Ez az anyag az osztalyozasi modszerek 0sszefoglalojat tartalmazza. Az
el6adasanyag alapvet6en a Bishop kényvhoz igazodik, ezért itt a konyv 4.
és 5. fejezetébdl szerepelnek részletek. A konyv elsGdlegesen a
valészinlségi megkdzelitést alkalmazza, alapvetéen ebben tér el az
egyéb hasonld témaju konyvektdl.

A konyv természetesen joval b6vebb, mint ami az el6addson szerepelt,
és bizonyos témakoroknél a klasszikus (Iényegében LS-becslés alapu)
megkozelitéseket is tartalmazza. Ez kiilonosen az 5. fejezet (Neural
networks)-re vonatkozik. Ezeket a részeket ez az el6adashoz
Osszedllitott hattéranyag nem tartalmazza, mivel a klasszikus
megkozelités bévebben hozzaférhet6 szamos mas irodalomban is,
koztik a tanszéki Neuralis halézatok c. kényvben is.

Itt els6ésorban azon részek szerepelnek, melyek a Bayes-i megkozelitést
alkalmazzdk. Az el6adas soran végig feltételeztik, hogy a klasszikus
megkozelitést mindenki ismeri.

A kernel médszerek rész Bishop kényvbeli bemutatdsa sem szerepel itt.
Ennek oka hasonld: az el6bb emlitett neuralis kdnyvben a klasszikus
megkozelités megtalalhatd. Az RVM-rél kiegészitd anyag fel fog keriilni a
jegyzetekhoz.

Tn the previous chapter, we explored a class of regression models having particularly
simple analytical and computational properties. We now discuss an analogous class
of models for solving classification problems. The goal in classification is to take an
input vector x and to assign it to one of A discrete classes Cp where b =1,..., K.
In the most common scenario, the classes are taken to be disjoint, so that each input s
assigned to one and only one class. The input space is thereby divided into decision
regions whose boundaries are called decision boundaries or decision surfaces. In
this chapter, we consider linear models for classification, by which we mean that the
decision surfaces are linear functions of the input vector x and hence are defined
by (1 — 1)-dimensional hyperplanes within the D-dimensional input space. Data
sets whose classes can he separated exactly by linear decision surfaces are said to be
linearly separahle.

For regression problems, the target variable t was simply the vector of real num-
bers whose values we wish to predict. In the case of classification, there are various
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ways of using target values to represent class labels. For probabilistic models, the
most convenient, in the case of two-class problems, is the binary representation in
which there is a single target variable £ £ {0, 1} such that ¢ = 1 represents class C,
and t = 0 represents class Cz. We can interpret the value of t as the probability that
the class is O, with the values of probability taking only the extreme values of 0 and
1. For I = 2 classes, it is convenient to use a |-of-K coding scheme in which t is
a vector of length & such that if the class is C;, then all elements t; of t are zero
excepl element £, which takes the value 1. For instance, if we have K = 5 classes,
then a pattern from class 2 would be given the target vector

t=(0,1,0.,0,0)". (4.1)

Again, we can interpret the value of #; as the probability that the class 15 Cp.. For
nonprobabilistic models, alternative choices of target variable representation will
SOMmetimes prove convenient.

In Chapter 1, we identified three distinct approaches 1o the classification prob-
lem. The simplest involves constructing a diseriminant fumction that directly assigns
each vector X to a specific class. A more powerful approach, however, models the
conditional probability distribution p{Cy|x) in an inference stage, and then subse-
quently uses this distribution to make optimal decisions. By separating inference
and decision, we gain numerous benefits, as discussed in Section 1.5.4. There are
two different approaches to determining the conditional probabilities p{Cy|x). One
technique is to model them directly, for example by representing them as parametric
models and then optimizing the parameters using a training set. Allernatively, we
can adopt a generative approach in which we model the class-conditional densities
given by p(x|Cr ), together with the prior probabilities p(Cj } for the classes, and then
we compute the required posterior probabilities using Bayes’ theorem

. i
p(Cylx) = PXICRIPCr). 4.2)
p(x)
We shall discuss examples of all three approaches in this chapter.

In the linear regression models considered in Chapter 3, the model prediction
g3, w) was given by a linear function of the parameters w. In the simplest case,
the model is also linear in the input variables and therefore takes the form y(x) =
Wi + g, so that w is a real number. For classification problems, however, we wish
to predict discrete class labels, or more generally posterior probabilities that lie in
the range {{), 1). To achieve this, we consider a generalization of this model in which
we transform the linear function of w using a nonlinear function f{ -} so that

y(x) = f{whix+wp). (4.3)

In the machine learning literature [ - ) is known as an actfivation funcrion, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to g x) = constant, so that w*'x + wy = constant and hence the deci-
sion surfaces are linear functions of x, even if the function f(-) is nonlinear. For this
reason, the class of models described by (4.3) are called generalized linear models

4.1.
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(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(-). This will lead 1o more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chaplers. '

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions ¢b(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x, while in Section 4.3 we shall
find 1t convenient to switch to a notation involving basis functions for consistency
with later chaplers.

Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Cy. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investipate the extension
to i = 2 classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-
ing a linear function of the input vector so that

yix) = whx 4wy (4.4)

where w is called a weight vector, and wy 15 a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold., An
input vector x is assigned to class Cy if g{x) = 0 and 1o class Cs otherwise. The cor-
responding decision boundary is therefore defined by the relation y{x) = (), which
comesponds to a (1) — 1)-dimensional hyperplane within the D-dimensional input
space. Consider two poinis X4 and xg both of which lie on the decision surface,
Because y(x4 ) = y{xg) = 0, we have w” (x4 — xp) = 0 and hence the vector w is
orthogonal o every vector lyving within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
siven by

wlx ttg

- . (4.5)

([l wll

We therefore see that the bias parameter wq determines the location of the decision

surface, These properties are illustrated for the case of [ = 2 in Figure 4.1.
Furthermore, we note that the value of y{x) gives a signed measure of the per-

pendicular distance v of the point x from the decision surface. To see this, consider



4, LINEAR MODELS FOR CLASSIFICATION

lustration of the geometry of a .
ninant function in two dimensions. y=0 2
1 surfacs, shown in red, is perpen- vy =10
¢, and its digplacement from the 5 < 0 R
itrolled by the hias parameter wn.
ned orthogonal distance of a gen-
from the decision surface is given
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an arbitrary point x and let x| be its orthogonal projection onto the decision surface,

Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-
biguous regions, shown in green. On the left is an example Invalving the use of two discriminants designed to
distinguish points in class C. from points not in class Ce. On the right is an example involving three discriminant
functions each of which is used to separate a pair of classes C, and C;.

s0 that

X=X, +r {4.6)

[[wll’
Multiplying both sides of this result by w and adding wy, and making use of y(x} =

wls + g and ylxy ) = whx 4wy = 0, we have
X
oYX (4.7)
wl|

This result is illustrated in Figure 4.1.

As with the linear regression models in Chapter 3, it is sometimes convenient
to use a more compact notation in which we introduce an additional dummy “input”
value oy = 1 and then define W = (wy, w) and X = (&, x) so that

ylx) = w'x 4.8)
In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the I + 1-dimensional expanded input space.

4.1.2 Multiple classes

Now consider the extension of linear discriminants to K > 2 classes. We might
be tempted be to build a K -class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of i -1 classifiers each of which solves a two-class problem of
separating points in a particular class Ci: from points not in that class. This is known
as a one-veryus-the-rest classifier,. The left-hand example in Figure 4.2 shows an

example involving three classes where this approach leads to regions of input space
that are ambiguously classified.

An alternative is to inroduce A{K — 1)/2 binary discriminant functions, one
for every possible pair of classes. This is known as a one-versus-one classifier. Each
point is then classified according to a majority vote amongst the discriminant {func-
tions. However, this too tuns into the problem of ambiguous regions, as illustrated
in the right-hand diagram of Figure 4.2,

We can avoid these difficulties by considering a single K -class discriminant
comprising K linear functions of the form

i (%) = W 4 g (4.9

and then assigning a point x to class Cy, if g, (x) = y;(x) for all j # k. The decision
boundary between class C;, and class C; is therefore given by yi(x) = y;(x) and
hence corresponds to a ({2 — 1)-dimensional hyperplane defined by

(wp — WJ:ITI F (g — wig) = 0. (4,100

This has the same form as the decision boundary for the two-class case discussed in
Section 4.1.1, and so analogous geometrical properties apply.

The decision regions of such a discriminant are always singly connected and
convex. To see this, consider two points x», and xp both of which lie inside decision
region ;. as illustrated in Figure 4.3, Any point X that lies on the line connecting
%4 and xp can be expressed in the form

%= Axy + (1 — A)xp (4.11)
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Figure 4.3

llustration of the decision regions for a mul-
ticlass linear discriminant, with the dacision
boundaries shown in red, If two points x.
and xg both lig inside the same decision re-
gion Ry, then any point x that lies on the line
connecting these two points must also lie in
Wi, and hence the decision region must be
singly connected and conwvsx.

where 0 < A < 1. From the linearity of the discriminant functions, it follows that
(X} = Ay (xa) + (1 — Ay (xp). (4.12)

Because both x, and xp lie inside Ry, it follows that ye(xs) > y;(xa). and
urixp) > yi(xg), for all j # k, and hence y(X) > y;(X), and so X also lies
inside K. Thus T2, is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions g (x) and y2(x), or else use the simpler but
equivalent formulation described in Section 4.1.1 based on a single discriminant
function y(x).

We now explore three approaches to learning the parameters of linear discrimi-
nant functions, based on least squares, Fisher's linear discriminant, and the percep-
tron algorithm.

4.1.3 Least squares for classification

In Chapter 3, we considered models that were linear functions of the parame-
ters, and we saw that the minimization of a sum-of-squares error function led to a
simple closed-form solution for the parameter values. It is therefore tempting to see
if we can apply the same formalism to classification problems. Consider a general
classification problem with K classes, with a 1-of-K binary coding scheme for the
target vector t. One justification for using least squares in such a context is that it
approximates the conditional expectation [E[t[x] of the target values given the input
veclor. For the binary coding scheme, this conditional expectation is given by the
vectar of posterior class probabilities. Unfortunately, however, these probabilities
are typically approximated rather poorly, indeed the approximations can have values
outside the range (0, 1), due to the limited flexibility of a linear model as we shall
see shortly,

Each class Cy. is described by its own linear model so thar

we(X) = wix + wgg (4.13)

where & = 1,..., K. We can COU"—"GI'Ii&I'I.t]_\,' group these [Qgcmﬂ usj_ng veclor nola-
ticn so that

yix) = WTx (4.14)

Exercise 4.2

Section 2.3.7
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where W is a matrix whose &' column comprises the ) + 1-dimensional vector
W = (wia, Wi |7 and X is the corresponding augmented input vector (1, x7)T with
adummy input 7y = 1, This representation was discussed in detail in Section 3.1, A
new input x is then assigned to the class for which the output iy, = W% is largest.

