
Detection and Estimation of Nonlinear

Distortions in Industrial Robots

Erik Wernholt, Svante Gunnarsson

Division of Automatic Control

Department of Electrical Engineering
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Abstract
System identification in robotics often involves the estimation of linear models
characterizing the behavior in certain operating points. In this paper, a method
for the detection and estimation of nonlinear distortions in an estimated fre-
quency response function (FRF) has successfully been applied to experimental
data from an industrial robot. The results show that nonlinear distortions are
indeed present and cause larger variability in the FRF than the measurement
noise contributions.

Keywords: Frequency response functions, multivariable systems, nonlinear
distortions, non-parametric identification, industrial robots
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I. INTRODUCTION

Industrial robots pose a challenging problem for system
identification methods. Usually a robot has six joints, with cou-
pled dynamics, giving a truly multivariable system. The dy-
namics are nonlinear, both with respect to the operating point
and other nonlinearities such as friction, torque and resolver
ripple, backlash, hysteresis, and nonlinear stiffness in the trans-
mission. The robot arm and transmission are more or less elas-
tic and, in addition, the data collection must usually be carried
out in closed loop.

The identification of such a complex system is a huge task,
both in finding suitable model structures and efficient identi-
fication procedures, and is still a research topic. Under cer-
tain simplifying assumptions, a subset of the parameters can be
identified. Neglecting elastic effects, a nonlinear model of the
rigid body dynamics can be estimated using least squares tech-
niques. This is a much studied problem in the literature (see,
for example, [1]). Taking elastic effects into account makes
the identification problem more involved, since now typically
only a subset of the state variables are measured and one can
therefore not use linear regression. A common remedy then is
to study the dynamic behavior around certain operating points
(see, for example, [2], [3], [4], [5]). Often this results in a
linear model for each working point.

One application area for linear models is control design,
where a global controller is achieved through gain scheduling.
The linear models could also be used for the tuning of elastic
parameters (typically springs and dampers) in a global non-
linear elastic model. For both of these application areas, it is
important that the estimated linear models are accurate, or at

least are delivered with some estimated uncertainty regions. In
the presence of nonlinearities, these uncertainty regions tend to
be underestimated. It is therefore of great importance to use an
identification procedure that can detect the presence of nonlin-
earities and in addition quantify how the estimated models are
affected.

In this work, a method first introduced in [6], [7] will be
evaluated for the robot application using experimental data.
The method makes it possible to detect the presence of non-
linearities and quantify how much they affect the nonparamet-
ric estimate of the frequency response function (FRF). The
method was developed for open loop SISO measurements, but
will here be applied to both closed loop SISO and MIMO mea-
surements. Applying their method to experimental data from a
MIMO system is, to our knowledge, a new result.

II. MEASUREMENT SETUP

The data used for identification are collected from an exper-
imental industrial robot system, similar to the ABB IRB6600
robot in Figure 1. Each axis of the robot arm is actuated by an
electric motor via a transmission and the movements are con-
trolled by a computer system. The first three axes will be con-
sidered in this work, giving a multivariable system with three
inputs (commanded motor torques) and three outputs (motor
velocities). For this kind of application it is necessary to use
feedback control while data are collected, both for safety rea-
sons and in order to keep the robot around its operation point.

Consider therefore the setting in Figure 2, where F is the
controller and G is the robot subject for identification. The
controller takes as input the difference between the reference
signal r and the measured and sampled output y, and u is the
commanded input. Due to disturbances vu and vy , the input
will be up = u+vu and the measured output y = yp +vy , i.e.,
the sum of the true output yp and the output disturbance vy .

An experimental control system is used, which makes it
possible to use off-line computed reference signals for each
motor controller. The excitation signals are applied as refer-
ence signals for the motor velocities. The experimental con-
troller can approximately be seen as a diagonal PI-controller.

For this particular industrial robot, the motor position ϕ is
measured using Tracking Resolver-to-Digital Converters [8].



Fig. 1. The ABB IRB6600 robot.
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Fig. 2. Closed loop measurement setup.

The measured position is then filtered and differentiated to ob-
tain an estimate of the motor velocity, which is here consid-
ered as the output signal. It is shown in [8] that the position
measurement error vϕ, due to non-ideal resolver characteris-
tics, can be be described as a sum of sinusoids like in

vϕ(t) =
∑

n∈Nc

cn sin(nϕ(t) + φc,n), (1)

with amplitudes cn, phases φc,n, and Nc a set of integers.
AC permanent magnet motors are used as actuators, which

will give rise to torque ripple. The ripple can be modeled as
sums of sinusoids similar to (1) but with additional terms pro-
portional to the motor current, see [9] for details.

