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Genetic association studies (GAS)

e Data

— Measurement uncertainty

* Challenges
— Association vs causation
— Multiple testing problem
— Knowledge-intensive statistics

e Granularity: variations, genes, pathways
— Pre- or post-aggregation

— Computation-intensive statistics

* Permutation, bootstrap



Samples

Genotyping

Sequencing ---

SNP validation

Candidate gene assoc.

Partial genome screening (x100 SNP)

Genetic association data

Genome-wide assoc, <2.5million SNPs, x1000 sample

S

Exome sequencing (~30Mb, 1% data, 10% cost)

Full genome sequencing

v

Variables




About biomedical data....

Variables (observations, interventions)

........................... sanzszgms

so|dwes

...frequently biomedical data is incomplete, but genotyping/sequencing is “digital’(???).



About “digital” biomedical data:

genotyping using tagged single-base extension primer

Rs25:CTCTGTGAGCTTCTGCATGCAATCCT[C/TITGCAATTGGAATTTGATAGTCCTTT

SNP primer
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Control spots and spot layout for

48plex plates
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Fluorescent dyes

FAM[ VIC [ TAMRA




Biomedical data: a high-quality plate




Biomedical data:
plates with insufficient reagent




Biomedical data: a plate with blur




Biomedical data:
a plate with digital noise




Biomedical data:
a plate with a bubble




From image processing to symbolic
data

* Image processing
(filtering)

e Grid alignment

* Segmentation

* Intensity calculation

e Clustering

Genotyping: 0, 1 2

.... biomedical data is always uncertain (probabilistic).
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Genome-wide associations studies
06/2010: 779 studies, p<5x102 148 markers

) : -8
12/2010: 1212 studies, p<5x10-° 210 markers NHGRI GWA Catalog

06/2011: 1449 studies at p<5x10-8 for 237 traits www.genome.gov/GWAStudies

S
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GWAS catalogue

 www.genome.gov/GWAStudies

— Catalogue!

— Test with:
* Asthma
* Smoking(!)
* Intelligence(!??)
e Autism

— Compare with

c OMIM
e SNPedia



Acute lymphoblastic leukemia
Adhesion molecules
Adiponectin levels
Age-related macular degeneration
AIDS progression

Alcohol dependence
Alzheimer disease
Amyotrophic lateral sclerosis
Angiotensin-converting enzyme activity
Ankylosing spondylitis
Arterial stiffness

Asthma

Atherosclerosis in HIV

Atrial fibrillation

Attention deficit hyperactivity disorder
Autism

Basal cell cancer

Bipolar disorder

Bilirubin

Bladder cancer

Blond or brown hair

Blood pressure

Blue or green eyes

BMI, waist circumference
Bone density

Breast cancer

C-reactive protein

Cardiac structure/function
Carnitine levels
Carotenoid/tocopherol levels
Celiac disease

Chronic lymphocytic leukemia
Cleft lip/palate

Cognitive function

Colorectal cancer

Coronary disease
Creutzfeldt-Jakob disease
Crohn’s disease

00000000000000000000000000000000000000

Table 1| Estimates of heritability and number of loci for several complex traits
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Cutaneous nevi
Dermatitis
Drug-induced liver injury
Eosinophil count
Eosinophilic esophagitis
Erythrocyte parameters
Esophageal cancer
Essential tremor
Exfoliation glaucoma

F cell distribution
Fibrinogen levels

Folate pathway vitamins
Freckles and burning
Gallstones

Glioma

Glycemic traits

Hair color

Hair morphology

HDL cholesterol

Heart rate

Height

Hemostasis parameters
Hepatitis
Hirschsprung’s disease
HIV-1 control
Homocysteine levels

Idiopathic pulmonary fibrosis

IgE levels

Inflammatory bowel disease

Intracranial aneurysm

Iris color

Iron status markers
Ischemic stroke

Juvenile idiopathic arthritis
Kidney stones

LDL cholesterol

Leprosy

Leptin receptor levels

Liver enzymes

LP (a) levels

Lung cancer

Major mood disorders
Malaria

Male pattern baldness
Matrix metalloproteinase levels
MCP-1

Melanoma

Menarche & menopause
Multiple sclerosis
Myeloproliferative neoplasms
Narcolepsy
Nasopharyngeal cancer
Neuroblastoma

