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From ”rational" preferences to probabilities: ”as if" I.

1. Definition. A decision problem is defined by the elements E, C,A,≤, where:

(i) E is an algebra of events, Ej ;

(ii) C is a set of possible consequences, cj ;

(iii) A is a set of possible acts, which are mapping of partitions of the events to
consequences;

(iv) ≤ is a binary preference relation between some of the elements of A.

With further ”rational" assumptions on comparability, transitivity, consistency and
quantification the following suggestive result can be derived.

1. Proposition. Given an uncertainty relation ≤, there exists a unique real number P(E) for
each event E (defined as the probability of E) that they are compatible with ≤ (i.e.
E ≤ F ; iff ; P (E) ≤ P (F )) and they form a finitely additive probability measure.

Consequently, P (A|ξ) denotes the subjective/personal beliefs in a given
space-time-information context ξ vs. the ”frequentist" interpretation that
P (A) , limN→∞ NA/N .

Another axiomatic derivation: Cox-Jaynes axioms
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From preferences to utilities: ”as if" II.

The parallel result for the existence and uniqueness of utilities (or losses) is stated only for
decision problems with bounded consequences.

2. Proposition. For any decision problem E, C,A,≤ with bounded consequences c∗ < c∗,

(i) for all c, u(c|c∗, c∗) exists and unique;

(ii) the value of u(c|c∗, c∗) is unaffected by the assumed occurrence of an event G;

(iii) 0 = u(c∗|c∗, c∗) ≤ u(c|c∗, c∗) ≤ u(c∗|c∗, c∗) = 1.

The Bayesian viewofknowledge representation,inferenceandlearning – p. 3/??



From exchangeability to parameters and ”i.i.d." : ”as if" III.

3. Proposition. If x1, x2, . . . is an infinitely exchangeable sequence of 0-1 random
quantities with probability measure P, that is for any n and permutation π(1), . . . , π(n) the
joint mass function of P p(x1, . . . , xn) = p(xπ(1), . . . , xπ(n)), there exists a distribution
function Q such that p(x1, . . . , xn) has the form

p(x1, . . . , xn) =
1

0

n

i=1

θxi (1 − θ1−xi )dQ(θ),

where,

Q(θ) = lim
n→∞

P [yn/n ≤ θ],

with yn = x1 + · · · + xn, and θ = limn→∞ yn/n.
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The Bayesian statistical framework

1. Specify a joint distribution p(x, θ) over the observable quantity x and parameter θ

having equal status by specifying p(θ) the prior distribution or prior, the p(x|θ) is the
sampling distribution that also defines the likelihood and the likelihood function L(θ; x)

(the discrete model parameter is denoted with Mk).

2. Perform a prior predictive inference

p(x) = p(x|θ)p(θ)dθ or p(x) =
k

p(Mk) p(x|Mk) (1)

or a posterior predictive inference after observing the data set D as

p(x|D) = p(x|θ)p(θ|D)dθ or p(x|D) =
k

p(x|Mk)p(Mk|D) (2)

3. Perform a parametric inference by the Bayes rule

p(θ|x) =
p(x|θ)p(θ)

�
p(x|θ)p(θ)dθ

∝ p(x|θ)p(θ) or p(Mk|x) =∝ p(x|Mk)p(Mk) (3)
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On hierarchic priors (”Bayesian knowledge representation")

In an idealistic Bayesian approach the family of the included models in p(θ) and p(x|θ)
should be as broad as necessary for expressing beliefs in any potentially relevant model.
However three issues have to be considered: the potential violation of a scientific principle of
Ockham’s razor , the computational difficulties to cope with such large class of models and the
pragmatic aspects of specifying a priori beliefs at the extreme for all the computable
distributions.
A frequently occuring form in practice, that the specification usually achieved in the
structured specification of the relevant model structures Sk or Mk and parameters θk.
Correspondingly the a priori belief p(θk,Mk) in a given model with structure k and
parameters θi

k
is expressed as a product

p(θk,Mk) = p(Mk)p(θi
k|Mk) (4)
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Predictive inference (”Bayesian inference")

The specification of the a priori beliefs over relevant models allows us to perform (prior)
predictive inferences over the observable quantity x

p(x) = p(Mk) p(x|θk)p(θk|Mk)dθk (5)

(6)

