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Clustering is one of the most common data mining tasks, used frequently for data

categorization and analysis in both industry and academia.The focus of our research is

on semi-supervised clustering, where we study how prior knowledge, gathered either from

automated information sources or human supervision, can beincorporated into clustering

algorithms. In this thesis, we present probabilistic models for semi-supervised clustering,

develop algorithms based on these models and empirically validate their performances by

extensive experiments on data sets from different domains,e.g., text analysis, hand-written

character recognition, and bioinformatics.

In many domains where clustering is applied, some prior knowledge is available

either in the form of labeled data (specifying the category to which an instance belongs) or

pairwise constraints on some of the instances (specifying whether two instances should be in

same or different clusters). In this thesis, we first analyzeeffective methods of incorporating

vii



labeled supervision into prototype-based clustering algorithms, and propose two variants of

the well-known KMeans algorithm that can improve their performance with limited labeled

data.

We then focus on the problem of semi-supervised clustering with constraints and

show how this problem can be studied in the framework of a well-defined probabilistic

generative model of a Hidden Markov Random Field. We derive an efficient KMeans-type

iterative algorithm, HMRF-KMeans, for optimizing a semi-supervised clustering objective

function defined on the HMRF model. We also give convergence guarantees of our algo-

rithm for a large class of clustering distortion measures (e.g., squared Euclidean distance,

KL divergence, and cosine distance).

Finally, we develop an active learning algorithm for acquiring maximally informa-

tive pairwise constraints in an interactive query-driven framework, which to our knowledge

is the first active learning algorithm for semi-supervised clustering with constraints.

Other interesting problems of semi-supervised clusteringthat we discuss in this

thesis include (1) semi-supervised graph-based clustering using kernels, (2) using prior

knowledge to improve overlapping clustering of data, (3) integration of both constraint-

based and distance-based semi-supervised clustering methods using the HMRF model, and

(4) model selection techniques that use the available supervision to automatically select the

right number of clusters.
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Chapter 1

Introduction

Two of the most widely-used methods in machine learning for prediction and data analysis

are classification and clustering (Duda, Hart, & Stork, 2001; Mitchell, 1997). Classification

is a purely supervised learning model, whereas clustering is completely unsupervised. Re-

cently, there has been a lot of interest in the continuum between completely supervised and

unsupervised learning (Nigam, 2001; Ghani, Jones, & Rosenberg, 2003). In this chapter, we

will give an overview of traditional supervised classification and unsupervised clustering,

and then describe learning in the continuum between these two, where we have partially

supervised data. We conclude this chapter with a discussionof the thesis contributions.
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1.1 Classification

Classification is a supervised task, where supervision is provided in the form of a set of

labeled training data, each data point having a class label selected from a fixed set of

classes (Mitchell, 1997). The goal in classification is to learn a function from the training

data that gives the best prediction of the class label of unseen (test) data points. Generative

models for classification learn the joint distribution of the data and class variables by assum-

ing a particular parametric form of the underlying distribution that generated the data points

in each class. Subsequently, Bayes Rule is applied to obtainclass conditional probabilities

that are used to predict the class labels for test points (with unknown class labels) drawn

from the same distribution (Ng & Jordan, 2002). In the discriminative framework, the focus

is on learning the discriminant function for the class boundaries or a posterior probability

for the class labels directly without learning the underlying generative densities (Jaakkola

& Haussler, 1999). It can be shown that the discriminative model of classification has better

generalization error than the generative model under certain assumptions (Vapnik, 1998),

which has made discriminative classifiers, e.g., support vector machines (Vapnik, 1998)

and nearest neighbor classifiers (Devroye, Gyorfi, & Lugosi,1996), very popular for the

classification task.
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1.2 Clustering

Clustering is an unsupervised learning problem, which tries to group a set of points into

clusters such that points in the same cluster are more similar to each other than points

in different clusters, under a particular clustering distortion or distance measure (Jain &

Dubes, 1988). Here, the learning algorithm just observes a set of points without observing

any corresponding class/category labels. Clustering problems can also be categorized as

generative or discriminative. In the generative clustering model, a parametric form of data

generation is assumed, and the goal in the maximum likelihood formulation is to find the

parameters that maximize the probability (likelihood) of generation of the data given the

model. In the most general formulation, the number of clusters k is also considered to

be an unknown parameter. Such a clustering formulation is called a “model selection”

framework, since it has to choose the best value ofk under which the clustering model

fits the data. We will be assuming thatk is known in the clustering frameworks that we

will be considering, unless explicitly mentioned otherwise. In the discriminative clustering

setting (e.g., graph-theoretic clustering), the clustering algorithm tries to cluster the data so

as to maximize within-cluster similarity and minimize between-cluster similarity, based on

a similarity matrix defined over the input data set – in this paradigm, it is not necessary

to consider an underlying parametric data generation model. In both the generative and

discriminative models, clustering algorithms are generally posed as optimization problems

and solved by iterative methods like EM (Dempster, Laird, & Rubin, 1977), approximation
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algorithms like KMedian (Jain & Vazirani, 2001), or heuristic methods like Metis (Karypis

& Kumar, 1998).

1.3 Semi-supervised learning

In many practical learning domains (e.g. text processing, bioinformatics), there is a large

supply of unlabeled data but limited labeled data, and in most cases it can be expensive

to generate that labeled data. Consequently,semi-supervised learning, learning from a

combination of both labeled and unlabeled data, has become atopic of significant recent

interest. The framework of semi-supervised learning is applicable to both classification and

clustering.

1.3.1 Semi-supervised classification

Supervised classification has a fixed known set of categories, and category-labeled train-

ing data is used to induce a classification function. In this setting, the training can also

exploit additional unlabeled data, frequently resulting in a more accurate classification

function. Several semi-supervised classification algorithms that use unlabeled data to im-

prove classification accuracy have become popular in the past few years, which include co-

training (Blum & Mitchell, 1998), transductive support vector machines (Joachims, 1999),

and using Expectation Maximization to incorporate unlabeled data into training (Ghahra-

mani & Jordan, 1994; Nigam, McCallum, Thrun, & Mitchell, 2000). Unlabeled data have
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also been used to learn good distance measures in the classification setting (Hastie & Tibshi-

rani, 1996). A good review of semi-supervised classification methods is given in (Seeger,

2000).

1.3.2 Semi-supervised clustering

Semi-supervised clustering, which uses class labels or pairwise constraints on some exam-

ples to aid unsupervised clustering, has been the focus of several recent projects (Basu,

Banerjee, & Mooney, 2002; Klein, Kamvar, & Manning, 2002; Wagstaff, Cardie, Rogers,

& Schroedl, 2001; Xing, Ng, Jordan, & Russell, 2003). If the supervised data is available

in the form of category labels and the labeled data representall the relevant categories,

then both semi-supervised clustering and semi-supervisedclassification algorithms can be

used for data categorization. However in many domains, knowledge of the relevant cate-

gories is incomplete. Unlike semi-supervised classification, semi-supervised clustering (in

the model-selection framework) can group data using the categories in the initial labeled

data as well as extend and modify the existing set of categories as needed to reflect other

regularities in the data.

Existing methods for semi-supervised clustering fall intotwo general approaches

that we callconstraint-basedanddistance-basedmethods.
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Constraint-based methods

In constraint-based approaches, the clustering algorithmitself is modified so that the avail-

able labels or constraints are used to bias the search for an appropriate clustering of the

data. The labeled data specify the categories to which an instance belongs, while the

pairwise constraints specify whether two instances shouldbe in the same cluster (must-

link) or in different clusters (cannot-link). Constraint-based semi-supervised clustering has

been done using several techniques, e.g., modifying the clustering objective function so

that it includes a term for satisfying specified constraints(Demiriz, Bennett, & Embrechts,

1999), doing clustering using side-information from conditional distributions in an auxiliary

space (Sinkkonen & Kaski, 2000), enforcing constraints to be satisfied during the cluster

assignment in the clustering process (Wagstaff et al., 2001), and initializing clusters and in-

ferring clustering constraints based on neighborhoods derived from labeled examples (Basu

et al., 2002). Constraint-based clustering techniques have been an active topic of research,

where recent techniques include variational techniques for constrained clustering using a

graphical model (Hiu, Law, Topchy, & Jain, 2005), and feasibility studies for clustering

under different types of constraints (Davidson & Ravi, 2005).

Distance-based methods

In distance-based approaches, an existing clustering algorithm that uses a distance mea-

sure is employed; however, the distance measure is first trained to satisfy the labels or

constraints in the supervised data. Several distance measures have been used for distance-
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based semi-supervised clustering, including string-editdistance trained using EM (Bilenko

& Mooney, 2003), Jensen-Shannon divergence trained using gradient descent (Cohn, Caru-

ana, & McCallum, 2003), Euclidean distance modified by a shortest-path algorithm (Klein

et al., 2002), or Mahalanobis distances trained using convex optimization (Bar-Hillel, Hertz,

Shental, & Weinshall, 2003; Xing et al., 2003). Several clustering algorithms using trained

distance measures have been employed for semi-supervised clustering, including single-

link (Bilenko & Mooney, 2003) and complete-link (Klein et al., 2002) agglomerative clus-

tering, EM (Cohn et al., 2003; Bar-Hillel et al., 2003), and KMeans (Bar-Hillel et al., 2003;

Xing et al., 2003). Recent techniques in distance-metric learning for clustering include

learning a margin-based clustering distortion measure using boosting (Hertz, Bar-Hillel, &

Weinshall, 2004), and learning a distance metric transformation that is globally linear but

locally non-linear (Chang & Yeung, 2004).

1.4 Thesis contributions

The goal of this research is studying probabilistic models for semi-supervised clustering,

deriving algorithms based on these models and subsequentlyperforming detailed experi-

ments to show the effectiveness of these algorithms on different domains. The contributions

of this thesis are outlined below:� We show how supervision in the form of labeled data points canbe incorporated into

partitional clustering using a well-defined EM framework inChapter 3.
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� We develop a probabilistic generative Hidden Markov RandomField (HMRF) model

for semi-supervised clustering with constraints, which isable to perform semi-supervised

clustering with a broad class of clustering distance measures, namely Bregman diver-

gences (e.g., squared Euclidean distance, KL divergence) and directional distances

(e.g., cosine distance, Pearson’s correlation). The HMRF model and the algorithm

HMRF-KMEANS that we derive from this model is described in detail in Chapter 4.� We propose an active learning algorithm for selecting informative constraints in the

pairwise constrained semi-supervised clustering model. To our knowledge it is the

first active learning algorithm for constraint acquisitionin a semi-supervised cluster-

ing setting, and it is described in detail in Chapter 5.� We empirically evaluate the effectiveness of our semi-supervised clustering algo-

rithms by detailed experiments on different domains, both low-dimensional (e.g.,

handwritten character recognition data sets) and high-dimensional (e.g., text docu-

ments). Our experiments conclusively demonstrate that using either labeled supervi-

sion or pairwise constraints substantially improve the clustering accuracy on different

domains, and that our active learning algorithm is able to acquire informative con-

straints very effectively.� We discuss other interesting problems of semi-supervised clustering in Chapter 7,

namely (1) integration of both constraint-based and distance-based semi-supervised

clustering methods using the HMRF model, (2) semi-supervised graph-based clus-
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tering using kernels, (3) using prior knowledge to improve overlapping clustering of

data, and (4) model selection techniques that use the available supervision to auto-

matically select the right number of clusters. Finally, Chapter 8 discusses possible

extensions of the research presented in this thesis and outlines promising areas of

future work in semi-supervised clustering.

Apart from the chapters mentioned above, the thesis also describes related research in the

field of semi-supervised clustering in Chapter 6, and finallyChapter 9 concludes the thesis.

We begin the thesis by giving some relevant background on clustering in Chapter 2.
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Chapter 2

Background

This chapter gives a brief review of clustering algorithms on which our proposed semi-

supervised clustering techniques will be applied. It also describes the clustering evaluation

measures we will be using in our experiments, and gives an overview of the pre-processing

steps we use for text document clustering.

2.1 Notation

A brief review on the notation that we will use in this chapterand the rest of the thesis:Rd denotes thed-dimensional real vector space;p denotes a probability density function;

X = fxign
i=1 denotes the set ofn data points, where theith data point is a vector represented

by xi whosejth component isxi j ; Y denotes the set ofn cluster labels, whereyi is the cluster

label of theith data pointxi ; other lowercase letters are scalars, e.g.,k denotes the number

10



of clusters.

2.2 Overview of clustering algorithms

As explained in Chapter 1, clustering algorithms can be classified into two models — gen-

erative or discriminative. There are other categorizations of clustering, e.g., hierarchical or

partitional (Jain, Murty, & Flynn, 1999), depending on whether the algorithm clusters the

data into a hierarchical structure or generates a flat partitioning of the data.

2.2.1 Hierarchical clustering

In hierarchical clustering, the data is not partitioned into clusters in a single step. Instead,

a series of partitions are created, which may run from a single cluster containing all objects

to n clusters each containing a single object. This gives rise toa hierarchy of clusterings,

also known as the cluster dendrogram. Hierarchical clustering methods can be further sub-

divided into:� Divisive methods: Create the cluster dendrogram in a top-down divisive fashion,

starting with every data point in one cluster and splitting clusters successively ac-

cording to some measure till a convergence criterion is reached, e.g., Cobweb (Fisher,

1987), recursive cluster-splitting using a statistical transformation (Dubnov, El-Yaniv,

Gdalyahu, Schneidman, Tishby, & Yona, 2002), and PDDP or principal direction di-

visive partitioning (Boley, 1998);
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� Agglomerative methods: Create the cluster dendrogram in a bottom-up agglomer-

ative fashion, starting with each data point in its own cluster and merging clus-

ters successively according to a similarity measure till a convergence criterion is

reached, e.g., hierarchical agglomerative clustering (Kaufman & Rousseeuw, 1990),

Birch (Zhang, Ramakrishnan, & Livny, 1996), etc.

To illustrate hierarchical clustering, let us consider hierarchical agglomerative clustering

(HAC) in more detail.

Hierarchical agglomerative clustering

Hierarchical agglomerative clustering (HAC) is a bottom-up hierarchical clustering algo-

rithm. In HAC, points are initially allocated to singleton clusters, and at each step the

“closest” pair of clusters are merged, where closeness is defined according to a similarity

measure between clusters. The algorithm generally terminates when a specifiedconver-

gence criterionis reached. Different cluster-level similarity measures are used to deter-

mine the closeness between clusters to be merged – single-link, complete-link, or group-

average (Manning & Schütze, 1999).

Various HAC schemes have been recently shown to have well-defined underlying

generative models – single-link HAC corresponds to the probabilistic model of a mixture of

branching random walks, complete-link HAC corresponds to uniform equal-radius hyper-

spheres, whereas group-average HAC corresponds to equal-variance configurations (Kam-

var, Klein, & Manning, 2002). The pseudo-code for HAC is given in Fig. 2.1.
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Algorithm: HIERARCHICAL AGGLOMERATIVE CLUSTERING

Input: Set of data pointsX = fxign
i=1;xi 2 Rd

Output: Dendogram representing hierarchical clustering ofX

Method:

1. Initialize clusters: Each data pointxi is placed in its own clusterCi . These clusters

form the leaves of the dendogram, and constitute the set ofcurrent clusters.

