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Model-based engineering becomes more and more impor-
tant in industrial practice. System identification is a vital
technology for producing the necessary models, and has
been an active area of research and applications in the
automatic control community during half a century. At the
same time, increasing demands require the area to con-
stantly develop and sharpen its tools. This paper deals with
how system identification does that by amalgamating con-
cepts, features and methods from other fields. It describes
encounters with four areas in systems theory and engineer-
ing: Networked Systems, Particle Filtering Techniques,
Sparsity and Compressed Sensing, and Machine Learn-
ing. The impacts on System Identification methodology by
these encounters are described and illustrated.

Keywords: Identification, networks, regularization,
machine learning, Lasso

1. Introduction

System Identification is the art and science of build-
ing mathematical models of dynamical systems from
observed input- output signals. It is a rather old and
mature field with roots in automatic control, at least from
1956, [98] and with basic techniques going back several
centuries to Gauss, [28]. Nevertheless the topic remains
vital and vibrant, not the least because demands from
model-based engineering require constant development

∗Correspondence to: H. Ohlsson, E-mail:ohlsson@isy.liu.se∗∗ E-mail:hjalmars@kth.se∗∗∗ E-mail:ljung@isy.liu.se

and improvement of tools. The sustained scientific interest
in System Identification is evidenced, e.g. by the invitation
to the current plenary, the organization of many confer-
ences/conference sessions, and the interest in publications
and software in the area. The authors of the current paper
also just received a five-year advanced research grant from
the European Research Council for studies in “Limita-
tions, Estimation, Adaptivity, Reinforcement, Networks
(LEARN) in System Identification.”

It is the purpose of the current paper to give a back-
ground and some details of what keeps System Identifica-
tion alive and kicking. Wewill do that by telling about four
encounters where system identification meets and tries to
absorb the essence of new techniques for pushing the iden-
tificationmethodology forward. Itmust be stressed that the
four areas are just examples of the development of the iden-
tification field. Other authors could and would have made
other selections in dealing with the essential progress of
the field.

2. System Identification Meets Networked
Systems

2.1. Introduction

The profound importance that networked systems play in
our lives today is of course evidenced by the Internet.
Perhaps less obvious is an on-going “hidden” network
revolution in a number of technology areas, e.g., in
automotive engineering, where networks are replacing
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Fig. 1. A networked system.

expensive traditional wiring. Cheap computational and
wireless transmission devices combinedwith a wide range
of emerging new sensors and actuators, in turn enabled
by new technologies such as micro- and nanosystems,
have opened up for the use of networked control sys-
tems on a large scale. The control community has been
quick in catching up to address the associated theoretical
challenges and in recent years this has been a vibrant and
exciting research area [4].

Characteristic to networked systems are that they con-
sist of “components” that are spatially distributed. Each
component can be viewed as consisting of a physical
part and an engineered device, in turn consisting of sen-
sors, actuators and a processing unit. The physical parts
may be interconnected in rather arbitrary ways (depend-
ing on the type of system) while the processing units are
interconnected by communication networks, see Fig. 1.

This configuration changes the perspective of control
design in two aspects: Firstly, the (dynamic) proper-
ties of the communication network have to be accounted
for, and, secondly, the distributed nature of the sys-
tem is emphasized. Large efforts have been (and still
are) devoted to develop dynamic models for communi-
cation networks. These models depend very much on
the particular technology that is used, e.g., wired and
wireless networks exhibit widely different characteristics.
In particular, attention has been given to wireless net-
works, but there is also extensive work on wired networks,
e.g., the Internet [75]. Some features of wireless net-
works include sampling time jitter, random packet losses
and delays, and requirements of low grade quantization.
Constraints on power consumption, costs, and chan-
nel capacity are consequences of the distributed nature

which limits local information processing and information
exchange between the components.

System identification problems related to networked
systems can broadly be divided into two categories:

1) How to identify models of the communication network
itself.

2) How to identify models of the physical system (pos-
sibly including sensor and actuator dynamics) in a
networked/distributed environment.

In this section, we will in very select manner – our cov-
erage is by no means complete – highlight some system
identification problems that relate to these two problems.

2.2. Identification of communication networks

We will illustrate one important aspect of identification of
communication networks by discussing congestion con-
trol of internet traffic. In the seminal paper [43] Frank
Kelly and co-workers presented a framework for the anal-
ysis and synthesis of congestion control of internet traffic.
The data traffic is aggregated into fluid flows and by
interpreting the indirect signaling that takes place in the
network, e.g. queuing delays, as prices, the congestion
control problem can be solved as a decentralized convex
optimization program.

Since Kelly’s work, the underlying fluid flowmodel has
undergone extensive refinement, see, e.g., [40, 50, 51, 73,
75, 85]. In Fig. 2, a generic communication network is
depicted. The network is used by N sources, correspond-
ing to N persistent flows in the network. Source n sends
xn(t) packets per second at time t into the network. The
signal x in the network represents a vector with the rates
of all the sources. The network consists of L links, with
associated finite capacities cl, l = 1, . . . , L (in packets per
second). The interconnection structure can be defined via
a so called routing matrix R ∈ R

L×N for which element
(l, n) is 1 if link l is used by source n, and 0 otherwise. The
signal y in the figure represents a vector with the aggregate
flows yl(t) for all links l = 1, . . . , L. The link flows are
given by

yl(t) =
N∑

n=1

Rlnxn(t − τ
f
ln) =: rf (x(t), τ

f
l )

where τ
f
ln is the time it takes for a packet that is sent by

source n to reach link l. Link l reacts to its level of con-
gestion by responding with a “price” signal pl. The price
signal depends on the design of the network. One possibil-
ity is to let pl be a function of the queuing time experienced
at link l. In Fig. 2, L represents these link dynamics.
The prices (collected in the vector p) are sent back to the
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Fig. 2. Schematic representation of the congestion control system.

sources upon which source n receives the aggregate price

qn(t) =
L∑

l=1

Rlnpl(t − τ b
ln) =: rb(p(t), τ b

n ). (1)

where τ b
ln is the time it takes for the price at link l to reach

source n. The blockH in Fig. 2 indicates that the aggregate
prices may be distorted (e.g. quantized) before the sources
get access to them. Depending on the experienced price,
each source adjusts it transmit rate. This source dynamics
is represented by S in the figure.

A fluid flow model only includes persistent sources.
Intermittent traffic can be modeled as variations in the
link rates and is represented by the signal r in Fig. 2.
Furthermore, the model only includes bottleneck links,
i.e. those links l operating at their maximum capacity cl.
The signal v models variations in the received aggregated
prices due to that non-bottleneck links are exposed to short
term traffic.

Several studies have been conducted to validate the
model above, e.g. [90] and [85]. In particular, interest
has focused on identifying the link dynamics. Notice that
congestion control systems are feedback systems, c.f. Fig.
2, and that care therefore has to be exercised when data
from such systems are used for identifying or validating
a model. To illustrate what can happen, suppose that we
would like to identify the link dynamics from measure-
ments of source rates x and link prices p. Suppose first
that only r is excited. Then it is easy to see that

x = SHrT
b p

from which we see that identifying a model

p = Gx (2)

will result in that the inverse of source dynamics S is iden-
tified, rather than the desired link dynamics. This is exactly
the well known problem that the inverse of the controller
is identified under certain excitation conditions [47]. The
proper experiment should be carried out with excitation in

v since then

p = Lrf x

implying that the link dynamics is identified with the
model (2). In practice, variations in v can be obtained by
manipulating the protocol at the source which determines
the source dynamics, e.g., the TCP protocol.

Asmost communication systems operate in closed loop,
the discussion above shows that system identification cer-
tainly can contribute to identification of communication
networks. For more details on how to identify congestion
control dynamics in a proper manner we refer to [39].

2.3. Decentralized identification in a networked
environment

We will now consider some aspects that arise when a
system is to be identified in a networked environment
characterized by limitations in data communication and
the possibility/necessity of local data processing, e.g., due
to the communication constraints. Two essential scenarios
can be considered:

1) Fusion centric
2) Fully decentralized

where in the first scenario nodes transmit information to a
fusion center for final processing, whereas in the second
scenario no such center exists but nodes have to update
each other with as little coordination, synchronization
and communication as possible. Next we will discuss the
statistical basis for identification under such schemes.
(1) A statistical basis: Let y be a random vector with
probability density function (pdf) pθ (·) where θ ∈ R

n.
The Cramér-Rao Lower Bound (CRLB) provides a lower
bound for any unbiased estimator θ̂ of θ that is based
on y. Subject to certain regularity conditions (see [44]),
the covariance matrix of the parameter estimate is lower
bounded by

E
[
(θ̂ − θ)(θ̂ − θ)T

]
≥ I−1

F (pθ ) (3)

where IF(pθ ) is the Fisher information matrix

IF(pθ ) = −E

[
∂2

∂θ∂θT
log pθ (y)

]
(4)

Under certain conditions, the CRLB is achieved asymp-
totically (as the number of measurements grows) by the
maximum likelihood (ML) estimate:

θ̂ML = argmax
θ

pθ (y) (5)

Consider now the problem of estimating θ in a networked
system. Let ptot

θ denote the joint pdf of all measurements in
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the system. Then I−1
F (ptot

θ ) is a universal lower bound for
the covariance matrix of any unbiased parameter estimate.
Notice that (5) requires the processing of all measure-
ments, i.e. all data have to be gathered at a “fusion center”
and be processed there, according to (5). When measure-
ments are processed locally before being transmitted to the
fusion center one may therefore expect a loss in accuracy.
However, this is not generically true and to understand
when local processing is possible without loss of accu-
racy we will need the concept of a sufficient statistic. We
say that s = s(y) is a sufficient statistic for y if the condi-
tional distribution of y given s, p(y|s) say, is independent
of θ [44]. This means that given s it is possible to generate
random samples from y|s without knowing θ and hence
to generate a new random vector ỹ which has exactly the
same distribution as y.

