

COMPUTATIONAL BIOLOGY and MEDICINE Genetic association studies II.

Andras Falus <u>afalus@gmail.com</u>

Peter Antal antal@mit.bme.hu

Gábor Csonka csonkagi@gmail.com

AIT, Budapest 2011. fall

Genetic association studies (GAS)

- Data
 - Measurement uncertainty
- Challenges
 - Association vs causation
 - Multiple testing problem
 - Knowledge-intensive statistics
 - Granularity: variations, genes, pathways
 - Pre- or post-aggregation
 - Computation-intensive statistics
 - Permutation, bootstrap

Genetic association data

Variables

About biomedical data....

Variables (observations, interventions)

....frequently biomedical data is incomplete, but genotyping/sequencing is "digital"(???).

About "digital" biomedical data:

genotyping using tagged single-base extension primer

Rs25:CTCTGTGAGCTTCTGCATGCAATCCT[C/T]TGCAATTGGAATTTGATAGTCCTTT

Control spots and spot layout for 48plex plates

Fluorescent dyes

Biomedical data: a high-quality plate

Biomedical data: plates with insufficient reagent

Biomedical data: a plate with blur

Biomedical data: a plate with digital noise

Biomedical data: a plate with a bubble

From image processing to symbolic data _ | | | | | | | |

- Image processing (filtering)
- Grid alignment
- Segmentation
- Intensity calculation
- Clustering

Genotyping:

biomedical data is always uncertain (probabilistic).

Genome-wide associations studies

06/2010: 779 studies, p≤5x10⁻⁸ 148 markers 12/2010: 1212 studies, p≤5x10⁻⁸ 210 markers

06/2011: 1449 studies at p≤5x10-8 for 237 traits

NHGRI GWA Catalog www.genome.gov/GWAStudies

GWAS catalogue

- www.genome.gov/GWAStudies
 - Catalogue!
 - Test with:
 - Asthma
 - Smoking(!)
 - Intelligence(!??)
 - Autism
 - •
 - Compare with
 - OMIM
 - SNPedia

\sim	Acute lymphoblastic leukemia		Cutaneous nevi		Liver enzymes	0	QT interval
	Adhesion molecules		Dermatitis	0	LP (a) levels		Quantitative traits
	Adiponectin levels	\circ	Drug-induced liver injury		Lung cancer	\circ	Recombination rate
\circ	Age-related macular degeneration	\odot	Eosinophil count		Major mood disorders		Red vs.non-red hair
O	AIDS progression	0	Eosinophilic esophagitis		Malaria	\bigcirc	Renal function
$\overline{}$	Alcohol dependence		Erythrocyte parameters	\bigcirc	Male pattern baldness		Response to antipsychotic therapy
	Alzheimer disease	\bigcirc	Esophageal cancer		Matrix metalloproteinase levels		Response to hepatitis C treatment
	3	\bigcirc	Essential tremor	\bigcirc	MCP-1		Response to statin therapy
		\bigcirc	Exfoliation glaucoma	\bigcirc	Melanoma	\bigcirc	Restless legs syndrome
	, , ,	\bigcirc	F cell distribution	\bigcirc	Menarche & menopause	0	Rheumatoid arthritis
		\bigcirc	Fibrinogen levels	\bigcirc	Multiple sclerosis	\bigcirc	Schizophrenia
	Asthma		Folate pathway vitamins	\bigcirc	Myeloproliferative neoplasms		Serum metabolites
	Atherosclerosis in HIV	\bigcirc	Freckles and burning	\bigcirc	Narcolepsy		Skin pigmentation
	Atrial fibrillation	\bigcirc	Gallstones	\bigcirc	Nasopharyngeal cancer		Speech perception
	Attention deficit hyperactivity disorder		Glioma	\bigcirc	Neuroblastoma		Sphingolipid levels
	Autism	\bigcirc	Glycemic traits		Nicotine dependence		Statin-induced myopathy
	Basal cell cancer	0	Hair color	\bigcirc	Obesity		Stroke
	Bipolar disorder	\bigcirc	Hair morphology		Open personality	0	Systemic lupus erythematosus
	Bilirubin	\circ	HDL cholesterol		Osteoarthritis	0	Telomere length
	Bladder cancer		Heart rate	0	Osteoporosis	O	Testicular germ cell tumor
	Blond or brown hair	0	Height		Otosclerosis		Thyroid cancer
	Blood pressure		Hemostasis parameters		Other metabolic traits	Ŏ	Tooth development
	Blue or green eyes	0	Hepatitis		Ovarian cancer		Total cholesterol
	BMI, waist circumference	\circ	Hirschsprung's disease		Pain	Ö	Triglycerides
	Bone density	\circ	HIV-1 control		Pancreatic cancer	Ö	Type 1 diabetes
	Breast cancer	0	Homocysteine levels		Panic disorder	Ŏ	Type 2 diabetes
	C-reactive protein		Idiopathic pulmonary fibrosis		Parkinson's disease	ŏ	Ulcerative colitis
	Cardiac structure/function		IgE levels		Periodontitis	O	Urate
	Carnitine levels	0	Inflammatory bowel disease		Peripheral arterial disease	$\widetilde{\bigcirc}$	Venous thromboembolism
	Carotenoid/tocopherol levels		Intracranial aneurysm	\bigcirc	Phosphatidylcholine levels	ŏ	Vitamin B12 levels
	Celiac disease		Iris color		Platelet count		Warfarin dose
	Chronic lymphocytic leukemia		Iron status markers		Primary biliary cirrhosis		Weight
	Cleft lip/palate		Ischemic stroke		PR interval		White cell count
	Cognitive function		Juvenile idiopathic arthritis		Prostate cancer	$\widetilde{}$	YKL-40 levels
	Colorectal cancer		Kidney stones		Protein levels		THE TO TOVOID
	Coronary disease		LDL cholesterol	0	Psoriasis		
	Creutzfeldt-Jakob disease		Leprosy		Pulmonary funct. COPD		
	Crohn's disease		Leptin receptor levels	0	QRS interval		

