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HMM: definition

Markov chain models for sequence x (modeling sequence by states s ∈ S):

p(x) =
L

i=1

p(xi|xi−1) = p(x1)
L

i=2

axi−1,xi (1)

Compare Bayes factors of different Markov chain models of DNA: homogeneous Mh vs
inhomogenous-by-period-3 Mi3

p(x|Mi3)

p(x|Mh)
(2)

Now fuse them into a single model ⇒ hidden state
Hidden Markov Models (definitions/notations following DEKM)

1. π denotes a state sequence ( of a Markov chain), πi is the ith state

2. akl the transition probabilities p(πi = l|πi−1 = k) in the MC (extra state 0 for start/end)

3. ek(b) are the emission probabilities p(xi = b|πi = k)

Note, stochastic finite state automations/regular grammars, later we discuss the application
of stochastic context-free grammars (SCFG) for RNA (3-D structure,..palindromes!).
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Inferences in HMMs

Note |π| = O(|S|L)

-,L p(x, π) = a0πl

� L
i=1 eπi(xi)aπiπi+1

?,L ”decoding": π∗ = arg maxπ p(x, π)

?,L sequence probability:p(x) =

�

π p(x, π) (or p(x|M) ”model likelihood" or filtering)

?,L smoothing/posterior decoding:p(πi = k|x)

?,OK? parametric inference (training/parameteresation)

?,OK? structural inference (model selection)
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HMM: Viterbi algorithm

Goal: ”decoding": π∗ = arg maxπ p(x, π)

Note: ”best joint-state-sequence explanation"6= ”joint sequence of best-state-explanations"
Inductive idea: extend most probable paths with length i to i+1
vk(i) denotes the probability of the most probable path ending in state k with observation i
Then

vl(i + 1) = el(xi+1) max
k

(vk(i)akl) (3)

Require: HMM,x
Ensure: π∗ = arg maxπ p(x, π)

Ini: (i=0): v0(0) = 1,vk(0) = 0 for 0<k
for i = 1 to L do

vl(i) = el(xi)maxk(vk(i − 1)akl)

ptri(l) = arg maxk(vk(i − 1)akl)

End: p(x, π∗) = maxk(vk(L)ak0), π∗
L = arg maxk(vk(L)ak0)

for i = L to 1 do {Traceback}
π∗

i−1 = ptri(π
∗
i )

Note, small probabilities may cause positive underflow (length can be up to 103 <)=> log
Note, π∗ = arg maxπ p(x, π) = arg maxπ p(π|x)
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HMM: forward algorithm

Goal: sequence probability:p(x) =

�

π p(x, π) (or p(x|M) ”model likelihood" or filtering)
Approximation: p(x) =

�

π p(x, π) ≈ p(x, π∗) = a0π∗

l

� L
i=1 eπ∗

i
(xi)aπ∗

i
π∗

i+1
(π∗ by Viterbi )

Inductive idea(dynamic programming): extend the probability of generating observations x1:i

being in state k at i to i+1
By introducing fk(i) = p(x1:i, πi = k), we can proceed

fl(i + 1) = el(xi+1)
k

(fk(i)akl) (4)

Require: HMM M,x
Ensure: p(x|M)

Ini: (i=0): f0(0) = 1,fk(0) = 0 for 0<k
for i = 1 to L do

fl(i) = el(xi)

�

k(fk(i − 1)akl)

End: p(x|M) =

�

k(fk(L)ak0)

Note, we have to sum small probabilities! => log transformation is not enough, scaling
methods..
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HMM: backward algorithm

Goal: smoothing/posterior decoding p(πi = k|x)

Idea: p(πi = k|x) =
p(πi=k,x)

p(x)
(p(x) can be computed by the forward algorithm)

p(πi = k, x) = p(πi = k, x1:i)p(xi+1:L|πi = k, x1:i) = fk(i) p(xi+1:L|πi = k)� �� �

bk(i)

Ensure: bk(i) = p(xi+1:L|πi = k)

Ini: (i=L): bk(L) = ak0 for all k
for i = L − 1 to 1 do

bk(i) =

�

l aklel(xi+1)bl(i + 1)

End: p(x|M) =

�

l a0lel(x1)bl(1)

Note, conditionally most probable state at i 6= state in most probable explanation at i.
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The ”profile" HMMs (pHMMs)