Example 1: Suppose that the elements of y =[
y1, . . . , ym

]T ∈ R
m are independently normal distributed

with unknown mean θ ∈ R and known variance λ. Then
the sample mean of y is a sufficient statistic. The sample
mean is also the ML estimate θ̂ML of θ .

If in addition λ is unknown, the sample mean and the
sample variance of the residuals

λ̂ = 1

m

m∑
j=1

(yj − θ̂ML)2

form a sufficient statistic.

There is no need to re-create “y” from a sufficient statis-
tic by the random procedure outlined above, the sufficient
statistic can be used directly in the estimation. This can be
seen as follows. Let p̃θ (s) be the pdf of s, then

IF(pθ ) = −E

[
∂2

∂θ∂θT
log pθ (y)

]

= {pθ (y) = p(y|s(y))p̃θ (s(y)),

(by assumption p(y|s) does not depend on θ )}

= −E

[
∂2

∂θ∂θT
log p̃θ (s(y))

]
= IF(p̃θ )

implying that the CRLB’s using y and s are identical since
the information matrices are equal.

From a statistical point of view there is no informa-
tion loss if the local processing ofmeasurements generates
sufficient statistics. We illustrate this with an example.

Example 2: Suppose that there are two sensors,
where Sensor i) provides the measurements yi =[
yi1, . . . , yim

]T ∈ R
m according to

yij = θ + eij, j = 1, . . . ,m

where {eij} are independent normally distributed random
variables with zero mean.

The local ML estimate of θ based on the measurements
from Sensor i) only are given by

θ̂ML
i = 1

m

m∑
j=1

yij

These estimates can be computed locally and then trans-
mitted to a fusion center where, e.g., the estimate

θ̂central = θ̂ML
1 + θ̂ML

2

2
(6)

can be formed. If the variance of the measurment errors
from the sensors are equal, this is the ML estimate given
the measurements from both sensors. However, when the
measurement errors are different, i.e. when E[e2ij] = λi,
λ1 �= λ2, (6) is no longer the central ML estimate. Suppose
that sensor 1 is of high quality such that λ1 is small but
that sensor 2 is very poor so that λ2 � λ1. Then θ̂central

will in fact be a worse estimate than θ̂ML
1 .

A better estimate at the fusion center can be obtained
by transmitting the local sufficient statistics si instead of

the local ML estimates. Let y = [
yT
1 , y

T
2

]T ∈ R
2n and let si

be a sufficient statistic for yi. Since the sensors are subject
to independent noise it holds

pθ (y) =
2∏

i=1

pθ (yi) =
2∏

i=1

p(yi|si)

2∏
i=1

pθ (si) (7)

which shows that s = [
sT
1 , s

T
2

]T
is a sufficient statistic for

the total measurement vector y. From example 1 we see
that if we in addition to the local ML estimates should
transmit also the local noise variance estimates

λ̂i = 1

m

m∑
j=1

(yij − θ̂ML
i )2

these variance estimates can then be used by the fusion
center to avoid the problem that a single poor sensor may
destroy the fused estimate of θ .

In conclusion, regardless of fusion centric or fully
decentralized schemes, unless sufficient statistics are
transmitted information loss will occur.

A subtle issue arises when the nodes are privy to local
information regarding their ownmeasurement process.We
discuss this through an example.

Example 3: Suppose that we have n nodes and that node
i measures yi = [

yi1 . . . yim
]T ∈ R

m where each ele-
ment is independently normal distributed with unknown
mean θ and variance λi. Let us assume that observations
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at different nodes are independent. Then the central ML
estimate of θ is given by

θ̂ML =
∑n

i=1
ȳi
λi∑n

i=1
1
λi

(8)

where ȳi is the sample mean at node i

ȳi = 1

m

m∑
t=1

yij

Suppose now that each node knows its own noise variance
but not the others’. Then, following example 1, ȳi is a
sufficient statistic. However, in order to combine the local
sufficient statistics in the right way, i.e. as in (8), also the
noise variances λi have to be communicated.

There exist more or less elaborate ways to deal with
the problem highlighted in example 3. In a fully decen-
tralized context [95] communicates the necessary weights
explicitly whereas in [5] the weighting is done locally.

Another subtle issue arises when the transmission of
information from the sensors to the fusion center is sub-
ject to rate constraints. It may then happen that ancillary
statistics may improve upon the estimate. An ancillary
statistic is a statistic whose distribution does not depend on
the unknown parameters. We refer to the surveys [34, 94]
and references therein for details of the problem when the
transmission to the fusion center is rate constrained.
(2) The impact of noise: In example 2, it is the fact that
the nodes have access to independent measurements, i.e.
(7), that ensures that it is sufficient to distribute the local
sufficient statistics between nodes, or to a fusion center.
When this is not the case, the situation is much more
complex and in this section we will illustrate that the spa-
tial correlation properties of the noise are crucial for how
data should be processed. There exists a simple condi-
tion forwhen locally linearly processedmeasurements can
be combined into the centralized linear minimum mean
variance estimate [71].

Consider the distributed system in Fig. 3. Node i has
yi−1 as input and yi as output and consists of the first order
transfer function Gi(q) = biq−1, where the parameters bi,
i = 1, . . . , n need to be estimated. We denote estimates
by b̂i and the true values by bo

i . Suppose that, for some
reason, the interest is to estimate Jo = ∑n

k=2 bo
k .

We will consider three different estimation schemes: A
fusion centric approach where {yi−1(t), yi(t)}N

t=1 is used
locally to estimatebi using least-squares estimation, which
then is sent to a fusion center where all estimates are com-
bined. The second scheme will be a centralized scheme
where all parameters are estimated jointly using {yi(t)}N

t=1,
i = 0, . . . , n. In the last approach, neighboring nodes
collaborate by passing data between each other before

Fig. 3. A decentralized system.

subsequent data processing and transmission to the fusion
center.

We will assume that for i = 1, . . . , n, {ei(t)}N
t=1 is a

sequence of independent normal distributed random vari-
ables with zero mean and known variance λ. In regard
to the spatial properties of the noise we will consider
two extreme cases: Firstly, we will assume that the
noise sequences are mutually independent. In the sec-
ond scenario, the noise sequences are perfectly dependent,
i.e. ei(t) = e(t), i = 1, . . . , n, t = 1, . . . ,N where
{e(t)}N

t=1 is a sequence of independent random variables.
That disturbances acting on various subsystems can be
strongly correlated is not an uncommon situation. Con-
sider for example an experiment on a power grid during a
thunderstorm with lightnings.

In order to simplify the calculations we assume that
bo

i = 0, i = 1, 2, . . . , n, so that

yi(t) = ei(t) (9)

and that the first input y0 is zero mean white noise, also
with variance λ. We consider first the case where the noise
sequences are mutually independent.

Independent noise sequences. When {ei(t)}N
t=1 is inde-

pendent from all other noise sequences as well as normally
distributed, the ML estimate of bi is obtained as the
least-squares estimate corresponding to

yi(t) = biyi(t − 1) + ei(t), t = 1, . . . ,N (10)

i.e.

b̂i =
∑N

t=1 yi(t)yi(t − 1)∑N
t=1 y2i (t − 1)

(11)

Thus the fusion centric scheme gives exactly the same
result as the centralized scheme in the case of mutu-
ally independent noise sequences. We also conclude that
there is nothing to gain by allowing the nodes to share
information during the data processing.
Dependent noise sequences. When the noise sequences
are identical, we obtain from (9) and (11) that the local
least-squares estimates are given by

b̂i = bo
i +

1
N

∑N
t=1 e(t)yi(t − 1)

1
N

∑N
t=1 y2i (t − 1)

= b0
i + ē, i = 2, . . . , n (12)
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where ē is an error term

ē =
1
N

∑N
t=1 e(t)e(t − 1)

1
N

∑N
t=1 e2(t − 1)

(13)

that is common to all estimates. From (12) we obtain that
for large N (so that 1

N

∑N
t=1 e2(t − 1) ≈ λ),

E[(b̂i − bo
i )

2] ≈
1

N2 Nλ2

λ2
= 1

N
(14)

but also, since ē is common to all estimates,

E[(b̂i − bo
i )(b̂j − bo

j )] ≈ 1

N
, i = 2, . . . , n

This implies that the mean-squared error of the estimate
Ĵ = ∑n

k=2 b̂k is given by

E[(Ĵ − Jo)
2] ≈ (n − 1)2

N
(15)

This means that for a large network (large n), even though
the estimation error in each node is small, the total error
can accrue to an unacceptable level.

