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Abstract: We consider the problem of impulse response estimation of stable linear single-input
single-output systems. It is a well-studied problem where flexible non-parametric models recently
offered a leap in performance compared to the classical finite-dimensional model structures.
Inspired by this development and the success of deep learning we propose a new flexible data-
driven model. Our experiments indicate that the new model is capable of exploiting even more of
the hidden patterns that are present in the input-output data as compared to the non-parametric
models.
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1. INTRODUCTION

Impulse response estimation has for a long time been at
the core of system identification. Up until some five to
seven years ago, the generally held belief in the field was
indeed that we knew all there was to know about this
topic. However, the enlightening work by Pillonetto and De
Nicolao (2010) changed this by showing that the estimate
can in fact be improved significantly by placing a Gaussian
Process (GP) prior on the impulse response, which acts
as a regularizer. This model-driven approach has since
then been further refined (Pillonetto et al., 2011; Chen
et al., 2012; Pillonetto et al., 2014), where the prior in this
case could be interpreted to encode not only smoothness
information, but also information about the exponential
decay of the impulse response. In this paper we employ
deep leaning (DL) to find a suitable regularizer via a
method that is driven by data. Fig. 1 depicts the general
idea and the similarity of our method compared to the
method based on Gaussian processes.

Deep learning is a fairly new area of research that con-
tinues the work on neural networks from the 1990’s. To
get a brief, but informative, overview of the field of deep
learning we recommend the paper by LeCun et al. (2015)
and for a more complete snapshot of the field we refer to
the monograph by Goodfellow et al. (2016). Deep learning
has recently revolutionized several fields, including image
recognition (e.g. Cirean et al. (2011)) and speech recogni-
tion (e.g. Hinton et al. (2012)). In both fields, deep learning
has surpassed domain specific methods and hand-crafted
feature design, by making use of large quantities of data
in order to learn data-driven neural network models as
general function approximators.

� This research is financially supported by the Swedish Research
Council via the project NewLEADS - New Directions in Learning
Dynamical Systems (contract number: 621-2016-06079), and the
Swedish Foundation for Strategic Research (SSF) via the project
ASSEMBLE (contract number: RIT15-0012).
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Fig. 1. Schematic figure over the proposed method for
impulse response estimation using deep learning in
relation to the previous work using Gaussian pro-
cesses. The functions fGP and fDL maps the input
sequence u and the output sequence y of a system to
an inverse regularization matrix P for the Gaussian
process approach and the deep learning approach,
respectively.

The idea of using neural networks within system identifi-
cation is certainly not new and they have been a standard
tool for a long time, see e.g. Sjöberg et al. (1995). How-
ever, the current development in deep learning is different
from the past due to advances in computational software
and hardware. As a consequence, contemporary neural
networks are more reproducible than before which has
increased the credibility of the area. Finally, the amount of
available data has sky-rocketed which has made it possible
to train larger models with better results. We believe that
system identification still has lots to gain from using deep
learning and this paper is just one concrete example of
what can be done.

2. BACKGROUND AND PROBLEM FORMULATION

Consider a stable single-input single-output time-invariant
linear system G0 relating an input sequence u(t) to an
output sequence y(t) according to

y(t) = G0(q)u(t) + v(t), (1)
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ever, the current development in deep learning is different
from the past due to advances in computational software
and hardware. As a consequence, contemporary neural
networks are more reproducible than before which has
increased the credibility of the area. Finally, the amount of
available data has sky-rocketed which has made it possible
to train larger models with better results. We believe that
system identification still has lots to gain from using deep
learning and this paper is just one concrete example of
what can be done.

2. BACKGROUND AND PROBLEM FORMULATION

Consider a stable single-input single-output time-invariant
linear system G0 relating an input sequence u(t) to an
output sequence y(t) according to

y(t) = G0(q)u(t) + v(t), (1)

Proceedings,18th IFAC Symposium on System Identification
July 9-11, 2018. Stockholm, Sweden

Copyright © 2018 IFAC 1

Data-Driven Impulse Response
Regularization via Deep Learning

Carl Andersson ∗ Niklas Wahlström ∗ Thomas B. Schön ∗

∗ Department of Information Technology, Uppsala University, Sweden.
Email: {carl.andersson, niklas.wahlstrom, thomas.schon}@it.uu.se

Abstract: We consider the problem of impulse response estimation of stable linear single-input
single-output systems. It is a well-studied problem where flexible non-parametric models recently
offered a leap in performance compared to the classical finite-dimensional model structures.
Inspired by this development and the success of deep learning we propose a new flexible data-
driven model. Our experiments indicate that the new model is capable of exploiting even more of
the hidden patterns that are present in the input-output data as compared to the non-parametric
models.

