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Abstract— This paper compares classical parametric methods
with recently developed Bayesian methods for system identifi-
cation. A Full Bayes solution is considered together with one
of the standard approximations based on the Empirical Bayes
paradigm. Results regarding point estimators for the impulse
response as well as for confidence regions are reported.

I. INTRODUCTION

Linear system identification is sometimes considered to
be a mature field, see e.g. [1], [2]. In particular parametric
prediction error methods (PEM) are by now well developed
and understood. Yet, facing in an effective manner the so-
called bias variance dilemma trading model complexity vs.
data fit is still an open issue and, very recently, regularization
methods for system identification [3], [4], [5] have been
revitalized; see e.g. [6], [7], [8], [9].

In particular experimental evidence has shown that para-
metric methods may give rather unreliable results when
model complexity is not fixed but has rather to be determined
from data. Since most criteria for determining complexity
are derived using asymptotic arguments, this is yet another
symptom suggesting that asymptotic theory is not to be
blindly trusted. This is not only related to issues pertaining
to local minima (as discussed for instance in [10]), but also
to the fact that it is difficult to say “how much data is
enough data” to be in the asymptotic regime. These issues
concerning asymptotic results become even more dramatic
when parameter estimation has to be coupled with model
selection, resulting in so called Post Model Selection Estima-
tors (PMSE). [11] have pointed out that asymptotic analysis
is rather delicate in this case.

Therefore, if under certain circumstances asymptotic anal-
ysis fails in delivering reliable indications as to the variability
of an estimator, how would one go about providing, e.g.,
confidence sets for estimated systems? This is certainly of
primary importance in a system identification exercise as
one is not only interested in providing estimators for some
quantity of interest, but also in providing quality tags which
measure how reliable an estimator is.

In this paper we shall compare Bayesian methods in a
non-parametric setting to classical parametric approaches.
In particular, we will compare the uncertainty sets which
can be found following the classical parametric paradigm,
specifically PEM equipped with BIC criterion and with an
oracle to estimate model complexity, with the non-parametric
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approaches, both following the Full Bayes as well as the
Empirical Bayes methods.

The paper is organized as follows: Section II introduces
the system identification problem, while Sections III and
IV respectively illustrate the classical parametric methods
and the Bayesian non-parametric approach adopted in a
system identification setting; both the point estimators and
the confidence sets arising from these two approaches are
presented. Section V provides an experimental comparison of
these techniques, while Section VI draws some final remarks
on the observed results.

II. PROBLEM FORMULATION

Consider, for the sake of the exposition, a single-input-
single-output Output Error model:

y(t) = [h∗u](t)+ e(t) (1)

where y(t), u(t) ∈ R are respectively the measurable input
and output, e(t) is a zero mean Gaussian white noise
uncorrelated to u(t) and h(t) is the impulse response of the
model.
Given a finite set of input-output data points
D = {u(t),y(t)}t∈{1,...,T}, system identification aims at
estimating the impulse response h(t). Moreover, one could
also be interested in determining a (random) set which
is likely to include the unknown true h(t): this range is
generally referred to as confidence set. In this paper we will
compare the classical and the Bayesian methods for system
identification on both these two aspects of the problem.
In the remaining of the paper, we shall consider {u(t)}
and {y(t)} as jointly stationary zero-mean stochastic
processes and denote with U, Y ∈ RT the vectors with
entries u(t), y(t), t = 1, ...T , respectively.

III. CLASSICAL IDENTIFICATION METHODS

A. Point estimator

Within the classical parametric identification framework,
one assumes that the system to be identified belongs to a
specific model class M (e.g. ARMAX, OE, Box-Jenkins,
state-space, etc.), which is parametrized through a parameter
θ ∈ Θ, i.e. M (θ). The commonly used PEM (Prediction
Error Method) determines the estimate of θ by minimizing
the sum of squared prediction errors, i.e.:

θ̂PEM = argmin
θ∈Θ

J(θ) = argmin
θ∈Θ

1
T

T

∑
t=1

(y(t)− ŷ(t|θ))2 (2)
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where ŷ(t|θ) denotes the one-step ahead predictor of the cho-
sen model class. Once θ̂PEM has been determined, one can
then compute the corresponding impulse response estimate
ĥθPEM (t).

