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Overview

Statistical and causal models
— Interpretations of probabilistic graphical models

Observational equivalence

Observational and interventional inference
The Causal Markov Condition and faithfulness
Learning causal relations



Formal models for complex diseases
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Bayesian networks
Directed acyclic graph (DAG)

— nodes — random variables/domain entities
— edges — direct probabilistic dependencies
(edges- causal relations

Local models - P(X.| Pa(X.)) P(OIM)
Three interpretations: Q
l P(D|O
3. Concise representation of joint PTIS.:
dlstrlbutlons
P(M,0,D,S,T
P(M)P(OlM)P(D|0 M)P‘ (SID)P(TIS,M) i 1. Causal model

Mp={lp1(X1;Y41Zy),...
2. Graphical representatlon of
(in)dependencies




The DAG space

The cardinality of the space of DAGSs is given by the following recursion

T

f(n) =Y (=1)*12i("=1) f(n — i) with f(0)=1. (42)
i=1

The number of orderings, DAGs and order-compatible DAGs with parental constraints. The
columns shows respectively the number variables (nodes) (r), DAGs (|D AG(n)|), DAGs
compatible with a given ordering (|G < |), DAGs compatible with a given ordering and with
maximum parental set size <=4 (|G|:|54|} and <=2 |{|G|_”;|5'2 |), the number of orderings
(permutations) (| < |) and the total number of parental sets in an order-compatible DAG |7 ~|
and in an order-compatible DAG with maximum parental set size <=4 (||7~| < 4|) and <=2
(l7=] < 2|).

n | |DAG(n)| | |G<| | IGTIEY | elT=E < == | =<4
5 2.9e+004 1e+003 1e+003 6.2e+002 | 1.2e+002 30 30

b 3.8e+006 3.3e+004 | 3.2e+004 | 9.9e+003 | 7.2e+002 62 61

7 1.1e+009 2.1e+006 | 1.8e+006 | 2.2e+005 5e+003 1.3e+002 1.2e+002
8 7.8e+011 2.7¢+008 | 1.8e+008 | 6.3e+006 4e+004 2.5e+002 2.2e+002
9 1.2e+015 6.9e+010 | 2.9e+010 | 2.3e+008 | 3.6e+005 | 5.1e+002 3.8e+002
10 4.2e+018 3.5e+013 | 7.5e+012 | 1.1e+010 | 3.6e+006 1e+003 6.4e+002
15 2.4e+041 4.1e+031 2.1e+027 | 3.1e+019 1.3e+012 | 3.3e+004 4.9e+003
35 2.1e+213 1.3e+179 | 1.8e+109 | 8.5e+068 1e+040 3.4e+010 3.8e+005




Challenges in a complex domain

The domain is defined by the joint distribution

P(Xy,..., X, | Structure,parameters)

—

1. efficient description

,small number of parameters” quantitave

?

—

passive
(observational)

2. representation of independencies qualitative
,what is relevant for diagnosis” —

3. representation of causal relations
,what is the effect of a treatment”

Active
(interventional)



A stochastic dynamical system view
in biomedicine: systems biology
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Models/knowledge representations
for systems biology

* Declarative vs procedural

* Discrete vs continuous

* Deterministic vs stochastic

*  Dynamic vs static

* Feedforward vs feedback

*  Predictive vs domain models

* Associational vs independence vs causal

— Logic

— Boolean networks

— Cellular automaton

— Ordinary differential equations

— Probabilistic models
* Hidden Markov Models
* (Dynamic) Bayesian networks

* Language
— Systems Biology Markup Language



A Hidden Markov Model approach
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Hidden Markov Models

X X X X

CED & CEo ED

* First-order, homogenous Markov chain
— Transition model: P(X;| X, ;)

— Sensor (or emission) model: P(E,| X.)

* Inference: P(Query|Observations)

— Linear time complexity (w.r.t number of variables)

e BUT WHAT TO DO in a complex state space???



Conditional independence —2%)

,Probability theory=measure theory+independence”

1,(X;Y|Z) or (XLLY|Z), denotes that X is independent of Y
given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, I,(X;Y|Z) iff
P(X|ZY)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: D,(X;Y|Z) =def=1,(X;Y|Z)
Contextual independence: for not all z.