Keywords: Linear system identification, impulse response estimation, flexible models, deep
learning, regularization, Gaussian processes.

1. INTRODUCTION

Impulse response estimation has for a long time been at
the core of system identification. Up until some five to
seven years ago, the generally held belief in the field was
indeed that we knew all there was to know about this
topic. However, the enlightening work by Pillonetto and De
Nicolao (2010) changed this by showing that the estimate
can in fact be improved significantly by placing a Gaussian
Process (GP) prior on the impulse response, which acts
as a regularizer. This model-driven approach has since
then been further refined (Pillonetto et al., 2011; Chen
et al., 2012; Pillonetto et al., 2014), where the prior in this
case could be interpreted to encode not only smoothness
information, but also information about the exponential
decay of the impulse response. In this paper we employ
deep leaning (DL) to find a suitable regularizer via a
method that is driven by data. Fig. 1 depicts the general
idea and the similarity of our method compared to the
method based on Gaussian processes.

Deep learning is a fairly new area of research that con-
tinues the work on neural networks from the 1990’s. To
get a brief, but informative, overview of the field of deep
learning we recommend the paper by LeCun et al. (2015)
and for a more complete snapshot of the field we refer to
the monograph by Goodfellow et al. (2016). Deep learning
has recently revolutionized several fields, including image
recognition (e.g. Cirean et al. (2011)) and speech recogni-
tion (e.g. Hinton et al. (2012)). In both fields, deep learning
has surpassed domain specific methods and hand-crafted
feature design, by making use of large quantities of data
in order to learn data-driven neural network models as
general function approximators.

� This research is financially supported by the Swedish Research
Council via the project NewLEADS - New Directions in Learning
Dynamical Systems (contract number: 621-2016-06079), and the
Swedish Foundation for Strategic Research (SSF) via the project
ASSEMBLE (contract number: RIT15-0012).

u,y

P

θ̂

fGP

fDL
R
eg
ul
ar
iz
at
io
n

Least squares

model assumption
(previous work)

training data
(our work)

Fig. 1. Schematic figure over the proposed method for
impulse response estimation using deep learning in
relation to the previous work using Gaussian pro-
cesses. The functions fGP and fDL maps the input
sequence u and the output sequence y of a system to
an inverse regularization matrix P for the Gaussian
process approach and the deep learning approach,
respectively.

The idea of using neural networks within system identifi-
cation is certainly not new and they have been a standard
tool for a long time, see e.g. Sjöberg et al. (1995). How-
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where q denotes the shift operator qu(t) = u(t + 1) and
v(t) denotes additive noise. The noise is assumed to be
Gaussian white noise with zero mean and variance σ2. The
system G0(q) is represented using a transfer function

G0(q) =

∞∑
k=1

g0kq
−k, (2)

where g01 , g
0
2 , . . . denote the impulse response coefficients

of the system. We make use of superscript 0 to denote the
true system.

Based on data, i.e. an input sequence u = (u(1), . . . , u(N))T

and an output sequence y = (y(1), . . . , y(N))T both of
length N , the task is to compute an estimate that repre-
sents the true system G0(q) as well as possible.

