
Deep Learning and System Identification ?

Lennart Ljung ∗ Carl Andersson ∗∗ Koen Tiels ∗∗

Thomas B. Schön ∗∗

∗Division of Automatic Control, Linköping University, Linköping,
Sweden (e-mail: Lennart.Ljung@liu.se)

∗∗Dept of Information Technology, Uppsala University, 75105
Uppsala, Sweden (e-mail {Carl.Andersson, Koen.Tiels,

Thomas.Schon}@it.uu.se)

Abstract: Deep learning is a topic of considerable interest today. Since it deals with estimating
– or learning – models, there are connections to the area of System Identification developed in the
Automatic Control community. Such connections are explored and exploited in this contribution.
It is stressed that common deep nets such as feedforward and cascadeforward nets are nonlinear
ARX (NARX) models, and can thus be easily incorporated in System Identification code and
practice. The case of LSTM nets is an example of NonLinear State-Space (NLSS) models. It
performs worse than the cascadeforwardnet for a standard benchmark example.

Keywords: Model structure, Bias/Variance Trade-off, Model Validation, LSTM,
Cascadeforwardnet, Deep nets

1. INTRODUCTION

Deep Learning is a recent and most active and present
topic in today’s research on modeling and estimation.
Tremendous success has been reached in diverse and im-
portant application areas, like computer vision, Krizhevsky
et al. [2012], speech recognition, Hinton et al. [2012],
natural language processing, Mikolov et al. [2013], just to
mention a few.

System identification is a classical topic in Automatic
Control, since 1956, Zadeh [1956], and is well established
with many textbooks, e.g. Ljung [1999], software packages
and numerous reported applications.

Both topics deal with the same underlying problem: to in-
fer models from observed data. Therefore, there are several
links between the two topics and essential considerations
when using them. It is the purpose of this contribution
to illuminate these connections. This allows the two areas
to exchange useful practices, like considering bias-variance
trade-offs and residual analysis. It will also be very impor-
tant to evaluate various deep networks for system identifi-
cation applications and thus to provide further important
model structures and tools for this area.

2. THE SYSTEM IDENTIFICATION LOOP

System identification is concerned with building mathe-
matical models of dynamical systems based on measure-
ments of input and output signals.
? This research was financially supported by the Swedish Foundation
for Strategic Research (SSF) via the project ASSEMBLE (contract
number: RIT15-0012) and by the Swedish Research Council via the
projects Learning flexible models for nonlinear dynamics (contract
number: 2017-03807) and NewLEADS - New Directions in Learn-
ing Dynamical Systems (contract number: 621-2016-06079). Ljung’s
work was supported by Vinnova’s Competence Center LinkSic.

There are four essential decisions in a system identification
problem:

(1) Design an experiment and collect the data.
(2) Decide upon a model structure.
(3) Estimate the parameters of the model structure by

adjusting it to the data.
(4) Validate the model.

Typically some of the choices – especially the choice of
model structure in conjunction with model validation –
may have to be revised in the course of solving the
problem. Therefore the system identification process in
practice is a “loop”, see e.g. the figure below or Fig 17.1
in Ljung [1999].

M I
M(✓̂)

X
D

V

OK?
No, try new M Yes!

No, try newX

X : The Experiment
D: The Measured Data
M: The Model Set
I: The Identification Method
V: The Validation Procedure

2.1 Model Structures

The key item in any modeling task is to decide on the
set of models M where to seek the model. Many model
structures for dynamical systems have been suggested.
A generic way to think about a model is to see it as a
predictor for the next output based on previous input-
output observations. It can be denoted by ŷ(t|θ), where θ is
a parameter ranging over a given parameter set. Especially
for nonlinear systems, many different structures have been
suggested, see Schoukens and Ljung [2019] for a recent
survey. Two specific structures will be singled out for the
purpose of the present contribution:

NARX Models The model uses a (static) nonlinear
function of a regression vector ϕ(t) formed from past
data, typically a finite collection of past input and out-
put values:

ŷ(t|θ) = f(ϕ(t), θ) (1)

NLSS Models A general NonLinear State-Space model
is formed as

x(t+ 1) = f(x(t), y(t), u(t), θ) (2a)

ŷ(t|θ) = h(x(t), θ) (2b)

where f and h can be parametrized by θ in many
different ways.

