

Creativity in Computer Science & Engineering

AQUINCUM INSTITUTE OF TECHNOLOGY

COMPUTATIONAL BIOLOGY and MEDICINE Causality

Andras Falusafalus@gmail.comPeter Antalantal@mit.bme.huGábor Csonkacsonkagi@gmail.com

AIT, Budapest 2011. spring

2011.12.02.

Overview

- Statistical and causal models
 - Interpretations of probabilistic graphical models
- Observational equivalence
- Observational and interventional inference
- The Causal Markov Condition and faithfulness
- Learning causal relations

Formal models for complex diseases

"From allergy through asthma to COPD":

Allergic pollen \rightarrow IgE \rightarrow Rhinitis \rightarrow Eosinophil \rightarrow Asthma \rightarrow COPD

Bayesian networks

P(M)

Directed acyclic graph (DAG)

- nodes random variables/domain entities
- edges direct probabilistic dependencies

The DAG space

The cardinality of the space of DAGs is given by the following recursion

$$f(n) = \sum_{i=1}^{n} (-1)^{i+1} 2^{i(n-1)} f(n-i) \text{ with } f(0) = 1.$$
(42)

The number of orderings, DAGs and order-compatible DAGs with parental constraints. The columns shows respectively the number variables (nodes) (*n*), DAGs (|DAG(n)|), DAGs compatible with a given ordering ($|G_{\prec}|$), DAGs compatible with a given ordering and with maximum parental set size <=4 ($|G_{\prec}^{|\pi|\leq 4}|$) and <=2 ($|G_{\prec}^{|\pi|\leq 2}|$), the number of orderings (permutations) ($| \prec |$) and the total number of parental sets in an order-compatible DAG $|\pi^{\prec}|$ and in an order-compatible DAG with maximum parental set size <=4 ($|\pi^{\prec}|\leq 4|$) and <=2 ($||\pi^{\prec}|\leq 2|$).

n	DAG(n)	$ G_{\prec} $	$ G_{\prec}^{ \pi \leq 4} $	$ G_{\prec}^{ \pi \leq 2} $	$ \prec $	$ \pi^{\prec} $	$ \pi^{\prec} \leq 4 $
5	2.9e+004	1e+003	1e+003	6.2e+002	1.2e+002	30	30
6	3.8e+006	3.3e+004	3.2e+004	9.9e+003	7.2e+002	62	61
7	1.1e+009	2.1e+006	1.8e+006	2.2e+005	5e+003	1.3e+002	1.2e+002
8	7.8e+011	2.7e+008	1.8e+008	6.3e+006	4e+004	2.5e+002	2.2e+002
9	1.2e+015	6.9e+010	2.9e+010	2.3e+008	3.6e+005	5.1e+002	3.8e+002
10	4.2e+018	3.5e+013	7.5e+012	1.1e+010	3.6e+006	1e+003	6.4e+002
15	2.4e+041	4.1e+031	2.1e+027	3.1e+019	1.3e+012	3.3e+004	4.9e+003
35	2.1e+213	1.3e+179	1.8e+109	8.5e+068	1e+040	3.4e+010	3.8e+0 05

Challenges in a complex domain

The domain is defined by the joint distribution

P(X₁,..., X_n|Structure,parameters)

A stochastic dynamical system view in biomedicine: systems biology

State descriptors in stage 0	State descriptors in stage 1
Genetic/epigenetic variations	Genetic/epigenetic variations
Gene expressions	Gene expressions
Proteomic expressions	Proteomic expressions
Phenotypic descriptors	Phenotypic descriptors

Stochastic internal dependencies

+ stochastic transitions

Models/knowledge representations for systems biology

- Declarative vs procedural
- Discrete vs continuous
- Deterministic vs stochastic
- Dynamic vs static
- Feedforward vs feedback
- Predictive vs domain models
- Associational vs independence vs causal
- E.g.
 - Logic
 - Boolean networks
 - Cellular automaton
 - Ordinary differential equations
 - Probabilistic models
 - Hidden Markov Models
 - (Dynamic) Bayesian networks
- Language
 - Systems Biology Markup Language

A Hidden Markov Model approach

Hidden Markov Models

- First-order, homogenous Markov chain
 - Transition model: $P(X_i | X_{i-1})$

-

- Sensor (or emission) model: $P(E_i|X_i)$
- Inference: P(Query|Observations)
 - Linear time complexity (w.r.t number of variables)
- BUT WHAT TO DO in a complex state space???

Conditional independence

"Probability theory=measure theory+independence"
I_P(X;Y|Z) or (X⊥Y|Z)_P denotes that X is independent of Y given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, $I_P(X;Y|Z)$ iff P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: $D_P(X;Y|Z) = def = {}_{T}I_P(X;Y|Z)$ Contextual independence: for not all z.

