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Abstract

Nonparametric estimation methods for the multivariable frequency response
function are experimentally evaluated using closed-loop data from an indus-
trial robot. Three classical estimators (H1, joint input-output, arithmetic
mean) and two estimators based on nonlinear averaging techniques (har-
monic mean, geometric/logarithmic mean) are considered. The estimators
based on nonlinear averaging give the best results, followed by the arithmetic
mean estimator, which gives a slightly larger bias. The joint input-output
estimator, which is asymptotically unbiased in theory, turns out to give large
bias errors for low frequencies. Finally, the H1 estimator gives the largest
bias for all frequencies.

Keywords: System identi�cation, frequency response methods, multivari-
able systems, non-parametric identi�cation, closed-loop identi�cation, in-
dustrial robots



1 Introduction

Nonparametric estimates of the frequency response function (FRF) give valu-
able information about the dynamics of a system and are often used as an
intermediate step in a parametric identi�cation process to assess the quality of
the measurements and visualize the complexity of the modeling problem. In a
second step, a parametric model can be estimated, either by, 1) treating the
estimated nonparametric FRF as a measurement and minimize the discrepancy
between the model and the estimated FRF as is done in, e.g., experimental
modal analysis (Verboven, 2002), or, 2) directly from the measured input and
output data, (Ljung, 1999; Pintelon and Schoukens, 2001).

This paper studies �ve di�erent estimators: H1, joint input-output (JIO),
arithmetic mean (ARI), logarithmic mean (LOG), and harmonic mean (HAR).
These estimators will be described in more detail in the next section. The ex-
perimental comparison of the estimators will be carried out using measurements
from the �rst three axes of an industrial robot in the ABB IRB6600 series, see
Figure 1. The robot application is interesting since it gives many challenging
problems for system identi�cation methods. The robot dynamics is multivari-
able, nonlinear, oscillatory, and, moreover, data must be collected in closed loop.
Examples when nonparametric FRF estimates are used for the identi�cation of
parametric robot models can be found in, e.g., Wernholt and Moberg (2007),
Öhr et al. (2006), Berglund and Hovland (2000), and Khorrami et al. (1995).

Figure 1: The ABB manipulator IRB6600.

The �ve estimators di�er in requirements on the measurement setup and
signal-to-noise ratio (SNR), as well as in bias and variance properties. Using
nonparametric frequency-domain methods for closed-loop data might give biased
estimates. The JIO estimator is asymptotically unbiased, and the bias of the
other estimators varies depending on the SNR. A recent study on the �rst three
estimators can be found in Wernholt and Gunnarsson (2007). See also Pintelon
and Schoukens (2001), Guillaume (1998), and Verboven (2002).



2 Measurement Setup

The open-loop system to be identi�ed is unstable, which makes it necessary
to collect data while the robot controller is running in closed loop. Consider
therefore the setup in Figure 2, where the controller takes as input the di�erence
between the reference signal r and the measured and sampled output y, and u is
the input. The disturbance v contains various sources of noise and disturbances.

ControllerΣ
+

Robot
u

Σ

−

r y

v

Figure 2: Closed loop measurement setup.

Remark 1 Figure 2 is a simpli�ed block diagram since some disturbances enter
early in the robot system, such as motor torque ripple (Gutt et al., 1996).

An experimental control system is used, which enables the use of o�-line
computed reference signals for each motor controller. The experiments are per-
formed by �rst moving the robot arm into a position and then applying a speed
reference signal to the robot controller. The resulting motor torques (actually
the torque reference to the torque controller) and angular positions are sampled
and stored. The measured angular positions are then �ltered and di�erentiated
to obtain estimates of the motor angular speeds, which are here considered as
the output signals.

To avoid leakage e�ects in the discrete Fourier transform (DFT), which is
used by the estimation methods, the excitation signal, r, is assumed to be NP -
periodic, r(t+NP Ts) = r(t) with Ts the sampling period, and an integer number
of periods of the steady-state response are collected.