Traditionally, the transfer function is encoded using a
finite number of parameters θ (dim(θ) = n � N), for
example, via a finite impulse response (FIR) model,

G(q;θ) = B(q) = b1q
−1 + · · ·+ bnb

q−nb , (3)

or an output-error (OE) model,

G(q;θ) =
B(q)

F(q)
=

b1q
−1 + · · ·+ bnb

q−nb

f1q−1 + · · ·+ fnf
q−nf

, (4)

where θ = (b1, . . . , bnb
)T or θ = (b1, . . . , bnb

, f1, . . . , fnf
)T,

respectively. See Ljung (1999) for a comprehensive list
of model structures. With these model structures, the
prediction error method can be used to compute a point

estimate θ̂ of the unknown parameters by solving the
following optimization problem,

θ̂ = argmin
θ

N∑
t=1

(y(t)−G(q,θ)u(t))2 + θTDθ, (5)

where θTDθ describes the added regularization term,
governed by the regularization matrix D. It has been
shown by Pillonetto and De Nicolao (2010); Pillonetto
et al. (2011); Chen et al. (2012) that the use of an effective
regularization is more important than the specific choice
of model-order, n. Intuitively the use of a GP model and
the regularization term θTDθ opens up for model selection
at a ”finer” scale compared to what is possible with the
classical finitely parameterized model structures. Adding
this kind of regularization is especially important when the
number of samples, N , is low compared to the parameters
we wish to estimate, n.

In the case of the FIR model, the optimization problem
reduces to a linear least squares problem to find the

optimal parameters θ̂. For numerical reasons the inverse
regularization matrix P = D−1 is often used in place of D.
This gives rise to the following analytic solution,

θ̂ = (PR + In)
−1

PFN , (6a)

where

R =

N∑
t=n+1

ϕ(t)ϕ(t)T, (6b)

ϕ(t) = {u(t− 1) . . . u(t− n)}T, (6c)

FN =

N∑
t=n+1

ϕ(t)y(t). (6d)

We will throughout this paper denote then estimate (6) by

θ̂(P) to stress its dependence on the inverse regularization

matrix P. As a special case, with P = 0, we have the least

squares solution, which we denote θ̂LS.

One question still remains though; how do we find the
inverse regularization matrix P? One of the most general
ideas is to let it depend on u and y. This was done in
Pillonetto and De Nicolao (2010); Pillonetto et al. (2011);
Chen et al. (2012) by modelling the impulse response
as a Gaussian process. A Gaussian process is known to
be a very flexible prior, even so, since the model only
depends on a low number of hyper-parameters, typically
one for a lengthscale and one for some noise, it heavily
depends on the specific model we choose for the covariance
function. These hyper-parameters are replaced by a point
estimate obtained by maximizing the marginal likelihood
of the observed data, a procedure known as Empirical
Bayes (Bishop, 2006). The regularization matrix will thus
implicitly depend on u and y via the hyper-parameters.
We explicitly denote this dependence by P = fGP(u,y).
This method is also explained in more detail in Section 3.

We instead propose an arguably even more flexible model
by parametrizing the inverse regularization matrix P with
a neural network P = fDL(u,y). In contrast to the
Gaussian process model these parameters are computed
by training the model with lots of training data consisting
of an input sequence, an output sequence and the true
impulse response for either real or simulated systems.
Compared to the GP model this is a more data-driven
approach to the problem which also makes it possible to
use existing techniques from deep learning when building
and training the model.

3. REGULARIZATION USING GAUSSIAN PROCESS

The Gaussian prior offers a natural way of encoding the
smoothness and decay characteristics that we find in the
impulse response from a stable linear system. The specific
details of these characteristics are tuned via the hyper-
parameters λ. The resulting GP prior can be written as

θ ∼ pλ(θ) = N (θ | 0,Pλ), (7)

where Pλ in this Bayesian setting is equal to the in-
verse regularization matrix in (6). The matrix Pλ is re-
lated to the covariance function of the Gaussian Process
as kλ(i, j) = Pλ

ij , where Pλ
ij denotes then entry on row i

and column j of Pλ. With the aid of measured data we

can select a point estimate of the hyper-parameters λ̂ by
maximizing the marginal log-likelihood,

λ̂ = argmax
λ

log

∫
p(y | θ;u)pλ(θ)dθ, (8)

where

p(y | θ;u) =
N∏
t=1

p(y(t) | θ;u) =
N∏
t=1

N (y(t) | θTϕ(t), σ2).