2. Repeat untilconvergence

2a. Merge the twoclosestclustersCi andCj from current clustersto get clusterC

2b. RemoveCi andCj from current clusters, add clusterC to current clusters

2c. Add parent links fromCi andCj toC in the cluster dendogram

Figure 2.1: HAC algorithm
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2.2.2 Partitional clustering

Let X = fxign
i=1, xi 2Rd , be the set ofn data points we want to cluster. A partitional cluster-

ing algorithm generates ak-partitioning1 of the data (k given as input to the algorithm) by

grouping the associated data points intok clusters. Partitional algorithms can be classified

into the following categories:� Graph-theoretic: These are discriminative clustering approaches, where an undi-

rected graphG= (V;E) is constructed from the data set, each vertex invi 2V corre-

sponding to a data pointxi and the weight of each edgeei j 2 E corresponding to the

similarity between the data pointsxi andx j according to a domain-specific similarity

measure. Thek clustering problem becomes equivalent to finding thek-mincut in this

graph, which is known to be a NP-complete problem fork� 3 (Garey & Johnson,

1979). One class of methods for solving the graph partitioning problem take a real

relaxation of the NP-complete discrete partitioning problem: these include spectral

methods that perform clustering by using the second eigenvector of the graph Lapla-

cian to define a cut (Ng, Jordan, & Weiss, 2001). The other class of methods use

heuristics to find low-cost cuts inG: methods like Rock (Guha, Rastogi, & Shim,

1999) and Chameleon (Karypis, Han, & Kumar, 1999) group nodes based on the idea

of defining neighborhoods using inter-connectivity of nodes in G, Metis (Karypis

& Kumar, 1998) performs fast multi-level heuristics onG at multiple resolutions to

1k disjoint subsetsfXhgk
h=1 of X, whose union isX
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give good partitions, while Opossum (Strehl & Ghosh, 2000) uses a modified cut cri-

terion to ensure that the resulting clusters are well-balanced according to a specified

balancing criterion.� Density-based: These methods model clusters as dense regions and use different

heuristics to find arbitrary-shaped high-density regions in the input data space and

group points accordingly. Well-known methods include Denclue, which tries to an-

alytically model the overall density around a point (Hinneburg & Keim, 1998), and

WaveCluster, which uses wavelet-transform to find high-density regions (Sheikhole-

sami, Chatterjee, & Zhang, 1998). Density-based methods typically have difficulty

scaling up to very high dimensional data (> 10000 dimensions), which are common

in domains like text.� Mixture-model based: In mixture-model based clustering, the underlying assump-

tion is that each of then data pointsfxign
i=1 to be clustered are generated by one of

k probability distributionsfphgk
h=1, where each distributionph is the conditional dis-

tribution corresponding to the clusterXh. The probability of observing any pointxi is

given by:

P(xi jΘ) = k

∑
i=1

αhph(xi jθh)
whereΘ = (α1; : : : ;αk;θ1; : : : ;θk) is the parameter vector,αh are the prior probabil-

ities of the clusters (∑k
h=1αh = 1), andph is the probability distribution of cluster

Xh parameterized byθh. The data generation process is assumed to be as follows –
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first, one of thek components is chosen following their prior probability distributionfαhgk
i=1; then, a data point is sampled following the distributionph of the chosen

component.

Since the cluster assignment of the points are not known, we assume the existence of

a random variableY that encodes the cluster assignmentyi for each data pointxi and

takes values infhgk
h=1. The goal of clustering in this model is to find the estimates of

the parameter vectorΘ and the cluster assignment variableY such that the complete

log-likelihood of the data:

L(X;YjΘ) = n

∑
i=i

logP(xi ;yi jΘ)
is maximized, where the i.i.d. (identically and independently distributed) assump-

tion over the data points inX leads to the factoring of the likelihood over the whole

data setX into individual probabilities over each data pointxi . SinceY is unknown,

the log-likelihood cannot be maximized directly. So, traditional approaches itera-

tively maximize theexpectedlog-likelihood in the Expectation Maximization (EM)

framework (Dempster et al., 1977). Starting from an initialestimate ofΘ, the EM al-

gorithm iteratively improves the estimates ofΘ andp(YjX;Θ) such that the expected

value of the complete-data log-likelihood is maximized, where the expectation is

computed w.r.t. the posterior class distributionp(YjX;Θ). It can be shown that the

EM algorithm converges to a local maximum of the expected log-likelihood distri-
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bution (Dempster et al., 1977), and the final estimates of theconditional distribution

p(YjX;Θ), on convergence of the algorithm, are used to find the clusterassignments

of the points inX.

Most of the work in this area has assumed that the individual mixture density com-

ponentsph are Gaussian, and in this case the parameters of the individual Gaussians

are estimated by the EM procedure. The popular KMeans clustering algorithm (Mac-

Queen, 1967) can be shown to be an EM algorithm on a mixture ofk Gaussians under

certain assumptions: details of this derivation are shown in Sec. 2.3.1. Another inter-

esting model for Gaussian mixture model-based clustering is AutoClass (P. Cheese-

man & Freeman, 1988), which also has a Bayesian model selection component for

choosing the optimal number of clusters.

2.3 Representative clustering algorithm: KMeans

In our thesis, we have chosen KMeans as our representative partitional clustering algorithm

on which the proposed semi-supervised schemes will be applied. The following sections

give brief descriptions of KMeans and COP-KMeans algorithm, the latter being a recently

proposed semi-supervised KMeans algorithm that we will compare our algorithms to.
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2.3.1 KMeans

KMeans is a partitional clustering algorithm that performsiterative relocation to partition a

data set intok clusters, locally minimizing the overall distortion measure between the data

points and the cluster means (a.k.a. centroids). For a set ofdata pointsX = fxign
i=1;xi 2 Rd ,

the KMeans algorithm creates ak-partitioningfXhgk
h=1 of X so that iffµhgk

h=1 represent the

k partition centroids, then the following objective function

Jkmeans= k

∑
h=1

∑
xi2Xh

kxi �µhk2 (2.1)

is locally minimized. Lowering this objective function leads to getting tighter clusters,

where each point gets closer to its cluster centroid. Note that finding the global optima

for the KMeans objective function is an NP-complete problem(Garey, Johnson, & Witsen-

hausen, 1982). Consideringyi is the cluster assignment of the pointxi , whereyi 2 fhgk
h=1,

an equivalent form of the KMeans clustering objective function, which we will be using

interchangeably, is:

Jkmeans= ∑
xi2X

kxi �µyik2 (2.2)

The pseudocode for KMeans is given in Fig. 2.2. Note that under certain assumptions,

KMeans can be considered as fitting a mixture of Gaussians to adata set, which is described

in more detail in Sec. 3.3.1.

If we have the additional constraint that the centroidsfµhgk
h=1 are restricted to be
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Algorithm: KM EANS

Input: Set of data pointsX = fxigni=1;xi 2 Rd , number of clustersk

Output: Disjoint k partitioningfXhgkh=1 of X such that KMeans objective

function is optimized

Method:

1. Initialize clusters: Initial centroidsfµ(0)h gkh=1 are selected at random

2. Repeat untilconvergence

2a. assign cluster : Assign each data pointx to the clusterh� (i.e. setX(t+1)
h� ),

for h� = argmin
h
kx�µ(t)h k2

2b. estimate means: µ(t+1)
h  1jX(t+1)

h j ∑
x2X(t+1)

h

x

2c. t (t+1)
Figure 2.2: KMeans algorithm
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selected fromX, then the resulting problem is called KMedian clustering. KMedian clus-

tering corresponds to an integer programming problem, for which many approximation

algorithms have been proposed (Jain & Vazirani, 2001; Mettu& Plaxton, 2000).

2.3.2 SP-KMeans

In certain high dimensional data, e.g. text, Euclidean distance is not a good measure of sim-

ilarity. Certain high dimensional spaces like text have good directional properties, which

has made directional similarity measures likeL2 normalized dot product (cosine similar-

ity) between the vector representations of text data a popular measure of similarity in the

information retrieval community (Baeza-Yates & Ribeiro-Neto, 1999). Note that other sim-

ilarity measures, e.g., probabilistic document overlap (Goldszmidt & Sahami, 1998), have

also been used successfully for text clustering, but we willbe focusing on cosine similarity

in our work.

Spherical KMeans (SP-KMeans) is a version of KMeans that uses cosine similar-

ity as its underlying similarity metric. In the SP-KMeans algorithm, standard KMeans is

applied to data vectorsfxign
i=1 that have been normalized to have unitL2 norm, so that

the data points lie on a unit sphere (Dhillon & Modha, 2001). Note that in SP-KMeans,

the centroid vectorsfµhgk
h=1 are also constrained to lie on the unit sphere. Assumingkxik = kµhk = 1; 8i;h in Eqn. (2.1), we getkxi �µhk2 = 2�2xT

i µh. Then, the clustering
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problem can be equivalently formulated as that of maximizing the objective function:

Jsp-kmeans= k

∑
h=1

∑
xi2Xh

xT
i µh (2.3)

The centroidµh of the hth cluster is the mean of all the points in that cluster, normalized

to have unitL2 norm. The SP-KMeans algorithm gives a local maximum of this objective

function. The SP-KMeans algorithm is computationally efficient for sparse high dimen-

sional data vectors, which are very common in domains like text clustering. For this reason,

we have used SP-KMeans in our experiments with text data (seeSec. 2.5).

2.3.3 COP-KMeans

In this thesis, we will be comparing some of our proposed semi-supervised KMeans al-

gorithms to another recently proposed semi-supervised variant of KMeans, called COP-

KMeans (Wagstaff et al., 2001). In COP-KMeans, initial background knowledge, provided

in the form of constraints between instances in the data set,is used in the clustering process.

It uses two types of constraints,must-link(two instances have to be together in the same

cluster) andcannot-link(two instances have to be in different clusters).

In the initialization step, COP-KMeans chooses cluster centers randomly; but as

each one is chosen, any must-link constraints that it participates in are enforced, i.e., all

items that the chosen instance must link to are assigned to the new cluster, so that they

cannot later be chosen as the center of another cluster. After cluster initialization, COP-
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KMeans iterates between the following 2 steps till the pre-defined convergence criterion is

reached:� assign cluster : Assign each data point to the closest cluster such that no must-link

or cannot-link constraint is violated by the assignment. Ifno such assignment exists,

the algorithmaborts;� estimate means: Update each cluster centroid to be the average of all the points

assigned to that cluster.

Note that the COP-KMeans algorithm is not robust to inconsistencies in potentially

noisy constraints, since in that case the algorithm does notfind a consistent assignment and

aborts in the cluster assignment step.

2.4 Clustering evaluation measures

Evaluation of the quality of output of clustering algorithms is a difficult problem in general,

since there is no “gold-standard” solution in clustering. The commonly used clustering

validation measures can be categorized asinternalor external. Internal validation measures,

e.g., the ratio of the average inter-cluster to intra-cluster distance (the lower the better), need

only the data and the clustering for their measurement. External validation measures, on

the other hand, match the clustering solution to some known prior knowledge, e.g., an

underlying class labeling of the data. Many data sets in supervised learning have class

information: we can evaluate a clustering algorithm by applying it to such a data set (with
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the class label information removed), and then using the class labels of the data as the gold

standard against which we can compare the quality of the dataclustering obtained.

In our experiments, we have used three metrics for cluster evaluation: normalized

mutual information(NMI), pairwise F-measure, andobjective function. Of these, normal-

ized mutual information and pairwise F-measure are external clustering validation metrics

that estimate the quality of the clustering with respect to agiven underlying class labeling

of the data.

For clustering algorithms which optimize a particular objective function, we can

report the value of the objective function when the algorithm converges. For KMeans

and SP-KMeans, the objective function values reported areJkmeans from Eqn. (2.1) and

Jsp-kmeansfrom Eqn. (2.3). For the semi-supervised versions of KMeans, we report their

corresponding objective function values, e.g.,Jhmrf-kmeans from Eqn. (4.10) for HMRF-

KM EANS. Since all the semi-supervised clustering algorithms we propose are iterative

methods that locally minimize the corresponding clustering objective functions, looking at

the objective function value after convergence would give us an idea of whether the semi-

supervised algorithm under consideration generated a goodclustering that converged to a

good local optimum of the objective function.

One external clustering evaluation measure is normalized mutual information (NMI),

which determines the amount of statistical information shared by the random variables rep-

resenting the cluster assignments and the pre-labeled class assignments of the data points.

We compute NMI following the methodology of Strehl et al. (Strehl, Ghosh, & Mooney,
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2000). NMI measures how closely the clustering algorithm could reconstruct the underlying

label distribution in the data. IfC is the random variable denoting the cluster assignments of

the points, andK is the random variable denoting the underlying class labelson the points

then the NMI measure is defined as:

NMI = I(C;K)(H(C)+H(K))=2
(2.4)

whereI(X;Y) =H(X)�H(XjY) is the mutual information between the random variablesX

andY, H(X) is the Shannon entropy ofX, andH(XjY) is the conditional entropy ofX given

Y (Cover & Thomas, 1991). For a discrete random variableX, H(X) =� ∑
x2X

p(x) log p(x)
andH(XjY) = � ∑

x2X

p(xjY) logp(xjY), wherep(x) and p(xjY) are respectively the proba-

bility of X and the conditional probability ofX givenY. The normalization by the average

entropy ofC andK makes the value of NMI stay between 0 and 1.

Pairwise F-measure is defined as the harmonic mean of pairwise precision and re-

call, where the traditional information retrieval measures are adapted for evaluating cluster-

ing by considering pairs of points. For any pair of points, the decision to cluster this pair

into same or different clusters is considered to be correct if it matches with the underlying

class labeling available for the points (Bilenko & Mooney, 2002). Pairwise F-measure is

defined as:
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Precision= Number of pairs correctly predicted in same cluster
Total number of pairs predicted in same cluster

Recall= Number of pairs correctly predicted in same cluster
Total number of pairs actually in same cluster

F-measure= 2�Precision�Recall
Precision + Recall

(2.5)

Pairwise F-measure is related to measures like Rand Index (Klein et al., 2002; Wagstaff

et al., 2001; Xing et al., 2003) that have been used in other semi-supervised clustering

research. NMI has also become a popular clustering evaluation metric (Banerjee, Dhillon,

Ghosh, & Sra, 2003; Dom, 2001; Fern & Brodley, 2003). Recently, a symmetric cluster

evaluation metric based on mutual information has been proposed, which has some useful

properties, e.g., it is a true metric in the space of clusterings (Meila, 2003). In most of

our experiments, the comparative results of different algorithms, using NMI and pairwise

F-measure, were qualitatively similar.

Note that the external cluster validation measures we have used (e.g., pairwise F-

measure and NMI) are not completely definitive, since the clustering can find a group-

ing of the data that is different from the underlying class structure. For example, in our

initial experiments on clustering articles from the CMU 20 Newsgroups data (where the

main Usenet newsgroup to which an article was posted is considered to be its class la-

bel), we found one cluster that had articles from four underlying classes —alt.atheism ,
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soc.religion.christian , talk.politics.misc , andtalk.politics.guns . On closer

observation, we noticed that all the articles in the clusterwere about the David Koresh

episode; this is a valid cluster, albeit different from the grouping suggested by the underly-

ing class labels.

