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Historical overview I.
1920 The investigation of graphical models for probabilistic causal models goes back to

1920 in the work of Wright on path diagrams ?.

1970 The first (medical) applications of a special class of Bayesian networks as a
probabilistic expert system, including knowledge elicitation and learning appeared in
1970 ?.

1988 A later large scale and commercial application was reported in 1988 ?.

1979 The axiomatic investigation of the structure of independencies in a probability
distribution was reported in 1979 ?

1988 The issue of representability with DAGs in 1988 ?.

1982 The decomposition of a probability distribution using annotated DAGs was reported in
1982 (for a general treatment of graph based decomposition see ?).

1989 The decomposed representation of Bayesian networks has appeared in 1989 ??,
though first related to representing contextual independencies. Later extensions
related to knowledge engineering and attempts to first-order probabilistic logical
extension were reported from 1997 ????.
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Historical overview II.
1985< The causal interpretation of Bayesian networks and the related causal research is

present from the proposal of the representation ???, though first seen as auxiliary
human constructs and in the probabilistic causation research the goals were to
understand the limits of the learnability from observational data and the identifyability
of causal effect ???.

1995< Later the role of the causal structure behind the independence structure and
distribution became central and a model-based semantics for counterfactuals and the
”probability of causation" has been formalized by using structural equations ??.

1989 A generally applicable inference method (the so called join tree algorithm) in 1989 ?

(An efficient inference method for polytrees has appeared in 1983 ?).

1989 The Bayesian approach to the parameters using Dirichlet priors was reported in 1989
?, a related evaluation methodology based on the prequential framework in 1993 ?.

1995 The Bayesian approach to parameters was axiomatized in 1995 ?.

1991 The Bayesian approach to the structure of the model was proposed in 1991 for models
that compatible with a fixed causal order of the domain vairables?, the general
treatment and practical learning was reported in 1992 ?.

1995 A full-fledged Bayesian approach to perform Bayesian inference over structural
properties was reported in 1995 ? and a large-scale application in 1999 ??.
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Observational (in)dependencies

1. Definition. Let p(V ) be a joint distribution over V and X, Y, Z ⊆ V are disjoint sets.
Then denote the conditional independence of X and Y given Z with Ip(X; Y |Z), that is

Ip(X; Y |Z) iff (∀x, y, z p(y|z, x) = p(y|z) whenever p(z, x) > 0) (1)

Note that conditional independence is required for all the relevant values of Z. A weakened
form of independence is the contextual independence, if conditional independence is valid
only for a certain value c of another disjoint set C. Then denote the contextual independence of
X and Y given Z and context c with Ip(X; Y |Z, c), that is

Ip(X; Y |Z, c) iff (∀x, y, z p(y|z, c, x) = p(y|z, c) whenever p(z, c, x) > 0) (2)

Another notation for Ip(X; Y |Z) is (X ⊥⊥ Y |Z)P and dependency is denoted with
Dp(X; Y |Z) (or (X 6⊥⊥ Y |Z)P ). A set of (in)dependence statements is called (in)dependence

model . A standard measure for the strength of the dependence (association) between X and
Y is the (conditional) mutual information MIp(X; Y |Z) = KL(p(X, Y |Z)|p(X|Z)p(Y |Z)).
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Axioms of independencies

1. Symmetry: The observational probabilistic conditional independence is symmetric.

Ip(X; Y |Z) iff Ip(Y ; X|Z)

2. Decomposition: Any part of an irrelevant information is irrelevant.

Ip(X; Y ∪W |Z)⇒ Ip(X; Y |Z) and Ip(X; W |Z)

3. Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant
information.

Ip(X; Y ∪W |Z)⇒ Ip(X; Y |Z ∪W )

4. Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant
information.

Ip(X; Y |Z) and Ip(X; W |Z ∪ Y )⇒ Ip(X; Y ∪W |Z)
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The model of causal (in)dependencies

2. Definition. Let do(x) denote the intervention of setting variable(s) X to value x set and
p(Y |do(x) the corresponding interventional distribution.

3. Definition. Let p(.|do(.)) denote the appropriate interventional distributions over V and
X, Y, Z ⊆ V are disjoint sets. Then denote the causal independence of X and Y given Z

with CIp(X; Y |Z), that is

CIp(X; Y |Z) iff (∀x, y, z p(y|do(z), do(x)) = p(y|do(z))) (3)

Note that this does no meant to be an exhaustive definition of causation (e.g. the
counterfactual aspects remains outside this definition). Note that despite the symmetry of the
probabilistic independence relation, the causal independence relation is asymmetric.
Another notation for CIp(X; Y |Z) is (X ; Y |Z)P . The negated independence proposition
(i.e. causal relevance or dependency) is denoted with CDp(X; Y |Z) (or (X ⇒ Y |Z)P ). If
Z = {V \ {X, Y }}, then the causal relevancy/dependency relation is called direct causal

dependency and denoted with DCDp(X; Y |Z) (or (X → Y |Z)P ). A set of causal
(in)dependence statements is called causal model .
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Causation in biomedical sciences
Measures for the strength of a causal relation are usually defined for binary X and Y and
corresponds to standard measures in epidemiology for the strength of a (putatively) causal
relation between a binary X (i.e. exposure) and Y (i.e. disease), such as the risk difference
(or causal effect) (δ), the attributable risk (θ) and the odds ratio (Ψ).