As transmission, harmonic drives are very popular today
due to their low backlash, compact size, and high torque trans-
mission. Using harmonic drives will however introduce non-
linear stiffness, friction, and kinematic errors. This shows up
as hysteresis curves when torque is plotted against angular dis-
placements [10].

III. ESTIMATION PROCEDURE

The aim of the estimation procedure from [6], [7] is to find
a non-parametric estimate of the frequency response function
(FRF) relating the DFTs of the input and output signals, like

Y (ωk) = G(ωk)U(ωk) (2)

where G(ωk) is a short notation for G(eiωkTs). The FRF will
be measured using random phase multisines as excitation sig-
nals, which are defined as

r(t) =
N/2∑
k=1

Ak sin(ωkt + φk), (3)

with amplitudes Ak, phases φk, and frequencies ωk = 2πk
N fs.

The phases φk are randomly chosen such that E
{
ejφk

}
= 0,

for example uniformly distributed in [0, 2π). For sampled data,
fs is the sample frequency and each period of data then has N
samples and a period time T0 = N

fs
.

Using random phase multisines as input signal in an open
loop setting, with N sufficiently large, the FRF of a wide class
of nonlinear systems can be written as

G(ωk) = GR(ωk) + GS(ωk) + NG(ωk) (4)

with GR(ωk) the best linear approximation to the nonlinear
system, GS(ωk) a zero mean stochastic nonlinear contribu-
tion, and NG(ωk) the measurement noise (see [11] for details).
For different realizations of the excitation signal, the stochas-
tic nonlinear contribution, GS(ωk), acts as circular complex
noise when N is sufficiently large. Therefore GS(ωk) cannot
be distinguished from the measurement noise. Still, once the
excitation signal is fixed, GS(ωk) is a deterministic compo-
nent. The linear approximation, GR(ωk), is independent of the
random phase of the random multisine excitation.

For closed loop data, the properties of the estimate are much
harder to analyze, mainly since the input signal no longer is
distributed as desired. The input signal will be correlated with
the measurement noise which, even in a linear setting, will give
biased FRF estimates (see, for example, [12], [13] ). What
is worse, the input signal will also be affected by the nonlin-
earities through the feedback and will therefore not be Gaus-
sian distributed. The estimation method can still be applied to
closed loop data, but the resulting estimates must be further
analyzed to be able to draw any detailed conclusions.

To be able to distinguish between the measurement noise
and the stochastic nonlinear contributions, two different mea-
surement strategies where proposed in [6], [7]. The first strat-
egy uses a single experiment with P ≥ 6 periods of the steady
state response. The excitation signal is a random phase multi-
sine signal containing only odd frequencies, where certain odd
frequencies are eliminated as well. The nonlinear stochastic
contributions are then found by extrapolation, see [6], [7] for
details. Here, their second strategy will be used, which re-
quires M ≥ 6 different experiments with P ≥ 2 periods in
each experiment1. This is more time consuming and will not
give a classification in odd and even degree nonlinear distor-
tions. Still, no approximation (extrapolation) is used and the
strategy can easily be extended to the multivariable case.

To simplify the notation, the estimation procedure will now
be described for the SISO case. From the measurements, M ×
P FRFs, Ĝ[m,p](ωk), can be calculated like

Ĝ[m,p](ωk) =
Y [m,p](ωk)
U [m,p](ωk)

(5)

where U [m,p](ωk) and Y [m,p](ωk) are the DFTs of the input
and output signals from period p in experiment m.

1 Needed if the FRF estimate is used in a parametric modeling step to pre-
serve the properties of the ML estimator [11].



For each experiment, one can calculate the average FRF
Ĝ[m] and its sample variance σ̂2

Ĝ[m]

Ĝ[m] =
1
P

P∑
p=1

Ĝ[m,p] (6)

σ̂2
Ĝ[m] =

P∑
p=1

|Ĝ[m,p] − Ĝ[m]|2

P (P − 1)
(7)

The final FRF Ĝ and its sample variance are obtained by aver-
aging over the M experiments like

Ĝ =
1
M

M∑
m=1

Ĝ[m] (8)

σ̂2
Ĝ

=
M∑

m=1

|Ĝ[m] − Ĝ|2

M(M − 1)
(9)

From (4), (7) and (9) it follows that

E
{
σ̂2

Ĝ[m]

}
=

σ2
NG

P
(10)

E
{
σ̂2

Ĝ

}
=

σ2
GS

+
σ2

NG

P

M
(11)

Hence, for a linear system (GS = 0), σ̂2
Ĝ

should originate from
the stochastic noise source and therefore be equal to

σ̂2
Ĝn

=
1

M2

M∑
m=1

σ̂2
Ĝ[m] (12)