If we had human judges to evaluate the cluster quality, we could find an alternate

external cluster validation measure — we could ask the humanjudges to rank data catego-

rizations generated by humans and the clustering algorithm, and the quality of a clustering

output would be considered to be high if the human judges could not reliably discriminate

between a human categorization of the data and the grouping generated by the clustering

algorithm. Since this is a time- and resource-consuming method of evaluation in the aca-

demic setting, we have used automatic external cluster validation methods like pairwise

F-measure and NMI in our experiments.

2.5 Pre-processing of text documents for clustering

In our experiments with text documents we used the vector space model, where a text docu-

ment is represented as a sparse high-dimensional vector of weighted term counts (Salton &

McGill, 1983). The creation of the vector space model can be divided into two stages. At

first, the content-bearing terms (which are typically wordsor short phrases) are extracted

from the document text and the weight of each term in the document vector is set to the

count of the corresponding term in the document. In the second stage, the terms are suitably
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weighted according to information retrieval principles toincrease the weights of important

terms.

Some terms in a document do not describe any important content, e.g., common

words like “the”, “is” – these words are called stop-words. While processing a document

to count the number of occurrences of each term and create theterm count vector in the

first phase, these stop-words are filtered from the document and not included in the vector.

Note that this vector is often more than 99% sparse, since thedimensionality of the vector

is equal to the number of terms in the whole document collection but most documents just

have a small subset of these terms. In our experiments, we used the MC toolkit2 for creating

the document vectors from raw text documents.

In the second phase, the term-frequencies or counts of the terms are multiplied

by the inverse document frequency of a term in the document collection. This is done

so that terms that are common to most documents in a document collection (e.g., “god”

is a common term in a collection of articles posted to newsgroups like alt.atheism or

soc.religion.christian ) are given lesser weight, since they are not very content-bearing

in the context of the collection. This method of term weighting, called “Term Frequency and

Inverse Document Frequency” (TFIDF), is a popular method ofpre-processing documents

in the information retrieval community (Baeza-Yates & Ribeiro-Neto, 1999).

The TFIDF weighting procedure we use is as follows. Iffi j is the frequency of

the ith term in the jth document, then the corresponding term frequency (TF)t f i j is fi j

2http://www.cs.utexas.edu/users/jfan/dm
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normalized across the entire document corpus:

t f i j = fi j

The inverse document frequency (IDF)id fi of the ith term is defined as:

id fi = log2(N=d fi)
where N is the total number of documents in the corpus andd fi is the total number of

documents containing theith term. The overall TFIDF scorewi j of the ith term in the jth

document is therefore:

wi j = t f i j id fi = fi j log2(N=d fi)
After TFIDF processing, terms which have a very low (occurring in less than 5

documents) and very high frequency (occurring in more than 95% of the documents) are

also removed from the documents (Dhillon, Fan, & Guan, 2001). Finally, the weights of

the document vectors are re-normalized so that every document has unit length according

to theL2 norm. While clustering, similarity between two documents can now be computed

using the dot product between the document vectors, which would give the cosine similarity

between the vector representations of the documents. The similarity of documentsd j1 and
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d j2 are computed as follows:

sim(d j1;d j2) = jVj
∑
i=1

w0
i j1w0

i j2

wherejVj is the size of the term vocabulary andw0 represents the TFIDF weights after re-

normalization. In practice, this sum calculation can be performed very efficiently by using

sparse representations of document vectors and computing the sum only over the terms in

the shorter document.

Some other specific pre-processing steps were also performed based on the types

of the documents, e.g., headers and email signatures were removed for newsgroup articles,

and HTML tags were removed for webpages.
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Chapter 3

Semi-supervised Clustering with

Labels

This chapter describes how supervision in the form of labeled data can be incorporated

into clustering (Basu et al., 2002). We use the labeled data to generate seed clusters that

initialize a clustering algorithm, and use constraints generated from the labeled data to guide

the clustering process. The underlying intuition is that proper seeding biases clustering

towards a good region of the search space, thereby reducing the chances of it getting stuck

in poor local optima while simultaneously producing a clustering similar to the specified

labels.
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3.1 Problem definition

Given a data setX, as previously mentioned, KMeans clustering of the data setgenerates a

k-partitioningfXhgk
h=1 of X so that the KMeans objective is locally minimized. LetS� X,

called theseed set, be the subset of data-points on which supervision is provided as follows:

for eachxi 2 S, we have the labelh of the partitionXh to which it belongs. We assume that

corresponding to each partitionXh of X, there is at least one seedpointxi 2 S(we will relax

this assumption for our experiments with incomplete seeding). Note that we get a disjoint

k-partitioningfShgk
h=1 of the seed setS, so that allxi 2 Sh belongs toXh according to the

supervision. This partitioning of the seed setS forms theseed clustering. The goal is to

guide the KMeans algorithm towards the desired clustering of the whole data as illustrated

by the seed clustering.

3.2 SEEDED-KM EANS and CONSTRAINED-KM EANS algorithms

We propose two algorithms for semi-supervised clustering with labeled data: SEEDED-

KM EANS and CONSTRAINED-KM EANS.

In SEEDED-KM EANS, the seed clustering is used to initialize the KMeans algo-

rithm. Thus, rather than initializing KMeans fromk random means, the centroid of thehth

cluster is initialized with the centroid of thehth partitionSh of the seed set. The seed clus-

tering is only used for initialization, and the seeds are notused in the following steps of the

algorithm. The algorithm is presented in detail in Fig. 3.1.In CONSTRAINED-KM EANS,
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Algorithm: SEEDED-KM EANS

Input: Set of data pointsX = fxigni=1;xi 2 Rd , number of clustersk, set

S= [k
h=1Sh of initial seeds

Output: Disjoint k partitioningfXhgkh=1 of X such that KMeans objective

function is optimized

Method:

1. Initialize clusters:µ(0)h  1jShj ∑
x2Sh

x; forh= 1; : : : ;k; t 0

2. Repeat untilconvergence

2a. assign cluster : Assign each data pointx to the clusterh� (i.e. setX(t+1)
h� ),

for h� = argmin
h2f1;:::;kgkx�µ(t)h k2

2b. estimate means: µ(t+1)
h  1jX(t+1)

h j ∑
x2X(t+1)

h

x

2c. t (t+1)
Figure 3.1: Seeded-KMeans algorithm

the seed clustering is used to initialize the KMeans algorithm as described for the SEEDED-

KM EANS algorithm. However, in the subsequent steps, the cluster memberships of the data

points in the seed set are not re-computed in theassign cluster step of the algorithm – the

cluster labels of the seed data are kept unchanged, and only the labels of the non-seed data

are re-estimated. The algorithm is given in detail in Fig. 3.2. CONSTRAINED-KM EANS

seeds the KMeans algorithm with the given labeled data and keeps that labeling unchanged

throughout the algorithm. In SEEDED-KM EANS, the given labeling of the seed data may be
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Algorithm: CONSTRAINED-KM EANS

Input: Set of data pointsX = fxigni=1;xi 2 Rd , number of clustersk, set

S= [k
h=1Sh of initial seeds

Output: Disjoint k partitioningfXhgkh=1 of X such that the KMeans objective

function is optimized

Method:

1. Initialize clusters:µ(0)h  1jShj ∑
x2Sh

x; forh= 1; : : : ;k; t 0

2. Repeat untilconvergence

2a. assign cluster : Forx2 S, if x2 Sh assignx to the clusterh (i.e., setX(t+1)
h ).

Forx 62 S, assignx to the clusterh� (i.e. setX(t+1)
h� ), for h� = argmin

h2f1;:::;kgkx�µ(t)h k2
2b. estimate means: µ(t+1)

h  1jX(t+1)
h j ∑

x2X(t+1)
h

x

2c. t (t+1)
Figure 3.2: Constrained-KMeans algorithm

changed in the course of the algorithm. CONSTRAINED-KM EANS is appropriate when the

initial seed labeling is noise-free, or if the user does not want the labels of the seed data to

change. On the other hand, SEEDED-KM EANS is more appropriate in the presence of noisy

seeds, since it does not enforce the seed labels to remain unchanged during the clustering

iterations and can therefore abandon noisy seed labels after the initialization step.
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3.3 Underlying probabilistic motivation

The two proposed semi-supervised KMeans algorithms, SEEDED-KM EANS and CONSTRAINED-

KM EANS, can be motivated by considering KMeans in the EM framework,as shown in the

following section.

3.3.1 Interpretation of KMeans as EM

Both KMeans and SP-KMeans are model-based clustering algorithms, having well-defined

underlying generative models. As mentioned earlier, KMeans can be considered as fitting

a mixture of Gaussians to a data set under certain assumptions. The assumptions are that

the prior distributionfαhgk
h=1 of the Gaussians is uniform, i.e.,αh = 1=k;8h, and that each

Gaussian has identity covariance. Then, the parameter setΘ in the EM framework consists

of just thek meansfµhgk
h=1. With these assumptions, one can show that (Bilmes, 1997):

EYjX;Θ[logP(X;YjΘ)℄ = k

∑
h=1

n

∑
i=1

log(αh � 1(2π)d=2
e�kxi�µhk2) p(yhjxi ;Θ) (3.1)= � k

∑
h=1

n

∑
i=1

kxi �µhk2 p(yhjxi ;Θ)+c;
wherec is a constant and(Y = h) is denoted byyh. Further assuming that

p(yhjxi ;Θ) =8>>>><>>>>:1 if h= argmin
l

kxi �µlk2;
0 otherwise,

(3.2)
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and replacing it in Eqn. (3.2), we note that the expectation term comes out to be the negative

of the well-known KMeans objective function with an additive constant.1 Thus, the prob-

lem of maximizing the expected log-likelihood under these assumptions is same as that of

minimizing the KMeans objective function. Keeping in mind the assumption in Eqn. (3.2),

the KMeans objective can be written as

Jkmeans= k

∑
h=1

n

∑
i=1

kxi �µhk2 p(yhjxi ;µh): (3.3)

In a similar fashion, SP-KMeans can be considered as fitting amixture of von Mises-Fisher

distributions to a data set under some assumptions (Banerjee et al., 2003). Note that in

the SP-KMeans framework (Sec. 2.3.2), since every point lies on the unit sphere so thatkxik= kµhk= 1, the expectation term in Eqn. (3.2) becomes equivalent to

EYjX;Θ[logp(X;YjΘ)℄ = k

∑
h=1

n

∑
i=1

xT
i µh p(yhjxi ;Θ)+c:

So, maximizing the SP-KMeans objective function is equivalent to maximizing the expec-

tation of the complete-data log-likelihood in the E-step ofthe EM algorithm.

1The assumption in Eqn. (3.2) can also be derived by assuming the covariance of the Gaussians to beεI and
letting ε! 0+ (Kearns, Mansour, & Ng, 1997).
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3.3.2 Discussion ofSEEDED-KM EANS and CONSTRAINED-KM EANS

According to the discussion in the previous section, the only “missing data” for the KMeans

problem are the conditional distributions of the cluster labels given the points and the pa-

rameters, i.e.,p(yhjxi ;µh). Knowledge of these distributions solves the clustering problem,

but normally there is no way to compute it. In the semi-supervised clustering framework,

label information is available on some of the data points, which specifies the corresponding

conditional distributions. Thus, semi-supervision by providing labeled data is equivalent to

providing information about the conditional distributions p(yhjxi ;µh).
In standard KMeans without any initial supervision, thek means are chosen ran-

domly in the initial M-step and the data-points are assignedto the nearest means in the

subsequent E-step. As explained above, every pointxi in the data set hask possible con-

ditional distributions associated with it (each satisfying Eqn. (3.2)) corresponding to thek

means to which it can belong. This assignment of data pointxi to a random cluster in the

first E-step is similar to picking one conditional distribution at random from thek possible

conditional distributions.

In SEEDED-KM EANS, the initial supervision is equivalent to specifying the condi-

tional distributionsp(yhjxi ;µh) for the seed pointsxi 2 S . The specified conditional distri-

butions of the seed data are just used in the initial M-step ofthe algorithm, andp(yhjxi ;µh)
is re-estimated for allxi 2 X in the following E-steps of the algorithm.

In CONSTRAINED-KM EANS, the initial M-step is same as SEEDED-KM EANS.
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The difference is that for the seed data points, the initial labels, i.e., the conditional distri-

butionsp(yhjxi ;µh), are kept unchanged throughout the algorithm, whereas the conditional

distribution for the non-seed points are re-estimated at every E-step.

It can also be shown that getting good seeding is very essential for centroid-based

clustering algorithms like KMeans. As shown in Sec. 2.3.1, under certain generative model-

based assumptions, one can connect the mixture of Gaussiansmodel to the KMeans model.

A direct calculation using Chernoff bounds shows that if a particular cluster (with an under-

lying Gaussian model) with true centroidµ is seeded withmpoints (drawn independently at

random from the corresponding Gaussian distribution) and the estimated centroid is ˆµ, then

P(jµ̂�µj � δ)� e�δ2m=2; (3.4)

whereδ2R+ (Banerjee, 2001). Thus, the probability of deviation of thecentroid estimates

falls exponentially with the number of seeds, and hence seeding results in good initial cen-

troids.

3.4 Convergence ofSEEDED-KM EANS and CONSTRAINED-KM EANS

Theorem: TheSEEDED-KM EANS andCONSTRAINED-KM EANS algorithms converge to

a local minima ofJkmeans.

Proof: The SEEDED-KM EANS and CONSTRAINED-KM EANS algorithms alternate be-

tween updating the assignment of points to clusters and updating the cluster centroids. If the
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individual updates of objective functionJkmeansin each of these two steps is non-increasing,

then after each iteration of SEEDED-KM EANS and CONSTRAINED-KM EANS the objective

function in Eqn. (3.3) is guaranteed to be non-increasing. Let us inspect each step in the

updates to ensure that this is indeed the case.

In SEEDED-KM EANS, the labeled data are used only for cluster initialization –

henceforth, both the cluster assignment and centroid re-estimation steps are same as nor-

mal KMeans. Since KMeans is guaranteed to converge to a localminima of the objective

functionJkmeans(Selim & Ismail, 1984), SEEDED-KM EANS also has the same guarantees.

For analyzing CONSTRAINED-KM EANS, let us look at the cluster assignment and

centroid re-estimation steps separately. First, let us consider the cluster assignment step:

according to Sec. 3.3.1, the cluster assignment step is equivalent to the E-step of the corre-

sponding EM update. Each pointxi moves to a new clusterh only if the following compo-

nent ofJkmeans, contributed by the pointxi , is decreased with the move:

k

∑
h=1

kxi �µhk2 p(yhjxi ;µh): (3.5)

For pointsxi =2 S, the cluster assignment minimizes the above contribution of xi to the

objective functionJkmeans. For pointsxi 2 S, the cluster assignment remains unchanged; as

a result, the contribution of eachxi 2Sto the objective function remains unchanged. So, the

cluster assignment step of CONSTRAINED-KM EANS either decreases the overall objective

functionJkmeansor keeps it unchanged.
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For analyzing the centroid re-estimation step, let us consider an equivalent form of

Eqn. (3.3):

Jkmeans= k

∑
h=1

∑
xi2Xh

kxi �µhk2 p(yhjxi ;µh): (3.6)

In the centroid re-estimation step, each cluster centroidµh is re-estimated so that Eqn. (3.6)

is minimized with respect to the centroids. Taking the derivative of Eqn. (3.6) with respect

to µh and setting it to zero, theµh that minimizes Eqn. (3.6), given the cluster assignments,

turns out to be the mean of the points in the partitionXh (which includes both the seed

points already inXh and the non-seed points that were assigned toXh in the previous cluster

assignment step). This minimizes the component ofJkmeansin Eqn. (3.6) contributed by the

partitionXh. So, given the cluster assignments,Jkmeanswill decrease or remain the same in

this step. Note that the result of the mean of the points in a cluster being the choice of the

centroid that minimizes the objective func the objective function in the M-step of EM holds

for both cosine distance (Banerjee et al., 2003) and the general class of regular Bregman

divergences (Banerjee, Merugu, Dhillon, & Ghosh, 2004).

