-331

13tapdelayPurpose Shift neural network time series data for tap delay

Syntax tapdelay(x,i,ts,delays)

Description tapdelay(x,i,ts,delays) takes these arguments,

and returns the tap delay values of signal i at timestep ts given the specified 
tap delays.

Examples Here a random signal x consisting of eight timesteps is defined, and a tap delay 
with delays of [0 1 4] is simulated at timestep 6.

x = num2cell(rand(1,8));
y = tapdelay(x,1,6,[0 1 4])

See Also nndata, extendts, preparets

x Neural network time series data

i Signal index

ts Timestep index

delays Row vector of increasing zero or positive delays



timedelaynet

13-332

13timedelaynetPurpose Time delay neural network

Syntax timedelaynet(delays,hiddenSizes,trainFcn)

Description Time delay networks are similar to feedforward networks, except that the 
input weight has a tap delay line associated with it. This allows the network to 
have a finite dynamic response to time series input data. This network is also 
similar to the distributed delay neural network (distdelaynet), which has 
delays on the layer weights in addition to the input weight.

timedelaynet(inputDelays,hiddenSizes,trainFcn) takes these arguments,

and returns a time delay neural network.

Examples Here a time delay neural network is used to solve a simple time series problem.

[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,10)
[Xs,Xi,Ai,Ts] = preparets(net,X,T)
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)

See Also preparets, removedelay, distdelaynet, narnet, narxnet

inputDelays Row vector of increasing 0 or positive delays (default = 1:2)

hiddenSizes Row vector of one or more hidden layer sizes (default = 10)

trainFcn Training function (default = 'trainlm')



tonndata

13-333

13tonndataPurpose Convert data to standard neural network cell array form

Syntax [y,wasMatrix] = tonndata(x,columnSamples,cellTime)

Description tonndata(x,columnSamples,cellTime) takes these arguments,

and returns

If columnSamples is false, then matrix x or matrices in cell array x will be 
transposed, so row samples will now be stored as column vectors.

If cellTime is false, then matrix samples will be separated into columns of a 
cell array so time originally represented as vectors in a matrix will now be 
represented as columns of a cell array.

The returned value wasMatrix can be used by fromnndata to reverse the 
transformation.

Examples Here data consisting of six timesteps of 5-element vectors is originally 
represented as a matrix with six columns is converted to standard neural 
network representation and back.

x = rand(5,6)
     [y,wasMatrix] = tonndata(x,true,false)
     x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)

See Also nndata, fromnndata, nndata2sim, sim2nndata

x Matrix or cell array of matrices

columnSamples True if original samples are oriented as columns, false if rows

cellTime True if original samples are columns of cell, false if they are 
store in matrix

y Original data transformed into standard neural network cell 
array form

wasMatrix True if original data was a matrix (as apposed to cell array)



train

13-334

13trainPurpose Train neural network

Syntax [net,tr,Y,E,Pf,Af] = train(net,P,T,Pi,Ai)

To Get Help Type help network/train.

Description train trains a network net according to net.trainFcn and net.trainParam.

train(net,P,T,Pi,Ai) takes

and returns

Note that T is optional and need only be used for networks that require targets. 
Pi and Pf are also optional and need only be used for networks that have input 
or layer delays.

train’s signal arguments can have two formats: cell array or matrix.

net Network

P Network inputs

T Network targets (default = zeros)

Pi Initial input delay conditions (default = zeros)

Ai Initial layer delay conditions (default = zeros)

net New network

tr Training record (epoch and perf)

Y Network outputs

E Network errors

Pf Final input delay conditions

Af Final layer delay conditions



train

13-335

The cell array format is easiest to describe. It is most convenient for networks 
with multiple inputs and outputs, and allows sequences of inputs to be 
presented.

where

The columns of Pi, Pf, Ai, and Af are ordered from the oldest delay condition to 
the most recent:

P Ni x TS cell array Each element P{i,j,ts} is an Ni x Q matrix.

T Nl x TS cell array Each element T{i,ts} is a Ui x Q matrix.

Pi Ni x ID cell array Each element Pi{i,k} is an Ri x Q matrix.

Ai Nl x LD cell array Each element Ai{i,k} is an Si x Q matrix.

Y No x TS cell array Each element Y{i,ts} is a Ui x Q matrix.

E No x TS cell array Each element E{i,ts} is a Ui x Q matrix.

Pf Ni x ID cell array Each element Pf{i,k} is an Ri x Q matrix.

Af Nl x LD cell array Each element Af{i,k} is an Si x Q matrix.

Ni = net.numInputs

Nl = net.numLayers

ID = net.numInputDelays

LD = net.numLayerDelays

TS = Number of time steps

Q = Batch size

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Pi{i,k} = Input i at time ts = k - ID

Pf{i,k} = Input i at time ts = TS + k - D

Ai{i,k} = Layer output i at time ts = k - LD

Af{i,k} = Layer output i at time ts = TS + k - LD



train

13-336

The matrix format can be used if only one time step is to be simulated (TS = 1). 
It is convenient for networks with only one input and output, but can be used 
with networks that have more.

Each matrix argument is found by storing the elements of the corresponding 
cell array argument in a single matrix:

Examples Here input P and targets T define a simple function that you can plot:

p = [0 1 2 3 4 5 6 7 8];
t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];
plot(p,t,'o')

Here newff is used to create a two-layer feed-forward network. The network 
has one hidden layer with ten neurons.

net = feedforwardnet(10);
net = configure(net,p,t);
y1 = sim(net,p)
plot(p,t,'o',p,y1,'x')

The network is trained for up to 50 epochs to an error goal of 0.01 and then 
resimulated.

net.trainParam.epochs = 50;
net.trainParam.goal = 0.01;
net = train(net,p,t);
y2 = sim(net,p)
plot(p,t,'o',p,y1,'x',p,y2,'*')

P (sum of Ri) x Q matrix

T (sum of Ui) x Q matrix

Pi (sum of Ri) x (ID*Q) matrix

Ai (sum of Si) x (LD*Q) matrix

Y (sum of Ui) x Q matrix

E (sum of Ui) x Q matrix

Pf (sum of Ri) x (ID*Q) matrix

Af (sum of Si) x (LD*Q) matrix



train

13-337

Algorithm train calls the function indicated by net.trainFcn, using the training 
parameter values indicated by net.trainParam.

Typically one epoch of training is defined as a single presentation of all input 
vectors to the network. The network is then updated according to the results of 
all those presentations.

Training occurs until a maximum number of epochs occurs, the performance 
goal is met, or any other stopping condition of the function net.trainFcn 
occurs.

Some training functions depart from this norm by presenting only one input 
vector (or sequence) each epoch. An input vector (or sequence) is chosen 
randomly each epoch from concurrent input vectors (or sequences). newc and 
newsom return networks that use trainr, a training function that does this.

See Also init, revert, sim, adapt



trainb

13-338

13trainbPurpose Batch training with weight and bias learning rules

Syntax [net,TR] = trainb(net,TR,trainV,valV,testV)
info = trainb('info')

Description trainb is not called directly. Instead it is called by train for networks whose 
net.trainFcn property is set to 'trainb'.

trainb trains a network with weight and bias learning rules with batch 
updates. The weights and biases are updated at the end of an entire pass 
through the input data.

trainb(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Initial input conditions

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is an 
Ri x Q matrix for the ith input and ts time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} is 
an Si x Q matrix for the ith output and TS time step.



trainb

13-339

Training occurs according to trainb’s training parameters, shown here with 
their default values:

trainb('info') returns useful information about this function.

Network Use You can create a standard network that uses trainb by calling newlin.

To prepare a custom network to be trained with trainb,

1 Set net.trainFcn to 'trainb'. This sets net.trainParam to trainb’s 
default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each 
net.layerWeights{i,j}.learnFcn to a learning function. Set each 
net.biases{i}.learnFcn to a learning function. (Weight and bias learning 
parameters are automatically set to default values for the given learning 
function.)

To train the network,

1 Set net.trainParam properties to desired values.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} is 
an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.show 25 Epochs between displays (NaN for no 
displays)

net.trainParam.showComm
andLine

false Generate command-line output

net.trainParam.showWind
ow

true Show training GUI

net.trainParam.time inf Maximum time to train in seconds



trainb

13-340

2 Set weight and bias learning parameters to desired values.

3 Call train.

See newlin for training examples.

Algorithm Each weight and bias is updated according to its learning function after each 
epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.

• Performance is minimized to the goal.

• The maximum amount of time is exceeded.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also train



trainbfg

13-341

13trainbfgPurpose BFGS quasi-Newton backpropagation

Syntax [net,TR] = trainbfg(net,TR,trainV,valV,testV)
info = trainbfg('info')

Description trainbfg is a network training function that updates weight and bias values 
according to the BFGS quasi-Newton method.

trainbfg(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Initial input conditions

testV Test data created by train

net Trained network

TR Training record of various values over each epoch:

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is an 
Ri x Q matrix for the ith input and ts time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} is 
an Si x Q matrix for the ith output and TS time step.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} is 
an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.



trainbfg

13-342

Training occurs according to trainbfg’s training parameters, shown here with 
their default values:

Parameters related to line search methods (not all used for all methods):

net.trainParam.epochs 100 Maximum number of epochs to 
train

net.trainParam.showWindow 25 Epochs between displays (NaN 
for no displays)

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showGUI 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in 
seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchcha' Name of line search routine to 
use 

net.trainParam.scal_tol 20 Divide into delta to determine 
tolerance for linear search.

net.trainParam.alpha 0.001 Scale factor that determines 
sufficient reduction in perf

net.trainParam.beta 0.1 Scale factor that determines 
sufficiently large step size

net.trainParam.delta 0.01 Initial step size in interval location 
step

net.trainParam.gama 0.1 Parameter to avoid small reductions 
in performance, usually set to 0.1 
(see srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step size



trainbfg

13-343

trainbfg('info') returns useful information about this function.

Network Use You can create a standard network that uses trainbfg with newff, newcf, or 
newelm. To prepare a custom network to be trained with trainbfg,

1 Set NET.trainFcn to 'trainbfg'. This sets NET.trainParam to trainbfg’s 
default parameters.

2 Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with trainbfg.

Examples Here is a problem consisting of inputs P and targets T to be solved with a 
network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];

Here a feed-forward network is created with one hidden layer of 2 neurons.

net = newff(P,T,2,{},'trainbfg');
a = sim(net,P)

Here the network is trained and tested.

net = train(net,P,T);
a = sim(net,P)

net.trainParam.up_lim  0.5 Upper limit on change in step size 

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size

net.trainParam.batch_frag 0 In case of multiple batches, they are 
considered independent. Any 
nonzero value implies a fragmented 
batch, so the final layer’s conditions 
of a previous trained epoch are used 
as initial conditions for the next 
epoch.



trainbfg

13-344

Algorithm trainbfg can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed according to the following formula:

dX = -H\gX;

where gX is the gradient and H is a approximate Hessian matrix. See page 119 
of Gill, Murray, and Wright (Practical Optimization, 1981) for a more detailed 
discussion of the BFGS quasi-Newton method.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

Reference Gill, Murray, & Wright, Practical Optimization, 1981

See Also traingdm, traingda, traingdx, trainlm, trainrp, traincgf, traincgb, 
trainscg, traincgp, trainoss

Definition Newton’s method is an alternative to the conjugate gradient methods for fast 
optimization. The basic step of Newton’s method is

xk 1+ xk Ak
1– gk–=



trainbfg

13-345

where  is the Hessian matrix (second derivatives) of the performance index 
at the current values of the weights and biases. Newton’s method often 
converges faster than conjugate gradient methods. Unfortunately, it is complex 
and expensive to compute the Hessian matrix for feedforward neural networks. 
There is a class of algorithms that is based on Newton’s method, but which does 
not require calculation of second derivatives. These are called quasi-Newton (or 
secant) methods. They update an approximate Hessian matrix at each 
iteration of the algorithm. The update is computed as a function of the 
gradient. The quasi-Newton method that has been most successful in 
published studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 
update. This algorithm is implemented in the trainbfg routine.

The following code trains a network using the BFGS quasi-Newton algorithm. 
The training parameters for trainbfg are the same as those for traincgf. The 
default line search routine srchbac is used in this example.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net = newff(p,t,3,{},'trainbfg');
net = train(net,p,t);
y = sim(net,p)

The BFGS algorithm is described in [DeSc83]. This algorithm requires more 
computation in each iteration and more storage than the conjugate gradient 
methods, although it generally converges in fewer iterations. The approximate 
Hessian must be stored, and its dimension is n x n, where n is equal to the 
number of weights and biases in the network. For very large networks it might 
be better to use Rprop or one of the conjugate gradient algorithms. For smaller 
networks, however, trainbfg can be an efficient training function.

Ak
1–



trainbfgc

13-346

13trainbfgcPurpose BFGS quasi-Newton backpropagation for use with NN model reference 
adaptive controller

Syntax [net,TR,Y,E,Pf,Af,flag_stop] = trainbfgc(net,P,T,Pi,Ai,epochs,TS,Q)
info = trainbfgc(code)

Description trainbfgc is a network training function that updates weight and bias values 
according to the BFGS quasi-Newton method. This function is called from 
nnmodref, a GUI for the model reference adaptive control Simulink® block.

trainbfgc(net,P,T,Pi,Ai,epochs,TS,Q) takes these inputs,

and returns 

net Neural network

P Delayed input vectors

T Layer target vectors

Pi Initial input delay conditions

Ai Initial layer delay conditions

epochs Number of iterations for training

TS Time steps

Q Batch size

net Trained network

TR Training record of various values over each epoch:

TR.epoch Epoch number

TR.perf Training performance

TR.vperf Validation performance

TR.tperf Test performance

Y Network output for last epoch

E Layer errors for last epoch

Pf Final input delay conditions



trainbfgc

13-347

Training occurs according to trainbfgc’s training parameters, shown here 
with their default values:

Parameters related to line search methods (not all used for all methods):

Af Collective layer outputs for last epoch

flag_stop Indicates if the user stopped the training

net.trainParam.epochs 100 Maximum number of epochs 
to train

net.trainParam.show 25 Epochs between displays (NaN 
for no displays)

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in 
seconds

net.trainParam.min_grad 1e-6 Minimum performance 
gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchbacxc' Name of line search routine to 
use 

net.trainParam.scal_tol 20 Divide into delta to determine 
tolerance for linear search.

net.trainParam.alpha 0.001 Scale factor that determines 
sufficient reduction in perf

net.trainParam.beta 0.1 Scale factor that determines 
sufficiently large step size

net.trainParam.delta 0.01 Initial step size in interval 
location step

net.trainParam.gama 0.1 Parameter to avoid small 
reductions in performance, 
usually set to 0.1 (see srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step size



trainbfgc

13-348

trainbfgc(code) returns useful information for each code string:

Algorithm trainbfgc can train any network as long as its weight, net input, and transfer 
functions have derivative functions. Backpropagation is used to calculate 
derivatives of performance perf with respect to the weight and bias variables 
X. Each variable is adjusted according to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed according to the following formula:

dX = -H\gX;

where gX is the gradient and H is an approximate Hessian matrix. See page 119 
of Gill, Murray, and Wright (Practical Optimization, 1981) for a more detailed 
discussion of the BFGS quasi-Newton method.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Precision problems have occurred in the matrix inversion.

Reference Gill, Murray, and Wright, Practical Optimization, 1981

net.trainParam.up_lim  0.5 Upper limit on change in step size 

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size

'pnames' Names of training parameters

'pdefaults' Default training parameters



trainbr

13-349

13trainbrPurpose Bayesian regulation backpropagation

Syntax [net,TR] = trainbr(net,TR,trainV,valV,testV)
info = trainbr('info')

Description trainbr is a network training function that updates the weight and bias values 
according to Levenberg-Marquardt optimization. It minimizes a combination of 
squared errors and weights, and then determines the correct combination so as 
to produce a network that generalizes well. The process is called Bayesian 
regularization.

trainbr(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is an 
Ri x Q matrix for the ith input and ts time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} is 
an Si x Q matrix for the ith output and TS time step.



trainbr

13-350

Training occurs according to trainbr’s training parameters, shown here with 
their default values:

trainbr('info') returns useful information about this function.

Network Use You can create a standard network that uses trainbr with newff, newcf, or 
newelm. To prepare a custom network to be trained with trainbr,

1 Set NET.trainFcn to 'trainlm'. This sets NET.trainParam to trainbr’s 
default parameters.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} is 
an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.mu 0.005 Marquardt adjustment parameter

net.trainParam.mu_dec 0.1 Decrease factor for mu

net.trainParam.mu_inc 10 Increase factor for mu

net.trainParam.mu_max 1e10 Maximum value for mu

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.mem_reduc 1 Factor to use for memory/speed 
tradeoff

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between displays (NaN for no 
displays)

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds



trainbr

13-351

2 Set NET.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with trainbr. See newff, newcf, and newelm for examples.

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network. It involves fitting a noisy sine wave.

p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

A feed-forward network is created with a hidden layer of 2 neurons.

net = newff(p,t,2,{},'trainbr');
a = sim(net,p)

Here the network is trained and tested.

net = train(net,p,t);
a = sim(net,p)

Algorithm trainbr can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Bayesian regularization minimizes a linear combination of squared errors and 
weights. It also modifies the linear combination so that at the end of training 
the resulting network has good generalization qualities. See MacKay (Neural 
Computation, Vol. 4, No. 3, 1992, pp. 415 to 447) and Foresee and Hagan 
(Proceedings of the International Joint Conference on Neural Networks, June, 
1997) for more detailed discussions of Bayesian regularization.