If σ̂2
Ĝ

is larger than σ̂2
Ĝn

, this indicate a nonlinear behavior and

σ̂2
GS

= max
(
M

(
σ̂2

Ĝ
− σ̂2

Ĝn

)
, 0

)
(13)

is a variance estimate for the stochastic nonlinear contribution.
For the MIMO case (ny outputs, nu inputs), the input vec-

tor is not invertible and it is therefore impossible to calculate
an estimate like in (5) directly from data. To handle this,
M · nu experiments are carried out. For each block m of
nu experiments, the sampled data are collected into matrices,
U[m,p](ωk) ∈ Cnu×nu and Y[m,p](ωk) ∈ Cny×nu (bold face
in the sequel) where each column corresponds to one experi-
ment. The relation between the input and output can then be
written as

Y[m,p](ωk) = G(ωk)U[m,p](ωk) (14)

If U(ωk) has full rank, an estimate of G(ωk) can be formed as

Ĝ(ωk) = Y[m,p](ωk)
(
U[m,p]

)−1(ωk) (15)

To obtain variance expressions for the MIMO case, a similar
procedure can be applied like in (6) – (13), but now taken
element-wise.

As excitation signals, orthogonal random phase multisines
[14] will be used. For each block of nu experiments, the refer-
ence signal is calculated as

R(ωk) =

0BB@
w11R1(ωk) w12R1(ωk) . . . w1nuR1(ωk)

w21R2(ωk) w22R2(ωk) . . . w2nuR2(ωk)

. . . . . . . . . . . .

wnu1Rnu (ωk) wnu2Rnu (ωk) . . . wnunuRnu (ωk)

1CCA
where wkn are elements of an arbitrary, deterministic, or-

thogonal matrix W . For each of the M blocks, a vector
R(ωk) = [R1(ωk) R2(ωk) . . . Rnu(ωk)]T of random phase
multisines is generated for the first experiment. In the fol-
lowing nu − 1 experiments, the elements of the vector are
shifted orthogonally. Here, the elements of W are chosen as
wkn = e

2πi
nu

(k−1)(n−1).

IV. RESULTS

To illustrate the estimation procedure, both SISO and
MIMO experiments have been carried out. For the SISO case,
only axis 1 of the industrial robot is excited. The SISO mea-
surements are easier to analyze and give insights that can be
used when trying to analyze the MIMO experiments. As exci-
tation, an odd random phase multisine signal (A2k = 0) will be
used as motor velocity reference with period time T0 = 10 s.
A flat amplitude spectrum is used in the frequency interval 1–
40 Hz, giving 195 excited frequencies. The commanded input
u and measured output y are both sampled at fs = 2 kHz.

Since nonlinear effects are studied, the results will vary with
the excitation signal, such as its shape and amplitude. This
is, for example, the case when having a nonlinear spring stiff-
ness in the transmission. Typically, the spring gets stiffer for
larger amplitudes. Different signal amplitudes will be studied
for the MIMO case. To reduce the effect of static friction, it is
common to use an excitation signal which avoids zero velocity
crossings as much as possible. Therefore some experiments are
carried out where the multisine signal is superimposed on a fil-
tered square wave with period T0 = 10 s and cut-off frequency
1 Hz.
A. SISO measurements

Two different data sets (with and without the filtered square
wave) are collected with amplitudes according to Table I. For
each data set, M = 6 experiments are performed and P = 2
periods of the steady state response are collected.

The estimation procedure according to (6) – (13) is then ap-
plied to the two different data sets. The estimated FRF, Ĝ, can
be seen in Figures 3 and 4 together with one standard deviation
of the total sample variance σ̂Ĝ and the noise sample variance
σ̂Ĝn. As can be seen, nonlinear distortions are indeed present
and cause larger variability in the FRF than the measurement
noise contributions. Using the filtered square wave also gives
more pronounced resonances since the influence of static fric-
tion is reduced.

Since the nonlinear distortions give larger variability than
the measurement noise, averaging over different experiments
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Fig. 3. Estimated FRF Ĝ (black line) using data set 1. Grey line: standard
deviation of the total sample variance σ̂Ĝ. Dark grey line: standard deviation

of the noise sample variance σ̂Ĝn.
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Fig. 4. Estimated FRF Ĝ (black line) using data set 2. Grey line: standard
deviation of the total sample variance σ̂Ĝ. Dark grey line: standard deviation

of the noise sample variance σ̂Ĝn.

TABLE I
SIGNAL AMPLITUDES FOR THE SISO DATA SETS.

Data set Multisine Square wave

1 16 -
2 16 20
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Fig. 5. Input spectrum (black) and output spectrum (grey) for the five
experiments of data set 1.

TABLE II
SIGNAL AMPLITUDES FOR THE MIMO DATA SETS.

Data set Multisine Square wave

3 5 6
4 10 12
5 10 -

is important in order to get a more accurate FRF estimate. Av-
eraging over several periods will not be as effective since that
only reduce the measurement noise contributions.