The graphoid axioms

. Symmetry: The observational probabilistic conditional independence is symmetric.
I,(X;Y|Z)iff I(Y; X|Z)

. Decomposition: Any part of an irrelevant information is irrelevant.
L(X;5YUW|Z)= L(X;Y|Z)and I,( X; W |Z)

. Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant
information.

L(X;YUW|Z)= L(X;Y|ZUW)

. Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant
information.

I,(X;Y|Z)and I,(X;W|ZUY) = L(X;Y UW|Z)



The independence model of a
distribution

The independence map (model) M of a distribution
P is the set of the valid independence triplets:

Mp={lp1(X3;Y11Z4), e, o (X Y| Z)}

If P(X,Y,Z) is a Markov chain, then
Mp={D(X;Y), D(Y;2), I(X;Z]Y)}
Normally/almost always: D(X;Z2)
Exceptionally: [(X;2)



The independence map of a N-BN

 »

If P(Y,X,Z) is a naive Bayesian network, then
Mp={D(X;Y), D(Y;2), I(X;Z]Y)}
Normally/almost always: D(X;Z2)
Exceptionally: [(X;2)



D-separation

15(X;Y|Z) denotes that X is d-separated (directed
separated) from Y by Z in directed graph G.

1) O ; O "‘@:_‘O__O '
o | O—+O0+O—+0+0
» | O—0O R O—10O

O O



D-separation
and the global Markov condition

Definition 7 A distribution F(X1,..., X,) obeys the global Markov condition w.r.t. DAG G, if
VX, Y,ZCU (X LY|Z), = (X LY|Z)p, (9)

where (X 1L Y|Z).,; denotes that X andY are d-separated by Z, that is if every path p
between a node in X and a node in Y is blocked by Z as follows

1. either path p contains a node . in Z with non-converging arrows (i.e. — n — or
— n —),

2. orpath p contains a node n. not in Z with converging arrows (i.e. — n +) and none of
its descendants of n is in Z.



Representation of independencies

D-separation provides a sound and complete, computationally efficient algorithm to read off
an (in)dependency model consisting the independencies that are valid in all distributions
Markov relative to G, thatisv X, Y, Z CV

(X U Y|Z); & (X LY|Z)p in all P Markov relative to G). (10)

For certain distributions exact representation is not possible by Bayesian networks, e.g.:
1. Intransitive Markov chain: X=2>Y=>/Z

2. Pure multivariate cause: {X,Z}=2Y

3. Diamond structure: \

P(X,Y,Z,V) with Mp={D(X;Z), D(X;Y), D(V;X), D(V;2),
I(V;YRX,Z}), 1(GZI{V, Y. ).




Markov conditions

Definition 4 A distribution P(X1, ..., X.) iS Markovrelative to DAG G or factorizes w.rt G, if
P(Xla-":Xﬂ,):HP{X”PE!'(X?')): (B)
i=1

where FPa(X;) denotes the parents of X; inG.
Definition 5 A distribution P( X1, ..., X,,) obeys the ordered Markov condition w.r.t. DAG G,

if
Vi= .., m: {Xﬂ'(?) AL {XTT(].)F s Xﬂ(i—l)},fPa'(Xﬂ(‘;))|Pa'(XTT(?')))F? (7)
where () is some ancestral ordering w.r.t. G (i.e. compatible with arrows in G).
Definition 6 A distribution P(X1,..., X, ) obeys the local (or parental) Markov condition w.r.t.
DAG G, if
vi=1,...,n:(X; 1 Nondescendants(X;)|Pa(X;))s, (8)

where Nondescendants(X; ) denotes the nondescendants of X; in G.



Bayesian network definitions

Theorem 1 Let F(U) a probability distribution and G a DAG, then the conditions above
(repeated below) are equivalent:

F F is Markov relative &z or F factorizes w.r.t (=,
O F obeys the ordered Markov condition w.r.t. (3,
L F obeys the local Markov condition w.r.t. &,

G F obeys the global Markov condition w.r.t. G.