2.2 Parameter Estimation

The estimation of the parameters is essentially done by
minimizing the fit between observed outputs and predicted
model outputs. Conceptually

min
θ

N∑
t=1

‖y(t)− ŷ(t|θ)‖2 (3)

where ŷ(t|θ) is the predicted output according to the model
M(θ).

This is a simple and natural choice, that corresponds to
the Maximum Likelihood estimate under mild conditions,
Ljung [1999]. It is common practice to append a regular-
ization term ρ(θ) to (3):

min
θ

N∑
t=1

‖y(t)− ŷ(t|θ)‖2 + λρ(θ); e.g. ρ(θ) = θTRθ (4)

to curb the flexibility of the model structure.

2.3 Bias/Variance Trade-off

The goal of any estimation and modeling task is to obtain
a model that is as close as possible to the “true” system.
In conceptual terms, this can be described as follows.

Let S be the true system, and M the model structure
within which a model is sought. Let m̂ be the obtained
model. The model error is then ‖m̂ − S‖2. Now, in all
realistic estimation problems, the data are subject to
errors which typically are described as random variables,
so the model, estimated from data, will also be a random
variable. Denote its expected value by

m∗ = Em̂ ≈ arg min
m∈M

fit(S −m) (5)

Here the last approximation follows under mild conditions:
the expected value of the model will be the best possible
model available in the model structure (“best possible”
under the conditions of the data collection).

Then the expected model error can be decomposed (“by
Pythagoras’ theorem”) into

E‖S − m̂‖2 = ‖S −m∗‖2 + E‖m̂−m∗‖2 (6)

MSE = B: Bias + V: Variance (7)

Error = Systematic + Random (8)

This means that the model error has two components:
A bias error that is independent of the data, but only
depends on the model structure and the true system, and

a variance error that accounts for the fact that the data
are affected by noise and therefore the optimally available
model m∗ is not achieved.

Both errors are affected by the flexibility of the model –
the number of parameters d used by the parameterization.
A more flexible model structure with more parameters
stands a better chance to contain a model closer to
the true system – to have a smaller bias. At the same
time, a model with many parameters will have a larger
variance error. A remarkable result in estimation theory,
see, e.g. Section 16.4 in Ljung [1999], tells us that if the
variance is evaluated for data of the same character as the
data used for estimation, then

E‖m̂−m∗‖2 =
dσ2

N
(9)

where N is the number of data points in the data set for
estimation, σ2 is the variance of the noise component in
the data, and d is the number of estimated parameters
in the model structure, regardless of its character. It is
essentially this result that is behind the celebrated Akaike
criterion for model structure selection, Akaike [1974]. If
regularization (4) is applied, the number d is lowered to
deff, the effective number of parameters, that depends on d
and the amount of regularization applied.

This means that to have a small total error, we must
seek a model of sufficient flexibility with as few free
parameters as possible. This favors so called grey box
models, where physical insight is used for determining the
model structure, but it also means that it is useful to
employ parameters that can be used to model various parts
of the system.

2.4 Model Validation

Model validation means that we should gain confidence
that the estimated model is capable of covering essential
parts of the system behavior - not only for the estimation
data used for its estimation.

A simple and common way to do this is Cross Validation:
Collect a validation data set, that is different from the
estimation data set. Simulate the model for the validation
input and compare that model output with the measured
validation output. Make the comparison by eye inspection
or compute a numerical measure of the fit.

2.5 Residual Analysis

A further validation test is to compute the residuals, “the
leftovers” in the model ε(t), the part of the output that
the model could not explain or reproduce. These should
be independent or at least uncorrelated with information
that was available when forming the model output.

Residual analysis means that typically the autocorrelation
function for the residuals is computed along with the cross
correlation function between residuals and past inputs. It
is then evaluated that these functions do not deviate too
much from zero.