Many interesting properties of these estimators are derived
using asymptotic arguments, i.e. considering T → ∞. For
instance, for Gaussian innovations e(t) and for fixed model
complexity, these methods have proved to be asymptoti-
cally efficient. However, model complexity, which strongly
affects their effectiveness, has to be estimated from the
data. Different approaches are commonly exploited for this
purpose, such as Cross-Validation or the Information Criteria
(AIC/FPE, BIC/MDL, etc.) which are derived by asymptotic
arguments. From these considerations a natural question
arises: how many data have to be considered for these asymp-
totic properties to be reliable in a finite-sample domain?
The answer is not general and could be really application-
dependent.

B. Confidence Set

1) Asymptotic: Consider the estimate (2); under the as-
sumption that the true system belongs to the chosen model
class M and some other mild assumptions, (e.g. θ̂PEM
gives rise to a uniformly stable model and the given data
{y(t)} ,{u(t)} are jointly quasi-stationary signals), it holds
that

θ̂PEM →N

(
θ0,

Σθ

T

)
, as T → ∞ (3)

where θ0 is the unique value in Θ such that

θ̂PEM → θ0, w.p. 1 as T → ∞ (4)

and

Σθ = σ
2

{
lim

T→∞

1
T

T

∑
t=1

E
[
ψ(t,θ0)ψ(t,θ0)

>
]}−1

(5)

ψ(t,θ0) =
d

dθ
ŷ(t|θ)|θ=θ0 (6)

See [12] for more details.
Once θ̂PEM has been determined exploiting the given T
input-output pairs, the asymptotic covariance (5) can be
approximated as

Σ̂θ = J(θ̂T )

{
1
T

T

∑
t=1

E
[
ψ(t, θ̂PEM)ψ(t, θ̂PEM)>

]}−1

(7)

ψ(t, θ̂PEM)=
d

dθ
ŷ(t|θ)|

θ=θ̂PEM
(8)

Notice that, in case of Gaussian innovations Σθ coincides
with the Cramer-Rao lower bound, thus proving the afore-
mentioned asymptotic efficiency of the PEM estimators.

Observe that the asymptotic covariance (7) describes the
(asymptotic) confidence set in the space of the estimated
parameters θ . For further comparison with the Bayesian
methods, we are also interested in determining a confidence
set for the estimated impulse response coefficients ĥθPEM . To

do this, one could proceed analytically by linearizing the
map:

L : Θ → Rn (9)
θ 7→ h

and thus directly mapping the parameter confidence set onto
the space of impulse response coefficients. Notice that, for
simplicity, we consider a truncated impulse response, where
the length n can be chosen in order to account only for the
relevant part of the impulse response.

In order to avoid the linear approximation introduced by
the mentioned approach, we prefer to resort to Monte-Carlo
sampling which yields a point distribution of the confidence
set in the impulse response space. We first draw N samples
θ (i) from the distribution pT (·) ∼N

(
θ̂PEM, Σ̂θ

T

)
; for each

of them we build the model M (θ (i)) and we compute its
impulse response h

θ (i) of length n. We then determine the
confidence set composed by the h

θ (i) associated with the α-
fraction of the highest probability pT (·), i.e:

SPEM+ASY MP
α =

{
h

θ (i) : pT (θ
(i))≥ pPEM+ASY MP

α ,θ (i) ∈Θ

}
(10)

where pPEM+ASY MP
α is the (1 − α)-percentile of the set{

pT (θ
(i))
}
, i = [1,N].