δ = p(y|do(x))− p(y|do(¬x) (4)

θ =
p(y|do(x))− p(y|do(¬x)

p(y|do(x))
(5)

Ψ =
p(y|do(x))/p(¬y|do(x))

p(y|do(¬x))/p(¬y|do(¬x))
(6)

In epidemiology these measures are usually defined using a non-interventional
(non-experimental) terminology, using ”adjusted" estimates of observational probabilities
(p̃(y|x)) instead of their interventionist counterparts p(y|do(x)). The operation adjusting (or ”
controlling"), refers to the elimination of the effect of ”confounders" Z (common causes of X

and Y ) by evaluating the effect of change of X under the same values of the potential
confounders (which?), that is by conditioning and ”holding" them fixed .

p̃(y|x) =
z

p(y|x, z)p(z) (7)
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Principles of causality

Beside this probabilistic, interventional definition of ”X is a cause of Y " based on the
P (.|do()) semantics other standard conditions are the following (modified from the list of ”
principles of causality " suggested within epidemiology ?:

1. strong association,

2. X precedes temporally Y ,

3. plausible explanation without alternative explanations based on confounding,

4. necessity (generally: if cause is removed, effect is decreased or actually: y would not
have been occurred with that much probability if x had not been present),

5. sufficiency (generally: if exposure to cause is increased, effect is increased or actually:
y would have been occurred with larger probability if x had been present). The
probabilistic definition of causation formalizes many, but for example not the
counterfactual aspects.

Furthermore, as shown, in biomedical domains an equally important condition for the
establishment of a causal relation is the existence of a scientific explanation for the relation
between X and Y , usually based on a hypothesized autonomous, local rule or mechanism,
that is the concept of causation and intervention is deeply connected to the scientific
understanding of ”stable and transportable" mechanism.
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Goals of the BN representation

P representation for the joint distribution ,

I sound and complete representation for the independency model,

P-I understanding relation between P and M, i.e. the use of a representation of
independence model for a compact representation of the joint,

C sound and complete representation for the causal model with a causal interpretation
compatible with the list of ”principles of causality",

I-C understanding relation between M and C, i.e. the relation between the observationally
defined, symmetric (in)dependence relations and the interventionally defined
asymmetric causal relation (particularly the learnability of a causal model from
observation data,

P-C understanding relation between P and C, i.e. the conversion of causally defined
quantities P (y|do(x), z) into ”do()"-free observational quantities P (y|w) or to more
appropriate causal quantities P (y|do(x′), z′) (i.e. if x′ is more appropriate for
interventional studies),

C’ definition of counterfactuals with a (logical) model-based probabilistic semantics and
respectively a probabilistic account of (actual/individualistic) causation using structural
equations, e.g. the probability of y would not have occured if x had not been present
conditioned on that x was present and y occurred.
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Markov conditions I.
4. Definition. A distribution P (X1, . . . , Xn) is Markov relative to DAG G or factorizes w.r.t G,
if

P (X1, . . . , Xn) =
n

i=1

P (Xi|Pa(Xi)), (8)

where Pa(Xi) denotes the parents of Xi in G.

5. Definition. A distribution P (X1, . . . , Xn) obeys the ordered Markov condition w.r.t. DAG
G, if

∀ i = 1, . . . , n : (Xπ(i) ⊥⊥ {Xπ(1), . . . Xπ(i−1)}/Pa(Xπ(i))|Pa(Xπ(i)))P , (9)

where π() is some ancestral ordering w.r.t. G (i.e. compatible with arrows in G).

6. Definition. A distribution P (X1, . . . , Xn) obeys the local (or parental) Markov condition
w.r.t. DAG G, if

∀ i = 1, . . . , n : (Xi ⊥⊥ Nondescendants(Xi)|Pa(Xi))P, (10)

where Nondescendants(Xi) denotes the nondescendants of Xi in G.
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Markov conditions II.
7. Definition. A distribution P (X1, . . . , Xn) obeys the global Markov condition w.r.t. DAG G,
if

∀ X, Y, Z ⊆ U (X ⊥⊥ Y |Z)G ⇒ (X ⊥⊥ Y |Z)P , (11)

where (X ⊥⊥ Y |Z)G denotes that X and Y are d-separated by Z, that is if every path p

between a node in X and a node in Y is blocked by Z as follows

1. either path p contains a node n in Z with non-converging arrows (i.e. → n→ or
← n→),

2. or path p contains a node n not in Z with converging arrows (i.e. → n←) and none of
its descendants of n is in Z.