The graphoid axioms

1. Symmetry: The observational probabilistic conditional independence is symmetric.

 $I_p(\boldsymbol{X}; \boldsymbol{Y}|\boldsymbol{Z}) iff I_p(\boldsymbol{Y}; \boldsymbol{X}|\boldsymbol{Z})$

2. Decomposition: Any part of an irrelevant information is irrelevant.

 $I_p(X; Y \cup W | Z) \Rightarrow I_p(X; Y | Z) \text{ and } I_p(X; W | Z)$

Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant information.

$$I_p(X; Y \cup W | Z) \Rightarrow I_p(X; Y | Z \cup W)$$

 Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant information.

 $I_p(X; Y|Z)$ and $I_p(X; W|Z \cup Y) \Rightarrow I_p(X; Y \cup W|Z)$

The independence model of a distribution

The independence map (model) M of a distribution P is the set of the valid independence triplets:

 $M_{P} = \{I_{P,1}(X_{1};Y_{1}|Z_{1}),...,I_{P,K}(X_{K};Y_{K}|Z_{K})\}$

If P(X,Y,Z) is a Markov chain, then $M_P = \{D(X;Y), D(Y;Z), I(X;Z|Y)\}$ Normally/almost always: D(X;Z)Exceptionally: I(X;Z)

The independence map of a N-BN

If P(Y,X,Z) is a naive Bayesian network, then $M_P=\{D(X;Y), D(Y;Z), I(X;Z|Y)\}$ Normally/almost always: D(X;Z)Exceptionally: I(X;Z)

D-separation

I_G(X;Y|Z) denotes that X is d-separated (directed separated) from Y by Z in directed graph G.

D-separation and the global Markov condition

Definition 7 A distribution $P(X_1, \ldots, X_n)$ obeys the global Markov condition w.r.t. DAG G, if

$$\forall X, Y, Z \subseteq U (X \perp \!\!\!\perp Y | Z)_G \Rightarrow (X \perp \!\!\!\perp Y | Z)_P, \tag{9}$$

where $(X \perp | Y | Z)_G$ denotes that X and Y are *d*-separated by Z, that is if every path p between a node in X and a node in Y is blocked by Z as follows

- 1. either path p contains a node n in Z with non-converging arrows (i.e. $\rightarrow n \rightarrow or (\leftarrow n \rightarrow)$,
- 2. or path p contains a node n not in Z with converging arrows (i.e. $\rightarrow n \leftarrow$) and none of its descendants of n is in Z.

Representation of independencies

D-separation provides a sound and complete, computationally efficient algorithm to read off an (in)dependency model consisting the independencies that are valid in all distributions Markov relative to G, that is $\forall X, Y, Z \subseteq V$

 $(X \perp \!\!\!\perp Y | Z)_G \Leftrightarrow ((X \perp \!\!\!\perp Y | Z)_P \text{ in all } P \text{ Markov relative to } G).$ (10)

For certain distributions exact representation is not possible by Bayesian networks, e.g.:

- 1. Intransitive Markov chain: $X \rightarrow Y \rightarrow Z$
- 2. Pure multivariate cause: $\{X,Z\} \rightarrow Y$
- 3. Diamond structure:

$$\begin{split} & \mathsf{P}(\mathsf{X},\mathsf{Y},\!Z,\mathsf{V}) \text{ with } \mathsf{M}_{\mathsf{P}} \!\!=\!\! \{\mathsf{D}(\mathsf{X};\!Z), \ \mathsf{D}(\mathsf{X};\!Y), \ \mathsf{D}(\mathsf{V};\!X), \ \mathsf{D}(\mathsf{V};\!Z), \\ & \mathsf{I}(\mathsf{V};\!\mathsf{Y}|\!\{\mathsf{X},\!Z\}), \ \mathsf{I}(\mathsf{X};\!Z|\!\{\mathsf{V},\!Y\}).. \ \}. \end{split}$$

Markov conditions

Definition 4 A distribution $P(X_1, ..., X_n)$ is Markov relative to DAG G or factorizes w.r.t G, if

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i | Pa(X_i)),$$
(6)

where $Pa(X_i)$ denotes the parents of X_i in G.

Definition 5 A distribution $P(X_1, \ldots, X_n)$ obeys the ordered Markov condition w.r.t. DAG G, if

$$\forall i = 1, \dots, n : (X_{\pi(i)} \perp \{X_{\pi(1)}, \dots, X_{\pi(i-1)}\} / Pa(X_{\pi(i)}) | Pa(X_{\pi(i)}))_P, \tag{7}$$

where $\pi()$ is some ancestral ordering w.r.t. *G* (i.e. compatible with arrows in *G*). **Definition 6** A distribution $P(X_1, \ldots, X_n)$ obeys the local (or parental) Markov condition w.r.t. *DAG G*, if

$$\forall i = 1, \dots, n : (X_i \perp \text{Nondescendants}(X_i) | Pa(X_i))_P, \tag{8}$$

where Nondescendants(X_i) denotes the nondescendants of X_i in G.