3 FRF Estimation Methods

3.1 Basic Idea

Consider the DFTs of the input, U(ωk), output, Y (ωk), and reference, R(ωk),
for the NP frequencies ωk = k 2π

NP Ts
, k = 1, 2, . . . , NP . Assuming a linear system

and periodic data, the following mapping holds exactly in the noise-free case

Y (ωk) = G(ωk)U(ωk), (1)

where G(ωk) ∈ Cny×nu is the FRF of the linear system. To be able to estimate
G(ωk) from data, at least nu di�erent experiments are needed. The data vectors
from ne ≥ nu di�erent experiments are collected into matrices (bold-face in the
sequel) where each column corresponds to one experiment. The input-output
relation can then be written as

Y(ωk) = G(ωk)U(ωk), (2)
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where U(ωk) ∈ Cnu×ne and Y(ωk) ∈ Cny×ne . If U(ωk) has rank nu, an estimate
of G(ωk) can be formed by, e.g., using the H1 estimator (Guillaume et al., 1996;
Pintelon and Schoukens, 2001; Verboven, 2002)

ĜH1(ωk) = Y(ωk)UH(ωk)[U(ωk)UH(ωk)]−1, (3)

where (·)H denotes complex conjugate transpose.
Disturbances as well as nonlinearities will modify the mapping (1), which in

turn will introduce errors in the estimated FRF. For a nonlinear system, we are
looking for a linear approximation of the input-output behavior. The properties
of such approximations have been extensively studied in, e.g., Schoukens et al.
(2005) and Dobrowiecki and Schoukens (2007). See also Wernholt and Gun-
narsson (2006) for some results on how nonlinearities a�ect the FRF estimation
of industrial robots.

3.2 Some Classical Estimators

For the single input, single output (SISO) case, a number of di�erent nonpara-
metric FRF estimators have been suggested in the literature (see, e.g., Guillaume
et al., 1992; Pintelon and Schoukens, 2001; Wellstead, 1981), which all have dif-
ferent properties regarding bias and variance. These estimators can often be
generalized to the multiple input, multiple output (MIMO) case, as for the H1

estimator (3).
If the reference signal is measured, an asymptotically (ne → ∞) unbiased

estimator has been proposed in Wellstead (1981), which can be generalized to
the MIMO case as (Cobb and Mitchell, 1990; Verboven, 2002)

ĜJIO = YRH
[
URH

]−1
, (4)

where JIO stands for joint input-output estimator (cf. Ljung, 1999, p. 438). (For
notational simplicity, the frequency argument will be omitted when not explic-
itly needed.) This estimator is based on the instrumental variables principle
and is also called HIV, Hs, Hc, or 3-channel FRF estimator in the literature
(Cobb and Mitchell, 1990; Verboven, 2002).

In this paper, we will assume that ne is a multiple of nu such that the DFT
matrices can be partitioned into M blocks of size nu × nu as

R(ωk) =
[
R[1](ωk) . . . R[M ](ωk)

]
, (5)

and similarly for U(ωk) and Y(ωk). If the same excitation is used in all blocks
with synchronized measurements (e.g., by using multiple periods and treating
each period as a �block�), then the JIO estimator reduces to the errors-in-
variables1 (EIV) estimator (Guillaume et al., 1996; Pintelon and Schoukens,
2001)

ĜEIV =

[
1
M

M∑
m=1

Y[m]

][
1
M

M∑
m=1

U[m]

]−1

. (6)

The EIV estimator does not require the reference signal to be known and this is
also the maximum likelihood estimator for Normal distributed noise (Guillaume

1Measurements Y = GU + Vy and U + Vu with measurement noise Vu and Vy .
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et al., 1996). The estimator is therefore often regarded as the optimal one to
use, given that the measurements are synchronized and the same excitation is
used in all blocks.

Another useful estimator is the arithmetic mean (ARI) estimator (Guil-
laume, 1998; Pintelon and Schoukens, 2001)

ĜARI =
1
M

M∑
m=1

Ĝ[m], (7)

where
Ĝ[m] = Y[m][U[m]]−1. (8)

In case of measurement noise on the input, or closed-loop data, this estimator
gives less bias than the H1 estimator (Pintelon and Schoukens, 2001).

3.3 Estimators Based on Nonlinear Averaging Techniques

The averaging in (7) can be generalized to include nonlinear averaging tech-
niques. This has been studied in Guillaume et al. (1992) for SISO systems and
Guillaume (1998) extends some of these results to MIMO systems. The FRF is
then estimated as

Ĝ = g−1

(
1
M

M∑
m=1

g
(
Ĝ[m]

))
,

where z = g(x) is some nonlinear function with inverse x = g−1(z). Here, we
will consider the following functions

g(x) =


x arithmetic mean,

log x logarithmic mean,

x−1 harmonic mean.