(For an equivalent definition for a global (X ⊥⊥ Y |Z)G based on ”m-separation" in the
moralized graph of G, see ?.)
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Connections
1. Theorem. Let P (U) a probability distribution and G a DAG, then the conditions above
(repeated below) are equivalent:

F P is Markov relative G or P factorizes w.r.t G,

O P obeys the ordered Markov condition w.r.t. G,

L P obeys the local Markov condition w.r.t. G,

G P obeys the global Markov condition w.r.t. G.
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Further implied properties by FOLG

8. Definition. A distribution P (X1, . . . , Xn) obeys the pairwise Markov condition w.r.t. DAG
G, if for any pair of variables Xi, Xj non-adjacent in G and Xj ∈ Nondescendants(Xi),
(Xi ⊥⊥ Xj |Nondescendants(Xi) \ {Xj})P holds ?.

9. Definition. A distribution P (X1, . . . , Xn) obeys the boundary Markov condition w.r.t. DAG
G, if

∀ i = 1, . . . , n : (Xi ⊥⊥ U \Bd(Xi)|bd(Xi, G))P , (12)

where bd(Xi, G) denotes the set of parents, children and the children’s other parents for Xi,
i.e. parents with common child with Xi (?):

bd(Xi, G) = {Pa(Xi, G) ∪ Ch(Xi, G) ∪ Pa(Ch(Xi, G), G)} (13)
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Markov blanket and boundary

10. Definition. A set MBP (Xi) is called the Markov blanket of Xi w.r.t. the distribution
P (X1, . . . , Xn) , if (Xi ⊥⊥ U \MBl(Xi)|MB(Xi))P (the reference to P is usually omitted).
A minimal Markov blanket is called Markov boundary .

That is the (FOLG) conditions for P, G implies that the set bd(Xi, G) is a Markov blanket for
Xi, MBP (Xi) for each variable (they are not necessarily Markov boundaries as may be not
minimal, because of G). So we will also refer to bd(Xi, G) as the Markov blanket for Xi in G

using the notation MB(Xi, G). The induced (symmetric) pairwise relation
MBM(Xi, Xj , G) w.r.t. G between Xi and Xj

MBM(Xi, Xj , G)↔ Xj ∈ bd(Xi, G) (14)

is called Markov blanket membership ?. In short, these are the unconditional and conditional
direct pairwise relevancies (i.e. the non-blockable pairwise (observational) dependencies 1).

11. Definition. A subgraph of G is called the Markov Blanket (sub)Graph or Mechanism
Boundary (sub)Graph MBG(Xi, G) of variable Xi if it includes the nodes in the Markov
blanket defined by bd(Xi, G) and the incoming edges into Xi and into its children
Ch(Xi, G) (for a full definition of the MBG feature, see Def.??).
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Bayesian network defs

12. Definition. A directed acyclic graph (DAG) G is a Bayesian network of distribution P (U)

iff the variables are represented with nodes in G and (G, P ) satisfies any of the conditions
F, O, L, G such that G is minimal (i.e. no edge(s) can be omitted without violating a
condition F, O, L, G).

13. Definition. A Bayesian network model M of domain with variables U consists of a
structure G and parameters θ. The structure G is a DAG such that each node represents a
variable and local probabilistic models p(Xi|pa(Xi)) are attached to each node w.r.t. the
structure G, that is they describe the stochastic dependency of variable Xi on its parents
pa(Xi). As the conditionals are frequently from a certain parametric family, the conditional
for Xi is parameterized by θi, and θ denotes the overall parameterezation of the model.
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A calculus for independencies

D-separation provides a sound and complete, computationally efficient algorithm to read off
an (in)dependency model consisting the independencies that are valid in all distributions
Markov relative to G, that is ∀ X, Y, Z ⊆ V

(X ⊥⊥ Y |Z)G ⇔ ((X ⊥⊥ Y |Z)P in all P Markov relative to G). (15)
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Stable distributions
1. Example.

Consider p(X, Y, Z) with binary X, Z and ternary Y . The conditionals p(Y |X) and p(Z|Y )

can be selected such that p(z|x) = p(z|¬x). That is (X 6⊥⊥ Y ) and (Y 6⊥⊥ Z), but (X ⊥⊥ Z),
demonstrating that the "naturally” expected transitivity of dependency can be destroyed
numerically.

Consider P (X, Y, Z) with binary variables, where p(x) = p(y) = 0.5 and
p(Z|X, Y ) = 1(Z = XOR(X, Y )). That is (X ⊥⊥ Z) and (Y ⊥⊥ Z), but ({X, Y } 6⊥⊥ Z),
demonstrating that pairwise independence does not imply total independence.

However, such numerically encoded independencies correspond to the solution of equation
systems and/or to functional dependencies, that is they are not stable for numerical
perturbations leading to the following definition.

14. Definition. The distribution P is said to stable (or faithfull), if there exists a DAG called
perfect map exactly representing its (in)dependencies (i.e. (X ⊥⊥ Y |Z)G ⇔ (X ⊥⊥ Y |Z)P

∀ X, Y, Z ⊆ V ). The distribution P is stable w.r.t. a DAG G, if G perfectly represents its
(in)dependencies.

Bayesian networks – p. 17/47



Equivalence classes of BNs

15. Definition. Two DAGs G1, G2 are observationally equivalent , if they imply the same set of
independence relations (i.e. (X ⊥⊥ Y |Z)G1

)⇔ (X ⊥⊥ Y |Z)G2
).