The operation of integration and/or summation over models and/or their parameterization
implements marginalization and termed in this context as Bayesian model averaging . We
can write the posterior predictive distribution conditioned on the data set D as

p(x|D) = p(Mk|D) p(x|θk)p(θk|D,Mk)dθk ≈ p(x|D,MMAP
k ) (7)

in which MMAP
k

= argmaxkp(Mk|D) is called the maximum a posteriori (MAP) model.
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Parametric inference (”Bayesian learning")

In the discrete case the posterior of the model p(Mk|D) is given by

p(Mk|D) =
p(D|Mk)p(Mk)

p(D)
(8)

where the marginal model likelihood or evidence for Mk is

p(D|Mk) = p(D|θk,Mk)p(θk|Mk)dθk (9)

and the marginal data likelihood

p(D) =
k

p(D|Mk)p(Mk) (10)

The Bayes factor shows the change of the ratio of prior belief to the ratio of the posteriors, i.e.
the ratios of marginal likelihoods of models Mi and calMj

2. Definition.

Bayesfactor(Mi,Mj) =
p(D|Mi)

p(D|Mj)
=

p(Mj)

p(Mi)

p(Mi|D)

p(Mj |D)
(11)
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Bayesian decision theory I.

Frequently, the full report of the posterior over observable quantity or model or model
parameters is not adequate.
If only a value (̂x) of the observable quantity can be reported (interpreted as a decision)
whose utility is specified by a utility or loss function L(x, x̂), then the optimal decision x∗

based on the posterior predictive distribution is

x∗ = argminx̂ L(x, x̂)p(x|D)dx (12)

A frequent choice for the loss function both in the case of inference about observable
quantities and parameters are the 0-1 loss L0, the absolute loss L1, the quadratic loss L2

and if the reported values be interpreted as discrete probability distribution the logarithmic
loss, which in this case is the Kullback-Leibler (semi)distance KL(). The optimal values for
various loss functions are as follows

L0(x, x̂) = I{x 6= x̂}(mode) (13)

L1(x, x̂) = |x − x̂|(median) (14)

L2(x, x̂) = (x − x̂)2(mean) (15)

KL(x||x̂) =
i

xi log(xi/x̂i) (16)
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Bayesian decision theory II.

In the case of parameter estimation with loss function L(θ, θ̂) and observation x, the optimal
estimation θ̂ minimizes the posterior expected loss

%(p(θ), θ̂|x) = L(θ, θ̂)p(θ|x)dθ. (17)

If this property holds for every observation x for a given decision rule (estimator) δ(x) (from
the space of observations to the decision space of the parameters), then the estimator δ(x)

minimizes the integrated risk

r(p(θ), δ) = L(θ, δ(x))p(x|θ)dxp(θ)dθ. (18)

and it is called Bayes estimator and the corresponding value is the Bayes risk . In the context of
predicting a binary class label Y after observing X, the optimal decision function (based on
the posterior p(Y |X)) is called Bayes decision and the Bayes risk with 0-1 loss, i.e. the
probability of missclassification, is called the Bayes error .
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Beta distribution
3. Definition. A family F of prior distributions p(θ) is said to be conjugate for a class of
sampling distributions p(x|θ), if the posteriors p(θ|x) also belongs to F .

1. Example. Assume that x denotes the sum of 1s of n independent and identically
distributed (i.i.d.) Bernoulli trials, that is we assume a binomial sampling distribution. If the
prior is specified using a Beta distribution, the posterior remains a Beta distribution with
updated parameters.

p(x|θ) = Bin(x|n, θ) =

�n

x

�

θx(1 − θ)n−x (19)

p(θ) = Beta(α, β) = cθα−1(1 − θ)β−1 where c =
Γ(α + β)

Γ(α)Γ(β)
(20)

p(θ|x) =
p(θ)p(x|θ)

p(x)
= c′θα−1+x(1 − θ)β−1+n−x = Beta(α + x, β + n − x)

In general a conjugate prior is updated to posterior using only an appropriate statistics of the
observations to update its parametrization. It shows that the parameters frequently has an
intuitive interpretation based on observations, that is in the prior specification the parameters
corresponds to real or virtual past observations.
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The Dirichlet distribution
2. Example. Assume that the observed sequence Dn = {Xi; i = 1, 2 . . . , n} contains
i.i.d. multinomial samples with L discrete values. The prior is a Dirichlet prior with
hyperparameters α = α1, . . . , αL and α. =

�

i αi.

p(θ) = Di(α) = c
i

θαi−1 where c =
Γ(α.)