3. LEARNING AND DEEP LEARNING

The core of all learning can be said to be function estima-
tion, i.e. measure noisy observations of a function between

two spaces X to Y
yt = F(xt) + noise, t = 1, . . . , N (10)

and infer the function F , where xt ∈ X denotes the input
and yt ∈ Y denotes the output. This is like a classical
curve-fitting problem, but the spaces may be of very gen-
eral nature: X could be signals, images, texts, etc., and Y
could be numerical values or classifications. It is the broad
range of possible spaces that allows the problem formu-
lation to be applied to a wide variety of tasks, which is
the reason for the current intense interest in the field. But
for standard numerical spaces X and Y, the formulation
(10) remains an example of standard statistical nonlinear
regression. Most applications of machine learning have a
black-box view of F , i.e. no physical knowledge about the
function is employed, but only flexible mappings are used
when estimating it.

A typical example of flexible mappings used in machine
learning are neural networks, e.g. Kung [1993]. See also
(11) below. They have the capability of allowing arbitrarily
accurate approximation of any reasonable function, and
have been successfully used in many applications. Recently
it has been suggested to use further expansions of the
neural network concept, so called deep networks for func-
tion estimation in (10). This is known as deep learning,
and has proved to be overwhelmingly successful in many
applications.

4. DEEP LEARNING MODEL STRUCTURES

We can think of the general function approximators for F
in (10) as a sequential construction of several generalized
linear regressions, i.e. repetitive use of linear regression
and static nonlinearities. This is, loosely, the idea behind
neural networks.

4.1 Single layer Feedforward Neural Networks

A neural network is a function mapping from a d0-
dimensional vector x to a (scalar) y that is often written
as

y =

d1∑
`=1

γ`κ(α`(x+ β`)) (11)

Here κ is known as the activation function and is a
nonlinear function from R to R. The parameters α and
β are quantities of sizes adjusted to the dimension of x.
The numbers θ = {α`, β`, γ`}d1`=1 are the parameters of the
model. A classical choice of κ is the sigmoid

κ(z) = σ(z) =
1

1 + e−z
(12)

which gives a sigmoidal network. A very common choice
today is the rectified linear unit (ReLU) function

κ(z) = z+ = max(z, 0) (13)

which makes the sum (11) piece-wise linear with break-
points in −β` for ` = 1, . . . , d1.

The mapping (11) is the classical one-hidden layer feed-
forward neural network. The terms κ(α`(x + β`)) are the
hidden units and together they form the hidden layer.

There are many ways to extend this idea to more sophisti-
cated nets, see e.g. Goodfellow et al. [2016], Pascanu et al.
[2014].

4.2 Multilayer Feedforward Neural Networks

To elaborate on the one-hidden layer network we can
cascade it with similar structures as further layers. With
notation inspired by Gilbert Strang, Strang [2018], the
ReLU net can be described as follows: Let the nonlinear
function F1 for given A1, b1 be defined as

F1(x) = (A1x+ b1)+ (14)

where (13) is interpreted element-wise. If A1 (d1 × d0) is
built up from α` and b1(d1 × 1) is formed from β` and
αk, it is easy to see that F1(x) are exactly the hidden
units in (11) with the ReLU activation function. So the
net (11) is simply CF1(x) with C defined from γi. Seeing
the hidden units as new “regressors” (corresponding to
x), applying the ReLU mapping to them and adding
the obtained outputs linearly with C we get a cascaded
mapping, defined as

CF2(F1(x)) (15)

and we have a net with two hidden layers with d1, and d2

hidden units, respectively. Here

F2(x) = (A2x+ b2)+ (A2 is d2 × d1and b2 is d2 × 1)
(16)

Repeating, a net with L hidden layers is obtained by

y = CFL(FL−1(...F2(F1(x))))) (17)

This is what is called feedforwardnet in the MATLAB
Deep Learning Toolbox. This network corresponds to the
so called TCN (Temporal Convolutional Network) in An-
dersson et al. [2019]. The TCN however uses a convo-
lutional neural network instead of a feedforward neural
network (see Goodfellow et al. [2016] for an introduction
to the convolutional neural network).