We now determine the parameter matrix' W by minimizing a sum-of-squares
error function, as we did for regression in Chapter 3. Consider a training data set
{xn.tn}wheren = 1,.. ., ¥V, and define a matrix T whose 1! row is the vector tr,
together with a matrix X whose n' row is XI. The sum-of-squares error function
can then be written as

= 1 (o n e
Fp(W) = 5'1‘:{:xw T (XW — Ij} . (4.15)

Serting the derivative with respect to W to zero, and rearranging, we then obtain the
solution for W in the form

W= (XTX)"1XTT = Xi (4.16)

where X! is the pseudo-inverse of the matrix 5(, as discussed in Section 3.1.1. We
then obtain the discriminant function in the form

T m =t T_
y(x) = W% = T" (x) %. (4.17)

An interesting property of least-squares solutions with multiple target variables
is that if every target vector in the training set satisfies some linear constraint

alt, +b=10 {4.18)

for some constants a and b, then the model prediction for any value of x will sarisfy
the same constraint so that )
aly(x)+b=0. (4.19)

Thus if we use a l-of-K coding scheme for A classes, then the predictions made
by the model will have the property that the elements of y(x) will sum te 1 for any
value of x. However, this summation constraint alone is not sufficient to allow the
model outputs to be interpreted as probabilities because they are not constrained to
lie within the interval (0, 1),

The least-squares approach gives an exact closed-form solution for the discrimi-
nant function parameters. However, even as a discriminant function {where we use il
to make decisions directly and dispense with any probabilistic interpretation) it suf-
fers from some severe problems. We have already seen that least-squares solutions
lack robustness (o outliers, and this applies equally to the classification application,
as illustrated in Figure 4.4. Here we see that the additional data points in the right-
hand figure produce a significant change in the location of the decision boundary,
even though these point would be correctly classified by the original decision bound-
ary in the left-hand figure, The sum-of-squares error function penalizes predictions

that are ‘ton coreect’ in that thew lie a Tane wmss ae the aneesetb alda of deo .ot
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The left plot shows data from two classes, denoted by red crosses and blue circles, together with
n boundary found by least squares {magenta curve) and also by the legistic regression model (grean
ch is discussed later in Section 4.3.2. The right-hand plot shows the corresponding resulis obtained
data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
unlike logistic regression.

boundary. In Section 7.1.2, we shall consider several alternative error functions for
classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of
robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn from
three classes in a two-dimensional input space (i, #2 ), having the property that lin-
ear decision boundaries can give excellent separation between the classes. Indeed,
the technique of logistic repression, described later in this chapter, gives a satisfac-
tory solution as seen in the right-hand plot. However, the least-squares solution gives
poor results, with only a small region of the input space assignad to the green class.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary targel vectors clearly have a distribution that is far from
Gaussian, By adopting more appropriate probabilistic models, we shall obtain clas-
sification techniques with much better properties than least squares. For the moment,
however, we continue to explore alternative nonprobabilistic methods for setting the
parameters in the linear classification models.

4.1.4 Fisher's linear discriminant

One way to view a linear classification model is in terms of dimensionality
reduction. Consider first the case of two classes, and suppose we take the D-
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Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(=), green {+), and blue (o). Lines denote the decision boundaries, and the background coleurs denote the
respective classes of the decision regions. On thea left is the result of using a least-sguares discriminant, We see
that the region of input space assigned to the green class is too small and 20 most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using
=W x. (4.20)

If we place a threshold on y and classify y = —wy as class Cy, and otherwise class
Cy, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N; poinis
of class ¢, and N, points of class Cy, so that the mean vectors of the two classes are
given by
my = \:(l] Z Xn my = \tp Z K. (4.21)
= nie s
The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
o maximize
Ty — My = W (m; —m, ) (4.22)
where
mE = Wy (4.23)
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The left plot shows samples from two classes {depictad in red and blue} along with the histograms
sm projecticn onto the line joining the class means. Note that there is considerable class overlap in
ad space. The right plot shows the corresponding projection based on the Fisher linsar discriminant,
2 greatly improved class separation,
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is the mean of the projected data from class C. However, this expression can be
made arbitrarily large simply by increasing the magnitde of w. To solve this
problem, we could constrain w to have unit length, so that 5owi = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find that
w o {ms —my ), There is still a problem with this approach, however, as illustrated
in Figure 4.6, This shows two classes that are well separated in the original two-
dimensional space (z, ) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is 1o maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data poinis in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Cy, is therefore given by

s= ) (g — i)’ (4.24)

nECy

where ¥, = wTx,. We can define the total within-class variance for the whole
data set to be simply % + s2. The Fisher criterion is defined to be the ratio of the
between-class variance to the within-class variance and is given by

[ i 12

Wz — T

Jw) = ————. (4.25)
si+ 3

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the form
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T
w S|;W
Jw) = —— 4.26)
|: ] wl S\,\."w {
where Sg is the between-class covariance matrix and is given by
Sp = (mp — 1y j{ms — m;)" (4.27)

and Svy is the total within-class covariance matrix, given by

Sw = Z (X = my){x, —my)" + z (%, — ma){x, —mg)T.  (4.28)

nedy n&Els
Differentiating (4.26) with respect to w, we find that J{w} is maximized when
(WTSyw)Suw = (w Syw)Saw. (4.29)

From (4.27), we see that Spw is always in the direction of (mg — m, }. Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSgw) and (wTSyww). Multiplying both sides of (4.29) by S/
we then obtain

W S“,-J (mg — my ). (4,30}

Note that if the within-class covariance is isotropie, so that Sy is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly i
is mot a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold g, so that we classify a new
point as belonging to C; if y(x) = uo and classify it as belonging o C; otherwise.
For example, we can model the class-conditional densities p(y|Cy ) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = w7 is the sum of a set of
random variables.

4.1.5 Relation to least squares

The least-squares approach to the determination of a linear discriminant was
based on the goal of making the model predictions as close as possible to a set of
targel values. By cantrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of- K coding for the target values. If. however, we
adopt a slightly different target coding scheme, then the least-squares solution for
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L6

the weights becomes equivalent 1o the Fisher solution (Duda and Hart, 1973). In

particular, we shall take the targets for class Cy to be N/N;, where Ny is the number

of patterns in class C;, and N is the total number of patterns. This target value

approximates the reciprocal of the prior probability for class C;. For class Cq, we

shall take the targets to be — N /N;, where N, is the number of patterns in class Cp.
The sum-of-squares error function can be written

N
1 -
E=33 (W +uo - )", (4.31)

=l

Setting the derivatives of F' with respect to w; and w to zero, we obtain respectively

¥
Z [:WTxn + iy — zn]

= D (4.32)
LES
N
Z(wan+u-‘a—ﬁanﬂ = 0 (4.33)
n=1

From (4.32), and making use of our choice of target coding scheme for the ¢, we
obtain an expression for the bias in the form

wy = —w'm (4.34)
where we have used .
Z fa = N, T::'. .-Vg-_l":—;; =0 (4.35)
and where m is the mean of the total data set and is given by
e 15 C L Ny ;
= Zx,, = 5 (Nimy + Nymg). (4.36)

After some straightforward algebra, and again making use of the choice of £, the
second equation (4.33) becomes

."\'r Ja.!r'
(Sw + = Se) W= N{m; —my) #37)

where Sy is defined by (4.28), Sg is defined by (4.27), and we have substituted for
the bias using (4.34). Using (4.27), we note that Spw is always in the direction of
{ms — my ). Thus we can write

woc 83t (my — my) (4.38)

where we have ignored irrelevant scale factors. Thus the weight vector coincides
with that found from the Fisher criterion. In addition, we have alse found an expres-
sion for the bias value wyg given by (4.34). This tells us that a new vector x should be
classified as belonging to class Cq if w(x) = wT(x—m) > 0and class C= otherwise.
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4.1.6 Fisher's discriminant for multiple classes

We now consider the generalization of the Fisher discriminant to K > 2 classes,
and we shall assume that the dimensionality [ of the input space is greater than the
number K of classes. Next, we introduce [ > 1 linear ‘features” y,, = w %, where
k=1,.... ' These feature values can conveniently be grouped together to form
a vector v, Similarly, the weight vectors {w } can be considered to be the columns
of a matrix W, so that

¥=W'x (4.39)
Note that again we are not including any bias parameters in the definition of y. The
generalization of the within-class covariance matrix to the case of & classes follows
from (4.28) to give

K
Sy = X Sk (4.40)
k=1
where
S, = Z (3% — my ) (3, — my )" (4.41)
nECy
|
ng = —— ¥, (4.42
Iy ﬂ"k ; 1 )

and Ny is the number of patterns in class Ci.. In order to find & generalization of the
between-class covariance matrix, we follow Duda and Hart (1973) and consider first
the total covariance matrix
N
Sy = L[xn —m){x, — rn]"' (4.43)

n=1

where m is the mean of the total data set

N i
1 1
m= - E Xn = 5 21 Ny, {4.44)

k=1

and NV = 37, N is the total number of data points. The total covariance matrix can
be decomposed into the sum of the within-class covariance matrix, given by (4.40)
and (4.41), plus an additional matrix Sg, which we identify as a measure of the
hetween-class covariance
St = 8w +58g {4.45)
where
i
Sg = Z Nip(mp — m)(my —m)7. (4.46)
k=1
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L12  lllustration of the rele of nonlinear basis functions in linear classification models. The left plot
12 ariginal input space (), x:) together with data points from two classes labelled red and blue. Two
" basis functions ¢ (x) and ga(x) are defined In this space with centres shown by the green crosses
| contours shown by the green circles, The right-hand plot shows the corresponding fealure space
together with the linear decision boundary obtained given by a logistic regression model of the farm
il in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
y the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p{x). In the direct approach, we are maximizing a likelihood
function defined through the condirtional distribution p(Cy|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions

So far in this chapter, we have considered classification models that work di-
rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear wransformation of the inputs using a
vector of basis functions ¢(x). The resulting decision boundaries will be linear in
the feature space ¢, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space ¢b(x} need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the
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basis functions is typically set to a constant, say ¢q(x} = 1, so that the correspond-
ing parameter wy plays the role of a bias. For the remainder of this chapier, we shall
include a fixed basis function transformation ¢b{x), as this will highlight some useful
similarities to the regression models discussed in Chapter 3.

For many problems of practical interest, there is significant overlap between
the class-conditional densitics p(x|Cy ). This corresponds 1o posterior probabilities
p(Cr]x). which, for at least some values of x, are not 0 or 1. In such cases, the opti-
mal solution is obtained by modelling the posterior probabilities accurately and then
applying standard decision theory, as discussed in Chapter 1. Note that nonlinear
transformations (x| cannot remove such class overlap. Indeed, they can increase
the level of overlap, or create overlap where none existed in the original observation
space. However, suitable choices of nonlinearity can make the process of modelling
the posterior probabilities easier.

Such fixed basis function models have important limitations, and these will be
resolved in later chapters by allowing the basis functions themselves to adapi to the
data. Notwithstanding these limitations, models with fixed nonlinear basis functions
play an important role in applications, and a discussion of such models will intro-
duce many of the key concepts needed for an understanding of their more complex
counterparts.

43.2 Logistic regression

We begin our treatment of generalized linear models by considering the problem

of two-class classification. In our discussion of generative approaches in Section 4.2,

we saw that under rather general assumptions, the posterior probability of class C;
can be written as a logistic sigmoid acting on a linear function of the feature vector

b s0 that )

plC1ld) = yl(ep) = o (w'h) (4.87)

with p(Cs|@) = 1 — p(C,|¢). Here o(-} is the Jogistic sigmoid function defined by
(4.59). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
regression.

For an M -dimensional feature space g, this model has M adjustable parameters.
By contrast, if we had fitted Gaussian class conditional densities using maximum
likelihood, we would have used 204 parameters for the means and M (M + 1}/2
parameters for the (shared) covariance matrix. Together with the class prior p(C, ),
this gives a total of M{ M +5) /241 parameters, which grows quadratically with A,
in contrast to the linear dependence on M of the number of parameters in logistic
regression, For large values of M, there is a clear advantage in working with the
logistic regression model directly.