This Bayesian regularization takes place within the Levenberg-Marquardt 
algorithm. Backpropagation is used to calculate the Jacobian jX of 
performance perf with respect to the weight and bias variables X. Each 
variable is adjusted according to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.



trainbr

13-352

The adaptive value mu is increased by mu_inc until the change shown above 
results in a reduced performance value. The change is then made to the 
network, and mu is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to calculate 
the Jacobian jX. If mem_reduc is 1, then trainlm runs the fastest, but can 
require a lot of memory. Increasing mem_reduc to 2 cuts some of the memory 
required by a factor of two, but slows trainlm somewhat. Higher values 
continue to decrease the amount of memory needed and increase the training 
times.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• mu exceeds mu_max.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

References MacKay, Neural Computation, Vol. 4, No. 3, 1992, pp. 415–447

Foresee and Hagan, Proceedings of the International Joint Conference on 
Neural Networks, June, 1997

See Also traingdm, traingda, traingdx, trainlm, trainrp, traincgf, traincgb, 
trainscg, traincgp, trainbfg



trainbu

13-353

13trainbuPurpose Batch unsupervised weight/bias training

Syntax [net,TR] = trainbu(net,TR,trainV,valV,testV)

Description trainbuwb trains a network with weight and bias learning rules with batch 
updates. Weights and biases updates occur at the end of an entire pass through 
the input data.

trainbu is not called directly. Instead the TRAIN function calls it for networks 
whose NET.trainFcn property is set to 'trainbu'.

trainbu(net,TR,trainV,valV,testV) takes these inputs:

and returns the following:

Each argument trainV, valV and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

NET Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.



trainbu

13-354

Training occurs according to trainbuwb’s training parameters, shown here 
with the following default values:

Validation and test vectors have no impact on training for this function, but act 
as independent measures of network generalization.

Network Use You can create a standard network that uses trainbuwb by calling newsom. To 
prepare a custom network to be trained with trainb:

1 Set NET.trainFcn to 'trainbu'. (This option sets NET.trainParam to 
trainbuwb’s default parameters.)

2 Set each NET.inputWeights{i,j}.learnFcn to a learning function.

3 Set each NET.layerWeights{i,j}.learnFcn to a learning function.

4 Set each NET.biases{i}.learnFcn to a learning function. (Weight and bias 
learning parameters are automatically set to default values for the given 
learning function.)

To train the network:

1 Set NET.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See newsom for training examples.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between displays (NaN for no 
displays)

net.trainParam.showCommandLine false Generate command-line output

net.trainParam.showGUI true Show training GUI

net.trainParam.time inf Maximum time to train in seconds



trainbu

13-355

Algorithm Each weight and bias updates according to its learning function after each 
epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.

• Performance is minimized to the goal.

• The maximum amount of time is exceeded.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also train, trainb



trainc

13-356

13traincPurpose Cyclical order weight/bias training

Syntax [net,TR] = trainc(net,TR,trainV,valV,testV)
info = trainc('info')

Description trainc is not called directly. Instead it is called by train for networks whose 
net.trainFcn property is set to 'trainc'.

trainc trains a network with weight and bias learning rules with incremental 
updates after each presentation of an input. Inputs are presented in cyclic 
order.

trainc(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch:

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.



trainc

13-357

Training occurs according to trainc’s training parameters, shown here with 
their default values:

trainc('info') returns useful information about this function.

Network Use You can create a standard network that uses trainc by calling newp. To 
prepare a custom network to be trained with trainc,

1 Set net.trainFcn to 'trainc'. This sets net.trainParam to trainc’s 
default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each 
net.layerWeights{i,j}.learnFcn to a learning function. Set each 
net.biases{i}.learnFcn to a learning function. (Weight and bias learning 
parameters are automatically set to default values for the given learning 
function.)

To train the network,

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.show 25 Epochs between displays (NaN for no 
displays)

net.trainParam.showCommand
Line

false Generate command-line output

net.trainParam.showWindow true Show training GUI

net.trainParam.time inf Maximum time to train in seconds



trainc

13-358

See newp for training examples.

Algorithm For each epoch, each vector (or sequence) is presented in order to the network, 
with the weight and bias values updated accordingly after each individual 
presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.

• Performance is minimized to the goal.

• The maximum amount of time is exceeded.

See Also train



traincgb

13-359

13traincgbPurpose Conjugate gradient backpropagation with Powell-Beale restarts

Syntax [net,TR] = traincgb(net,TR,trainV,valV,testV)
info = traincgb('info')

Description traincgb is a network training function that updates weight and bias values 
according to the conjugate gradient backpropagation with Powell-Beale 
restarts.

traincgb(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch:

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS  cell array of targets for No outputs and TS time steps. 
T{i,ts} is an Si x Q matrix for the ith output and TS time step.



traincgb

13-360

Training occurs according to traincgb’s training parameters, shown here with 
their default values:

Parameters related to line search methods (not all used for all methods):

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.

net.trainParam.epochs 100 Maximum number of epochs to 
train

net.trainParam.show 25 Epochs between displays (NaN 
for no displays)

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in 
seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchcha' Name of line search routine to 
use

net.trainParam.scal_tol 20 Divide into delta to determine 
tolerance for linear search.

net.trainParam.alpha 0.001 Scale factor that determines 
sufficient reduction in perf

net.trainParam.beta 0.1 Scale factor that determines 
sufficiently large step size

net.trainParam.delta 0.01 Initial step size in interval 
location step



traincgb

13-361

traincgb('info') returns useful information about this function.

Network Use You can create a standard network that uses traincgb with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgb,

1 Set net.trainFcn to 'traincgb'. This sets net.trainParam to traincgb’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with traincgb.

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A feed-forward network is created with a hidden layer of 2 neurons.

net = newff(p,t,2,{},'traincgb');
a = sim(net,p)

Here the network is trained and tested.

net = train(net,p,t);

net.trainParam.gama 0.1 Parameter to avoid small 
reductions in performance, 
usually set to 0.1 (see srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step 
size

net.trainParam.up_lim  0.5 Upper limit on change in step 
size 

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size



traincgb

13-362

a = sim(net,p)

Algorithm traincgb can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous search direction according 
to the formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different 
ways. The Powell-Beale variation of conjugate gradient is distinguished by two 
features. First, the algorithm uses a test to determine when to reset the search 
direction to the negative of the gradient. Second, the search direction is 
computed from the negative gradient, the previous search direction, and the 
last search direction before the previous reset. See Powell, Mathematical 
Programming, Vol. 12, 1977, pp. 241 to 254, for a more detailed discussion of 
the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

Reference Powell, M.J.D., “Restart procedures for the conjugate gradient method,” 
Mathematical Programming, Vol. 12, 1977, pp. 241–254



traincgb

13-363

See Also traingdm, traingda, traingdx, trainlm, traincgp, traincgf, trainscg, 
trainoss, trainbfg

Definition For all conjugate gradient algorithms, the search direction is periodically reset 
to the negative of the gradient. The standard reset point occurs when the 
number of iterations is equal to the number of network parameters (weights 
and biases), but there are other reset methods that can improve the efficiency 
of training. One such reset method was proposed by Powell [Powe77], based on 
an earlier version proposed by Beale [Beal72]. This technique restarts if there 
is very little orthogonality left between the current gradient and the previous 
gradient. This is tested with the following inequality:

If this condition is satisfied, the search direction is reset to the negative of the 
gradient.

The following code recreates the previous network and trains it using the 
Powell-Beale version of the conjugate gradient algorithm. The training 
parameters for traincgb are the same as those for traincgf. The default line 
search routine srchcha is used in this example.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net = newff(p,t,3,{},'traincgb');
net = train(net,p,t);
y = sim(net,p)

The traincgb routine has somewhat better performance than traincgp for 
some problems, although performance on any given problem is difficult to 
predict. The storage requirements for the Powell-Beale algorithm (six vectors) 
are slightly larger than for Polak-Ribiére (four vectors).

gk 1–
T gk 0.2 gk

2≥



traincgf

13-364

13traincgfPurpose Conjugate gradient backpropagation with Fletcher-Reeves updates

Syntax [net,TR] = traincgf(net,TR,trainV,valV,testV)
info = traincgf('info')

Description traincgf is a network training function that updates weight and bias values 
according to conjugate gradient backpropagation with Fletcher-Reeves 
updates.

traincgf(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.



traincgf

13-365

Training occurs according to traincgf’s training parameters, shown here with 
their default values:

Parameters related to line search methods (not all used for all methods):

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.

net.trainParam.epochs 100 Maximum number of epochs to 
train

net.trainParam.show 25 Epochs between displays (NaN for 
no displays)

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchcha' Name of line search routine to use

net.trainParam.scal_tol 20 Divide into delta to determine 
tolerance for linear search.

net.trainParam.alpha 0.001 Scale factor that determines sufficient 
reduction in perf

net.trainParam.beta 0.1 Scale factor that determines 
sufficiently large step size

net.trainParam.delta 0.01 Initial step size in interval location 
step



traincgf

13-366

traincgf('info') returns useful information about this function.

Network Use You can create a standard network that uses traincgf with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with traincgf.

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A feed-forward network is created with a hidden layer of 2 neurons.

net = newff(p,t,2,{},'traincgf');
a = sim(net,p)

Here the network is trained and tested.

net = train(net,p,t);
a = sim(net,p)

net.trainParam.gama 0.1 Parameter to avoid small reductions in 
performance, usually set to 0.1 (see 
srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step size

net.trainParam.up_lim  0.5 Upper limit on change in step size 

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size



traincgf

13-367

Algorithm traincgf can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous search direction, according 
to the formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different 
ways. For the Fletcher-Reeves variation of conjugate gradient it is computed 
according to

Z=normnew_sqr/norm_sqr;

where norm_sqr is the norm square of the previous gradient and normnew_sqr 
is the norm square of the current gradient. See page 78 of Scales (Introduction 
to Non-Linear Optimization) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

Reference Scales, L.E., Introduction to Non-Linear Optimization, New York, 
Springer-Verlag, 1985



traincgf

13-368

See Also traingdm, traingda, traingdx, trainlm, traincgb, trainscg, traincgp, 
trainoss, trainbfg

Definition All the conjugate gradient algorithms start out by searching in the steepest 
descent direction (negative of the gradient) on the first iteration.

A line search is then performed to determine the optimal distance to move 
along the current search direction:

Then the next search direction is determined so that it is conjugate to previous 
search directions. The general procedure for determining the new search 
direction is to combine the new steepest descent direction with the previous 
search direction:

The various versions of the conjugate gradient algorithm are distinguished by 
the manner in which the constant βk is computed. For the Fletcher-Reeves 
update the procedure is

This is the ratio of the norm squared of the current gradient to the norm 
squared of the previous gradient.

See [FlRe64] or [HDB96] for a discussion of the Fletcher-Reeves conjugate 
gradient algorithm.

The following code reinitializes the previous network and retrains it using the 
Fletcher-Reeves version of the conjugate gradient algorithm. The default line 
search routine srchcha is used in this example. traincgf generally converges 
in fewer iterations than trainrp (although there is more computation required 
in each iteration).

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net = newff(p,t,3,{},'traincgf');

p0 g0–=

xk 1+ xk αkpk+=

pk gk– βkpk 1–+=

βk
gk

Tgk

gk 1–
T gk 1–

---------------------------=



traincgf

13-369

net = train(net,p,t);
y = sim(net,p)

The conjugate gradient algorithms are usually much faster than variable 
learning rate backpropagation, and are sometimes faster than trainrp, 
although the results vary from one problem to another. The conjugate gradient 
algorithms require only a little more storage than the simpler algorithms. 
Therefore, these algorithms are good for networks with a large number of 
weights.

Try the Neural Network Design demonstration nnd12cg [HDB96] for an 
illustration of the performance of a conjugate gradient algorithm.



traincgp

13-370

13traincgpPurpose Conjugate gradient backpropagation with Polak-Ribiére updates

Syntax [net,TR] = traincgp(net,TR,trainV,valV,testV)
info = traincgp('info')

Description traincgp is a network training function that updates weight and bias values 
according to conjugate gradient backpropagation with Polak-Ribiére updates.

traincgp(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.



traincgp

13-371

Training occurs according to traincgp’s training parameters, shown here with 
their default values:

Parameters related to line search methods (not all used for all methods):

net.trainParam.epochs 100 Maximum number of epochs to 
train

net.trainParam.show 25 Epochs between displays (NaN for 
no displays)

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in 
seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchcha' Name of line search routine to 
use

net.trainParam.scal_tol 20 Divide into delta to determine tolerance 
for linear search.

net.trainParam.alpha 0.001 Scale factor that determines sufficient 
reduction in perf

net.trainParam.beta 0.1 Scale factor that determines sufficiently 
large step size

net.trainParam.delta 0.01 Initial step size in interval location step

net.trainParam.gama 0.1 Parameter to avoid small reductions in 
performance, usually set to 0.1 (see 
srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step size

net.trainParam.up_lim  0.5 Upper limit on change in step size 



traincgp

13-372

Network Use You can create a standard network that uses traincgp with newff, newcf, or 
newelm. To prepare a custom network to be trained with traincgp,

1 Set net.trainFcn to 'traincgp'. This sets net.trainParam to traincgp’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with traincgp.

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A feed-forward network is created with a hidden layer of 2 neurons.

net = newff(p,t,2,{},'traincgp');
a = sim(net,p)

Here the network is trained and tested.

net = train(net,p,t);
a = sim(net,p)

Algorithm traincgp can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size



traincgp

13-373

used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous search direction according 
to the formula

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different 
ways. For the Polak-Ribiére variation of conjugate gradient, it is computed 
according to

Z = ((gX - gX_old)'*gX)/norm_sqr;

where norm_sqr is the norm square of the previous gradient, and gX_old is the 
gradient on the previous iteration. See page 78 of Scales (Introduction to 
Non-Linear Optimization, 1985) for a more detailed discussion of the 
algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

Reference Scales, L.E., Introduction to Non-Linear Optimization, New York, 
Springer-Verlag, 1985

See Also traingdm, traingda, traingdx, trainlm, trainrp, traincgf, traincgb, 
trainscg, trainoss, trainbfg

Definition Another version of the conjugate gradient algorithm was proposed by Polak 
and Ribiére. As with the Fletcher-Reeves algorithm, traincgf, the search 
direction at each iteration is determined by

For the Polak-Ribiére update, the constant βk is computed by

pk gk– βkpk 1–+=



traincgp

13-374

This is the inner product of the previous change in the gradient with the 
current gradient divided by the norm squared of the previous gradient. See 
[FlRe64] or [HDB96] for a discussion of the Polak-Ribiére conjugate gradient 
algorithm. 

The following code recreates the previous network and trains it using the 
Polak-Ribiére version of the conjugate gradient algorithm. The training 
parameters for traincgp are the same as those for traincgf. The default line 
search routine srchcha is used in this example. The parameters show and 
epochs are set to the same values as they were for traincgf.

net=newff(p,t,3,{},'traincgp');
[net,tr]=train(net,p,t);

The traincgp routine has performance similar to traincgf. It is difficult to 
predict which algorithm will perform best on a given problem. The storage 
requirements for Polak-Ribiére (four vectors) are slightly larger than for 
Fletcher-Reeves (three vectors).

βk
gk 1–

TΔ gk

gk 1–
T gk 1–

---------------------------=



traingd

13-375

13traingdPurpose Gradient descent backpropagation

Syntax [net,TR] = traingd(net,TR,trainV,valV,testV)
info = traingd('info')

Description traingd is a network training function that updates weight and bias values 
according to gradient descent.

traingd(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.



traingd

13-376

Training occurs according to traingd’s training parameters, shown here with 
their default values:

Network Use You can create a standard network that uses traingd with newff, newcf, or 
newelm. To prepare a custom network to be trained with traingd,

1 Set net.trainFcn to 'traingd'. This sets net.trainParam to traingd’s 
default parameters.

2 Set net.trainParam properties to desired values. 

In either case, calling train with the resulting network trains the network 
with traingd.

See help newff, help newcf, and help newelm for examples.

Algorithm traingd can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent:

dX = lr * dperf/dX

Training stops when any of these conditions occurs:

net.trainParam.epochs 10 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.lr 0.01 Learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between displays (NaN for no 
displays)

net.trainParam.time inf Maximum time to train in seconds



traingd

13-377

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also traingdm, traingda, traingdx, trainlm

Definition The batch steepest descent training function is traingd. The weights and 
biases are updated in the direction of the negative gradient of the performance 
function. If you want to train a network using batch steepest descent, you 
should set the network trainFcn to traingd, and then call the function train. 
There is only one training function associated with a given network. 

There are seven training parameters associated with traingd: 

• epochs 

• show 

• goal 

• time 

• min_grad 
• max_fail

• lr 

The learning rate lr is multiplied times the negative of the gradient to 
determine the changes to the weights and biases. The larger the learning rate, 
the bigger the step. If the learning rate is made too large, the algorithm 
becomes unstable. If the learning rate is set too small, the algorithm takes a 
long time to converge. See page 12–8 of [HDB96] for a discussion of the choice 
of learning rate.

The training status is displayed for every show iterations of the algorithm. (If 
show is set to NaN, then the training status is never displayed.) The other 
parameters determine when the training stops. The training stops if the 
number of iterations exceeds epochs, if the performance function drops below 
goal, if the magnitude of the gradient is less than mingrad, or if the training 



traingd

13-378

time is longer than time seconds. max_fail, which is associated with the early 
stopping technique, is discussed in “Improving Generalization” on page 9-34.

The following code creates a training set of inputs p and targets t. For batch 
training, all the input vectors are placed in one matrix.

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];

Create the feedforward network.

net = newff(p,t,3,{},'traingd');

In this simple example, turn off a feature that is introduced later.

net.divideFcn = '';

At this point, you might want to modify some of the default training 
parameters.

net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;

If you want to use the default training parameters, the preceding commands 
are not necessary.

Now you are ready to train the network.

[net,tr]=train(net,p,t);

The training record tr contains information about the progress of training. 

Now you can simulate the trained network to obtain its response to the inputs 
in the training set.

a = sim(net,p)
a =
   -1.0026   -0.9962   1.0010   0.9960

Try the Neural Network Design demonstration nnd12sd1[HDB96] for an 
illustration of the performance of the batch gradient descent algorithm.



traingda

13-379

13traingdaPurpose Gradient descent with adaptive learning rate backpropagation

Syntax [net,TR] = traingda(net,TR,trainV,valV,testV)
info = traingda('info')

Description traingda is a network training function that updates weight and bias values 
according to gradient descent with adaptive learning rate.

traingda(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.



traingda

13-380

Training occurs according to traingda’s training parameters, shown here with 
their default values:

traingda('info') returns useful information about this function.