Table 1 Estimates of heritability and number of loci for several complex traits

Disease	Number of loci	Proportion of heritability explained	Heritability measure
Age-related macular degeneration ⁷²	5	50%	Sibling recurrence risk
Crohn's disease ²¹	32	20%	Genetic risk (liability)
Systemic lupus erythematosus ⁷³	6	15%	Sibling recurrence risk
Type 2 diabetes ⁷⁴	18	6%	Sibling recurrence risk
HDL cholesterol ⁷⁵	7	5.2%	Residual* phenotypic variance
Height ¹⁵	40	5%	Phenotypic variance
Early onset myocardial infarction ⁷⁶	9	2.8%	Phenotypic variance
Fasting glucose ⁷⁷	4	1.5%	Phenotypic variance

^{*} Residual is after adjustment for age, gender, diabetes.

The "missing heritability" I.

Disease	Loci	Explained heritance
T2 diabetes	18	6%
HDL cholesterol	7	5.20%
Height	40	5%
Schizophrenia	5	3%

The "missing heritability" II.

- B.Maher: "The case of the missing heritability", Nature, 2008
 - "Right under everyone's noses": rare variants (RVs)
 - "Out of sight": many, small effects
 - "In the architecture": structural variations
 - "In underground networks": epistatic
 - "The great beyond": Epigenetics
 - "Lost in diagnosis": phenome
- "Rare Variants Create Synthetic Genome-Wide Associations", PLoS, 2009
- "Finding the missing heritability of complex diseases", Nature, 2009
- McClellan&King, Cell, 2010:
 - The CD-CV hypothesis (and the corresponding GWAS) has failed.

Missing heritability: issues

- Better outcome variable
 - "Lost in diagnosis": phenome
- Better and more complete set of predictor variables
 - "Right under everyone's noses": rare variants (RVs)
 - "The great beyond": Epigenetics, environment
- Better statistical models
 - "In the architecture": structural variations
 - "Out of sight": many, small effects
 - "In underground networks": epistatic interactions
- Causation (confounding)
- Statistical significance ("multiple testing problem")
- Complex models: interactions, epistatis
- Interpretation

GAS challenges

Genetic factors

- Broader scale
- Aggregation: functional, pathway

Omic

- Cost
- Quality
- Broader

Environment – life style

Standardization

Modeling

- Multivariate
- Systems biology
- Model averaging
- Fusion
- Causation

Phenotypes

- Refinenment
- Standardization

Causal vs. diagnostic markers Direct =/= Causal

Principles of causality

- Principles for a causal relation between X→Y:
 - Probabilistic association,
 - Temporal asymmetry: X precedes temporally Y,
 - (Physical locality)
 - Quantitative effect of interventions: dose-effect relation
 - necessity (i.e., if the cause is removed, effect is decreased)
 - sufficiency (if exposure to cause is increased, effect is increased)
 - Counterfactuals:
 - Y would not have been occurred with that much probability if Y hadn't been present
 - Y would have been occurred with larger probability if X had been present
 - Bounded context-sensitivity (~context-free): relevant on average
 - Plausible explanation (no alternative based on confounding).