In the centralized approach, when we can use measure-
ments of all signals yi, we can obtain perfect estimates of
all parameters. Plugging in e(t) = y1(t) − G1(q)u(t) into
the equations for each node gives

yi(t) = Gi(q)yi−1(t) + e(t)

= Gi(q)yi−1(t) + y1(t) − G1(q)y0(t)

which is a noise free relationship between variables, which
means that the corresponding model parameters can be
obtained exactly. Consequently also the estimate of Jo will
be exact.

If now the nodes are allowed to communicate locally
with each other, one can easily see that if node k sends
a few samples of its input yk−1 to node k + 1, then node
k + 1 can estimate bk+1 and bk perfectly.

Summarizing, independent noise sequences leads to
that fusion centric identification without collaboration
between nodes is optimal, whereas the same scheme can
have very poor performance when the noise sources are
strongly correlated. In the latter case, local information
exchange can significantly improve the accuracy. We con-
clude that the correlation structure of the noise can have
a tremendous impact on how decentralized identification
should be performed.
(3) The impact of structure: Consider the distributedmulti-
sensor network in Fig. 4 where sensor i may transmit the
measurement yi to a fusion center. Both transfer functions
G1 and G2 are unknown. Consider now the identifica-
tion of the transfer function G1. From the figure it is

Fig. 4. Adistributedmulti-sensor network. The sensor measurements y1
and y2, together with the input u are used by a fusion center to estimate
G1 and G2.

clear that measurements from sensor 1 provide informa-
tion regarding this transfer function. However, it also
seems somewhat obvious that sensor 2 can contribute
to improving the accuracy of the estimate of G1 since
y2 = G2G1u + e2. However, in [38, 83] it is shown that
under certain configurations of the model structures used
for G1 and G2, sensor 2 contains almost no information
regarding G1 even if the signal to noise ratio of this sen-
sor is very high. The result can easily be generalized to
arbitrary number of nodes in a cascade structure.
(4) Communication aspects: Wewill now discuss some of
the issues associated with transmitting information over a
communication channel.
(a) Bandwidth limitations: One aspect is that the capacity
of some communication channels is so low that it has to
be accounted for. One such typical constraint is that the
available bit rate may be restricted so that the information
has to be quantized before transmission.

Example 4: Suppose that node i in a network measures
the scalar

yi = θ + ei

where ei are independent normal distributed random vari-
ables with zero mean and variance λ. When each node
only can relay whether yi exceeds a certain threshold T
(common to all nodes) or not, to the fusion center, it can be
shown that the CRLB is at least a factor π

2 above the CRLB
for the non-quantized case [62]. The optimal threshold is
T = θ , and therefore infeasible since θ is unknown. We
refer to [67] for further details.

Results on quantized identification in a very general
setting can be found in [86–88].
(b) Sampling time jitter: Consider the scalar continuous
time system

y(t) = θu(t) + v(t)

where θ ∈ R is an unknown parameter to be identi-
fied. and where v(t) is a disturbance. The input u, which
we assume to be a stationary process with covariance
function ru(τ ) = E[u(t + τ)u(t)], is uniformly sampled
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with sampling period T resulting in un = u(nT). How-
ever, a non-ideal sensor causes sampling jitter τn in the
corresponding output samples

yn = θu(nT + τn) + vn (16)

where vn = v(nT + τn). Standard least-squares identifica-
tion of θ using N samples from (16) gives

θ̂ =
1
N

∑N
n=1 ynun

1
N

∑N
n=1 u2

n

=
1
N

∑N
n=1 u(nT + τn)u(nT)

1
N

∑N
n=1 u2(nT)

θ+

1
N

∑N
n=1 v(nT + τn)u(nT)

1
N

∑N
n=1 u2(nT)

(17)

Assuming that the jitter {τn} is stochastic with a stationary
distribution and is independent of the noise, and that the
noise has zero mean and is uncorrelated with the input, the
second term on the right-hand side of (17) converges to
zero as the number of samples N → ∞. For the first term
in (17) we have

lim
N→∞

1
N

∑N
n=1 u(nT + τn)u(nT)

1
N

∑N
n=1 u2(nT)

θ = Eτ [ru(τ )]
ru(0)

θ

(18)

with the convergence being with probability 1 under
suitable regularity conditions. In (18), Eτ [ru(τ )] is the
expectation of ru(τ ) with respect to the distribution of
the jitter τ . Thus we see that the least-squares estimate
of θ will not be consistent unless Eτ [ru(τ )] = ru(0).
This illustrates that sampling jitter can cause bias prob-
lems in system identification. In [26], the jitter problem
is analyzed in the frequency domain and it is shown
how to compensate for the incurred bias. In the case of
time-stamping of packets, a continuous time instrumen-
tal variable method is used in [84] to cope with irregular
sampling.

2.4. Relation to other areas

There are obvious connections between fully distributed
identification and distributed optimization, see e.g. [9, 79].
A widely studied area is distributed estimation where
nodes share information regarding some random vector
that is to be estimated. Relevant questions are whether the
nodes will converge to the same estimate as the informa-
tion exchange increases, and if so, whether the nodes reach
a consensus and the quality of this estimate as compared
to the centralized estimate, see, e.g., [12]. Wireless sensor
networks are also a closely related area [52]. A popular

class of methods are consensus algorithms where nodes
are ensured to converge to the same result despite only
local communication between nodes.

2.5. Summary

Wehavehighlighted that it is important to take into account
the closed loop nature of the problem when identifying
communication networks. We have also seen that identi-
fication of networked systems is a multifaceted problem
with close ties to fields such as distributed estimation and
optimization. Whereas for a fix set-up, the CRLB pro-
vides a lower bound on the estimation accuracy, the main
challenge when there are communication constraints is to
devise the entire scheme: When, what and where should a
node transmit in order to maximize accuracy? For exam-
ple, suppose that it is possible to transmit all raw data
to a fusion center but that the communication channel is
subject to noise. Then it may still be better to pre-process
the measurements locally before transmission. This type
of considerations opens up a completely new ball-park
for system identification. An interesting avenue is to view
the problem as a decentralized optimization problem, e.g.
using the methods in [13].

3. System Identification Meets Particle
Filters

3.1. Identification of Nonlinear State Space Models

A general, discrete time, nonlinear identification model
can be stated like this:

x(t + 1) = f (x(t), u(t), v(t), θ) (19a)

y(t) = h(x(t), e(t), θ) (19b)

Here u and y are the inputs and the outputs of the nonlinear
dynamical system, v and e are white noise disturbances
(called process and measurement noises, resp.), θ is an
unknown parameter vector. Often, in statistical literature f
and h are determined in terms of the conditional transition
probabilities from x(t) to x(t+1), pθ (x(t+1)|x(t)), and the
conditional observation probabilities qθ (y(t)|x(t)). Also
(19) is a hidden Markov model: the states x form aMarkov
process (due to the whiteness of v), and it is hidden, since
only y is observed.

The parameter vector θ can generally be estimated by
the Maximum Likelihood (ML) method. The negative log
likelihood function (conditioned on the initial state x(0),
denoting past data by Yt = {y(1), . . . , y(t)}, can readily
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be written as

ŷ(t|θ) = E(y(t)|Yt−1,Ut−1) (20a)

ε(t, θ) = y(t) − ŷ(t|θ) (20b)

V(θ , YN ) = − logPθ (Y
N ) =

N∑
t=1

pν(ε(t, θ)) (20c)

where ŷ is the conditional expectation of the next out-
put and pν is the probability density function (pdf) of the
innovations ε. V is the log likelihood function.

The ML estimate of the parameters based on N data is
then the parameter that minimizes the negative logarithm
of the likelihood function:

θ̂ (N) = argmin
θ

V(θ , YN ) (20d)

3.2. Nonlinear Filtering and Particle Filtering (PF)

The catch here is the prediction ŷ(t|θ). In case the model
(19) is linear and the noises are Gaussian, the predictor
is readily obtained from the Kalman filter. Otherwise,
there typically exists no closed form expression for the
predictor. The conditional probabilities propagate accord-
ing to Bayes rule which can be written as nonlinear partial
difference equations, (e.g. Chapman-Kolmogorov) or the
equivalent continuous time partial differential equations
(Kushner-Stratonovich). Much effort has been spent over
the years to find efficient (approximate) solutions to this
non-linear filtering problem. The 1990’s saw a break-
trough in these attempts. Markov Chain Monte Carlo
(MCMC)methods, [23, 35] andmore specifically Sequen-
tial Importance Sampling [33], developed into what is
now generally known as particle filters (PF) and became
a new efficient tool for nonlinear filtering. Intuitively, it
can be seen as approximate solutions of the underlying
partial difference equations on a stochastically generated
and carefully adapted grid in the x-space.