In Guillaume et al. (1992), the properties of FRF estimators based on non-
linear averaging are studied and compared with the classical estimators. They
include analytical bias expressions for a number of di�erent estimators when the
measurement noise in the input and output signals are uncorrelated (i.e., not a
closed-loop setup). Their conclusion is that the use of many classical estima-
tors, such as H1, is not advisable in most practical situations due to larger bias
errors. For non-synchronous measurements (where EIV is not applicable), they
propose to use estimators based on nonlinear averaging, where the logarithmic
mean estimator (also called geometric mean) performs well in all their analyzed
situations. This estimator is also particularly robust to outliers.

Using the complex logarithm, log x = log |x| + j arg x, will introduce some
problems when averaging the phase, due to the phase wrapping at −π (−π <
arg x ≤ π). A solution to this problem is given in Guillaume et al. (1992) for the
scalar case by multiplying each Ĝ[m](ωk) by e−jϕ(ωk) before the averaging, and
afterward multiply the result by ejϕ(ωk), where the phases ϕ(ωk) are obtained
using some other estimator. The observations are then close to the positive real
axis when performing the averaging.

For multivariable systems, the nonlinear averaging functions can either be
applied element-wise or by treating them as matrix functions. The element-wise
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approach gives worse estimates, which has been showed in Guillaume (1998) and
also seen in our experimental results. The matrix function approach g(A), where
A ∈ Cn×n, can be described by using an eigenvalue decomposition

A = V ΛV −1,

where V contains the n orthogonal (if A = AT ) eigenvectors and Λ is a diagonal
matrix, Λ = diag {λl}n

l=1, with the n eigenvalues. A matrix function g(A) is
then given by

g(A) = V g(Λ)V −1 = V diag {g(λl)}n
l=1 V −1. (9)

Using this, the logarithmic mean (LOG) estimator is �nally given by

ĜLOG = P−1
1 exp

(
1
M

M∑
m=1

log
(
P1Ĝ

[m]
))

, (10)

where exp and log are treated as matrix functions (9). The matrix P1 is used
to avoid the phase wrapping problems. Here, the matrix is selected as

P1 = V [1] diag
{

e−j arg λ
[1]
l

}n

l=1
[V [1]]−1, (11)

where Ĝ[1] = V [1]Λ[1][V [1]]−1 (see Guillaume, 1998).
The last estimator to consider, the harmonic mean (HAR) estimator, is given

by

ĜHAR =

[
1
M

M∑
m=1

[
Ĝ[m]

]−1
]−1

. (12)

Since [Ĝ[m]]−1 = U[m][Y[m]]−1, this actually corresponds to calculating the
arithmetic mean of the output-input behavior, and then taking the inverse (ny =
nu is required). The output DFT matrices, Y[m] ,m = 1, . . . ,M , are then
inverted, compared to inverting the input DFT matrices when using the ARI
estimator (7). Note that the HAR estimator also uses the matrix function
approach.

In this paper, these estimators will be evaluated experimentally. For a the-
oretical discussion about the estimators and their properties, see the included
references in this paper as well as the discussion in Section 5.3.

4 Excitation Signals

In general the choice of excitation signal o�ers a large freedom in terms of fre-
quency contents, magnitude, and so on, as long as the matrix U(ωk) has rank
nu. In this paper, the orthogonal random phase multisine signal will be used.
This signal has been suggested in Dobrowiecki et al. (2005) and Dobrowiecki
and Schoukens (2005, 2007) as input in the open-loop case to minimize the FRF
uncertainty, given input amplitude constraints. Here, the orthogonal multisine
signal will be used as reference signal, which corresponds to an optimal experi-
ment design given output amplitude constraints. Each block in (5) is then given
by

R[m](ωk) = R[m]
diag(ωk)T, m = 1, . . . ,M, (13)
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with
R[m]
diag(ωk) = diag

{
R

[m]
l (ωk)

}ny

l=1
,

a diagonal matrix where each R
[m]
l (ωk) is a random phase multisine signal, and

T is an orthogonal matrix. A scalar random phase multisine signal r(t) can be
written as

r(t) =
Nf∑

k=1

Ak cos(ωkt + φk), (14)

with amplitudes Ak, frequencies ωk chosen from the grid { 2πl
NP Ts

, l = 1, . . . , NP /2−
1} (NP even), and random phases φk uniformly distributed on the interval
[0, 2π).

