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Linear Input/Output Representation

@ A linear (LTI) system is completely characterized by its
impulse response function:

o

y(t) = / h(T)x(t — 7)dT

—0o0

@ causality = h(t)=0; t<0
@ y(t) has memory since it depends on

x(t—71); 7T € [—00,00]
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Non-Linear Order-N Convolution

o Consider a degree-n system:
o0 o
ya(t) = / / hn(T1, 72, ooy Tn)X(t — 71)..x(t — Tp)dT1...d Ty
—00 —00

o If X'(t) = ax(t) — yi'(t) = a"ya(t)
@ Change of variables -

a=t—1; dOéj:—de
=t q
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Generalized Convolution

@ Generalization of convolution integral of order n:

ya(t) =
[ o [ b1, 72, o, Ta)x(t = 71)...x(t — 7p)dT1...dTp

@ This describes a system that depends not only on the input
x(t) and all past values of the input x(t — 7), but also on
powers of x(t — 7) where we take products between past
values at different times.
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Non-Linear Example

hl(t) ‘\
Xt hy(2) ?—ym
(1)
yi(t) = / hi(t — )x(r)dr

y(t) = ya(t)y2(t)ys(t)

[e.o] [e.9] [e.9]

- /hl(n)x(t—ﬁ)dﬁ-/ 2 dTZ-/ 3 dn

—00 —0o0 —o
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Non-Linear Example (cont)

= /hl(Tl)X(t—Tl)d7'1~/ 2 de'/ 3 d7'3

/OO /Oo 7 hi (1) ho(m2) ha(m3)x(t — 71)x(t — 72)x(t — 73)dT1dT2dT3

—00 —00 —O0

h(tl, to, l'3) = h1(t1)h2(t2)h3(1.’3)

1
hs( ) = E{h(tl’ to, t3) + h(to, t1, t3) + h(t2, t3,t1) + ...}

@ Kernel is not in unique. We can define a unique “symmetric”
kernel as above.

Niknejad Advanced IC's for Comm



@ Kernel h can be expressed as a symmetric function of its
arguments: Consider output of a system where we permute
any number of indices of h:

f h(m2, 71)x(t — 72)x(t — 71)dT2d ™y

—0o0

= f h(r1, m2)x(t — 11)x(t — 72)dT1d™2

—00
h(Tl,Tz) = h(’i‘z,’i‘l)

e For n arguments, n! permutations
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Symmetric kernel

@ We create a symmetric kernel by

1
hsym(tla . tn) = o Z h (tﬂ(l), . tﬁ(n))
@ System output identical to original unsymmetrical kernel

@ Note that since the kernel is not unique, we are free to choose
any valid kernel. The symmetric choice is one way to do it
and it simplifies some of our calculations down the line.
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Volterra Series

N o
:Z / ha(71y ooy Tn)X(t — 71)..x(t — 7)dT1...d T

n=1_"

@ Volterra Series: “Polynomial” of degree N
o If hy(ty, ..., tn) = and(t1)d(t2)...0(ts), we get an ordinary

power series:
y(t) = arx(t) + apx(t)® + ... + anx(t)V

@ It can be rigorously shown by the Stone-Weierstrass theorem
that the above polynomial approximates a non-linear system
to any desired precision if N is made sufficiently large.
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Non-rigorous “Proof”

@ Say y(t) is a non-linear function of x(t — 7) for all 7 > 0 (all
past input)

e Fix time t and say that x(t — 7) can be characterized by the
set {x1(t), ..., xn(t), ...} so that y(t) is some non-linear
function:

y(t) = f(xa(t), x(t), ...)
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Non-Rigorous Proof (cont)

o Let {p1(t), ¢2(t),...} be an orthonormal basis for the space

[e.e]

[ etryenar =

— 00

@ Thus

t—T ZX, gp,

@ ‘“inner product”

oo

MU%=/Xﬁ—ﬂwUMT

—00
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Non-Rigorous Proof (cont)