Another intuitive description is to see it as solving the
equation (19a) for a (large) number of candidate solutions
(“particles”), where solutions multiply stochastically, to
mimic the noise term v. Each solution candidate is then
matched to the observations y via (19b) to determine how
relevant or important they are. This match is the basis of
re-sampling the particles to keep the number constant (typ-
ically a few hundreds/thousands) and covering relevant
areas of the state space.

A simplistic description of the basic process contains
the following steps:

1) Use M “candidate solutions” (particles) to (19a),
xi(t), i = 1, . . . ,M.

2) work, in principle, with approximations to the poste-
rior probability density q(t, x) = πt(x(t)|Yt) of the

empirical distribution form

q̂(t, x) =
M∑

i=1

δ(x − xi(t)) (21a)

(δ denoting singleton distributions around the particles,
implying that the distribution of the particles should
mimic the posterior density)

3) After having observed y(t), compute, for each par-
ticle, its (approximate) posterior probability wi(t) =
P(xi(t)|Yt), by Bayes rule

wi(t) = 1

N P(y(t)|xi(t)) (21b)

where N denotes normalization over all the M parti-
cles.

4) The posterior density of x(t) given the observations is
then approximated by the empirical distribution

q̂(t, x) =
M∑

i=1

wi(t)δ(x − xi(t)) (21c)

5) Update the particles over time by drawing a sample of
v in (19a).

6) Re-sample the particles at each time step according to
the posterior weights wi so that all the time equally
weighted distributions (21a) are used for the next time
step.

For a more comprehensive tutorial on particle methods we
may refer to [24].

3.3. Application to Identification

Clearly, particle filters have opened up new avenues for
nonlinear identification. The role of PFs both for off-line
and on-line identification of non-linear systems is dis-
cussed in [25] and [3], where expressions for the likelihood
function and its gradientwrt θ are given based on PF calcu-
lations. A recent survey of non-linear system identifiction
using particle filtering is [42].

Another route to identification of non-linear systems
(19) is taken in [72]. Instead of computing the likeli-
hood function and its gradient using particle filtering,
which has a few technical problems, they employ the EM
(Expectation-Maximization)method, [20], for estimation.

The EM algorithm is based on the iterations

θ̂k+1 = argmax
θ

Q(θ , θk) (22a)

Q(θ ,α) = Eα[log pθ (X
N , YN )|YN ] (22b)

where pθ (XN , YN ) is the joint pdf of XN =
{x(1), . . . , x(N)} and YN = {y(1), . . . , y(N)} according
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to (19) and Eα(Z|YN ) denotes conditional expectation of
Z with respect to YN assuming YN is generated from (19)
with θ = α.

The point now is that Q(θ , θk) can readily be calculated
from smoothed state estimatesE(x(t)|YN ) assumingY has
been generated for the parameter value θk . In [72], it is
shown how particle methods approximate the smoothed
states sufficiently well, to yield good identification results.
Recent study of smoothing with particle methods is given
in [14], [22], and section 5 in [46].

The example considered in [72] (and also in [25]) is

x(t + 1) = θ1x(t) + θ2
x(t)

1 + x2(t)
+ θ3 cos(1.2t) + θ4vt

(23a)

y(t) = θ5x2(t) + θ6e(t) (23b)

An interesting aspect of this example is that for θ4 = 0
(which is the case studied in [72]), the likelihood function
can easily be calculated by just simulating (23a). Differ-
entiating this equation w.r.t. θ2 gives a difference equation
that may be unstable. This means that the gradient of the
likelihood function is very large at certain values, and that
the likelihood function is highly multi-modal. Estimating
the value of θ4 (and finding it to be zero) and using the
Q-function in (22a) instead of the likelihood function is
therefore a good way out of problems with local minima.

The idea to use particle techniques to find smoothed
state estimates, together with the EM methods has been
applied to various non-linear block-oriented models in
[92] and [93].

3.4. A Variant: Minimum Distortion Filtering
(MDF)

In [32] a deterministic choice of particles based on vector
quantization is suggested instead of the randomly gener-
ated one in the PF. In short it can be described as the PF
algorithm (21) with the following steps modified:

Step 5 In the time update of the particles use a d-point
approximation of v and thus expand, temporarily
the M particles to M × d particles.

Step 6 Instead of stochastically re-sampling the particles,
use vector quantization (e.g. Lloyd’s algorithm,
[49]) to quantize back the M × d particles to M –
taking the posterior weights into account.

This approach to non-linear filtering has been further stud-
ied and tested in a number of papers, e.g. [31]. The
potential of the MDF approach to filtering in system iden-
tification applications is particularly intriguing. See the
promising examples in [16] and [17].

4. System Identification Meets Sparsity

4.1. Preview

Sparse approximation and compressed sensing has been a
very active research area in the last few years, e.g. [15],
[21]. Basically the problem can be described as follows:
Given a matrix A, approximate it with a sparse matrix
Â (that has “many” elements equal to zero). So make
the 2-norm ‖A − Â‖2 small while the �0-”norm” ‖Â‖0 is
small (recall that the �0-”norm” ‖A‖0 means the number of
non-zero elements of A). Various trade-offs between these
competing minimizations are controlled by the criterion

min
Â

‖A − Â‖2 + λ‖Â‖0 (24)

(‖ · ‖ denotes the 2-norm: ‖ · ‖2) depending on the size
λ > 0. Now, the problem (24) can be solved by postulating
the number of non-zero elements of Â (i.e. the number
‖Â‖0) and trying all the corresponding combinations of A-
matrices. With n elements in A, this gives 2n combinations
to test. Clearly this is a forbidding task except for very
small problems. A solution is to replace the �0 norm with
a surrogate �1 norm (the sum of the absolute values of the
entries)

min
Â

‖A − Â‖2 + λ‖Â‖1 (25)

This is now a convex criterion, which is easily minimized,
and retains the feature that it favors solutions with many
elements of Â being exactly zero. This is, in short the
basic idea about sparseness, and compressed sensing. The
references [15], [21] contain technical results in what way
the solution to (25) mimics the solution to (24).

4.2. Regressor Selection: LASSO

A long standing, and much discussed problem in esti-
mation is the problem of regressor selection in linear
regression:

Y = �θ + E (26)

Each column in � corresponds to a regressor (and each
row in θ to its corresponding parameter).

The regressor selection problem is to choose a suit-
able subselection of regressors that gives a good trade
off between the model fit and the number of estimated
parameters (cf. the Akaike criterion, [1])

min
θ

‖Y − �θ‖2 + λ‖θ‖0

This involves, as (24), a combinatorially increasing num-
ber of tests, which traditionally is handled by screening
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regressors in some ad hoc ordering (most relevant first,
least relevant first, ....)

An alternative is to use the “�1-trick” and minimize the
convex criterion

min
θ

‖Y − �θ‖2 + λ‖θ‖1 (27)

which is known as LASSO (Least Absolute Shrinkage
Selection Operator), [77], and has been very successful
in the past 15 years. An alternate term is �1-regularization
since the criterion of fit has an additive penalty term on
the size of the parameters, that is of the same type as the
classical (Tikhonov- or �2-)regularization with +λ‖θ‖22.
Groups of Regressors: Group Lasso and Sum-Of-Norms
(SON) Regularization A variant of (26, 27) is the situation
that the regressors can be grouped into several groups. We
still want to use as few parameters as possible, but once
an element in one group is used, it does not matter if the
whole group is used. Let there be d groups, and use a
�p-norm to measure the size of each group:

k , k = 1, . . . , d (28a)

k = {θk,1, . . . θk,nk } (28b)

‖k‖p =
⎛
⎝ nk∑

j=1

θ
p
k,j

⎞
⎠

1/p

(28c)

n =
d∑

k=1

nk is the total number of

candidate parameters (28d)

Some parameter(s) in group k is used if and only if
‖k‖p > 0. The number of groups used is thus

‖[‖1‖p, . . . , ‖d‖p]‖0 (29)

By relaxing this �0 norm to �1 we get the criterion

min
θ

‖Y − �θ‖2 + λ

d∑
k=1

‖k‖p (30)

This is known as Group Lasso, [97], or Sum-Of-Norms
regularization. We may note that if p = 1, this is the same
as LASSO, so to obtain the group feature, it is essential to
use a p > 1 in the group parameter norm.

As a system identification application, we may e.g.
think of Y potentially modeling the response to d different
inputs. With Group Lasso we can thus determine which
inputs to really include in the modeling of Y .