(9)

As a direct consequence of this, the optimal inverse reg-

ularization matrix Pλ̂ implicitly depends on the input
sequence u and the output sequence y. The equation
(8) then describe the function P = fGP(u,y). Using
this inverse regularization matrix together with (6), we
obtain an estimate of the FIR parameters that has better
accuracy and is more robust than the non-regularized
approach (Chen et al., 2012).
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4. REGULARIZING USING DEEP LEARNING

In contrast to previous work where the regularization
matrix only depends on a few hyper-parameters we instead
model the regularization matrix directly with a neural
network that depends on a large number of parameters η
according to

P = fDL(u,y; η). (10)

To select specific values for all these parameters we start
by formulating the mean squared error (MSE) of the

estimate θ̂(P) in (6), the so-called estimation error,

MSE
(
θ̂
)
=

∥∥∥θ̂(fDL(u,y; η))− θ0

∥∥∥
2

, (11)

where ‖·‖2, denotes the 2-norm and θ0 denotes the true
FIR parameters which corresponds to the truncated true
impulse response. Here we make use of the neural network
model (10) of P when forming the MSE. The parameters η̂
to use in (10) are found by simply minimizing this estima-
tion error,

η̂ = argmin
η

1

M

M∑
i=1

∥∥∥θ̂
(
fDL(u

(i),y(i); η)
)
− θ

(i)
0

∥∥∥
2

, (12)

where M is the number of training examples. To set
the terminology straight we use the term training for
the minimization of the estimation error w.r.t. η whereas
estimation refers to the computation of a point estimate of
the FIR parameters by minimizing the one step prediction
error w.r.t. θ. The following sections describe our method
and an overview is provided in Algorithm 1.

4.1 Regularization model

We know that P must be positive semi-definite. Inspired
by this fact we choose P as a weighted sum of rank-one
positive definite matrices. The idea behind this choice is to
have a representation that is flexible enough to represent
all possible regularization matrices and at the same time
encode the knowledge that the optimal regularization
matrix is a rank-one matrix (see Appendix A).

Our rank-one matrices are constructed as outer products
of a vector si with itself where the elements of the vectors
are free parameters. The weights, wi, that weight our rank-
one matrices, are modelled as the output of a softmax layer
from a neural network. The input to this neural network
is u and y as well as the nonregularized least squares
solution, which only depends on u and y. Hence, we have,

P =

nm∑
i=1

wi(u,y, θ̂LS; η
′)sis

T
i , (13)

where nm is the number of rank-one matrices used to rep-
resent the regularization matrix and η′ is the parameters of
the neural network. We use η = {η′, s1, . . . , snm

} to collect
all the parameters in the regularization matrix model.

4.2 Neural network model

We have made use of four fully connected layers in our
neural network, where the final layer is a softmax layer
producing weights between 0 and 1. The other activa-
tion functions for the fully connected layers are Rectified
Linear Units (ReLU) which are defined as ReLU(x) =

max(0, x). A typical layer of the network is thus written
as h(i+1) = ReLU(Wh(i) + b), where h(i) denotes the
input to the layer, h(i+1) denotes the output from the
layer, W denotes a so-called weight matrix of dimen-
sions dim(h(i+1))× dim(h(i)) and b denotes a so-called
bias term of dimension dim(h(i)). Both the weight matrices
and the bias terms are part of the parameters η′ describing
the network, i.e. W(i) ∈ η′ and b(i) ∈ η′. To regularize
the training procedure we add a dropout layer after the
softmax layer which with 30% probability sets a weight
to zero during training. This is a standard technique to
avoid overfitting in NN (Srivastava et al., 2014). The input
to the network is the input u and output y sequence of
the system we want to estimate and the corresponding

non-regularized least squares solution θ̂LS. The resulting
network is schematically illustrated in Fig. 2.

h(1) = ReLU
(
W(1){u,y, θ̂LS}+ b(1)

)

u y θ̂LS

h(2) = ReLU
(
W(2) h(1) + b(2)

)

h(3) = ReLU
(
W(3) h(2) + b(3)

)

h(4) = W(4) h(3) + b(4)

wd =
exp(h(4))

1+
∑nm

i=1
exp

(
h
(4)
i

)

w = dropout(wd)

Fig. 2. Schematic description of our neural network.
The weights from (13) are denoted by w =
{w1, . . . , wnm}. The dimensions of h(1),h(2),h(3) and
h(4) are 600, 300, 200 and 500 respectively. Note that
the dimension of the final layer is equal to the number
of matrices used.