The optimal matrix T, with constraints |Til| ≤ 1, is given by (Dobrowiecki
and Schoukens, 2007)

Til = e
2πj
nu

(i−1)(l−1). (15)

The number of frequencies as well as the amplitude spectrum will a�ect the
quality of the FRF estimate. Using too many frequencies will give a low SNR,
which increases both the bias and the variance in the estimate. The FRF esti-
mate can be improved by averaging over multiple blocks and/or periods. The
covariance matrix can then also be estimated.

For a linear system, averaging over di�erent periods is su�cient, whereas
for a nonlinear system, it is essential to average over blocks where Rdiag in
each block should have di�erent realizations of the random phases. The reason
is that nonlinearities otherwise will distort the estimate and give a too low
uncertainty estimate. To reduce these nonlinear distortions, one should also
excite only odd frequencies (odd l in the frequency grid for (14)). For details, see
Dobrowiecki and Schoukens (2007) and Pintelon and Schoukens (2001, Chap. 3).
For the industrial robot, the nonlinearities cause large distortions (Wernholt and
Gunnarsson, 2006). Averaging over multiple blocks is therefore important, so
the EIV estimator is not applicable here.

5 Experimental Results

5.1 Measurement Data

As excitation, the orthogonal random phase multisine signal is used as motor
speed reference r with period time T0 = NP Ts = 10 s. A �at amplitude spectrum
is used for 100 log-spaced odd frequencies between 1 and 60Hz (i.e., the grid
1.1, 1.3, . . . , 59.9Hz). To reduce nonlinear e�ects, M = 100 blocks with di�erent
realizations of the random phases are used. The magnitude of R[m]

diag is the same
in all blocks. The commanded input u and measured output y are both sampled
at fs = 1/Ts = 2 kHz.

To reduce the e�ect of static friction, it is common to use an excitation signal
that avoids zero velocity as much as possible. Therefore the reference is given by
r(t) = rms(t)+rs(t), with rms(t) the multisine signal and rs(t) a single sinusoid
with frequency 0.7Hz. The amplitude of rs(t) is selected su�ciently larger
than maxt |rms(t)| to avoid passing through zero velocity due to the multisine.
Reducing the e�ect of static friction is really important for this type of system,
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as has been pointed out in Wernholt and Gunnarsson (2006). A drawback
is that the sinusoid introduces large errors at a few of its overtones due to
nonlinearities in the system. The �rst �ve overtones, 2.1, 3.5, 4.9, 6.3, 7.7Hz, are
therefore removed in the resulting FRF estimate.

The FRF estimates turn out to have fairly large errors at low frequencies.
Therefore, 10 additional blocks of data are collected using only four frequencies
in the multisine (1.1, 2.7, 4.3, 5.9Hz). This improves the SNR, which in turn will
reduce the error at these frequencies.

In the �gures, the FRF estimates from motor torque to motor acceleration
are plotted. That avoids the integrator (−20dB/decade) such that resonances
appear more clearly.

5.2 Evaluation of FRF Estimators

The �ve estimators from Section 3 (H1, JIO, ARI, HAR, LOG) will now be used
for FRF estimation. Since the true system is unknown, we cannot calculate the
bias of the estimators. The assessment of the FRF estimates will therefore be
partly based on experience from robot experts, as well as knowledge about the
system and theoretical results.

The magnitude and phase of the resulting estimates, using 100 blocks of
measurement data, are shown in Figure 3. The magnitude estimates agree
quite well for frequencies above 5Hz, except for the H1 estimator which tends
to give much lower values. For low frequencies (1�5Hz), the estimates �uctuate
quite much. By comparing the estimates with the ones using 10 blocks with four
frequencies (circles in Figure 3), it is evident that the JIO and H1 estimators give
large errors there. The estimators based on nonlinear averaging, HAR and LOG,
give almost the same estimate and agree very well with the estimates using four
frequencies. The ARI estimator works much better than JIO and H1, but does
not match the performance of HAR and LOG (compare, e.g., element (2,3)).
Considering the phase estimates, all �ve estimators agree remarkably well for
frequencies above 5Hz. For low frequencies, the HAR and LOG estimators give
much better estimates than the others.