Bayesian network definitions

Theorem 1 Let P(U) a probability distribution and G a DAG, then the conditions above (repeated below) are equivalent:

- F P is Markov relative G or P factorizes w.r.t G,
- O P obeys the ordered Markov condition w.r.t. G,
- L P obeys the local Markov condition w.r.t. G,
- G P obeys the global Markov condition w.r.t. G.

Definition 8 A directed acyclic graph (DAG) G is a Bayesian network of distribution P(U) iff the variables are represented with nodes in G and (G, P) satisfies any of the conditions F, O, L, G such that G is minimal (i.e. no edge(s) can be omitted without violating a condition F, O, L, G).

A practical definition

Definition 9 A Bayesian network model M of domain with variables U consists of a structure G and parameters θ . The structure G is a DAG such that each node represents a variable and local probabilistic models $p(X_i|pa(X_i))$ are attached to each node w.r.t. the structure G, that is they describe the stochastic dependency of variable X_i on its parents $pa(X_i)$. As the conditionals are frequently from a certain parameteriz family, the conditional for X_i is parameterized by θ_i , and θ denotes the overall parameterization of the model.

Association vs. Causation

Reichenbach's Common Cause Principle:

a correlation between events X and Y indicates either that X causes Y, or that Y causes X, or that X and Y have a common cause.

Association vs. Causation: Markov chain

Causal models:

Flow of time?

The building block of causality: v-structure

"transitive" M ≠ "intransitive" M

"v-structure"

 $M_{P}=\{D(X;Z), D(Z;Y), D(X,Y), I(X;Y|Z)\}$

 $M_{P} = \{ D(X;Z), \ D(Y;Z), \ I(X;Y), \ D(X;Y|Z) \ \}$

Often: present knowledge renders future states conditionally independent. (confounding)

Ever(?): present knowledge renders past states conditionally independent. (backward/atemporal confounding)

Observational equivalence of causal models

Different causal models can have the same independence map!

Typically causal models cannot be identified from passive observations, they are observationally equivalent.

Observational equivalence: total independence

Observational equivalence: full dependence

"Causal" models (there is a DAG for each ordering, i.e. n! DAGs):

Observational equivalence of causal models

Definition 11 Two DAGs G_1, G_2 are observationally equivalent, if they imply the same set of independence relations (i.e. $(X \perp Y | Z)_{G_1}) \Leftrightarrow (X \perp Y | Z)_{G_2}$).

The implied equivalence classes may contain n! number of DAGs (e.g. all the full networks representing no independencies) or just 1.

Theorem 2 Two DAGs G_1 , G_2 are observationally equivalent, iff they have the same skeleton (i.e. the same edges without directions) and the same set of v-structures (i.e. two converging arrows without an arrow between their tails).

Definition 12 The essential graph representing observationally equivalent DAGs is a partially oriented DAG (PDAG), that represents the identically oriented edges called compelled edges of the observationally equivalent DAGs (i.e. in the equivalence class), such a way that in the common skeleton only the compelled edges are directed (the others are undirected representing inconclusiveness).

Compelled edges and PDAG

The Causal Markov Condition

- A DAG is called a *causal structure* over a set of variables, if each node represents a variable and edges direct influences. A *causal model* is a causal structure extended with local probabilistic models.
- A causal structure *G* and distribution *P* satisfies the Causal Markov Condition, if P obeys the local Markov condition w.r.t. G.
- The distribution P is said to stable (or faithful), if there exists a DAG called *perfect map* exactly representing its (in)dependencies (i.e. I_G(X;Y|Z) ⇔ I_P(X;Y|Z) ∀ X,Y,Z ⊆ V).
- CMC: sufficiency of G (there is no extra, acausal edge)
- Faithfulness/stability: necessity of G (there are no extra, parametric independency)

Inference in Bayesian networks

- (Passive, observational) inference
 - P(Query|Observations)
- Interventionist inference
 - P(Query|Observations, Interventions)
- Counterfactual inference
 - P(Query | Observations, Counterfactual conditionals)

Inference by enumeration

If the joint distribution is efficiently represented by a Bayesian network, then any conditional is exactly defined:

P(Q=q|E=e),

where Q is the query variable, E are the evidence variables. By definition

$$\begin{split} & P(\mathbf{Q}{=}\mathbf{q} \mid \mathbf{E}{=}\mathbf{e}) \\ &= P(\mathbf{Q}{=}\mathbf{q}, \mathbf{E}{=}\mathbf{e}) / P(\mathbf{E}{=}\mathbf{e}) \\ &= \Sigma_h P(\mathbf{Q}{=}\mathbf{q}, \mathbf{E}{=}\mathbf{e}, \mathbf{H}{=}\mathbf{h}) / \Sigma_{h,q} P(\mathbf{Q}{=}\mathbf{q}, \mathbf{E}{=}\mathbf{e}, \mathbf{H}{=}\mathbf{h}) \\ & \text{where } \mathbf{H}{=}\mathbf{X}{-}\mathbf{Q}{-}\mathbf{E} \text{ are the hidden variables, and } P(\mathbf{Q}{=}\mathbf{q}, \mathbf{E}{=}\mathbf{e}, \mathbf{H}{=}\mathbf{h}) = \\ & \prod_i P(X_i, |Pa(X_i)) . \end{split}$$

Problem:

Worst-case time complexity $O(d^n)$ where d is the largest arity

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of variable elimination are $O(d^k n)$

Multiply connected networks:

- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to counting 3SAT models \Rightarrow #P-complete

Russel&Norvig: Artificial intelligence, ch.14

Inference in Bayesian networks

- (Passive, observational) inference
 - P(Query|Observations)
- Interventionist inference
 - P(Query|Observations, Interventions)
- Counterfactual inference
 - P(Query | Observations, Counterfactual conditionals)

Interventions and graph surgery

If G is a causal model, then compute p(Y|do(X=x)) by

- 1. deleting the incoming edges to X
- 2. setting X=x
- 3. performing standard Bayesian network inference.

Statistical vs causal inference

- Statistical concepts:
 - "correlation, regression, dependence, conditional independence, likelihood, collapsibility, propensity score, risk ratio, odds ratio, marginalization, conditionalization, "controlling for,"..
 - Any relation based on the joint distribution of observations.
- Causal concepts:
 - randomization, influence, effect, confounding, "holding constant," disturbance, spurious correlation, faithfulness/stability, instrumental variables, intervention, explanation, attribution
 - Causal inference: statistical inference + causal assumptions

J.Pearl: Causality

A deterministic concept of causation

• H.Simon

$$-X_i = f_i(X_1, ..., X_{i-1})$$
 for i=1...n

In the linear case the sytem of equations indicates a natural causal ordering

	Х	X	x	X
		X	X	X
			X	X
				X

In fact the probabilistic conceptualization is its generalization: $P(X_i, | X_1, ..., X_{i-1}) \sim X_i = f_i(X_1, ..., X_{i-1})$

The Inductive Causation algorithm

Assuming a stable distribution P (Pearl, 2000):

- 1. Skeleton: Construct an undirected graph (skeleton), such that variables $X, Y \in V$ are connected with an edge iff $\forall S(X \perp \!\!\!\perp Y | S)_P$, where $S \subseteq V \setminus \{X, Y\}$.
- 2. *v-structures:* Orient $X \to Z \leftarrow Y$ iff X, Y are nonadjacent, Z is a common neighbour and $\neg \exists S$ that $(X \perp \!\!\!\perp Y \mid \!\!\!S)_P$, where $S \subseteq V \setminus \{X, Y\}$ and $Z \in S$.
- propagation: Orient undirected edges without creating new v-structures and directed cycle.

8. Theorem. The following four rules are necessary and sufficient.

$$R_1 \quad \text{if } (a \neq c) \land (a \rightarrow b) \land (b - c), \text{ then } b \rightarrow c$$

$$R_2 \quad \text{if } (a \to c \to b) \land (a - b), \text{ then } a \to b$$

$$R_3$$
 if $(a-b) \land (a-c \rightarrow b) \land (a-d \rightarrow b) \land (c \not d)$, then $a \rightarrow b$

 $R_4 \quad \textit{if} \ (a-b) \land (a-c \to d) \land (c \to d \to b) \land (c \not = b) \land (a-d), \textit{ then } a \to b$

Local Causal Discovery

• Can we learn causal relations from observational data in presence of confounders???

 Automated, tabula rasa causal inference from (passive) observation is possible, i.e. hidden, confounding variables can be excluded

Statistical time

- Newtonian physics is symmetric.
- Macroscopic is not: entropy/thermodynamic.
- Quantum mechanics is not: state collapse
 (R.Penrose: The emperor's new mind)
- Subjective experience(?):
 - R.Penrose, S. Hawking
- J.Pearl: statistical time is compatible with a minimal causal model (with compelled edges).

Statistical time: example

A "causal"(?) chain: MenoPausalState \rightarrow Volume \rightarrow Ascites \rightarrow CA125

Summary

- Statistical and causal models
 - Interpretations of probabilistic graphical models
- Observational equivalence
- Observational and interventional inference
- The Causal Markov Condition and faithfulness
- Learning causal relations
- Homework: construct a model for a disease
 <u>http://redmine.genagrid.eu/</u>
 Login: bayeseyestudent Files: Wiki