A variant is called cascadeforwardnet in the Deep Learn-
ing Toolbox. It corresponds to the case where all previous
hidden units are used as regressors in the next layer, not
only the ones from the previous layer. That is, in (15) F2

will be a function of x, F1(x), etc.

It is important to note, that all the deep networks described
in this section are NARX models (1).

The output from the net, i.e. y = ŷ(t|θ) is a static mapping
from x = ϕ(t). The parameter θ collects all the elements
in the matrices C,Ai, bi i = 1, ..., L, ŷ(t|θ) is the predicted
model output at time t and ϕ(t) is the regression vector,
typically containing past inputs and outputs.

5. RECURRENT AND LSTM NEURAL NETWORKS

5.1 Recurrent neural network (RNN)

The feedforward nets, the NARX models, can only convey
the information to the next time step t + 1 from the
finite number of past inputs and outputs in the regression
vector ϕ(t). To let past information linger longer, is
possible to extend the regression vector by introducing
components formed from the hidden units in the previous
time step. That creates a “feedback loop” around the net
(see e.g. fig 5.3 in Ljung [1999]) and makes the calculations
recurrent over time, That means that hidden units will
be an unobserved recurrent state, x(t), that is capable of
conveying information from a more distant past. The same
idea can of course be used also for multilayer feedforward

nets. The resulting Recurrent Neural Network, (RNN) will
have the format of an NLSS model (2) with information in
the state that can potentially linger infinitely long, due to
the feedback (which also may create instability). It will
also allow the modeling of so called Nonlinear Output
Error (NOE) models, see e.g. Ljung [1999], Section 5.4.
The prediction ŷ(t|θ) is thus a nonlinear mapping of this
state and can depend on more distant information than it
would with a NARX model with regression vector ϕ(t).

5.2 LSTM Network

A feature of an RNN is that at each time step, as the
state is updated it will be modified with new information,
and old information may decay. An idea to secure old
information for a longer time is the Long Short-Term
Memory (LSTM) network, Hochtreiter and Schmidhuber

[1997]. It has two kinds of states, a cell state c
(`)
t , for

long term memory and a hidden state h
(`)
t for short term

memory. It also has gates for controlling how information
is added and removed from the cell state.

The resulting net consists of the cascade of one or more
LSTM layers and a fully connected linear layer. An LSTM
layer is more complicated than the classical one-hidden
layer network in (11), but is still a nonlinear mapping from
its input to its output.

A single LSTM layer consists of four so-called gates and

two states. In particular, the `th layer has input gate i
(`)
t ,

forget gate f
(`)
t , cell gate g

(`)
t , output gate o

(`)
t , cell state

c
(`)
t , and hidden state h

(`)
t . The mapping from the input

ũ
(`)
t to the output ỹ

(`)
t = h

(`)
t of the `th layer is as follows:

i
(`)
t = σ

(
W

(`)
ii ũ

(`)
t + b

(`)
ii +W

(`)
hi h

(`)
t−1 + b

(`)
hi

)
(18a)

f
(`)
t = σ

(
W

(`)
if ũ

(`)
t + b

(`)
if +W

(`)
hf h

(`)
t−1 + b

(`)
hf

)
(18b)

g
(`)
t = tanh

(
W

(`)
ig ũ

(`)
t + b

(`)
ig +W

(`)
hg h

(`)
t−1 + b

(`)
hg

)
(18c)

o
(`)
t = σ

(
W

(`)
io ũ

(`)
t + b

(`)
io +W

(`)
ho h

(`)
t−1 + b

(`)
ho

)
(18d)

c
(`)
t = f

(`)
t ∗ c(`)t−1 + i

(`)
t ∗ g(`)

t (18e)

h
(`)
t = o

(`)
t ∗ tanh

(
c
(`)
t

)
(18f)

where σ(·) is a sigmoid function (see (12)) operating
element-wise and ∗ is the Hadamard (element-wise) prod-
uct. The weight matrices W and the bias vectors b contain
the parameters of the LSTM layers. The Number of Units
in an LSTM layer is the dimension of the hidden and the
cell states. That also defines the dimensions of the matrices
W and b. A useful tutorial for the LSTM layer is provided
by Olah [2015].