Network Use You can create a standard network that uses traingda with newff, newcf, or 
newelm. To prepare a custom network to be trained with traingda,

1 Set net.trainFcn to 'traingda'. This sets net.trainParam to traingda’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with traingda.

See help newff, help newcf, and help newelm for examples.

net.trainParam.epochs 10 Maximum number of epochs to 
train

net.trainParam.goal 0 Performance goal

net.trainParam.lr 0.01 Learning rate

net.trainParam.lr_inc 1.05 Ratio to increase learning rate

net.trainParam.lr_dec 0.7 Ratio to decrease learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.max_perf_inc 1.04 Maximum performance increase

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between displays (NaN 
for no displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in 
seconds



traingda

13-381

Algorithm traingda can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance dperf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent:

dX = lr*dperf/dX

At each epoch, if performance decreases toward the goal, then the learning rate 
is increased by the factor lr_inc. If performance increases by more than the 
factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and the 
change that increased the performance is not made.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also traingd, traingdm, traingdx, trainlm

Definition With standard steepest descent, the learning rate is held constant throughout 
training. The performance of the algorithm is very sensitive to the proper 
setting of the learning rate. If the learning rate is set too high, the algorithm 
can oscillate and become unstable. If the learning rate is too small, the 
algorithm takes too long to converge. It is not practical to determine the 
optimal setting for the learning rate before training, and, in fact, the optimal 
learning rate changes during the training process, as the algorithm moves 
across the performance surface.

You can improve the performance of the steepest descent algorithm if you allow 
the learning rate to change during the training process. An adaptive learning 
rate attempts to keep the learning step size as large as possible while keeping 
learning stable. The learning rate is made responsive to the complexity of the 
local error surface.



traingda

13-382

An adaptive learning rate requires some changes in the training procedure 
used by traingd. First, the initial network output and error are calculated. At 
each epoch new weights and biases are calculated using the current learning 
rate. New outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a 
predefined ratio, max_perf_inc (typically 1.04), the new weights and biases are 
discarded. In addition, the learning rate is decreased (typically by multiplying 
by lr_dec = 0.7). Otherwise, the new weights, etc., are kept. If the new error is 
less than the old error, the learning rate is increased (typically by multiplying 
by lr_inc = 1.05).

This procedure increases the learning rate, but only to the extent that the 
network can learn without large error increases. Thus, a near-optimal learning 
rate is obtained for the local terrain. When a larger learning rate could result 
in stable learning, the learning rate is increased. When the learning rate is too 
high to guarantee a decrease in error, it is decreased until stable learning 
resumes.

Try the Neural Network Design demonstration nnd12vl [HDB96] for an 
illustration of the performance of the variable learning rate algorithm.

Backpropagation training with an adaptive learning rate is implemented with 
the function traingda, which is called just like traingd, except for the 
additional training parameters max_perf_inc, lr_dec, and lr_inc. Here is 
how it is called to train the previous two-layer network:

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = newff(p,t,3,{},'traingda');
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.05;
net = train(net,p,t);
y = sim(net,p)



traingdm

13-383

13traingdmPurpose Gradient descent with momentum backpropagation

Syntax [net,TR] = traingdm(net,TR,trainV,valV,testV)
info = traingdm('info')

Description traingdm is a network training function that updates weight and bias values 
according to gradient descent with momentum.

traingdm(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.



traingdm

13-384

Training occurs according to traingdm’s training parameters, shown here with 
their default values:

traingdm('info') returns useful information about this function.

Network Use You can create a standard network that uses traingdm with newff, newcf, or 
newelm. To prepare a custom network to be trained with traingdm,

1 Set net.trainFcn to 'traingdm'. This sets net.trainParam to traingdm’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with traingdm.

See help newff, help newcf, and help newelm for examples.

Algorithm traingdm can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent with momentum,

net.trainParam.epochs 10 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.lr 0.01 Learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.mc 0.9 Momentum constant

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between showing progress

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds



traingdm

13-385

dX = mc*dXprev + lr*(1-mc)*dperf/dX

where dXprev is the previous change to the weight or bias.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also traingd, traingda, traingdx, trainlm

Definition In addition to traingd, there are three other variations of gradient descent.

Gradient descent with momentum, implemented by traingdm, allows a 
network to respond not only to the local gradient, but also to recent trends in 
the error surface. Acting like a lowpass filter, momentum allows the network 
to ignore small features in the error surface. Without momentum a network 
can get stuck in a shallow local minimum. With momentum a network can slide 
through such a minimum. See page 12–9 of [HDB96] for a discussion of 
momentum.

Gradient descent with momentum depends on two training parameters. The 
parameter lr indicates the learning rate, similar to the simple gradient 
descent. The parameter mc is the momentum constant that defines the amount 
of momentum. mc is set between 0 (no momentum) and values close to 1 (lots of 
momentum). A momentum constant of 1 results in a network that is completely 
insensitive to the local gradient and, therefore, does not learn properly.)

p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = newff(p,t,3,{},'traingdm');
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net = train(net,p,t);
y = sim(net,p)



traingdm

13-386

Try the Neural Network Design demonstration nnd12mo [HDB96] for an 
illustration of the performance of the batch momentum algorithm.



traingdx

13-387

13traingdxPurpose Gradient descent with momentum and adaptive learning rate backpropagation

Syntax [net,TR] = traingdx(net,TR,trainV,valV,testV)
info = traingdx('info')

Description traingdx is a network training function that updates weight and bias values 
according to gradient descent momentum and an adaptive learning rate.

traingdx(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.



traingdx

13-388

Training occurs according to traingdx’s training parameters, shown here with 
their default values:

traingdx('info') returns useful information about this function.

Network Use You can create a standard network that uses traingdx with newff, newcf, or 
newelm. To prepare a custom network to be trained with traingdx,

1 Set net.trainFcn to 'traingdx'. This sets net.trainParam to traingdx’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with traingdx.

See help newff, help newcf, and help newelm for examples.

net.trainParam.epochs 10 Maximum number of epochs to 
train

net.trainParam.goal 0 Performance goal

net.trainParam.lr 0.01 Learning rate

net.trainParam.lr_inc 1.05 Ratio to increase learning rate

net.trainParam.lr_dec 0.7 Ratio to decrease learning rate

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.max_perf_inc 1.04 Maximum performance increase

net.trainParam.mc 0.9 Momentum constant

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.show 25 Epochs between displays (NaN for 
no displays)

net.trainParam.showCommandLine 0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds



traingdx

13-389

Algorithm traingdx can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent with momentum,

dX = mc*dXprev + lr*mc*dperf/dX

where dXprev is the previous change to the weight or bias.

For each epoch, if performance decreases toward the goal, then the learning 
rate is increased by the factor lr_inc. If performance increases by more than 
the factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and 
the change that increased the performance is not made.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also traingd, traingda, traingdm, trainlm

Definition The function traingdx combines adaptive learning rate with momentum 
training. It is invoked in the same way as traingda, except that it has the 
momentum coefficient mc as an additional training parameter.



trainlm

13-390

13trainlmPurpose Levenberg-Marquardt backpropagation

Syntax [net,TR] = trainlm(net,TR,trainV,valV,testV)
info = trainlm('info')

Description trainlm is a network training function that updates weight and bias values 
according to Levenberg-Marquardt optimization.

trainlm is often the fastest backpropagation algorithm in the toolbox, and is 
highly recommended as a first-choice supervised algorithm, although it does 
require more memory than other algorithms.

trainlm(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.



trainlm

13-391

Training occurs according to trainlm’s training parameters, shown here with 
their default values:

Validation vectors are used to stop training early if the network performance 
on the validation vectors fails to improve or remains the same for max_fail 
epochs in a row. Test vectors are used as a further check that the network is 
generalizing well, but do not have any effect on training.

trainlm is the default training function for several network creation functions 
including newcf, newdtdnn, newff, and newnarx.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.mem_reduc 1 Factor to use for memory/speed 
tradeoff

net.trainParam.min_grad 1e-10 Minimum performance gradient

net.trainParam.mu 0.001 Initial mu

net.trainParam.mu_dec 0.1 mu decrease factor

net.trainParam.mu_inc 10 mu increase factor

net.trainParam.mu_max 1e10 Maximum mu

net.trainParam.show 25 Epochs between displays (NaN for no 
displays)

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds



trainlm

13-392

trainlm('info') returns useful information about this function.

Network Use You can create a standard network that uses trainlm with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainlm,

1 Set net.trainFcn to 'trainlm'. This sets net.trainParam to trainlm’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with trainlm.

See help newff, help newcf, and help newelm for examples.

Algorithm trainlm supports training with validation and test vectors if the network’s 
NET.divideFcn property is set to a data division function. Validation vectors 
are used to stop training early if the network performance on the validation 
vectors fails to improve or remains the same for max_fail epochs in a row. Test 
vectors are used as a further check that the network is generalizing well, but 
do not have any effect on training.

trainlm can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate the Jacobian jX of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change above results in 
a reduced performance value. The change is then made to the network and mu 
is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to calculate 
the Jacobian jX. If mem_reduc is 1, then trainlm runs the fastest, but can 



trainlm

13-393

require a lot of memory. Increasing mem_reduc to 2 cuts some of the memory 
required by a factor of two, but slows trainlm somewhat. Higher states 
continue to decrease the amount of memory needed and increase training 
times.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• mu exceeds mu_max.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

Definition Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was 
designed to approach second-order training speed without having to compute 
the Hessian matrix. When the performance function has the form of a sum of 
squares (as is typical in training feedforward networks), then the Hessian 
matrix can be approximated as

and the gradient can be computed as

where J is the Jacobian matrix that contains first derivatives of the network 
errors with respect to the weights and biases, and e is a vector of network 
errors. The Jacobian matrix can be computed through a standard 
backpropagation technique (see [HaMe94]) that is much less complex than 
computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian 
matrix in the following Newton-like update:

When the scalar μ is zero, this is just Newton’s method, using the approximate 
Hessian matrix. When μ is large, this becomes gradient descent with a small 

H JTJ=

g JTe=

xk 1+ xk JTJ μI+[ ]
1–
JTe–=



trainlm

13-394

step size. Newton’s method is faster and more accurate near an error 
minimum, so the aim is to shift toward Newton’s method as quickly as possible. 
Thus, μ is decreased after each successful step (reduction in performance 
function) and is increased only when a tentative step would increase the 
performance function. In this way, the performance function is always reduced 
at each iteration of the algorithm.

The following code reinitializes the previous network and retrains it using the 
Levenberg-Marquardt algorithm. The training parameters for trainlm are 
epochs, show, goal, time, min_grad, max_fail, mu, mu_dec, mu_inc, mu_max, and 
mem_reduc. The first six parameters were discussed earlier. The parameter mu 
is the initial value for μ. This value is multiplied by mu_dec whenever the 
performance function is reduced by a step. It is multiplied by mu_inc whenever 
a step would increase the performance function. If mu becomes larger than 
mu_max, the algorithm is stopped. The parameter mem_reduc is used to control 
the amount of memory used by the algorithm. It is discussed in the next 
section.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net = newff(p,t,3,{},'trainlm');
net = train(net,p,t);
y = sim(net,p)

The original description of the Levenberg-Marquardt algorithm is given in 
[Marq63]. The application of Levenberg-Marquardt to neural network training 
is described in [HaMe94] and starting on page 12-19 of [HDB96]. This 
algorithm appears to be the fastest method for training moderate-sized 
feedforward neural networks (up to several hundred weights). It also has an 
efficient implementation in MATLAB® software, because the solution of the 
matrix equation is a built-in function, so its attributes become even more 
pronounced in a MATLAB environment.

Try the Neural Network Design demonstration nnd12m [HDB96] for an 
illustration of the performance of the batch Levenberg-Marquardt algorithm.



trainoss

13-395

13trainossPurpose One-step secant backpropagation

Syntax [net,TR,Ac,El] = trainoss(net,TR,trainV,valV,testV)
info = trainoss('info')

Description trainoss is a network training function that updates weight and bias values 
according to the one-step secant method.

trainoss(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.



trainoss

13-396

Training occurs according to trainoss’s training parameters, shown here with 
their default values:

Parameters related to line search methods (not all used for all methods):

net.trainParam.epochs 100 Maximum number of epochs to 
train

net.trainParam.show 25 Epochs between displays (NaN for 
no displays)

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in 
seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.searchFcn 'srchcha' Name of line search routine to 
use

net.trainParam.scal_tol 20 Divide into delta to determine 
tolerance for linear search.

net.trainParam.alpha 0.001 Scale factor that determines 
sufficient reduction in perf

net.trainParam.beta 0.1 Scale factor that determines 
sufficiently large step size

net.trainParam.delta 0.01 Initial step size in interval 
location step

net.trainParam.gama 0.1 Parameter to avoid small 
reductions in performance, usually 
set to 0.1 (see srch_cha)

net.trainParam.low_lim 0.1 Lower limit on change in step size



trainoss

13-397

trainoss('info') returns useful information about this function.

Network Use You can create a standard network that uses trainoss with newff, newcf, or 
newelm. To prepare a custom network to be trained with trainoss,

1 Set net.trainFcn to 'trainoss'. This sets net.trainParam to trainoss’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with trainoss.

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from 
[0 to 10]. The first layer has two tansig neurons, and the second layer has one 
logsig neuron. The trainoss network training function is to be used.

Create and test a network.

net = newff([0 5],[2 1],{'tansig','logsig'},'trainoss');
a = sim(net,p)

Here the network is trained and retested.

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

net.trainParam.up_lim  0.5 Upper limit on change in step size 

net.trainParam.maxstep 100 Maximum step length

net.trainParam.minstep 1.0e-6 Minimum step length

net.trainParam.bmax 26 Maximum step size



trainoss

13-398

Algorithm trainoss can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous steps and gradients, 
according to the following formula:

dX = -gX + Ac*X_step + Bc*dgX;

where gX is the gradient, X_step is the change in the weights on the previous 
iteration, and dgX is the change in the gradient from the last iteration. See 
Battiti (Neural Computation, Vol. 4, 1992, pp. 141–166) for a more detailed 
discussion of the one-step secant algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

Reference Battiti, R., “First and second order methods for learning: Between steepest 
descent and Newton’s method,” Neural Computation, Vol. 4, No. 2, 1992, 
pp. 141–166

See Also traingdm, traingda, traingdx, trainlm, trainrp, traincgf, traincgb, 
trainscg, traincgp, trainbfg



trainoss

13-399

Definition Because the BFGS algorithm requires more storage and computation in each 
iteration than the conjugate gradient algorithms, there is need for a secant 
approximation with smaller storage and computation requirements. The one 
step secant (OSS) method is an attempt to bridge the gap between the 
conjugate gradient algorithms and the quasi-Newton (secant) algorithms. This 
algorithm does not store the complete Hessian matrix; it assumes that at each 
iteration, the previous Hessian was the identity matrix. This has the additional 
advantage that the new search direction can be calculated without computing 
a matrix inverse.

The following code trains a network using the one-step secant algorithm. The 
training parameters for trainoss are the same as those for traincgf. The 
default line search routine srchbac is used in this example. The parameters 
show and epochs are set to 5 and 300, respectively.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net = newff(p,t,3,{},'trainoss');
net = train(net,p,t);
y = sim(net,p)

The one step secant method is described in [Batt92]. This algorithm requires 
less storage and computation per epoch than the BFGS algorithm. It requires 
slightly more storage and computation per epoch than the conjugate gradient 
algorithms. It can be considered a compromise between full quasi-Newton 
algorithms and conjugate gradient algorithms.



trainr

13-400

13trainrPurpose Random order incremental training with learning functions

Syntax [net,TR,Ac,El] = trainr(net,TR,trainV,valV,testV)

Description trainr is not called directly. Instead it is called by train for networks whose 
net.trainFcn property is set to 'trainr'.

trainr trains a network with weight and bias learning rules with incremental 
updates after each presentation of an input. Inputs are presented in random 
order.

trainr(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.



trainr

13-401

Training occurs according to trainr’s training parameters, shown here with 
their default values:

Network Use You can create a standard network that uses trainr by calling newc or newsom. 
To prepare a custom network to be trained with trainr,

1 Set net.trainFcn to 'trainr'. This sets net.trainParam to trainr’s 
default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.

3 Set each net.layerWeights{i,j}.learnFcn to a learning function.

4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias 
learning parameters are automatically set to default values for the given 
learning function.)

To train the network,

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See help newc and help newsom for training examples.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.show 25 Epochs between displays (NaN for no 
displays)

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds



trainr

13-402

Algorithm For each epoch, all training vectors (or sequences) are each presented once in 
a different random order, with the network and weight and bias values 
updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.

• Performance is minimized to the goal.

• The maximum amount of time is exceeded.

See Also train



trainrp

13-403

13trainrpPurpose Resilient backpropagation

Syntax [net,TR,Ac,El] = trainrp(net,TR,trainV,valV,testV)
info = trainrp('info')

Description trainrp is a network training function that updates weight and bias values 
according to the resilient backpropagation algorithm (Rprop).

trainrp(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.



trainrp

13-404

Training occurs according to trainrp’s training parameters, shown here with 
their default values:

trainrp('info') returns useful information about this function.

Network Use You can create a standard network that uses trainrp with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainrp,

1 Set net.trainFcn to 'trainrp'. This sets net.trainParam to trainrp’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with trainrp.

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between displays (NaN for no 
displays)

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.lr 0.01 Learning rate

net.trainParam.delt_inc 1.2 Increment to weight change

net.trainParam.delt_dec 0.5 Decrement to weight change

net.trainParam.delta0 0.07 Initial weight change

net.trainParam.deltamax 50.0 Maximum weight change



trainrp

13-405

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

A two-layer feed-forward network is created. The network’s input ranges from 
[0 to 10]. The first layer has two tansig neurons, and the second layer has one 
logsig neuron. The trainrp network training function is to be used.

Create and test a network.

net = newff([0 5],[2 1],{'tansig','logsig'},'trainrp');
a = sim(net,p)

Here the network is trained and retested.

net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See help newff, help newcf, and help newelm for other examples.