Nicotine dependence
Obesity

Open personality
Osteoarthritis
Osteoporosis
Otosclerosis

Other metabolic traits
Ovarian cancer

Pain

Pancreatic cancer

Panic disorder
Parkinson's disease
Periodontitis

Peripheral arterial disease
Phosphatidylcholine levels
Platelet count

Primary biliary cirrhosis
PR interval

Prostate cancer

Protein levels

Psoriasis

Pulmonary funct. COPD
QRS interval

00000000000000000000000000000000000000

0000000000000000000000000000000000

QT interval

Quantitative traits
Recombination rate

Red vs.non-red hair

Renal function

Response to antipsychotic therapy
Response to hepatitis C treatment
Response to statin therapy
Restless legs syndrome
Rheumatoid arthritis
Schizophrenia

Serum metabolites

Skin pigmentation

Speech perception
Sphingolipid levels
Statin-induced myopathy
Stroke

Systemic lupus erythematosus
Telomere length

Testicular germ cell tumor
Thyroid cancer

Tooth development

Total cholesterol
Triglycerides

Type 1 diabetes

Type 2 diabetes

Ulcerative colitis

Urate

Venous thromboembolism
Vitamin B12 levels
Warfarin dose

Weight
White cell count
YKL-40 levels

Disease

MNumber of loci

Proportion of heritability explained

Heritability measure

Age-related macular degeneration’™
Crohn's disease™

Systemnic lupus erythematosus™
Type 2 diabetes™

HDL cholesterol®

Height*®

Early onset myocardial infarction™
Fasting glucose™

5
32
6
18

50%
20%
15%
6%

5.2%
5%

2.8%
1.5%

Sibling recurrence risk
Genetic risk (liability)

Sibling recurrence risk

Sibling recurrence risk
Residual* phenotypic variance
Phenotypic variance
Phenotypic variance
Phenotypic variance

* Residual is after adjustment for age, gender, diabetes.



2

The ,,missing heritability” I.

isease _____lloci ______lxphined heritance

T2 diabetes 18 6%
HDL cholesterol 7 5.20%

40 5%
Schizophrenia 5 3%
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The ,, missing heritability” Il.

B.Maher: ,The case of the missing heritability”, Nature, 2008

— ,Right under everyone’s noses”: rare variants (RVs)

— ,,0ut of sight”: many, small effects

— ,In the architecture”: structural variations

— ,Inunderground networks”: epistatic

— ,The great beyond”: Epigenetics

— ,Lost in diagnosis”: phenome
,Rare Variants Create Synthetic Genome-Wide Associations”, PLoS, 2009
,Finding the missing heritability of complex diseases”, Nature, 2009

McClellan&King, Cell, 2010:
— The CD-CV hypothesis (and the corresponding GWAS) has failed.



Missing heritability: issues

Better outcome variable
— ,Lostin diagnosis”: phenome

Better and more complete set of predictor variables
— ,Right under everyone’s noses”: rare variants (RVs)
— ,The great beyond”: Epigenetics, environment

Better statistical models
— ,In the architecture”: structural variations
— ,,0ut of sight”: many, small effects
— ,Inunderground networks”: epistatic interactions

Causation (confounding)

Statistical significance (,,multiple testing problem”)
Complex models: interactions, epistatis
Interpretation



GAS challenges

Genetic factors
e Broader scale
« Aggregation: functional, pathway

Omic

» Cost

* Quality Modeling

» Broader » Multivariate

» Systems biology
» Model averaging
 Fusion

Environment — life style
 Standardization

« Causation

Phenotypes
* Refinenment
» Standardization
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Causal vs. diaghostic markers
Direct =/= Causal

Therapic value
(e.g. Drug target)

lagnostic value  iactive (real/causal)

diagnostic value?



Principles of causality

* Principles for a causal relation between X=2Y:
— Probabilistic association,
— Temporal asymmetry: X precedes temporally Y,

—{(PhysicalHecality)

— Quantitative effect of interventions: dose-effect relation
* necessity (i.e., if the cause is removed, effect is decreased)

e sufficiency (if exposure to cause is increased, effect is
increased)

— Counterfactuals:

* Y would not have been occurred with that much probability if Y
hadn’t been present

* Y would have been occurred with larger probability if X had
been present

— Bounded context-sensitivity (~“context-free): relevant on average
— Plausible explanation (no alternative based on confounding).



Association vs. Causation

Causal models:

@ ® ©® @

X causes Y Y causes X
There is a common cause Causal effect of Y on X
(pure confounding) is confounded by many
factors
From passive observations:
P(X,Y)

Me={D(X;Y)} @— @D

X andY are associated”

Reichenbach's Common Cause Principle:

a correlation between events X and Y indicates either that X causes Y, or that Y causes
X, or that X and Y have a common cause.