Define a structure (allowed transitions) over states with cardinality n. Note, O(n2)

parameters can be reduced to linear. . . )
Substitutions: match states (boxes). Note, level 1 implements already a position specific
scoring.
Inserts: insert states (diamonds). Note that length distribution of inserts follows a geometric
distribution with parameter p of probability of stay (mean p/(1 − p) and variance p/(1 − p)2).
Deletes: transitions ”jumping" over match states. Problem: high number of parameters.
Solution: further parametric restriction over transition probabilities using silent delete states
(circles). Note the possible reduction of O(n2) to O(n) representing a position specific gap
length penalty or even to 1 representing a gap length penalty.
Note that delete states are so called silent/null states without emission. If there are no loops
as in pHMMs =>emulate their effect in Viterbi/forward/backward algs treating separately the
probability of transitions without emissions, e.g. accumulating upward
fl(i + 1)+ =

�

k fk(i + 1)akl through silent states k < l.
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The ”profile" HMMs (pHMMs) II.

The profile HMM.

Usage: 1, exploration/visualization of a sequence family 2, deciding membership (for
transferring annotations about functionality/structure) 3, (the most probable) multiple
alignment
Application: see Pfam.
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The probability of alignment

Earlier we see that without indels the pairwise model p(xi, yj |M) and independent model R
q(xi) allows the use of likelihood ratio/Bayes factor. . .
Goal: not PSS, but with indels a full probabilistic approach to alignment.
Imagine a simple global pairwise alignment problem with linear gap penalty: given p(xi, yj),
qi and δ probabilities for matched symbols xi, yj and qiδ for a gap-ith symbol pair. Using a
log transformation the dynamic programing approach to global pairwise alignment problem
gives the most probable alignment, i.e. the most probable path from (0,0) to (m,n). If we
change the maximization to summation it gives the total probability of alignment at (m,n).
Note the similarity to the Viterbi/forward algorithms.
Now consider the case of affine gap penalty γ(g) = −d − (g − 1)e. The global pairwise
alignment algorithm can be rewritten using three states and the formalism of the Viterbi
algorithm as follows

V M (i, j) = s(xi, yj) + max(V M (i − 1, j−), V X (i − 1, j − 1), V Y (i − 1, j − 1)) (5)

V X (i, j) = max(V M (i − 1, j) − d, V X (i − 1, j) − e) (6)

V Y (i, j) = max(V M (i, j − 1) − d, V Y (i, j − 1) − e). (7)

(Note that gaps cannot be merged, because of the affine gap penalty ⇒ no transition
between X, Y)
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HMM learning

Assume n independent/exhangeable sequences x(1), . . . , x(n)

p(x(1), . . . , x(n)|θ) =
n

i=1

p(x(i)|θ) (8)

Note, here θ corresponds to a simplified (descriptive) model class (HMMs) relying on the
”molecular clock hypothesis, and not to the more general (generative/biologically inspired)
model class of phylogenetic trees. Furthermore the sequences, in fact, can be
(weakly?)dependent through the common evolutionary tree. . . .

1. structure known, state sequences are known: ML parameter computation from counts

2. structure known, state sequences are unknown

(a) manual/heuristic matching: ML parameter computation from counts

(b) : Viterbi training: iterative ”multiple alignment-ML parameter computation from
counts"

(c) : Baum-Welch training: iterative computation of mean counts and improved
parameters from mean counts (EM-based)

3. structure unknown, state is unknown
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Estimation using known state sequences

Recall relative frequency is a maximum likelihood estimator in multinomial sampling.
Assume i = 1, . . . K outcomes assuming multinomial sampling with parameters θ = {θi}

and observed occurrencies n = {ni} (N =

�

i ni). Then

log
p(n|θML)

p(n|θ)
= log

�

i(θ
ML
i )ni

�

i(θi)ni
=

i

ni log
θML
i

θi

= N
i

θML
i log

θML
i

θi

> 0 (9)

because 0 < KL(θML||θ)

−KL(p||q) =
i

pi log(qi/pi) ≤
i

pi((qi/pi) − 1) = 0 (10)

using log(x) ≤ x − 1.
Thus using the counts of state transitions Akl and emissions Ek(b)

akl =
Akl

�
l′ Akl′

and ek(b) =
Ek(b)