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we shall make use of the derivative of the logistic sig-
moid function, which can conveniently be expressad in terms of the sigmoid function
itself ;

T
Ta =o(l —a) {4.88)
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For a daia set {¢,,t,), where £, € (0,1} and ¢, = @(x,), with n =

L,.... N, the likelihood function can be written
N
pitw) = JJ ol {1 - p} " (4.89)
=1
where t = (t,....t5)" and g = p(Ci|¢h,). As usual, we can define an error

function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

N
E(w) = ~Inp{tlw) = =3 {talngn + (1 =) In{l = o)} (490)

el

where y,, = o(ay) and a,, = w'¢,,. Taking the gradient of the error function with
respect to w, we obtain

VE(W) = (4 —tn)d, (4.91)

=l

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ v, — t, between the target value and the prediction of the
model, times the basis function vector ¢»,. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which VI, is the 7' term in (4.91).

It 15 worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to @ = 0.5, equivalent to w' ¢ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class & is assigned
a posterior probability p(Cy %} = 1. Furthermore, there is typically a continuum
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data poinis, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization, Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
madel, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

Section 3.1.1
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4.3.3 Ilterative reweighted least squares

In the case of the linear regression models discussed in Chapier 3, the maxi-
mum likelihood selution, on the assumption of a Gaussian noise model, leads to a
closed-form solution. This was a consequence of the quadratic dependence of the
log likelihood function on the parameler vector w. For logistic regression, there
is mo longer a closed-form solution, due to the nonlinearity of the logistic sigmoid
function. However, the departure from a quadratic form is not substantial. To be
precise, the error function is concave, as we shall see shortly, and hence has a unique
minimum, Furthermore, the error function can be minimized by an efficient iterative
technique based on the Newton-Raphson iterative optimization scheme, which uses a
local quadratic approximation to the log likelihood function. The Newton-Raphson
update, for minimizing a function F(w), takes the form (Fletcher, 1987 Bishop and
Nabney, 2008)

wiiewl = gploldl I E(w), {4.92)
where H is the Hessian matrix whose elements comprise the second derivatives of
E(w) with respect to the components of w,

Let us first of all apply the Newton-Raphson method to the linear regression
model (3.3) with the sum-of-squares error function (3.12). The gradient and Hessian
of this error function are given by

N
VE(w) S wih, ~tald, = 8 Pw -2t (4.93)
=1
w
H=VVEw = > ¢,0,=2"® (4.94) .

where @ is the N » M design matrix, whose n'" row is given by @) . The Newton-
Raphson update then takes the form
wlmewl wf(:ld: E@P‘p] 1 {¢'l":'w|::f_d:- _ @I‘I}
= (#'®) @t {4.95)
which we recognize as the standard least-squares solution. Note that the error func-
tion in this casa is quadratic and hence the Newton-Raphson formula gives the exact
solution in one step.
Now let us apply the Newton-Raphson update to the cross-entropy error function

{4.90) for the logistic regression model. From (4.91) we see that the gradient and
Hessian of this error function are given by

N
VE(wW) = (- tald, =27 (y-1) (4.96)

N
H = VVE(wW) =Y u(l-mlé.b, = 2'RE  (497)

n=1
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[

where we have made use of (4.88). Also, we have introduced the N » N diagonal
matrix R with elements
R = yn(l = pn)- (4.98)

We see that the Hessian is no longer constant but depends on w through the weight-
ing matrix R, corresponding to the fact that the error function is no longer quadratic.
Using the property 0 < y,, = 1, which follows from the form of the logistic sigmoid
function, we see that u™ Hu > 0 for an arbitrary vector u, and so the Hessian matrix
H is positive definite. Tt follows that the error function is a concave function of w
and hence has a unigue minimum.

The Newton-Raphson update formula for the logistic regression model then be-
comes

winewh — wleilh _ ($TRE) 8T (y — 1)
(®"R®) {2 TREW — 3Ty 1)}
= (®"R®) '®"Rz (4.99)

where 2 is an N -dimensional vector with elements
z=dw Ryt (4.100)

We see that the update formula (4.99) takes the form of a set of normal equations for a
weighted least-squares problem. Because the weighing matrix R is not constant but
depends on the parameter veclor w, we must apply the normal equations iteratively,
each time using the new weight vector w to compute a revised weighing matrix
R.. For this reason, the algorithm is known as iterative reweighted least squares, or
IRLS (Rubin, 1983). As in the weighted least-squares problem, the elements of the
diagonal weighting matrix R can be interpreted as variances because the mean and
variance of ¢ in the logistic regression model are given by

Elt) = olx)=w (4.101)

varft] = E[t?] - E[t]* = a(x) —a(x)* = w{l — y) (4.102)

where we have used the property t* = ¢ for £ £ {0, 1}. In fact, we can interpret IRLS

as the solution to a linearized problem in the space of the variable a = wl¢h. The

quantity z,, which corresponds to the n** element of 2, can then be given a simple

interpretation as an effective target value in this space obtained by making a local

linear a?pmximation to the logistic sigmoid function around the current operating
point wiekd

, d
an(w) = ap(wl¥) 4 50 {tn —n)
dy, weleldy
. \ Yo —tn )
= glwle  Wo—t) _ (4.103)

1.‘n l:]- - yn.)
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4.3.4 Multiclass logistic regression

In our discussion of generative models for multiclass classification, we have
seen that for a large class of distributions, the posterior probabilities are given by a
softmax transformation of linear functions of the feature variables, so that

ACol ) = 1 () = EPLR) @.104)
f( Rl b ) Y\ @) Ej crp(aj}
where the ‘activations” oy are given by
Ay = Wy (4.105)

There we used maximum likelihood to determine separately the class-conditional
densities and the class priors and then found the corresponding posterior probabilities
using Bayes’ theorem, thereby implicitly determining the parameters {w, }. Here we
consider the use of maximum likelihood to determine the parameters {wy} of this
model directly. To do this, we will require the derivatives of y. with respect to all of
the activations a;. These are given by

O _ Ui Ly — 3 (4.106)
day
where [|.; are the elements of the identity matrix.

Next we write down the likelihood function. This is most easily done using
the 1-of-K coding scheme in which the target vector t,, for a feature vector ¢,
belonging to class C, is a binary vector with all elements zero except for element k,
which equals one. The likelihood function is then given by

K N K

N
p(Tlwi, . owie) = [ [T ptCulda)= =[] [T vl @.107)
n=1

k=1 n=1 k=1

where yu = i, ), and T is an N = K matrix of target variables with elements
tnk- Taking the negative logarithm then gives

N K
B(wi,...,wg) = —lnp(Tiwi,.. , Wg) = =3 D tuxnjs  (4.108)

n=1 k=1

which is known as the cross-entropy error function for the multiclass classification
problem.

We now take the gradient of the ervor function with respect to one of the param-
eter vectors w;, Making use of the result (4.106) for the derivatives of the softmax
function, we obtain

N
Ve, E(Wy, . WE) = Z (Wi — tag) @ (4.109)



4. LINEAR MODELS FOR CLASSIFICATION

however, find another use for the probit model when we discuss Bayesian treatments
of logistic regression in Section 4.5.

One issue that can occur in practical applications is that of outliers, which can
arise for instance through errors in measuring the input vector x or through misla-
belling of the target value t. Because such points can lie a long way to the wrong side
of the ideal decision boundary, they can seriously distort the classifier. Note that the
logistic and probit regression models behave differently in this respect hecause the
tails of the logistic sigmoid decay asymptotically like exp|—x) for z — oo, whereas
for the probit activation function they decay like exp(—z?), and so the probit model
can be significantly more sensitive to outliers.

However, both the logistic and the probit models assume the data is correctly
labelled. The effect of mislabelling is easily incorporated into a probabilistic model
by introducing a probability € that the target value ¢ has been flipped to the wrong
value {Opper and Winther, 2000a), leading to a target value distribution for data point
x of the form

pltlx) = [1—e)olx)+ el —alx))
e+ {1 — 2e)erix) (4.117)

where o{x) is the activation function with input vector x. Here ¢ may be set in
advance, or it may be treated as a hyperparameter whose value is inferred from the
data.

4.3.6 Canonical link functions

For the linear regression model with a Gaussian noise distribution, the error
funciion, corresponding to the negative log likelihood, is given by (3.12). If we take
the derivative with respect to the parameter vector w of the contribution to the error
function from a data point n, this takes the form of the ‘error’ y, — &, times the
feature vector ¢b,,, where y,, = w7 ¢,,. Similarly, for the combination of the logistic
sigmoid activation function and the cross-entropy error function (4.90), and for the
softmax activation function with the multiclass cross-entropy error function (4. 108),
we again obtain this same simple form. We now show that this is a general result
of assuming a conditional distribution for the target variable from the exponential
family, along with a comresponding choice for the activation function known as the
cancnical link function.

We again make use of the restricted form (4.84) of exponential family distribu-
tions. Note that here we are applying the assumption of exponential family distribu-
tion to the target variable ¢, in contrast to Section 4.2.4 where we applied it to the
input vector x. We therefore consider conditional distributions of the target variable
of the form

1 i
plt|n,s) = —n ( )gt;rb th{ } (4.118)
Using the same line of argument as ]f:d to the derivation of the result (2.226), we sce
that the conditional mean of £, which we denote by i, is given by

: ‘)
y=E[tn] = 9{;—1? I gin). (4.119)
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Thus i and v must related, and we denote this relation through 5 = (y).

Following Nelder and Wedderburn (1972), we define a generalized linear model
to be one for which y is a nonlinear function of a linear combination of the input (or
feature) variables so that

y = flwTo) (4.120)

where f{) is known as the activation function in the machine lcarmng literature, and
F4() is known as the Jink function in statistics.

Now consider the log likelihood function for this model, which, as a function of
17, 18 given by

N
- i r-n
lnp(t), 8) Zln}r' nlfls §) = Z {Ing(a}ﬂ) + nﬂq } + const (4.121)

n=l1

where we are assuming that all observations share a common scale parameter (which
corresponds to the noise variance for a Gaussian distribution for instance) and so s
is independent of n. The derivative of the log likelihood with respect to the model
parameters w is then given by

> d H dnjy o
Vo In 3}':t Lie s = Z {d— In q\?]‘ﬂ_j + — t } {i'_!_:n din Vi

Z {ta = yn} o' () /' (20) 9, (4.122)

where a,, = qub.,;, and we have used y,, = f(a,) together with the result (4.119)
for [E[t|n]. We now see that there is a considerable simplification if we choose a
particular form for the link function f~1(y) given by

Ty = wly) (4.123)

which gives f{s/(y)) = y and hence (v} {y) = 1. Also, because a = f~"(y),
we have 2 = 1 and hence flald (y) = 1. In this case, the gradient of the error
function reduces to

—

V m P - Z{q}'n - Il - [4'|2‘1:|

@

For the Gaussian 5 = 3771, whereas for the logistic model s =

The Laplace Approximation

In Section 4.5 we shall discuss the Bayesian treatment of logistic regression. As
we shall see, this is more complex than the Bayesian treatment of linear regression
models, discussed in Sections 3.3 and 3.5. In particular, we cannot integrate exactly
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over the parameter vector w since the posterior distribution is no longer Gaossian,
It is therefore necessary to introduce some form of approximation. Later in the
book we shall consider a range of techniques based on analytical approximations
and numerical sampling.