4.3. Choosing the Regularization Parameter

The choice of the regularization parameter λ in (27) is
usually done by way of cross-validation or generalized

cross-validation; the regularization that performs best on
fresh data is chosen. This requires solving (27) a number
of times. However, in [68] it is shown that AIC provides
a way to directly obtain a reasonable value for λ. The
idea is based on the observation that the full least squares
estimate (let us denote it θ̂LS

N ) can model the true system.
This suggests to find the estimate with smallest norm that
has the same model fit as the full least-squares estimate.
By model fit we here mean the fit on a fresh data set.
According to [1] the expected least-squares cost on a new
data set for the full least-squares estimate is given by

(
1 + 2n

N

)
E
[
‖Y − �θ̂LS‖2

]
(31)

where the expectation is over the new data. This suggests
the following method

min
θ

‖θ‖1

s.t. ‖Y − �θ‖2 ≤
(
1 + 2n

N

)
‖Y − �θ̂LS‖2

(32)

Ramifications and properties of this method can be found
in [68]; see also [63] and [78] for related work.

4.4. Segmentation, LPV and Hybrid Models

Consider the problem to build a model of the following
kind:

ŷ(t) = θT (p(t))ϕ(t) + e(t) (33)

where ŷ is the predicted output, and ϕ(t) is a vector of
regression variables, known at time t. θ is a model param-
eter vector, that may depend on regime variable p ∈ R

p,
whose value at time t, p(t), is known.

Typically θ(p) is a piecewise constant function of p:

ŷ(t) = θT
k ϕ(t) if p(t) ∈ Hk (34a)

Hk , k = 1, . . . , d is a partition of R
p (34b)

The class of models (33) is formally known as linear
parameter-varying, LPV models, but depending on the
regime variable it includes several other cases:

• Ifϕ(t) is formed from the recent past inputs and outputs,
the model is of ARX type. If in addition ϕ contains a
constant the model becomes affine.

• If p = t = time, the model is a time-varying model.
If θ is a piecewise constant function of t, we have a
segmented (piece-wise constant) model.

• If p(t) = ϕ(t) we have a piecewise linear or piece-
wise affine (PWA) model: in the partition Hk of the ϕ

space the model is linear, but its coefficients change as
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the regression vector enters another region. This is a
common case of a hybrid model. See e.g. [7].

There are a few requirements when such a model (34)
is constructed:

1. Model estimation consists of

(a) finding d, the number of partitions in (34b).
(b) the d different parameter vectors θk .
(c) the expressions for the partitions Hk

2. Use sufficiently large d to allow accurate description
in different areas of the regime space.

3. Use sufficiently small d to avoid overfit and obtain a
model that has reasonable complexity.

Suppose we have measured y(t), u(t), t = 1, . . . ,N and
want to find amodel. To deal with tasks 1a-1b, considering
aspects 2 and 3 we could let loose one parameter vector at
each sample and minimize

N∑
t=1

‖y(t) − θT
t ϕ(t)‖2 + λ

N∑
s,t=1

K(p(t), p(s))‖θs − θt‖0
(35)

with respect to θt ; t = 1, . . . ,N .
The first term favors a good fit in accordance with

requirement 2. The second term penalizes the number of
different models in accordancewith requirement 3. In (35)
the kernel K is included to allow, for example, the possi-
bility that different θ are not penalized if they correspond
to “very different” regime variables.

Remark: The �0 norm in (35) should be interpreted in the
group sense of (29), that is as 0-norm of the vector that
is formed all the elements ‖θt − θs‖p. Actually, strictly
speaking, this norm does not “count” the number of dif-
ferent θi: if there are d different models, such that model j
is the same for kj values of t (N = ∑d

j=1 kj), the �0-norm

takes the value
∑d

i,j=1i �=j kikj.

As before, the criterion (35) is computationally forbid-
ding even for quite smallN . We therefore relax the �0 norm
to �1 norm as in (30) to obtain the convex Sum-Of-Norms
criterion

min
θt

N∑
t=1

‖y(t) − θT
t ϕ(t)‖2 + λ

N∑
s,t=1

K(p(t), p(s))‖θs − θt‖p

(36)

When (36) has been solved with a suitable λ that gives
the desired trade-off between requirements 2 and 3, we
have also solved 1a and 1b of requirement 1, and obtain

• d different parameter vectors k , k = 1, . . . , d, so each
θt , t = 1, . . . ,N is equal to one of k , k = 1 . . . , d.

• a clustering of the regime variable points:

p(t) ∈ Pk if θt is associated with model k (37)

It now only remains to convert the points clusters Pk in the
regime variable space to a partitioning Hk of this space:

Pk ⊂ Hk (38a)

R
p = ∪kHk (38b)

This can be donewith any one ofmany available clustering
or pattern recognition algorithms, like e.g. the Support
Vector Machine classifier, [81].

Example 5: Consider the multi-dimensional PWARX sys-
tem (introduced in [6], see also [7, 54])

yk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.4yk−1+ uk−1 + 1.5 + ek , if
4yk−1 − uk−1 + 10 < 0

0.5yk−1− uk−1 − 0.5 + ek , if
4yk−1 − uk−1 + 10 ≥ 0 and
5yk−1 + uk−1 − 6 < 0

−0.3yk−1+ 0.5uk−1 − 1.7 + ek , if
5yk−1 + uk−1 − 6 ≥ 0.

(39)

Generate {uk}200k=1 by sampling a uniform distribution
U(−4, 4) and let ek ∼ U(−0.2, 0.2). Fig. 5 shows the
dataset {(yk , uk)}200k=1. The 200 data points thus correspond
to 3 different models, such that yk is a linear regression of
[uk−1, yk−1, 1] with 3 different coefficient vectors depend-
ing on the values of uk−1, yk−1. Fig. 5 also shows how the
algorithm (36) (for λ = 0.01) associates the regressors
with 3 different regions (one for each parameter vector).
The classification is 100% correct and we thus obtain the
best possible estimates of the coefficients, and the best
possible models.

As a comparison it is shown in Fig. 6 how Generalized
Principal Component Analysis (GPCA, [82]) performs on
the same data. More details on this example are given
in [57].

Segmentation: Let us briefly comment on the segmenta-
tion case, i.e. when the regime-variable is a scalar and
equal to time. If we only want to control the number of
segments, i.e. the number of times the process parameters
change, and do not insist on keeping the total number of
different models small, it is natural in (36) only to penalize
transitions, i.e. to let the kernel

K(p(t), p(s)) = K(t, s) = 0 unless |t − s| = 1 (40)
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Fig. 5. Data used in Example 5 showed with �, ◦ and ♦ symbols. The data marked with the same symbol got the same θ -estimate in (36). Dashed
lines show the estimated partitions obtained by applying SVM. The true partitions coincide with the estimated ones.

Fig. 6. The same as Figure 5 but using GPCA instead of the proposed method PWASON. 18 samples were misclassified. The shape of the partitions
(dashed line) were estimated fairly well (true boundaries shown with solid thin line).

That means that the double sum in the regularization term
collapses to a single sum:

min
θt

N∑
t=1

‖y(t) − θT
t ϕ(t)‖2 + λ

N−1∑
t=1

‖θt − θt+1‖p

(41)

Example 6: Comparison between segment and (41)
Let us compare the method (41) with segment in the

System Identification Toolbox [48]. Consider the system

y(t)+a1y(t − 1) + 0.7y(t − 2)

=u(t − 1) + 0.5u(t − 2) + e(t) (42)

with u(t) ∼ N(0, 1) and e(t) ∼ N(0, 9). At t = 400,
a1 changes from −1.5 to −1.3 and at t = 1500 a1
returns to −1.5. Both segment and (41) are provided
with the correct ARX structure and asked to estimate all
ARX parameters (a1, a2, b1, b2). With the same design
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parameters as used to generate the data (the true equation
error variance, jump probability, initial ARX parameters
and covariance matrix of the parameter jumps)segment
does not find any changes at all in the ARX parameters.
Tuning the design variable R2 insegment so it finds three
segments gives the estimate of a1 shown in Fig. 7. It does
not seem possible to find values of all the design variables
in segment that give the correct jump instants.

Using (41) gives directly the correct change times, as
seen in Figure 7.

See [59] for more on segmentation of ARX-models. A
further example on segmentation of signals fromnonlinear
systems is given in [27].

4.5. State Smoothing with Abrupt Changes

The basic linear system with disturbances can be written

x(t + 1) = Atx(t) + Btu(t) + Gtv(t)

y(t) = Ctx(t) + e(t).
(43)

Here, e is white measurement noise and v is a pro-
cess disturbance. v is often modeled as Gaussian Noise
which leads to the familiar Kalman filter state filtering
and smoothing and the classical LQG control formulation

However in many applications, v is mostly zero, and
strikes only occasionally:

v(t) = δ(t)η(t)

where

δ(t) =
{

0 with probability 1 − μ

1 with probability μ

η(t) ∈ N(0,Q)

This is the case in many applications, like:

• Control: v are load disturbances acting as an unmeaured
input. Pulse disturbances can be further shaped by the
A-matrix to describe the actual load changes

• Tracking and path generation: v corresponds to
unknown, sudden maneuvers to evade pursuers, or
“knots” in the path curves

• Fault Detection and Isolation (FDI): v corresponds to
additive system faults

The problem is to find the jump times t and/or the
smoothed state estimates x̂s(t|N). Over the years many
different approaches have been suggested for this (non-
linear filtering) estimation problem. A sparse estimation
approach is to use sum-of-norms regularization:

min
v(k),k=1,...,N−1

N∑
t=1

∥∥(y(t) − Ctx(t)
)∥∥2 + λ

N∑
t=1

‖v(t)‖p

s.t. x(t + 1) = Atx(t) + Btu(t) + Gtv(t); x(1) = 0.