Hence the objective function decreases after every clusterassignment and centroid

re-estimation step in CONSTRAINED-KM EANS. Now, note that the objective function is

bounded below by zero. CONSTRAINED-KM EANS results in a decreasing sequence of

objective function values, the value sequence must have an accumulation point. The ac-

cumulation point in this case will be a fixed point ofJkmeanssince neither updating the

assignments or the parameters can further decrease the value of the objective function. As
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a result, the CONSTRAINED-KM EANS algorithm will converge to a fixed point (local min-

imum) of the objective. In practice, convergence can be determined if subsequent iterations

of CONSTRAINED-KM EANS result in insignificant changes inJkmeans.

3.5 Experiments

The experimental results presented in this section demonstrate the advantages of SEEDED-

KM EANS and CONSTRAINED-KM EANS over standard random seeding and COP-KMeans

(Wagstaff et al., 2001), a previously developed semi-supervised clustering algorithm de-

scribed in Sec. 2.3.3.

We show results of our experiments on both high-dimensionaltext data sets (Ya-

hoo! News K-series and subsets of CMU 20 Newsgroups), as wellas on a low-dimensional

data set from the UCI repository (Iris). For each data set, weran 4 clustering algorithms

– SEEDED-KM EANS, CONSTRAINED-KM EANS, COP-KMeans, and random KMeans. In

random KMeans, thek means were initialized by taking the mean of the entire data and

randomly perturbing itk times (Fayyad, Reina, & Bradley, 1998). This technique of ini-

tialization has given good results in unsupervised KMeans in previous work (Dhillon et al.,

2001). We compared the performance of these 4 methods on the different data sets with

varying seeding and noise levels, using 10-fold cross validation. For the high-dimensional

data sets, SP-KMeans was used as the underlying KMeans algorithm for all the 4 KMeans

variants, while standard KMeans with squared Euclidean distance was used on the low-
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dimensional data sets.

3.5.1 Data sets

Iris is a low-dimensional data set from the UCI repository (Blake& Merz, 1998), where the

task is to categorize a group of 150 4-dimensional vectors, representing Iris flowers, into 3

species.

Among the high-dimensional data sets, the 20 Newsgroups data set (20-Newsgroups-

1000) is a collection of 20,000 messages, collected from 20 different Usenet newsgroups

– 1000 messages from each of the 20 newsgroups were chosen, and the data set was par-

titioned by newsgroup name.2 The text documents were pre-processed using the method-

ology described in Sec. 2.5, which includes removal of non-content-bearing stop-words,

TF-IDF weighting, and removal of very high-frequency and low-frequency words. For the

20-Newsgroups-1000data set, the vector space model had a vocabulary of 21,631 words.

The Yahoo! News K-series (Yahoo! News) data set3 is a collection of 2340 Yahoo! news

articles belonging to one of 20 different Yahoo! categories. The vector space model of the

K1 set from the Yahoo! K-series has 12,229 words, so that the data-points reside in a 12,229

dimensional space.

We derived subsets from the20-Newsgroups-1000collection. From the original

data set, we created20-Newsgroups-100, a reduced data set having a random subsample of

2http://www.ai.mit.edu/people/jrennie/20newsgroups
3ftp://ftp.cs.umn.edu/users/boley/PDDPdata
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100 documents from each of the 20 newsgroups in the original data. We created the other

data subsets by selecting 3 categories from the original20-Newsgroups-1000collection:� 3-News-Similar-1000consists of 1000 documents each from 3 newsgroups on sim-

ilar topics (comp.graphics , comp.os.ms-windows , comp.windows.x ). This data

subset has 3000 points in a vector space of 5950 words, and theunderlying clusters

are not well separated due to the similarity between the topics;� 3-News-Related-1000consists of 1000 postings each from 3 newsgroups on related

topics (talk.politics.misc , talk.politics.guns , andtalk.politics.mideast ),

with overall 3000 documents and 10,091 words;� 3-News-Different-1000consists of 1000 articles each from 3 newsgroups that cover

different topics (alt.atheism , rec.sport.baseball , sci.space ). It has 3000

points in 7670 dimensions, with the clusters being well-separated.

The data setSmall-20 Newsgroupswas created to study the effect of data set size on the

clustering performance of the algorithms. We created the 3 subsets, having articles from 3

newsgroups, to study the effect of data separability on the algorithms. For each data set, the

clustering algorithms were asked to generate the same number of clusters as the number of

underlying classes in the data set.
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3.5.2 Methodology

For all the algorithms, we generated learning curves with 10-fold cross-validation on each

data set. For studying the effect of seeding, 10% of the data set was set aside as the test

set at any particular fold. The training sets at different points of the learning curve were

obtained from the remaining 90% of the data by varying the seed fraction from 0.0 to 1.0 in

steps of 0.1, and the results at each point on the learning curve were obtained by averaging

over 10 folds. The clustering algorithm was run on the whole data set, but we calculated

the evaluation metrics only on the test set: this was done to estimate the generalization

performance of the semi-supervised clustering algorithm on instances for which no labels

were provided. For these experiments we used the clusteringobjective function and Nor-

malized Mutual Information (NMI), as described in Sec. 2.4,as the evaluation measures.

For studying the effects of noise in the seeding, we generated learning curves by keeping a

fixed fraction of seeding and varying the noise fraction.

3.5.3 Seed and noise generation

In SEEDED-KM EANS and CONSTRAINED-KM EANS, the seeds at any point on the learning

curve were selected from the data set according to the corresponding seed fraction. In COP-

KMeans, the must-link and the cannot-link constraints are generated from the specified

seeds. Thek cluster centers are chosen randomly, but as each one is chosen, any must-link

constraints that it participates in are enforced, i.e., allitems that the chosen instance must

link to are assigned to the new cluster, so that they cannot later be chosen as the center of
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another cluster (Wagstaff et al., 2001).
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Figure 3.3: Comparison of NMI on20-Newsgroups-1000data, noise fraction = 0

In a real-life application, since the semi-supervision will be provided by a human

user, there is a chance that the supervision may be erroneousin some cases. We simulate

such labeling noise in our experiments by changing the labels of a fraction of the seed

examples to a random incorrect value.

3.5.4 Results and discussion

NMI with respect to seeding:For the zero-noise case, the semi-supervised algorithms per-

form better than the unsupervised algorithm in terms of the NMI measure (Figs. 3.3,3.5,3.7,3.9),

irrespective of the size of the data set. CONSTRAINED-KM EANS performs at least as well
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Figure 3.4: Comparison of objective function on20-Newsgroups-1000data, noise fraction
= 0

as the SEEDED-KM EANS, since the former uses the correct user bias introduced by the

user-labeled seeds throughout the execution of the algorithm in the zero-noise case. In spite

of being a constrained algorithm, COP-KMeans does not necessarily perform as well as

CONSTRAINED-KM EANS, mainly because of its initialization step that does not necessar-

ily use all the available supervision. Though both CONSTRAINED-KM EANS and COP-

KMeans treat the seeds as constraints, the fact that CONSTRAINED-KM EANS uses all the

seeds to initialize clusters, as opposed to COP-KMeans which does not necessarily do that,

results in the former having better performance in most cases with zero-noise. In fact, the

effect of seeding seems to be so important that in some cases (Fig. 3.5), SEEDED-KM EANS

performs significantly better than COP-KMeans.
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Figure 3.5: Comparison of NMI on20-Newsgroups-100data, noise fraction = 0

Objective function with respect to seeding:Though the NMI measure increases

with an increase in seed fraction for the semi-supervised algorithms, the behavior of the

objective function will depend on whether the user bias provided by the user-labeled seeds

is consistent with the assumptions of KMeans. If the category structure created by the user-

labeling of the data set satisfies the KMeans assumptions, then the data partition induced by

seeding will be close to the optimal partition, and KMeans isknown to converge to a good

local optimum in this case (Fig. 3.6) (Devroye et al., 1996).On the other hand, if the user

bias is inconsistent with the KMeans assumptions, then constrained seeding will result in

convergence to a sub-optimal solution (Figs. 3.4, 3.8). Note that since SEEDED-KM EANS

does not necessarily maintain the same assignments for the seed points in subsequent it-
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Figure 3.6: Comparison of objective function on20-Newsgroups-100data, noise fraction =
0

erations, its objective function does not decrease due to conflict in bias; however, since

CONSTRAINED-KM EANS and COP-KMeans keep the seeds as constraints, their objective

function decreases with increase in seeding. Since random KMeans never uses the seeds,

its behavior is independent of this conflict.

Data Set separability: Semi-supervision gives substantial improvement over un-

supervised clustering for data sets that are difficult to cluster, in the sense that the clusters

are not well separated, e.g.,3-News-Similar-1000, (Fig. 3.10). For data sets that are easily

separable, e.g.,3-News-Different-1000(Fig. 3.11) the improvement over random KMeans

is marginal. If the data set is easily separable, then there are not many bad local minima

and even random KMeans can easily find the cluster structure.However, for data sets with
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Figure 3.7: Comparison of NMI onYahoo! Newsdata, noise fraction = 0

clusters that are not well separated, seeding seems to be an important factor in helping the

algorithm find a good clustering. Even with high seeding, theNMI measure for the sep-

arable data sets are in general much higher than the data setsthat are not well separable,

because the latter one is a harder problem to solve.

Performance with incomplete seeding:We also ran initial experiments within-

completeseeding, where seeds are not specified for every cluster. Forthese experiments, if

any of the semi-supervised KMeans algorithms are run to findK clusters and we have seeds

for only L clusters (L < K), then the remainingK�L centroids are initialized by random

perturbations of the global centroid, following the methodology of Dhillon et al. (Dhillon

et al., 2001). From Fig. 3.12, it can be seen that the NMI metric did not decrease substan-
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Figure 3.8: Comparison of objective function onYahoo! Newsdata, noise fraction = 0

tially with increase in the number of unseeded categories, showing that the semi-supervised

clustering algorithms could extend the seed clusters and generate more clusters in order to

fit the regularity of the data.

Performance with respect to noise:In many practical applications, the labeled

data often has noise due to human labeling errors, inaccuracies of automated labeling pro-

cesses, or other reasons. In this experiment, we study the noise robustness of all the different

semi-supervised clustering algorithms, to estimate how well they would perform on real-life

domains.

Fig. 3.13 shows that as noise is increased, the performance of CONSTRAINED-

KM EANS and COP-KMeans starts to degrade compared to SEEDED-KM EANS. COP-
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Figure 3.9: Comparison of NMI onIris data, noise fraction = 0

KMeans and CONSTRAINED-KM EANS keep using the same noisy seeds in every subse-

quent iteration of the algorithm, whereas SEEDED-KM EANS can abandon noisy seed labels

in subsequent iterations. So SEEDED-KM EANS is quite robust against noisy seeding, and

can take full advantage of the seeding if it gives the algorithm a good initialization.

The statistical significance of the conclusions in this section have been tested across

various data sets. For example, on theSmall-20-Newsgroupdata set, the conclusions are

significant for seed fraction>= 0:2 (p< 0:001) for the first three aspects discussed above,

using two-tailed pairedt-test. For the noise experiments, the conclusion is significant for

noise fraction< 0:5 (p< 0:001).
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Figure 3.10: Comparison of NMI on3-News-Similar-1000data, noise fraction = 0

3.6 Chapter summary

In this chapter, we have shown how initial labeled data can beused to aid and bias the clus-

tering of unlabeled data into partitions. SEEDED-KM EANS and CONSTRAINED-KM EANS

are semi-supervised clustering algorithms that use labeled data to form initial clusters and

constrain subsequent cluster assignment. Both methods canbe viewed as instances of an

EM algorithm over a mixture of unit variance Gaussians undercertain conditions, where la-

beled data provides prior information about the conditional distributions of hidden category

labels. Experimental results demonstrate the advantages of these methods over standard

random seeding and COP-KMeans (Wagstaff et al., 2001), an alternative semi-supervised

KMeans algorithm. In particular, seeding without constraints is a robust semi-supervised

51



0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0 0.2 0.4 0.6 0.8 1

M
I m

et
ric

Seed fraction

Seeded-KMeans
Constrained-KMeans

COP-KMeans
Random-KMeans
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method that is less sensitive to noise and imperfections in the given labeled data.

In certain applications, supervision in the form of class labels may be unavailable,

while pairwise constraints on the data, specifying whethertwo points should be in the same

cluster or in different clusters, are easily obtained. Thiscreates the need for algorithms that

can utilize such supervision – the next chapter describes one such algorithm, which can

perform semi-supervised partitional clustering of data using pairwise constraints.
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Chapter 4

Semi-supervised Clustering with

Constraints

This chapter describes a probabilistic framework for semi-supervised clustering with pair-

wise constraints, based on the Hidden Markov Random Field (HMRF) model. This chapter

outlines the basic HMRF model; a generalization of the modelpresented here, which allows

integration of constraint-based and metric-based semi-supervied clustering, is discussed in

Sec. 7.1.

4.1 Motivation of clustering with constraints

As mentioned in the last chapter, pairwise constraints can be a more natural form of su-

pervision than labels in certain clustering tasks. Pairwise supervision is typically provided
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as must-linkand cannot-linkconstraints on data points: amust-linkconstraint indicates

that both points in the pair should be placed in the same cluster, while acannot-linkcon-

straint indicates that two points in the pair should belong to different clusters. In certain

applications, supervision in the form of class labels may beunavailable, while pairwise

constraints are easily obtained, creating the need for methods that exploit such supervi-

sion. For example, complete class labels may be unknown in the context of clustering for

speaker identification in a conversation (Bar-Hillel et al., 2003), or clustering GPS data for

lane-finding (Wagstaff et al., 2001). In some domains, pairwise constraints occur naturally,

e.g., the Database of Interacting Proteins (DIP) data set inbiology contains information

about proteins co-occurring in processes, which can be viewed as must-link constraints

during clustering. Moreover, in an interactive learning setting, a user who is not a domain

expert can sometimes provide feedback in the form of must-link and cannot-link constraints

more easily than class labels, since providing constraintsdoes not require the user to have

significant prior knowledge about the categories in the dataset.