Here we introduce 2 simple, but widely used, framework called the Laplace ap-
proximation, that aims to find a Gauossian approximation to a probability density
defined over a set of continuous variables. Consider first the case of a single contin-
uous variable z, and suppose the distribution p(z) is defined by

|
plz) = Efiz:n (4.125)

where £ = f Sz dz is the normalization coefficient. We shall suppose that the
value of Z is unknown. In the Laplace method the goal is to find a Gaussian approx-
imation g{ z) which is centred on a mode of the distribution p(z}. The first step is to
find a mode of p{z). in other words a point z;p such that p'{zy) = 0, or equivalently

df (z)
dz

=10 (4,126}
E=Xy
A Gaussian distribution has the property that its logarithm is a quadratic function

of the variables, We therefore consider a Taylor expansion of ln f{z) centred on the
made z; so that

1 .
In f{z) = In fz) — E.-—’l{z — zn]z 4.127)
where £
A= —: (z 4,128
1 e In f{z) . ! )

Note that the first-order term in the Taylor expansion does not appear since 2q 15 4
local maximum of the distribution. Taking the exponential we obtain

Flz) Nf(zr_,jexp{—gfz—zu}z}. {4.129)

We can then obtain a normalized distribution g{z) by making use of the standard
result for the normalization of a Gaussian, so that

12 )
glz) = (;:}f) exp { —%{z - En:JI} . (4.130)

The Laplace approximation is illustrated in Figure 4.14. Note that the Gaussian
approximation will only be well defined if its precision A = 0, in other words the
stationary point zp must be a local maximum, so that the second derivative of f{z)
at the point z; i negative.
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Figure 4.14 [llusiration of the Laplace approximation applied to the distribution p(z) cc exp(—2/2)0 (202 + 4)
where =iz} is the logistic sigmaid function defined by «(z) = (1 + e~*)7L, The left plot shows the normalized
distribution p(z) in yellow, together with the Laplace approximation centred on the mode =, of p{z) in red. The
right plot shows the negative logarithms of the corresponding curves.

We can extend the Laplace method to approximate a distribution p(z) = f(2}/Z
defined over an A -dimensional space z. At a stationary point 2, the gradient ¥V f(z)
will vanish. Expanding around this stationary point we have

In f(z} = In flz,) — é{.ﬁ —zn) Az — 2p) (4.131)

where the M = M Hessian matrix A is defined by

A=—VVIn f(z})| (4.132)

E=%&qp

and WV 13 the gradient operator. Taking the exponential of both sides we obtain

1 .
f(z) = f(za) exp { Sz —z) Az zu}} . (4.133)
The distribution ¢(2) is proportional to f(2) and the appropriate normalizarion coef-
ficient can be found by inspection, using the standard result (2.43) for a normalized

multvariate Gaussian, giving

1/2
glz) = (;‘]% exp { :_l}. (z — 7)) Alz - 9:.;.}} = Niz|zg, A7) (4134
where |A| denotes the determinant of A. This Gaussian distribution will be well
defined provided its precision matrix, given by A, is positive definite, which implies
that the stationary point ; must be a local maximuom, not a minimum or a saddle
point.

In order to apply the Laplace approximation we first need to find the mode z,,
and then evaluate the Hessian matrix at that mode. In practice a mode will typi-
cally be found by running some form of numerical optimization algorithm (Bishop
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and Nabney, 2008). Many of the distributions encountered in practice will be mul-
timodal and so there will be different Laplace approximations according to which
mode is being considered. Note that the normalization constant Z of the true distri-
bution does not need to be known in order to apply the Laplace method. As a result
of the central limit theorem, the posterior distribution for a model is expected to
become increasingly better approximated by a Gaussian as the number of observed
data points is increased, and so we would expect the Laplace approximation to be
maost useful in situations where the number of data points is relatively large.

One major weakness of the Laplace approximation is that, since it is based on a
Gaussian distribution, it is only directly applicable to real variables. In other cases
it may be possible to apply the Laplace approximation to a transformation of the
variable. For instance if 0 < 7 < oo then we can consider a Laplace approximation
of In7. The most serious limitation of the Laplace framework, however, is that
it is based purely on the aspects of the true distribution at a specific value of the
variable, and so can fail to capture important global properties. In Chapter 10 we
shall consider alternative approaches which adopt a more global perspective.

4.4.1 Model comparison and BIC

As well as approximating the distribution p(z) we can also obtain an approxi-
mation to the normalization constant 2. Using the approximation (4.133) we have

Z = /f{z:ldz
1, T .
f[z[;.:lfcxp {_EW ~Zp) Alz — zt‘aj} 4

) [Qﬂ_}_',-.r_,fz
= f@) 3

where we have noted that the integrand is Gaussian and made use of the standard
result (2.43) for a normalized Gaussian distribution. We can use the result (4.135) to
obtain an approximation to the model evidence which, as discussed in Section 3.4,
plays a central role in Bayesian model comparison,

Consider a data set T and a set of models {M;} having parameters {#,}. For
each model we define a likelihood function p{D)8;, AM;). If we introduce a prior
pl(8;|AM;) over the parameters, then we are interested in computing the model evi-
dence p(D|M;) for the various models. From now on we omit the conditioning on
M to keep the notation uncluttered. From Bayes® theorem the model evidence is
given by

I

{(4.135)

p(D) = /p(ms)p(e) de. (4.136)

Identifying f(8) = p(D|0)p(#) and Z = p(D}, and applying the result (4.135), we
obtain

L Al 1
Inp(D} = Inp(D|Byap) + np(Buar) + 5 In(27) ~ 5 In|A (4.137)

Occam factor
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where @y 4p 15 the value of # at the mode of the posterior distribution, and A is the
Hessian matrix of second derivatives of the negative log posterior
A= —v?lupl{ﬂlﬂnﬂy}y{ﬁuﬂp] =-VVin :iJl:ﬁ_\{AprD.:'. [4138_]

The first term on the right hand side of (4.137) represents the log likelihood evalu-
ated using the optimized parameters, while the remaining three terms comprise the
‘Occam factor’ which penalizes mode] complexity.

If we assume that the Gavssian prior distribution over parameters is broad, and
that the Hessian has full rank, then we can approximate (4.137) very roughly using

1IIP(D} — ]ILP{D|9M;\]J:‘ 1-‘lf1n N (4.139)
where V is the number of data points, M is the number of parameters in # and
we have omitted additive constants, This is known as the Bayesian Information
Criterion (BIC) or the Schwarz criterion (Schwarz, 1978). Note that, compared 1o
AIC given by (1.73), this penalizes model complexity more heavily,

Complexity measures such as AIC and BIC have the virtue of being easy to
evaluate, but can also give misleading results. Tn particular, the assumption that the
Hessian mairix has full rank is often not valid since many of the parameters are not
‘well-determined’. We can use the result (4.137) to obtain a more accurate estimate
of the model evidence starting from the Laplace approximation, as we illustrate in
the context of neural networks in Section 5.7.

Bayesian Logistic Regression

We now turn to a Bayesian treatment of logistic regression. Exaet Bayesian infer-
ence for logistic regression is intractable. In particular, evaluation of the posterior
distribution would require normalization of the product of a prior distribution and a
likelihood function that itself comprises a product of logistic sigmoid functions, one
for every data point. Evaluation of the predictive distribution is similarly intractable.
Here we consider the application of the Laplace approximation to the problem of
Bayesian logistic regression (Spiegelhalter and Lauritzen, 1990; MacKay, 1992h),

4.5.1 Laplace approximation

Recall from Section 4.4 that the Laplace approximation is obtained by finding
the mode of the posterior distribution and then fitting a Gaussian centred at that
maode. This requires evaluation of the second derivatives of the log posterior, which
is equivalent to finding the Hessian marrix,

Because we seek a Gaussian representation for the posterior distribution, it is
natural to begin with a Gaussian prior, which we write in the general form

j](w] =,-"|.-'(w|mg.Sn] (4.1400)
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where my and S are fixed hyperparameters. The posterior distribution over w 1s
given by
p(wlt) oc p(wp(tiw) (4.141)

where t = (fy,..., i5¢)T. Taking the log of both sides, and substituting for the prior

distribution using (4.140), and for the likelihood function using (4.89), we obtain

1
Inpiwlt) = - 5 (w —mg) "S5 (w — my)

n
+Z{t,. Inyy + (1= ty)In(l — yp )} + const (4,142}

n=1

where ¥, = o(wTg,). To obtain a4 Gaussian approximation o the posterior dis-
tribution, we first maximize the posterior distribution to give the MAP (maximum
posterior) solution w4 p. which defines the mean of the Gaussian. The covariance
is then given by the inverse of the matrix of second derivatives of the negative log
likelihood, which takes the form
n
i " T
Sy = —VVInp(wit) = S5 + 3yl — y )by (4.143)

The Gaussian approximation to the posterior distribution therefore rakes the form

Q(Wj = ."U"[:Wl“']d,\:s.,s,-\':l. (4.144)

Having obtained a Gaussian approximation to the posterior distribution, there
temains the task of marginalizing with respect to this distribution in order to make
predictions.

4.5.2 Predictive distribution
The predictive distribution for class Oy, given a new feature vector ¢{x), is
obtained by marginalizing with respect to the posterior distribution p(w|t). which is
itself approximated by a Gaussian distribution g{w) so that
plCh . 1) fp[C, |y, wip(w|t) dw =~ f a(wTgg(w) dw (4.145)
with the corresponding probability for class Cz given by p(Ca|d,t) = 1 — i‘Jf.C} o, t).
To evaluate the predictive distribution, we first note that the function o(wTgh) de-
pends on w only through its projection onto ¢. Denoting @ = w7 ¢», we have
o(wle) = f 6(a — wrg)a{a) da (4.146)

where (-] 15 the Dirac delta function. From this we obtain

/G{W']-q@}g(wlldw = /a’(u)p[’u]du (4.147)
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where
pla) = ft'f-':a —wlgg{w) dw. (4.148)

We can evaluate p(a) by noting that the delta function imposes a linear constraint
on w and so forms a marginal distribution from the joint distribution g{w) by inte-
grating out all directions orthogonal to ¢». Because g w) is Gaussian, we know from
Section 2.3.2 that the marginal distribution will also be Gaussian.  We can evaluate
the mean and covariance of this distribution by taking moments, and interchanging
the order of integration over ¢ and w, so that

e =Ela] = /p{a:ludu. = fg{w]w.rqbdw = Wi pd (4.149)

where we have used the result (4.144) for the variational posterior distribution g{w).
Similarly

o, = varfa] = fp[uj {U-'z—]‘:-_a]?} da
f glw) {(w'¢)? - (my o)’} dw = ¢'Sne.  (4.150)

Note that the distribution of « takes the same form as the predictive distribution
(3.58) for the linear regression model, with the noise variance set to zero. Thus our
variational approximation to the predictive distribution becomes

(Gt f]r:rfn.}p(a_'_l da = [o(et}_-'\-r(u'u.u,c.r,":}du. (4.151)

This result can also be derived directly by making use of the results for the marginal
of a Gaussian distribution given in Section 2.3.2.