Association vs. Causation

Reichenbach's Common Cause Principle:

a correlation between events X and Y indicates either that X causes Y, or that Y causes X, or that X and Y have a common cause.

Statistical vs. Causal

- What is the advantage of causal knowledge?
 - Assume X (directly) causes Y, P(X,Y)
 - Setting X will influence Y: P(Y|X=x)=P(Y|do(X=x))
 - But setting Y will NOT influence X:P(X|Y=y)=P(X)
 - (Directness) Fixing all contextual variables will not screen off X.
- How can we identify a causal relation?

Intervention

Randomized experiment (C.S.Pierce., R.A.Fisher):

In context c randomly setting X to estimate its average effect on Y:

$$P(Y|do(X=x),c) = \sum_{c} P(Y|x,c)p(c)$$

known as adjusting, controlling, keeping constant.

A causal relation is an asymmetric and autonomous (modular and transportable) **mechanism**.

Confounding

- The effect of Smoking on LungCancer:
 - P(LC|S,Context=c) vs. $P(LC|\neg S,Context=c)$ in all context c (context dependent).
- Solution: average the effect in all context
 - Stratification: collect complete observation about context, and analyze them separately.
 - Nature set the cause depending on the context.
 - Intervention: collect data only about cause-effect and analyze them jointly.
 - We set the cause and eradicate the effect of context.
- Identification of causal effect?
 - Computability of a "causal" quantity P(Y|do(X)) from "statistical" quantities such as P(Y|X)?

Confounding by "time/age"

- Rapid/structured
 change in the
 population (genotype)
 can create dependency
 p(Genotype|Time).
- If dependency
 p(Disease | Onset) exists,
 then the relation p(D|G)
 is confounded.

Confounding:

Population substructure + cryptic relatedness

Balding, 2010: Allowing for population structure and cryptic relatedness in GAS

Confounding

Pleiotropy

- Pleiotropy: different phenotypic effects
- Antagonistic pleiotropy: opposite effects
- E.g.: a SNP can be protective for young people, but risk for old people.

Testing genetic associations

Genotype	D	¬D	
0	N ₁₁	N ₁₂	N _{1.}
1	N ₂₁	N ₂₂	N _{2.}
2	N ₃₁	N ₃₂	N _{3.}

Number of alleles ("high risk" allele is A): aa=0,aA=1, AA=2

Allele frequency: $p(A|\neg D)$ vs. p(A|D)

Hardy-Weinberg equilibriums for p(G|D).

Disease frequencies: p(D|G=0) vs. p(D|G=1) vs. p(D|G=2)

Recessive model: p(D|G=0) vs. p(D|G=1) or G=2)

Dominant model: p(D|G=0 or G=1) vs. p(D|G=2)

Fundamental questions in statistics

Estimation error because of finite data D_N :

$$\hat{p}(D=1|A=0,D_N) - p(D=1|A=0)$$

Inequalities for finite(!) data (ϵ accuracy, δ confidence) sample complexity: $N_{\epsilon,\delta} \qquad p(D_{N_{\epsilon,\delta}}: \mathcal{E} \lhd \hat{p}(D=1|A,D_{N_{\epsilon,\delta}}) - p(D=1|A)|) < \delta$

The hypothesis testing framework

- Terminology:
 - False/true x positive/negative
 - Null hypothesis: independence

reported	Ref.:0/N	Ref.1/P
0/N	TN	FN
1/P	FP	TP

- − Type I error/error of the first kind/α error/FP: p(¬H₀|H₀)
 - Specificity: $p(H_0|\underline{H}_0) = 1-\alpha$
 - Significance: α
 - p-value: "probability of more extreme observations in repeated experiments"
- Type II error/error of the second kind/β error/FN: $p(H_0 | \neg \underline{H}_0)$:
 - Power or sensitivity: $p(\neg H_0 | \neg \underline{H}_0) = 1-\beta$

reported	Ref. <u>H</u> ₀	Ref.:¬ <u>H</u> ₀
H ₀		Type II
$\neg H_0$	Type I ("false rejection")	