Statistical vs. Causal

 What is the advantage of causal knowledge?
Assume X (directly) causes Y, P(X,Y)
— Setting X will influence Y: P(Y | X=x)=P(Y | do(X=x))
— But setting Y will NOT influence X:
P(X]Y=y)=P(X) .
— (Directness) Fixing all contextual variables will not
screen off X.

* How can we identify a causal relation?



Intervention

Randomized experiment (C.S.Pierce.,R.A.Fisher):

In context c randomly setting X to estimate its
average effecton Y:

P(Y[do(X=x),c) =2  P(Y[x,c)p(c),
known as adjusting, controlling, keeping constant.

A causal relation is an asymmetric and autonomous
(modular and transportable) mechanism.



Confounding

* The effect of Smoking on LungCancer:
— P(LC|S,Context=c) vs. P(LC|— S,Context=c) in all context c (context dependent).
* Solution: average the effect in all context

— Stratification: collect complete observation about context, and analyze them separately.
Nature set the cause depending on the context.

— Intervention: collect data only about cause-effect and analyze them jointly.

* We set the cause and eradicate the effect of context.
e |dentification of causal effect?

— Computability of a ,,causal” quantity P(Y|do(X)) from , statistical” quantities such as
P(Y|X)?



Geographic confounding
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Confounding by ,time/age”

* Rapid/structured
change in the
population (genotype)
can create dependency
p(Genotype|Time).

* |f dependency
p(Disease | Onset) exists,
then the relation p(D | G)
is confounded.



Confounding:
Population substructure + cryptic relatedness

i ot o

Genomwide and allelic pedigrees.
Balding, 2010: Allowing for population structure and cryptic relatedness in GAS



Confounding

Spurioys association with th%iisease

Outcome «— Predictors Controlling variables




Pleiotropy

* Pleiotropy: different phenotypic effects
* Antagonistic pleiotropy: opposite effects

* E.g.: a SNP can be protective for young people,
but risk for old people.
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Testing genetic associations

T O —

31 N32 N3.

Number of alleles (,high risk” allele is A): aa=0,aA=1, AA=2

Allele frequency: P(A| —=D) vs. p(A| D)
Hardy-Weinberg equilibriums for p(G| D).

Disease frequencies: p(D|G=0) vs. p(D|G=1) vs. p(D|G=2)
Recessive model: p(D|G=0) vs. p(D|G=1 or G=2)

Dominant model: p(D|G=0 or G=1) vs. p(D|G=2)



Fundamental questions in statistics

Real difference

(PD=11A=0)| (p(D=11A=2)| o
Estimation errors
p(D=11A=0,D,) p(D=11A=2,D,)
Estimation error because of finite data Dy: p(D=11A=0,D,)-p(D=11A=0)

Inequalities for finite(!) data (€ accuracy,d confidence)
sample complexity: N, 5 P(DN£,5 el p(D=1I1A, Dy,s)—p(D=11A)I)< o)



The hypothesis testing framework

Terminology:
— False/true x positive/negative
— Null hypothesis: independence

reported | Ref.:0/N |Ref.1/P
0/N TN FN
1/P FP TP

— Type | error/error of the first kind/a error/FP: p(—H,|H,)

* Specificity: p(H,|H,) =1-a
 Significance: a

e p-value: , probability of more extreme observations in repeated experiments”

— Type Il error/error of the second kind/B error/FN: p(H,| — H,) :

* Power or sensitivity: p(—H,| —H,) = 1-B

reported Ref. H, Ref.:—H,
H, Type I1
—H, Type 1

(,false rejection”)




Genetic power calculator I.

High risk allele Ifrequency (&) . .2 (0 - 1)
Prevalence . .3 (0.0001 - 0.9999)
Fenctype relative risk Aa . 1.2 { >1 )
Fenctype relative risk AR . 2 { >1 )
D-prime . 1 (0 - 1)
Marker allele frequency (B) . .2 (0 - 1)

Hurker of cases (0 — 10000000}

Controcl : case ratio
ejqual number of cases and controls)

[] Unselected [controls? (* see below)

User-defined type I error rate (0.00000001 - 0.5)

Uaer-defined power: determine N (0 - 1)

{1 — type II error rate)

 http://pngu.mgh.harvard.edu/~purcell/gpc/cc2.html
 http://pngu.mgh.harvard.edu/~purcell/gpc/




Multiple testing problem (MTP)

* |f we perform N tests and our goal is

— p(FalseRejection, or ... or FalseRejection,)<a

* then we have to ensure, e.g. that

— for all p(FalseRejection.)< a/N

=>loss of power!