2) Likelihood Sampling : As an alternative, instead of
relying on the approximation (7) to the asymptotic covari-
ance (5), one could define a confidence set sampling from
the likelihood function p(Y |θ , σ̂2), with σ̂2 being a noise
variance estimate (obtained e.g. through a Least-Squares
model). In fact, assuming a flat prior distribution p(θ) for
the parameters, the likelihood function is proportional to the
posterior distribution:

p(θ |Y, σ̂2) ∝ p(Y |θ , σ̂2) = (2πσ̂
2)−T/2 exp

{
− T

2σ̂2 J(θ)
}

(11)
where J(θ) has been defined in (2). Hence, we design an
MCMC algorithm to obtain N samples θ (i) from (11). From
these we compute the corresponding impulse responses h

θ (i)

and we define the set

SPEM+LIK
α =

{
h

θ (i) : p(θ (i)|Y, σ̂2)≥ pPEM+LIK
α ,θ (i) ∈Θ

}
(12)

where pPEM+LIK
α is the (1 − α)-percentile of the set{

p(θ (i)|Y, σ̂2)
}
, i = [1,N].

As previously said, sampling techniques allow to avoid
approximations of asymptotic expressions. However, they are
still approximations of the true uncertainty associated to the
estimated parameter θ̂PEM . Indeed, for the definition of the
previous confidence sets, it has been assumed that the model
class M and the model complexity are fixed, even if in prac-
tice model selection is performed using the available data.
That is, θ̂PEM is a so-called post-model-selection estimator
(PMSE): in order to define a more accurate confidence set,
we should take into account also the uncertainty related to
the model selection step. However, as emphasized in [11], the
finite-sample distribution of a PMSE generally has a quite



intricate shape; moreover, even if one tries to estimate it
through a sampling method, one has to recall that the finite-
sample distribution of a PMSE is not uniformly close to its
asymptotic limit (5).

IV. BAYESIAN IDENTIFICATION METHODS

A. Point estimator

Non-parametric approaches to the system identification
problem follow the Bayesian framework: one postulates that
the impulse response to be estimated, h(t), is itself a random
process and one seeks for its posterior distribution given the
data, p(h|Y ).

The a priori probability distribution given to h(t) is called
prior

h ∼ p(h|η) (13)

and in general depends upon some unknown parameters η ,
called hyperparameters hereafter, which need to be estimated
from data.
A common and convenient choice is to model h(t) as a zero
mean Gaussian process, independent of the noise e(t) with
covariance function K(t,s), i.e.

Eh(t) = 0
Eh(t)h(s) = Kη(t,s)

The covariance function Kη(t,s) is sometimes called kernel
in the Machine Learning community. This type of Gaussian
priors can be derived following Maximum Entropy argu-
ments, see e.g. [13], [14].

The minimum variance estimate of the impulse response
is then given by:

ĥ = E[h|Y ] =
∫

h p(h|Y )dh

=
∫ ∫

h p(h|η ,Y )p(η |Y )dhdη

=
∫

E[h|Y,η ]p(η |Y )dη

(14)

where E[h|Y,η ] is the conditional estimate of h when η

are fixed. In a general framework these integrals are not
analytically tractable and it is necessary to resort to effective
approximations, e.g. analytical approximations or Markov
Chain Monte Carlo (MCMC) methods. These approxima-
tions yield to different approaches, such the so-called Em-
pirical Bayes (EB) and Full Bayes (FB) estimators.

Remark 1: In principle, the estimator (14) belongs to
an infinite-dimensional space. However, for computational
reasons, it is general practice to estimate a finite-length
impulse response, whose length n is chosen large enough to
capture the dynamics of the estimated system. In this case,
h ∈ Rn is modelled as a zero-mean Gaussian random vector
with covariance K̄η ∈ Rn×n.