The implied equivalence classes may contain n! number of DAGs (e.g. all the full networks
representing no independencies) or just 1.

2. Theorem. Two DAGs G1, G2 are observationally equivalent , iff they have the same skeleton
(i.e. the same edges without directions) and the same set of v-structures (i.e. two converging
arrows without an arrow between their tails).

16. Definition. The essential graph representing observationally equivalent DAGs is a
partially oriented DAG (PDAG), that represents the identically oriented edges called
compelled edges of the observationally equivalent DAGs (i.e. in the equivalence class), such a
way that in the common skeleton only the compelled edges are directed (the others are
undirected representing inconclusiveness).
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On the possibility of casual interpretation

The direction of the edges corresponds to the intuitive expectation, for example in an
(unconfounded) v-structure X → Y ← Z with direct dependencies between X, Y and Y, Z

and with the only independence (X ⊥⊥ Z) the direction of the arrows are compatible with the
expectation that X and Z being independent events and both of them are dependent with Y ,
then X and Z are independent causes preceding temporarily Y .
Counter-arguments

1. All direct dependency among the constructed domain variables are causal.(?)

2. Stability guaranteeing that a corresponding Bayesian network exactly represents the
(in)dependencies.

3. The ”Boolean" Ockham principle, namely that only the minimal, consistent models are
relevant, so orientations in the essential graph are determined by the minimal models
(DAGs).
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The Causal Markov Condition I.
17. Definition. A DAG is called a causal structure over a set of variables V , if each node
represents a variable and edges direct influences. A causal model is a causal structure
extended with local probabilistic models p(Xi|pa(Xi)) for each node w.r.t. the structure G

describing the causal stochastic dependency of variable Xi on its parents pa(Xi). As the
conditionals are frequently from a certain parametric family, the conditional for Xi is
parameterized by θi, and θ denotes the overall parameterezation, so a causal model
consists of a structure G and parameters θ.

18. Definition. A causal structure G and distribution P satisfies the Causal Markov Condition ,
if P obeys the local Markov condition w.r.t. G.

The Causal Markov condition relies on Reichenbach’s ”common cause principle" that
dependency between events X and Y occurs either because X causes Y , or Y causes X

or there is a common cause of X and Y (it is possibly an aggregate of multiple events).
Consequently, the precondition of the Causal Markov condition for (P, G) that the set of
variables V is causally sufficient for P , that is all the common causes for the pairs X, Y ∈ V

inside V .
Note, that hidden variables are allowed (as the local probabilistic models are nearly always
high level abstractions), only variables that influences two or more variables in V are
necessary for causal sufficiency.
(The causal Markov condition implies sufficiency and stability implies necessity of G).
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The Causal Markov Condition II.
In the presence of potential common causes (confounders), that is if the Causal Markov
Condition is violated, certain causal dependencies can still be identified as the following
example shows.

2. Example. The Causal Markov Condition (i.e. the assumption of no hidden common
causes) guarantees that from the observation of no more than three variables we can infer
causal relation as follows. The direct dependencies between X, Y and Y, Z without direct
dependence between X, Z and without conditional independence such that (X ⊥⊥ Z|{Y, S})

(i.e. with conditional dependence) should be expressed with a unique converging orientation
X → Y ← Z according to the global semantics (i.e. DAG-based relation (X ⊥⊥ Y |Z)G from
Def. 7) resulting in a v-structure. If potential confounders are not excluded a priori, we have
to observe at least one more variable to possibly exclude that direct dependency is caused
by a confounder. Continuing the example, assume furthermore that we observe a forth
variable W with the direct dependence Y, W and conditional independence
(W ⊥⊥ {X, Z}|Y ) (because of stability W depends on X and Z). As Y induces
independence the global semantics dictates an Y →W (note the earlier v-structure) and it
cannot be mediated by a confounder ∗ Y → ∗ →W (Y as an effect would not block).
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Functional (causal) Bayesian network

The axiomatic foundation for the graph surgery semantics of the P (.|do(.), .) notation.

19. Definition. Let p(V |do(x) denote an interventional distribution corresponding to setting
variable(s) X ⊆ V to value x and P∗ the set of all interventional distributions (including
p(V |do(0)) the observational target distribution without intervention). A DAG G is said to be
a causal Bayesian network compatible with P∗ iff for each p(V |do(x)) ∈ P∗ the following
three conditions hold

1. p(V |do(x) is Markov relative to G,

2. ∀ Xi ∈X p(xi|do(x) = 1 if value xi and x is compatible,

3. ∀ Xi /∈X p(xi|pai, do(x) = p(xi|pai) if value(s) pai and x is compatible.
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The relativity of the interpretations

Counter-arguments

1. The presence of unobserved (hidden) variables as potential confounders.

2. Selection bias can occur if the observation depends on the joint combination of
otherwise independent events, inducing non-causal dependencies between them.

3. The mixture of causal models, if conditionally both X causes Y and vice versa. A
similar problem is the presence of feedback (and indirectly temporality).

4. Global physical and semantic constraints between the variables.

5. Stability can be also questioned, because of deterministic dependencies, resulting in
the lack of guarantee for the uniqueness and exactness of the representation.