�

b′ Ek(b′)
(11)

So called pseudocounts to avoid imprecise estimates (e.g. divison by 0) and prior counts to
incorporate bias/expertise.
⇒ A′

kl
= A′

kl
+ rkl E′

k
(b) = Ek(b) + rk(b)
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Entropy and mutual information

If pi is a discrete probability distribution, its entropy is

H(p) = −
i

pi log(pi), (12)

Conditional entropy H(Y |X) is defined as

�

x p(x)

�

y p(y|x) log(p(y|x)).
Mutual information is defined as I(Y ; X) = H(Y ) − H(Y |X). The (conditional) mutual

information can be written as

MIp(X; Y |Z) = KL(p(X, Y |Z)|p(X|Z)p(Y |Z)). (13)

The chain rule for (joint distributions) and entropies:
p(X1, . . . , Xn) =

�

i p(Xi|X1, . . . , Xi−1)

H(X1, . . . , Xn) =

�

i H(Xi|X1, . . . , Xi−1)

And also

= H(X1, . . . , Xn) (14)

=

n

i=1

H(Xi) −

n

i=1

I(Xi; X1, . . . , Xi−1). (15)
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Optimality of relative frequencies

Recall relative frequency is a maximum likelihood estimator in multinomial sampling.
Assume i = 1, . . . K outcomes assuming multinomial sampling with parameters θ = {θi}

and observed occurrencies n = {ni} (N =

�

i ni). Then

log
p(n|θML)

p(n|θ)
= log

�

i(θ
ML
i )ni

�

i(θi)ni
=

i

ni log
θML
i

θi

= N
i

θML
i log

θML
i

θi

> 0.(16)

We are ready, because the last quantity is the „KL-distance”, which is always positive.
If p̂i, pi are discrete probability distributions, the cross-entropy H and the Kullback-Leibler

(semi)distance KL are as follows (it is always positive)
H(p‖p̂) = −

�

i pi log(p̂i)

KL(p‖p̂) =

�

i pi log(pi/p̂i)

0 < KL(θML||θ):

−KL(p||q) =
i

pi log(qi/pi) ≤
i

pi((qi/pi) − 1) = 0 (17)

using log(x) ≤ x − 1.
Frequently pseudocounts are used to avoid imprecise estimates (e.g. divison by 0) and prior

counts to incorporate bias/expertise.
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pHMM parameter learning: heuristic

Assume an external (manual,biologically inspired) multiple alignment for sequences
x(1), . . . , x(n) (by evaluating the characteristics of substituted amino acids w.r.t. the
secondary, tertiary structure and also considering homology, phylogenetic aspects, i.e. by
adopting a system biology approach to the evolution of funtional/structural entities.
Note, that for a profile HMM (pHMM) the marking of columns with match or insert labels
M0, I+

0 , . . . , Mi, I
+
i determines the state sequence (Mi → {mi, di},Ii → {ii}).

Basic profile HMM parameterisation: majority-based match/insert marking (2L for length L)

A MAP approach: compute the MAP probability of column i is a match. Hidden Markov Models – p. 15/??



HMM parameter learning: Viterbi

Idea: using the actual parameters compute the most probable paths π∗(x(1)), . . . , π∗(x(n))

for the sequences and select ML parameters based on these.

Require: HMM structure, x(1), . . . , x(n)

Ensure: ≈ arg maxθ p(x(1), . . . , x(n)|θ, π∗(x(1), θ), . . . , π∗(x(n), θ))

Ini: draw random model parameters θ0 (e.g. from Dirichlet)
repeat

set A and E values to their pseudocount
for i = 1 to n do

Compute π∗(x(i)) using θt with the Viterbi algorithm
Set new ML parameters θt+1 based on current counts A and E from
x(1), . . . , x(n), π∗(x(1)), . . . , π∗(x(n))

Compute model likelihood Lt+1 = p(x(1), . . . , x(n)|θt+1)

until NoImprovement(Lt+1,Lt,t)

Note, that this finds a θ maximizing p(x(1), . . . , x(n)|θ, π∗(x(1), θ), . . . , π∗(x(n), θ)) and not
the original goal p(x(1), . . . , x(n)|θ).
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HMM parameter learning: Baum-Welch