The LSTM layers are connected by taking the output of

a layer as the input to the following layer: ũ
(`)
t = h

(`−1)
t

for ` = 2, . . . , L. The output of the last LSTM layer is the

input to a fully connected linear layer: yt = Wfch
(L)
t + bfc.

It is important to note that an LSTM network is a NLSS
model, (2). Indeed, when considering a state vector x(t)

that collects the cell and hidden states in all layers (x
(`)
t =

[
(c

(`)
t)T (h

(`)
t)T

]T
and x(t) =

[
(x

(1)
t)T . . . (x

(L)
t)T

]T
), in-

put u(t) = ũ
(1)
t+1, output ŷ(t|θ) = yt, and a parameter

vector θ that collects all the elements in the weight ma-
trices W and the bias vectors b, the LSTM network is a
NLSS model as in (2). More explicitly, the output yt is a

function of h
(L)
t , which is part of the state vector x(t), so

of the form (2b). For the state equation (2a), observe from

(18) that x
(`)
t+1 depends on the states in the same layer

one time step earlier (x
(`)
t) and on the input ũ

(`)
t+1 to the

layer. For ` = L,L − 1, . . . , 2, this input ũ
(`)
t+1 = h

(`−1)
t+1

is part of the state of the previous layer (x
(`−1)
t+1), which

in turn depends on the states of that layer one time step

earlier (x
(`−1)
t), and on the input ũ

(`−1)
t+1 . Eventually, x

(`)
t+1

depends on the states of all the previous layers one time

step earlier (x
(`−1)
t , . . . , x

(1)
t), which is part of x(t), and on

the input ũ
(1)
t+1 to the first layer, which is u(t).

6. BIAS/VARIANCE TRADE-OFF FOR THE
CASCADE FORWARD NET

It is easy to realize that (17) with the ReLU activation
function still is a piece-wise linear mapping from x to y:
it is formed from linear operations mixed with the max
function. The number of parameters in this net is

dL +

L∑
k=1

dk · dk−1 + dk (19)

If all hidden layers have the same length (d) this amounts
to (L+ 1)d+ (L− 1)d2 + d · dimx parameters. Hence, the
number of parameters increases with the number of layers
and hidden units per layers in the order of magnitude Ld2.

What is the ”expressive power” or flexibility of this net?
Since it is a piece-wise linear mapping the flexibility can
be measured by how many breakpoints are allowed in the
curve from a scalar input x to the scalar y. This has been
studied in e.g. Daubechies et al. [2019], Mehrabi et al.
[2018], Montúfar et al. [2014].

These papers state that the maximum number of break-
points scales as dL. This number is attainable, but for
very special choices. [In Daubechies et al. [2019] it is
stated that “.. can create roughly dL breakpoints for very
special choices of weights and biases. By choosing to use
n parameters in a deep rather than shallow network, one
can thus produce functions with many more breakpoints
than parameters, albeit these functions have a very special
structure.”]

To check the flexibility of randomly generated nets, we
have simulated and counted breakpoints for deep nets
with random matrices. Fig. 1 shows an empirical result on
how the maximum number of breakpoints obtained with
a feedforward ReLU net expressed in (17) (without skip
connections) scales with the number of layers (L) and the
number of hidden units per layer (d). For each combination
of L and d (both varying from 2 to 10), 10000 Monte Carlo
simulations are performed in which the elements in Ai, bi,
and C are drawn from a standard normal distribution.
With these random initializations, the maximum number
of breakpoints is much lower than dL.

Fig. 1. The maximum number of breakpoints obtained
with a feedforward ReLU net for different numbers
of layers and units per layer.