4.2 Problem definition

Our semi-supervised clustering model with constraints considers a sample ofn data points

X = fxign
i=1, eachxi 2 Rd being ad-dimensional vector, withxim representing itsmth com-

ponent. The model relies on a distortion measureD used to compute distance between

points: D : Rd �Rd ! R. Supervision is provided as two sets of pairwise constraints:

55



must-link constraintsCML = f(xi ;x j)g and cannot-link constraintsCCL = f(xi ;x j)g, where(xi ;x j) 2 CML implies thatxi and x j are labeled as belonging to the same cluster, while(xi ;x j) 2CCL implies thatxi andx j are labeled as belonging to different clusters. The con-

straints may be accompanied by associated violation costsW, wherewi j represents the cost

of violating the constraint between pointsxi andx j if such a constraint exists, that is, either(xi ;x j) 2CML or (xi ;x j)2CCL. The task is to partition the data pointsX into k disjoint clus-

tersfXhgk
h=1 so that the total distortion between the points and the corresponding cluster

representatives is (locally) minimized according to the given distortion measureD, while

constraint violations are kept to a minimum.

4.3 The HMRF model

This section describes the Hidden Markov Random Field (HMRF) probabilistic model (Zhang,

Brady, & Smith, 2001) for semi-supervised constrained clustering.

4.3.1 HMRF components

The HMRF model consists of the following components:� An observablesetX = fxign
i=1 of random variables, corresponding to the given data

pointsX. Note that we overload notation and useX to refer to both the given set of

data points and their corresponding random variables.� An unobservable(hidden) setY = fyign
i=1 of random variables, corresponding to
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cluster assignments of points inX. Each hidden variableyi encodes the cluster label

of the pointxi and takes values from the set of cluster indicesfhgk
h=1.� An unobservable(hidden) set of generative model parametersΘ, which consists of

cluster representativesM = fµhgk
h=1.� An observableset of constraint variablesC = (c12;c13; : : : ;cn�1;n). Eachci j is a ter-

tiary variable taking on a value from the set(�1;0;1), whereci j = 1 indicates that(xi ;x j) 2CML, ci j =�1 indicates that(xi ;x j) 2CCL, andci j = 0 corresponds to pairs(xi ;x j) that are not constrained.

Since constraints are fully observed and the described model does not attempt to

model them generatively, the joint probability ofX, Y, andΘ is conditioned on the con-

straints encoded byC. Fig. 4.1 shows a simple example of an HMRF.X consists of five data

points with corresponding variables(x1; : : : ;x5) that have cluster labelsY = (y1; : : : ;y5),
which may each take on values(1;2;3) denoting the three clusters. Three pairwise con-

straints are provided: two must-link constraints(x1;x2) and (x1;x4), and one cannot-link

constraint(x2;x3). Corresponding constraint variables arec12 = 1, c14 = 1, andc23 = �1;

all other variables inC are set to zero. The task is to partition the five points into three clus-

ters. Fig. 4.1 demonstrates one possible clustering configuration which does not violate any

constraints. The must-linked pointsx1;x2 andx4 belong to cluster 1; the pointx3, which is

cannot-linked withx2, is assigned to cluster 2;x5, which is not involved in any constraints,

belongs to cluster 3.
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y5= 3

y3= 2

x4

Must-link (c14= 1)
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y1= 1

(c23=�1)

Figure 4.1: A Hidden Markov Random Field

4.3.2 Markov Random Field over labels

Each hidden random variableyi 2Y, representing the cluster label ofxi 2 X, is associated

with a set of neighborsNi. The set of neighbors is defined as all points to whichxi is must-

linked or cannot-linked:Ni = fy j j(xi ;x j) 2CML or (xi ;x j) 2CCLg. The resulting random

field defined over the hidden variablesY is a Markov Random Field (MRF) (Geman & Ge-

man, 1984), where the conditional probability distribution over the hidden variables obeys

the Markov property:8i; Pr(yi jY�fyig;Θ;C) = Pr(yi jfy j : y j 2 Nig;Θ;C): (4.1)
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Thus the conditional probability ofyi for eachxi , given the model parameters and the set

of constraints, depends only on the cluster labels of the observed variables that are must-

linked or cannot-linked toxi . Then, by the Hammersley-Clifford theorem (Hammersley &

Clifford, 1971), the prior probability of a particular label configurationY can be expressed

as a Gibbs distribution (Geman & Geman, 1984), so that

Pr(YjΘ;C) = 1
Z

exp
��v(Y)�= 1

Z
exp
�� ∑

Ni2N

vNi (Y)�; (4.2)

whereN is the set of all neighborhoods,Z is the normalizing term, andv(Y) is the overall

label configuration potential function, which can be factored into the functionsvNi (Y) that

denote the potentials for all neighborhoodsNi in the label configurationY. Since the po-

tentials for all neighborhoods are based on pairwise constraints inC (and model parameters

Θ), we can further factor the label configuration as:

Pr(YjC) = 1
Z

exp(�∑
i; j v(i; j)); (4.3)

where each constraint potential functionv(i; j) has the following form:

v(i; j) =8>>>>>><>>>>>>: wi j if ci j = 1 andyi 6= y j

wi j if ci j =�1 andyi = y j

0 otherwise

(4.4)
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Figure 4.2: Graphical plate model of variable dependence

This constraint potential corresponds to the generalized Potts potential function (Boykov,

Veksler, & Zabih, 1998; Kleinberg & Tardos, 1999). Overall,this formulation for observing

the label assignmentY results in higher probabilities being assigned to configurations in

which cluster assignments do not violate the provided constraints.

4.3.3 Joint probability in HMRF

The joint probability ofX, Y, andΘ, givenC, in the described HMRF model can be factor-

ized as follows:

Pr(X;Y;ΘjC) = Pr(ΘjC) Pr(YjΘ;C) Pr(XjY;Θ;C) (4.5)

The graphical plate model (Buntine, 1994) of the dependencebetween the random vari-

ables in the HMRF is shown in Fig. 4.2, where the clear nodes represent the hidden vari-

ables, the shaded nodes are the observed variables, the directed links show dependencies

between the variables, while the lack of an edge between two variables implies conditional
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independence. The prior over the parametersΘ is independent of the constraintsC, i.e.,

P(ΘjC) = P(Θ). The probability of observing the label configurationY depends on the

constraintsC but is independent of the current generative model parameters Θ, so that

P(YjΘ;C) = P(YjC). Observed data points corresponding to variablesX are generated us-

ing the model parametersΘ based on cluster labelsY and are independent of the constraints

C, so thatP(XjY;Θ;C) = P(XjY;Θ). The variablesX are assumed to be mutually indepen-

dent: eachxi is generated individually from a conditional probability distribution Pr(xjy;Θ).
Then, the conditional probability Pr(XjY;Θ;C) can be written as:

Pr(XjY;Θ;C) = Pr(XjY;Θ) = n

∏
i=1

p(xi jyi ;Θ); (4.6)

where p(�jyi ;Θ) is the probability density function for theyth
i cluster, from whichxi is

generated. This probability density is related to the clustering distortion measureD, as

described in Sec. 4.3.4.

From Eqns. (4.3), (4.5), and (4.6), and using the independence assumptions, it fol-

lows that maximizing the joint probability on the HMRF is equivalent to maximizing:

Pr(X;Y;ΘjC) = Pr(Θ)�1
Z

exp
�� ∑

ci j2C

v(i; j)��� n

∏
i=1

p(xi jyi ;Θ)� (4.7)

The joint probability in Eqn. (4.7) has 3 factors. The first factor describes a prior probability

distribution over the model parameters. The second factor is the conditional probability of
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observing a particular label configuration given the provided constraints, effectively assign-

ing a higher probability to configurations where the clusterassignments do not violate the

constraints. Finally, the third factor is the conditional probability of generating the observed

data points given the labels and the parameters: ifmaximum likelihood(ML) estimation was

performed on the HMRF, the goal would have been to maximize this term in isolation.

Overall, maximizing the joint HMRF probability in Eqn. (4.7) is equivalent to

jointly maximizing the likelihood of generating data points from the model and the proba-

bility of label assignments that respect the constraints.

4.3.4 Semi-supervised clustering objective function on HMRF

Eqn. (4.7) suggests a general framework for incorporating constraints into clustering. A

particular choice of the conditional probabilityp(�jy;Θ) is directly connected to the choice

of the distortion measure appropriate for the clustering task.

When considering the conditional probabilityp(�jy;Θ) – the probability of generat-

ing a data point from theyth cluster – we restrict our attention to probability densities from

the exponential family, where the expectation parameter corresponding to thehth cluster is

µh, the mean of the points of that cluster. Using this assumption and the bijection between

regular exponential distributions and regular Bregman divergence (Banerjee et al., 2004),

the conditional density for observed data can be represented as:

p(xi jyi ;Θ) = 1
ZΘ

exp
��D(xi ;µh)�; (4.8)
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whereD(xi ;µh) is the Bregman divergence betweenxi and µh, corresponding to the ex-

ponential densityp, andZΘ is the normalizer. Different clustering models fall into this

exponential form:� If xi andµh are vectors in Euclidean space, andD is the square of theL2 distance�
D(xi ;µh) = kxi �µhk2�, then the cluster conditional probability is a Gaussian with

unit covariance (Kearns et al., 1997);� If xi and µh are probability distributions andD is the KL-divergence
�
D(xi ;µh) =

∑d
m=1xim log xim

µhm

�
, then the cluster conditional probability is a multinomialdistribu-

tion (Dhillon & Guan, 2003).

The relation in Eqn. (4.8) holds even ifD is not a Bregman divergence but a di-

rectional distance measure like cosine distance. For example, if xi andµh are vectors of

unit length andD is one minus the dot-product of the vectors
�
D(xi ;µh) = 1� ∑d

m=1 ximµhmkxikkµhk �,
then the cluster conditional probability is a von-Mises Fisher (vMF) distribution with unit

concentration parameter (Banerjee et al., 2003), which is essentially the spherical analog of

a Gaussian.

Putting Eqn. (4.8) into Eqn. (4.7) and taking logarithms gives the following cluster

objective function, minimizing which is equivalent to maximizing the joint probability over

the HMRF in Eqn. (4.7):

Jhmrf-kmeans = ∑
xi2X

D(xi ;µyi )+ ∑
ci j2C

v(i; j)� logPr(Θ)+ logZ+ logZΘ (4.9)
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Thus, the task is to minimizeJhmrf-kmeansover the hidden variablesY andΘ (note that given

Y, the meansM = fµhgk
h=1 are uniquely determined).

4.4 The HMRF-KMeans algorithm

Since the cluster assignments and the generative model parameters are unknown in a clus-

tering setting, minimizing Eqn. (4.9) is an “incomplete-data problem”. A popular solution

technique for such problems the isExpectation Maximization(EM) algorithm (Dempster

et al., 1977). The KMeans algorithm (MacQueen, 1967) is known to be equivalent to the

EM algorithm with hard clustering assignments, under certain assumptions (Kearns et al.,

1997; Basu et al., 2002; Banerjee et al., 2004). This sectiondescribes a KMeans-type

hard partitional clustering algorithm, HMRF-KMEANS, that finds a local minimum of the

semi-supervised clustering objective functionJhmrf-kmeansin Eqn. (4.9).

4.4.1 Approximations

Before describing the details of the clustering algorithm,it is important to consider the

normalizer components: the MRF normalizer logZ and the distortion function normalizer

logZΘ in Eqn. (4.9). Estimation of the MRF normalizer cannot be performed in closed

form, and approximate inference methods must be employed for computing it (Wainwright

& Jordan, 2003). Estimation of the distortion normalizer logZΘ depends on the distortion

measureD used by the model. This chapter considers three distortion measures: squared
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Euclidean distance, cosine distance, and Kullback-Leibler (KL) divergence. For Euclidean

distance,ZΘ can be estimated in closed form, and this estimation is performed while min-

imizing the clustering objective functionJhmrf-kmeansin Eqn. (4.9). For the other distortion

measures, estimating the distortion normalizerZΘ cannot be performed in closed form, and

approximate inference must be again used.

Since approximation methods can be very expensive computationally, two simpli-

fying assumptions can be made: the MRF normalizer may be considered to be constant

in the clustering process, and the distortion normalizer may be assumed constant for all

distortion measures that do not provide its closed-form estimate. With these assumptions,

the objective functionJhmrf-kmeansin Eqn. (4.9) no longer exactly corresponds to a joint

probability on a HMRF. However, minimizing this simplified objective has been shown to

work well empirically (Bilenko, Basu, & Mooney, 2004; Basu,Bilenko, & Mooney, 2004).

However, if in some application it is important to preserve the semantics of the underlying

joint probability model, then the normalizersZ andZΘ must be estimated by approximation

methods.

The prior term logPr(Θ), which was present in Eqn. (4.9) and the subsequent equa-

tions, can be expressed as follows:

logPr(Θ) = log
�
Pr(M)�:

The prior Pr(M) over the cluster centroids is assumed to be uniform, and so this term can
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be dropped fromJhmrf-kmeans. With these approximations, the semi-supervised clustering

objective function can be expressed as:

Jhmrf-kmeans = ∑
xi2X

D(xi ;µyi )+ ∑(xi ;xj )2CML
s:t: yi 6=yj

wi j + ∑(xi ;xj )2CCL
s:t: yi=yj

wi j : (4.10)

4.4.2 EM framework

Jhmrf-kmeanscan be (locally) minimized by a KMeans-type iterative algorithm that we call

HMRF-KMEANS. The outline of the algorithm is presented in Fig. 4.3. The basic idea of

HMRF-KMEANS is as follows: the constraints are used to get good initialization of the

clustering. Then in the E-step, given the current cluster representatives, every data point is

re-assigned to the cluster which minimizes its contribution to Jhmrf-kmeans. In the M-step,

the cluster representativesM are re-estimated from the cluster assignments to minimize

Jhmrf-kmeansfor the current assignment.

Effectively, the E-step minimizesJhmrf-kmeansover cluster assignmentsY, and the

M-step minimizesJhmrf-kmeansover cluster representativesM. The E-step and the M-step

are repeated till a specified convergence criterion is reached. The specific details of the

E-step and M-step are discussed in the following sections.

4.4.3 Initialization

Good initial centroids are essential for the success of partitional clustering algorithms such

as KMeans. For HMRF-KMEANS, a two stage initialization process is used to get good
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Algorithm: HMRF-KM EANS

Input: Set of data pointsX = fxigni=1, number of clustersk, set of constraints

C, constraint violation costsW, distortion measureD.

Output: Disjoint k-partitioningfXhgkh=1 of X such that objective functionJhmrf-kmeans

in Eqn. (4.10) is locally minimized.

Method:

1. Initialize thek clusters centroidsfµ(0)h gkh=1 usingC, set t 0.

2. Repeat untilconvergence

2a. E-step : Given centroidsM(t) = fµ(t)h gkh=1, re-assign cluster labels

Y(t+1) = fy(t+1)
i gn1=1 on X to minimizeJhmrf-kmeans.

2b. M-step : Given cluster labelsY(t+1), re-calculate centroidsM(t+1)
to minimizeJhmrf-kmeans.

2c. t (t+1)
Figure 4.3: HMRF-KMeans algorithm
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centroids from both the constraints and the unlabeled data.

Neighborhood inference: At first, the transitive closure of the must-link con-

straints is taken to get connected components consisting ofpoints connected by must-links.

Let there beλ connected components, which are used to createλ neighborhoods. These

correspond to the must-link neighborhoods in the MRF over the hidden cluster variables.