@ Expand f into a Taylor series :

f(xa(t),x(t),...)

y(t) = a0 + éa;x,( )+ zl S aiap(£)xi(t) + o
=ao + }oi ajp(r)x(t — 1)dm + Ofojoio: § a;jpi(T1)pj(m2)x(t -

0 i=1 0 0 i=1=1

e This is the Volterra/Wiener representation for a non-linear
system

e Sifting Property: x( f o(t — o)x(t)dt
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Interconnection of Non-Linear Systems

By (teeest,)
g, (.5t

fo(ti, to, o tn) = hp(te, ooy tn) + gm(t1, oy tm)

e Sum:
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Product Interconnection

h,
y
X
Enm
y(t) = / ho(71, ey Ta)X(t — 71)...x(t — 74)d Ty ... dTp X
/ gm(T1y ooy Tm)Xx(t — 7). X(t — Tip)dT1...d Ty
= / ho(T1y oo Tn) 8m (Trty ooy Toaem)X(t — 71)ee.x(t — Thpm)dT1...dTnim

form(t1y ooy tagm) = Pn(t1, ooy t)&m(tnst1s vy tnim)
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Volterra Series Laplace Domain

e Transform domain input/output representation

@ Linear systems in time domain

o0

F(s) = L[F(t)] = / F(t)estdt

0

@ Define Generalized Laplace Transform:

F(st,50) = L[f(tl, ooy tn)]
f (t1, ..., th)e St ... e=Snlndty ... dt,
0
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Volterra Series Example

@ Generalized transform of a function of two variables:

f(ti,t) =t —te 2 t,tb>0

0o 0o 00 00
51,52 //tlesltlesztzdtldtg—//tlet2€sltleszt2dt1dt2
0 0 0 0

oo oo
1
F(s1,%) = o2 /e_s2t2dt2 —/e_t26_52t2dt2
0 0
1

o 51252(52 + 1)
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Properties of Transform

@ Property 1: L is linear
o Property 2:

f(t,...,tn) = h(t, ..., te)&(tkt1, ---» tn)
&

F(st,...,sn) = H(s1, .., Sk) G(Sk+15 -+, Sn)

@ Property 3: Convolution form #1

f(ty,...,tn) = f h(t)g(t1 — 7, ..., tn — 7)dT
0
F(si,..-s8n) = H(s1 + -+ s,)G(s1, .-+, Sn)

Niknejad Advanced IC's for Comm



Properties of Generalized Transform

@ Property 4: Convolution Form #2:

o0

F(tr, oo ta) = /h(t1 sty — Ta)g (1, ) X 1. dT
0

F(si,...;8n) = H(s1,...,5,)G(s1, ..., Sn)
@ Property 5: Time delay 7; > 0

L[f(t1 — T1yeeey bn — T,,)] = F(S17 ...,Sn)efslTl"'S"Tn
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Cascades of Systems

o Cascade #1:

X —’Hn(Sl"'"Sn) ] GI(S) Y

non-linear linear

Fn(s1, -+, 8n) = Hn(s1,+ - sn)G1(s1 + -+ + sp)

o Cascade #2:

X1 H\(s) G, (S0rS, )Y

linear non-linear

Fo(siy -y sn) = Hi(s1) - - - Hi(sn) Gn(s1, ..., Sn)
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Cascade Example

H,(s)

H(s)

Hi(s)

—— Yy

 ®

F(s1,5) = Hi(s1)Ha(s2)H3(s1 + 2)

@ By property #1 and property #2

@ Note that H is not symmetric
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Impulse Response of Non-Linear Volterra System

@ Suppose we apply two impulses into an n’th order system

o0

y(t) = / hn(Tl,TQ, .. -)X(t — Tl)X(t — 7’2) o dTldTQ o

—0o0

@ Using the sifting property of the delta functions, we have
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“Two Impulse Response” of Non-Linear Volterra System