6. The (in)dependencies are relative to the set of variables and specifically, also to the
values of the variables
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Parameter priors:independence

20. Definition. For a Bayesian network structure G, the global parameter independence

assumption means that

P (θ|G) =
n

i=1

p(θi|G), (16)

where θi denotes the parameters corresponding to the conditional p(Xi|Pa(Xi)) in G. The
local parameter independence assumption means that

p(θi|G) =

qi

j=1

p(θij |G), (17)

where qi denotes the number of parental configurations (pa(Xi)) for Xi in G and θij

denotes the parameters corresponding to the conditional p(Xi|pa(Xi)j) in some fixed
ordering of the pa(Xi) configurations. The parameter independence assumption means global
and local parameter independence.
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Parameter priors:likelihood equivalence

The concept of likelihood equivalence extends observational equivalence of the structure
coherently to the parameters .

21. Definition. The likelihood equivalence assumption means that for two observationally
equivalent Bayesian network structures G1, G2,

p(θV |G1) = p(θV |G2), (18)

where θV denotes a non-redundant set of the multinomial parameters for the joint
distribution over V . (The multinomiality of local models ensures distributional equivalence
and that the Jacobian for parameter transformation exists.)
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Parameter priors: Dirichlet priors

3. Theorem. The assumption of positive densities, likelihood equivalence and parameter
independence for complete structures Gc implies that p(θU |ξ) is a Dirichlet distribution with
hyperparameters Nx1,...,xn .

The p(θi|Gi) = JGi
p(θV |ξ), where JGi

is the Jacobian of the transformation from θV to
θGi

. Remarkable, that a structure level acausal constraint (i.e. likelihood equivalence of
structures with multinomial local dependency models) implies a strong parameter-level
contraint (i.e. Dirichlet parameter priors). To state the following theorem it is convenient to
rewrite the hyperparameters as N ′ =

�

x1,...,xn
Nx1,...,xn called prior/virtual sample size and

ppriorx1, . . . , xn = E[θx1,...,xn ] = Nx1,...,xn/N ′. Furthermore, we need the following
concept.

22. Definition. The parameter modularity assumption means that if pa(Xi) are identical in two
Bayesian network structures G1, G2, then

p(θij |G1) = p(θij |G2), (19)

where θij denotes the parameters corresponding to the conditional p(Xi|pa(Xi)j) in some
fixed ordering of the pa(Xi) configurations.
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Parameter priors: Dirichlet priors II.

The assumption of parameter modularity allows to induce parameter distributions for
incomplete models from complete model.

4. Theorem. If p(θV |ξ) is a Dirichlet distribution with hyperparameters
Nx1,...,xn = N ′px1, . . . , xn and the parameter modularity assumption holds and for all
complete network Gc p(Gc) > 0, then for any network structure G the parameter
independence and the likelihood equivalence holds and the decomposed distribution of the
parameters is the product of Dirichlet distributions

p(θ|G) =
n

i=1

qi

j=1

ri

k=1

θN′pprior(Xi=k,pa(Xi,G)=paij)−1 (20)

where ri denotes the number of values of Xi, qi denotes the number of parental
configurations (pa(Xi, G)) for Xi in G and paij denotes the values of the parents for the jth
parental configuration in some fixed ordering of the pa(Xi) configurations.
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Parameter priors: Dirichlet priors III.

In case of a fixed structure G (or we shall see for a fixed ordering of the variables), the usage
of Dirichlets with parameter independence can be attractive on its own right to specify a
parameter distribution p(θ|G) as follows

p(θ|G) =

n

i=1

qi

j=1

Dir(θij |Nij) ∝

n

i=1

qi

j=1

ri

k=1

θNijk−1 (21)
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Structure priors

The global noninformative deviation prior ? is derived from an a priori ”reference" network
structure G0 by modeling each missing or extra edge eij independently with a uniform
probability κ:

P (G) ∝ κδ , where δ =
1≤i<j≤n

I{(eij∈G)∧(eij /∈G0)∨(eij /∈G)∧(eij∈G0)}.

The feature priors are defined proportionally by the product of priors for the individual
features (as they were totally independent). By denoting the value of feature Fi in G with
Fi(G) = fi i = 1, . . . K

P (G) = c
K

i=1

p(Fi(G)), (22)

23. Definition. The structure modularity holds, if each feature Fi(G) depends only on the
parental set of Xi for i = 1, . . . n, defining the parental prior

P (G) ∝
n

i=1

p(pa(Xi, G)). (23)
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Inference with BNs
1. Inference over domain values with observations

Fixed parameter and fixed structure
Bayesian parameter and fixed structure
Bayesian parameter and structure

p(y|x) = Ep(G)[Ep(θ|G)[p(y|x, θ, G)]]. (24)

2. Inference over domain values with interventionist data

3. Inference over model parameters

4. Inference over model structures

p(G|DN ) ∝ p(G) p(DN |θ, G)p(θ|G)dθ = p(G)p(DN |G) (25)

5. Inference over model properties and ABN-propositions

p(α(G)|ABN −KB) =

α(G) is true

p(G) (26)
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Inference over model parameters

Assuming parameter independence and a complete observation.