Definition 8 A directed acyclic graph (DAG) G is & Bayesian network of distribution F (L) iff
the variables are represented with nodes in G and (G, FP) satisfies any of the conditions

F. O, L,G such that & is minimal (i.e. no edge(s) can be omitted without violating a
condition F', O, L, ).



A practical definition

Definition 9 A Bayesian network model M of domain with variables U consisis of a
structure G and parameters 8. The structure &G is a DAG such that each node represents a
variable and local probabilistic models p(X;|pa(X;)) are attached to each node w.r.t. the
structure G, that is they describe the stochastic dependency of variable X ; on its parents
pa(X;). As the conditionals are frequently from a certain parametric family, the conditional
for X; is parameterized by 6;, and @ denotes the overall parameterezation of the model.



Association vs. Causation

Causal models:

@ ® ©® @

X causes Y Y causes X
There is a common cause Causal effect of Y on X
(pure confounding) is confounded by many
factors
From passive observations:
P(X,Y)

Me={D(X;Y)} @— @D

X andY are associated”

Reichenbach's Common Cause Principle:

a correlation between events X and Y indicates either that X causes Y, or that Y causes
X, or that X and Y have a common cause.



Association vs. Causation: Markov
chain

Causal models:

Markov chain

P(X,,...)
Mp={I1(Xi, 1;Xi.11X)}
Jfirst order Markov property”

Flow of time?



The building block of causality:
v-structure

P(X),p(£|X),p(Y|Z)

@@
P(X),p(Z|X,Y),p(Y)
P(X[2).p(21Y).p(Y) “transitive” M # intransitive” M
® @ o ®
P(X|Z),p(£),p(Y]Z)
m ,Vv-structure”
Mp={D(X;Z), D(Z;Y), D(X,Y), I(X;Y|Z)} Mp={D(X;Z), D(Y;2), I(X;Y), D(X;Y|Z) }

Often: present knowledge renders future states conditionally independent.
(confounding)

Ever(?): present knowledge renders past states conditionally independent.
(backward/atemporal confounding)



Observational equivalence of
causal models

Causal models: 3]3 P%grl:t
R é% 7 é% PN é% & : Nn O JeC S”
From passive observations:
P(X{,.s X))

,2D projection”
Mp={lp 1(X1;Y41Z1),-0s lp(Xi; Ykl Zk)}

Different causal models can have the same independence map!

Typically causal models cannot be identified from passive observations, they are
observationally equivalent.



Observational equivalence:
total independence

fin S

,Causal” model: @
&
]
&
'” ,
.
One-to-one relation
Dependency map:
P(X{,.s X,)

Mp={lp1(X1;X2),...}



Observational equivalence:
full dependence

,Gausal” models (there is a DAGﬁf_or each ordering, i.e. n! DAGS):

One-to-many relation
Dependency map:

P(Xy,..., X,)
Mp={Dp(X1;Xy),...}



Observational equivalence of
causal models

Definition 11 Two DAGs (1, (G5 are observationally equivalent , if they imply the same set of
independence relations (i.e. (X 1 Y|Z),,) < (X 1L Y|Z)y,).

The implied equivalence classes may contain »! number of DAGs (e.g. all the full networks
representing no independencies) or just 1.

Theorem 2 Two DAGs 1, G2 are observationally equivalent , iff they have the same skeleton
(i.e. the same edges without directions) and the same set of v-structures (i.e. two converging
arrows without an arrow between their tails).

Definition 12 The essential graph representing observationally equivalent DAGs is a partially
oriented DAG (PDAG), that represents the identically oriented edges called compelled edges
of the observationally equivalent DAGS (i.e. in the equivalence class), such a way that in the
common skeleton only the compelled edges are directed (the others are undirected
representing inconclusiveness).



Compelled edges and PDAG




The Causal Markov Condition

A DAG is called a causal structure over a set of variables, if each
node represents a variable and edges direct influences. A causal
model is a causal structure extended with local probabilistic
models.

A causal structure G and distribution P satisfies the Causal Markov
Condition, if P obeys the local Markov condition w.r.t. G.

The distribution P is said to stable (or faithful), if there exists a

DAG called perfect map exactly representing its (in)dependencies
(i.e. 15(XY]Z2) © 1L(XY|Z) VXY,ZE V).