1) Empirical Bayes: The Empirical Bayes approach is
based on the assumption that the marginal posterior distribu-
tion on the hyperparameters p(η |Y ) can be approximated
by a delta-function centered at its mode η̂ ; under this
approximation the outer integral in (14) is trivially equal to

E[h|Y,η ] evaluated at η̂ . In order to estimate this value of
η the common approach is to consider a non informative
prior on the hyperparameters and maximize the so-called
marginal likelihood, p(Y |η). Under the assumptions on the
output noise and on the processes {y(t)} , {u(t)} (see Section
II), this marginal density can be computed in closed form,
as discussed in [6] and [15], and is given by

p(Y |η) = exp
(
−1

2
ln(det[2πΣy(η))− 1

2
Y T

Σy(η)−1Y
)
(15)

Σy(η) = ΦK̄η Φ
>+σ

2I (16)

where σ2 := Var{e(t)} is the variance of the innovation
process (1) and Φ ∈ RT×n is a matrix built with past input
data; see [16], [15] for details.
It follows that we can compute the point estimate of the
hyperparameters for the EB approach as

η̂EB = argmax
η

p(Y |η) (17)

and we can finally obtain the EB estimator of h, ĥEB =
E[h|Y, η̂EB]. Notice that, since h(t) and e(t) are Gaussian
and independent, the convolution is a linear operation, then
Y and h(t) are jointly Gaussian yielding also h conditioned
on Y be Gaussian for a fixed η :

p(h|Y,η)∼N (µ post
h (η),Σpost

h (η)) (18)

where

µ
post
h (η) = E[h|Y,η ]

= K̄η Φ
>
(

ΦK̄η Φ
>+σ

2I
)−1

Y (19)

Σ
post
h (η) = K̄η − K̄η Φ

>
Σy(η)−1

ΦK̄η (20)

Hence the posterior estimate ĥEB can be computed in closed
form using (19).

2) Full Bayes: The Full Bayes approach has the advan-
tage that it does not assume any particular distribution form
of the marginal posterior p(η |Y ); therefore in principle, it
generates a more accurate estimate than the EB estimator
(under the assumption that the a priori Bayesian model is cor-
rect). As a disadvantage, in general it requires a much higher
computational effort which, when the marginal posterior
p(η |Y ) is sufficiently peaked, may not be counterbalanced
by a significant performance increase.
Here we consider a full Bayes estimator of the impulse
response h obtained by an adaptive version of the Metropolis-
Hastings algorithm (Adaptive Metropolis, AM hereafter); see
[17], [18].

Recall that the target is to compute the posterior distri-
bution of the impulse response given the data which, as
mentioned in Section IV-A, cannot be computed analytically.
For this reason, we tackle the problem by approximating the
posterior as

p(h|Y ) =
∫

η

p(h|Y,η)p(η |Y )dη ' 1
N

N

∑
i=1

p(h|Y,η(i)) (21)



where p(h|Y,η(i)) is the posterior density (18) when the
hyperparameters are fixed equal to η(i).
In order to do this, we need to design an MCMC algorithm
to draw samples η(i) from p(η |Y ). Observe that:

p(η |Y ) = p(Y |η)p(η)

p(Y )
∝ p(Y |η) (22)

where we have assumed that p(η) is a non informative prior
distribution. Thus, by using (15) we can evaluate p(η |Y )
apart from the normalization constant p(Y ).
As mentioned earlier, we have exploited the AM algorithm
proposed in [18] to obtain the samples η(i). The basic
idea which distinguishes the AM algorithm from a regular
Metropolis-Hasting is to update the proposal distribution
exploiting the new knowledge which becomes available:
at each iteration i, the AM algorithm adopts a Gaussian
proposal distribution centered at the previous sample η(i−1)

and with a covariance matrix which is adaptively updated
based on the samples η(1), ...,η(i−1). The updating recursion
formula for the covariance matrix given in [18] is:

Hi+1 =
i−1

i
Hi +

sd

i
(iη̄(i)

η̄
(i)> +η

(i)
η
(i)> + εId) (23)

where η̄k is the mean after k samples, sd is a regularization
parameter, Id is the identity matrix of dimension d, which
is the dimension of the hyperparamters, and ε > 0 is an
arbitrarily small constant. The value of the regularization
parameter initially has been chosen to be sd = 2.42

d , a value
which gives good mixing properties in the Metropolis chain
under the assumption of Gaussian targets and proposal, as
shown in [19], then it has been empirically adjusted in order
to have an acceptance rate of the MCMC algorithm around
the 30%.