�
i Γ(αi)

(21)
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Dirichlet distribution II.
It is conjugate for multinomial sampling (see Example ??), so the posterior predictive
distributions of the defined Bayesian forecasting system are the updated Dirichlet with
hyperparameters αj at step j and the posterior prediction for xj (i.e. the marginal posterior
probability E[θxj

]) is

3. Example.

p(xj |x1, . . . , xj−1) = p(xj |θ)p(θ|x1, . . . , xj−1)dθ (22)

= p(xj |θ)Dir(θ|αj)dθ (23)

= c
L

i=1

θ
1(xj=ri)

i

i

θαji−1dθ where c =
Γ(αj,.)

�

i Γ(αj,i)
(24)

= c
i

θαj+1−1dθ (25)

=
Γ(αj.)

Γ(αj+1,.)

�

i Γ(αj+1,i)

�

i Γ(αji)
(26)

=
αj,xj

αj,.

(27)

(28)
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Dirichlet distribution III.
The marginal probability of the data set Dn with ni occurrences of value ri

4. Example.

p(x1, . . . , xn|Dir(α1)) =
n

i=1

pi(xi|x1, . . . , xi−1) (29)

=

� L
i=1 α1,i..(α1,i + ni)

α1,. . . . (α1,. + n)
(30)

=
Γ(α1,.)

Γ(α1,. + n)

� L
i=1 Γ(α1,i + ni)

� L
i=1 Γ(α1,i)

(31)
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Bayesian inference with Monte Carlo I.

Integration/summation is a central operation in Bayesian statistics (c.f. optimization in the
frequentist approach)

f̄ = Eπ(X)[f(X)] (32)

For example

p(y|x, DN ) = Ep(G|DN )[Ep(θ|G,DN )[p(y|x, θ, G)]]

L
Ĝ|DN

= Ep(G|DN )[L(G, Ĝ)] =
G

L(G, Ĝ)p(G|DN ),

p(α(G)|DN ) =
G

1(α(G) is true)p(G|DN )

Idea:

1. sampling from π(X) to generate i.i.d random samples {Xt, t = 1..N};

2. computation of the estimate f̂N = 1/N

� N
t=1 f(Xt);

3. providing confidence measure for |f̄ − f̂N |, where f̄ = Eπ(X)[f(X)].
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Consistency and convergence speed I.

The estimate f̂N is strongly consistent (by the ”strong law of large number"), that is

P (limN→∞f̂N = f̄) = 1 (33)

The standardized of f̂N has asymptotically Gaussian distribution (by the ”central limit
theorem"), that is

f̂N − f̄

σN

→ N(0, 1) as N → ∞ where σN = V ar(f(X))/
√

N. (34)

If f(X) is bounded, then non-asymptotic results about the speed of convergence are also
available by the Hoeffding’s inequality including the bound and by the Bernstein’s inequality.
Specifically, if f(X) is within [0, 1], then

p(|f̂N − f̄ | ≥ ε) ≤ 2 exp(−2ε2N) ≤ δ (35)

E[ |f̂N − f̄ | ] ≤

�

c0/N. (36)
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Averaging with importance sampling

If efficient sampling exists for another density q(X) called importance density that has the
same support as of π(X), then using the identity

f̄ = Eπ(X)[f(X)] = Eq(X)[
f(X)π(X)

q(X)
] (37)

we can use the samples {Xt, t = 1..N} from q(X) to evaluate the original expectation with
the following weighted average

f̂N = 1/N
N

t=1

w∗(Xt)f(Xt) =
1/N

� N
t=1 w(Xt)f(Xt)

1/N

� N
t=1 w(Xt)

(38)

where w∗(Xt) are the importance weights

w(Xt) =
π(Xt)

q(Xt)
and w∗(Xt) =

w(Xt)

1/N

� N
t=1 w(Xt)

(39)
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Consistency and convergence speed II.