The integral over a represents the convolution of a Gaussian with a logistic sig-
maoid, and cannot be evaluated analytically. We can, however, obtain a good approx-
imation (Spiegelhalter and Lauritzen, 199(; MacKay, 1992b; Barber and Bishop,
1998a) by making use of the close similarity between the logistic sigmoid function
o(a) defined by (4.59) and the probit function ®(a) defined by (4.114). In order 1o
obtain the best approximation to the logistic function we need to re-scale the hori-
zontal axis, so that we approximate o (a) by ®(Aa). We can find a suitable value of
A by requiring that the two functions have the same slope at the origin, which gives
A = 7 /8. The similarity of the logistic sigmoid and the probit function, for this
choice of A, 1s illustrated in Figure 4.9,

The advantage of vsing a probit function is that its convolution with a Gaussian
can be expressed analytically in terms of another probit function. Specifically we
can show that

jqb(Au}J\-’[nw,g}} da =@ ([)- . |ﬂ.ﬂ-n};,-'-a) . {4.152)




4, LINEAR MODELS FOR CLASSIFICATION

We now apply the approximation #{a) =~ ${Aa} to the probit functions appearing
on both sides of this equation, leading to the following approximation for the convo-
lution of a logistic sigmoid with a Gaussian

fcr[ci];"f{cn o) da = o [n(o’gw})u.:l (4.153)

where we have defined )
w(o?) = (14 wa /8712, (4.154)

Applying this result to (4.151) we obtain the approximate predictive distribution
in the form
plCrlp ) = o (rla? )i, (4.155)

where g, and o2 are defined by (4.149) and (4.150), respectively, and x(o?) is de-
lined by (4.154),

Note that the decision boundary corresponding to p(C, |¢h, t) = 0.5 is given by
tta = 0, which is the same as the decision boundary obtained by using the MAP
value for w. Thus if the decision criterion is based on minimizing misclassifica-
tion rate, with equal prior probabilities, then the marginalization over w has no ef-
fect. However, for more complex decision criteria it will play an important role.
Marginalizaton of the logistic sigmoeid model under a Gaussian approximation to
the posterior distribution will be illustrated in the context of variational inference in
Figure 10.13.

es

4.1

4.2

(++) Given a set of data points {x,, }, we can define the convex hull 1o be the set of
all points x given by

X = Eﬂ'nxﬂ. {4‘156]
n

where 0, = Dand 3 o, = 1. Consider a second set of points {y,, } together with
their corresponding convex hull. By definition, the two sets of points will be linearly
separable if there exists a vector W and a scalar wy such that w'x,, 4+ wqy = 0 for all
K, and ﬁ'Ty" +anp < O for all y,,. Show that if their convex hulls intersect, the two
sets of points cannot be linearly separable, and conversely that if they are linearly
separable, their convex hulls do not intersect,

() R Consider the minimization of a sum-of-squares error function (4.15),
and suppose that all of the target vectors in the training set satisfy a linear constraint

alt, +b=0 (4.157)

where t,, comresponds to the n™ row of the matrix T in (4.15), Show that as a
consequence of this constraint, the elements of the model prediction ¥ (x) given by
the least-squares solution (4.17) also satisfy this constraint, so that

aly{x)+bh=0, (4.158)

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
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To do so, assume that one of the basis functions ¢,(x) = 1 so that the corresponding
parameter wy plays the role of a bias.

{++) Extend the result of Exercise 4.2 to show that if multiple linear constraints
are safisfied simultancously by the target vectors, then the same constraints will also
be sarisfied by the least-squares prediction of a linear model.

I Show that maximization of the class separation criterion given by (4.23)
with respect to w, using a Lagrange multiplier to enforce the constraint wiw =1,
leads to the result that w o< (mz — my ).

(*) By making use of (4.20), (4.23), and (4.24), show that the Fisher criterion (4.23)
can be written in the form (4.26).

(*) Using the definitions of the between-class and within-class covariance matrices
given by (4.27) and (4.28), respectively, together with (4.34) and (4.36) and the
choice of target values described in Section 4.1.5; show that the expression (4.33)
that minimizes the sum-of-squares error function can be written in the form (4.37).

(+) IO Show that the logistic sigmoid function (4.59) satisfies the property
a(—a) =1 — o{a) and that its inverse is given by o Yy = In{u/{1 -y}

() Using (4.57) and (4.58), derive the result (4.63) for the posterior class probability
in the two-class generative model with Gaussian densities, and verify the resulis
(4.66) and (4.67) for the parameters w and wy.

() T  Consider a generative classification model for K classes defined by
prior class probabilities p(Cr) = 7 and general class-conditional densities p(g(Cy.)
where ¢b is the input feature vector. Suppose we are given a training dataset {¢,,, t,.}
where n = 1,..., ¥V, and t,, is a binary target vecior of length K that uses the 1-of-
K coding scheme, so that it has components t,,; = I if pattern 1 is from class Cr.
Assuming that the data points are drawn independently from this model, show that
the maximum-likelihood solution for the prior probabilities is given by

Ni

4,159
N (4-139)

T =

where Ny, is the number of data points assigned to class Cy.

{++) Consider the classification model of Exercise 4.9 and now suppose that the
class-conditional densities are given by Gaussian distributions with a shared covari-
ance matrix, so that

p(ICk) = N (@l py, ). (4.160)

Show that the maximum likelihood solution for the mean of the Gaussian distribution

for class Cy, is given by
M

1 ) ,
= Z:_Wp,: {4.161)

n=1
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4.26 (++) In this exercise, we prove the relation (4.152) for the convolution of a probit
function with a Gaussian distribution. To do this, show that the derivative of the left-
.ha"d side with respect to p is equal to the derivative of the right-hand side, and then
integrate both sides with respect to 1 and then show that the constant of integration !
vanishes. Note that before differentiating the left-hand side, it is convenient first
to introduce a change of variable given by @ = p + o2 so that the integral over @
is replaced by an integral over z. When we differentiate the left-hand side of the i
relation (4.152), we will then obtain a Gaussian integral over = that can be evaluated
analytically,

In Chapters 3 and 4 we considered models for regression and classification that com-
prised linear combinations of fixed basis functions. We saw that such models have
useful analytical and computational properties but that their practical applicability
was limited by the curse of dimensionality. In order to apply such models to large-
scale problems, it is necessary to adapt the basis functions to the data.

Support vector machines (SVMsz), discussed in Chapter 7, address this by first
defining basis functions that are centred on the training data points and then selecting
a subset of these during training. One advantage of SWMs is that, although the
training involves nonlinear optimization, the objective function is convex, and so the
solution of the optimization problem is relatively straightforward. The number of
basis functions in the resulting models is generally much smaller than the number of
training points, although it is often still relatively large and typically increases with
the size of the training sei. The relevance vector machine, discussed in Section 7.2,

! also chooses a subset from a fixed set of basis functions and typically results in much
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sparser models. Unlike the SVM it also produces probabilistic outputs, although this
is at the expense of a nonconvex optimization during training.

An alternative approach is to fix the namber of basis functions in advance but
allow them to be adaptive, in other words to use parametric forms for the basis func-
tions in which the parameter values are adapted during training. The most successful
model of this type in the context of pattern recognition is the feed-forward neural
network, also known as the mulrilayer perceptron, discussed in this chapter. In fact,
‘multilayer perceptron’ is really a misnomer, because the model comprises multi-
ple layers of logistic regression models (with continuous nonlinearities) rather than
multiple perceptrons (with discontinuous nonlinearities). For many applications, the
resulting model can be significantly more compact, and hence faster to evaluate, than
a support vector machine having the same generalization performance. The price to
be paid for this compactness, as with the relevance vector machine, is that the like-
lihood fanction, which forms the basis for network training, is no longer a convex
function of the model parameters. In practice, however, it is often worth investing
substantial computational resources during the training phase in order to obtain a
compact model that is fast at processing new data.

The term “neural network’ has its origins in attempts to find mathematical rep-
resentations of information processing in biological systems (McCulloch and Pitts,
1943; Widrow and Hoff, 1960; Rosenblatt, 1962; Rumelhart er «l., 1986). Indeed,
it has been used very broadly to cover a wide range of different models, many of
which have been the subject of exaggerated claims regarding their hiological plau-
sibility. From the perspective of practical applications of pattern recognition, how-
ever, biological realism would impose entirely unnecessary constraints. Qur focus in
this chapter is therefore on neural networks as efficient models for statistical pattern
recognition. In particular, we shall restrict our attention to the specific class of neu-
ral networks that have proven to be of greatest practical value, namely the multilayer
perceplron,

We begin by considering the functional form of the network model, including
the specific parameterization of the basis functions, and we then discuss the prob-
lem of determining the network parameters within a maximum likelihood frame-
work, which involves the solution of a nonlinear optimization problem, This requires
the evaluation of derivatives of the log likelihood function with respect to the net-
wark parameters, and we shall see how these can be obtained efficiently using the
technique of error backpropagarion. We shall also show how the backpropagation
framework can be extended to allow other derivatives to be evaluated. such as the
Jacobian and Hessian matrices. Next we discuss various approaches to regulariza-
tion of neural network training and the relationships between them. We also consider
some exiensions o the neural network model, and in panicular we describe a gen-
eral framework for modelling conditional probability distributions known as mivnre
density networks. Finally, we discuss the use of Bayesian treatments of neural net-
works. Additional background on neural network models can be found in Bishop
(1995a).
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5.1. Feed-forward Network Functions

Exercize 5.1

The linear models for regression and classification discussed in Chapters 3 and 4, re-
spectively, are based on linear combinations of fixed nonlinear basis functions ¢ ()

and take the form r

ylx,w) =1 Y wie,(x) (5.1)
T\
where f(-) is a nonlinear activation function in the case of classification and is the
identity in the case of regression. Our goal is to extend this mode] by making the
basis functions ¢b;(x) depend on parameters and then to allow these parameters to
be adjusted, along with the coefficients {w; }, during training. There are, of course,
many ways o construct parametric nonlinear basis functions. Neural networks use
basis functions that follow the same form as (3.1), so that each basis function is itself
a nonlinear function of a linear combination of the inputs, where the coefficients in
the linear combination are adaptive parameters.
This leads to the basic neural network model, which can be described a series
of functional transformations, First we construct M linear combinations of the input
varables z,,...,zp inthe form

a; =y wile; + wfy’ (5.2)

where § = 1,..., M, and the superscript { 1) indicates that the corresponding param-
' 1
eters are in the first ‘layer’ of the network. We shall refer to the parameters ug Vs

weights and the parameters u-;CL:' as biases, following the nomenclature of Chapter 3.
The quantities a; are known as aetivarions. Each of them is then transformed using
a differentiable, nonlinear activanion function i(-) to give

z; = hlas). (5.3)

These quantities correspond to the outputs of the basis functions in (5.1) that, in the
context of neural networks, are called hidden unirs. The nonlinear funciions h(-) are
generally chosen to be sigmoidal functions such as the logistic sigmoid or the “tanh’
function, Following (5.1}, these values are again linearly combined to give outpur

wnit activations .

ap = Z wj;.J z; + 'r.!.lgff (5.4)

j=1
where k = 1,..., K, and K is the total number of outputs. This transformation cor-
responds to the second layer of the network, and again the u..,f: are bias parameters,
Finally, the output unit activations are transformed using an appropriate activation
function to give a set of network outputs g The choice of activation function is
determined by the nature of the data and the assumed distribution of target variables
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Figure 5.4 Example of the solution of a simple two-

5.2,

class classification prablem involving 3 .

synthetic data using a neural network

having two inputs, two hidden units with | o o%

‘tanh’ activation functions, and a single o

output having a logistic sigmoid activa- 1~ — _ O

tion function. The dashed blue lines - e

show the = = 0.5 contours for each of 0 e

the hidden units, and the red line shows . Q

the i = 0.5 decision surface for the net- L @

work. For comparison, the green line -

denotes the optimal decision boundary _~ [~

computed from the distributions usedto /

ganerate the data. . /
-2 -1

symmetries, and thus any given weight vector will be one of a set 2" equivalent
weight vectors .

Similarly, imagine that we interchange the values of all of the weights (and the
bias) leading both into and out of a particular hidden unit with the corresponding
values of the weights (and bias) associated with a different hidden unit. Again, this
clearly leaves the network input—output mapping function unchanged, but it corre-
sponds 1o a different choice of weight vector. For M hidden units, any given weight
vector will belong to a set of 1! equivalent weight vectors associated with this inter-
change symmetry, corresponding to the M! different orderings of the hidden units.
The network will therefore have an overall weight-space symmetry factor of A12M
For networks with more than two layers of weights, the total level of symmetry will
be given by the product of such factors, one for each layer of hidden units.

[t turns out that these factors account for all of the symmetries in weight space
{except for possible accidental symmetries due to specific choices for the weight val-
ues}, Furthermore, the existence of these symmetries is not a patticular property of
the ‘tanh’ function but applies to a wide range of activation functions (Kirkovi and
Kainen, 1994). In many cases, these symmetries in weight space are of little practi-
cal consequence, although in Section 5.7 we shall encounter a situation in which we
need to take them into account.