The algorithm we implemented in order to obtain the FB
estimate ĥFB is briefly outlined in the following.

Algorithm 1:
Sample hyperparameters through an AM algorithm

1) Initialize the proposal density qi(·) for the AM algo-
rithm: set q0(·) = N (η̂EB,H0), with

H0 =−
[

d2 ln[p(Y |η̂EB)p(η̂EB)]

dηdηT

]−1

2) For i > 0 Iterate:
• Sample η from qi(·|η(i−1))∼ N (η(i−1),Hi))
• Sample u from a uniform distribution on [0,1]
• Set

η
(i) =

{
η if u≤ p(Y |η)p(η)

p(Y |η(i−1))p(η(i−1))

η(i−1) otherwise

• Compute Hi+1 according to equation (23).
3) After a (sufficiently long) burn-in period, keep the

last N samples η(i) which are (approximately) samples
from p(η |Y ).

Estimate the impulse response:
4) For i = 1 to N do

• Compute µ
post
h (η(i)), Σ

post
h (η(i)) as in (19), (20).

• Sample h(i) from N (µ post
h (η(i)),Σpost

h (η(i)))

5) The samples h(i) obtained above are samples from
p(h|Y ). The Minimum Variance estimate of h is finally
computed as:

ĥFB =
1
N

N

∑
i=1

h(i) (24)

B. Confidence Set

Within the Bayesian framework, the confidence of the final
estimator is described by the posterior density p(h|Y ). Since
the Empirical Bayes (EB) and the Full Bayes (FB) estimators
lead to different approximations of p(h|Y ), they will also
lead to different definitions of the confidence set, as will be
illustrated in the following.

1) Empirical Bayes: When the Emprical Bayes approach
is considered, the posterior p(h|Y ) is the Gaussian distri-
bution defined in (18) with η fixed to η̂EB. Hence, one can
define the following ellipsoidal confidence region in Rn, with
n being the length of the estimated impulse response, i.e.
ĥEB ∈ Rn:

E EB
α =

{
x ∈ Rn : (x− ĥEB)

>
Σ
−1
η̂EB

(x− ĥEB)≤ χ
2
α(n)

}
(25)

For a fixed probability level α , χ2
α(n) is the value for which

Pr(χ2(n) < χ2
α(n)) = α . E EB

α defines the region in which a
sample from p(h|Y ) will end up with probability α . Note,
for future use, that this set corresponds also to the set of
“size” (= probability) α which satisfies:

p(hE |Y )≥ p(hE c |Y ) ∀ hE ∈ E EB(α) hE c /∈ E EB(α)
(26)

To have a confidence set comparable to the ones defined for
the classical methods, we approximate the set (25) by a point
distribution obtained by sampling the posterior distribution
p(h|Y, η̂EB) and retaining only the samples which belong to
(25), that is:

SEB
α =

{
h(i) ∈ Rn : h(i) ∈ E EB

α

}
, (27)

2) Full Bayes: The FB estimator we previously described
exploits the sample approximation to the posterior distribu-
tion in (21). Due to the non-Gaussianity of this approximated
distribution, we can not define an ellipsoidal confidence
region. However, an appropriate α-level confidence set is
given by:

SFB
α =

{
h(i) ∈ Rn :

1
N

N

∑
j=1

p(h(i)|Y,η j)≥ pFB
α

}
, (28)

where pFB
α is the (1−α)-percentile of the set{

1
N

N

∑
j=1

p(h(i)|Y,η j), i = 1, ...,N

}
That is, SFB

α contains the impulse response samples h(i)

associated with the α-fraction of the highest values of the
approximated posterior (21).