In the simulation study in Wernholt and Gunnarsson (2007) it was noted that
the uncertainties in nonparametric FRF estimates usually are non-symmetric,
even if the true system is symmetric. This can be seen in Figure 3 as well,
where one standard deviation of the ARI estimator is included. Compare, e.g.,
elements (1,2) and (2,1), or elements (2,3) and (3,2). For small elements, the
relative error is also larger, which can be seen by comparing elements (1,1) and
(2,1). These e�ects are inherent in all the studied estimation methods. From
the standard deviation, it is also evident that the classical estimators (H1, JIO,
and ARI) cannot handle a low SNR (at low frequencies and resonances) as good
as the estimators based on nonlinear averaging techniques (HAR and LOG).

The estimates in Figure 3 are very clear and accurate, but measuring 100
blocks takes almost 3 hours in our experimental setup (approximately 1 minute
per block of e�ective measurements, plus additional time for saving data, etc.).
It is therefore interesting to study the quality of the estimates using less data.

Figure 4 shows the estimates using only 5 blocks, where LOG using 100
blocks is included for comparison. For low frequencies, all estimators give biased
estimates in element (2,1). Otherwise, the same comments as for Figure 3
are valid here as well. To be noted is that ARI �uctuates quite much at the
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Figure 3: Estimated FRFs using 100 blocks of data. ARI is plotted with one
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resonances. Since the reference signal has a �at amplitude spectrum, the input
is small at the resonances. The �uctuations are therefore probably caused by
inverting a matrix that is quite sensitive to noise.

Next, we will compare the di�erent estimators as a function of the number
of blocks. Let ĜM denote the FRF estimate calculated from M blocks of data.
Consider now the di�erence between ĜLOG

100 (the LOG estimate in Figure 3)
and the estimates ĜH1

M , ĜJIO
M , ĜARI

M , ĜHAR
M , and ĜLOG

M , where the number of
blocks, M , will vary between 1 and 100. To measure the di�erence between two
estimates, the following cost is used

clog(G1, G2) =

∑
i,j,k

∣∣log G1
ij(ωk)− log G2

ij(ωk)
∣∣21/2

. (16)

In addition, phase wrapping problems in the complex logarithm are handled to
ensure that | arg G1

ij(ωk)− arg G2
ij(ωk)| ≤ π. The di�erence between ĜLOG

100 and
the other estimates can be seen in Figure 5.

First, note that all estimators coincide for M = 1. When M is increased,
so is the di�erence between the estimators. The most interesting thing to note
from Figure 5 might be that HAR and LOG give better results than the other
estimators for all M > 1. HAR might be slightly better than LOG for small
M , but they otherwise give approximately the same performance. What might
be surprising, given the previous results in Figures 3 and 4, is that H1 gives
almost the same cost as LOG and HAR for low values of M . The explanation
can be found in Figure 4 where all estimates di�er from ĜLOG

100 for low frequen-
cies. Another interesting thing to note is that ARI gives a larger cost than H1

when M ≤ 10. The main reason is the large errors at the resonances for ARI.
JIO gives the worst overall performance, mainly due to the errors at low fre-
quencies. Considering only the interval 5�60Hz in Figure 5, JIO and ARI give
approximately the same cost for M ≤ 30, except that the cost for JIO �uctuates
more.

Since we are comparing the estimates with ĜLOG
100 , the fact that LOG and
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HAR are the best comes as no surprise when M is close to 100. However,
this is also the case if we compare with ĜARI

100 (for M ≤ 50) or some of the
other estimators. The previous conclusion that LOG and HAR are the best
estimators therefore holds also in this comparison. Finally, this section is ended
by Figure 6, where estimates using LOG for some values of M , including M = 1,
are given. As can be seen, the �uctuations are fairly large when using only one
block of data.