It is strongly consistent, its standardized is asymptotically Gaussian, additionally its variance

V arq(X)(f(X))/N = 1/N (
f(x)π(x)

q(x)
− f̄)2q(x)dx (40)

that is the quadratic estimation error, can be smaller than of the standard Monte Carlo with
V arπ(X)(f(X))/N and shown to be minimized by the selection of q(X) ∝ f(x)π(x), but in
general it is advisable to select q(X) as close as possible to π(X) maintaining efficient
sampling from q(X)

In the case of using the prior p(X) as importance distribution for the (normalized) posterior
p(X|D) the (normalized) weights are the likelihoods normalized by the estimation of the data
likelihood p(D):

w∗(Xt) =
p(Xt|D)

p(Xt)
=

p(D|Xt)

p(D)
(41)

p(D) = p(D|x)p(x)dx ≈ 1/N
N

t=1

p(D|Xt) (42)
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Markov chains I.
Let X = {X0, X1, . . .} is a sequence of random variables. The values of Xt are frequently
interpreted as states from a state space, the index parameter frequently has a temporal or in
biological sequence analysis a location interpretation.

4. Definition. A sequence of random variables X = {X0, X1, . . .} is called a (first-order)
Markov chain, if p(Xt|Xt−1, . . . , X0) = p(Xt|Xt−1). The Markov chain is
(time-)homogeneous, if the so called transition kernels p(Xt|Xt−1) does not depend on t.

In this section, unless otherwise stated that the values of Xt are discrete and finite, denoted
by nonnegative integers S = {0, 1, . . . , K}. We use the notation p(t) for the distribution of
Xt and p(Xt = i) = p

(t)
i . We always assume homogeneity and these allows a shorthand

notation pij for the transition probabilities as pij = p
(1)
ij = P (Xt+1 = j|Xt = i), which are

forming the (one-step) transition probability matrix P = P (1)[pij ] (a stochastic matrix).
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Markov chains II.

The ”n-step" transition probability matrix P (n) containing p
(n)
ij = P (Xt+n = j|Xt = i) is the

nth power of P and

p′(n) = p′(0)P (n), where P (n) = P n. (43)

A special distribution is the so called invariant distribution pinv.

5. Definition. The distribution p′inv is called an invariant distribution of a homogeneous
Markov chain X with transition probability matrix P , if p′inv = p′invP (Consequently, if
p(0) = p′inv, then p(t) = p′inv for ∀ t.)

For a first-order Markov chain X the identical marginals p(t) = pinv implies that X is
strongly stationer, that is the distributions of time-shifted finite marginals are identical, so the
invariant distribution pinv is frequently called a stationer distribution.
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Stability, irreducibility, aperiodicity

6. Definition. A Markov chain X is stable, if limt→∞ p(Xt) = p(∞) exists, independent of
the initial distribution p(X0) and it is a distribution (called limiting distribution or equilibrium
distribution).

Now we need the concept of irreducibility and aperiodicity to state a central result about the
limiting and invariant distributions.

7. Definition. The discrete and finite state space Markov chain X is called

1. irreducible, if there exists nij > 0 for all i, j that p
(nij)

ij > 0,

2. aperiodic, if for some i (and with irreducibility for all), there exists ni > 0 that for all
n ≥ ni p

(n)
ii > 0,

1. Theorem. If a discrete and finite state space Markov chain X is irreducible and aperiodic,
then the chain is stable and there is a unique invariant distribution that is also the limiting
distribution (i.e p′∞ is a unique, nonnegative solution of p′∞ = p′∞P and

�

i p
(∞)
i = 1).

To simplify notation, for a stable chain we denote this unique limiting and invariant
distribution (p∞, pinv with π(X)).
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Ergodicity, confidence

2. Theorem. If a discrete and finite state space Markov chain X is stable and
f̄ = Eπ(X)[f(X)] < ∞, then P (limN→∞f̂N = f̄) = 1, where f̂N = 1/N

� N
t=1 f(Xt).

8. Definition. The discrete and finite state space Markov chain X is called geometrically
ergodic, if there exists 0 ≤ λ < 1 and function V (.) > 1 such that

j

|p(t)
ij − πj | ≤ V (i)λt for all i (44)

The smallest such λ is called a rate of convergence.