V. SIMULATIONS

The performance of the described system identification
approaches, EB, FB and PEM, are evaluated by using a
Monte Carlo study over 100 datasets. At each run a model
such as (1) is estimated together with a confidence set around
the estimated impulse response. The performance of the
estimators are compared both in terms of impulse response
fit as well as of the accuracy of the corresponding confidence
set, determined as illustrated in Sections III and IV.

A. Data

The data-bank of system and input-output data used in our
experiments have been already used and introduced in [20].
In particular, we applied the identification techniques to the
data sets “D4” which is briefly described in the following.
The data set consists of 30th order random SISO dicrete-time
systems having all the poles inside a circle of radius 0.95.
These systems were simulated with a unit variance band-
limited Gaussian signal with normalized band [0,0.8]. A zero
mean white Gaussian noise, with variance adjusted so that
the Signal to Noise Ration (SNR) is always equal to 1, was
then added to the output data. The number of input-output
data pairs is 500.
In addition, we experimented the dataset “S1D2” introduced
in [16]. The results were similar to the ones obtained on
dataset “D4” and outlined in the following; therefore, we
are not going to report them here.

B. Estimators

1) PEM: In the simulations we performed, the chosen
model class for the PEM methods is OE. Model selection
has been performed through BIC criterion, since it
generally outperforms AIC. We will denote this estimator
as PEM+BIC.
Moreover, as a reference we also consider an oracle
estimator, denoted by PEM+OR, which has the (unrealistic)
knowledge of the impulse response of the true system, h:
among the OE models with complexity ranging from 2 to
30, it selects the one which gives the best fit to h.

2) EB, FB: For the Bayesian estimators illustrated in
Section IV, the choice of the prior distribution on the
impulse response to be estimated is a crucial point for the
identification problem.
The experiments we present in this Section have been ob-
tained adopting a zero-mean Gaussian prior with a covariance
matrix (kernel) given by the so-called “DC”-kernel:

K̄DC
η (k, j) = cρ

|k− j|
λ
(k+ j)/2 (29)

where c≥ 0, 0≤ λ ≤ 1 and |ρ| ≤ 1 are the hyperparameters
which form the set η = {c,ρ,λ}. For further details on the
meaning of these hyperparameters and on the properties they
induce in the estimated impulse response we refer to [16],
where the DC kernel has been proposed.

The length n of the estimated impulse responses has been
set to 100.

For ease of notation, we will now use the apex X to denote
a generic estimator among the ones previously illustrated,
that is, PEM+BIC, PEM+OR, EB and FB.

C. Impulse Response Fit

As a first comparison, we would like to evaluate the
ability of the considered identification techniques on the
reconstruction of the true impulse response. Thus, for each
estimated system and for each estimator X we compute the
so-called impulse response fit:

F X (ĥ) = 100×
(

1− ‖h− ĥ‖2

‖h‖2

)
(30)

where h, ĥ are the true and the estimated impulse responses
of the considered system.

PEM+OR PEM+BIC EB FB
-150

-100

-50

0

50

100

Plus 1

Impulse Response Fit 

Fig. 1: Monte Carlo results. Boxplots of the impulse response
fit for the compared identification techniques.

Figure 1 displays the boxplots of index (30) for the 4
estimators and the resulting average can be seen in Tabel I.

PEM+OR PEM+BIC EB FB

Fit Mean 79.1547 60.6676 78.4420 78.1332

TABLE I: Comparison of average impulse response fit.

The oracle estimator PEM+OR sets an upper bound on
the achievable performance by a parametric methods; we
can note that EB performs remarkably well, with only a
slightly inferior fit. The FB estimator performs similarly
to EB, but it requires the implementation of a MCMC,
which is highly computationally expensive. These results
suggest that the marginal posterior p(η |Y ) is sufficiently well
peaked to be approximated by a delta function (meaning that
p(h|Y )' p(h|Y, η̂EB)). The PEM+BIC estimator has weaker
performances: a lower median and a long tail of systems
with low fit are obtained. This is most likely due to the



low pass characteristics of the input signal, which make
the order estimation step particularly delicate. Indeed, in the
dataset “S1D2” where the inputs were Gaussian white noises,
PEM+BIC performed similar to the Bayesian estimators.