4.3 Normalizing the data

A key aspect to successfully train neural networks is the
normalization of the input and output of the network by
subtracting the mean and dividing with the standard de-
viation. We notice that we can, without loss of generality,
normalize each data example of y and u if we at the
same time do the corresponding scaling of the impulse
response θ to keep the analytic relationship intact.

The non-regularized least square solution, θ̂LS, that we
use as an input to the network is also straightforward nor-
malize with the statistics form the true impulse response
calculated from the training data. Finally, we want to
normalize the networks dependence of the vectors si. The
outer product of these vectors should correspond to the
optimal regularization (see Section 4.1 and Appendix A).
To enforce that they follow the same statistics, we initialize
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estimate θ̂(P) in (6), the so-called estimation error,
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=
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where ‖·‖2, denotes the 2-norm and θ0 denotes the true
FIR parameters which corresponds to the truncated true
impulse response. Here we make use of the neural network
model (10) of P when forming the MSE. The parameters η̂
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where M is the number of training examples. To set
the terminology straight we use the term training for
the minimization of the estimation error w.r.t. η whereas
estimation refers to the computation of a point estimate of
the FIR parameters by minimizing the one step prediction
error w.r.t. θ. The following sections describe our method
and an overview is provided in Algorithm 1.

4.1 Regularization model

We know that P must be positive semi-definite. Inspired
by this fact we choose P as a weighted sum of rank-one
positive definite matrices. The idea behind this choice is to
have a representation that is flexible enough to represent
all possible regularization matrices and at the same time
encode the knowledge that the optimal regularization
matrix is a rank-one matrix (see Appendix A).

Our rank-one matrices are constructed as outer products
of a vector si with itself where the elements of the vectors
are free parameters. The weights, wi, that weight our rank-
one matrices, are modelled as the output of a softmax layer
from a neural network. The input to this neural network
is u and y as well as the nonregularized least squares
solution, which only depends on u and y. Hence, we have,

P =

nm∑
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wi(u,y, θ̂LS; η
′)sis

T
i , (13)

where nm is the number of rank-one matrices used to rep-
resent the regularization matrix and η′ is the parameters of
the neural network. We use η = {η′, s1, . . . , snm

} to collect
all the parameters in the regularization matrix model.

4.2 Neural network model

We have made use of four fully connected layers in our
neural network, where the final layer is a softmax layer
producing weights between 0 and 1. The other activa-
tion functions for the fully connected layers are Rectified
Linear Units (ReLU) which are defined as ReLU(x) =

max(0, x). A typical layer of the network is thus written
as h(i+1) = ReLU(Wh(i) + b), where h(i) denotes the
input to the layer, h(i+1) denotes the output from the
layer, W denotes a so-called weight matrix of dimen-
sions dim(h(i+1))× dim(h(i)) and b denotes a so-called
bias term of dimension dim(h(i)). Both the weight matrices
and the bias terms are part of the parameters η′ describing
the network, i.e. W(i) ∈ η′ and b(i) ∈ η′. To regularize
the training procedure we add a dropout layer after the
softmax layer which with 30% probability sets a weight
to zero during training. This is a standard technique to
avoid overfitting in NN (Srivastava et al., 2014). The input
to the network is the input u and output y sequence of
the system we want to estimate and the corresponding

non-regularized least squares solution θ̂LS. The resulting
network is schematically illustrated in Fig. 2.
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(
W(1){u,y, θ̂LS}+ b(1)

)
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w = dropout(wd)

Fig. 2. Schematic description of our neural network.
The weights from (13) are denoted by w =
{w1, . . . , wnm}. The dimensions of h(1),h(2),h(3) and
h(4) are 600, 300, 200 and 500 respectively. Note that
the dimension of the final layer is equal to the number
of matrices used.

4.3 Normalizing the data

A key aspect to successfully train neural networks is the
normalization of the input and output of the network by
subtracting the mean and dividing with the standard de-
viation. We notice that we can, without loss of generality,
normalize each data example of y and u if we at the
same time do the corresponding scaling of the impulse
response θ to keep the analytic relationship intact.