Fig. 2. Ratio of the maximum number of breakpoints
obtained with a feedforward ReLU net for different
numbers of layers and units per layer to the number
of parameters.

When plotting these results relative to the number of
parameters (see Fig. 2), it is interesting to see that
increasing the number of layers is more effective than
increasing the number of units per layer. Also, the number
of breakpoints per parameter goes well above 0.5 in some
cases, so the ReLU implementation is more efficient in
generating breakpoints than a standard piece-wise linear
function implementation that uses 2n + 2 parameters for
n breakpoints (2n parameters for the x and y coordinates
of the breakpoints and 2 parameters for the slopes of the
first and the last segment).

So, even if randomly generated nets on average have less
flexibility, the point is that while the maximum number
of breakpoints may increase drastically with the depth of
the net, the number of parameters may not increase at
the same rate in a deep network, Consequently, there
is a potential for a better bias/variance trade-off. This
of course means that there will be hidden dependencies
between the breakpoints. The parameterization is so to
speak less generous than the possible model flexibility.
This requires the necessity to form “subroutines” in the
parameterization to deal with patterns that reoccur in
different parts of the function. But this also allows for
the possibility to form these automatically as part of the
parameter fitting process. This makes it possible to handle
the bias/variance trade-off more efficiently.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
y1

1000 2000 3000 4000 5000 6000 7000 8000 9000
-0.1

-0.05

0

0.05

0.1
u1

Input-Output Data

Time (seconds)

A
m

pl
itu

de

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
y1

100 200 300 400 500 600 700 800 900 1000 1100 1200
-0.05

0

0.05
u1

Input-Output Data

Time (seconds)

Am
pl

itu
de

Fig. 3. The Silverbox data. Left: estimation data, Right:
validation data

7. DEEP LEARNING AS A SYSTEM
IDENTIFICATION TASK

All this means that deep learning is a task that fits very
well into the system identification framework as depicted
in the figure in Section 2. What is special is that the
choice of model structure M is done within the family
of deep networks. But it is still an (statistical) estimation
problem, and all the aspects of validation, bias/variance
trade-off discussed in Section 2 are still relevant. An
early contribution to bias/variance trade-off in learning
problems is given in Geman et al. [1992], and a recent one
is Belkin et al. [2019].

Once the deep learning model structures ŷ(t|θ) are incor-
porated in the model objects of system identification, the
work process becomes very similar.

For example, MATLAB’s System identification toolbox,
Ljung [2018] allows any network object in MATLAB’s
Deep Learning toolbox to be translated to an idnlarx
model by the command

m=neuralnet(network);

idnlarx is an object that handles general Nonlinear ARX
models (1). After that, m can be estimated, validated, used
for simulation and prediction like any idnlarx object. It
can also be used in the GUI for estimating and manipu-
lating nonlinear models.

An example will be given in the next section.

8. EXAMPLE: THE SILVERBOX DATA

A data set that has been often used as a nonlinear
benchmark case is the so-called “Silverbox Example”.
This is a Forced Duffing Oscillator which is an elec-
tronic circuit that mimics a mechanical system with
a cubic hardening spring. The experiment is described
in Schoukens et al. [2016] and the data is available
on www.nonlinearbenchmark.org/#Silverbox. Two sets of
data were collected with different excitations, depicted in
Fig. 3. The estimation data are used to fit a model, and the
validity of the model is checked by how well it reproduces
the validation data. That is, the model is simulated using
the validation data input and the discrepancy between
model output and measured validation data output is
determined. This is a standard system identification task.

To load the estimation and validation data the following
MATLAB sequence can be used

load SNLS80mV.mat

200 400 600 800 1000 1200
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 y
1

vdata (y1)
mbj: 29.71%

Simulated Response Comparison

Time (seconds)

Am
pl

itu
de

Fig. 4. The validation output (grey) and the error between
model and simulated output (blue) for the Box-
Jenkins model. The fit is 29.7 %

fs=1e7/2^14;
edat=iddata((V2(30550:38500)’,...