Genetic power calculator I.

```
High risk allele frequency (A)
                                             (0 - 1)
Prevalence
                                             (0.0001 - 0.9999)
                                 : 1.2
Genotype relative risk Aa
                                             (>1)
Genotype relative risk AA
                                             (>1)
                                             (0 - 1)
D-prime
                                 : .2
Marker allele frequency (B)
                                             (0 - 1)
Number of cases
                                                   (0 - 10000000)
Control : case ratio
                                           (1 = equal number of cases and controls)
                                       Unselected controls? (* see below)
                                    0.05
                                                 (0.00000001 - 0.5)
User-defined type I error rate
                                    0.80
User-defined power: determine N
(1 - type II error rate)
```

- http://pngu.mgh.harvard.edu/~purcell/gpc/cc2.html
- http://pngu.mgh.harvard.edu/~purcell/gpc/

Multiple testing problem (MTP)

- If we perform N tests and our goal is
 - − p(FalseRejection₁ or ... or FalseRejection_N)< α
- then we have to ensure, e.g. that
 - for all p(FalseRejection_i)< α /N
 - →loss of power!
 - E.g. in a GWA study N=100,000, so huge amount of data is necessary....(but high-dimensional data is only relatively cheap!)

Solutions for MTP

- Corrections
- Permutation tests
 - Generate perturbed data sets under the null hypothesis: permute predictors and outcome.
- False discovery rate, q-value
- Bayesian approach

Corrections for multiple testing

A. Bonferroni correction

The p-value of each gene is multiplied by the number of genes in the gene list. If the corrected p-value is still below the error rate, the gene will be significant:

Corrected P-value= p-value * n (number of genes in test) < 0.05

Bonferroni	
Bonferroni Step-Down	
Westfall and Young Permutation	┪
Benjamini and Hochberg False Discovery Rate	
None	

More false negatives

More t

D. Benjamini and Hochberg False Discovery Rate

This correction is the least stringent of all 4 options, and therefore tolerates more false positives. There will be also less false negative genes. Here is how it works:

- The p-values of each gene are ranked from the smallest to the largest.
- The largest p-value remains as it is.
- The second largest p-value is multiplied by the total number of genes in gene list divided by its rank. If less than 0.05, it is significant.

Corrected p-value = p-value*(n/n-1) < 0.05, if so, gene is significant.

The third p-value is multiplied as in step 3:
 Corrected p-value = p-value*(n/n-2) < 0.05, if so, gene is significant.

And so on.

Corrections for multiple testing

I have 1,000,000 hypotheses that are not mutually exclusive.

1. I test them all.

- 2. I plan to test them all, but I run out of resources after testing only one of them. Correction?
- 3. I test one of them, and a year later test the others. Correction? If so, when?
- 4. I only test the first one because that is the one I suspect. Correction?
- 5. I run an algorithm that prunes unlikely hypotheses, keeping only 100,000. Correction for 100,000 or for 1,000,000 hypotheses?

(R.Neopolitan, 2010)

Permutation testing

- A random permutation guarantees the independency of the outcome Y.
- A random permutation corresponds to an artificial data set from the null model. → "direct" estimation of the p-value: the probability of observing a more extreme data set from the null model with the same sample size.

 $p(D_N^{perm}: IncompatibilityWithNull(D_N^{real}) < IncompatibilityWithNull(D_N^{perm}))$

Permutation testing in Haploview

File|Open|Linkage Data: http://home.mit.bme.hu/~antal/AIT/asthma.ped

Options: Do association test, Case/Control

False discovery rate (FDR)

Another aspect of multiple hypothesis testing:

- the probability of Type I. error for any tests
- the expected number of Type I. errors at a given significance level (False discovery rate, FDR)
- q-value: the minimum FDR at which the test may be called significant.

Summary

- The problem of missing heritability
 - Potential explanations/solutions
- The problem of confounding
 - Population substructure
 - Solutions
- The multiple hypothesis testing problem
 - Concept of permutation test (permutation p-value)
 - False discovery rate, q-value