Network Training

S0 far, we have viewed neural networks as a general class of parametric nonlinear
funetions from a vector x of input variables to a vector y of output variables. A
simple approach to the problem of determining the network parameters is to make an
analogy with the discussion of polynomial curve fitting in Section 1.1, and therefore
to minimize a sum-of-squares error function. Given a training set comprising a set
of input vectors {x,}, where n = 1,..., N, together with a corresponding set of
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target vectors {t,, }, we minimize the error function

N
. 1y
Ew) =53 [¥lxaw) =t (5.11)

n=1

However, we can provide a much more general view of network training by first
giving a probabilistic interpretation to the network outputs. We have already seen
many advantages of using probabilisti¢ predictions in Section 1.5.4. Here it will also
provide us with a clearer motivation both for the choice of output unit nonlinearity
and the choice of error function.

We start by discussing regression problems, and for the moment we consider
a single target variable { that can take any real value. Following the discussions
in Section 1.2.5 and 3.1, we assume that t has a Gaussian distribution with an x-
dependent mean, which is given by the output of the neural network, so that

pltlx, w) =N (tylx,w),57") (5.12)

where J is the precision (inverse variance) of the Gaussian noise. Of course this
is a somewhat restrictive assumption, and in Section 5.6 we shall see how to extend
this approach to allow for more general conditional distributions. For the conditional
distribution given by (5.12), it is sufficient to take the output unit activation function
to be the identity, because such a network can approximate any continuous function
from x to y. Given a data set of V independent, identically distributed observations
X ={x,..., % }, along with corresponding target values t = {#, ... tx}, we
can construct the corresponding likelihood function

N
ptX.w. ) = [ ] pltalxe, w. ).
L

Taking the negative logarithin, we obtain the error function

a W
. N N
‘; S {ulxa, w) =t} — 5 I+ 5 In(2n) (5.13)

n=1

which can be used {o learn the parameters w and 5. In Section 5.7, we shall dis-
cuss the Bayesian treatment of neural networks, while here we consider & maximum
likelihood approach, Note that in the neural networks literature, it is usual to con-
sider the minimization of an error function rather than the maximization of the (log)
likelihood, and so here we shall follow this convention. Consider first the determi-
nation of w. Maximizing the likelihood function is equivalent to minimizing the
sum-of-squares error fanction given by

L
Bw) = 3 3yl w) — 1)’ (5.14)
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—n
58

where we have discarded additive and multiplicative constants. The value of w found
by minimizing F{w) will be denoted wy;, because it corresponds to the maximum
likelihood solution. In practice, the nonlinearity of the network function (3, . w)
causes the error E{w) to be nonconvex, and so in practice local maxima of the
likelihood may be found, corresponding to local minima of the error function, as
discussed in Section 5.2.1.

Having found wpyy,, the value of & can be found by minimizing the negative log
likelihood to give

= - Z«fym W) — )2 (5.15)
n=1

Naote that this can be evaluated once the iterative optimization required to find wyy,

is completed. Tf we have multiple target variables, and we assume that they are inde-

pendent conditional on x and w with shared noise precision 3, then the conditional

distribution of the target values is given by

pltlx,w) =N (t/y(x,w), 31} . (5.16)

Ji‘\ﬂ

Following the same argument as for a single target variable, we see that the maximum
likelihood weights are determined by minimizing the sum-of- },quares error function
(3.11). The noise precision is then given by

1
B \!‘_‘L |¥i%0, W) — to (5.17)

where K is the number of target variables. The assumption of independence can be
dropped art the expense of a slightly more complex optimization problem,

Becall from Section 4.3.6 that there is a natural pairing of the error function
{given by the negative log likelihood) and the output unit activation function. In the
regression case, we can view the network as having an output activation function that
is the identity, so that #. = a;. The corresponding sum-of-squares error function
has the property

aE
day et
which we shall make use of when discussing error hackpropagation in Section 5.3,

Now consider the case of binary classification in which we have a single target
variable £ such that # = 1 denotes class C; and ¢ = 0 denotes class Cp. Following
the discussion of canonical link functions in Section 4.3.6, we consider a network
having a single output whose activation function is 2 logistic sigmoid

1

=gla) = —— 519
y=0la) = oo (5.19)

{3.18)

so that 0 < p{x, w) = 1. We can interpret y{x, w) as the conditional probability
plC1x), with plCs|x) given by 1 — y(x. w). The conditional distribution of targets
given inpuis is then a Bernoulli distribution of the form

Pl w) =yl w)t {1 — ylx,w)}' " (5.20)

Exercise 5.4

Exercise 5.5

Exercise 5.6
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If we consider a training set of independent observations, then the error function,
which 15 given by the negative log likelihood, is then a cross-entropy error function
of the form

N
Elw)= =) {tnInya+ (1= tx)In{1 - ya)} (5.21)
where i, denotes y{x,, w). Note that there is no analogue of the noise precision 3
because the target values are assumed to be correctly labelled. However, the model
is easily extended to allow for labelling errors. Simard er al. (2003) found that using
the cross-entropy error function instead of the sum-of-squares for a classification
problem leads to faster training as well as improved generalization,

If we have K separate binary classifications to perform, then we can use a net-
work having K outputs each of which has a logistic sigmoid activation function,
Associated with each output is a binary class label iy, € {0,1}, where b = 1,.. ., K.
If we assume that the class labels are independent, given the input vector, then the
conditional distribution of the targets is

1
pltlx,w) = [ [ wele,w) [1 =yl w)] 7 (5.22)

Taking the negative logarithm of the corresponding likelihood function then gives
the following error function

N
E(w)= =3 > {tasInyus + (1 — tas) In(1 = yns}} (5.23)

n=1 k=1

where g, denotes yix,, w). Again, the derivative of the error function with re-
spect to the activation for a particular output unit takes the form (3.18) just as in the
regression case.

It is interesting to contrast the neural network solution to this problem with the
corresponding approach based on a linear classification model of the kind discussed
in Chapter 4. Suppose that we are using a standard two-layer network of the kind
shown in Figure 5.1. We sece that the weight parameters in the first layer of the
network are shared between the various outputs, whereas in the linear model each
classification problem is solved independently. The first laver of the network can
be viewed as performing a nonlinear feature extraction, and the sharing of features
between the different outputs can save on computation and can also lead to improved
generalization.

Finally, we consider the standard multiclass classification problem in which each
input is assigned to one of K mutually exclusive classes. The binary target variables
tp € {0,1} have a l-of-A cnding scheme indicating the class, and the network
outputs are interpreted as yp(x, w) = pltp = l{x), leading to the following error

function
N K
E(w) ==Y tinlnyk(x, W) (5.24)
n=1 k=1
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Figure 5.5 Geometrical view of the error function E(w) as

57

a surface sitting over weight space. Point w, is
a local minimum and w g is the global minimum.
At any point we, the local gradient of the error
surface is given by the vector V.

1 l i
wa Wiz W

Wy Vi
Following the discussion of Section 4.3.4, we see that the output unit activation
function, which corresponds to the canonical link, is given by the softmax function

explog(x,w))

3 expla (x. w))

i

i (x, W) =

(3.25)

which satisfies 0 < y < 1and }_, yr = 1. Note that the y.(x, w) are unchanged
if a constant is added 1o all of the a(x, w), causing the error function t be constant
for some directions in weight space. This degeneracy is removed if an appropriate
regularization term (Section 5.5) is added 10 the error function.

Onee again, the derivative of the error function with respect to the activation for
a particular output unit takes the familiar form (5.18).

In summary, there is a natural choice of both output unit activation function
and matching error function, according to the type of problem being solved. For re-
gression we nse linear outputs and a sum-of-squares error, for (multiple independent)
binary classifications we use logistic sigmoid outputs and a cross-entropy error func-
tion, and for multiclass classification we use softmax outputs with the corresponding
multiclass cross-entropy error function. For classification problems involving two
classes, we can use a single logistic sigmoid output, or alternatively we can use a
network with two outputs having a softmax output activation function.

5.21 Parameter optimization

We turn next to the task of finding a weight vector w which minimizes the
chosen function E{w). At this point, it is useful to have a geometrical picture of the
error function, which we can view as a surface sitting over weight space as shown in
Figure 5.5. First note that if we make a small step in weight space from w to w +dw
then the change in the error functionis 6 = dw' ¥V E{w ), where the vector VE{w)
points in the direction of greatest rate of increase of the error function. Because the
error E{w) is a smooth continuous function of w, its smallest value will occur at a

Section 3.1.1
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paint in weight space such that the gradient of the error function vanishes, so that
VE(w)=10 (5.26)

as otherwise we could make a small step in the direction of =V E(w) and thereby
further teduce the error. Points at which the gradient vanishes are called stationary
points, and may be further classified into minima, maxima, and saddle points.

Our goal is to find a vector w such that F(w) takes its smallest value. How-
ever, the error function typically has a highly nonlinear dependence on the weights
and bias parameters, and so there will be many points im weight space at wh_ich the
gradient vanishes (or is numerically very small). Indeed, from the discussion in Sec-
tion 5.1.1 we see that for any point w that is a local minimum, there will be other
points in weight space that are equivalent minima. For instance, in a two-layer net-
work of the kind shown in Figure 5.1, with M hidden units, each point in weight
space is a member of a family of A!2" equivalent points. _ .

Furthermore, there will typically be multiple inequivalent stationary points and
in particular multiple inequivalent minima. A minimum that corresponds to the
smallest value of the error function for any weight vector is said to be a global
minimum. Any other minima corresponding to higher values of the error function
are said to be local minima. For a successful application of neural networks, it may
not be necessary to find the global minimum (and in general it will not be known
whether the global minimum has been found) but it may be necessary lo compare
several Jocal minima in order (o find a sufficiently good solution.

Becanse there is clearly no hope of finding an analytical solution to the equa-
tion V.E(w) = 0 we resort to ilerative numerical procedures. The optimization of
continuous nonlinear functions is a widely studied problem and there exists an ex-
tensive literature on how to solve it efficiently. Most technigues involve choosing
some initial value w® for the weight vector and then moving through weight space
in a succession of steps of the form

wiTH = Wl Al (5.27)
where 7 labels the iteration step. Different algorithms involve different choices for
the weight vector update Aw'™, Many algorithms make use of gradient information
and therefore require that, after each update, the value of VE(w] is cvaluatex:l at
the new weight vector w'"*%, In order to understand the importance of gradient
information, it is useful to consider a local approximation to the error function based
on a Taylor expansion.

5.2.2 Local quadratic approximation

Insight into the optimization problem, and into the various lechr}iquch for solv-
ing it, can be obtzined by considering a local guadratic approximation to the error
function. o ]

Consider the Taylor expansion of £{w) around some point W in weight space

E(w) =~ E(&) + (w—%) b+ -(w — W) H(w — W) (5.28)
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where cubic and higher terms have been omitted. Here b is defined to be the gradient
of E evaluated at w

b= VE| _. (3.29)
and the Hessian matrix H = ¥V E has elements
aE
(H),; (5.30)

= gy | ’
From (5.28), the corresponding local approximation to the gradient is given by
VE~b+H{w—w). (5.31)

For points w that are sufficiently close to W, these expressions will give reasonable
approximations for the error and its gradient.