Algorithm trainrp can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

dX = deltaX.*sign(gX);

where the elements of deltaX are all initialized to delta0, and gX is the 
gradient. At each iteration the elements of deltaX are modified. If an element 
of gX changes sign from one iteration to the next, then the corresponding 
element of deltaX is decreased by delta_dec. If an element of gX maintains the 
same sign from one iteration to the next, then the corresponding element of 
deltaX is increased by delta_inc. See Riedmiller, Proceedings of the IEEE 
International Conference on Neural Networks (ICNN), San Francisco, 1993, 
pp. 586 to 591.



trainrp

13-406

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

Reference Riedmiller, Proceedings of the IEEE International Conference on Neural 
Networks (ICNN), San Francisco, 1993, pp. 586–591

See Also traingdm, traingda, traingdx, trainlm, traincgp, traincgf, traincgb, 
trainscg, trainoss, trainbfg

Definition Multilayer networks typically use sigmoid transfer functions in the hidden 
layers. These functions are often called “squashing” functions, because they 
compress an infinite input range into a finite output range. Sigmoid functions 
are characterized by the fact that their slopes must approach zero as the input 
gets large. This causes a problem when you use steepest descent to train a 
multilayer network with sigmoid functions, because the gradient can have a 
very small magnitude and, therefore, cause small changes in the weights and 
biases, even though the weights and biases are far from their optimal values. 

The purpose of the resilient backpropagation (Rprop) training algorithm is to 
eliminate these harmful effects of the magnitudes of the partial derivatives. 
Only the sign of the derivative can determine the direction of the weight 
update; the magnitude of the derivative has no effect on the weight update. The 
size of the weight change is determined by a separate update value. The update 
value for each weight and bias is increased by a factor delt_inc whenever the 
derivative of the performance function with respect to that weight has the 
same sign for two successive iterations. The update value is decreased by a 
factor delt_dec whenever the derivative with respect to that weight changes 
sign from the previous iteration. If the derivative is zero, the update value 
remains the same. Whenever the weights are oscillating, the weight change is 
reduced. If the weight continues to change in the same direction for several 
iterations, the magnitude of the weight change increases. A complete 
description of the Rprop algorithm is given in [ReBr93].



trainrp

13-407

The following code recreates the previous network and trains it using the 
Rprop algorithm. The training parameters for trainrp are epochs, show, goal, 
time, min_grad, max_fail, delt_inc, delt_dec, delta0, and deltamax. The 
first eight parameters have been previously discussed. The last two are the 
initial step size and the maximum step size, respectively. The performance of 
Rprop is not very sensitive to the settings of the training parameters. For the 
example below, the training parameters are left at the default values:

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net = newff(p,t,3,{},'trainrp');
net = train(net,p,t);
y = sim(net,p)

rprop is generally much faster than the standard steepest descent algorithm. 
It also has the nice property that it requires only a modest increase in memory 
requirements. You do need to store the update values for each weight and bias, 
which is equivalent to storage of the gradient.



trainru

13-408

13trainruPurpose Unsupervised random order weight/bias training

Syntax [net,TR,Ac,El] = trainr(net,TR,trainV,valV,testV)

Description trainru is not called directly. Instead it is called by train for networks whose 
net.trainFcn property is set to 'trainru'.

trainru trains a network with weight and bias learning rules with incremental 
updates after each presentation of an input. Inputs are presented in random 
order.

trainru(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.



trainru

13-409

Training occurs according to trainr’s training parameters, shown here with 
their default values:

Network Use To prepare a custom network to be trained with trainru,

1 Set net.trainFcn to 'trainr'. This sets net.trainParam to trainru’s 
default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.

3 Set each net.layerWeights{i,j}.learnFcn to a learning function.

4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias 
learning parameters are automatically set to default values for the given 
learning function.)

To train the network,

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.show 25 Epochs between displays (NaN for no 
displays)

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds



trainru

13-410

Algorithm For each epoch, all training vectors (or sequences) are each presented once in 
a different random order, with the network and weight and bias values 
updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

See Also train, trainr



trains

13-411

13trainsPurpose Sequential order incremental training with learning functions

Syntax [net,TR,Ac,El] = trains(net,Pd,Tl,Ai,Q,TS)
info = trains(code)

Description trains is not called directly. Instead it is called by train for networks whose 
net.trainFcn property is set to 'trains'.

trains trains a network with weight and bias learning rules with sequential 
updates. The sequence of inputs is presented to the network with updates 
occurring after each time step.

This incremental training algorithm is commonly used for adaptive 
applications.

trains takes these inputs:

and after training the network with its weight and bias learning functions 
returns

net Neural network

Pd Delayed inputs

Tl Layer targets

Ai Initial input conditions

Q Batch size

TS Time steps

net Updated network

TR Training record:

TR.timesteps Number of time steps

TR.perf Performance for each time step

Ac Collective layer outputs

El Layer errors



trains

13-412

Training occurs according to trains’s training parameter, shown here with its 
default value:

Dimensions for these variables are

where

trains(code) returns useful information for each code string:

Network Use You can create a standard network that uses trains for adapting by calling 
newp or newlin.

To prepare a custom network to adapt with trains,

1 Set net.adaptFcn to 'trains'. This sets net.adaptParam to trains’s 
default parameters.

net.trainParam.passes 1 Number of times to present sequence

Pd Nl x Ni x TS cell array Each Pd{i,j,ts} is a Dij x Q matrix.

Tl Nl x TS cell array Each Tl{i,ts} is a Ui x Q matrix or [].

Ai Nl x LD cell array Each Ai{i,k} is an Si x Q matrix.

Ac Nl x (LD+TS) cell array Each Ac{i,k} is an Si x Q matrix.

El Nl x TS cell array Each El{i,k} is an Si x Q matrix or [].

Ni = net.numInputs

Nl = net.numLayers

LD = net.numLayerDelays

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Ui = net.outputs{i}.size

Dij = Ri * length(net.inputWeights{i,j}.delays)

'pnames' Names of training parameters

'pdefaults' Default training parameters



trains

13-413

2 Set each net.inputWeights{i,j}.learnFcn to a learning function. Set each 
net.layerWeights{i,j}.learnFcn to a learning function. Set each 
net.biases{i}.learnFcn to a learning function. (Weight and bias learning 
parameters are automatically set to default values for the given learning 
function.)

To allow the network to adapt,

1 Set weight and bias learning parameters to desired values.

2 Call adapt.

See help newp and help newlin for adaption examples.

Algorithm Each weight and bias is updated according to its learning function after each 
time step in the input sequence.

See Also train, trainb, trainc, trainr



trainscg

13-414

13trainscgPurpose Scaled conjugate gradient backpropagation

Syntax [net,TR,Ac,El] = trainscg(net,TR,trainV,valV,testV)
info = trainscg('info')

Description trainscg is a network training function that updates weight and bias values 
according to the scaled conjugate gradient method.

trainscg(net,TR,trainV,valV,testV) takes these inputs,

and returns

Each argument trainV, valV, and testV is a structure of these fields:

net Neural network

TR Initial training record created by train

trainV Training data created by train

valV Validation data created by train

testV Test data created by train

net Trained network

TR Training record of various values over each epoch

X N x TS cell array of inputs for N inputs and TS time steps. X{i,ts} is 
an Ri x Q matrix for the ith input and TS time step.

Xi N x Nid cell array of input delay states for N inputs and Nid delays. 
Xi{i,j} is an Ri x Q matrix for the ith input and jth state.

Pd N x S x Nid cell array of delayed input states.

T No x TS cell array of targets for No outputs and TS time steps. T{i,ts} 
is an Si x Q matrix for the ith output and TS time step.

Tl Nl x TS cell array of targets for Nl layers and TS time steps. Tl{i,ts} 
is an Si x Q matrix for the ith layer and TS time step.

Ai Nl x TS cell array of layer delays states for Nl layers, TS time steps. 
Ai{i,j} is an Si x Q matrix of delayed outputs for layer i, delay j.



trainscg

13-415

Training occurs according to trainscg’s training parameters, shown here with 
their default values:

trainscg('info') returns useful information about this function.

Network Use You can create a standard network that uses trainscg with newff, newcf, or 
newelm. To prepare a custom network to be trained with trainscg,

1 Set net.trainFcn to 'trainscg'. This sets net.trainParam to trainscg’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network trains the network 
with trainscg.

Examples Here is a problem consisting of inputs p and targets t to be solved with a 
network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

net.trainParam.epochs 100 Maximum number of epochs to train

net.trainParam.show 25 Epochs between displays (NaN for 
no displays)

net.trainParam.showCommand
Line

0 Generate command-line output

net.trainParam.showWindow 1 Show training GUI

net.trainParam.goal 0 Performance goal

net.trainParam.time inf Maximum time to train in seconds

net.trainParam.min_grad 1e-6 Minimum performance gradient

net.trainParam.max_fail 5 Maximum validation failures

net.trainParam.sigma 5.0e-5 Determine change in weight for 
second derivative approximation

net.trainParam.lambda 5.0e-7 Parameter for regulating the 
indefiniteness of the Hessian



trainscg

13-416

Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The trainscg network training function is to be used.

net = newff([0 5],[2 1],{'tansig','logsig'},'trainscg');
a = sim(net,p)

Here the network is trained and retested.

net = train(net,p,t);
a = sim(net,p)

See help newff, help newcf, and help newelm for other examples.

Algorithm trainscg can train any network as long as its weight, net input, and transfer 
functions have derivative functions. Backpropagation is used to calculate 
derivatives of performance perf with respect to the weight and bias variables 
X. 

The scaled conjugate gradient algorithm is based on conjugate directions, as in 
traincgp, traincgf, and traincgb, but this algorithm does not perform a line 
search at each iteration. See Moller (Neural Networks, Vol. 6, 1993, pp. 525 to 
533) for a more detailed discussion of the scaled conjugate gradient algorithm.

Training stops when any of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time is exceeded.

• Performance is minimized to the goal.

• The performance gradient falls below min_grad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

Reference Moller, Neural Networks, Vol. 6, 1993, pp. 525–533

See Also traingdm, traingda, traingdx, trainlm, trainrp, traincgf, traincgb, 
trainbfg, traincgp, trainoss

Each of the other conjugate gradient algorithms requires a line search at each 
iteration. This line search is computationally expensive, because it requires 
that the network response to all training inputs be computed several times for 



trainscg

13-417

each search. The scaled conjugate gradient algorithm (SCG), developed by 
Moller [Moll93], was designed to avoid the time-consuming line search. This 
algorithm combines the model-trust region approach (used in the 
Levenberg-Marquardt algorithm, trainlm), with the conjugate gradient 
approach. See {Moll93] for a detailed explanation of the algorithm.

The following code trains a network using the scaled conjugate gradient 
algorithm. The training parameters for trainscg are epochs, show, goal, time, 
min_grad, max_fail, sigma, and lambda. The parameter sigma determines the 
change in the weight for the second derivative approximation. The parameter 
lambda regulates the indefiniteness of the Hessian.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net = newff(p,t,3,{},'trainscg');
net = train(net,p,t);
y = sim(net,p)

The trainscg routine can require more iterations to converge than the other 
conjugate gradient algorithms, but the number of computations in each 
iteration is significantly reduced because no line search is performed. The 
storage requirements for the scaled conjugate gradient algorithm are about the 
same as those of Fletcher-Reeves.



tribas

13-418

13tribasPurpose Triangular basis transfer function

Graph and 
Symbol

Syntax A = tribas(N,FP)
dA_dN = tribas('dn',N,A,FP)
info = tribas(code)

Description tribas is a neural transfer function. Transfer functions calculate a layer’s 
output from its net input.

tribas(N,FP) takes N and optional function parameters,

and returns A, an S x Q matrix of the triangular basis function applied to each 
element of N.

tribas('dn',N,A,FP) returns the S x Q derivative of A with respect to N. If A or 
FP is not supplied or is set to [], FP reverts to the default parameters, and A is 
calculated from N.

tribas('name') returns the name of this function.

tribas('output',FP) returns the [min max] output range.

tribas('active',FP) returns the [min max] active input range.

tribas('fullderiv') returns 1 or 0, depending on whether dA_dN is S x S x Q 
or S x Q.

tribas('fpnames') returns the names of the function parameters.

n
0

-1

+1

a = tribas(n)

Triangular Basis Function

a

-1 +1

N S x Q matrix of net input (column) vectors

FP Struct of function parameters (ignored)



tribas

13-419

tribas('fpdefaults') returns the default function parameters.

Examples Here you create a plot of the tribas transfer function.

n = -5:0.1:5;
a = tribas(n);
plot(n,a)

Assign this transfer function to layer i of a network.

net.layers{i}.transferFcn = 'tribas';

Algorithm a = tribas(n) = 1 - abs(n), if -1 <= n <= 1
              = 0, otherwise

See Also sim, radbas



tritop

13-420

13tritopPurpose Triangle layer topology function

Syntax pos = triptop(dim1,dim2,...,dimN)

Description tritop calculates neuron positions for layers whose neurons are arranged in 
an N-dimensional triangular grid.

triptop(dim1,dim2,...,dimN) takes N arguments,

and returns an N x S matrix of N coordinate vectors where S is the product of 
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 40 neurons 
arranged in an 8-by-5 triangular grid.

pos = tritop(8,5);
plotsompos(pos)

See Also gridtop, hextop, randtop

dimi Length of layer in dimension i



unconfigure

13-421

13unconfigurePurpose Unconfigure network inputs and outputs

Syntax unconfigure(net)
unconfigure(net,'inputs')
unconfigure(net,'inputs',i)
unconfigure(net,'outputs')
unconfigure(net,'outputs',i)

Description unconfigure(net) returns a network with its input and output sizes set to 0, 
its input and output processing settings and related weight initialization 
settings set to values consistent with zero-sized signals. The new network will 
be ready to be reconfigured for data of the same or different dimensions than it 
was previously configured for.

unconfigure(net,'inputs',i) unconfigures the inputs indicated by the 
indices i. If no indices are specified, all inputs are unconfigured.

unconfigure(net,'outputs',i) unconfigures the outputs indicated by the 
indices i. If no indices are specified, all outputs are unconfigured.

Examples Here a network is configured for a simple fitting problem, and then 
unconfigured.

[x,t] = simplefit_dataset;
net = fitnet(10);
view(net)
net = configure(net,x,t);
view(net)
net = unconfigure(net)
view(net)

See Also configure, isconfigured



vec2ind

13-422

13vec2indPurpose Convert vectors to indices

Syntax ind = vec2ind(vec)

Description ind2vec and vec2ind allow indices to be represented either by themselves or 
as vectors containing a 1 in the row of the index they represent.

vec2ind(vec) takes one argument,

and returns the indices of the 1s.

Examples Here four vectors (each containing only one “1” element) are defined, and the 
indices of the 1s are found.

vec = [1 0 0 0; 0 0 1 0; 0 1 0 1]
ind = vec2ind(vec)

See Also ind2vec

vec Matrix of vectors, each containing a single 1



view

13-423

13viewPurpose View neural network

Syntax view(net)

Description Use this function to launch a window that shows your neural network 
(specified in net) as a graphical diagram.



view

13-424



 

A

Mathematical Notation

Mathematical Notation for Equations and Figures (p. A-2)

Mathematics and Code Equivalents (p. A-4)



A Mathematical Notation

A-2

Mathematical Notation for Equations and Figures

Basic Concepts

Language
Vector means a column of numbers.

Weight Matrices

Bias Elements and Vectors

Time and Iteration

Description Example

Scalars Small italic letters a, b, c

Vectors Small bold nonitalic letters a, b, c

Matrices Capital BOLD nonitalic letters A, B, C

Scalar element  wi,j

Matrix W

Column vector wj

Row vector iw Vector made of ith row of weight matrix W

Scalar element bi

Bias vector b

Weight matrix at time t W(t)

Weight matrix on iteration k W(k)



Mathematical Notation for Equations and Figures

A-3

Layer Notation
A single superscript is used to identify elements of a layer. For instance, the 
net input of layer 3 would be shown as n3. 

Superscripts k, l are used to identify the source (l) connection and the 
destination (k) connection of layer weight matrices and input weight matrices. 
For instance, the layer weight matrix from layer 2 to layer 4 would be shown 
as LW4,2.

Figure and Equation Examples
The following figure, taken from Chapter 9, “Advanced Topics,” illustrates 
notation used in such advanced figures.

Input weight matrix IWk, l

Layer weight matrix LWk, l

p1(k)

a1(k)1

n1(k) 2 x 1
4 x 2

 4 x 1

 4 x 1

4 x 1

Inputs 

��IW1,1

��
��b1

2 4

Layers 1 and 2 Layer 3

a1(k) = tansig (IW1,1p1(k) +b1)
��
��
��

5

3 x (2*2)��
��IW2,1

3 x (1*5)��
��

IW2,2

n2(k)

3 x 1

3��
��
��

��
��TDL

p2(k)

 5 x 1��
��

TDL

1 x 4���
���LW3,1

1 x 3

���
���

1 x (1*1)

���
���

1
1 x 1���

���
b3

��
��TDL

3 x 1

a2(k)

a3(k)n3(k)
1 x 1 1 x 1

1
��
��
��

a2(k) = logsig (IW2,1 [p1(k);p1(k-1) ]+ IW2,2p2(k-1))

0,1

1

1

a3(k)=purelin(LW3,3a3(k-1)+LW3,1 a1 (k)+b3+LW3,2a2 (k))

LW3,2

LW3,3

y2(k)
1 x 1

y1(k)

3 x 1

Outputs



A Mathematical Notation

A-4

Mathematics and Code Equivalents
The transition from mathematics to code or vice versa can be made with the aid 
of a few rules. They are listed here for reference.

Mathematics Notation to MATLAB® Notation
To change from mathematics notation to MATLAB® notation:

• Change superscripts to cell array indices. For example,

• Change subscripts to indices within parentheses. For example,

 

and

• Change indices within parentheses to a second cell array index. For example,

• Change mathematics operators to MATLAB operators and toolbox functions. 
For example,

Figure Notation
The following equations illustrate the notation used in figures.

p1 p 1{ }→

p2 p 2( )→

p2
1 p 1{ } 2( )→

p1 k 1–( ) p 1 k 1–,{ }→

ab a*b→

n w1 1, p1 w1 2, p2 ... w1 R, pR b+ + + +=

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=



 

B

Blocks for the Simulink® 
Environment 

Blockset (p. B-2)

Block Generation (p. B-5)



B Blocks for the Simulink® Environment

B-2

Blockset
The Neural Network Toolbox™ product provides a set of blocks you can use to 
build neural networks using Simulink® software or that the function gensim 
can use to generate the Simulink version of any network you have created 
using MATLAB® software.