p(θ|x) =
n

i=1

p(xi|pai(x), θij0)p(θij0)
j 6=j0

p(θij)/p(x) (27)

∝
n

i=1

p(xi|pai(x), θi0j0)p(θi0j0)
j 6=j0

p(θij) (28)

∝
n

i=1

θij0xi
Dir(θij0 |αij0)

j 6=j0

Dir(θij |αij) (29)

∝

n

i=1

Dir(θij0 |αij01, . . . , αij0xi
+ 1, . . . , αij0ri

)
j 6=j0

Dir(θij |αij) (30)
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Inference over model structures I.
By assuming N complete observations, i.i.d. multinomial sampling, Bayesian network model
with parameter independence and Dirichlet parameter priors, the observation of a complete
case results in a local standard Bayesian updating of the hyperparameters of the appropriate
Dirichlets and retains the parameter independence. The maintained parameter
independence allows a standard parental decomposition w.r.t. the Bayesian network G for
each observation, which allows the following rearrangement

p(C1, . . . , CN |G) =
N

l=1

n

i=1

pl(x
(l)
i |pa

(l)
i ) (31)

=

n

i=1

N

l=1

pl(x
(l)
i |pa

(l)
i ) (32)

=
n

i=1

qi

j=1

N

l=1

pl(x
(l)
i |paij)

1(paij=pa
(l)
i

) (33)

where pa
(l)
i denotes the value(s) of parental set of Xi in case l.
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Inference over model structures II.
This can be combined with the earlier result of the marginal probability of the data for a
single Dirichlet prior and multinomial sampling (see Eq. ??).That is for each variable Xi0 and
parental configurations j0 independently

N

l=1

pl(x
(l)
i0
|pai0j0 , G)

1(pai0j0
=pa

(l)
i0

)
=

�ri0
k=1 αi0j0k..(αi0j0k + nk)

αi0j0+ . . . (αi0j0+ + n)
(34)

=
Γ(αi0j0+)

Γ(αi0j0+ + ni0j0+)

ri0

k=1

Γ(αi0j0k+ni0j0k
)

Γ(αi0j0k)

where ri denotes the cardinality of the discrete values of variable Xi, αijk the initial Dirichlet

hyperparameters and nijk the number of occurrences for the variable Xi, its parental

configuration paij and its value rk. The sign + denotes the appropriate marginals.
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Inference over model structures III.
Putting everything together, if the prior satisfies the structure modularity, then the posterior of
the Bayesian network (structure) has the following product form

p(G|DN ) ∝
n

i=1

p(Pa(Xi, G))S(Xi, Pa(Xi, G), DN ) where (35)

S(Xi, Pa(Xi, G), DN ) =

qi

j=1

Γ(αij+)

Γ(αij+ + nij+)

ri

k=1

Γ(αijk+nijk
)

Γ(αijk)
. (36)

Bayesian networks – p. 34/47



E-science era, data and Bayesianism

1. E lectronic domain knowledge vs. printed and expert The availability of the semantic
web with electronic domain literature and knowledge bases contrary to the earlier case
relying exclusively on experts and on printed domain literature.

2. Statistical data vs. test cases The availability of significant amount of statistical data for
automated theory refinement contrary to earlier anecdotical cases, test cases.

3. Bayesianism vs. understandable, fixed model The availability of Bayesian methods by
increased computational power offers a principled method for prior incorporation and
theory refinement. It also allows to work with significant number of models contrary to
the earlier goal to formalize an understandable consistent knowledge representation of
the domain.
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Consequences for knowledge engineering

New goals: specify (1) indirectly over the electronic resources (2) a Bayesian prior
knowledge model and (3) compute the posterior of complex, semantic statements.

1. Referential, interfacing and supportive knowledge representation for informal
knowledge collection. The knowledge engineering process has to provide methods for
exploring and collecting the electronic domain knowledge. In other words, the
knowledge representation is becoming ”meta" (indirect/referential) is a sense, that it
specifies possibly through lengthy computation the construction of the real (prior)
knowledge model from electronic resources.

2. Construction of priors for Bayesian methods. A purpose of knowledge engineering is
to represent possibly exhaustively the consistent alternative combinations with beliefs
eligible for Bayesian update with the available data. Put it simply, the goal of
knowledge representation is to formalize prior(s) and the ”final" knowledge model is
provided by the posterior of the Bayesian update.

3. Interpretation and evaluation of posteriors from Bayesian methods. A purpose of
knowledge engineering is to provide ”gold standards" for evaluating the posteriors and
to provide a semantic context for formulating complex, semantic statements with
posteriors for evaluation and interpretation. That is the evaluation of the knowledge
representation is performed partly by the data as part of the prior sensitivity analysis
supported by complex, semantic probabilistic propositions. Bayesian networks – p. 36/47



Learning Bayesian networks

A closed-form for the posterior of a structure G,

p(G, DN ) = p(G)
n

i=1

qi

j=1

Γ(αij+)

Γ(αij+ + nij+)

ri

k=1

Γ(αijk+nijk
)