Cluster selection: The λ neighborhood sets produced in the first stage are used

to initialize the HMRF-MEANS algorithm. If λ = k, λ cluster centers are initialized with

the centroids of all theλ neighborhood sets. Ifλ < k, λ clusters are initialized from the

neighborhoods, and the remainingk� λ clusters are initialized with points obtained by

random perturbations of the global centroid ofX, following the methodology of Dhillon et

al. (Dhillon et al., 2001). Ifλ> k, a weighted variant of farthest-first traversal (Hochbaum &

Shmoys, 1985) is applied to the centroids of theλ neighborhoods, where the weight of each

centroid is proportional to the size of the corresponding neighborhood. Weighted farthest-

first traversal selects neighborhoods that are relatively far apart as well as large in size, and

the chosen neighborhoods are set as thek initial cluster centroids for HMRF-KMEANS.

Overall, this two-stage initialization procedure is able to take into account both

unlabeled data and constraints to obtain cluster representatives that provide a good initial

partitioning of the data set.
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4.4.4 E-step

In the E-step, assignments of data points to clusters are updated using the current estimates

of the cluster representatives. In the general unsupervised KMeans algorithm, there is no

interaction between the cluster labels, and the E-step is a simple assignment of every point to

the cluster representative that is nearest to it according to the clustering distortion measure.

In contrast, the HMRF model incorporates interaction between the cluster labels defined by

the random field over the hidden variables. As a result, computing the assignment of data

points to cluster representatives to find the global minimumof the objective function, given

the cluster centroids, is computationally intractable in any non-trivial HMRF model (Segal,

Wang, & Koller, 2003a).

There exist several techniques for computing cluster assignments that approximate

the optimal solution in this framework. In this section we follow the iterated conditional

modes (ICM) approach (Besag, 1986; Zhang et al., 2001), which is a greedy strategy to se-

quentially update the cluster assignment of each point while keeping the assignments for the

other points fixed. Global methods of collective inference in the E-step include loopy belief

propagation (Pearl, 1988; Segal et al., 2003a) and linear programming relaxation (Klein-

berg & Tardos, 1999), which are described in Appendix A.1 andA.2 respectively. As will

be shown by experiments in Sec. 4.5.4, the inexpensive greedy ICM algorithm gives a clus-

tering accuracy that is comparable to the expensive global approximation techniques and it

is computationally more efficient.
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ICM performs sequential cluster assignment for all the points in random order. Each

point xi is assigned to the cluster representativeµh that minimizes the point’s contribution

to the objective functionJhmrf-kmeans(xi ;µh):
Jhmrf-kmeans(xi ;µh) = D(xi ;µh)+ ∑(xi ;xj )2Ci

ML
s:t: yi 6=yj

wi j + ∑(xi ;xj )2Ci
CL

s:t: yi=yj

wi j ; (4.11)

whereCi
ML andCi

CL are the subsets ofCML andCCL respectively in whichxi appears in the

constraints.

The optimal assignment for every point minimizes the distortion between the point

and its cluster representative (first term ofJhmrf-kmeans) along with incurring a minimal

penalty for constraint violations caused by this assignment (second term ofJhmrf-kmeans).

After all points are assigned, they are randomly re-ordered, and the assignment process is

repeated. This process proceeds until no point changes its cluster assignment between two

successive iterations.

Overall, the assignment of points to clusters incorporatespairwise supervision by

discouraging constraint violations while minimizing the distance between the points and

their corresponding centroids, thereby getting a desirable partitioning of the data.

4.4.5 M-step

In the M-step, the cluster centroidsM are re-estimated from points currently assigned to

them, to decrease the objective functionJhmrf-kmeansin Eqn. (4.10). For Bregman diver-
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gences and cosine distance, the cluster representative calculated in the M-step of the EM

algorithm is equivalent to the expectation value over the points in that cluster, which is

equal to their arithmetic mean (Banerjee et al., 2003, 2004). Additionally, it has been ex-

perimentally demonstrated that while clustering with distribution-based measures, e.g., KL

divergence (dKL), smoothing cluster representatives by a prior using a deterministic anneal-

ing schedule leads to considerable improvements (Dhillon &Guan, 2003). With smoothing

controlled by a parameterα, each cluster representativeµh is estimated as follows whendKL

is the distortion measure:

µ(KL)
h = 1

1+α

�
∑xi2Xh

xijXhj +α
1
n

�
(4.12)

For directional measures like cosine distance (dcos), each cluster representative is the arith-

metic mean projected onto unit sphere (Banerjee et al., 2003). Centroids are estimated as

follows whendcos is the distortion measure:

µ(cos)
hkµ(cos)
h k = ∑xi2Xh

xik∑xi2Xh
xik (4.13)

4.4.6 Convergence ofHMRF-KMEANS

Theorem: TheHMRF-KMEANS algorithm converges to a local minima ofJhmrf-kmeans.

Proof: The HMRF-KMEANS algorithm alternates between updating the assignment of

points to clusters and updating the cluster centroids. Since all updates ensure a decrease
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in the objective function, each iteration of HRMF-KMEANS monotonically decreases the

objective function (or it remains the same). Let us inspect each step in the update to ensure

that this is indeed the case.

For analyzing the cluster assignment step, let us consider Eqn. (4.10). Each point

xi moves to a new clusterh only if the following component, contributed by the pointxi , is

decreased with the move:

D(xi ;µh)+ ∑(xi ;xj )2Ci
ML

s:t: yi 6=yj

wi j + ∑(xi ;xj )2Ci
CL

s:t: yi=yj

wi j :
Given a set of centroids, the new cluster assignment of points will decreaseJhmrf-kmeansor

keep it unchanged.

For analyzing the centroid re-estimation step, let us consider an equivalent form of

Eqn. (4.10):

Jhmrf-kmeans= k

∑
h=1

∑
xi2Xh

D(xi ;µh)+ ∑(xi ;xj )2Ci
ML

s:t: yi 6=yj

wi j + ∑(xi ;xj )2Ci
CL

s:t: yi=yj

wi j : (4.14)

Each cluster centroidµh is re-estimated by taking the mean of the points in the partition Xh,

which minimizes the component∑xi2Xh
D(xi ;µh) of Jhmrf-kmeansin Eqn. (4.14) contributed

by the partitionXh for any Bregman divergenceD (Banerjee et al., 2004). The constraint

potential and the prior term in the objective function do nottake a part in centroid re-

estimation, because they are not functions of the centroid.So, given the cluster assignments,
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Jhmrf-kmeanswill decrease or remain the same in this step.

Hence the objective function decreases (or remains the same) after every cluster as-

signment and centroid re-estimation step. Now, note that the objective function is bounded

below by a constant. Being the negative log-likelihood of a probabilistic model with the

normalizer terms,Jhmrf-kmeansis bounded below by zero. Even without the normalizers,

the objective function is bounded below by zero, since the distortion and potential terms

are non-negative. SinceJhmrf-kmeansis bounded below, and HMRF-KMEANS results in a

decreasing sequence of objective function values, the value sequence must have an accumu-

lation point. The accumulation point in this case will be a fixed point ofJhmrf-kmeanssince

neither updating the assignments or the centroids can further decrease the value of the ob-

jective function. As a result, the HMRF-KMEANS algorithm will converge to a fixed point

(local minimum) of the objective. In practice, convergencecan be determined if subsequent

iterations of HMRF-KMEANS result in insignificant changes inJhmrf-kmeans.

4.5 Experiments

This section describes the experiments we performed to demonstrate the effectiveness of

HMRF-KMEANS.
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4.5.1 Data sets

Experiments were conducted on 3 data sets from the UCI repository (Blake & Merz, 1998):

Iris, and randomly sampled subsets from theDigits andLettershandwritten character recog-

nition data sets.Iris is the same data set that was described in Sec. 3.5.1. ForDigits and

Letters, we chose two sets of 3 classes each:fI, J, L g from Lettersandf3, 8, 9g from Dig-

its, sampling 10% of the data points from the original data sets randomly. These classes

were chosen since they represent difficult visual discrimination problems.Digits has 317

data points in 16 dimensions, andLettershas 227 points in 16 dimensions.

When clustering sparse high-dimensional data, e.g., text documents represented us-

ing the vector space model, it is particularly difficult to cluster small data sets. This is due

to the fact that clustering algorithms can easily get stuck in local optima on such data sets,

which leads to poor clustering quality. In previous studieswith SP-KMeans algorithm ap-

plied to document collections whose size is small compared to the dimensionality of the

word space, it has been observed that there is little relocation of documents between clus-

ters for most initializations, which leads to poor clustering quality after convergence of the

algorithm (Dhillon & Guan, 2003).

This scenario is likely in many realistic applications. Forexample, when clustering

the search results in a web-search engine like Vivı́simo,1 typically the number of webpages

that are being clustered is in the order of hundreds. Howeverthe dimensionality of the

1http://www.vivisimo.com
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feature space, corresponding to the number of unique words in all the webpages, is in the

order of thousands. Moreover, each webpage is sparse, sinceit contains only a small number

of all the possible words. Supervision in the form of pairwise constraints (e.g., must-link

constraints derived from co-occurrence statistics in weblogs) can be beneficial in such cases

and may significantly improve clustering quality.

To demonstrate the effectiveness of our semi-supervised clustering framework, we

consider 3 data subsets3-News-Different-100, 3-News-Related-100and 3-News-Similar-

100derived from the20-Newsgroupsdata set. The only difference of the 3-newsgroup data

subsets from the ones described in Sec. 3.5.1 is that these subsets were derived from the

reduced data setSmall-20-Newsgroups, while the data subsets explained in Sec. 3.5.1 were

derived from the original20-Newsgroupsdata set.

These 3 data subsets we use in these experiments have the characteristics of being

sparse, high-dimensional, as well as having a small number of points compared to the di-

mensionality of the space. The vector-space model of3-News-Similar-100has 300 points

in 1864 dimensions,3-News-Related-100has 300 points in 3225 dimensions, and3-News-

Different-100had 300 points in 3251 dimensions. The clusters in3-News-Different-100are

more well-separated than those in3-News-Similar-100and3-News-Related-100.

4.5.2 Methodology

We generated learning curves using 20 runs of 2-fold cross-validation for each data set for

studying the effect of constraints in clustering: we selected 50% of the data set to be set
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aside as the test set at any particular fold, so that on small data sets the improvements are sta-

tistically significant. The different points along the learning curve correspond to constraints

that are given as input to the semi-supervised clustering algorithm. These constraints are

obtained from the training set corresponding to the remaining 50% of the data by randomly

selecting pairs of points from the training set, and creating must-link or cannot-link con-

straints depending on whether the underlying classes of thetwo points are same or different.

Unit constraint costsW were used for all constraints, original and inferred, sincethe data

sets did not provide individual weights for the constraints. The clustering results were eval-

uated using the NMI measure, which was described in Sec. 2.4.The clustering algorithm

was run on the whole data set, but NMI was calculated only on the test set. The learning

curve results were averaged over the 20 runs.

In our experiments, we compared the proposed HMRF-KMEANS algorithm with

its ablations. In these ablation studies, each component ofHMRF-KMEANS was knocked-

off to study the impact of that component of the algorithm. The following variants were

compared:� HMRF-KMEANS-I-C is the complete HMRF-KMEANS algorithm that includes

use of supervised data in initialization (I), as described in Sec. 4.4.3, and incorpo-

rates constraints in cluster assignments (C) as described in Sec. 4.4.4;� HMRF-KMEANS-I is an ablation of HMRF-KMEANS that uses pairwise supervi-

sion for initialization only, but does not perform constrained assignment;
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� KM EANS is the unsupervised K-Means algorithm.

4.5.3 Results and discussion
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Figure 4.4: Clustering results fordeuc on Iris data set

Figs. 4.4-4.6 show the results of the ablation experiments for squared Euclidean

distancedeuc, Figs. 4.7-4.9 demonstrate the results for experiments where cosine similarity

dcos was used as the distortion measure, while Figs. 4.10-4.12 show the results with KL-

divergencedKL.

As the results demonstrate, the full HMRF-KMEANS algorithm outperforms the

ablated versions of HMRF-KMEANS for deuc, dcos as well asdKL. On the low-dimensional

data sets, the HMRF-KMEANS-I-C outperforms individual seeding (HMRF-KMEANS-I)

and unsupervised clustering (KMEANS). Superiority of semi-supervised over unsupervised
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Figure 4.5: Clustering results fordeuc onDigits-389data set

clustering illustrates that providing pairwise constraints is beneficial to clustering quality.

For the high-dimensional data, the relative clustering performances of HMRF-KMEANS-I-

C and HMRF-KMEANS-I indicate that using supervision for initializing cluster representa-

tives is highly beneficial, while the constraint-sensitivecluster assignment step does not lead

to significant additional improvements fordcos. For dKL, HMRF-KMEANS-I-C outper-

forms HMRF-KMEANS-I on 3-News-Different-100(Fig. 4.10) and3-News-Similar-100

(Fig. 4.12) which indicates that incorporating constraints in the cluster assignment process

is useful for these data sets. This result is reversed for3-News-Related-100(Fig. 4.11), im-

plying that in some cases using constraints in the E-step maybe unnecessary, which agrees

with previous results on other domains (Sec. 3.5). However,incorporating supervised data

in both initialization and cluster assignment always leadsto substantial improvement over
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Figure 4.6: Clustering results fordeuc onLetters-IJLdata set

unsupervised clustering. The improvements of the full HMRF-KM EANS over KMEANS

are statistically significant on all parts of the learning curve (except for 0 constraints) for a

two-tailed pairedt-test (p< 0:005).

In realistic application domains, supervision in the form of constraints would be

in most cases provided by human experts, in which case it is important that any semi-

supervised clustering algorithm performs well with a smallnumber of constraints. HMRF-

KM EANS-I-C starts performing well early on in the learning curve, and is therefore a very

appropriate algorithm to use in actual semi-supervised data clustering systems.
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Figure 4.7: Clustering results fordcos on3-News-Different-100data set
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Figure 4.8: Clustering results fordcos on 3-News-Related-100data set
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Figure 4.9: Clustering results fordcos on 3-News-Similar-100data set
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Figure 4.10: Clustering results fordKL on3-News-Different-100data set
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Figure 4.11: Clustering results fordKL on 3-News-Related-100data set
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Figure 4.12: Clustering results fordKL on 3-News-Similar-100data set
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4.5.4 Comparison of inference techniques

We empirically compared the greedy ICM inference techniquewith the two global infer-

ence techniques (loopy belief propagation and linear programming relaxation) for collec-

tive assignment of instances to clusters, the details of which are described in Appendix A.

Fig. 4.13 is the learning curve for theIris data set. As the graph demonstrates, global

inference methods such as loopy belief propagation (BP) andlinear programming (LP) re-

laxation outperform the greedy approaches when a limited number of pairwise constraints

is provided. However, as the number of provided constraintsincreases, returns from these

computationally expensive methods diminish; after a particular number of constraints, ICM

performs no worse than the global approximate inference methods. A note on computa-

tional requirements: in our experiments, we noticed that ICM was about 10-15 times faster

than the BP and LP methods for most data sets.