Bring up the Neural Network Toolbox blockset with this command:

neural

The result is a window that contains five blocks. Each of these blocks contains 
additional blocks.

Transfer Function Blocks
Double-click the Transfer Functions block in the Neural window to bring up a 
window containing several transfer function blocks.



Blockset

B-3

Each of these blocks takes a net input vector and generates a corresponding 
output vector whose dimensions are the same as the input vector.

Net Input Blocks
Double-click the Net Input Functions block in the Neural window to bring up 
a window containing two net-input function blocks.

Each of these blocks takes any number of weighted input vectors, weight layer 
output vectors, and bias vectors, and returns a net-input vector.

Weight Blocks
Double-click the Weight Functions block in the Neural window to bring up a 
window containing three weight function blocks.

Each of these blocks takes a neuron’s weight vector and applies it to an input 
vector (or a layer output vector) to get a weighted input value for a neuron.

It is important to note that the blocks above expect the neuron’s weight vector 
to be defined as a column vector. This is because Simulink signals can be 
column vectors, but cannot be matrices or row vectors.



B Blocks for the Simulink® Environment

B-4

It is also important to note that because of this limitation you have to create S 
weight function blocks (one for each row), to implement a weight matrix going 
to a layer with S neurons.

This contrasts with the other two kinds of blocks. Only one net input function 
and one transfer function block are required for each layer.

Processing Blocks
Double-click the Processing Functions block in the Neural window to bring up 
a window containing five processing blocks and their corresponding 
reverse-processing blocks.

Each of these blocks can be used to pre-process inputs and post-process 
outputs.



Block Generation

B-5

Block Generation
The function gensim generates block descriptions of networks so you can 
simulate them using Simulink® software.

gensim(net,st)

The second argument to gensim determines the sample time, which is normally 
chosen to be some positive real value.

If a network has no delays associated with its input weights or layer weights, 
this value can be set to -1. A value of -1 tells gensim to generate a network with 
continuous sampling.

Example
Here is a simple problem defining a set of inputs p and corresponding targets t.

p = [1 2 3 4 5];
t = [1 3 5 7 9];

The code below designs a linear layer to solve this problem.

net = newlind(p,t)

You can test the network on our original inputs with sim.

y = sim(net,p)

The results show the network has solved the problem.

y =
1.0000    3.0000    5.0000    7.0000    9.0000

Call gensim as follows to generate a Simulink version of the network.

gensim(net,-1)

The second argument is -1, so the resulting network block samples 
continuously.

The call to gensim results in the following screen. It contains a Simulink 
system consisting of the linear network connected to a sample input and a 
scope.



B Blocks for the Simulink® Environment

B-6

To test the network, double-click the Input 1 block at left.

The input block is actually a standard Constant block. Change the constant 
value from the initial randomly generated value to 2, and then click Close.

Select Start from the Simulation menu. Simulink momentarily pauses as it 
simulates the system.

When the simulation is over, double-click the scope at the right to see the 
following display of the network’s response.



Block Generation

B-7

Note that the output is 3, which is the correct output for an input of 2.

Exercises
Here are a couple of exercises you can try.

Changing Input Signal
Replace the constant input block with a signal generator from the standard 
Simulink blockset Sources. Simulate the system and view the network’s 
response.

Discrete Sample Time
Recreate the network, but with a discrete sample time of 0.5, instead of 
continuous sampling.

gensim(net,0.5)

Again replace the constant input with a signal generator. Simulate the system 
and view the network’s response.



B Blocks for the Simulink® Environment

B-8



 

C

Code Notes 

Dimensions (p. C-2)

Variables (p. C-3)

Functions (p. C-6)

Code Efficiency (p. C-7)

Argument Checking (p. C-8)



C Code Notes

C-2

Dimensions
The following code dimensions are used in describing both the network signals 
that users commonly see, and those used by the utility functions:

Ni = Number of network inputs = net.numInputs

Ri = Number of elements in input i = net.inputs{i}.size

Nl = Number of layers = net.numLayers

Si = Number of neurons in layer i = net.layers{i}.size

Nt = Number of targets

Vi = Number of elements in target i,
equal to Sj, where j is the ith layer with
a target. (A layer n has a target if
net.targets(n) == 1.)

No = Number of network outputs

Ui = Number of elements in output i,
equal to Sj, where j is the ith layer with
an output (A layer n has an output if
net.outputs(n) == 1.)

ID = Number of input delays = net.numInputDelays

LD = Number of layer delays = net.numLayerDelays

TS = Number of time steps

Q  = Number of concurrent vectors or
sequences



Variables

C-3

Variables
The variables a user commonly uses when defining a simulation or training 
session are

These variables are returned by simulation and training calls:

P Network inputs Ni-by-TS cell array, where each 
element P{i,ts} is an Ri-by-Q matrix

Pi Initial input delay conditions Ni-by-ID cell array, where each 
element Pi{i,k} is an Ri-by-Q matrix

Ai Initial layer delay conditions Nl-by-LD cell array, where each 
element Ai{i,k} is an Si-by-Q matrix

T Network targets Nt-by-TS cell array, where each 
element P{i,ts} is a Vi-by-Q matrix

Y Network outputs No-by-TS cell array, where each element 
Y{i,ts} is a Ui-by-Q matrix

E Network errors Nt-by-TS cell array, where each element 
P{i,ts} is a Vi-by-Q matrix

perf Network performance



C Code Notes

C-4

Utility Function Variables
These variables are used only by the utility functions.

Pc Combined inputs Ni-by-(ID+TS) cell array, where each element P{i,ts} is an 
Ri-by-Q matrix

Pc = [Pi P] = Initial input delay conditions and network inputs

Pd Delayed inputs Ni-by-Nj-by-TS cell array, where each element Pd{i,j,ts} is an 
(Ri*IWD(i,j))-by-Q matrix, and where IWD(i,j) is the number of 
delay taps associated with the input weight to layer i from input j

Equivalently, 

IWD(i,j) = length(net.inputWeights{i,j}.delays)

Pd is the result of passing the elements of P through each input 
weight’s tap delay lines. Because inputs are always transformed 
by input delays in the same way, it saves time to do that operation 
only once instead of for every training step.

BZ Concurrent bias vectors Nl-by-1 cell array, where each element BZ{i} is an Si-by-Q matrix

Each matrix is simply Q copies of the net.b{i} bias vector.

IWZ Weighted inputs Ni-by-Nl-by-TS cell array, where each element IWZ{i,j,ts} is an 
Si-by-???-by-Q matrix

LWZ Weighted layer outputs Ni-by-Nl-by-TS cell array, where each element LWZ{i,j,ts} is an 
Si-by-Q matrix

N Net inputs Ni-by-TS cell array, where each element N{i,ts} is an Si-by-Q 
matrix

A Layer outputs Nl-by-TS cell array, where each element A{i,ts} is an Si-by-Q 
matrix

Ac Combined layer outputs Nl-by-(LD+TS) cell array, where each element A{i,ts} is an 
Si-by-Q matrix

Ac = [Ai A] = Initial layer delay conditions and layer outputs.



Variables

C-5

Tl Layer targets Nl-by-TS cell array, where each element Tl{i,ts} is an Si-by-Q 
matrix

Tl contains empty matrices [] in rows of layers i not associated 
with targets, indicated by net.targets(i) == 0.

El Layer errors Nl-by-TS cell array, where each element El{i,ts} is a Si-by-Q 
matrix

El contains empty matrices [] in rows of layers i not associated 
with targets, indicated by net.targets(i) == 0.

X Column vector of all 
weight and bias values



C Code Notes

C-6

Functions
The following functions are the utility functions that you can call to perform a 
lot of the work of simulating or training a network. You can read about them 
in their respective help comments. 

These functions calculate signals.

calcpd, calca, calca1, calce, calce1, calcperf

These functions calculate derivatives, Jacobians, and values associated with 
Jacobians.

calcgx, calcjx, calcjejj

calcgx is used for gradient algorithms; calcjx and calcjejj can be used for 
calculating approximations of the Hessian for algorithms like 
Levenberg-Marquardt.

These functions allow network weight and bias values to be accessed and 
altered in terms of a single vector X.

setx, getx, formx



Code Efficiency

C-7

Code Efficiency
The functions sim, train, and adapt all convert a network object to a structure,

net = struct(net);

before simulation and training, and then recast the structure back to a 
network.

net = class(net,'network')

This is done for speed efficiency since structure fields are accessed directly, 
while object fields are accessed using the MATLAB® object method handling 
system. If users write any code that uses utility functions outside of sim, train, 
or adapt, they should use the same technique.



C Code Notes

C-8

Argument Checking
These functions are only recommended for advanced users.

None of the utility functions do any argument checking, which means that the 
only feedback you get from calling them with incorrectly sized arguments is an 
error.

The lack of argument checking allows these functions to run as fast as possible.

For “safer” simulation and training, use sim, train, and adapt.



 

D

Bibliography

[Batt92] Battiti, R., “First and second order methods for learning: Between 
steepest descent and Newton’s method,” Neural Computation, Vol. 4, No. 2, 
1992, pp. 141–166.

[Beal72] Beale, E.M.L., “A derivation of conjugate gradients,” in F.A. 
Lootsma, Ed., Numerical methods for nonlinear optimization, London: 
Academic Press, 1972.

[Bren73] Brent, R.P., Algorithms for Minimization Without Derivatives, 
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[Caud89] Caudill, M., Neural Networks Primer, San Francisco, CA: Miller 
Freeman Publications, 1989.

This collection of papers from the AI Expert Magazine gives an excellent 
introduction to the field of neural networks. The papers use a minimum of 
mathematics to explain the main results clearly. Several good suggestions for 
further reading are included.

[CaBu92] Caudill, M., and C. Butler, Understanding Neural Networks: 
Computer Explorations, Vols. 1 and 2, Cambridge, MA: The MIT Press, 1992.

This is a two-volume workbook designed to give students “hands on” 
experience with neural networks. It is written for a laboratory course at the 
senior or first-year graduate level. Software for IBM PC and Apple Macintosh 
computers is included. The material is well written, clear, and helpful in 
understanding a field that traditionally has been buried in mathematics.

[Char92] Charalambous, C.,“Conjugate gradient algorithm for efficient 
training of artificial neural networks,” IEEE Proceedings, Vol. 139, No. 3, 
1992, pp. 301–310.



D Bibliography

D-2

[ChCo91] Chen, S., C.F.N. Cowan, and P.M. Grant, “Orthogonal least squares 
learning algorithm for radial basis function networks,” IEEE Transactions on 
Neural Networks, Vol. 2, No. 2, 1991, pp. 302–309.

This paper gives an excellent introduction to the field of radial basis functions. 
The papers use a minimum of mathematics to explain the main results clearly. 
Several good suggestions for further reading are included.

[ChDa99] Chengyu, G., and K. Danai, “Fault diagnosis of the IFAC Benchmark 
Problem with a model-based recurrent neural network,” Proceedings of the 
1999 IEEE International Conference on Control Applications, Vol. 2, 1999, 
pp. 1755–1760.

[DARP88] DARPA Neural Network Study, Lexington, MA: M.I.T. Lincoln 
Laboratory, 1988.

This book is a compendium of knowledge of neural networks as they were 
known to 1988. It presents the theoretical foundations of neural networks and 
discusses their current applications. It contains sections on associative 
memories, recurrent networks, vision, speech recognition, and robotics. 
Finally, it discusses simulation tools and implementation technology.

[DeHa01a] De Jesús, O., and M.T. Hagan, “Backpropagation Through Time for 
a General Class of Recurrent Network,” Proceedings of the International Joint 
Conference on Neural Networks, Washington, DC, July 15–19, 2001, pp. 2638–
2642.

[DeHa01b] De Jesús, O., and M.T. Hagan, “Forward Perturbation Algorithm 
for a General Class of Recurrent Network,” Proceedings of the International 
Joint Conference on Neural Networks, Washington, DC, July 15–19, 2001, pp. 
2626–2631.

[DeHa07] De Jesús, O., and M.T. Hagan, "Backpropagation Algorithms for a 
Broad Class of Dynamic Networks," IEEE Transactions on Neural Networks, 
Vol. 18, No. 1, January 2007, pp. 14 -27.

This paper provides detailed algorithms for the calculation of gradients and 
Jacobians for arbitrarily-connected neural networks. Both the 
backpropagation-through-time and real-time recurrent learning algorithms 
are covered.

[DeSc83] Dennis, J.E., and R.B. Schnabel, Numerical Methods for 
Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ: 
Prentice-Hall, 1983.



D-3

[DHH01] De Jesús, O., J.M. Horn, and M.T. Hagan, “Analysis of Recurrent 
Network Training and Suggestions for Improvements,” Proceedings of the 
International Joint Conference on Neural Networks, Washington, DC, July 15–
19, 2001, pp. 2632–2637.

[Elma90] Elman, J.L., “Finding structure in time,” Cognitive Science, Vol. 14, 
1990, pp. 179–211.

This paper is a superb introduction to the Elman networks described in 
Chapter 10, “Recurrent Networks.” 

[FeTs03] Feng, J., C.K. Tse, and F.C.M. Lau, “A neural-network-based 
channel-equalization strategy for chaos-based communication systems,” IEEE 
Transactions on Circuits and Systems I: Fundamental Theory and 
Applications, Vol. 50, No. 7, 2003, pp. 954–957.

[FlRe64] Fletcher, R., and C.M. Reeves, “Function minimization by conjugate 
gradients,” Computer Journal, Vol. 7, 1964, pp. 149–154.

[FoHa97] Foresee, F.D., and M.T. Hagan, “Gauss-Newton approximation to 
Bayesian regularization,” Proceedings of the 1997 International Joint 
Conference on Neural Networks, 1997, pp. 1930–1935.

[GiMu81] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization, 
New York: Academic Press, 1981.

[GiPr02] Gianluca, P., D. Przybylski, B. Rost, P. Baldi, “Improving the 
prediction of protein secondary structure in three and eight classes using 
recurrent neural networks and profiles,” Proteins: Structure, Function, and 
Genetics, Vol. 47, No. 2, 2002, pp. 228–235.

[Gros82] Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland: 
Reidel Press, 1982.

This book contains articles summarizing Grossberg’s theoretical 
psychophysiology work up to 1980. Each article contains a preface explaining 
the main points.

[HaDe99] Hagan, M.T., and H.B. Demuth, “Neural Networks for Control,” 
Proceedings of the 1999 American Control Conference, San Diego, CA, 1999, 
pp. 1642–1656.

[HaJe99] Hagan, M.T., O. De Jesus, and R. Schultz, “Training Recurrent 
Networks for Filtering and Control,” Chapter 12 in Recurrent Neural 



D Bibliography

D-4

Networks: Design and Applications, L. Medsker and L.C. Jain, Eds., CRC 
Press, pp. 311–340.

[HaMe94] Hagan, M.T., and M. Menhaj, “Training feed-forward networks with 
the Marquardt algorithm,” IEEE Transactions on Neural Networks, Vol. 5, 
No. 6, 1999, pp. 989–993, 1994.

This paper reports the first development of the Levenberg-Marquardt 
algorithm for neural networks. It describes the theory and application of the 
algorithm, which trains neural networks at a rate 10 to 100 times faster than 
the usual gradient descent backpropagation method.

[HaRu78] Harrison, D., and Rubinfeld, D.L., “Hedonic prices and the demand 
for clean air,” J. Environ. Economics & Management, Vol. 5, 1978, pp. 81-102.

This data set was taken from the StatLib library, which is maintained at 
Carnegie Mellon University.

[HDB96] Hagan, M.T., H.B. Demuth, and M.H. Beale, Neural Network Design, 
Boston, MA: PWS Publishing, 1996.

This book provides a clear and detailed survey of basic neural network 
architectures and learning rules. It emphasizes mathematical analysis of 
networks, methods of training networks, and application of networks to 
practical engineering problems. It has demonstration programs, an instructor’s 
guide, and transparency overheads for teaching.

[HDH09] Horn, J.M., O. De Jesús and M.T. Hagan, “Spurious Valleys in the 
Error Surface of Recurrent Networks - Analysis and Avoidance,” IEEE 
Transactions on Neural Networks, Vol. 20, No. 4, pp. 686-700, April 2009.

This paper describes spurious valleys that appear in the error surfaces of 
recurrent networks. It also explains how training algorithms can be modified 
to avoid becoming stuck in these valleys.

[Hebb49] Hebb, D.O., The Organization of Behavior, New York: Wiley, 1949.

This book proposed neural network architectures and the first learning rule. 
The learning rule is used to form a theory of how collections of cells might form 
a concept.

[Himm72] Himmelblau, D.M., Applied Nonlinear Programming, New York: 
McGraw-Hill, 1972.



D-5

[HuSb92] Hunt, K.J., D. Sbarbaro, R. Zbikowski, and P.J. Gawthrop, Neural 
Networks for Control System — A Survey,” Automatica, Vol. 28, 1992, 
pp. 1083–1112.

[JaRa04] Jayadeva and S.A.Rahman, “A neural network with O(N) neurons 
for ranking N numbers in O(1/N) time,” IEEE Transactions on Circuits and 
Systems I: Regular Papers, Vol. 51, No. 10, 2004, pp. 2044–2051.

[Joll86] Jolliffe, I.T., Principal Component Analysis, New York: 
Springer-Verlag, 1986.

[KaGr96] Kamwa, I., R. Grondin, V.K. Sood, C. Gagnon, Van Thich Nguyen, 
and J. Mereb, “Recurrent neural networks for phasor detection and adaptive 
identification in power system control and protection,” IEEE Transactions on 
Instrumentation and Measurement, Vol. 45, No. 2, 1996, pp. 657–664.

[Koho87] Kohonen, T., Self-Organization and Associative Memory, 2nd 
Edition, Berlin: Springer-Verlag, 1987.

This book analyzes several learning rules. The Kohonen learning rule is then 
introduced and embedded in self-organizing feature maps. Associative 
networks are also studied.