It performs quite well compared to traditional approaches,
see, e.g., [55] and [56].

5. System Identification Meets Machine
Learning

Machine learning has become a household word in the
community dealing with inference, reasoning and actions
based on data. The term is more broad and also more
vague than the other encounters discussed here. The area
has been growing and now typically incorporates gen-
eral statistical tools for classification, pattern recognition,
Gaussian Process Regression, kernel methods, sampling
methods, unsupervised learning, etc. Some relevant books
covering the topic include, [10, 36, 66, 80]. We shall in this
section only describe some methods that have been used
for System Identification Applications that stem from the
Machine Learning Community.

5.1. Gaussian Process Regression for System
Identification: General Ideas

A common problem in inference is to estimate functions
from observations. For a Machine Learning perspective,

Fig. 7. Estimates of a1 in the ARX-model used in Example 6 using (41) (solid) and segment (dashed).
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see e.g. [66]. The problem is to estimate an nf -dimensional
function, say

f (τ ), τ ∈ � f (t) ∈ R
nf (44)

The domain � could be discrete or continuous time, or
any, sufficiently regular, subset of R

d . We observe

y(t), t = 1, . . . ,N (45)

that bear some information about the function f . The
problem is to estimate f based on these observations.

One approach is to regard f (·) as a stochastic process,
meaning that we can assign probability distributions to
any vector f (τk), k = 1, . . . , n for any finite collection of
points τk . From the observations y we can then compute
the posterior distributions

p(f (τk)|YN ) (46)

The calculation of (46) becomes easy if the prior distribu-
tion of f is a Gaussian Process, and the observations are
linear function(al)s of f , measured in Gaussian noise:

y(t) = L(t, f ) + e(t), e(t) ∈ N(0,R) (47)

That makes the posterior probabilities (46) also Gaus-
sian, and the random vector [y(t), f (τk), k = 1, . . . , n]
becomes a jointly Gaussian vector. Therefore the well
known, and simple rules for conditional Gaussian prob-
abilities can be applied when (46) is computed. This
is the Gaussian Processes Regression approach. The
book [66] contains many ramifications of this approach
and Rasmussen has applied this technique to system
identification, e.g. by estimating the state transition
function for non-linear systems. The spectacular web-
site videos on learning to swing up and stabilize an
inverted pendulum (http://www.cs.washington.
edu/homes/marc/learn_ctrl.html) are based
on this technique.

Hyper-parameters: For a successful application of
Gaussian Process Regression it may be essential to have
a good prior distribution for f , p0(f (τk)). It may be
useful to equip this prior with some tuning parameters
(hyper-parameters) α:

Prior Distribution for f : p0(f (τk),α) (48)

There are several techniques for tuning α. A basic
approach is the so called Empirical Bayes Method which
means that the distribution of the observations y is deter-
mined from (48) and (47). This distribution depends on
α so this parameter can be estimated by the Maximum
Likelihood method.

5.2. Identification of Linear systems

Pillonetto, de Nicolao and Chiuso have applied the Gaus-
sian Process Regression perspective to the estimation of
linear dynamical systems in several thought-provoking
papers, e.g. [65], [64].

A linear system is completely characterized by its
impulse response. Let us consider here, for simplicity, a
discrete time system whose impulse response can be trun-
cated after n values, without serious loss of accuracy. So
we take the unknown function f to be estimated as the
finite impulse response

f (τ ) : g(k), k ∈ � = {1, . . . , n} (49)

The response to any input u is

y(t) =
n∑

k=1

g(k)u(t − k) + v(t) (50)

which is a particular case of (47). Introduce notations

y(t) = ϕT (t)θ + e(t) (51a)

θ = [
g(1) g(2) . . . g(n)

]T (51b)

ϕ(t) = [
u(t − 1) . . . u(t − n)

]T (51c)

which can be written

Y = �T θ + V (51d)

with

Y = [
y(1) y(2) . . . y(N)

]T (51e)

� = [
ϕT (1) ϕT (2) . . . ϕT (N)

]T
(51f)

V = [
v(1) v(2) . . . v(N)

]T
E VVT = σ 2I

(51g)

If the prior distribution of θ (eqs (48), (49)) is

θ ∈ N(0,P0(α)) (52)

then, the posterior mean, given Y is well known to be (see
e.g. [19])

θ̂apost = (��T + σ 2P0(α)−1)−1�Y (53)

This “Gaussian Process” estimate we also recognize as the
regularized least squares estimate

θapost = argmin
θ

‖Y − �θ‖2 + θT σ 2P0(α)−1θ (54)

So, the Gaussian Process Regression estimate for linear
systems is not a spectacular or a truly innovative result.
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The exciting aspect of (53) is that for carefully chosen
hyper-parameters α it may performs many conventional
linear system identification techniques. See Fig. 8, and
the papers [65], [19] for more details and discussions.

5.3. Manifold Learning and Unsupervised Learning

The basic estimation and identificationmodel can often be
written as a regression

y = f (ϕ) (55)

where ϕ is a vector of observed variables, the regressors,
and y is the object of interest, the output. The observations
of interest can be a collection of pairs

Ze = {(y(t),ϕ(t)), t = 1, . . . ,Ne},
where y(t) = f (ϕ(t)) + e(t) (56)

and e accounts for possible errors in the observed outputs,
and/or a collection of relevant regression vectors:

Zu = {ϕ(t), t = Ne + 1, . . . ,Ne + Nu}
Zu is often referred to as the unlabeled regressors.

(57)

This are often referred to as the unlabeled regressors. The
objective is to learn the mapping f , so that for any relevant
regressor ϕ∗ we can associate a corresponding value y∗.
Clearly the difficulty of this task depends (among other
things) on the complexity and size of the region (space)
where the regressors take their values. We denote this
region by D:

ϕ ∈ D (58)

Manifold learning and semi-supervised learning are two
central concepts in machine learning, [70], [96], [18].
With a very brief and simplistic definition, manifold learn-
ing can be described as the task to infer D from (57), and
semi-supervised learning concerns using (57) (together
with (56)) to obtain a better estimate of f .

In the machine learning literature, non-parametric
approaches are common. This means that the regression
function is allowed to fit very freely to data, at the same
time as some regularization is used to curb the freedom.
[This is actually also the idea behind the simple FIRmodel
(54).] Let us suppose that we would liketo g estimate
f (ϕ(t)) for any ϕ(t) in Zu, (57), which may be extended
for this purpose. With extreme amount of freedom we
associate a separate estimate for each regressor: Let f̂t
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Fig. 8. Box-plots for the 2500 fits for a randomly generated data set with random systems of high orders. The fit shows how well the model can
reproduce the true system. 100% fit means a perfect model. The left figure shows a straightforward application of the OE (output error) method and
the right figure shows the regularized FIR model (54).
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correspond to the output for regressor value ϕ(t). That
gives a criterion

V(f̂ ) =
Ne∑

t=1

(y(t) − f̂t)
2 (59)

to be oprimized over f̂t , This is clearly too flexible a fit.
Wemust weigh that against a wish that the output depends
smoothly on the regressors in the relevant regions. Using
a kernel, we can express this as

f̂t =
Ne+Nu∑

i=1

Ktif̂i, t = 1 . . . Ne + Nu (60)

where Kti is a kernel giving a measure of distance between
ϕ(t) andϕ(i), relevant to the assumed region. So the sought
estimates f̂i should be such that they are smooth over the
region. At the same time, for regressors with measured
labels, the estimates should be close to those, meaning
that (59) should be small. The two requirements (60) and
(59) can be combined into a criterion

λ

Ne+Nu∑
i=1

⎛
⎝f̂i −

Ne+Nu∑
j=1

Kij f̂j

⎞
⎠

2

+ (1 − λ)

Ne∑
t=1

(y(t) − f̂t)
2

(61)

to be minimized with respect to f̂t , t = 1, . . . ,Ne + Nu.
The scalar λ decides how trustworthy our labels are and is
seen as a design parameter.

The criterion (61) can be given aBayesian interpretation
as a way to estimate f̂ in (59) with a “smoothness prior”
(60), with λ reflecting the confidence in the prior.