Consider the particular case of a local quadratic approximation around a point
w” that 15 2 minimum of the error function. In this case there is no linear term,
because VE = 0 at w*, and (5.28) becomes

Eilw)= E{w") + %[w —w T H{w — w") (5.32)

where the Hessian H is evaluated at w*. In order to interpret this geometrically,
consider the eigenvalue equation for the Hessian matrix

(5.33)
where the eigenvectors u; form a complete orthonormal set { Appendix C) so that
"l"' .

u; uy = daj- (5.34)

We now expand {w — w*) as a linear combination of the eigenvectors in the form

W W = E oy

i

(5.35)

This can be regarded as a transformation of the coordinate system in which the origin
15 translated to the point w™, and the axes are rotated to align with the eigenvectors
{through the orthogonal matrix whose columns are the u;), and is discussed in more
detail in Appendix C. Substituting (5.35) into (5.32), and using (5.33) and (5.34),
allows the error function to be written in the form

, o, 1 ' -
Bw) = E(w') + Z Mia?, (5.36)
A mafrix H is said to be positive definite if, and only if,
viHv =0  forallv. (5.37)

Figure 5.6
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In the neighbourhood of & min- 2
imum w*, the error function
can be approximated by a
guadratic.  Contours of con-
stant error are then ellipses
whose axes are aligned with
the eigenvactors u; of the Hes-
sian matrix, with langths that
are inversaly proportional to the
square roots of the correspond-
ing eigenvectors A;.

A\ 1 x"z\

Because the eigenvectors {u;} form a complete set, an arbitrary vector v can be
written in the form

v = Zr_-,u,-. (5.38)
i
From (5.33) and {3.34), we then have
VIHv =3 el (5.39)

1

and so H will be positive definite if, and only if, all of its eigenvalues are positive.
In the new coordinate system, whose basis vectors are given by the eigenvectors
{u;}, the contowrs of constant ' are ellipses centred on the origin, as illustrated
in Figure 5.6. For a one-dimensional weight space, a stationary point w* will be a
minimum if

E

I 2'
dut |

= 0. (3.40)

The corresponding result in D-dimensions is that the Hessian matrix, evaluated at
w?, should be positive definite.

5.2.3 Use of gradient information

As we shall see in Section 5.3, it is possible to evaluate the gradient of an error
function efficiently by means of the backpropagation procedure. The use of this
gradient information can lead to significant improvements in the speed with which
the minima of the error function can be located. We can see why this is so, as follows.

In the quadratic approximation to the error function, given in (5.28), the error
surface is specified by the quantities b and H, which contain a total of W(W +
3)/2 independent elements (because the matrix H is symmetric), where W is the
dimensionality of w (i.e., the total number of adaptive parameters in the network).
The location of the minimum of this quadraric approximation therefore depends on
(W2} parameters, and we should not expect to be able to locate the minimum until
we have gathered Q[W?) independent pieces of information. If we do not make
use of gradient information, we would expect to have 1o perform W) function
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{a) Plot of the mixing - —
re(x] as a function of
12 kernel functions in a

where we have used (5.148). Because a standard network trained by least squares
is approximating the conditional mean, we see that a mixture density network can
sity netwaork trained on reproduce the conveqtional |l:;_j.'-ﬂ=3ql.lﬁl’l:::-i fcsuu as a spcciz%l_case_ of course, as we
wn it Figure 5.19. The S have already noted, for a multimoedal distribution the conditional mean is of limited
Tree (Baussian compo- / value.

ises a two-layer multi- AN A | We can similarly evaluate the variance of the density function about the condi-
i??h:lrwdg:?n Esjel: ::?d )Q\ tional average, to give

(correspanding to the 3

Exercise 3,37

P — —_ ' a5 = 2
-variances of the Gaus- 0 1 0 o #lx) = E [ t— Eft]x]|| x] {5.15%
ents and the 3 mixing 0 1 0 1 K K 3
Atboth small and large < .
where the conditional {a) (b} . = L Til(X) 4 af (%) + m(x Z {3 (x (5.160)
wnsity of the target data k1 1=1

only one of the ker-
high value for its prior 1
hile at intermediate val-
are the conditional den-
al, the three mixing co-
ve comparable valuaes.
fhe means pefx) using
Aour coding as for the
icients, (c) Plot of the
the comasponding con-
shility density of the tar- 0
the same mixture den-
(d) Plot of the ap-
nditional mode, shown (c) (d)

where we have used (5.148) and (5.158). This is more general than the corresponding
least-squares result because the variance is a function of x.

We have seen that for multimodal distributions, the conditional mean can give
a poor representation of the data. For instance, in controlling the simple robot arm
shown in Figure 5.18, we need to pick one of the two possible joint angle settings
in order to achieve the desired end-effector location, whereas the average of the two
solutions is not itself a solution. In such cases, the conditional mode may be of
more value. Because the conditional mode for the mixture density network does not
have a simple analytical solution, this would require numerical iteration. A simple
alternative is to take the mean of the most probable component (i.e.. the one with the

pints, of the conditional

We illustrate the use of a mixture density network by returning to the w0y ex-
ample of an inverse problem shown in Figure 5.19. Plots of the mixing coeffi-
cients mi (), the means ju.{x), and the conditional density contours corresponding
1o p{t|x}, are shown in Figure 5.21. The outputs of the neural network, and hence the
parameters in the mixture model, are necessarily continuous single-valued functions
of the input variables, However, we see from Figure 5.21(c) that the model is able to
praduce a conditional density that is unimodal for some values of = and trimodal for
other values by modulating the amplitudes of the mixing components 7(x}.

Once a mixture density network has been trained, it can predict the conditional
density function of the target data for any given value of the input vector. This
conditional density represents a complete description of the generator of the data, so
far as the problem of predicting the value of the output vector is concerned. From
this density function we can calculate more specific quantities that may be of interest
in different applications. One of the simplest of these is the mean, corresponding to
the conditional average of the target data, and is given by

K

E [t]x] = ]L,u(t-jx} dt =Y me(x) g x)

k—1

(5.158)

5.7.

largest mixing coefficient) at each value of x. This is shown for the toy data set in
Figure 5.21{d).

Bayesian Neural Networks

So far, our discussion of neural networks has focussed on the use of maximum like-
lihood 1o determine the network parameters (weights and biases). Regularized max-
imum likelihood can be interpreted as a MAP {(maximum posterior) approach in
which the regularizer can be viewed as the logarithm of a prior parameter distribu-
tion, However, in a Bayesian treatment we need to marginalize over the distribution
of parameters in order to make predictions.

In Section 3.3, we developed a Bayesian solution for a simple linear regression
model under the assumption of Gaussian noise. We saw that the posterior distribu-
tion, which is Gaussian, could be evaluated exactly and that the predictive distribu-
tion ¢could also be found in closed form. In the case of a multilayered network, the
highly nonlinear dependence of the network function on the parameter values means
that an exact Bayesian treatment can no longer be found. In fact, the log of the pos-
terior distribution will be nonconvex, corresponding to the multiple 1ocal minima in
the error function.

The technigue of variational inference, to be discussed in Chapter 10, has been
applied to Bayesian neural networks using a factorized Gaussian approximation
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to the posterior distribution (Hinton and van Camp, 1993} and also using a full-
covariance Gaussian (Barber and Bishop, 1998a; Barber and Bishop, 1998b). The
most complete treatment, however, has been based on the Laplace approximation
(MacKay, 1992¢; MacKay, 1992b) and forms the basis for the discussion given here.
We will approximate the posterior distribution by a Gaussian, centred at a mode of
the true posterior. Furthermore, we shall assume that the covariance of this Gaus-
sian is small so that the network function is approximately linear with respect to the
parameters over the region of parameter space for which the posterior probability is
significantly nonzero. With these two approximations, we will obtain models that
are analogous to the linear regression and classification models discussed in earlier
chapters and so we can exploit the results obtained there. We can then make use of
the evidence framework to provide point estimates for the hyperparameters and to
compare alternative models (for example, networks having different numbers of hid-
den units), To start with, we shall discuss the regression case and then later consider
the modifications needed for solving classification tasks.

5.7.1 Posterior parameter distribution

Consider the problem of predicting a single continuous target variable { from
a vector x of inputs {the extension to multiple targets is straightforward). We shall
suppose that the conditional disiribution p(t|x) is Gaussian, with an x-dependent
mean given by the output of a neural network model y{x, w), and with precision
(inverse variance) 4

pltpe, w, ) = N(tly(x, w), 471 (5.161)

Similarly, we shall choose a prior distribution over the weights w that is Gaussian of
the form

plwle) = Niw|0, 0 1), (5.162)
For an i.i.d. data set of V observations x,, ..., Xy, with a corresponding set of target
values D = {t....,fx ]}, the likelihood function is given by

N

p(Dlw, B) = [ [ M(taly(xn, w), 67) (5.163)

n=1
and so the resulting posterior distribution is then
p(w|D, @, 3) o plwlo)p(D|w, 5. (5.164)

which, as a consequence of the nonlinear dependence of y(x, w) on w, will be non-
Gaussian,

We can find a Gaussian approximation to the posterior distribution by using the
Laplace approximaton. To do this, we must first find a (local) maximum of the
posterior, and this must be done using iterative numerical optimization. As usual, it
is convenient to maximize the logarithm of the postetior, which can be written in the

Exercise 5,38
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form
o a N
Inp{w|D) = —EWIW -5 Z‘I{y(xmm —t,}* + const (5.165)
-

which corresponds to a regularized sum-of-squares error function. Assuming for
the moment that o and 7 are fixed, we can find 2 maximum of the posterior, which
we denote Wyap, by standard nonlinear optimization algorithms such as conjugate
gradients, using error backpropagation to evaluate the required derivatives.

Having found a mode wyap, we can then build a local Gaussian approximation
by evaluating the matrix of second derivatives of the negative log posterior distribu-
tion, From (3.1635), this is given by

A= -—NVVnpwD o d =al+5H {5.166)

where H is the Hessian matrix comprising the second derivatives of the sum-of-
squares error function with respect to the components of w, Algorithms for comput-
ing and approximating the Hessian were discussed in Section 5.4, The corresponding
Gaussian approximation to the posterior is then given from (4.134) by

g(w|'D) :;"o."‘{w WMA]:-‘A_:j. (516?)

Similarly, the predictive distribution is obtained by marginalizing with respect
to this posterior distribution

plt|x, D) = fp{:‘-|x,w]q(w ) dw. (5.168)

However, even with the Gaussian approximation to the posterior, this integration is
still analytically intractable due to the nonlinearity of the network function y(x, w)
as a function of w. To make progress, we now assume that the posterior distribution
has small variance compared with the characteristic scales of w over which y(x, w)
is varying. This allows us to make a Taylor series expansion of the network function
around wygap and retain only the linear terms

y(x, W) = y(x, Wreap) + 87 (W — Wigap) (5.169)
where we have defined
g= Veulx,w)l, {5.170)

With this approximation, we now have a linear-Gaussian model with a Gaussian
distribution for p{w ) and a Gaussian for p{t|w) whose mean is a linear function of
w of the form

=WhiaF

p(tx,w, 8) = N (t[y(x, waap) + &8 (w — wigar), 577 . {(3.171)
We can therefore make use of the general result (2.115) for the marginal p(t) to give

pltx. Do 3) = N (Huylx. wiapl. o (x]) (3172
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where the input-dependent variance is given by
clix) =4t +gTA g (5.173)

We see that the predictive distribution p(t|x, D) is a Gaussian whose mean is given
by the network function y(x, Wirap ) with the parameter set to their MAP value. The
variance has two tenms, the first of which arises from the intrinsic noise on the target
variable, whereas the second is an x-dependent term that expresses the uncertainty
in the interpolant due to the uncertainty in the model parameters w. This should
he compared with the corresponding predictive distribution for the linear regression
model, given by (3.58) and (3.59).

5.7.2 Hyperparameter optimization

So far, we have assumed that the hyperparameters o and 7 are fixed and known,
We can make use of the evidence framework, discussed in Section 3.5, together with
the Gaussian approximation to the posterior obtained using the Laplace approxima-
tion, to obtain a practical procedure for choosing the values of such hyperparameters.