[Koho97] Kohonen, T., Self-Organizing Maps, Second Edition, Berlin: 
Springer-Verlag, 1997. 

This book discusses the history, fundamentals, theory, applications, and 
hardware of self-organizing maps. It also includes a comprehensive literature 
survey.

[LiMi89] Li, J., A.N. Michel, and W. Porod, “Analysis and synthesis of a class 
of neural networks: linear systems operating on a closed hypercube,” IEEE 
Transactions on Circuits and Systems, Vol. 36, No. 11, 1989, pp. 1405–1422.

This paper discusses a class of neural networks described by first-order linear 
differential equations that are defined on a closed hypercube. The systems 
considered retain the basic structure of the Hopfield model but are easier to 
analyze and implement. The paper presents an efficient method for 
determining the set of asymptotically stable equilibrium points and the set of 
unstable equilibrium points. Examples are presented. The method of Li et. al. 
is implemented in Chapter 9 of this user’s guide.

[Lipp87] Lippman, R.P., “An introduction to computing with neural nets,” 
IEEE ASSP Magazine, 1987, pp. 4–22.



D Bibliography

D-6

This paper gives an introduction to the field of neural nets by reviewing six 
neural net models that can be used for pattern classification. The paper shows 
how existing classification and clustering algorithms can be performed using 
simple components that are like neurons. This is a highly readable paper.

[MacK92] MacKay, D.J.C., “Bayesian interpolation,” Neural Computation, 
Vol. 4, No. 3, 1992, pp. 415–447.

[McPi43] McCulloch, W.S., and W.H. Pitts, “A logical calculus of ideas 
immanent in nervous activity,” Bulletin of Mathematical Biophysics, Vol. 5, 
1943, pp. 115–133.

A classic paper that describes a model of a neuron that is binary and has a fixed 
threshold. A network of such neurons can perform logical operations.

[MeJa00] Medsker, L.R., and L.C. Jain, Recurrent neural networks: design and 
applications, Boca Raton, FL: CRC Press, 2000.

[Moll93] Moller, M.F., “A scaled conjugate gradient algorithm for fast 
supervised learning,” Neural Networks, Vol. 6, 1993, pp. 525–533.

[MuNe92] Murray, R., D. Neumerkel, and D. Sbarbaro, “Neural Networks for 
Modeling and Control of a Non-linear Dynamic System,” Proceedings of the 
1992 IEEE International Symposium on Intelligent Control, 1992, pp. 404–409.

[NaMu97] Narendra, K.S., and S. Mukhopadhyay, “Adaptive Control Using 
Neural Networks and Approximate Models,” IEEE Transactions on Neural 
Networks, Vol. 8, 1997, pp. 475–485.

[NgWi89] Nguyen, D., and B. Widrow, “The truck backer-upper: An example of 
self-learning in neural networks,” Proceedings of the International Joint 
Conference on Neural Networks, Vol. 2, 1989, pp. 357–363.

This paper describes a two-layer network that first learned the truck dynamics 
and then learned how to back the truck to a specified position at a loading dock. 
To do this, the neural network had to solve a highly nonlinear control systems 
problem.

[NgWi90] Nguyen, D., and B. Widrow, “Improving the learning speed of 2-layer 
neural networks by choosing initial values of the adaptive weights,” 
Proceedings of the International Joint Conference on Neural Networks, Vol. 3, 
1990, pp. 21–26.

Nguyen and Widrow demonstrate that a two-layer sigmoid/linear network can 
be viewed as performing a piecewise linear approximation of any learned 



D-7

function. It is shown that weights and biases generated with certain 
constraints result in an initial network better able to form a function 
approximation of an arbitrary function. Use of the Nguyen-Widrow (instead of 
purely random) initial conditions often shortens training time by more than an 
order of magnitude.

[Powe77] Powell, M.J.D., “Restart procedures for the conjugate gradient 
method,” Mathematical Programming, Vol. 12, 1977, pp. 241–254.

[Pulu92] Purdie, N., E.A. Lucas, and M.B. Talley, “Direct measure of total 
cholesterol and its distribution among major serum lipoproteins,” Clinical 
Chemistry, Vol. 38, No. 9, 1992, pp. 1645–1647.

[RiBr93] Riedmiller, M., and H. Braun, “A direct adaptive method for faster 
backpropagation learning: The RPROP algorithm,” Proceedings of the IEEE 
International Conference on Neural Networks, 1993.

[Robin94] Robinson, A.J., “An application of recurrent nets to phone 
probability estimation,” IEEE Transactions on Neural Networks, Vol. 5 , No. 2, 
1994.

[RoJa96] Roman, J., and A. Jameel, “Backpropagation and recurrent neural 
networks in financial analysis of multiple stock market returns,” Proceedings 
of the Twenty-Ninth Hawaii International Conference on System Sciences, Vol. 
2, 1996, pp. 454–460. 

[Rose61] Rosenblatt, F., Principles of Neurodynamics, Washington, D.C.: 
Spartan Press, 1961.

This book presents all of Rosenblatt’s results on perceptrons. In particular, it 
presents his most important result, the perceptron learning theorem.

[RuHi86a] Rumelhart, D.E., G.E. Hinton, and R.J. Williams, “Learning 
internal representations by error propagation,” in D.E. Rumelhart and J.L. 
McClelland, Eds., Parallel Data Processing, Vol. 1, Cambridge, MA: The M.I.T. 
Press, 1986, pp. 318–362.

This is a basic reference on backpropagation.

[RuHi86b] Rumelhart, D.E., G.E. Hinton, and R.J. Williams, “Learning 
representations by back-propagating errors,” Nature, Vol. 323, 1986, pp. 533–
536.



D Bibliography

D-8

[RuMc86] Rumelhart, D.E., J.L. McClelland, and the PDP Research Group, 
Eds., Parallel Distributed Processing, Vols. 1 and 2, Cambridge, MA: The 
M.I.T. Press, 1986.

These two volumes contain a set of monographs that present a technical 
introduction to the field of neural networks. Each section is written by different 
authors. These works present a summary of most of the research in neural 
networks to the date of publication.

[Scal85] Scales, L.E., Introduction to Non-Linear Optimization, New York: 
Springer-Verlag, 1985.

[SoHa96] Soloway, D., and P.J. Haley, “Neural Generalized Predictive 
Control,” Proceedings of the 1996 IEEE International Symposium on Intelligent 
Control, 1996, pp. 277–281.

[VoMa88] Vogl, T.P., J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, 
“Accelerating the convergence of the backpropagation method,” Biological 
Cybernetics, Vol. 59, 1988, pp. 256–264.

Backpropagation learning can be speeded up and made less sensitive to small 
features in the error surface such as shallow local minima by combining 
techniques such as batching, adaptive learning rate, and momentum. 

[WaHa89] Waibel, A., T. Hanazawa, G. Hilton, K. Shikano, and K. J. Lang, 
“Phoneme recognition using time-delay neural networks,” IEEE Transactions on 
Acoustics, Speech, and Signal Processing, Vol. 37, 1989, pp. 328–339.

[Wass93] Wasserman, P.D., Advanced Methods in Neural Computing, New 
York: Van Nostrand Reinhold, 1993.

[WeGe94] Weigend, A. S., and N. A. Gershenfeld, eds., Time Series Prediction: 
Forecasting the Future and Understanding the Past, Reading, MA: 
Addison-Wesley, 1994.

[WiHo60] Widrow, B., and M.E. Hoff, “Adaptive switching circuits,” 1960 IRE 
WESCON Convention Record, New York IRE, 1960, pp. 96–104.

[WiSt85] Widrow, B., and S.D. Sterns, Adaptive Signal Processing, New York: 
Prentice-Hall, 1985. 

This is a basic paper on adaptive signal processing.



Glossary-1 

Glossary

ADALINE Acronym for a linear neuron: ADAptive LINear Element.

adaption Training method that proceeds through the specified sequence of inputs, 
calculating the output, error, and network adjustment for each input vector in 
the sequence as the inputs are presented.

adaptive filter Network that contains delays and whose weights are adjusted after each new 
input vector is presented. The network adapts to changes in the input signal 
properties if such occur. This kind of filter is used in long distance telephone 
lines to cancel echoes.

adaptive learning 
rate 

Learning rate that is adjusted according to an algorithm during training to 
minimize training time.

architecture Description of the number of the layers in a neural network, each layer’s 
transfer function, the number of neurons per layer, and the connections 
between layers.

backpropagation 
learning rule 

Learning rule in which weights and biases are adjusted by error-derivative 
(delta) vectors backpropagated through the network. Backpropagation is 
commonly applied to feedforward multilayer networks. Sometimes this rule is 
called the generalized delta rule.

backtracking 
search 

Linear search routine that begins with a step multiplier of 1 and then 
backtracks until an acceptable reduction in performance is obtained.

batch Matrix of input (or target) vectors applied to the network simultaneously. 
Changes to the network weights and biases are made just once for the entire 
set of vectors in the input matrix. (The term batch is being replaced by the more 
descriptive expression “concurrent vectors.”)

batching Process of presenting a set of input vectors for simultaneous calculation of a 
matrix of output vectors and/or new weights and biases.

Bayesian 
framework 

Assumes that the weights and biases of the network are random variables with 
specified distributions.

BFGS 
quasi-Newton 
algorithm 

Variation of Newton’s optimization algorithm, in which an approximation of 
the Hessian matrix is obtained from gradients computed at each iteration of 
the algorithm.



 Glossary

Glossary-2

bias Neuron parameter that is summed with the neuron’s weighted inputs and 
passed through the neuron’s transfer function to generate the neuron’s output.

bias vector Column vector of bias values for a layer of neurons.

Brent’s search Linear search that is a hybrid of the golden section search and a quadratic 
interpolation.

cascade-forward 
network 

Layered network in which each layer only receives inputs from previous layers.

Charalambous’ 
search 

Hybrid line search that uses a cubic interpolation together with a type of 
sectioning.

classification Association of an input vector with a particular target vector.

competitive layer Layer of neurons in which only the neuron with maximum net input has an 
output of 1 and all other neurons have an output of 0. Neurons compete with 
each other for the right to respond to a given input vector.

competitive 
learning 

Unsupervised training of a competitive layer with the instar rule or Kohonen 
rule. Individual neurons learn to become feature detectors. After training, the 
layer categorizes input vectors among its neurons.

competitive 
transfer function 

Accepts a net input vector for a layer and returns neuron outputs of 0 for all 
neurons except for the winner, the neuron associated with the most positive 
element of the net input n.

concurrent input 
vectors 

Name given to a matrix of input vectors that are to be presented to a network 
simultaneously. All the vectors in the matrix are used in making just one set of 
changes in the weights and biases.

conjugate 
gradient 
algorithm 

In the conjugate gradient algorithms, a search is performed along conjugate 
directions, which produces generally faster convergence than a search along 
the steepest descent directions. 

connection One-way link between neurons in a network.

connection 
strength 

Strength of a link between two neurons in a network. The strength, often called 
weight, determines the effect that one neuron has on another.

cycle Single presentation of an input vector, calculation of output, and new weights 
and biases.



Glossary

Glossary-3

dead neuron Competitive layer neuron that never won any competition during training and 
so has not become a useful feature detector. Dead neurons do not respond to 
any of the training vectors.

decision 
boundary 

Line, determined by the weight and bias vectors, for which the net input n is 
zero.

delta rule See Widrow-Hoff learning rule.

delta vector The delta vector for a layer is the derivative of a network’s output error with 
respect to that layer’s net input vector.

distance Distance between neurons, calculated from their positions with a distance 
function.

distance function Particular way of calculating distance, such as the Euclidean distance between 
two vectors.

early stopping Technique based on dividing the data into three subsets. The first subset is the 
training set, used for computing the gradient and updating the network 
weights and biases. The second subset is the validation set. When the 
validation error increases for a specified number of iterations, the training is 
stopped, and the weights and biases at the minimum of the validation error are 
returned. The third subset is the test set. It is used to verify the network 
design.

epoch Presentation of the set of training (input and/or target) vectors to a network 
and the calculation of new weights and biases. Note that training vectors can 
be presented one at a time or all together in a batch.

error jumping Sudden increase in a network’s sum-squared error during training. This is 
often due to too large a learning rate.

error ratio Training parameter used with adaptive learning rate and momentum training 
of backpropagation networks.

error vector Difference between a network’s output vector in response to an input vector 
and an associated target output vector.

feedback 
network 

Network with connections from a layer’s output to that layer’s input. The 
feedback connection can be direct or pass through several layers.

feedforward 
network 

Layered network in which each layer only receives inputs from previous layers.



 Glossary

Glossary-4

Fletcher-Reeves 
update 

Method for computing a set of conjugate directions. These directions are used 
as search directions as part of a conjugate gradient optimization procedure.

function 
approximation 

Task performed by a network trained to respond to inputs with an 
approximation of a desired function.

generalization Attribute of a network whose output for a new input vector tends to be close to 
outputs for similar input vectors in its training set.

generalized 
regression 
network 

Approximates a continuous function to an arbitrary accuracy, given a sufficient 
number of hidden neurons.

global minimum Lowest value of a function over the entire range of its input parameters. 
Gradient descent methods adjust weights and biases in order to find the global 
minimum of error for a network.

golden section 
search 

Linear search that does not require the calculation of the slope. The interval 
containing the minimum of the performance is subdivided at each iteration of 
the search, and one subdivision is eliminated at each iteration.

gradient descent Process of making changes to weights and biases, where the changes are 
proportional to the derivatives of network error with respect to those weights 
and biases. This is done to minimize network error.

hard-limit 
transfer function 

Transfer function that maps inputs greater than or equal to 0 to 1, and all other 
values to 0.

Hebb learning 
rule 

Historically the first proposed learning rule for neurons. Weights are adjusted 
proportional to the product of the outputs of pre- and postweight neurons.

hidden layer Layer of a network that is not connected to the network output (for instance, 
the first layer of a two-layer feedforward network).

home neuron Neuron at the center of a neighborhood.

hybrid bisection-
cubic search 

Line search that combines bisection and cubic interpolation.

initialization Process of setting the network weights and biases to their original values.

input layer Layer of neurons receiving inputs directly from outside the network.

input space Range of all possible input vectors.

input vector Vector presented to the network.



Glossary

Glossary-5

input weight 
vector 

Row vector of weights going to a neuron.

input weights Weights connecting network inputs to layers.

Jacobian matrix Contains the first derivatives of the network errors with respect to the weights 
and biases.

Kohonen 
learning rule 

Learning rule that trains a selected neuron’s weight vectors to take on the 
values of the current input vector.

layer Group of neurons having connections to the same inputs and sending outputs 
to the same destinations.

layer diagram Network architecture figure showing the layers and the weight matrices 
connecting them. Each layer’s transfer function is indicated with a symbol. 
Sizes of input, output, bias, and weight matrices are shown. Individual neurons 
and connections are not shown. (See Chapter 2, “Network Objects, Data and 
Training Styles.”)

layer weights Weights connecting layers to other layers. Such weights need to have nonzero 
delays if they form a recurrent connection (i.e., a loop).

learning Process by which weights and biases are adjusted to achieve some desired 
network behavior.

learning rate Training parameter that controls the size of weight and bias changes during 
learning.

learning rule Method of deriving the next changes that might be made in a network or a 
procedure for modifying the weights and biases of a network.

Levenberg-
Marquardt 

Algorithm that trains a neural network 10 to 100 times faster than the usual 
gradient descent backpropagation method. It always computes the 
approximate Hessian matrix, which has dimensions n-by-n.

line search 
function 

Procedure for searching along a given search direction (line) to locate the 
minimum of the network performance.

linear transfer 
function 

Transfer function that produces its input as its output.

link distance Number of links, or steps, that must be taken to get to the neuron under 
consideration.



 Glossary

Glossary-6

local minimum Minimum of a function over a limited range of input values. A local minimum 
might not be the global minimum.

log-sigmoid 
transfer function 

Squashing function of the form shown below that maps the input to the interval 
(0,1). (The toolbox function is logsig.) 

Manhattan 
distance 

The Manhattan distance between two vectors x and y is calculated as 

D = sum(abs(x-y))

maximum 
performance 
increase 

Maximum amount by which the performance is allowed to increase in one 
iteration of the variable learning rate training algorithm.

maximum step 
size 

Maximum step size allowed during a linear search. The magnitude of the 
weight vector is not allowed to increase by more than this maximum step size 
in one iteration of a training algorithm.

mean square 
error function 

Performance function that calculates the average squared error between the 
network outputs a and the target outputs t.

momentum Technique often used to make it less likely for a backpropagation network to 
get caught in a shallow minimum.

momentum 
constant 

Training parameter that controls how much momentum is used.

mu parameter Initial value for the scalar μ.

neighborhood Group of neurons within a specified distance of a particular neuron. The 
neighborhood is specified by the indices for all the neurons that lie within a 
radius d of the winning neuron i*:

net input vector Combination, in a layer, of all the layer’s weighted input vectors with its bias.

neuron Basic processing element of a neural network. Includes weights and bias, a 
summing junction, and an output transfer function. Artificial neurons, such as 
those simulated and trained with this toolbox, are abstractions of biological 
neurons.

f n( ) 1
1 e n–+
------------------=

Ni d( ) j dij d≤,{ }=



Glossary

Glossary-7

neuron diagram Network architecture figure showing the neurons and the weights connecting 
them. Each neuron’s transfer function is indicated with a symbol.

ordering phase Period of training during which neuron weights are expected to order 
themselves in the input space consistent with the associated neuron positions.

output layer Layer whose output is passed to the world outside the network.

output vector Output of a neural network. Each element of the output vector is the output of 
a neuron.

output weight 
vector 

Column vector of weights coming from a neuron or input. (See also outstar 
learning rule.)

outstar learning 
rule 

Learning rule that trains a neuron’s (or input’s) output weight vector to take 
on the values of the current output vector of the postweight layer. Changes in 
the weights are proportional to the neuron’s output.

overfitting Case in which the error on the training set is driven to a very small value, but 
when new data is presented to the network, the error is large.

pass Each traverse through all the training input and target vectors.

pattern A vector.

pattern 
association 

Task performed by a network trained to respond with the correct output vector 
for each input vector presented.

pattern 
recognition 

Task performed by a network trained to respond when an input vector close to 
a learned vector is presented. The network “recognizes” the input as one of the 
original target vectors.

perceptron Single-layer network with a hard-limit transfer function. This network is often 
trained with the perceptron learning rule.

perceptron 
learning rule 

Learning rule for training single-layer hard-limit networks. It is guaranteed to 
result in a perfectly functioning network in finite time, given that the network 
is capable of doing so.

performance Behavior of a network.

performance 
function 

Commonly the mean squared error of the network outputs. However, the 
toolbox also considers other performance functions. Type nnets and look under 
performance functions.