5.3 Discussion

From theoretical studies, as well as experimental experience, it is known that
the bias depends on the SNR, such that the bias is reduced when the SNR is
increased. The data set with 10 blocks and four frequencies can therefore be
considered to give a smaller bias. This can also be seen in Figure 3 where all
�ve estimators give approximately the same estimate. Since we are dealing with
linear approximations of a nonlinear system, a comparison of estimates using
di�erent types of excitation signals should however be done with some care.
The best linear approximation might be di�erent when changing the amplitude
spectrum and/or the signal shape. This can, e.g., be seen in Wernholt and
Gunnarsson (2006) where estimates are compared when using di�erent excita-
tion amplitudes as well as with and without a �ltered square wave (to reduce
the e�ect of static friction).

The H1, ARI, and JIO estimators have been analyzed in, e.g., Wernholt
and Gunnarsson (2007), Pintelon and Schoukens (2001) and Verboven (2002).
The H1 and ARI estimators are known to give biased estimates for closed-loop
data. The bias of the H1 estimator is much larger, except for small SNRs
where the ARI estimator deteriorates. The JIO estimator is asymptotically
unbiased (M → ∞) and is therefore expected to give the best performance
when the number of blocks increases. This is also the conclusion in Wernholt
and Gunnarsson (2007), where the JIO, ARI, and H1 estimators are compared
in a simulation study with a similar setup as in this paper, but with a linear
robot model. In our experimental results, the JIO estimator does not seem to
perform that well, at least not if the low-frequency behavior is considered.

A limitation with the JIO estimator, besides that an additional signal is
needed, is that the whole measurement setup must be linear, including the
controller. This is due to the fact that ĜJIO actually is based on H1 estimates
of the FRFs from r to y, Ĝry, and r to u, Ĝru, as ĜJIO = ĜryĜ−1

ru . Both these
FRFs incorporate the whole measurement setup, including the controller. In our
application, the controller, e.g., has a saturation to ensure that the motors are
not overloaded. The other methods considered in this paper are only a�ected
by nonlinearities in the input-output system.

The properties of the LOG and HAR estimators have been analyzed in e.g.,
Guillaume et al. (1992), Guillaume (1998), and Pintelon and Schoukens (2001).
The HAR estimator is particularly useful when the input SNR is low since the
input DFT matrix U[m] is not inverted. In our setup we are using the orthogo-
nal multisine signal as reference R[m], so the output Y[m] will be approximately
orthogonal as well, or at least well-conditioned. The input U[m], on the other
hand, can be quite ill-conditioned for certain frequencies (e.g., close to reso-
nances, or for low frequencies since we are using a �at speed reference signal).
The HAR estimator is therefore well suited for our setup. The LOG estimator is
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Figure 6: Estimated FRFs using the LOG estimator for di�erent number of
blocks.
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inherently robust to outliers since the logarithmic function attenuates the e�ect
of occasional large errors. For the classical estimators, a large number of blocks
are needed to average out such e�ects. This can, e.g., be noted with the ARI
estimator at the resonances in Figure 4.

As was mentioned in Section 5.1, it is important to compensate for the static
friction. Using the single sinusoid caused large errors at some of its overtones
due to nonlinearities in the system. This might depend on the fact that its
phase is the same in all experiments. Di�erent ways of reducing the e�ects of
static friction would therefore be interesting to study.

As future work remains a thorough simulation study using a realistic nonlin-
ear robot model where friction as well as other nonlinear e�ects in actuators and
sensors are added, such as torque ripple (Gutt et al., 1996) and resolver ripple
(Hanselman, 1990). The bias can then be studied for the di�erent estimators as
a function of the excitation signal and the nonlinearities.

6 Conclusion

This paper has dealt with nonparametric multivariable FRF estimation using
closed-loop data from an industrial robot. Three classical estimators (H1, JIO,
ARI) and two estimators based on nonlinear averaging techniques (HAR, LOG)
have been compared. The orthogonal random phase multisine signal has been
used, where the number of experiments have been varied to see how the estima-
tors depend on the amount of data. The estimators based on nonlinear averaging
give the best results, followed by the arithmetic mean estimator, which gives
a slightly larger bias. The joint input-output estimator, which is asymptoti-
cally unbiased in theory, turns out to give large bias errors for low frequencies.
Finally, the H1 estimator gives the largest bias for all frequencies.
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