The marginal likelihood, or evidence, for the hyperparameters is obtamed by
integrating over the network weights

p(D)e, 5) = kaD|W Fiplwia) dw. (5.174)

This is easily evaluated by making use of the Laplace approximation result (4.133).
Taking logarithms then gives

W N N

i 4 =—Inf— — In{27) (5.

3 I a - 5 Inj 2 In{2x) (5.175)
where W is the total number of parameters in w, and the regularized error function
is defined by

: N D
mp(D|a, 7) = ~E{wyap) — 5111 |A] 4

N

i 2 O p
E{wyap) = 3 Z: {u{%, Wap] — "-nj"é - Ewrl-mPWNTM’- (3.176)

=1

We see that this takes the same form as the corresponding result (3.86) for the linear
regression model.

In the evidence framework, we make point estimates for v and 3 by maximizing
In p(Da, ). Consider first the maximization with respect to o, which can be done
by analogy with the linear regression case discussed in Section 3.5.2. We first define

the eigenvalue equation
.'311111 = )\; L (5.17?)

where 'F is the Hessian matrix comprising the second derivatives of the sum-of-
squares error function, evaluated at w = Wy, p. By analogy with (3.92), we obtain

.

P — (5.178)

W\[rMJWMAI’

Secrion 3.5.3

Secrion 5.1.1
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where - represents the effective number of parameters and is defined by

T= . (5.179)

Note that this result was exact for the linear regression case. For the nonlinear neural
network, however, it ignores the fact that changes in & will cause changes in the
Hessian H, which in turn will change the eigenvalues. We have therefore implicitly
ignored terms involving the derivatives of A; with respect to o

Similarly, from (3.95) we see that maximizing the evidence with respect to 3
gives the re-estimation formula

1 ] ¥
== {o(x, whar) =t} (5.180)
1

g N=—v&

As with the linear model, we need to alternate between re-estimation of the hyper-
parameters ov and 3 and updating of the posterior distribution. The situation with
a neural network model is more complex, however, due to the multimodality of the
posterior distribution. As a consequence, the solution for wysap found by maximiz-
ing the log posterior will depend on the initialization of w, Solutions that differ only
as a consequence of the interchange and sign reversal symmetries in the hidden units
are identical so far as predictions are concerned, and it is irrelevant which of the
equivalent solutions is found. However, there may be inequivalent solutions as well,
and these will generally yield different values for the optimized hyperparameters.

In order to compare different models, for example neural networks having differ-
ent numbers of hidden units, we need to evaluate the model evidence p(T). This can
be approximated by taking (5.175) and substituting the values of o and  obtained
from the iterative optimization of these hyperparameters. A more careful evaluation
is obtained by marginalizing over « and 3, again by making a Gaussian approxima-
tion (MacKay, 1992¢; Bishop, 1995a). In either case, it is necessary to evaluate the
determinant |A | of the Hessian matrix. This can be problematic in practice because
the determinant, unlike the trace, is sensitive to the small eigenvalues that are often
difficult to determine accurately.

The Laplace approximation is based on a local quadratic expansion around a
maode of the posterior distribution over weights. We have seen in Section 5.1.1 that
any given mode in a two-layer network is a member of a set of M12Y equivalent
modes that differ by interchange and sign-change symmetries, where M is the num-
ber of hidden units. When comparing networks having different numbers of hid-
den L:?iLﬁ, this can be taken into account by multiplying the evidence by a factor of
Atant,

5.7.3 Bayesian neural networks for classification

So far, we have used the Laplace approximation to develop a Bayesian treat-
ment of neural network regression models, We now discuss the modifications o
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4l

Al

this framework that arise when it is applied to classification. Here we shall con-
sider a network having a single logistic sigmoid output comresponding to a two-class
classification problem. The extension to networks with multiclass softmax outputs
is straightforward. We shall build extensively on the analogous results for linear
classification models discussed in Section 4.5, and so we encourage the reader to
familiarize themselves with that material before studying this section.

The log likelihood function for this model is given by

np(Dlw) =S = 1% {talnyn + (1 - tn) In(1 — )} (5.181)

Tt

where t, € {0,1} are the target values, and y,, = = y(x,.w). Note that there is no
hyperparameter 3, because the data points are assumed to be correctly labelled. As
before, the prior is taken to be an isotropic Gaussian of the form (5.162).

The first stage in applying the Laplace framework to this model is to initialize
the hyperparameter o, and then to determine the parameter vector w by maximizing
the log posterior distribution. This is equivalent to minimizing the regularized error
function

E(w) = —lnp(Dlw) + 3w"w (5.182)

and can be achieved using error backpropagation combined with standard optimiza-
tion algorithms, as discussed in Section 5.3,

Having found a solution wyap for the weight vector, the next step is 1o eval-
uate the Hessian matrix H comprising the second derivatives of the negative log
likelihood function. This can be done, for instance, using the exact method of Sec-
tion 5.4.5, or using the outer product approximation given by (5.85). The second
derivatives of the negative log posterior can again be written in the form (5.166), and
the Gaussian approximation to the posterior is then given by (3.167).

To optimize the hyperparameter c, we again maximize the marginal likelihood,
which is easily shown to take the form

1 W
Inp(D)a) = —E{wyar) -9—111 Al + — Ina + const (5.183)

where the regularized error function is defined by

N
¥
E(wyar) = z {tn 0y + (1 = to) In(1 — ya)} + wa{,,\,,wmp (5.184)

n=1

in which y, = y(x,, Wigap). Maximizing this evidence function with respect 1o
again leads to the re-estimation equation given by (5.178).

The use of the evidence procedure to determine o is illustrated in Figure 5.22
for the synthetic two-dimensional data discussed in Appendix A.

Finally, we need the predictive distribution, which is defined by (5.168). Again,
this integration is intractable due to the nonlinearity of the network function. The

Figure 5.22
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Ilustration of the evidence framewark

applied to a synthetic two-class data set. 3
The green curve shows the optimal de-

cision boundary, the black curve shows 2
the result of fitting a two-layer network o
with 8 hidden units by maximum likeli- 1}

hood, and the red curve shows the re-
sult of including a regularizer in which  0f
« is optimized using the evidence pro-
cedure, starting from the initial value "_i|

= (1. Mote that the evidence proce-
dure greatly reduces the overfitting of

the netwaork, =2

-2

simplest approximation is to assume that the posterior distribution is very narrow
and hence make the approximation

P, D) = pltlx, whiap ). (5.185)

We can improve on this, however, by taking account of the variance of the posterior
distribution. In this case, a linear approximation for the network outputs, as was used
in the case of regression, would be inappropriate due to the logistic sigmoid output-
unit activation function that constrains the output to lie in the range (0, 1). Instead,
we make a linear approximation for the output unit activation in the form

alx, W) = anap(x) + b (W — Wigap) (5.186)

where myap(x) = a{x, wyap ), and the vector b = Va(x, wyap) can be found by
backpropagation.

Because we now have a Gaussian approximation for the posterior distribution
over w, and a model for a that is a linear function of w, we can now appeal 1o the
results of Section 4.5.2, The distribution of cutput unit activation values, induced by
the distribution over network weights, is given by

plalx, D) = fa (a —ayar(x) — b (x)(w — warap)) g{w|D)dw  (5.187)
where g(w|T?) is the Gaussian approximation to the posterior distribution given by

(5.167). From Section 4.5.2, we see that this distribution 15 Gaussian with mean
ayap = a(X, Wyap ), and variance

7a{x) = b (x) A" bix). (5.188)

Finally, to obtain the predictive distribution, we must marginalize over a using

plt=1x,D) = /a[a}p(a x, ) da. (5.189)
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3 An illustration of the Laplace approximation for a Bayesian neural network having & hidden units
activation functions and a single logistic-sigmoid output unit. The weight parameters were found using
ugate gradients, and the hyperparameter o was optimized using the evidence framework. On the left
t of using the simple approximation (5.185) based on a point estimate wyap of the parameters,
8 green curve shows the y = 0.5 decision boundary, and the other contours correspond 1o output
sof y = 0.1, 0.3, 0.7, and 0.9, On the right is the corresponding result obtained using (5.190). Note
sct of marginalization is to spread out the contours and to make the predictions less confident, so
1 input point x, the posterior probabilitiss are shifted towards 0.5, while the y = 0.5 contour itself is

The convolution of a Gaussian with a logistic sigmoid is intractable. We therefore
apply the approximation (4.153) to (5.189) giving

pit = 1|x, D) = o (k{2 )b wiap) {5.190)

where (-} is defined by (4.154). Recall that both o2 and b are functions of x.
Figure 5.23 shows an example of this framework applied to the synthetic classi-
fication data set described in Appendix A.

ies
5.1

5.2

(»%) Consider a two-layer network function of the form (5.7) in which the hidden-
unit nonlinear activation functions g{-) are given hy logistic sigmoid functions of the
form

ola) = {1 +exp(—a)} . (5.191)

Show that there exists an equivalent network, which computes exactly the same fune-
tion, but with hidden unit activation functions given by tanh(a) where the tanh func-
tion is defined by (5.59). Hint: first find the relation between o(a) and tanh{a}, and
then show that the parameters of the two networks differ by linear transformations.

() I Show that maximizing the likelihood function under the conditional
distribution (5.16) for a multiourput neural network is eguivalent to minimizing the
sum-of-squares error function (3.11).

5.3

54

5.5

5.6

5.7

5.8

5.9

5.10

Exercises 285

() Consider a regression problem involving multiple target variables in which it
is assumed that the distribution of the targets, conditioned on the input vector x, is a
Gaussian of the form

plt)e, w) = AN{t|ly(x, w), E) (5.192)

where y(x, w) is the output of a neural network with input vector x and weight
vector w, and X is the covariance of the assumed Gaussian noise on the targets.
Given a set of independent observations of x and t, write down the error function
that must be minimized in order to find the maximum likelihood solution for w, it
we assume that X is fixed and known, Now assume that X is also to be determined
from the data, and write down an expression for the maximum likelihood solution
for . Note that the optimizations of w and X are now coupled, in contrast 1o the
case of independent target variables discussed in Section 5.2.

{»+) Consider a binary ¢lassification problem in which the target values are { ©
{0, 1}, with a network output y{x, w that represents p(t = 1/x}, and suppose that
there is a probability € that the class Jabel on a training data point has been incorrectly
set. Assuming independent and identically distributed data, write down the error
function corresponding to the negative log likelihood. Verify that the error function
(5.21) is obtained when ¢ = (0. Note that this error function makes the model robust
to incorrectly labelled data, in contrast to the usual error funciion.

) Show that maximizing likelihood for a multiclass neural network model
in which the network outputs have the interpretation yp(x, w) = p{l; = 1|x) is
equivalent to the minimization of the cross-entropy error function (5.24).

() B  Show the derivative of the error function (5.21) with respect Lo the
activation e, for an output unit having a logistic sigmoid activation function satisfies
(5.18).

() Show the derivative of the error function (5.24) with respect to the activation ag
for output units having a softmax activation function satisfies (5.18),

() We saw in (4.88) that the derivative of the logistic sigmoid activation function
can be expressed in terms of the function value itself. Derive the corresponding result
for the “tanh’ activation function defined by (5.59).

(x) m The error function (5.21) for binary classification problems was de-
rived for a network having a logistic-sigmoid output activation function, so that
0 < yix,w) < 1, and data having target values ¢ & {0, 1}. Derive the correspond-
ing error Tunction if we consider a network having an output —1 < yix, w) < I
and target values ¢ = 1 for class C; and ¢ = —1 for class C;. What would be the
appropriate choice of output unit activation function?

(+) I Consider a Hessian matrix H with eigenvector equation (5.33). By
setting the vector v in (5.39) equal to each of the eigenvectors u; in turn, show that
H is positive definite if, and only if, all of its eigenvalues are positive,