D. Confidence Set Indexes

The confidence sets which have been introduced in Sec-
tions III-B and IV-B are: SPEM+OR+ASY MP

α , SPEM+OR+LIK
α ,

SPEM+BIC+ASY MP
α , SPEM+BIC+LIK

α , SEB
α and SFB

α . As before,SX
α

will generically denote one of them.
In the simulations we present, the previously defined con-
fidence sets are made of N = 7200 samples and we set
α = 0.95. These are only approximations of a “true” α-level
confidence set and thus our aim is to study how well they
perform both in term of “coverage” (how often does the α-
level confidence set contain the “true” value?) as well as of
size (how big is an α-level confidence set?). Unfortunately,
since our sets are only defined through a set of points, it is
not possible to define a notion of inclusion (does the true
system belong to the confidence set?) and as a proxy to this
we thus consider the following index which measures the
relative distance from the true system and the closest point
within the confidence set:

1) Coverage Index: For a fixed probability level α , it is
given by

I X
1 (α) := min

x∈SX
α

‖x−h‖
‖h‖

(31)

where h denotes the true impulse response. For future
analysis the usage of the concept “coverage” will be
meant as in definition (31).
As far as the “size” of the confidence sets we consider
the index:

2) Confidence Set Size: It evaluates the area of the interval
which includes the whole slot of impulse responses
contained in SX

α . Let us define the vectors h̄X ∈Rn and
hX ∈ Rn whose j-entries are h̄X ( j) := maxi h(i)( j) and
hX ( j) := mini h(i)( j), respectively, with h(i) ∈ SX

α ; the
index we consider is defined as:

I X
2 (α) =

n

∑
j=1

h̄X ( j)−hX ( j) (32)

Referring to Figure 2, a large confidence set is more likely
to contain the true impulse response, giving a low value of
I X

1 (α), but it will also denote a large amount of uncertainty
in the returned estimate, thus leading to a large value of
I X

2 (α).
Figure 3 illustrates the boxplots for index (31). The con-

fidence sets of the oracle perform well in terms of coverage,
which is rather obvious because the estimator is selected by
the oracle if its relative distance to the true system is small.
EB and FB provide very similar performance in terms of
coverage, outperforming the confidence sets computed from
the parametric approach endowed with BIC.

Figure 4 illustrates the boxplots for index (32). The
EB confidence set has a remarkably smaller size than
the others. The size of the FB confidence set is slightly
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Fig. 2: Illustration of the idea of the Confidence set size index
for a single system.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Coverage Index

PEM+OR PEM+OR PEM+BIC PEM+BIC EB FB
ASYMP LIK ASYMP LIK

Fig. 3: Monte Carlo results. Boxplots of the Coverage Index
for the compared identification techniques.

larger than the EB one, which is rather obvious since also
uncertainty related to the hyperparameters is accounted for.
The parametric methods PEM+OR and PEM+BIC have
larger confidence sets than the Bayesian ones. In particular,
the two PEM+OR confidence sets are larger than the ones
returned by the PEM+BIC estimator: this can be explained
from the fact that PEM+OR tends to select higher-order
models, thus bringing more uncertainty into the estimated
systems. Comparing the Asymptotic and the Likelihood
Sampling confidence sets it is clear that the latter is slightly
more precise than the former. This is due to the fact that the
Asymptotic confidence set is an approximation which holds
for large data sets, while the Likelihood Sampling is correct
for any finite sample size; however, this improvement comes
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Fig. 4: Monte Carlo results. Boxplots of the Confidence Set
Size for the compared identification techniques.

at a rather high computational price needed to run the
MCMC sampler. It is important to note that the asymptotic
theory does not take into account stability issues: namely,
the confidence set derived from the Gaussian asymptotic
distribution (3) could contain unstable impulse responses.
Therefore the sampling procedure described in Section
III-B.1 could yield to diverging confidence set size. In order
to avoid this problem we truncated the asymptotic Gaussian
distribution within the stability region. Clearly, this fact
shows an intrinsic problem of the asymptotic theory. We
should also like to recall that the asymptotic as well as
likelihood based confidence intervals do not account for
uncertainty in the order estimation step.