Introducing the notation

J �[INe×Ne 0Ne×Nu ],
�y �[y(1) y(2) . . . y(Ne)]T ,

�̂f �[f̂1 f̂2 . . . f̂Ne f̂Ne+1 . . . f̂Ne+Nu ]T ,

K �

⎡
⎢⎢⎢⎣

K11 K12 . . . K1,Ne+Nu

K21 K22 K2,Ne+Nu
...

. . .
...

KNe+Nu1 KNe+Nu,2 . . . KNe+Nu,Ne+Nu

⎤
⎥⎥⎥⎦ ,

(61) can be written as

λ(
�̂f −K �̂f )T (

�̂f −K �̂f )−(1−λ)(�y−J �̂f )T (�y−J �̂f ) (62)

which expands into

�̂f T
(
λ(I − K − KT + KT K) − (1 − λ)JT J

) �̂f

+ 2(1 − λ)
�̂f T JT �y + (1 − λ)�yT �y.

(63)

Setting the derivative with respect to �̂f to zero and solving
gives the linear kernel smoother

�̂f =(1 − λ)
(
λ(I − K − KT + KT K)

−(1 − λ)JT J
)−1

JT �y.
(64)

This regression procedure uses all regressors, both unla-
beled and labeled, and is hence a semi-supervised regres-
sion algorithm. We call the kernel smoother Weight Deter-
mination by Manifold Regularization (WDMR, [61]). In
this case the unlabeled regressors are used to get a better
knowledge for what parts of the regressor space that the
function f varies smoothly in.

The papers [60] and [58] contain several examples
of how WDMR behaves on estimation and identification
problems.

5.4. Reinforcement Learning

Inspiration from the way living organisms improve their
actions based on the outcomes of previous actions has
lead to the development of a branch of machine learning
called reinforcement learning (RL) [53]. As the learning
objective is formulated in terms of the minimization of
a cost function, the theoretical foundations of this area
are rooted in optimal control. As compared to standard
optimal control there are two main differences:

• Whereas the Bellman optimality equations provide a
solution going backwards in time, RL algorithms learn
in real time meaning that the solution has to be found
going forwards in time.

• Parts of the, or the entire, systemequations are unknown
in RL; necessary system information has to be acquired
by taking actions and observing the system response.

On selected problems RL has shown impressive perfor-
mance, e.g. the RL backgammon algorithm in [76]. The
inverted pendulum stabilization referred to in section 5.1
is another example showing the potential. We refer to the
excellent tutorial [45] and to [8, 74] for further details
on RL. A rich set of algorithms have been developed
and go under various names, e.g. approximate dynamic
programming and neuro-dynamic programming. Here we
will discuss some connections between RL and optimal
experiment design for system identification. We begin
with reviewing the basics of RL; restricting attention to
deterministic linear quadratic (LQ) control. The algorithm
we will study is called heuristic dynamic programming
(HDP) [91].
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Consider minimizing the quadratic cost

J(x0) :=
∞∑

t=0

(
xT (t)Qx(t) + u2(t)

)
, Q = QT > 0,

(65)

for the single-input single-output linear time-invariant
system

x(t + 1) = Ax(t) + Bu(t), x(0) = xo ∈ R
n (66)

For a given feedback u(t) = −Kx(t), we have

J(xo) = xT
o P(A,B,K)xo (67)

where P(A,B,K) is the solution to the discrete Lyapunov
equation

P(A,B,K) =
Q + KT K + (A − BK)T P(A,B,K)(A − BK) (68)

The well known optimal solution to

Jo(x0) := min
u(0),u(1),...

J(x0) (69)

is given by u = −K̄x where

K̄ := (1 + BT P̄B)−1BT P̄A (70)

where P̄ = P(A,B, K̄) is obtained by solving (68) (which
with (70) inserted now becomes a Riccati equation).

The basic HDP algorithm for the LQ problem is given
by1

i) Take P0 = 0 and set j = 0.
ii) Take Kj = (1 + BT PjB)−1BT PjA
iii) Take Pj+1 = Q + KT

j Kj + (A − BKj)
T Pj(A − BKj)

iv) Set j → j + 1 and go to Step ii).

Notice that unlike the Ricatti equation for the LQ problem,
these equations evolve forward in time. It has been shown
that these iterations converge to the optimal control policy,
i.e. Pj → P̄ and Kj → K̄ [2].

The iterations above require knowledge of the system
matrices A and B. A key ingredient in RL is to by-pass this
requirement using measurements. The idea is to replace
the updates ii) and iii) in iteration j by updates based on
experimental data collected with the current control gain
Kj. This is closely related to direct adaptive control where
the system is modeled in terms of its optimal controller –
in the LQ case P̄ and K̄ .

There are various strategies for the exploration that takes
place during the data collection in each iteration. Here

1 See the appendix for details.

we observe interesting links to applications-oriented opti-
mal experiment design (AOED) in system identification.
AOED concerns how to design the system identification
experiment such that, given experimental constraints, the
best possible performance is obtained in the application
for which the identifiedmodel is used [38]. Wewill briefly
discuss some notions that have emerged during the study
of this problem which seem to relate to RL.

The introduction of least-costly identification [11] lead
to the realization that not only does optimal identification
experiments enhance the visibility of system properties
of importance in the measurements, but also, in order to
reduce the experimental cost, they avoid exciting prop-
erties that are irrelevant to the application [37, 38]. This
means that when such experimental conditions are used
the system identification problem is simplified as irrele-
vant properties then do not have to be modeled. We will
illustrate the concept with an example.

Example 7: Consider the system (66). Suppose now that
both system matrices A and B are unknown but that noise
free observations of x(t) can be obtained and consider the
problem of identifying the minimum LQ cost Jo(xo) from
such observations. Let us also assume that the optimal
gain K̄ is available to the user. This assumption is of course
not realistic but will be helpful for the issue we are trying
to highlight in this example. In view of that (65) measures
the performance of the system it is natural to measure the
cost of the identification experiment by

Jid :=
∞∑

t=0

(
xT

id(t)Qxid(t) + u2
id(t)

)
, (71)

where {uid(t)}∞t=0 denotes the input sequence used dur-
ing the identification experiment and where {xid(t)}∞t=0
denotes the resulting state sequence.

We now pose the following optimal experiment design
problem: What is the minimum identification cost, as mea-
sured by (71), required to get a perfect estimate of Jo(xo)

when starting in state xo? Well, since, Jo(xo) is the mini-
mum achievable cost we have Jid ≥ Jo(xo) but then we
immediately realize that if we use the optimal control
(achieving Jo(xo)), then we can get a perfect estimate of
Jo(xo) simply by computing

∑∞
t=0 xT

id(t)Qxid(t) + u2
id(t)

using the observed (noise-free) state-sequence xid(t) and
the corresponding applied controls uid(t).

The optimal solution has two features: Firstly, the
desired quantity, in this case Jo(xo), is clearly observ-
able from the data. Secondly, all properties of the system
irrelevant to the objective are hidden by the experiment.
Notice that the system matrices are not identifiable with
this experiment as the system evolves according to

x(t + 1) = Aclx(t), x0 = xo (72)
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where Acl = A − BK̄, thus only Acl can be identified.
However, from the expression for P(A,B,K), (68), we see
that Acl is exactly the system property required to estimate
Jo(xo).

RL/AOED Link 1: Applications specific models: The sec-
ond feature in example 7 is due to that we are minimizing
an identification cost (71) that is closely related to the
application. The implication of this feature is that the
identification problem is simplified as we only have to
model the features that are relevant to our objective (that
of estimating Jo(xo) in this example). Here we do not even
have to estimate A and B, we just have to sum up the
observations according to Jid!

Now let us return to theRLalgorithm i)–iv) abovewhere
Pj and Kj can be seen as model parameters. Notice that the
Riccati map (A,B) → (P̄, K̄) defined by (69) and (70) is
not bijective. Thatmeans that inRLonly systemproperties
relevant for the (optimal control) application aremodelled.
This thus corresponds very closely to the outcome of the
optimal experiment design problem in example 7.

The use of applications specific models is potentially
interesting for applications oriented modeling of complex
systems. The quality of the model can then be gov-
erned by the performance demands of the application.
Also the problem of overmodelling is mitigated when
optimal experiments are performed. See [38] for further
discussion.
RL/AOED Link 2: Exploration strategies: Another inter-
esting link between RL and AOED lies in system explo-
ration. AOED is a systematic way to precisely reveal the
necessary system information for the application at hand.
Hence, it may be of interest to study whether ideas from
AOED, such as computational algorithms, e.g. [41], but
also theoretical considerations such as the assessment of
the cost of exploration [69], can fit into the RL frame-
work. Conversely exploration strategies developed within
the RL framework may very well have potential in AOED.
RL/AOED Link 3: Adaptation strategies: It has been noted
for certain applications that it is good to perform identifi-
cation experiments under the desired operating conditions.
Example 7 is one such example; for some control appli-
cations see [30, 38]. Our next example, which extends
example 7, reinforces this notion.