4.6 Chapter summary

In this chapter, we have shown how constraints can be used to improve the performance of

clustering. We have a probabilistic formulation based on Hidden Markov Random Fields

(HMRFs) that leads to a semi-supervised clustering objective function derived from the

joint probability of observed data points, their cluster assignments, and generative model

parameters. We propose an EM-style clustering algorithm, HMRF-KMEANS, that finds

a local minimum of this objective function. HMRF-KMEANS can be used to perform
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Figure 4.13: Comparison of ICM, BP and LP onIris data set

semi-supervised clustering using a broad class of distortion functions, namelyBregman di-

vergences(Banerjee et al., 2004), which include a wide variety of useful distances, e.g.,

KL divergence, squared Euclidean distance, and Itakura-Saito distance. In a number of

applications, such as text clustering based on a vector-space model, a directional distance

measure based on the cosine of the angle between vectors is more appropriate (Baeza-Yates

& Ribeiro-Neto, 1999). Clustering algorithms have been developed that utilize distortion

measures appropriate for directional data (Dhillon & Modha, 2001; Banerjee et al., 2003),

and the HMRF-KMEANS framework naturally extends them. We also perform experi-

ments on both low-dimensional and high-dimensional data sets to show the effectiveness

of the HMRF-KMEANS algorithm. Overall, our results show that the HMRF-KMEANS
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algorithm effectively incorporates constraints and unlabeled data in both the initialization

and assignment stages, each of which improves the clustering quality. We have also shown

how ICM, a greedy technique of assigning points to clusters in the E-step of the algorithm,

is efficient and comparable in accuracy to more expensive global collective inference tech-

niques.
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Chapter 5

Active Learning for Constraint

Acquisition

In the semi-supervised setting where training data is not already available, getting con-

straints on pairs of data points may be expensive. In this chapter, we present an active

learning scheme for the HMRF model, which can improve clustering performance with as

few queries as possible (Basu, Banerjee, & Mooney, 2004). Inorder to get pairwise con-

straints that are more informative than random in the HMRF model, we develop a 2-phase

active learning scheme for selecting pairwise constraintsby asking queries an interactive

user-driven semi-supervised clustering framework.
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5.1 Problem definition

Formally, the active learning scheme has access to a (noiseless) oracle – the user. The

algorithm can pose a constant number of pairwise queries to the oracle, wanting to know

the type of constraint on a given pair of instances(xi ;x j). The oracle can assign a must-link

or cannot-link to a given pair; the oracle can also give adon’t-knowresponse to a query,

in which case that response is ignored (the pair is not considered as a constraint) and that

query is not posed again later. The goal is to ask the minimal number of queries to get

constraints, which, when used to cluster the data with HMRF-KM EANS, will give a better

constrained clustering of the data than that obtained usingrandomly chosen constraints.

The motivation for using our active learning algorithm for selecting good constraints

is as follows. In Sec. 3.3.2, it was observed that initializing KMeans with centroids esti-

mated from a set of labeled examples for each cluster gives significant performance im-

provements. Since good initial centroids are very criticalfor the success of greedy algo-

rithms such as KMeans, the same principle is followed for thepairwise case: the goal in

active learning is to get as many points as possible per cluster (proportional to the actual

cluster size) by asking pairwise queries, so that HMRF-KMEANS is initialized from a very

good set of centroids. A similar argument can be used to motivate the active learning algo-

rithm for other non-Gaussian exponential distributions.

The proposed active learning scheme has two phases: EXPLORE and CONSOLI-

DATE, which are discussed in detail in the following sections.
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5.2 Exploration

Algorithm: EXPLORE

Input: Set of data pointsX = fxigni=1, access to an oracle that answers pairwise

queries, number of clustersk, total number of queriesQ.

Output: λ� k disjoint neighborhoodsN= fNpgλ
p=1 corresponding to the true

clustering ofX with at least one point per neighborhood.

Method:

1. Initialize: set all neighborhoodsNp to null

2. Pick the first pointx at random, add toN1, λ 1

3. While queries are allowed andλ< k

x point farthest from the points in the existing neighborhoods N

if, while pairingx with a point from each existing neighborhood and querying,

it is found thatx is cannot-linked to all existing neighborhoods

λ λ+1, start a new neighborhoodNλ with x

else

addx to the neighborhood with which it is must-linked

Figure 5.1: Explore algorithm

The EXPLORE (Fig. 5.1) phase explores the given data using farthest-first traversal

to getk pairwise disjoint non-null neighborhoods as fast as possible, with each neighbor-

hood belonging to a different cluster in the underlying clustering of the data. Note that even
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if there is only one point per neighborhood, this neighborhood structure defines a correct

skeleton of the underlying clustering.

The basic idea of farthest-first traversal of a set of points is to findk points such that

they are far from each other. In farthest-first traversal, a starting point is first selected at

random. Then, the next point farthest from it is chosen and added to the traversed set. After

that, the next point farthest from the traversed set (using the standard notion of distance

from a set:d(x;S) = minx02Sd(x;x0)) is selected, and so on. Farthest-first traversal gives

an efficient approximation of thek-centerproblem (Hochbaum & Shmoys, 1985), and has

also been used to construct hierarchical clusterings with performance guarantees at each

level of the hierarchy (Dasgupta, 2002).

In EXPLORE, while queries are still allowed andk pairwise disjoint neighborhoods

have not yet been found, the pointx farthest from all the existing neighborhoods is chosen

as a candidate for starting a new neighborhood. Queries are posed by pairingx with an

arbitrary point from each of the existing neighborhoods. Ifx is cannot-linked to all the

existing neighborhoods, a new neighborhood is started withx. If a must-link is obtained for

a particular neighborhood,x is added to that neighborhood. This continues till the algorithm

runs out of queries ork pairwise disjoint neighborhoods have been found. In the latter case,

active learning enters the consolidation phase.
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Algorithm: CONSOLIDATE

Input: Set of data pointsX = fxign
i=1, access to an oracle that answers pairwise

queries, number of clustersk, total number of queriesQ, k disjoint neighborhoods

corresponding to true clustering ofX with at least one point per neighborhood.

Output: k disjoint neighborhoods corresponding to the true clustering of X with

higher number of points per neighborhood.

Method:

1. Estimate centroidsfµhgk
h=1 of each of the neighborhoods

2. While queries are allowed

2a. randomly pick a pointx not in the existing neighborhoods

2b. sort the indicesh with increasing distanceskx�µhk2

2c. for h= 1 tok

queryx with each of the neighborhoods in sorted order till amust-link is

obtained, addx to that neighborhood

Figure 5.2: Consolidate algorithm
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5.3 Consolidation

If we reach the end of EXPLORE without running of out queries, then at least one point has

been obtained per cluster. If there are any remaining queries, they are used to consolidate

this structure. The cluster skeleton obtained from EXPLORE is used to initializek pairwise

disjoint non-null neighborhoodsfNpgk
p=1. Then, given any pointx not in any of the existing

neighborhoods, we will have to ask at most(k�1) queries by pairingx up with a member

from each of the disjoint neighborhoodsNp to find out the neighborhood to whichxbelongs.

This principle forms the second phase of our active learningalgorithm, and we call the

algorithm for this phase CONSOLIDATE. In this phase, we are able to get the correct cluster

label ofx by asking at most(k�1) queries.

The consolidation phase starts when at least one point has been obtained from each

of thek clusters. The basic idea in CONSOLIDATE (Fig. 5.2) is as follows: since there is at

least one labeled point from all of the clusters, the proper neighborhood of any unlabeled

pointx can be determined within a maximum of(k�1) queries. The queries will be formed

by taking a pointy from each of the neighborhoods in turn and asking for the label on the

pair (x;y) until a must-link is obtained. Either a must-link reply is obtained in(k� 1)
queries, or if we get cannot-link replies for the(k�1) queries to the(k�1) neighborhoods,

we can infer that the point is must-linked to the remaining neighborhood. Note that it is

practical to sort the neighborhoods in increasing order of the distance of their centroids from

x so that the correct must-link neighborhood forx is encountered sooner in the querying
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process.

5.4 Motivation of EXPLORE Vs CONSOLIDATE

Our exploration phase is motivated by a property of the farthest-first traversal, applicable

to all bounded symmetric distance functionsd(x;y). Considering 2 disjoint balls, defined

in terms of the distance function, of uniform probability density (see Appendix B.1). The

balls are of unequal size, implying unequal probability mass. If the ratio of the probability

mass of the smaller to the larger ball is lower bounded by1` for a positive integer̀, then the

farthest-first scheme is sure to get one point from each of theballs in at most̀ traversals

(see Appendix B.3). Motivated by this property, EXPLORE uses farthest-first traversal for

getting a skeleton structure of the neighborhoods, and terminates when it has run out of

queries, or, when at least one point from all the clusters hasbeen labeled.

Both EXPLORE and CONSOLIDATE add points to the clusters at a good rate. The

EXPLORE phase gets at least one point from each of thek underlying clusters in maximum

k
�k

2

�
queries, while CONSOLIDATE gets one new point from each cluster in approximately

k2 logk queries with high probability (see Appendix B.3). CONSOLIDATE therefore adds

points to clusters at a faster rate than EXPLORE by a factor ofO( k
logk), which is validated

by our experiments in Sec. 5.5. Note that this analysis is forbalanced clusters, but a similar

analysis with unbalanced clusters gives the same improvement factor.

When the right number of clustersk is not known to the clustering algorithm,k is
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also unknown to the active learning scheme. In this case, only EXPLORE is used while

queries are allowed. EXPLORE will keep discovering new clusters as fast as it can. When

it has obtained all the clusters, it will not have any way of knowing this. However, from

this point onwards, for every farthest-firstx it draws from the data set, it will always find

a neighborhood that is must-linked to it. Hence, after discovering all of the clusters, EX-

PLORE will essentially consolidate the clusters too. However, when k is known, it makes

sense to invoke CONSOLIDATE since (1) it adds points to clusters at a faster rate than EX-

PLORE, and (2) it picks random samples following the underlying data distribution, which

is advantageous for estimating good centroids (e.g., Chernoff bounds on the centroid esti-

mates exist, as shown in Eqn. (3.4)), while samples obtainedusing farthest-first traversal

may not have such properties.

5.5 Experiments

In this section, we outline the details of our experiments ontext and UCI data and analyze

the results.

5.5.1 Data sets

In our experiments with high-dimensional text documents, we used the 3 small subsets

of 20-Newsgroups-1000described in Sec. 4.5.1, and20-Newsgroups-100, which was de-

scribed in Sec. 3.5.1. Another data set we used in our experiments is a subset ofClas-
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sic3 (Dhillon & Modha, 2001) containing 400 documents – 100Cranfield documents

from aeronautical system papers, 100Medline documents from medical journals, and

200Cisi documents from information retrieval papers. ThisClassic3-subsetdata set was

specifically designed to create clusters of unequal size, and has 400 points in 2897 dimen-

sions. Similarities between data points in the text data sets were computed using cosine

similarity, and all the text data sets were pre-processed following the methodology outlined

in Sec. 2.5.

For experiments on low-dimensional data, we selected theIris data set described in

Sec. 3.5.1. The Euclidean metric was used for computing distances between points in this

data set. TheIris data set was not pre-processed in any way.

5.5.2 Methodology

For all of the algorithms, on each data set, we generated learning curves with 10-fold cross-

validation, where the x-axis represents the number of pairwise constraints given as input to

the algorithms. For non-active HMRF-KMEANS the pairwise constraints are selected at

random, while for active HMRF-KMEANS the pairwise constraints are selected using our

active learning scheme. For studying the effect of pairwiseconstraints and active learning,

10% of the data set is set aside as the test set at any particular fold. The training sets at

different points of the learning curve are pairwise constraints obtained from the remaining

90% of the data, with increasing number of pairwise constraints being given as input to the

clustering along the learning curve. The clustering algorithm is run on the whole data set,
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and the corresponding objective function is reported. NMI and pairwise F-measure (see

Sec. 2.4) are calculated only on the test set, from which no constraints were supplied. We

also show results for the objective functionJhmrf-kmeans. The results at each point on the

learning curve are obtained by averaging over 10 folds. We did not continue the learning

curve beyond 1000 queries (5000 for20-Newsgroups-100), since the general nature of the

results was evident in this range. Moreover, in practical active learning applications, it is

unrealistic to expect the user to answer even 1000 queries.
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5.5.3 Results and discussion

The results of the experiments are shown in Figs. 5.3-5.17. Since the standard deviations of

NMI, pairwise F-measure and objective function values in the plots were small for all the

data sets, they have not been shown in the plots to reduce clutter.

Choice of w: We experimented with different values of the constraint weight pa-

rameterw. If w is set to 0, the algorithm is initialized with neighborhoodsderived from the

given constraints and then normal KMeans iterations are runtill convergence. This is simi-

lar to the SEEDED-KM EANS algorithm outlined in Sec. 3.2, where the labeled data (seeds)

are used to only initialize the KMeans algorithm and are not used in the following steps of

the algorithm.

If w is set to a very high value, the algorithm is initialized withneighborhoods

derived from the given constraints and the constraints become hard constraints, since the

constraint cost violation component of theJhmrf-kmeansobjective function far supersedes its

distance component. This is similar to the CONSTRAINED-KM EANS algorithm outlined

in Sec. 3.2. In this algorithm, the seeds are also used to initialize the KMeans algorithm.

However, in the subsequent steps, the cluster labels of the seed data are kept unchanged and

only the labels of the non-seed data are re-estimated.

If w is set to an intermediate value, the algorithm gives a tradeoff between mini-

mizing the total distance between points and cluster centroids and the cost of violating the

constraints. In the result plots in Figs. 5.3 and 5.4, HMRF-KMEANS refers to running the
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algorithm with the intermediate value ofw. The parameterw can be chosen by the user

according to the degree of confidence in the constraints, or chosen to be a constant of the

same order as the average similarity (for SP-KMeans) or distance (for Euclidean KMeans)

between pairs of points in the data set. We setw to be 0.001 for the text data sets and 1 for

Iris data set.

Thus, thew parameter acts as a tuning knob, giving us the continuum between

a SEEDED-KM EANS-like algorithm on one extreme, where there is no guarantee of the

constraint satisfaction in the clustering, and a CONSTRAINED-KM EANS-like algorithm on

the other extreme, where the clustering process is forced torespect all the given constraints.

Note that we can selectively guarantee that any particular constraint is satisfied throughout

the clustering iterations, by selecting a very high corresponding cost of constraint violation

for that particular constraint.

The comparative results of active and non-active algorithms obtained for different

values ofw were similar for the data sets considered (see Figs. 5.3 and 5.4). This leads

us to conclude that proper initialization, using the constraints obtained by active learning,

gives much more benefit than satisfying the constraints during the algorithm. This point

is explained in more detail in the discussion below. In Figs.5.6-5.17, we only present the

results for the intermediate value ofw for clarity of the plots.