Γ(αijk)
(37)

termed as Bayesian Dirichlet metric. The corresponding score functions are defined as
BD(G; DN ) = log(p(G, DN )).
Another family of non-Bayesian score functions can be derived within the likelihood
framework. Assuming a complete, discrete values, i.i.d. data set, let define a maximum
likelihood score as follows

ML(G;DN ) = maxθp(DN |G, θ) (38)
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The ML learning

It can be shown that this is maximized by the selection of θ∗
ijk = Nijk/Nij+, where Nijk

are the occurrences of value xk and parental configuration qj for variable Xi and its parental
set Pa(Xi) (Nij+ is the appropriate sum) ??. By substituting this maximum likelihood
parameter selection back, we get

ML(G;DN ) = p(DN |G, θ∗) =
N

l=1

n

i=1

p(x
(l)
i |pa

(l)
i ) (39)

=
n

i=1

qi

j=1

ri

k=1

Nijk

Nij+

Nijk

(40)

by taking logarithm, rearranging and expanding with N

log(ML(G;DN )) = N
n

i=1

qi

j=1

Nij+

N

ri

k=1

Nijk

Nij+
log(Nijk/Nij+) (41)
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The information theoretic approach

Using the definition of conditional entropy H(Y |X) =

�

x p(x)

�

y p(y|x) log(p(y|x)), the
chain rule H(X, Y ) = H(Y |X) + H(X) and the definition of mutual information
I(Y ; X) = H(Y )−H(Y |X) ?, it can be rewritten as

log(ML(G;DN )) = −N
n

i=1

H(Xi|Pa(Xi, G)) (42)

= −NH(X1, . . . , Xn) (43)

= N

n

i=1

I(Xi; Pa(Xi, G))−N

n

i=1

H(Xi) (44)

(45)

This shows that the maximization of the maximum likelihood score is equivalent with finding
a Bayesian network parameterized with the observed frequencies that has minimum entropy
or in other words the implicated coding of the observed cases is minimal (see 43). Another
interpretation is that we are finding a Bayesian network parameterized with the observed
frequencies that has maximum mutual information between its children and their parents (44,
the terms not depending on the structure can be neglected). Note the close connection of
this reading to the concept that causal ordering is related to the (maximal) determination of
each variable by the earlier variables.
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Complexity regularization

Because of the monotonicity of mutual information — if Pa(Xi) ⊂ Pa(Xi)
′, then

I(Xi; Pa(Xi) ≤ I(Xi; Pa′(Xi) ? — so the complete network maximizes the maximum
likelihood score. However score functions such as the MDL-score derived from the minimum
description length (MDL) principle or the Bayesian information criterion (BIC)-score derived
with a non-informative Bayesian approach contains various complexity penalty terms. We
shall use only the BIC-score defined as follows (for overviews of other score functions and
for the derivation of the BIC-score see ?????)

BIC(G; DN ) = log(ML(G;DN ))−
1

2
dim(G) log(N) (46)

where dim(G) denotes the number of free parameters.
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Score equivalence

24. Definition. A score function S(G; DN ) is called score equivalent , if for each pair of
observationally equivalent Bayesian network structure G1, G2 the scores are equal
S(G1; DN ) = S(G2; DN ) for all DN .

5. Theorem. The BDe(G; DN ) scoring metric is likelihood equivalent, that is if G1, G2 are
observational equivalent, then p(DN |G1) = p(DN |G2). Furthermore, if the hypotheses are
the equivalence classes or the prior is equal for such G1, G2, then the BDe scoring metric is
score equivalent ?.

Consequently, with BD metrics only the structure prior can incorporate causal information,
which means an asymptotically vanishing term w.r.t. the acausal likelihood term (the
differentiation within an equivalence class by a none likelihood equivalent BD score can not
be used semantically).
The score equivalence of the BIC score is the direct consequence of the result that the
number of free parameters (that is the term dim(G)) are equal in observationally equivalent
Bayesian networks (here again as throughout the thesis, we assume discrete variables and
multinomial local dependendency models) ??.

6. Theorem. The BIC(G; DN ) scoring metric is score equivalent ?.
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Asymptotic consistency

7. Theorem. Let V be a set of variables. Let the prior distribution p(G) over Bayesian
network structures be positive. Let p(V ) be a positive and stable distribution and G0 is a
corresponding perfect map (i.e. a Bayesian network representing exactly all the
independencies in p(V ), see Def. ??). Now, let DN is an i.i.d. data set generated from p(V ).
Then, for any network structure G over V that is not a perfect map of p(V ) we have that

lim
N→∞

BDe(G0; DN )−BDe(G; DN ) = −∞ and also (47)

lim
N→∞

BICe(G0; DN )−BDe(G; DN ) = −∞ (48)

For further results about the asymptotic optimality of the scores for not stable distributions
see ?.
An asymptotic consistency result for the maximum likelihood based scores is derived in ?.
Furthermore, a rate of convergence result is also derived and a corresponding sample

complexity N(ε, δ) to select an appropriate sample size for a given accuracy between the
target distribution p0 and the distribution pBN represented by the learned Bayesian network
with a given confidence

p(DN : KL(p0|pBN ) > ε) < δ (49)
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Search algorithms: DAG space I.