A somewhat puzzling result is that the variance in the esti-
mate is increased around the resonance frequency at 9 Hz when
using the filtered square wave. In Figures 5 and 6 the input and
output spectra are plotted for the two different data sets. By
comparing the input spectra for the two cases it can be seen
that without the filtered square wave the input power around
the resonance frequency is larger. This is reasonable since the
static friction acts as an increased damping, which in turn re-
quires a larger input signal in order to follow the reference sig-
nal. Assuming similar noise levels, the filtered square wave
will therefore give a lower input signal-to-noise ratio (SNR).
A too low input SNR is therefore a probable explanation for
the large variance around the resonance frequency. According
to [6], the input SNR should be at least 6 dB to be able to ig-
nore the relative bias in the FRF estimate. See also [11] for
further details.

B. MIMO measurements

For the MIMO case, three different data sets are collected
with amplitudes according to Table II. For each data set, M =
9 blocks of experiments are performed and P = 2 periods of
the steady state response are collected.
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Fig. 6. Input spectrum (black) and output spectrum (grey) for the five
experiments of data set 2.
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Fig. 7. Estimated FRF Ĝ (black line) using data set 3. Grey line: standard
deviation of the total sample variance σ̂Ĝ. Dark grey line: standard deviation

of the noise sample variance σ̂Ĝn.

The estimation procedure according to (6) – (13) is then
applied (taken element-wise) to the three different data sets.
The estimated FRF, Ĝ, can be seen in Figures 7 – 9 together
with one standard deviation of the total sample variance σ̂Ĝ
and the noise sample variance σ̂Ĝn.

The influence of the excitation amplitude can be studied in
Figures 7 and 8. As can be seen, a lower amplitude gives more
fluctuations in the estimate, probably due to a lower SNR. For
the (1,1) element one can also see a slightly increased anti-
resonance frequency at 4 Hz, indicating a nonlinear stiffness.

Comparing Figures 8 and 9, one clearly sees the influence of
static friction and the importance of using the square wave. In
Figure 9, almost all resonances have disappeared for axis 2 and
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Fig. 8. Estimated FRF Ĝ (black line) using data set 4. Grey line: standard
deviation of the total sample variance σ̂Ĝ. Dark grey line: standard deviation

of the noise sample variance σ̂Ĝn.
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Fig. 9. Estimated FRF Ĝ (black line) using data set 5. Grey line: standard
deviation of the total sample variance σ̂Ĝ. Dark grey line: standard deviation

of the noise sample variance σ̂Ĝn.

3. Still, similar to the SISO case, the variance of the estimate
is increased around the resonance frequencies when using the
square wave.

The FRF estimate in Figure 9 is, according to its sample
variance, fairly accurate, but still almost all resonances have
disappeared. How can this be the case? To answer this ques-
tion, one should study the properties of GR(ωk) in (4), the best
linear approximation to the nonlinear system. GR could be
considered as the sum of some “true” underlying linear sys-
tem G0 and a bias term GB that depends on the excitation sig-
nal. Adding a square wave changes the shape of the excitation
signal and will therefore change the bias term. The user must
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therefore decide which “best” linear approximation that is most
suitable for the modeling purpose and select a corresponding
excitation signal for the experiments.

As was noted in the SISO case, the input SNR was a pos-
sible explanation for the increased variability in the estimates
when using a square wave. For the MIMO case, it is required
that the input matrix U is invertible. The condition number of
U therefore gives valuable information. In Figure 10, the av-
erage condition number (over the M = 9 different blocks) of
the input matrix can be seen for the three different data sets.
As can be seen, the input matrix gets more ill-conditioned by
adding the square wave. This is not only due to a reduced in-
put power, but the square wave also increases the torque and
resolver ripple (see [15], Chapter 8).

As was noted in [13], the MIMO FRF estimates tends to
be non-symmetric, even if the the underlying linear system is
symmetric (Gkn = Gnk). This can be noted here as well for
frequencies below 4 Hz, especially for the elements (1,2), (1,3),
(2,1) and (3,1). These elements are also poorly estimated for
low frequencies, indicated by having |Ĝ| ≈ σ̂Ĝ.

V. CONCLUSIONS

A method for the detection and estimation of nonlinear dis-
tortions in an estimated FRF has successfully been applied to
experimental data from an industrial robot. The results show
that nonlinear distortions are indeed present and cause larger
variability in the FRF than the measurement noise contribu-
tions. To get a more accurate FRF estimate one should there-
fore use available measurement time to average estimates from
several experiments with random phase multisines. Averaging
over several periods will not be as effective since that only re-
duces the measurement noise contributions.

Using a filtered square wave to reduce the effect of friction
will give more pronounced resonances, but will at the same
give larger variability in the FRF estimates due to a poorer
SNR.
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