E.g. in a GWA study N=100,000, so huge amount of
data is necessary....(but high-dimensional data is
only relatively cheap!)



Solutions for MTP

Corrections

Permutation tests

— Generate perturbed data sets under the null
hypothesis: permute predictors and outcome.

False discovery rate, g-value
Bayesian approach



Corrections for multiple testing

Bonferroni

Bonferroni Step-Down

Westfall and Young Permutation

Benjamini and Hochberg False Discovery Rate

MNone

A. Bonferroni correction

The p-value of each gene is multiplied by the number of genes in the gene list. If the
comrected p-value is still below the error rate, the gene will be significant:

Corrected P-value= p-value * n (number of genes in test) <0.05

More false negatives

More f

D. Benjamini and Hochberg False Discovery Rate

This correction is the least stringent of all 4 options, and therefore tolerates more
false positives. There will be also less false negative genes. Here is how it works:

1) The p-values of each gene are ranked from the smallest to the largest.
2) The largest p-value remains as it is.

3) The second largest p-value 1z multiplied by the total number of genes in gene
list divided by its rank. If less than 0.05, it is significant.

Cormected p-value = p-value*{n/n-1) < 0.05, if so, gene is significant.
4) The third p-value is multiplied as in step 3:
Corrected p-value = p-value*(nin-2) < 0.05, if so, gene is significant.
And so on.



Corrections for multiple testing

| have 1,000,000 hypotheses that are not mutually exclusive.

1. | test them all.
Correction?

2. | plan to test them all, but | run out of resources after testing only one of them.
Correction?

3. | test one of them, and a year later test the others.
Correction? If so, when?

4.1 only test the first one because that is the one | suspect.
Correction?

5. 1 run an algorithm that prunes unlikely hypotheses, keeping only 100,000.
Correction for 100,000 or for 1,000,000 hypotheses?

(R.Neopolitan, 2010)



Permutation testing

Outcome Predictor variables

[ ™ N R N

so|dwes

\

Permute outcome/target

—_—
—

A random permutation guarantees the independency of the outcome Y.

A random permutation corresponds to an artificial data set from the null
model.=»"direct” estimation of the p-value: the probability of observing a more
extreme data set from the null model with the same sample size.

p(DX™ : IncompatibilityWithNull(D};*" ) < IncompatibilityWithNull(D{™))



Permutation testing in Haploview

“
Haploview 4.2 -- asthma.ped E@Iﬂ

File Display Analysis Help Key

| LD PIotI Haplotypes I Check Markers ITagger |{ Assodiation }|

Single Marker

Permutation Tests

() Single Markers Only
(@ Single Markers and Haplotypes in Blocks  Number of Permutations: | 1000
() Haplotypes in Blocks Only

Do Permutations Stop

Best Observed Chi-Square: 19,716 (C5_rs2159776)
Best Permutation Chi-Square: 21.868

2 permutations out of 1000 exceed highest observed chi square.

Mame Chi Square Permutation p-value
C5_rs2159775 19.716 0.0020 -
[TSLP_rs3806933 13.13 00,0190 I
[TSLP_rs3806932 9,202 00,1210 (I
IL13_rs20541 5.059 0,2260
GSDMA_rs33894194 7.251 00,3500
ORMDL3_rs8076131 6.887 00,4220
GSDML_({GSDME)_rs2290400 |6.86 0.4280
GSDML_(GSDMB)_rs2305480 |6.613 0.4750
ALOXSAP_(FLAP)_rs4468448 |6.533 0.4910
GSDML_(GSDMB)_rs2305479 |6.131 0.5590
ADAM33_rs511893 5.08 0, 7550
IL1RN_rs1794067 4,929 00,7950
IL13_rs1295685 4,638 0.8530 -

45
40
2
S5 3
£ a0
Ex
ooap
a
=18
ERL
5
5 Bekys & 4 2 a
25 50 75 0.0 125 150 175 200 225
Chi Square

File|Open|Linkage Data: http://home.mit.ome.hu/~antal/AlT/asthma.ped
Options: Do association test, Case/Control




False discovery rate (FDR)

Another aspect of multiple hypothesis testing:
— the probability of Type I. error for any tests

— the expected number of Type I. errors at a given
significance level (False discovery rate, FDR)

— g-value: the minimum FDR at which the test may
be called significant.



Summary

* The problem of missing heritability

— Potential explanations/solutions

 The problem of confounding
— Population substructure
— Solutions
 The multiple hypothesis testing problem

— Concept of permutation test (permutation p-value)
— False discovery rate, g-value



