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Overview

* Decision support
— Markov blanket
— Utility
— Optimal decision
— Sequential decision
e Optimal stopping
* Value of information
— Examples for optimal decision
— Risk models and their characterization



Inference in Bayesian networks

(Passive, observational) inference
— P(Query|Observations)

Interventionist inference
— P(Query|Observations, Interventions)

Counterfactual inference
— P(Query| Observations, Counterfactual conditionals)

Biomedical applications
— Prevention

— Screening

— Diagnosis

— Therapy selection

— Therapy modification



The Markov Blanket

A minimal sufficient set for prediction/diagnosis.

N

—

A variable can be:
: ‘ * (1) non-occuring -

* (2) parent of Y
* (3) child of Y
| * (4) pure (other parent)

_ Relevant
Markov Blanket Sets (MBS) the set of nodes which (strongly)
probabilistically isolate the target from the rest of the
model

Markov Blanket Membership (MBM)
(symmetric) pairwise relationship induced by MBS 4



Bayes-omics

Thomas Bayes (c. 1702 - 1761)
Bayesian probability

Bayes’ rule p(Cause | Effect) o< p(Effect | Cause)x p(Cause)
Bayesian statistics p(Model Data) o< p(Datal Mode) p(Mode)
Bayesian decision a*=argmax, ) U(o,)p(o;la,)

Bayesian model averaging  p(prediction|data) =

= Z p(pred.| Model,) p(Model. | data)
Bayesian networks i
Bayes factor

Bayes error

Bayesian ,communication”



Decision theory
probability theory+utility theory

Decision situation:

— Actions a;
— QOutcomes OJ'
— Probabilities of outcomes p(Oj | ai)

— Utilities/losses of outcomes
_ U(o;la;)
* QALY, micromort

— Maximum Expected Utility EU(a;) = ZJ'U(Oj la;)p(o;1a;)
Principle (MEU)

* Best action is the one with a* — arg ma’Xi EU (ai )

maximum expected utility

Actions g, Outcomes Probabilities  Utilities, costs  Expected utilities

(which experiment) (e.g. dataset)
P(ojla) U(o), C(a) } EU(a) = 3 P(o]la)U(0))
O a @< 5 5
o

J



Optimal binary decision

04
a
0 0, reported | Ref.:0 Ref.1
a, Oy 0 Colo Coys
Oq 1 Cijo Cipi

If the outcome y and the prediction g are binary, the loss is defined by a binary cost matrix
Cj|y- The minimal loss decision is defined by

arg min Cy o P (Y = 0|z) + Cy1 P(Y = 1]=), (8)
o |

In case of Cyjg = C1|1 = 0, the prediction § = 1 is optimal if

Cio
T:
Cij0 + Co1

< P(Y =1|x) (9)

where 7 € [0, 1] is the optimal decision threshold.



Frequentist vs Bayesian decision

theory

e Bayesian decision theory:

— Probabilities of outcomes

— Utilities of outcomes
— Expected Utility Principle

* Classical decision theory: reported |Ref.:0 |Ref.1
— Neyman-Pearson 0 Colo Co1
— Hippocratic Oath”(?) 1 Cijo Cip
repo | Ref.: | Ref.1 | | reported Ref.0/null Ref.:1
rted |0 0 Type II
0 TN FN 1 Type I
1 FP | TP (.false rejection”)




Utilities
Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery L, that has
“best possible prize” 1+ with probability p
“worst possible catastrophe” u ; with probability (1 — p)
adjust lottery probability p until A ~ L,

continue as before

pay $30 ~ I

0.000001 instant death

Russel&Norvig: Atrtificial intelligence, ch.16



Utility of money

Money does not behave as a utility function

Given a lottery L with expected monetary value KAV (L),

usually U(L) < U(EMV (L)), i.e., people are risk-averse

Utility curve: for what probability p am | indifferent between a prize = and
a lottery [p,$M; (1 — p), 30| for large M?

Typical empirical data, extrapolated with risk-prone behavior:
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RusseI&Norv}g: Artificial intelligence, ch.16



For each i, adjust p until half the class votes for lottery (M=10,000)

Estimating the utility of money

iy
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Russel&Norvig: Atrtificial intelligence, ch.16
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Decision networks

Add action nodes and utility nodes to belief networks
to enable rational decision making

Airport Site

Algorithm:
For each value of action node
compute expected value of utility node given action, evidence
Return MEU action

Russel&Norvig: Artificial intelligence, ch.16



Extensions

e Bayesian learning
— Predictive inference
— Parametric inference
* Value of further information

e Sequential decisions
— Optimal stopping (secretary problem)
— Multiarmed bandit problem
— Markov decision problem




Sensitivity of the inference
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Value of (perfect) information: Vo(P)!