The cardinality of the space of DAGs is given by the following recursion ?

f(n) =
n

i=1

(−1)i+12i(n−1)f(n− i) with f(0) = 1. (50)

This is bounded above with the number of the combinations of the edges between different
nodes (2n(n−1) ), because of the exclusions by the DAG-constraint. But it is still
super-exponential even with a bound k on the maximum number of parents (consider that
the number of parental sets for a given ordering of the variables is in the order of nkn, so
2O(kn log n) ?.
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Search algorithms: DAG space II.

The number of orderings, DAGs and order-compatible DAGs with parental constraints. The
columns shows respectively the number variables (nodes) (n), DAGs (|DAG(n)|), DAGs
compatible with a given ordering (|G≺|), DAGs compatible with a given ordering and with
maximum parental set size <=4 (|G|π|≤4

≺ |) and <=2 (|G|π|≤2
≺ |), the number of orderings

(permutations) (| ≺ |) and the total number of parental sets in an order-compatible DAG |π≺|

and in an order-compatible DAG with maximum parental set size <=4 (||π≺| ≤ 4|) and <=2
(||π≺| ≤ 2|).

n |DAG(n)| |G≺| |G
|π|≤4
≺ | |G

|π|≤2
≺ | | ≺ | |π≺| ||π≺| ≤ 4| ||π≺| ≤ 2|

5 2.9e+004 1e+003 1e+003 6.2e+002 1.2e+002 30 30 24

6 3.8e+006 3.3e+004 3.2e+004 9.9e+003 7.2e+002 62 61 40

7 1.1e+009 2.1e+006 1.8e+006 2.2e+005 5e+003 1.3e+002 1.2e+002 62

8 7.8e+011 2.7e+008 1.8e+008 6.3e+006 4e+004 2.5e+002 2.2e+002 91

9 1.2e+015 6.9e+010 2.9e+010 2.3e+008 3.6e+005 5.1e+002 3.8e+002 1.3e+002

10 4.2e+018 3.5e+013 7.5e+012 1.1e+010 3.6e+006 1e+003 6.4e+002 1.7e+002

15 2.4e+041 4.1e+031 2.1e+027 3.1e+019 1.3e+012 3.3e+004 4.9e+003 5.7e+002

35 2.1e+213 1.3e+179 1.8e+109 8.5e+068 1e+040 3.4e+010 3.8e+005 7.2e+003
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The complexity of BN learning

The computational complexity of finding a Bayesian network structure best fitting to the
observations is bounded by the following two theorems (assuming P 6= NP ). The first
shows the NP-hardness of finding a Bayesian network for the observations (as minimal
representation of the observed independencies see Def. 12, which is I-map) ?.

8. Theorem. Let V be a set of variables with joint distribution p(V ). Assume that an oracle
is available that reveals in O(1) time whether an independence statement holds in p (see
Def. ??). Let 0 < k ≤ |V | and s = 1

2
n(n− 1)− 1

2
k(k − 1). Then, the problem of deciding

whether or not there is a (non-minimal) Bayesian network that represents p with less or equal
to s edges by consulting the oracle is NP-complete.

The second theorem shows the NP-hardness of finding a best scoring Bayesian network (i.e.
the NP-hardness of optimization over DAGs) ?.

9. Theorem. Let V be a set of variables, DN is a complete data set, S(G, DN ) is a score
function and a real value c. Then, the problem of deciding whether or not there exist a
Bayesian network structure G0 defined over the variables V , where each node in G0 has at
most 1 < k parents, such that p ≤ S(G0, DN ) is NP-complete.
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Constraint-based BN learning: IC

The Inductive Causation algorithm (assuming a stable distribution P ):

1. Skeleton: Construct an undirected graph (skeleton), such that variables X, Y ∈ V are
connected with an edge iff ∀S(X ⊥⊥ Y |S)P , where S ⊆ V \ {X, Y } .

2. v-structures: Orient X → Z ← Y iff X, Y are nonadjacent, Z is a common neighbour
and ¬∃S that (X ⊥⊥ Y |S)P , where S ⊆ V \ {X, Y } and Z ∈ S.

3. propagation: Orient undirected edges without creating new v-structures and directed
cycle.

10. Theorem. The following four rules are necessary and sufficient.

R1 if (a 6−c) ∧ (a→ b) ∧ (b− c), then b→ c

R2 if (a→ c→ b) ∧ (a− b), then a→ b

R3 if (a− b) ∧ (a− c→ b) ∧ (a− d→ b) ∧ (c 6−d), then a→ b

R4 if (a− b) ∧ (a− c→ d) ∧ (c→ d→ b) ∧ (c 6−b) ∧ (a− d), then a→ b
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The Bayesian learning:inference

model selection/optimization/search vs. model averaging

p(α(G)|ABN −KB, DN ) =
G

1(α(G) is true in ABN −KB)p(G|DN )

LĜ|DN
= Ep(G|DN )[L(G, Ĝ)] =

G

L(G, Ĝ)p(G|DN ),

p(y|x, DN ) = Ep(G|DN )[Ep(θ|G,DN )[p(y|x, θ, G)]].

⇒ Bayesian inference with Monte Carlo methods.
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