@ Suppose we apply two impulses into a second order system
x(t)=6(t) +6(t—T)
e Taking the product of x(t1) - x(t2) gives four products
O(t1)0(t2) +0(tr—T)o(ta— T)+6(t1— T)0(t2) +0(t1)d(t2—T)

@ After integration, we have an interesting result

[e.e]

/ ha (71, 72)x(t — 12)x(t — 11)dT1d™2

=ho(t,t)+ ho(t — T,t)+ ho(t,t —T)+ ho(t =T, t—T)

@ With two delta inputs, and by varying their relative delay, we
can find the second order non-linearity of a system
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Exponential Response of n-th Order System

ya(t) = / hn(T1y oy Ta)x(t — 1) - - x(t — 7)dT1...dTh
N
= Za,-e)"'t
i=1
o0 n
ya(t) = / hn(1, ...,T,,)H [ale)‘l(t_Tf) +-- +ape e (t=75) |xdmi---dm
S j=1

N N
S e | [ 3 g et

k=1 kn=1
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Exponential Response (cont)

N N n

ZZ Hakj exp{ Ak (t = 71) + ... + A, (t —7n)}

k=1 ko=1 \j=1

exp{z )\kj(t - TJ)}
=1

N

N n n < n
ya(t) = Z (H akj> exp{z At} / hn(ﬁ,...T,,)exp{—Z)\kjrj}dn...dﬁ
j = =1

ki=1 kp=1 \J=1

Hn(Akys oo Aky)
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Collecting Terms

ya(t) = Z Z Hak exp{Z)\k,t}H (Akys ooes Aky)

k=1 k=1 \j=
@ We've seen this before ... A particular frequency mix
miA1 + maA2 + ... + mpA, has response

m

m miA1+...+mpAp)t
a1 1...ap p ml,,._7mp()\1,...,)\n)e( 1A pAp)

@ where the function G takes into account how many times a
particular mix occurs...!

1See the lecture module on multi-tone input into a memoryless non-linear
power series for a review.
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Frequency Mix Vector k

ya(t) = Ealml...apmp G?(X) exp{m - x}
K

@ Sum over all vectors E such that 0 < k; < n and Zj ki=N

o If Hy(s1,...,Sn) is symmetric, then we can group the terms as
before

N

G?()\) = (" k)Hn,sym(A1s s AL, ooy Apy ooy Ap)
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Important special case N = n

GE()\l, ceey )\n) = n!H,,7sym(>\1, vy )\n)
o To derive Hp sym(A1, ..., An), we can apply n exponentials to a

degree n system and the symmetric transfer function is given
by % times the coefficient of

e)\l t+...+Ant

o We call this the “Growing Exponential Method"
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Example 3

H (s)

|\
X —— _/®v—> Hy(s) — VY

H,(s)

@ Excite system with two-tones:

v(t) = (Hl(/\l)e’\lt + Hl()\z)e)‘ﬁ) x (Hz(/\l)e’\lt + HQ(AZ)er)

= Hl()\l)H2(/\1)e2>\1t + H1(A2)H2()\2)e2/\2t
+H1()\1)H2()\2)e()\1+>\2)t_|_ Hl()\2)H2()\1)e(>\1+)\2)t
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Example 3 (cont)

)/(t) = H1()\1)H2()\1)H3(2)\1)e2>\1t + Hl()\z)Hz()\z)H3(2)\2)e2)‘2t
+[H1 (A1) Ha(X2) + Hi(M2)Ha(A1)] - Ha(A1 + Ap)elatra)t

2! Hsym(sl, )

Hsym(s1,52) = %[Hl(sl)H2(52) + Hi(s2)Ha(s1)]H3(s1 + s2)
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Example 4

@ Non-linear system in parallel with linear system:

Hi(s)

HI(S) “
= ®:-
H,(s) =

o0

ylz/hl(rl)x(t—ﬁ)dn

—0o0

(e 9]

y2:/h2(’7'2,7'3)X(t—7'2)X(t—7'3)d7'2d7’3

— 00

[e.e]

yi X y2 = / h1(71)ha (72, 73)x(t — 71) - - x(t — 73)dT1...dT3

—0o0
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Example 4 (cont)