The non-regularized least square solution, θ̂LS, that we
use as an input to the network is also straightforward nor-
malize with the statistics form the true impulse response
calculated from the training data. Finally, we want to
normalize the networks dependence of the vectors si. The
outer product of these vectors should correspond to the
optimal regularization (see Section 4.1 and Appendix A).
To enforce that they follow the same statistics, we initialize
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the vectors si with unit Gaussian and then multiply we the
standard deviation and add the mean of the true impulse
response.

Algorithm 1 Training procedure

1: Collect evaluation data.
2: Collect training data with similar behaviour as evalu-

ation data (e.g. through simulations).
3: Normalize u and y for each example (Section 4.3).

4: Normalize θ̂LS with statistics from the whole training
dataset (Section 4.3).

5: Find η̂ using training data by minimizing Equation
(12).

6: Use η̂ to predict θ̂ on evaluation data.

5. EXPERIMENT

The model explained in Section 4 is implemented using
Tensorflow (Abadi et al., 2016) and our implementation of
the model is available on GitHub 1 .

5.1 Simulate data using rss

To train the model, we use an artificial distribution over
real systems to produce input and output sequences along
with their true impulse responses. The artificial distribu-
tion over systems we use is MATLAB’s rss function. This
function is not ideal as was recently pointed out by for
example Rojas et al. (2015). Hence, there is potential to
further improve the results by making use of better data.

To generate data we use the same method as Chen et al.
(2012) with some minor alterations concerning the signal
to noise ratio (SNR). The full procedure follows as:

(1) Sample a system of order 30 using a slightly modified
version of MATLAB’s rss where the probability of
having an integrating pole is zero.

(2) Sample N = 125 timesteps from the system at a
sampling rate of 3 times the bandwidth, i.e.,
bw = bandwidth(m);
f = 3*(bw*2*pi);
md = c2d(m,1/f,’zoh’);

(3) Calculate the true FIR parameters as the truncated
impulse response to length n = 50.

(4) Sample white noise as an input sequence u and get
the corresponding output sequence y∗. Add noise to
the output with the SNR drawn randomly from a
uniform distribution between 1 and 10, i.e., the noise
added has variance that is between 1 and 1/10 of the
variance in the output sequence.

(5) Repeat all steps until we have M examples from M
different systems.

These M training examples are then used in Equation (12)
and are called the training data. Using the same method
we generate a validation set which we also split in two sets
depending on the SNR, one with SNR larger than 5.5 and
one set with SNR less than 5.5 with roughly Mv ≈ 5 000
examples in each.

1 https://github.com/carl-andersson/impest

5.2 Evaluation metrics

To evaluate the performance of the model we use a metric
that is calculated as the mean squared error of the estimate
normalized with the mean squared error of the least
squares solution without any regularization. We denote
this metric by S, i.e.,

S =
1

Mv

Mv∑
i=1




∥∥∥θ̂ (
fDL(u

(i),y(i); η)
)
− θ

(i)
0

∥∥∥
2

∥∥∥θ̂(i)
LS − θ

(i)
0

∥∥∥
2


 , (14)

where Mv denotes the number of examples in the val-
idation set. This metric makes sure that each impulse
response gets equal weighting when computing the per-
formance of the algorithm and measures the average effect
of the regularization. A perfect match for this measure
corresponds to a measure of 0.

Chen et al. (2012) make use of a slightly different metric
defined as

S̃ =
1

Mv

Mv∑
i=1

100


1−




∥∥∥θ̂ (
fDL(u

(i),y(i); η)
)
− θ

(i)
0

∥∥∥
2

∥∥∥θ(i)
0 − θ̄

(i)
0

∥∥∥
2







where θ̄
(i)
0 is the mean of θ

(i)
0 . This metric averages over a

so-called ’model fit’, i.e. how well the estimated parameters
fit the true impulse response. Besides the shifting and

scaling in S̃, the only difference between the two metrics
is the normalization factor used, where S is normalized

with the least squares estimation error and S̃ is normalized
with the variance of the true impulse response. We have

empirically observed that the terms in S̃ might vary a lot
between different examples and the average might thus
be dominated by a few examples leading to measures
that are hard to interpret. Our slightly modified metric S
will on the other hand measure the average effect of
using a regularization method compared to not using a
regularization method, which seem to result in a more
stable performance indicator.