V1(30550:38500)’,1/fs);
load Schroeder80mV
ySchroeder=V2(10585:10585+1023);
uSchroeder=V1(10585:10585+1023);
vdat=iddata(ySchroeder’,uSchroeder’,1/fs);

8.1 Linear Model

A common linear model of the Box-Jenkins type (see
e.g. Chapter 4 in Ljung [1999]) with 4 poles, 4 zeros and
a second order noise transfer function, is estimated by

mbj=bj(edat,[4 4 2 2 0]);

The accuracy of this model is computed by

[ys,Fit]=compare(vdat,mbj)
Fit=29.71 % (percent of the output variation ...

reproduced by the model)

The validation output and the error between this and the
simulated model output is shown in Fig. 4. It can be seen
that the simulation is not very good. The error is at times
as big as the signal itself. The residual analysis for this
model is obtained by

resid(vdata,mbj)

and is shown in Fig. 5. There is quite significant correlation
left in the residuals.

8.2 Deep Cascaded Network

A deep learning model (17) with 6 layers of cascaded
feedforward nets with 6 nodes each is estimated and
validated by

net=cascadeforwardnet([6,6,6,6,6,6]);
N2=neuralnet(net);
mN2=nlarx(edat,[4 4 0],N2);
[Ys,Fit]=compare(vdat,mN2)
Fit=99.18

Q)
lJ

:::::, T""
+-' >,
:: (§)
a. Cl)
E

<(

Residue Correlation

Aut Corr
1-------+.+-----�

0.8

0.6

0.4

-0.4

-0.6

-0.8

-20 -10 0 10 20

Lag
-20 -10

XCorr (u1)

0 10 20

Fig. 5. Residual analysis for the validation data and the
Box-Jenkins model. Left: the autocorrelations for the
residuals. Right: Cross correlation between input and
residuals

200 400 600 800 1000 1200
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 y
1

vdata (y1)
mN2: 99.31%

Simulated Response Comparison

Time (seconds)

Am
pl

itu
de

Fig. 6. The validation output (grey) and the error between
model and simulated output (blue) for the deep cas-
cadeforwardnet model. The fit is 99.2 %

The validation output and the error between this and the
simulated model output is shown in Fig. 6. The simulation
is remarkably good: the error is hardly visible. Recall
that the simulation is done without any access to the
measured validation output, and note that the character
of the validation data is quite different from that of the
estimation data.

The residual analysis (resid(vdata,mN2)) for this model
is shown in Fig. 7. The correlation between the residuals
and past inputs (lag larger than 0) is quite insignificant.
There is some correlation left among the residuals them-
selves, but no attempt has been made to build a model for
the color of the additive disturbances. Anyway the size of
the residuals is very small.

Fig. 7. Residual analysis for the validation data and the
deep net model. Left: the autocorrelations for the
residuals. Right: Cross correlation between input and
residuals

8.3 LSTM Network

An LSTM network with 8 hidden units can be trained in
MATLAB with the deep learning toolbox. In the simplest
case, this network can be implemented as,

numHiddenUnits=8;
featureDimension=1; % u(t)
layers=[...
sequenceInputLayer(featureDimension), ...
lstmLayer(numHiddenUnits, ...

’OutputMode’,’sequence’), ...
fullyConnectedLayer(1), ...
regressionLayer];

options=trainingOptions(’adam’, ...
’MaxEpochs’,1000, ...
’InitialLearnRate’,0.01, ...
’Plots’,’training-progress’);

net=trainNetwork(XTrain,YTrain,layers,options);
Fit=88.9

In this case we transform the data as defined in the
previous section to a format for the deep learning model

XTrain=cell(1,1);
YTrain=cell(1,1);
XTrain{1}=edat.u’;
YTrain{1}=edat.y’;

The validation output, in Fig. 8, shows that the LSTM
model performs worse when the input data has higher
amplitude than seen in the training data. This is related
to the internal LSTM body that is built up of sigmoid
functions that saturate when extrapolating. One should
note that the LSTM model is not tailored for this type of
problem but rather for problems with significantly longer
autocorrelations.