Idea: compute the expected number of transitions/emissions At,Et based on θt, then
update to θt+1 based on At,Et. . .
The probability of k → l transition at position i in sequence x is

p(πi = k, πi+1 = l|x) (18)

=
p(

fk(i)

� � � �

x1, . . . , xi, πi = k,xi+1,

bl(i+1)

� � � �
πi+1 = l, xi+2, . . . , xL)

p(x)
=

fk(i)aklel(xi+1)bl(i+1)

p(x)
(19)

The mean of the number of this transition and the mean of the number of emission b from
state k is

Akl =
j

1

p(x(j))
i

f
(j)
k

(i)aklel(x
(j)
i+1)b

(j)
l

(i + 1) (20)

Ek(b) =
j

1

p(x(j))
i|x

(j)
i

=b

f
(j)
k

(i)b
(j)
k

(i), (21)

Apply the same iterative algorithm as in Viterbi traning (θt → At, Et → θt+1 → . . .)
Why does it converge? Baum-Welch is an Expectation-Maximization algorithm

Hidden Markov Models – p. 17/??



Gene finding:GENSCAN

Semihidden HMM a state can emit words with arbitrary length distribution LS and symbols
YS,l (not just a symbol or words with length following a geometric distribution). A parse φ is a
sequence of states and corresponding lengths (partition of observation is not trivial in such
case!). HMM algorithms are more complex.
Application: parse of a DNA-segment with Viterbi.
Burge(1997)/EG:GENSCAN, human
Recall: what is a gene? (here we follow a protein-coding interpretation)
The training data: 380 genes, 142 single-exon genes, 1492 exons, coding region of 1619
genes
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Gene finding:GENSCAN

Structural elements( of a protein coding gene): see slides.

1. Upstream region: promoter region: TATA box: present in 70% of genes at 28-34
bases upstream from the start of transcription.

2. 5’ untranslated region (5’UTR): follows the promoter starting with the cap end region
(8 bases) and ending with translation initiation end (TIE) (18 bases).

3. Exon − [intron − exon]∗: recall intron types and structure

4. 3’ untranslated region (3’UTR) contains one or more Poly-A signal (6 bases).
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Gene finding:GENSCAN II.

The transition probabilities are estimated from the data (to TATA, to SEG and to multi-exon).
Intergenic region: Distance between genes is modeled by a geometric distribution with
mean p/1 − p = |genome|/|genes| and the sequence is generated with a fifth-order MC with
parameters 3 · 45 called intergenic null model (INM).
TATA box is modeled with a 15-base weight matrix (independent multinomials). N1 is from
the INM with length distributed uniformly from 28 to 34. Cap end is modeled with an 8-base
weight matrix. N1 is from the INM with length from a geometric distribution with mean 735
bases. TIE is modeled with a 18-base weight matrix.
Single exon gene (SEG) is modeled with a nonhomogeneous (3-phase) fifth-order MC
generating first the start codon atg and ending with the three stop codons taa, tag, tga.
Length follows the empirical distribution.
Multiexon gene is modeled with the SEG model for the exons. The length of the introns are
modeled with empirical distribution independently for initial, internal and terminal introns.
The intron sequence generation starts with splitting a random codon with 1/3 probability to
0/3, 1/2 or 2/1. This prefix starts the intron, then the donor splice signal is modeled with a
decomposed weight matrix with length 6, then the INM generates the intron, finally the
acceptor splice signal is again modeled with a decomposed weight matrix with length 20,
which is closed with postfix part of the splitted codon.
The 3’UTR is modeled with the INM with geometric length of mean 450. The Poly-A is
modeled with a 6-base weight matrix.
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Extension to mRNA: SCFG

Position specific scoring of substitutions, inserts, deletions.
Hidden Markov Models
Stochastic Finite State Automaton
Stochastic grammars
Dynamic Bayesian Networks
Chomsky hierarchy of grammars (*:right/left, with/without ε;**:nondecreasing):

Grammar Rule Automaton Parsing Language

regular∗ W → aW FSA linear a reg.expression

context-free W → β push-down polynomial palindromes

context-sensitive** α1Wα2 → α1βα2 linear bounded exponential copies

unrestricted Turing machine (TM) semidecidable KB − FOL |= α

- - halting TMs
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