Heym(s1, 52, 53) = ${H1(s1)Ha(s2, 53) + Hi(s2) Ha(s1, 53)
+Hi(s3)Ha(s1,52)}

@ assuming Hy is symmetric

@ Notation:

Hsym(s1, 52, 53) = Hi(s1)Ha(s2, 53)
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Example 4 Again

linear

H ()

A4

7 H,y(sy,5,)

Y1
N\ :
-

Y2

non-linear

@ Redo example with growing exponential method

y

@ Overall system is third order, so apply sum of 3 exponentials

to system

e)\lt + e)\zt + e/\31.'
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Example 4 Again (cont)

@ We can drop terms that we don't care about

o We only care about the final term eMt 4 e*2t 4 3t 5o for
now ignore terms except eV At where j #£ k

@ Focus on terms in y» first:

26(/\1+>‘2)tH25()\1, )\2)
2eMatX)tH, (A1) \3)
26()‘2+>‘3)tH25()\2, )\3)

Has(A1, A2) = Has( A2, A1)
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Example 4 again (cont)

@ Now the product of y1(t) and y»(t) produces terms like
RIEBHDWY:

2Has(A1, Ao) Hi(A3)ePatraths)t
+2H25()\1, /\3)H1()\2)e()‘1+”\2+’\3)t
+2Ha5( N2, )\3)H1(>\1)e()‘1+/\2+’\3)t
= 31 H35(A1, A2, A3)

Hss(s1,52,53) = 3 ( )
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Singe-Tone Sinusoidal Response

@ Let's warm up by calculating the n'th order response to a
sinusoidal input

(3] no_jw(t—oj) —jw(t—oj)
Y(t):/ h Hej e “doy -+~ do,

sym(1,,00) 5
—0o

@ Let's group the exponentials by using the following notation:
A1 = jw and A» = —jw. Expanding the product as sums

2 2 n
2555 (Seonton

k=1 kn=1 \ j=1
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Sinusoidal Response (invoke Laplace)

@ We can now simplify the expression by noting that the

oo
/ hsym(o'ly"‘ s O, exp Z/\k Uj)do'l dUn:H(Akla"' 7>\kn)

—o0

Z Zexp Z}\kt )\kl,”',)\kn)

k=1 k=1
@ A particular term has a frequency given by kA1 + (n — k)A2 = (2k — n)w

1 & :
= ?Z( Z )eJ(Zk*n)wa(M... W —w, e —w)

N—— e N———
k=0

Z Gk (juw, —jw)e/ Pkt
k=0

@ Just as expected, an nth order system generates the n'th harmonic and every
other harmonic down to either DC (n is even) or fundamental (n is odd).
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Grouping Terms

@ We can group positive and negative frequency terms together
by noting that

n

Gi,n—k(jw, —jw) = < P w)

) T
\W_z \W_/

.. n
ank,k(_Jwa‘/CU) = < Nk > Hsym(—w’-. C =W, Wy ,(.U)

(£)=(.")

@ By the symmetry of the kernel and the binomial coefficient,
we have

Gp—i k(—jw, jw) = Gy p—k(jw, —jw)



Sinusoidal Response Summary

@ We can now write the total sinusoidal response as

ya(t) = 2,,%1 |Gn,o(jw, —jw)| cos(nwt + £Gpo(jw, —jw))+
2,%1 |Gn—1,1(jw, —jw)| cos((n — 2)wt + £LGp—1,1(jw, —jw)) + - -+
2:1%1 |Gn/2,n/2(jw7 —jw)| n even
it |Gt i (oo, —jw)’ cos(wt + £Gugt wa (jw, —jw))  n odd

202

@ We need to form the above some for each power in the Volterra series.
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Sinusoidal Multi-Tone Response, n'th power only

@ Calculation is very similar to exponential response, but now
we just need to keep track of complex conjugate frequency.