Current evidence F, current best action o
Possible action outcomes .5;, potential new evidence

FEU(a|FE) —md\;_J, J(S;) P(S;|E, a)
Suppose we knew ;= ¢, then we would choose oy SIL
E[-‘T(EZI[H|E‘ Br=gnp]= max 2 U(S;) P(S;|E, a, E:=e;k)

L' is a random variable whose value is currently unknown
= must compute expected gain over all possible values:

VPIg(Ej) = (X P(Ej=e;|E)EU(a.,|E, E;=¢j)) — EU(a|E)

(VPI = value of perfect information)

Russel&Norvig: Atrtificial intelligence, ch.16



Properties of VoPI

Nonnegative—in expectation, not post hoc

Y. le VPIg(l;) =0

P

Nonadditive—consider, e.g., obtaining £ twice

V PIg(E;, Ey) # VPIg(E;) +V PIg(Ey)

Order-independent

IPPJT;(EJ E;t) = I*plrjliEjJ oe I'TI}IHJ;}.{:E&) = IvPII[Eﬂ‘] + ITPIH.E}_.{EJ#J

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
—- evidence-gathering becomes a sequential decision problem

Russel&Norvig: Atrtificial intelligence, ch.16



Example: preoperative diagnosis
(evidence-based medicine)
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* Assume

— Correct decision has no penalty: Cy,=C,,,=0

— FalsePositive decision causes a modest loss: C;,=10000%

— FalseNegative decision causes a heavy loss: C;;=900005
e |If our belief is p(Y=1|X=x)=p, then

— Expected loss of decision O is pC,

— Expected loss of decision 1 is (1-p) C, 4

=>» Decision 1 is optimal if its loss is smaller: PCo1 > (1-p) Cy g

then p > Cy,1/(Cyj1+Cy ), i€ if p>0.1



Example: personalized treatment

tO
Genetic test Og
0, reported | Ref.:0 Ref.1
No test o 0 0 CO|1
tandard treat
Standaard treatm 1 Cllo 0
Op
 Assume that genetic test t

— has cost C,

— two outcomes t,, t; with probability p(t;)=q
— can be used in treatment selection p(Y=1|X=x, t.)=p;

* The value of the test is: EL - (1-q)EL,+ qEL,

— Expected loss without the test is: EL=min(pC,,,(1-p) Cy o)

— Expected loss with the test is (1-q)EL,+ qEL,
* t, EL0=min(p0C0|1,(1-|Oo) C1|o)
° t: EL1=min(p1C0|1,(1-|01) C1|o)

=>If ELy=EL, then (1-q)ELy+ qEL,-EL= q(EL;-EL), e.g. a(p-p;)Cy s



Risk models

Multivariate methods
— Linear models  Y=) g1 x,
— Logistic regression, decision trees, kernel methods,..

Logistic regression (LR): P(y|z) = [Z?_D Bizi + 3 51 (Bijzizi + ...))],
Multilayer perceptron (MLPs): f(z,w) = ET[Z  (w; tanh[zl—l (wijzj + wio)])],
Naive Bayesian networks (N-BNs): p(y, z1, ..., ,2n|8) = p(y) [1i—, p(zily),
Bayesian networks (BNs): p(x1,...,2z,|0.G) = [[i2; p(=:i| pa(Xi, G)).



Logistic regression

Recall: NaiveBN!

Assume binary outcomes v, y and predictors x;, z;. Logistic regression without interactions

can be defined by the odds ratios for the predictors =;, : = 1,...,n and the bias ¥q (zg = 1):
P(y|z;)P(g|z; - . P(y|z; ,
g, = PWle)P@Z) o s g = T WlZi) & 50
P(g|xi)P(y|zi) o P#|zi)

The odds P(y|x)/P(g|x) for a given «x is defined as

Plula)/P(ale) = [[ v 19
lo8(Pu/) [P(3e) = D P 1)
P(ylxz) = J(iﬁﬁi), (20)

where o () is the logistic sigmoid functione(z) = 1/(1 + e~ 7).

P(y|le) = U[Z(ﬁiﬂ:i + Z (BijTizj + Z(ﬁi,,j,inIjIg +..O)]s
i=0 i=1 k=1



Decision trees, decision graphs

?"(D|Bleeding=strong)

Onset=9ﬁy Onse

Nlar
P(D[a.e)
h-Wild/ h.wild/ mutated

P(lathw) | [PORLM | Fopihwy] | POIwi,m)

Decision tree: Each internal node represent a (univariate) test, the leafs contains
the conditional probabilities given the values along the path.

Decision graph: If conditions are equivalent, then subtrees can be merged.

E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreq)



Characterizing a decision function

Goal: selection of a decision function g : R4 — 0, 1.

1. Sensitivity = TP/(TP +FN), Specificity = TN/(TN + FP)
2. Positive predictive value = TP/(TP + FP), Negative predictive value = TN/(TN + FN)
3. Misclassification rate = (FP + FN)/(TP + FP + FN + TN)

If decision function g is defined by a scalar function f(z) : R — R and threshold ¢ that
f(z) : 0,if g(z) < ¢, 1 otherwise, then we can compute the Area Under the Receiver

Operating Characteristics Curve (ROC,AUC). AUC is the probability that two random
samples from class 0 and 1 is correctly classified.

1
Sensitivity: p(Prediction=TRUE|Ref=TRUE)

Specificity: p(Prediction=FALSE|Ref=FALSE)
PPV: p(Ref=TRUE|Prediction=TRUE)
NPV: p(Ref=FALSE|Prediction=FALSE)

Sensitivity

Health —Disease present
c:_f/_‘_-_-..r__ p >

— — 1
threshold t w




Summary

* Decision support
— Markov blanket
— Utility
— Optimal decision
— Sequential decision
e Optimal stopping
* Value of information
— Risk models
— Measuring the quality of a decision function