Polak-Ribiére 
update 

Method for computing a set of conjugate directions. These directions are used 
as search directions as part of a conjugate gradient optimization procedure.



 Glossary

Glossary-8

positive linear 
transfer function 

Transfer function that produces an output of zero for negative inputs and an 
output equal to the input for positive inputs.

postprocessing Converts normalized outputs back into the same units that were used for the 
original targets.

Powell-Beale 
restarts 

Method for computing a set of conjugate directions. These directions are used 
as search directions as part of a conjugate gradient optimization procedure. 
This procedure also periodically resets the search direction to the negative of 
the gradient.

preprocessing Transformation of the input or target data before it is presented to the neural 
network.

principal 
component 
analysis 

Orthogonalize the components of network input vectors. This procedure can 
also reduce the dimension of the input vectors by eliminating redundant 
components.

quasi-Newton 
algorithm

Class of optimization algorithm based on Newton’s method. An approximate 
Hessian matrix is computed at each iteration of the algorithm based on the 
gradients.

radial basis 
networks 

Neural network that can be designed directly by fitting special response 
elements where they will do the most good.

radial basis 
transfer function 

The transfer function for a radial basis neuron is

regularization Modification of the performance function, which is normally chosen to be the 
sum of squares of the network errors on the training set, by adding some 
fraction of the squares of the network weights.

resilient 
backpropagation 

Training algorithm that eliminates the harmful effect of having a small slope 
at the extreme ends of the sigmoid squashing transfer functions.

saturating linear 
transfer function 

Function that is linear in the interval (-1,+1) and saturates outside this 
interval to -1 or +1. (The toolbox function is satlin.)

scaled conjugate 
gradient 
algorithm 

Avoids the time-consuming line search of the standard conjugate gradient 
algorithm.

radbas n( ) e n2–
=



Glossary

Glossary-9

sequential input 
vectors 

Set of vectors that are to be presented to a network one after the other. The 
network weights and biases are adjusted on the presentation of each input 
vector.

sigma parameter Determines the change in weight for the calculation of the approximate 
Hessian matrix in the scaled conjugate gradient algorithm.

sigmoid Monotonic S-shaped function that maps numbers in the interval (-∞,∞) to a 
finite interval such as (-1,+1) or (0,1).

simulation Takes the network input p, and the network object net, and returns the 
network outputs a.

spread constant Distance an input vector must be from a neuron’s weight vector to produce an 
output of 0.5.

squashing 
function 

Monotonically increasing function that takes input values between -∞ and +∞ 
and returns values in a finite interval.

star learning rule Learning rule that trains a neuron’s weight vector to take on the values of the 
current input vector. Changes in the weights are proportional to the neuron’s 
output.

sum-squared 
error 

Sum of squared differences between the network targets and actual outputs for 
a given input vector or set of vectors.

supervised 
learning 

Learning process in which changes in a network’s weights and biases are due 
to the intervention of any external teacher. The teacher typically provides 
output targets.

symmetric 
hard-limit 
transfer function 

Transfer that maps inputs greater than or equal to 0 to +1, and all other values 
to -1.

symmetric 
saturating linear 
transfer function 

Produces the input as its output as long as the input is in the range -1 to 1. 
Outside that range the output is -1 and +1, respectively.

tan-sigmoid 
transfer function 

Squashing function of the form shown below that maps the input to the interval 
(-1,1). (The toolbox function is tansig.) 

tapped delay line Sequential set of delays with outputs available at each delay output.

f n( ) 1
1 e n–+
------------------=



 Glossary

Glossary-10

target vector Desired output vector for a given input vector.

test vectors Set of input vectors (not used directly in training) that is used to test the 
trained network.

topology 
functions 

Ways to arrange the neurons in a grid, box, hexagonal, or random topology.

training Procedure whereby a network is adjusted to do a particular job. Commonly 
viewed as an offline job, as opposed to an adjustment made during each time 
interval, as is done in adaptive training.

training vector Input and/or target vector used to train a network. 

transfer function Function that maps a neuron’s (or layer’s) net output n to its actual output.

tuning phase Period of SOFM training during which weights are expected to spread out 
relatively evenly over the input space while retaining their topological order 
found during the ordering phase.

underdetermined 
system 

System that has more variables than constraints.

unsupervised 
learning 

Learning process in which changes in a network’s weights and biases are not 
due to the intervention of any external teacher. Commonly changes are a 
function of the current network input vectors, output vectors, and previous 
weights and biases.

update Make a change in weights and biases. The update can occur after presentation 
of a single input vector or after accumulating changes over several input 
vectors.

validation 
vectors 

Set of input vectors (not used directly in training) that is used to monitor 
training progress so as to keep the network from overfitting.

weight function Weight functions apply weights to an input to get weighted inputs, as specified 
by a particular function.

weight matrix Matrix containing connection strengths from a layer’s inputs to its neurons. 
The element wi,j of a weight matrix W refers to the connection strength from 
input j to neuron i.

weighted input 
vector 

Result of applying a weight to a layer’s input, whether it is a network input or 
the output of another layer.



Glossary

Glossary-11

Widrow-Hoff 
learning rule 

Learning rule used to train single-layer linear networks. This rule is the 
predecessor of the backpropagation rule and is sometimes referred to as the 
delta rule.



 Glossary

Glossary-12



Index-1

Index

A
ADALINE networks

decision boundary 10-21
adapt 2-29
adapt function 12-13, 13-2
adaptFcn

function property 11-8
adaptive filters

example 8-10
noise cancellation example 8-14
prediction example 8-13
training 2-29

adaptive linear networks 8-2
adaptParam

function property 11-8
addnoise function 13-5
applications

adaptive filtering 8-9
aerospace 1-5
automotive 1-5
banking 1-5
defense 1-5
electronics 1-5
entertainment 1-5
financial 1-5
industrial 1-6
insurance 1-6
manufacturing 1-6
medical 1-6
oil and gas exploration 1-6
robotics 1-6
securities 1-6
speech 1-6
telecommunications 1-7

transportation 1-7
architecture

bias connection 9-4
input connection 9-5
layer connection 9-5
number of inputs 9-4
number of layers 9-4
number of outputs 9-6
number of targets 9-6
output connection 9-5
target connection 9-5

architecture properties 11-3

B
b

bias vector property 11-12
backpropagation

algorithm 3-14
backtracking search 13-306
batch algorithm 7-9
batch training

compared 2-29
definition 2-31
dynamic networks 2-33
static networks 2-31

batch training algorithm 7-29
Bayesian framework 9-38
benchmark data sets 9-41
BFGS quasi-Newton algorithm 13-345
biasConnect

architecture property 11-4
biases

connection 9-4



Index

Index-2

definition 2-4
subobject 9-9
subobject and network object 11-22
value 9-11

biases

subobject property 11-7
box distance 7-16
boxdist function 13-8
Brent’s search 13-310

C
cachDelayedInputs efficiency property 11-2
cascadeforwardnet function 13-11
catelements function 13-12
catsamples function 13-13
catsignals function 13-14
cattimesteps function 13-15
cell arrays

bias vectors 9-12
input P 2-27
input vectors 9-13
inputs 2-31
inputs property 9-6
layers property 9-8
matrix of concurrent vectors 2-27
matrix of sequential vectors 2-30
sequence of outputs 2-26
sequential inputs 2-25
targets 2-31
weight matrices 9-12

cellmat function 13-16
Charalambous’ search 13-314
classification

input vectors 10-4
linear 10-28
regions 10-5

using probabilistic neural networks 6-9
closeloop function 13-17
clustering 1-49
clustering problems

defining 1-49
solving with command-line functions 1-61
solving with nctool 1-50

combvec function 13-18
command-line functions

solving clustering problems 1-61
solving fitting problems 1-9
solving time series problems 1-66

compet function 13-19
competitive layers 7-3
competitive neural networks

creating 7-4
example 7-7

competitive transfer functions 7-3
competlayer function 13-21
con2seq function 13-22
concur function 13-23
concurrent inputs

compared 2-23
configuration settings

definition 2-22
configure

definition 2-21
configure function 13-24
confusion function 13-25
confusion matrix 1-36, 1-46
conjugate gradient algorithms

Fletcher-Reeves update 13-368
Polak-Ribiére update 13-373
Powell-Beale restarts 13-363
scaled 13-416

continuous stirred tank reactor example 5-6
control



Index

Index-3

control design 5-2
electromagnet 5-18
feedback linearization 5-14
feedback linearization (NARMA-L2) 5-3
model predictive 5-3
model predictive control 5-5
model reference 5-3
NARMA-L2 5-14
plant 5-23
plant for predictive control 5-2
robot arm 5-25
time horizon 5-5
training data 5-10

controller
NARMA-L2 controller 5-16

convwf function 13-27
CSTR 5-6
custom neural networks 9-2

D
dead neurons 7-5
decision boundary 10-21

definition 10-5
defaultderiv function 13-29
delays

input weight property 11-23
layer weight property 11-25

demonstrations
demohop1 10-43
demohop2 10-43
demorb4 6-8
nnd10lc 10-30
nnd11gn 9-34
nnd12cg 13-369
nnd12m 13-394
nnd12mo 13-386

nnd12sd1 13-318
nnd12sd1 batch gradient 13-378
nnd12vl 13-382

derivFcn

function property 11-9
dimensions

layer property 11-15
disp function 13-31
display function 12-13, 13-32
dist function 13-33
distance 7-9

box 7-16
Euclidean 7-14
link 7-16
Manhattan 7-16
tuning phase 7-18

distance functions 7-14
distanceFcn

layer property 11-16
distances

layer property 11-16
distdelaynet function 13-35
divideblock function 13-36
divideFcn

function property 11-9
divideind function 13-37
divideint function 13-38
divideMode

function property 11-9
divideParam

function property 11-9
dividerand function 13-39
dividetrain function 13-40
dotprod function 13-41
dynamic networks

concurrent inputs 2-26
sequential inputs 2-24



Index

Index-4

training
batch 2-33
incremental 2-31

E
early stopping

improving generalization 9-35
electromagnet example 5-18
Elman networks

recurrent connection 10-32
elmannet function 13-43
error autocorrelation plot 1-75
error histogram 1-18
error weighting 4-38
errsurf function 13-44
Euclidean distance 7-14
examples

continuous stirred tank reactor 5-6
electromagnet 5-18
robot arm 5-25

exporting networks 5-31
exporting training data 5-35
extendts function 13-45

F
feedback linearization

companion form model 5-14
See also NARMA-L2

feedbackDelay output property 11-20
feedbackInput output property 11-20
feedbackMode output property 11-20
feedforward networks 3-5
feedforwardnet function 13-46
finite impulse response filters

example 10-25

fitnet function 13-47
fitting functions 1-9
fitting problems

defining 1-9
solving with command-line functions 1-22, 1-42
solving with nftool 1-10, 1-50

fixunknowns function 13-48
flattenTime efficiency property 11-2
Fletcher-Reeves update 13-368
formwb function 13-51
fpderiv function 13-52
fromnndata function 13-53
functions

fitting 1-9

G
gadd function 13-54
gdivide function 13-55
generalization

improving 9-34
regularization 9-37

generalized regression networks 6-12
gensim function 13-56
getelements function 13-57
getsamples function 13-58
getsignals function 13-59
getsiminit function 13-60
gettimesteps function 13-62
getwb function 13-63
gmultiply function 13-64
gnegate function 13-65
golden section search 13-318
gradient descent algorithm

batch 13-377
gridtop function 13-66
gridtop topology 7-10



Index

Index-5

gsqrt function 13-67
gsubtract function 13-68

H
hard limit transfer function

hardlim 10-3
hardlim function 13-69
hardlims function 13-71
hextop function 13-73
hextop topology 7-12
hidden layers

definition 2-13
home neuron 7-15
Hopfield networks

architecture 10-37
design equilibrium point 10-39
solution trajectories 10-43
spurious equilibrium points 10-39
stable equilibrium point 10-39
target equilibrium points 10-39

horizon 5-5
hybrid bisection cubic search 13-322

I
importing networks 5-31
importing training data 5-35
incremental training 2-29

static networks 2-29
ind2vec function 13-74
init function 13-75
initcon function 13-77
initFcn

bias property 11-22
function property 11-9
input weight property 11-23

layer property 11-16
layer weight property 11-25

initial step size function 13-407
initlay function 13-79
initlvq function 13-80
initnw function 13-81
initParam

function property 11-10
parameter property 11-8

initSettings

input weight property 11-24
layer weight property 11-25

initsompc function 13-83
initwb function 13-84
initzero function 13-85
input vectors

classification 10-4
dimension reduction 13-250
distance 7-9
outlier 10-16
topology 7-9

input weights
definition 2-12
subobject 11-23

inputConnect

architecture property 11-4
input-error cross-correlation function 1-75
inputs

concurrent 2-23
connection 9-5
number 9-4
sequential 2-23
subobject 9-6

inputs

input property 11-13
subobject property 11-6

inputWeights



Index

Index-6

subobject property 11-7
isconfigured function 13-86
IW

weight property 11-11

J
Jacobian matrix 13-393

K
Kohonen learning rule 7-5

L
lambda parameter 13-417
layer weights

definition 2-12
subobject 11-25

layerConnect

architecture property 11-5
layers

connection 9-5
number 9-4
subobject 9-8

layers

subobject property 11-7
layers property 11-15
layerWeights

subobject property 11-8
layrecnet function 13-87
learn

bias property 11-22
input weight property 11-24
layer weight property 11-26

learncon function 13-88
learnFcn

bias property 11-22
input weight property 11-24
layer weight property 11-26

learngd function 13-91
learngdm function 13-93
learnh function 13-96
learnhd function 13-99
learning rates

adaptive 13-382
maximum stable 10-28
optimal 13-381
ordering phase 7-18
too large 10-31
tuning phase 7-18

learning rules
Kohonen 7-5
LMS

See also Widrow-Hoff learning rule 8-2
LVQ1 7-39
LVQ2.1 7-42
perceptron 10-3
Widrow-Hoff 10-26

learning vector quantization
creation 7-36
learning rule 7-42

LVQ1 7-39
LVQ network 7-35
subclasses 7-35
supervised training 7-2
target classes 7-35
union of two subclasses 7-39

learnis function 13-102
learnk function 13-105
learnlv1 function 13-108
learnlv2 function 13-111
learnos function 13-114
learnp function 13-117



Index

Index-7

learnParam

bias property 11-23
input weight property 11-24
layer weight property 11-26

learnpn function 13-120
learnsom function 13-123
learnwh function 13-129
least mean square error learning rule 8-7
Levenberg-Marquardt algorithm 13-393
line search functions

backtracking search 13-306
Brent’s search 13-310
Charalambous’ search 13-314
golden section search 13-318
hybrid bisection cubic search 13-322

linear networks
design 10-23

linear transfer functions 10-19
linearlayer function 13-132
linearly dependent vectors 10-31
link distance 7-16
linkdist function 13-133
logsig function 13-134
log-sigmoid transfer function

logsig 3-3
log-sigmoid transfer functions 2-5
LVQ networks 7-35
lvqnet function 13-136
lvqoutputs function 13-137
LW

weight property 11-12

M
MADALINE networks 8-4
mae function 13-138
magnet 5-18

mandist function 13-140
Manhattan distance 7-16
mapminmax function 12-17, 13-142
mapstd function 13-145
maximum step size function 13-407
maxlinlr function 13-148
mean square error function 3-14

least 8-7
meanabs function 13-149
meansqr function 13-150
memory reduction 3-17
memoryReduction efficiency property 11-3
midpoint function 13-151
minmax function 13-152
model predictive control 5-5
model reference control 5-2
Model Reference Control block 5-25
mse function 13-153
mu parameter 13-394

N
name input property 11-13
name layer property 11-15
name network property 11-2
name output property 11-20
NARMA 5-2
NARMA-L2 control 5-14
NARMA-L2 controller 5-16
NARMA-L2 Controller block 5-18
narnet function 13-155
narxnet function 13-156
nctool

solving clustering problems 1-50
nctool function 13-158
negdist function 13-159
neighbor distances plot 1-64, 7-31