Using our shorthand notation w_; = —wy and Ag =0
ZAk cos(wkt) Z Ake/wkf
k——N
00 n N Ak
y(t) :/ hsym(o'q,"' ,Un)H ( Z 2 ejwk(t U')> do’ldo-n
> i=1 \k=—N
1 [ & . N _
o Z Al Wi (t=01) | o Z Al elwie(t=02) | ...
ki=—N ko=—N
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Product of Sums as Sum of Products

@ Expanding the product of sums, we can sum over all possible
vectors k

— Z G[_{ e.jkwl‘ e.jl<~0'1f
k

@ The term Gy is used to collect all frequency products that
sum to the same frequency, determined by the vector k:

1 N
Gy = o (M K)AY - A AT

o Where we have already met the multi-nomial coefficient (n; k)
to account for the number of times a particular frequency
product occurs.
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Sinusoidal Response (cont)

@ Performing the integration, we observe that

oo
/ heym(01, - - - ,op)e STt tan) doy L de,

—oo
— H(wkp o awk,,)

@ Keep in mind the symmetry of the multi-nomial coefficient and
the fact that every positive frequency term is accompanied by
a negative counterpart obtained by inverting the k vector.

@ This allows us to write the final sinusoidal sum as.

L Ak L Ak .
> (m; k)%w(%,-.-, k)| cos(k-@t+ZH(wiy, - > wk,))

—

k
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Capacitive non-linearity

@ Non-linear capacitors:

e BJT: C, and Cs
o FET: Cdb and Csb

e Small signal (incremental) capacitance (n ~ 2 — 3)

dqQ K

C=—-x__ "
TdY e+

3=

Let Vi = Vo +v

K

Cj: 1 L
(@ + V)h (L + 57

T~ Cu, + Cuv + Cmv2 + ..
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Cap Non-Linearity (cont)

._dQ _dQdv _ ( )ﬂ
Tt T dv e Vg

P — dv dv 2dv 4 |,
’_CMOdt+CCM1V¢i2t+CCN2V3dt+
— dv S dv Sup dv
_C#Odt+ > d T3 d +

o Model:
d .
Y, n+l o« 1
v dt .
Non-Linear Linear
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Overall Model

. dQ_dev_ ' dv
=g = a = Wy

Ci(v) = Cuy + Coyv + GV + ..
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Cap Model Decomposition

d
V:HI(Sl)x Y G
d
X G2 g T
d
@ e A2 —
o Let
v=Hi(s1)x

V2 = H1 (51) H1 (52) X2
. 1 2
I = (51 + 52) H, (51) Hy (52) ECMX

. 1
In = (51 + ...+ Sn) Hq (51) ...Hq (Sn) ;C“’nflxn



Volterra Operator Notation

@ The operation o will be used as a shorthand notation

H(,jwl7.jw27 e ) © Vk

@ The above equation implies that the coefficient H must be
evaluated at the distortion product(s) of the signal v.

@ Thus, the generalized power series is written in this form

vo = Hi(jw)ov;+Ha(jwr, jwa)o v +- - -+ Hi(jwi, jwa, - - - )ovk
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A Real Circuit Example

(Note: DC Bias not shown)

@ Find distortion in v, for sinusoidal steady state response
Vo = B1 (jwl) ovi+ B (jwl,ng) o V,'2 + ...

@ Need to also find

Vi = A1 (jwl) ovj+ A2 (jwl,jw2) o V,'2 4+ ...
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Circuit Example (cont)

@ Setup non-linearities
@ Diode:

id = /Se(VO+VQ)/VT _ IQ
= /seVQ/VTeVO/VT — /Q = /Q (eVO/VT — 1)

= g1V —|—g2v02 =+ ...
o Capacitor:

_dQ

C =
dvy

=Co+ Gvi + Gvi® + ...