5.3 Simulation results

The model is trained using M = 1000 000 training exam-
ples for roughly 2.5 hours using a desktop computer with
an Nvidia Titan Xp GPU. The chosen hyperparameters
of the model is described in Figure 2. Note that while
training require a GPU with large memory, the evaluation
can easily be done in CPU on an ordinary computer. We
are using early stopping as a stopping criteria even though
the model essentially does not seem to overfit with this
amount of training data. The model is not very dependent
on the number of examples in the training data either.
Even with M = 10 000 it managed to achieve comparable
results to previous methods.

Fig. 3 shows a subset of the matrices sis
T
i from (13) after

training. Note that the matrices have an oscillating pattern
with different periods and a decay towards zero for param-
eters with high index (lower right corner). Fig. 4 shows
three different regularization matrices for an example in
the validation dataset. We can see that the deep learning
regularization seems to capture the behaviour of the op-
timal regularization matrix fairly well. In Fig. 5 we can
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Fig. 3. Illustration of 21 matrices from sisi
T after training.

The matrices are rescaled to the interval [+1,−1],
where blue indicates a positive value, white around
zero and red indicates a negative value. The upper
left corner corresponds to the lowest index of the
estimate θ.

compare the estimates from the different regularization
approaches.

The trained model does not produce a useful regularization
matrix for all examples. In cases where it fails the neural
network seems to fail in the same way for all examples by
producing a similar regularization matrix for each example
with a bad performance for S as consequence. Despite this
problem, the model manages to produce average results
which are comparable or better than previous methods
which is reflected in Table 1. We can see that the perfor-
mance decreases when the SNR gets larger. This is due
to the improved effectiveness of the least squares estimate
and we are thus less dependent on the regularization. For
comparison we also present the result for the optimal regu-
larization which of course is unachievable since it depends
on the true impulse response, but it is still an useful lower
bound.

Table 1. Comparing the different models using the
metric from (14) evaluated using the validation
set. LS stands for Least Squares, OR stands for
Optimal regularization (see Appendix A), GP
stands for Gaussian process regularization and
DL stands for deep learning regularization. LS,
OR and GP are not data driven approaches and
they are thus not dependent on any training
data.
Model SNR < 5.5 SNR > 5.5

LS 1 1
OR 0.04 0.05
GP 0.31 0.40
DL 0.20 0.23

5.4 Real data results

To show that our method at least does not give un-
reasonable estimates for real systems and data we test
our method on data measured at a processing plant. See
e.g. Bittencourt et al. (2015) for an introduction to this
problem area. We do not know the true parameter values
for these systems, implying that we cannot evaluate the
performance of the estimates. We use the same trained
network as we evaluated in the previous section. In Fig. 6
we simply present an input sequence and the correspond-
ing output sequence from a real system together with the
estimates produced by our method compared to using

(a) Optimal regular-
ization

(b) Deep learning
regularization

(c) Gaussian process
regularization

Fig. 4. Comparison between rescaled inverse regularization
matrices for a validation example where our method
captures the behaviour of the optimal regularization
matrix.
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Fig. 5. Estimates of the impulse response coefficients, θ̂,
using the inverse regularization matrices from Fig. 4
and the same input and output sequence.
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(a) An input sequence (blue)
and the corresponding output
(red) for a real system.
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(b) Impulse response estimates
using the data in Fig. 6a for
regular least squares (blue)
and our method (red).

Fig. 6. Our method applied to an example from a real
system and real measured data.

least squares without regularization. We note also that
the results seems reasonable and that the regularization
removes a lot of noise in the estimation.

6. CONCLUSION

In this paper we present a method to regularize an impulse
response estimation problem. We train a model with
simulated data in a data-driven fashion to encode this
regularization with parameters in a neural network. A
trained model can then be used to improve the mean
squared error of the new estimations. The results of our
method seems promising and there is plenty of scope
for future work along this line of research, both when it
comes to impulse response estimation, but also for other
problems. We find it especially interesting that this model
can mimic the optimal regularization matrix to higher
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compare the estimates from the different regularization
approaches.
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matrix for all examples. In cases where it fails the neural
network seems to fail in the same way for all examples by
producing a similar regularization matrix for each example
with a bad performance for S as consequence. Despite this
problem, the model manages to produce average results
which are comparable or better than previous methods
which is reflected in Table 1. We can see that the perfor-
mance decreases when the SNR gets larger. This is due
to the improved effectiveness of the least squares estimate
and we are thus less dependent on the regularization. For
comparison we also present the result for the optimal regu-
larization which of course is unachievable since it depends
on the true impulse response, but it is still an useful lower
bound.