Index

Index-8

neighborhood 7-9
net input function

definition 2-4
netInputFcn

layer property 11-16
netInputParam

layer property 11-17
netinv function 13-161
netprod function 13-162
netsum function 13-164
network function 13-166
network functions 9-10
network layers

competitive 7-3
definition 2-8

networks
definition 9-3
dynamic

concurrent inputs 2-26
sequential inputs 2-24

static 2-23
Neural Network Toolbox Clustering Tool

See nctool.
Neural Network Toolbox Fitting Tool. See 

nftool.
Neural Network Toolbox Pattern Recognition 

Tool. See nprtool.
Neural Network Toolbox Time Series Tool. See 

ntstool.
neural networks

adaptive linear 8-2
competitive 7-4
custom 9-2
definition 1-2
feedforward 3-5
generalized regression 6-12
one-layer 2-10

figure 10-19
probabilistic 6-9
radial basis 6-2
self-organizing 7-2
self-organizing feature map 1-52, 7-9

neurons
dead (not allocated) 7-5
definition 2-4
home 7-15
See also distance, topologies

newgrnn function 13-171
newlind function 13-173
newpnn function 13-175
newrb function 13-177
newrbe function 13-179
Newton’s method 13-393
nftool

solving fitting problems 1-10, 1-67
nftool function 13-181
NN Predictive Control block 5-6
nncell2mat function 13-182
nncorr function 13-183
nndata function 13-185
nndata2sim function 13-186
nnsize function 13-187
nnstart function 13-188
nntool function 12-7, 13-189
nntraintool function 13-190
noloop function 13-191
normalization

inputs and targets 13-143
mean and standard deviation 13-146

normc function 13-192
normprod function 13-193
normr function 13-195
notation

abbreviated 2-7



Index

Index-9

layer 2-12
transfer function symbols 2-6

nprtool

solving pattern recognition problems 1-30
nprtool function 13-196
ntstool function 13-197
num2deriv function 13-198
num5deriv function 13-200
numelements function 13-202
numfinite function 13-203
numInputDelays

architecture property 11-5
numInputs

architecture property 11-3
numLayerDelays

architecture property 11-6
numLayers

architecture property 11-3
numnan function 13-204
numOutputs

architecture property 11-5
numsamples function 13-205
numsignals function 13-206
numtimesteps function 13-207
numWeightElements

architecture property 11-6

O
one step secant algorithm 13-399
openloop function 13-208
ordering phase learning rate 7-18
outlier input vectors 10-16
output layers

definition 2-13
linear 3-5

outputConnect

architecture property 11-5
outputs

connection 9-5
number 9-6
subobject 9-8
subobject properties 11-20

outputs

subobject property 11-7
overdetermined systems 10-30
overfitting 9-34

P
pass

definition 10-11
pattern recognition 1-28
pattern recognition problems

defining 1-28
patternnet function 13-209
perceptron function 13-210
perceptron learning rule 10-3

learnp 10-8
normalized 10-17

perceptron network
limitations 10-16

perceptron networks
introduction 10-3

perform function 13-211
performance functions

modifying 9-37
performFcn

function property 11-10
performParam

function property 11-10
plant 5-23
plant identification 5-23

NARMA-L2 model 5-14



Index

Index-10

Plant Identification window 5-9
plant model 5-2

in model predictive control 5-3
plotconfusion function 13-213
plotep function 13-214
ploterrcorr function 13-215
ploterrhist function 13-216
plotes function 13-217
plotFcns

function property 11-10
plotfit function 13-218
plotinerrcorr function 13-219
plotParams

function property 11-11
plotpc function 13-220
plotperform function 13-221
plotpv function 13-222
plotresponse function 13-225
plotroc function 13-226
plotsom function 13-228
plotsomhits function 13-229
plotsomnc function 13-231
plotsomnd function 13-231, 13-232
plotsomplanes function 13-234
plotsompos function 13-236
plotsomtop function 13-238
plottrainstate function 13-239
plotv function 13-240
plotvec function 13-241
plotwb function 13-242
pnormc function 13-244
Polak-Ribiére update 13-373
positions

layer property 11-17
poslin function 13-245
posttraining analysis 9-42
Powell-Beale restarts 13-363

predictive control 5-5
preparets function 13-247
preprocessing 3-7
principal component analysis 13-250
probabilistic neural networks 6-9

design 6-10
process parameters

definition 2-22
processpca function 13-249
properties that determine algorithms 11-8
prune function 13-252
prunedata function 13-254
purelin function 13-256

Q
quant function 13-258
quasi-Newton algorithm 13-306

BFGS 13-345

R
radbas function 13-259
radbasn function 13-261
radial basis

design 6-14
efficient network 6-7
function 6-2
networks 6-2

radial basis transfer function 6-4
randnc function 13-263
randnr function 13-264
rands function 13-265
randtop function 13-267
randtop topology 7-13
range

layer property 11-18



Index

Index-11

recurrent connections 10-32
recurrent networks 10-2
regression function 13-268
regression plots 1-16
regularization 9-37

automated 9-38
removeconstantrows function 13-269
removerows function 13-272
revert function 13-274
robot arm example 5-25
roc curve 1-37

S
sae function 13-277
sample hits plot 1-55, 7-32
satlin function 13-279
satlins function 13-281
scalprod function 13-283
self-organizing feature map (SOFM) networks 

1-52, 7-9
batch algorithm 7-9
neighbor distances plot 1-64, 7-31
neighborhood 7-9
one-dimensional example 7-22
sample hits plot 1-55, 7-32
SOM topology 1-63
two-dimensional example 7-25
weight planes plot 1-56, 7-33
weight positions plot 7-30

self-organizing networks 7-2
selforgmap function 13-285
separatewb function 13-286
seq2con function 13-287
sequential inputs 2-23
setelements function 13-288
setsamples function 13-289

setsignals function 13-290
setsiminit function 13-291
settimesteps function 13-293
setwb function 13-294
S-function 12-3
sigma parameter 13-417
sim function 13-295
sim2nndata function 13-300
simulation 3-26
Simulink

generating networks B-5
NNT blockset code C-2
NNT blockset simulation B-2

size

bias property 11-23
bias vector property 11-23
input property 11-15
input weight property 11-24
layer property 11-18
layer weight property 11-26
output property 11-22

soft max transfer function 13-301
softmax function 13-301
SOM topology 1-63
spread constant 6-5
squashing functions 13-406
srchbac function 13-303
srchbre function 13-307
srchcha function 13-311
srchgol function 13-315
srchhyb function 13-319
sse function 13-323
static networks

batch training 2-31
concurrent inputs 2-23
defined 2-23
incremental training 2-29



Index

Index-12

staticderiv function 13-325
subobject properties 11-13

network definition 9-6
subobject structure properties 11-6
subobjects

bias code 9-9
bias definition 11-22
input 9-6
input weight properties 11-23
layer 9-8
layer weight properties 11-25
output code 9-8
output definition 11-20
target code 9-8
weight code 9-9
weight definition 11-22

sumabs function 13-327
sumsqr function 13-328
symbols

transfer function representation 2-6
system identification 5-4

T
tansig function 13-329
tan-sigmoid transfer function 3-4
tapdelay function 13-331
tapped delay lines 10-24
targets

connection 9-5
number 9-6
subobject 9-8

time horizon 5-5
time series 1-66
time series problems

defining 1-66
solving with command-line functions 1-82

solving with ntstool 1-67
timedelaynet function 13-332
tonndata function 13-333
topologies

self-organizing feature map 7-9
topologies for SOFM neuron locations

gridtop 7-10
hextop 7-12
randtop 7-13

topologyFcn

layer property 11-18
train function 13-334
trainb function 13-338
trainbfg function 13-341
trainbfgc function 13-346
trainbr function 13-349
trainc function 13-356
traincgb function 13-359
traincgf function 13-364
traincgp function 13-370
trainFcn

function property 11-11
traingd function 13-375
traingda function 13-379
traingdm function 13-383
traingdx function 13-387
training

batch 2-29
competitive networks 7-6
definition 2-5
efficient 3-7
incremental 2-29
ordering phase 7-20
posttraining analysis 9-42
self-organizing feature map 7-19
styles 2-29
tuning phase 7-20



Index

Index-13

training data 5-10
training record 3-21
training styles 2-29
trainlm function 13-390
trainoss function 13-395
trainParam

function property 11-11
trainr function 12-20, 13-400
trainrp function 13-403
trainru function 13-408
trains function 13-411
trainscg function 13-414
transfer functions

competitive 7-3
definition 2-4
hard limit in perceptron 10-3
linear 10-19
log-sigmoid 2-5
log-sigmoid in backpropagation 3-3
radial basis 6-4
tan-sigmoid 3-4

transferFcn

layer property 11-19
transferParam

layer property 11-19
transformation matrix 13-251
tribas function 13-418
tritop function 13-420
tuning phase learning rate 7-18
tuning phase neighborhood distance 7-18

U
unconfigure function 13-421
underdetermined systems 10-31
userdata network property 11-2

V
variable learning rate algorithm 13-382
vec2ind function 13-422
vectors

linearly dependent 10-31
view function 13-423

W
weight and bias value properties 11-11
weight function

definition 2-4
weight matrix

definition 2-10
weight planes plot 1-56, 7-33
weight positions plot 7-30
weightFcn

input weight property 11-25
layer weight property 11-26

weightParam

input weight property 11-25
layer weight property 11-27

weights
definition 2-4
subobject code 9-9
subobject definition 11-22
value 9-11

Widrow-Hoff learning rule 10-26
adaptive networks 8-8
and mean square error 8-2


	Getting Started
	Product Overview
	Using the Toolbox and Its Documentation
	Automatic Script Generation

	Neural Network Toolbox™ Applications
	Neural Network Design Steps
	Fitting a Function
	Defining a Problem
	Using the Neural Network Fitting Tool
	Using Command-Line Functions

	Recognizing Patterns
	Defining a Problem
	Using the Neural Network Pattern Recognition Tool
	Using Command-Line Functions

	Clustering Data
	Defining a Problem
	Using the Neural Network Clustering Tool
	Using Command-Line Functions

	Time Series Prediction
	Defining a Problem
	Using the Neural Network Time Series Tool
	Using Command-Line Functions

	Sample Data Sets

	Network Objects, Data and Training Styles
	Introduction
	Neuron Model
	Simple Neuron
	Transfer Functions
	Neuron with Vector Input

	Network Architectures
	A Layer of Neurons
	Multiple Layers of Neurons
	Input and Output Processing Functions

	Introduction to the Network Object
	Configuration
	Data Structures
	Simulation with Concurrent Inputs in a Static Network
	Simulation with Sequential Inputs in a Dynamic Network
	Simulation with Concurrent Inputs in a Dynamic Network

	Training Styles
	Incremental Training with adapt
	Batch Training
	Training Feedback


	Multilayer Networks and Backpropagation Training
	Introduction
	Multilayer Neural Network Architecture
	Feedforward Network

	Collect and Prepare the Data
	Preprocessing and Postprocessing
	Dividing the Data

	Create, Configure and Initialize the Network
	Other Related Architectures
	Initializing Weights (init)

	Train the Network
	Training Algorithms
	Efficiency and Memory Reduction
	Generalization
	Training Example

	Post-Training Analysis (Network Validation)
	Improving Results

	Use the Network
	Automatic Code Generation
	Limitations and Cautions

	Dynamic Networks
	Introduction
	Examples of Dynamic Networks
	Applications of Dynamic Networks
	Dynamic Network Structures
	Dynamic Network Training

	Focused Time-Delay Neural Network (timedelaynet)
	Preparing Data (preparets)
	Distributed Time-Delay Neural Network (newdtdnn)
	NARX Network (narxnet, closeloop)
	Layer-Recurrent Network (layrecnet)
	Training Custom Networks
	Multiple Sequences, Time Series Utilities and Error Weighting
	Multiple Sequences
	Time Series Utilities
	Error Weighting


	Control Systems
	Introduction
	NN Predictive Control
	System Identification
	Predictive Control
	Using the NN Predictive Controller Block

	NARMA-L2 (Feedback Linearization) Control
	Identification of the NARMA-L2 Model
	NARMA-L2 Controller
	Using the NARMA-L2 Controller Block

	Model Reference Control
	Using the Model Reference Controller Block

	Importing and Exporting
	Importing and Exporting Networks
	Importing and Exporting Training Data


	Radial Basis Networks
	Introduction
	Important Radial Basis Functions

	Radial Basis Functions
	Neuron Model
	Network Architecture
	Exact Design (newrbe)
	More Efficient Design (newrb)
	Demonstrations

	Probabilistic Neural Networks
	Network Architecture
	Design (newpnn)

	Generalized Regression Networks
	Network Architecture
	Design (newgrnn)


	Self-Organizing and Learning Vector Quantization Nets
	Introduction
	Important Self-Organizing and LVQ Functions

	Competitive Learning
	Architecture
	Creating a Competitive Neural Network (newc)
	Kohonen Learning Rule (learnk)
	Bias Learning Rule (learncon)
	Training
	Graphical Example

	Self-Organizing Feature Maps
	Topologies (gridtop, hextop, randtop)
	Distance Functions (dist, linkdist, mandist, boxdist)
	Architecture
	Creating a Self-Organizing MAP Neural Network (newsom)
	Training (learnsomb)
	Examples

	Learning Vector Quantization Networks
	Architecture
	Creating an LVQ Network (newlvq)
	LVQ1 Learning Rule (learnlv1)
	Training
	Supplemental LVQ2.1 Learning Rule (learnlv2)


	Adaptive Filters and Adaptive Training
	Introduction
	Important Adaptive Functions

	Linear Neuron Model
	Adaptive Linear Network Architecture
	Single ADALINE (newlin)

	Least Mean Square Error
	LMS Algorithm (learnwh)
	Adaptive Filtering (adapt)
	Tapped Delay Line
	Adaptive Filter
	Adaptive Filter Example
	Prediction Example
	Noise Cancellation Example
	Multiple Neuron Adaptive Filters


	Advanced Topics
	Custom Networks
	Custom Network
	Network Definition
	Network Behavior

	Additional Toolbox Functions
	Speed and Memory Comparison for Training Multilayer Networks
	Summary

	Improving Generalization
	Early Stopping
	Index Data Division (divideind)
	Random Data Division (dividerand)
	Block Data Division (divideblock)
	Interleaved Data Division (divideint)
	Regularization
	Summary and Discussion of Early Stopping and Regularization
	Posttraining Analysis (postreg)

	Custom Functions

	Historical Networks
	Introduction
	Perceptron Networks
	Neuron Model
	Perceptron Architecture
	Creating a Perceptron (newp)
	Perceptron Learning Rule (learnp)
	Training (train)
	Limitations and Cautions

	Linear Networks
	Neuron Model
	Network Architecture
	Least Mean Square Error
	Linear System Design (newlind)
	Linear Networks with Delays
	LMS Algorithm (learnwh)
	Linear Classification (train)
	Limitations and Cautions

	Elman Networks
	Architecture
	Creating an Elman Network (newelm)
	Training an Elman Network

	Hopfield Network
	Fundamentals
	Architecture
	Design (newhop)


	Network Object Reference
	Network Properties
	General
	Efficiency
	Architecture
	Subobject Structures
	Functions
	Weight and Bias Values

	Subobject Properties
	Inputs
	Layers
	Outputs
	Biases
	Input Weights
	Layer Weights


	Function Reference
	DataFunctions
	Distance Functions
	Graphical Interface Functions
	Layer Initialization Functions
	Learning Functions
	Line Search Functions
	Net Input Functions
	Network Initialization Function
	Network Use Functions
	New Networks Functions
	Performance Functions
	Plotting Functions
	Processing Functions
	Simulink® Support Function
	Topology Functions
	Training Functions
	Transfer Functions
	Weight and Bias Initialization Functions
	Weight Functions
	Transfer Function Graphs

	Functions — Alphabetical List
	adapt
	adaptwb
	adddelay
	boxdist
	bttderiv
	cascadeforwardnet
	catelements
	catsamples
	catsignals
	cattimesteps
	cellmat
	closeloop
	combvec
	compet
	competlayer
	con2seq
	concur
	configure
	confusion
	convwf
	defaultderiv
	disp
	display
	dist
	distdelaynet
	divideblock
	divideind
	divideint
	dividerand
	dividetrain
	dotprod
	elmannet
	errsurf
	extendts
	feedforwardnet
	fitnet
	fixunknowns
	formwb
	fpderiv
	fromnndata
	gadd
	gdivide
	gensim
	getelements
	getsamples
	getsignals
	getsiminit
	gettimesteps
	getwb
	gmultiply
	gnegate
	gridtop
	gsqrt
	gsubtract
	hardlim
	hardlims
	hextop
	ind2vec
	init
	initcon
	initlay
	initlvq
	initnw
	initsompc
	initwb
	initzero
	isconfigured
	layrecnet
	learncon
	learngd
	learngdm
	learnh
	learnhd
	learnis
	learnk
	learnlv1
	learnlv2
	learnos
	learnp
	learnpn
	learnsom
	learnsomb
	learnwh
	linearlayer
	linkdist
	logsig
	lvqnet
	lvqoutputs
	mae
	mandist
	mapminmax
	mapstd
	maxlinlr
	meanabs
	meansqr
	midpoint
	minmax
	mse
	narnet
	narxnet
	nctool
	negdist
	netinv
	netprod
	netsum
	network
	newgrnn
	newlind
	newpnn
	newrb
	newrbe
	nftool
	nncell2mat
	nncorr
	nndata
	nndata2sim
	nnsize
	nnstart
	nntool
	nntraintool
	noloop
	normc
	normprod
	normr
	nprtool
	ntstool
	num2deriv
	num5deriv
	numelements
	numfinite
	numnan
	numsamples
	numsignals
	numtimesteps
	openloop
	patternnet
	perceptron
	perform
	plotconfusion
	plotep
	ploterrcorr
	ploterrhist
	plotes
	plotfit
	plotinerrcorr
	plotpc
	plotperform
	plotpv
	plotregression
	plotresponse
	plotroc
	plotsom
	plotsomhits
	plotsomnc
	plotsomnd
	plotsomplanes
	plotsompos
	plotsomtop
	plottrainstate
	plotv
	plotvec
	plotwb
	pnormc
	poslin
	preparets
	processpca
	prune
	prunedata
	purelin
	quant
	radbas
	radbasn
	randnc
	randnr
	rands
	randsmall
	randtop
	regression
	removeconstantrows
	removedelay
	removerows
	revert
	roc
	sae
	satlin
	satlins
	scalprod
	selforgmap
	separatewb
	seq2con
	setelements
	setsamples
	setsignals
	setsiminit
	settimesteps
	setwb
	sim
	sim2nndata
	softmax
	srchbac
	srchbre
	srchcha
	srchgol
	srchhyb
	sse
	staticderiv
	sumabs
	sumsqr
	tansig
	tapdelay
	timedelaynet
	tonndata
	train
	trainb
	trainbfg
	trainbfgc
	trainbr
	trainbu
	trainc
	traincgb
	traincgf
	traincgp
	traingd
	traingda
	traingdm
	traingdx
	trainlm
	trainoss
	trainr
	trainrp
	trainru
	trains
	trainscg
	tribas
	tritop
	unconfigure
	vec2ind
	view

	Mathematical Notation
	Mathematical Notation for Equations and Figures
	Basic Concepts
	Language
	Weight Matrices
	Bias Elements and Vectors
	Time and Iteration
	Layer Notation
	Figure and Equation Examples

	Mathematics and Code Equivalents

	Blocks for the Simulink® Environment
	Blockset
	Transfer Function Blocks
	Net Input Blocks
	Weight Blocks
	Processing Blocks

	Block Generation
	Example
	Exercises


	Code Notes
	Dimensions
	Variables
	Utility Function Variables

	Functions
	Code Efficiency
	Argument Checking

	Bibliography
	Glossary
	Index