By comparing the results in both Figures 3-4 we can
conclude that: among the feasible identification methods,
EB and FB are preferable both in terms of coverage as
well as size. In this case there seems to be no gain in
using the much more computationally expensive FB. It seems
also fair to say that the confidence sets attached to the
parametric approaches, even those of the oracle estimators,
are significantly worse than those obtained from the Bayesian
methods. Not surprisingly, focusing on the parametric con-
fidence sets, the ones obtained through sampling techniques
are significantly smaller than the “asymptotic” counterparts,
but at the cost of an extra MCMC algorithm.

Remark 2: At this point one could argue that the sets
SX

α are only “sample” approximations of a confidence set,
while one may be interested in having a bounded region as
a confidence set. In the case of the EB estimator this region is
directly defined since the posterior distribution is Gaussian,
thus naturally leading to ellipsoidal confidence regions (25).
For all the other estimators, it is in principle possible to build
outer approximations of the confidence sets e.g. building
a minimum size set which includes all the points in SX

α ;

examples are the convex hull or an ellipsoid.
The convex hull can be computed with off-the-shelf algo-
rithms (such as the Matlab routine convhulln.m), while
the smallest ellipsoid (in terms of sum of squared semi-axes
length) can be found solving the following problem:

Popt
α ,copt

α := arg min
P,c

Trace P

s.t.
[

P (h(i)− c)
(h(i)− c)> 1

]
� 0,

h(i) ∈ SX
α (33)

See [21] for further details. The corresponding ellipsoid is
then given by

E opt
α =

{
x ∈ Rn : (x− copt

α )>(Popt
α )−1(x− copt

α )≤ 1
}

(34)

However, the computation of the convex hull as well as the
solution of the optimization problem (33) become computa-
tionally intractable for moderate ambient space and sample
sizes. E.g. when the impulse response lives in Rn, n =
100, the set SX

α contains N = 7200 this computations are
prohibitive with off-the-shelf methods. To overcome this
issue, we tried to approximate the optimal ellipsoid E opt

α by
using the sample mean h̄SX

α
and the sample covariance ΣSX

α

of the elements in SX
α ; namely:

E X
α =

{
x ∈ Rn : (dX

α )
>

Σ
−1
SX

α

dX
α ≤ kX

α

}
,

dX
α = x− h̄SX

α
(35)

where kX
α is a constant appropriately chosen so that all the

elements of SX
α fall within E X

α . However, it can be observed
that these ellipsoids are rather rough approximations of the
sets SX

α . E.g., inspecting 2D sections of the n-dimensional
ellipsoids, it can be seen that often the axis orientation was
not correct, thus leading to sets which are much larger than
needed. This fact was mainly observed for the confidence
sets related to PEM estimates.
These observations suggest that the quality of the confidence
sets obtained through the ellipsoidal approximation (35)
would have been highly dependent on the quality of the fitted
ellipsoid. Therefore, we concluded that a comparison among
the different estimators, based on this kind of confidence set,
would have led to unreliable results; therefore such results
have not been reported.

VI. CONCLUSIONS

We have presented an in-depth comparison between para-
metric and Bayesian methods for system identification. Our
results complement previous findings showing that Bayesian
methods not only outperform parametric methods in terms
of point estimators, but also provide better approximations
for uncertainty regions. From our limited experience there
seems to be very little advantage in using Full Bayes
approaches which entail a much higher computational load
than Empirical Bayes methods. It is interesting to note that
Bayesian estimators and their confidence sets are competitive
even with the parametric methods equipped with an oracle



which has the knowledge of the true impulse response.
In addition, with regard to the parametric techniques, we
showed that the confidence sets obtained through sampling
techniques improve the ones returned by the “asymptotic”
approximation.
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