3. Theorem. If a discrete and finite state space Markov chain X is geometrically ergodic (so
stable), started with its invariant distribution π(X) and for a real valued function f
f̄ = Eπ[f(X)], σ2 = V arπ(f(X)), Eπ [f(X)2+ε] ≤ ∞ with some ε > 0, then for
f̂N = 1/N

� N
t=1 f(Xt)

τ2 = σ2 + 2
∞

k=1

Eπ [(f(X0) − f̄)(f(Xk) − f̄)] (45)

exists, nonnegative and finite, and

√
N

f̂N − f̄

τ
→ N(0, 1) in distribution as N → ∞. (46)
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Reversibility

9. Definition. The discrete and finite state space Markov chain X with transition probability
matrix P and invariant distribution pinv is called reversible, if it satisfies the detailed balance
condition

∀ i, j pinv
i Pij = pinv

j Pji. (47)

By summation it gives pinvP.j = pinv
j , which is the defining equation of an invariant

distribution. Consequently, if for a given P q satisfies detailed balance, then it is an invariant
distribution and vice versa, if for a given target distribution q we can construct a P such that
it satisfies detailed balance with q, then q is its invariant distribution. Furthermore, if the
constructed P is such that the corresponding reversible Markov chain is irreducible and
aperiodic as well, then q is its unique, invariant, limiting distribution, so we can generate
(dependent) samples by sequential simulation and use it to estimate expectations and to
provide confidence measures.
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The Metropolis-Hastings Algorithm I.

Let π(X) denote the unnormalized, strictly positive target distribution over S = {0, 1, . . . , K}
(πi = π(X = i) ≥ 0). Let Q be a transition probability matrix (Q1 = 1), the so called
proposal distribution (for transitions), such that (qij ≥ 0) iff (qji ≥ 0). Define a Markov
chain X with probability transition matrix P such that

pij = qij min (1,
πjqji

πiqij

);∀i 6= j (48)

using 0/0 = 0 and define pii = 1 − �

j 6=i pij . Note that the construction needs only the
ratios of the target distribution, which fits to the practical case of unnormalized posterior in
Bayesian analysis.
Now π(X) is the stationary distribution of the defined Markov chain, which can be proved by
showing that the detailed balance condition is satisfied. The cases i = j and if qij = qji = 0

are trivially satisfied. For i 6= j with qij ≥ 0, suppose that πiqij ≥ πjqji, then

πipij = πi
πjqji

πiqij

= πjqji = πjpji (49)
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The Metropolis-Hastings Algorithm II.

If Q is irreducible, so will be P and the same is true for aperiodicity. Consequently, if we
provide a proposal distribution Q that (its corresponding Markov chain) is irreducible and
aperiodic, then for a given target distribution π(X) the construction above defines a stable
and reversible Markov chain with (invariant) limiting distribution π(X)).
If Q is symmetric, then we fall back to the original Metropolis algorithm without ratio of the
proposal distributions

pij = qij min (1,
πj

πi

);∀i 6= j. (50)

If Q depends on only some distance between the current state xt and a proposed state x∗

(q(x∗|xt) = q(|x∗ − xt|)), then we get the random-walk Metropolis algorithm (the distance can be
semantically defined in discrete spaces). If Q is independent of the current state
(q(x∗|xt) = q(x∗)), then we get the independence sampler , which is geometrically convergent
determined by inf q(x)/π(x) (by the closeness to the target distribution) ?. If Q is such that
changes at most one component of X based on its full conditional distribution, then we get
the Gibbs sampler , with an acceptance probability 1.
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The Metropolis-Hastings Algorithm III.

0. [ Construct an approximate distribution P S of the posterior using mixture model
around modes for checking and initialization of the MCMC. ]

1. Construct an irreducible and aperiodic proposal distribution Q specific to the domain.

2. Draw an initial state x0 from P S .

3. For t = 1, 2, . . .

(a) Draw a candidate state x∗ from the proposal distribution Q given xt.

(b) Calculate the acceptance probability of a step from xt to x∗

α(xt, x∗) = min(1,
πx∗ qxtx∗

πxt
qxtx∗

) .

(c) Set xt+1 = x∗ with probability α(xt, x∗), otherwise xt+1 = xt.

4. Continue until convergence and specified confidence.

5. [ Evaluate speed of convergence and improve efficiency by redesigning Q. Step back
to 2.]

6. [ Compare against base-line method using importance resampling with P S . Step back
to 1.]
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