CMC: sufficiency of G (there is no extra, acausal edge)

Faithfulness/stability: necessity of G (there are no extra,
parametric independency)



Inference in Bayesian networks

* (Passive, observational) inference
— P(Query|Observations)

* |nterventionist inference
— P(Query|Observations, Interventions)

e Counterfactual inference
— P(Query| Observations, Counterfactual conditionals)



Inference by enumeration

If the joint distribution is efficiently represented by a Bayesian
network, then any conditional is exactly defined:

P(Q=q|E=e),
where Q is the query variable, E are the evidence variables.
By definition
P(Q=q | E=e)

=P(Q=q,E=¢e)/P(E = e

=2,P(Q=q,E=e, H=h)/ %, P(Q=q,E=e, H=h)

where H=X - Q- E are the hidden variables, and P(Q=q,E=e, H=h) =
[TP(X;,[Pa(X)) .

Problem:
Worst-case time complexity O(d") where d is the largest arity



Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d*n)

Multiply connected networks:

— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete
0.5 0.5 0.5 0.5

1. AvBvEC
2. CvDv A
3. BvCv-D

Russel&Norvig: Artificial intelligence, ch.14



Inference in Bayesian networks

* (Passive, observational) inference
— P(Query|Observations)
e Interventionist inference
— P(Query|Observations, Interventions)

e Counterfactual inference
— P(Query| Observations, Counterfactual conditionals)



Interventions and graph surgery

If G is a causal model, then compute p(Y|do(X=x)) by
1. deleting the incoming edges to X
2. setting X=x
3. performing standard Bayesian network inference.

@ , ,_,

-




Statistical vs causal inference

 Statistical concepts:

,correlation, regression, dependence, conditional independence,

likelihood, collapsibility, propensity score, risk ratio, odds ratio,
marginalization, conditionalization, “controlling for,”..

— Any relation based on the joint distribution of observations.
e Causal concepts:

— randomization, influence, effect, confounding, “holding constant,”

disturbance, spurious correlation, faithfulness/stability, instrumental
variables, intervention, explanation, attribution

— Causal inference: statistical inference + causal assumptions

J.Pearl: Causality



A deterministic concept of causation

* H.Simon
— Xi=fi(X15"5Xi-1) fOr |=1 ..N

— In the linear case the sytem of equations
indicates a natural causal ordering

X

X | X | X[ X

X X X

In fact the probabilistic conceptualization is its generalization:
P(Xi,| Xy, Xi4) ~ Xi=h(Xy,..,X4)



The Inductive Causation algorithm

Assuming a stable distribution P (Pearl,2000):

1. Skeleton: Construct an undirected graph (skeleton), such that variables X.Y € V are
connected with an edge iff VS(X 1L Y|S),, where S C V' \ {X,Y}.

2. v-structures: Orient X — Z «— Y iff X, Y are nonadjacent, Z is a common neighbour
and —3S that (X 1LY |S),, where SC V\ {X,Y} and Z € S.

3. propagation: Orient undirected edges without creating new v-structures and directed
cycle.
8. Theorem. The following four rules are necessary and sufficient.
Ry if(a#e)n(a—b)A(b—e), thenb— ¢
Ry ifla—ec—b)A(a—0b),thena—b
Rs ifla—b)an(a—ec—b)A(a—d—b)A(c+#d), thena — b
Ry ifla—b)n(a—ec—d)n(e—d—b)A(etb)A(a—d), thena— D



Local Causal Discovery

 Can we learn causal relations from observational data in presence of confounders???

Increaded propensity

8d susceptibility

= Automated, tabula rasa causal inference from (passive) observation is
possible, i.e. hidden, confounding variables can be excluded

.




Statistical time

Newtonian physics is symmetric.
Macroscopic is not: entropy/thermodynamic.
Quantum mechanics is not: state collapse

— (R.Penrose: The emperor’s new mind)
Subjective experience(?):
— R.Penrose, S. Hawking

J.Pearl: statistical time is compatible with a
minimal causal model (with compelled edges).



Statistical time: example

A ,causal’(?) chain: MenoPausalState=>» Volume=>»Ascites=»CA125



Summary

o Statistical and causal models
* Interpretations of probabilistic graphical
models
» Observational equivalence
« Observational and interventional inference
* The Causal Markov Condition and faithfulness
 Learning causal relations

« Homework: construct a model for a disease

http://redmine.genagrid.eu/
Login: bayeseyestudent Files: Wiki