Example 8: Consider again the system (66) and the prob-
lem of estimating (69) based on measurements of the
system. However, assume now that the measurements are
noisy, i.e. we can observe

y(t) = x(t) + e(t) (73)

where {e(t)} is zero mean Gaussian white noise with
covariance matrix λ I, for some λ > 0 (I is the n × n
identity matrix). In this case we can obviously not recover

Jo(xo) exactly from the measurements {y(t)}. We will dis-
cuss two different methods to estimate Jo(xo) in this case.
We will assume that the optimal feedback K̄ is known. In
the first approach we will use optimal open loop exper-
iment design and estimate the system matrices A and B
explicitly. In the design we minimize the expected value of
the squared error (xT

o P(Â, B̂, K̄)xo − Jo(xo))
2 subject to

that the average of the experimental energy as measured
by (71) is bounded by Jo(xo). We refer to the appendix for
details.

The second way of estimating Jo(xo) consists of three
steps. First generate data using the optimal state feedback
controller

u(t) = −K̄x(t)

This means that the system evolves according to (72) and
(73). After this experiment, use the observations {y(t)} to
estimate the closed loop system matrix from the equations
(72). Here, the prediction error estimate is given by

Âcl = argmin
Ā

N∑
t=1

(y(t) − Ātxo)
2 (74)

Finally, from Âcl an estimate of P̄ is obtained by solving
(68) with A − BK̄ = Âcl. Then using (67), with P(A,B, K̄)

substituted for the estimate, gives an estimate of Jo(xo).
Notice that since the optimal feedback K̄ is used but with-
out external excitation the same identification cost as in
the optimal experiment design problem (83) is incurred.

Running 1000 Monte Carlo simulations with noise
variance λ = 0.01 when

A =
[
0 0
1 0.8

]
, B =

[
1
0

]
, xo =

[
1
0

]
, Q =

[
2 0
0 1

]

(75)

gives that the average quality of this estimate is within a
few percent of the average quality obtained when A and
B are estimated using the optimal open loop experiment.
We find this quite intriguing as in the second approach
no external excitation is used in the experiment; it is only
the transient, due to the non-zero initial state xo, that is
observed in noise. We conclude that, as in example 7, the
experiment generated by the optimal controller has very
nice properties from an identification perspective.

As the optimal operating conditions in general depend
on the true system, it is typically impossible to perform
these types of experiments. To overcome this problem,
adaptive methods have been proposed, e.g. [29]. This is
also one of the tenets of so called iterative identification
and control, e.g. [99]. We now observe that RL is designed
to (eventually) achieve optimal operating conditions. This
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suggests that RL algorithms have an interesting potential
in AOED.
Rapprochement and outlook: Both RL and identification
for control can be seen as substitutes for the computation-
ally infeasible dual control. The areas have focused on
different aspects of this difficult problem and an amalga-
mation of the ideas from these fields could provide a signif-
icant push forward to the problem of autonomous learning
a control objective for complex systems. Above, we
have pointed to a few possible directions into unchartered
territory.

6. Conclusion: The Role of System
Identification

It is clear to everyone in science and engineering that
mathematical models are playing increasingly important
roles. Today, model-based design and optimization is
the dominant engineering paradigm to systematic design
and maintenance of engineering systems. In control, the
aerospace industry has a long tradition of model based
design and in the process industry Model Predictive
Control has become the dominant method to optimize
production on intermediate levels. Also, driven by the
“grand” challenges society are facing, e.g. energy and
environmental considerations, new model based control
applications are emerging en masse: Automotive systems,
power grids, and medical systems are but a few examples
of areas where funding agencies and industry worldwide
are devoting massive investments at the moment. These
new applications represent highly complex systems with
high demands on autonomy, and adaptation. The models
used internally in these systems thus also need to be main-
tained and updated autonomously calling for data driven
models.

In the process industry it has been observed that that
obtaining the model is the single most time consuming
task in the application of model-based control and that
three quarters of the total costs associated with advanced
control projects can be attributed to modeling. This hints
thatmodeling risks becoming a serious bottleneck in future
engineering systems.

It is therefore vital that the area of System Identification
is able to meet the challenges from model-based engi-
neering to provide the necessary tools. Certainly, these
challenges will be strong drivers for research in the field in
the years to come. We have in this contribution pointed to
how System Identification in recent years has encountered
four other research areas and been able to amalgamate
essential features of them to produce sharpened tools for
model estimation.
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Appendix

Details of RL for the LQ problem

The basic HDP algorithm is given by

i) Take V0(x) = 0 and set j = 0.
ii) Solve for uj(x) as follows:

uj(x) = argmin
u

xT Qx + u2 + Vj(Ax + Bu)

(76)

iii) Perform the update

Vj+1(x) = xT Qx + u2
j (x) + Vj(Ax + Buj(x))

(77)

iv) Set j → j + 1 and goto Step ii)

For our linear problem the Steps ii) and iii) become the
corresponding steps in Section 5.4.

To obtain a version which does not require knowledge
of the state transition matrix A substitute Vj(x) and uj(x)
for parametrized approximations V̂(x,wj) and û(x, qj),
where wj ∈ R

n and qj ∈ R
m, for some positive integers

n and m. Typically neural networks are used as func-
tion approximators. In each iteration the parameters are
updated using measurements. The details of one possible
algorithm are as follows. In iteration j, N state measure-
ments {x(jN + k)}N

k=1 using the most recent control policy
are collected.

i’) Set w0 such that V̂(x,wo) = 0 and let q0 correspond
to an initial control policy. Let the initial state of the
system be x0. Set j = 0.

iia’) Perform a sequence of control actions û(x(jN +
k), qj), k = 0, . . . N − 1 resulting in new system
states {x(jN + k + 1)}.

iib’) Set

V̂+
j (x(jN + k),wj, q) =

x(jN + k)T Qx(jN + k) + û2(x(jN + k), q)

+ V̂(Ax(jN + k) + Bû(x(jN + k), q),wj).
(78)

iic’) Update the control parameters using one step in
a gradient descent algorithm aiming at decreasing∑N−1

k=0 V̂+
j (x(jN + k),wj, q):

qj+1 = qj − γ

N−1∑
k=0

∂V̂+
j (x(jN + k),wj, q)

∂q

∣∣∣
q=qj

(79)

where γ > 0 is the step-size of the update.

iii’) Solve for

wj+1 = argmin
w

N−1∑
k=0

(
V̂(x(jN + k),w)−

xT (jN + k)Qx(jN + k) − û2(x(jN + k),Kj)

−V̂(x(jN + k + 1),wj)
)2

. (80)

iv’) Set j → j + 1 and goto Step iia’).

For our LQ problem we can use V̂(x,w) = xT Px, where
w is a complete linear parametrization of P = PT , and
q = K so that û(x, q) = −Kx. The P corresponding to wj

is denoted Pj. Then

V̂+
j (xj,wj, q) =

xT
j Qxj + xT

j KT Kxj + xT
j (A − BK)T Pj(A − BK)xj

and

∂V̂+
j (xj,wj, q)

∂q

∣∣∣
q=qj

= 2(Kxjxj − 2xT
j (A − BK)T PjBxj)

= 2(Kxjxj − 2((x(0)
j )T PjBxj).

Notice that this partial derivative can be evaluated with-
out explicit knowledge of A. The necessary information
regarding A is contained in the next state x(0)

j . We
also notice that iii’) gives exactly iii) in Section 5.4
if
[
x(jN), . . . , x(jN + N − 1)

]
has full rank. In conclu-

sion the algorithm above only uses explicit knowledge
of B; pertinent information regarding A is contained in
measurements. There are other algorithms where explicit
knowledge of B can be avoided, e.g. Q-learning [89].

Optimal experiment design in Example 8

Let Â and B̂ be prediction error estimates of A and B; note
that since the measurement equation (73) does not contain
any unknown parameters, the basis for the state space is
well defined and all elements of the system matrices are
identifiable. Consider now the following stochastic open
loop optimal experiment design problem: The estimate
of Jo(xo) is given by xT

o P(Â, B̂, K̄)xo. Form the quality
measure

V(Â, B̂) = (xT
o P(Â, B̂, K̄)xo − Jo(xo))

2. (81)

Let N be the length of the identification experiment. The
optimal open loop experiment design problem we are
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interested in is then given by

min
uid(0),uid(1),...,uid(N)

V(Â, B̂)

N∑
t=1

xT
id(t)Qxid(t) + u2

id(t) ≤ Jo(xo)

(82)

(uid and xid are defined as in Example 7). The constraint
imposes that the experimental cost can not be larger than
the LQG cost (69). As this problem is not computation-
ally tractable, e.g. the cost is a random quantity, we will
approximate this by the techniques in [41]; in particular
we assume the input to be stationary. This leads to the
following formal problem

min
�u

E[V(Â, B̂)]

NE
[
xT

id(t)Qxid(t) + u2
id(t)

]
≤ Jo(xo)

(83)

where �u is the spectrum of the input. The problem (83)
corresponds to an ’on average’ approximation of (82). By
way of second order approximations, this problem can be
converted into a semi-definite program [41].
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