Table 1. Comparing the different models using the
metric from (14) evaluated using the validation
set. LS stands for Least Squares, OR stands for
Optimal regularization (see Appendix A), GP
stands for Gaussian process regularization and
DL stands for deep learning regularization. LS,
OR and GP are not data driven approaches and
they are thus not dependent on any training
data.
Model SNR < 5.5 SNR > 5.5

LS 1 1
OR 0.04 0.05
GP 0.31 0.40
DL 0.20 0.23

5.4 Real data results

To show that our method at least does not give un-
reasonable estimates for real systems and data we test
our method on data measured at a processing plant. See
e.g. Bittencourt et al. (2015) for an introduction to this
problem area. We do not know the true parameter values
for these systems, implying that we cannot evaluate the
performance of the estimates. We use the same trained
network as we evaluated in the previous section. In Fig. 6
we simply present an input sequence and the correspond-
ing output sequence from a real system together with the
estimates produced by our method compared to using
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Fig. 6. Our method applied to an example from a real
system and real measured data.

least squares without regularization. We note also that
the results seems reasonable and that the regularization
removes a lot of noise in the estimation.

6. CONCLUSION

In this paper we present a method to regularize an impulse
response estimation problem. We train a model with
simulated data in a data-driven fashion to encode this
regularization with parameters in a neural network. A
trained model can then be used to improve the mean
squared error of the new estimations. The results of our
method seems promising and there is plenty of scope
for future work along this line of research, both when it
comes to impulse response estimation, but also for other
problems. We find it especially interesting that this model
can mimic the optimal regularization matrix to higher
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degree than previous methods which we believe is the
reason for why it sometimes produce better estimates.

Although training our model is quite time consuming,
estimating the impulse response using our method is very
fast since it only involves a couple of matrix multiplications
to compute the regularization matrix, whereas the method
of Chen et al. (2012) needs to solve an optimization
problem for each example.

7. FUTURE WORK

We are planning to further investigate how one can make
use of real data from e.g. the process industry. This would
make it possible to use large amounts of collected data
to improve the estimated parameters in a data-driven
manner. The process industry has a lot of data available
and makes extensive use of linear models.

The idea of learning a prior by representing it with a
regularization matrix in the form of a neural network
is not unique to the problem of estimating the impulse
response. It could easily be generalized to other situations
where the least squares solution is available but the prior
of the solution is either unknown or intractable. If one
can simulate many such systems at low cost, or have data
from true systems available, formulating a regularization
matrix as a neural network might be a tractable way of
regularizing the estimate.

The presented approach can easily be extended to multi-
input multi-output systems where the only difference is
that the dimension of the input and output sequences
and the parameters θ increases. The deep structure of
the model automatically induces any relevant connection
between the different system input and output components
present in the training data.

Finally we want to stress that this is just one example
of what one might do with deep learning in system
identification. There might and should be other areas
where it is possible to make use of either simulated or
real data to improve standard methods, or invent new
methods for system identification. For example it might
be worth looking into Recurrent Neural Networks (RNN)
such as Long Short Term Memory (LSTM)(Hochreiter and
Urgen Schmidhuber, 1997), Gated Recurrent Units (GRU)
(Cho et al., 2014) or Stocastic Recurrent Neural Network
(SRNN)(Fraccaro et al., 2016) and apply it in a system
identification setting or even to bring some of the system
identification knowledge of dynamical systems to the field
of deep learning.
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Appendix A. OPTIMAL REGULARIZATION

The optimal regularization matrix is a term coined by
Chen et al. (2012). It corresponds to the regularization
matrix that is optimal in the sense that it minimizes the
mean squared error. The optimal regularization matrix can
be written as, P = σ−2θ0θ

T
0 (Chen et al., 2012), where σ2

is the variance of the additive noise v(t) in (1), θ0 is the
true impulse response of the system without noise.
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