Iex = Coﬂ + g dV12 2 dV13
dt 2 dt 3 dt
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Second-Order Terms

A .
OZR—2+J(wa+wb)C(A2—Bz)+
1

. ) C . .
J(wa +wp) CoAz +j (wa + wp) 71/41 (jwo) A1 (jws)

—j (wa + wp) C (A2 — Ba) + g1B> (jwa, jwp) +

82B1 (jwa) B1 (jwp) =0

@ Solve for A and B
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Third-Order Terms

A .
?3+j(wa+wb+wc)C(A3—B3)+j(wa+wb+wc)CoA3+
1

) C . S
J(wa + wp + we) ?12/41 (Jwa) A2 (jwa, jws)+

) G ) ) )
J(wa + wp + we) %Al (Jwa) A1 (Jwsp) A1 (Jwe) =0

—j (wa +wp +we) C(As — B3) + g1B3 + g2B1 B+

g3B1B1B1 =0

@ Solve for A3 and B3
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Distortion Calc at High Freq

So = H1 (jwa) o s;j + Ha (jwa, jwp) © s+ ...

o Compute IM3 at wy — wj only generated by n =3

ki, =0 0 1 0 2 0)

@ Hj3 is symmetric so we can group all terms producing this
frequency mix by Hj

(3?;/%) 3l 3 3

23-1 T 2.4 4 U ez, iz, —joor) s152

351° [H3 (jwz, jw2, —jewr )|
4 |y (jwr)| s1
e For equal amp o/p signal, we adjust each input amp so that:
So = |H1 (jwi)| 51 = [H1 (jw2)[ 52

IM; =




Disto Calc at High Freq (2)

- 3 |H3 (jw27jw2)_jw1)| 2
3= Z . . 2%
|y (jwr)| [H (jw2)|

o At low frequency:

333 2

/M3 = Z?So

@ Conclude that at high frequency all third order distortion
(fractional) o (signal level)? for small distortion.

@ All second order  (signal level)
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Disto Calc at High Freq (3)

e Similarly
HDs — s1° |Hz (jwi, jwi, jwr)|
4 So
So = |H1 (jwi)] s1
1 H3 .wlajwla.jwl
HD3 _ 7| (-I . 5 )| 02
4 |Hi(jw)|
o Low Freq.
1 a3 2
HD3 = ——s5,
3 4 313 °
@ No fixed relation between HD3 and IM3
// h RN
\
/ \ harmonics filtered and
) T T‘\ reduced substantially
! R AL

Niknejad Advanced IC's for Comm



High Freq Distortion & Feedback

+®S€ P s,

p

Let

So = A1 (_jwa) o5+ Ay (jwaajwb) © 552 + ...

s = B (jwa) © So S: =S — Sp
@ Look for

So = Bi1 (jwa) o s; + By (jwa, jwp) © s2+ ...

By (jwa)osi+Bros’+... = A (si— B (jwa) o (By(jwa) o si+ Bz o 52 + )+ ) +A20()2 ...
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High Freq Disto & FB (2)

e First order: Bj (jw,) = %

@ Second order:

B, =—-A; (jwa +.jwb) B (jwa +.jwb) B> (jwa,.jwb) +
Az (jwa, jwp) B (jwa) B1 (jwp)

Ag (jwa, jwp) B (jwa) B (jws)
1+ A1 (jwa + jwp) B (jwa + jwp) B2 (jwa, jwp))

B2 (jwa,jWb) = (

32 (Jw _](,;J ) _ A2 (jwavjwb)
70 T3 Ar (jwa + jws) B (jwa + jwp)] X

[1+ A1 (jwa) B (jwa)] X [1 4 A1 (jws) 5 (jwb)]
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Comments about HF /LF Disto

o Feedback reduces distortion at low frequency and high

frequency X —= 1+T for a fixed output signal level

@ True at high frequency if we use ‘ ’ where w is

1
1+ T (jw)
evaluated at the frequency of the distortion product

e While IM/HD no longer related, CM, TB, P_145, PgL are
related since frequencies close together

@ Most circuits (90%) can be analyzed with a power series
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