A deep LSTM network is obtained simply by repeating the
line lstmLayer(numHiddenUnits,... ’OutputMode’,...
’sequence’), ... a few times in the definition of
layers. The number of hidden units may differ in the

100 200 300 400 500 600 700 800 900 1000 1100 1200
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fig. 8. The validation output (grey) and the error between
model and simulated output (blue) for the LSTM
model. The fit is 88.9 %

different layers. For the tested data, no improvement was
found for deeper LSTM models.

9. CONCLUSIONS

The use of deep learning – in particular for estimating
dynamical systems – has strong links to system identifi-
cation practice. A few things have been stressed in this
contribution:

• Classical statistical tools such as cross validation,
bias/variance trade-off, residual analysis are essential
also for deep learning

• The workflow in deep learning and system identifica-
tion has many similarities

• The power of deep nets also for standard system
identification has been demonstrated.
The cascadeforwardnet obtains models for the stan-
dard Silverbox benchmark case that easily match the
best results obtained with other sophisticated solu-
tions, cf. Schoukens and Ljung [2019], sidebar “The
forced Duffing Oscillator”.

REFERENCES

H. Akaike. A new look at the statistical model identifica-
tion. IEEE Transactions on Automatic Control, AC-19:
716–723, 1974.

C. Andersson, A. H. Ribeiro, K. Tiels, N. Wahlström,
and T. B. Schön. Deep convolutional networks in
system identification. In Proceedings of the IEEE 58th
IEEE Conference on Decision and Control (CDC), Nice,
France, 2019.

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling
modern machine-learning practice and classical bias-
variance trade-off. Proc. National Academy of Sciences,
PNAS, 116(32):15849–15854, august 2019.

I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and
G. Petrova. Nonlinear approximation and (deep) ReLU
networks. ArXiv, (1905.02199), 2019.

S. Geman, E. Bienenstock, and R. Doursat. Neural net-
works and the bias/variance dilemma. Neural Compu-
tation, 4(1):1–58, January 1992.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning.
MIT Press, 2016.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, and B. Kingsbury. Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Processing
Magazine, 29(6):82–97, 2012.

S. Hochtreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems
NIPS, pages 1097–1105, 2012.

S. Kung. Digital Neural Networks. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1993.

L. Ljung. System identification, Theory for the user.
System sciences series. Prentice Hall, Upper Saddle
River, NJ, USA, second edition, 1999.

L. Ljung. The System Identification Toolbox: The Manual.
The MathWorks Inc. 1st edition 1986, 9th edition 2018,
Natick, MA, USA, 2018.

M. Mehrabi, A. Tchamkerten, and M. I. Yousefi. Bounds
on the approximation power of feedforward neural net-
works. ArXiv, (1806.11416), 2018.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Effi-
cient estimation of word representations in vector space.
Technical report, arXiv:1301.3781, 2013.

G. Montúfar, R. Pascanu, K. Chu, and Y. Bengio. On
the number of linear regions of deep neural networks.
ArXiv, (1402.1869), 2014.

C. Olah. Understanding LSTM networks – co-
lah’s blog. https://colah.github.io/posts/2015-08-
understanding-lstms/, 2015.

R. Pascanu, C Gulcehre, K. Cho, and Y. Bengio. How to
construct deep recurrent neural networks. In Proceed-
ings of the 2nd International Conference on Learning
Representations (ICLR), 2014.

J. Schoukens and L. Ljung. Nonlinear system identification
– a user-oriented roadmap. IEEE Control Systems
Magazine, 39, December 2019. To appear.

J. Schoukens, M. Vaes, and R. Pintelon. Linear sys-
tem identification in a nonlinear setting: Nonparametric
analysis of the nonlinear distortion and their impact on
the best linear approximation. IEEE Control Systems
Magazine, 36:38–69, 2016.

G. Strang. The functions of deep learning.
https://sinews.siam.org/Details-Page/the-functions-of-
deep-learning, 2018.

L. A. Zadeh. On the identification problem. IRE Trans-
actions on Circuit Theory, 3:277–281, 1956.