Objective function results: Let us consider a representative objective function plot

for a text data set clustered using SP-KMeans (Fig. 5.8), forwhich the objective function

increases along the learning curve. For Fig. 5.17, the objective function is decreasing along
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Figure 5.6: Comparison of NMI values on3-News-Different-100
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Figure 5.7: Comparison of pairwise F-measure values on3-News-Different-100
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Figure 5.8: Comparison of objective function on3-News-Different-100
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Figure 5.9: Comparison of NMI values on20-Newsgroups-100
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Figure 5.10: Comparison of pairwise F-measure values on20-Newsgroups-100
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Figure 5.11: Comparison of objective function on20-Newsgroups-100
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Figure 5.12: Comparison of NMI values onClassic3-subset
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Figure 5.13: Comparison of pairwise F-measure values onClassic3-subset

102



0 100 200 300 400 500 600 700 800 900 1000
80

82

84

86

88

90

92

94

96

98

100

Number of Pairwise Constraints

O
bj

ec
tiv

e 
fu

nc
tio

n

Non−active
Active

Figure 5.14: Comparison of objective function onClassic3-subset

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Pairwise Constraints

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Non−active
Active

Figure 5.15: Comparison of NMI values onIris
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Figure 5.16: Comparison of pairwise F-measure values onIris
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Figure 5.17: Comparison of objective function onIris
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the learning curve since simple KMeans with Euclidean distance was used for this data set.

Note that for each objective function plot, the active and non-active schemes have

the same number of must-link and cannot-link constraints atany point on the learning curve,

but the actual constraints they have may be different. The active and the non-active schemes

are allowed to both choose their own sets of constraints, andthe objective function value

after running HMRF-KMEANS clustering depends on this choice. For active HMRF-

KM EANS, the constraints it chooses give it a better initialization(which is discussed in

detail below), resulting in better value of the objective function after running the clustering

algorithm.

Non-active schemes:As shown in Appendix B.2, if the number of random pairwise

constraints is low, the probability that thek neighborhoods chosen for initialization are in

fact fromk different clusters is very low. Until this point on the learning curve, some of the

neighborhoods used to initialize HMRF-KMEANS can actually belong to the same cluster,

so that we may not get representatives from all the clusters.This gives a poor initialization

of HMRF-KMEANS that may cause the algorithm to converge to bad local minima.Conse-

quently, the clustering produced by HMRF-KMEANS can be unstable, resulting in varying

pairwise F-measure and NMI values on the test set. This initial jitter can be observed in all

the Figs. 5.3-5.17. Beyond this point on the learning curve,non-active HMRF-KMEANS

will most likely be initialized with points from each cluster. So after the initial jitter, the

performance of non-active HMRF-KMEANS improves steadily along the learning curve

with respect to objective function, NMI and pairwise F-measure.
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Active schemes:For the active algorithms, we consistently get significant improve-

ments over the non-active algorithms for all data sets we have considered. Firstly, we see

the jitter only in the very early part of the learning curve. This is because the EXPLORE

phase creates only one neighborhood from each cluster and continues untilk pairwise dis-

joint neighborhoods are found, creating all the neighborhoods within a small number of

queries (see Appendix B.3). The jitter is so early in the learning curve that it cannot be

even observed in the plots. In Fig. 5.9, the jitter disappears after about the first 20 queries.

The EXPLORE phase of the active selection algorithm guarantees that thepairwise dis-

joint neighborhoods inferred from the constraints belong to different clusters in the actual

underlying clustering, and so these neighborhoods would give us good initializations for

the clustering algorithm. The CONSOLIDATE phase grows thek pairwise disjoint neigh-

borhoods already created, so that when the active learning scheme runs out of queries,

HMRF-KMEANS is initialized using centroids constructed from good neighborhoods. The

improvement of the active scheme is more pronounced for the difficult high-dimensional

text data sets, e.g., Fig. 5.3-5.14.

From the above results, we conclude that active selection ofpairwise constraints,

using our two-phase active learning algorithm, significantly outperforms random selection

of constraints.

Explore Vs Consolidate: We also ran some ablation experiments, comparing the

performance of the active HMRF-KMEANS scheme with both EXPLORE and CONSOLI-

DATE to active HMRF-KMEANS with EXPLORE only. We ran the ablation experiment on
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Figure 5.18: Comparison of Explore and Consolidate phases w.r.t. NMI on 3-News-
Different-100
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Figure 5.19: Comparison of Explore and Consolidate phases w.r.t. pairwise F-measure on
3-News-Different-100
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Figure 5.20: Comparison of Explore and Consolidate phases w.r.t. objective function on
3-News-Different-100

the3-News-Different-100data set. From the NMI result shown in Fig. 5.18, we can see that

running EXPLORE only in the active learning phase gives improvement over random choice

of constraints, but running both EXPLORE and CONSOLIDATE gives even better results.

So, both EXPLORE and CONSOLIDATE are useful phases of the active learning algorithm.

However when the number of clusters is not known, just using EXPLORE (as recommended

in Sec. 5.4) can give pretty good results, as demonstrated byFig. 5.18.

5.6 Chapter summary

In this chapter, we have presented a new theoretically well-motivated method for actively

selecting good pairwise constraints for semi-supervised clustering. Experiments on text
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and UCI data show that our active learning scheme performs quite well, giving significantly

steeper learning curves compared to random pairwise queries. Both phases of the active

learning algorithm are efficient and hence suitable for real-world clustering applications, as

they can be easily scaled to large and high-dimensional datasets.
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Chapter 6

Related Work

Several semi-supervised classification algorithms have shown improvements in classifica-

tion accuracy over purely supervised algorithms, e.g., co-training (Blum & Mitchell, 1998),

transductive Support Vector Machines (SVMs) (Joachims, 1999), and semi-supervised

EM (Ghahramani & Jordan, 1994; Nigam et al., 2000). In contrast, this thesis discusses

semi-supervised clustering. The following sections outline current and previous research

related to the work presented in this thesis.

6.1 Semi-supervised clustering with labels

In semi-supervised clustering with labeled data, previouswork has been done on the use of

labeled data to aid clustering by modifying clustering objective functions (Demiriz et al.,

1999), and using conditional distributions in an auxiliaryspace (Sinkkonen & Kaski, 2000).
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SEEDED-KM EANS and CONSTRAINED-KM EANS in Chapter 3 use the labeled data to ini-

tialize clustering. Previous work on cluster initialization includes comparisons of data-

dependent and data-independent initialization techniques (Meila & Heckerman, 1998), and

estimation of the modes of the data distribution for good initialization (Fayyad et al., 1998).

The importance of good initialization in clustering is well-known. In partitional cluster-

ing algorithms like EM (Dempster et al., 1977) or KMeans (MacQueen, 1967; Selim &

Ismail, 1984), some commonly used approaches for initialization include simple random

selection, taking the mean of the whole data and randomly perturbing to get initial cluster

centers (Dhillon et al., 2001), or runningk smaller clustering problems recursively to initial-

ize KMeans (Duda et al., 2001). Some other interesting initialization methods include the

Buckshot method of doing hierarchical clustering on a sample of the data to get an initial set

of cluster centers (Cutting, Karger, Pedersen, & Tukey, 1992), running repeated KMeans

on multiple data samples and clustering the KMeans solutions to get initial seeds (Fayyad

et al., 1998), and selecting thek densest intervals along each co-ordinate to get thek clus-

ter centers (Bradley, Mangasarian, & Street, 1997). Our approach is different from these

because we use labeled data to get good initialization for clustering.

6.2 Semi-supervised clustering with constraints

Previous research in semi-supervised clustering with constraints focus on either constraint-

based or distance-based semi-supervised clustering. COP-KMeans is a constraint-based
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clustering algorithm that has a heuristically motivated objective function (Wagstaff et al.,

2001). On the other hand, the model of semi-supervised clustering presented in Chapter 4

has an underlying probabilistic model based on Hidden Markov Random Fields. Bansal et

al. (Bansal, Blum, & Chawla, 2002), Blum et al. (Blum, Lafferty, Rwebangira, & Reddy,

2004) and Charikar et al. (Charikar, Guruswami, & Wirth, 2003) also propose frameworks

for pairwise constrained clustering, but their model performs clustering using only the con-

straints; in comparison, HMRF-KMEANS uses both constraints and an underlying distor-

tion measure between the points during semi-supervised clustering.

Research on distance-based semi-supervised clustering with pairwise constraints in-

cludes the work of Cohn et al. (Cohn et al., 2003), who used gradient descent for weighted

Jensen-Shannon divergence in the context of EM clustering;Xing et al. (Xing et al., 2003)

utilized convex optimization and iterative projections tolearn a Mahalanobis distance for

K-Means clustering; the Redundant Component Analysis (RCA) algorithm used only must-

link constraints to learn a Mahalanobis distance using convex optimization (Bar-Hillel et al.,

2003). Other methods include training a string-edit distance using Expectation Maximiza-

tion (EM) (Bilenko & Mooney, 2003), modification of the squared Euclidean distance using

the shortest-path algorithm (Klein et al., 2002), learninga margin-based clustering dis-

tortion measure using boosting (Hertz et al., 2004), and learning a distance metric trans-

formation that is globally linear but locally non-linear (Chang & Yeung, 2004). Spectral

learning (Kamvar, Klein, & Manning, 2003) is another methodthat utilizes supervision to

transform the clustering distance measure using spectral methods. All of these distance-
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learning techniques for clustering train the distance measure first using only supervised

data, and then perform clustering on the unsupervised data.In contrast the unified HMRF-

based semi-supervised clustering model, discussed brieflyin Chapter 7, integrates distance

learning with the clustering process, and utilizes both supervised and unsupervised data to

learn the distortion measure.

A model for semi-supervised clustering with constraints was proposed by Segal

et al. (Segal et al., 2003a). This model is aMarkov networkthat combines a binary Markov

network derived from pairwise protein interaction data anda Naive Bayes Markov network

modeling gene expression data. The HMRF framework proposedin this thesis generalizes

that formulation by extending it to work with a broad class ofclustering distortion measures,

including Bregman divergences and cosine distance. In comparison, the formulation of

Segal et al. considers only a Gaussian cluster conditional probability distribution, which

corresponds to having Mahalanobis distance as the underlying clustering distance measure.

The HMRF-KMEANS algorithm is related to the EM algorithm for HMRF model-

fitting proposed by Zhang et al. (Zhang et al., 2001). The discussion of the HMRF-

EM algorithm was also restricted only to Gaussian conditional distributions, which has

been generalized in HMRF-KMEANS. Other recent research on constrained clustering

includes variational techniques for constrained clustering using a graphical model (Hiu

et al., 2005), model-level constraints to uncover multipleconstraints in a dataset (Gondek,

Vaithyanathan, & Garg, 2005), and feasibility studies for clustering under different types of

constraints (Davidson & Ravi, 2005).

113



6.3 Active learning for constraint acquisition

Active learning in the classification framework is a long-studied problem, where differ-

ent principles of query selection have been studied, e.g., reduction of the version space

size (Freund, Seung, Shamir, & Tishby, 1997), reduction of uncertainty in predicted la-

bel (Lewis & Gale, 1994), maximizing the margin on training data (Abe & Mamitsuka,

1998), finding high variance data points by density-weighted pool-based sampling (Mc-

Callum & Nigam, 1998), etc. However, active learning techniques in classification are not

applicable in the clustering framework, since the basic underlying concept of reduction of

classification error and variance over the distribution of examples (Cohn, Ghahramani, &

Jordan, 1996) is not well-defined for clustering. In the unsupervised setting, Hofmann et

al. (Hofmann & Buhmann, 1998) consider a model of active learning which is different from

ours – they have incomplete pairwise similarities between points, and their active learning

goal is to select new data, using expected value of information estimated from the exist-

ing data, such that the risk of making wrong estimates about the true underlying clustering

from the existing incomplete data is minimized. In contrast, our model assumes that we

have complete similarity information between all pairs of points and pairwise constraints

whose violation cost is a component of the objective function, and the active learning goal

is to select pairwise constraints which are most informative about the underlying clustering.

Klein et al. (Klein et al., 2002) also consider active learning in semi-supervised clustering,

but instead of making example-level queries they make cluster level queries, i.e., they ask
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the user whether or not two whole clusters should be merged. Answering example-level

queries rather than cluster-level queries is a much easier task for a user, making our model

more practical in a real-world active learning setting.
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Chapter 7

Other Results in Semi-supervised

Clustering

In this chapter, we present some interesting problems related to semi-supervised clustering

that have not been discussed so far in this thesis and presentsome ideas of future research

in some of these areas. Most of the work presented in this chapter was done in collaboration

with other researchers at the University of Texas at Austin.

7.1 Unified model for constrained semi-supervised clustering

We developed a generalization of HMRF-KMEANS that incorporatesbothdistortion mea-

sure learning and the use of pairwise constraints in a principled manner (Basu et al., 2004).

This was done by using parameterized distortion measures that can be adapted to specific
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datasets: in this method, the distortion measure parameters are updated in the M-step of

the algorithm during the clustering iterations, in order toget a learned measure that puts

must-linked points closer together and pulls cannot-linked points further apart.

Previous distance-based semi-supervised clustering algorithms exclude unlabeled

data from the distortion measure learning step, as well as separate distance learning from

the clustering process (see Sec. 1.3.2). Also, existing distance-based methods use a single

distance metric for all clusters, forcing them to have similar shapes. The unified HMRF-

KM EANS algorithm is able to perform distance learning with each clustering iteration,

utilizing both unlabeled data and pairwise constraints. Itallows violation of constraints

if it leads to a more cohesive clustering, whereas earlier constraint-based methods forced

satisfaction of all constraints, leaving them vulnerable to noisy supervision. The algorithm

is also able to learn individual distortion measures for each cluster, which permits clusters

of different shapes.

7.2 Semi-supervised graph-based clustering

Since pairwise constraints are a natural form of supervision for data sets represented in the

form of a graph, an interesting problem in clustering is the study of how to incorporate

pairwise constraints into a graph clustering (a.k.a. graphpartitioning) algorithm, wherein

the nodes of the graph are partitioned into sets based on someobjective criterion defined

over the graph edges (Chan, Schlag, & Zien, 1994; Shi & Malik,2000). We have recently
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proposed a semi-supervised clustering algorithm that can work on both vector-based and

graph-based data sets (Kulis, Basu, Dhillon, & Mooney, 2005). In this work, we use a

recent theoretical connection between kernelk-means and several graph clustering objec-

tives, which enables us to perform semi-supervised clustering of data given either as vectors

or as a graph. For vector data, our approach generalizes the HMRF-KMEANS algorithm

for squared Euclidean distance to work with kernels, which enables it to find clusters with

non-linear boundaries in the input data space. For graph data, we show that recent work on

spectral learning (Kamvar et al., 2003) may be viewed as a special case of our formulation.

This result currently shows the connection between spectral objective functions for

graph partitioning and the corresponding vector-based clustering using only squared Eu-

clidean distance as the clustering distortion measure for the vector data. In the future, we

want to extend this and show the equivalence between spectral clustering and kernel-based

KMeans clustering for any regular Bregman divergence defined between the input vectors.

7.3 Semi-supervised overlapping clustering

While the vast majority of clustering algorithms are partitional, many real world datasets

have inherently overlapping clusters. The recent explosion of analysis on biological datasets,

which are frequently overlapping, has led to new clusteringmodels that allow hard assign-

ment of data points to multiple clusters. One particularly appealing model was proposed

by Segal et al. (Segal, Battle, & Koller, 2003b) in the context of probabilistic relational
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models (PRMs) applied to the analysis of gene microarray data. In recent work with other

researchers at the University of Texas at Austin, we startedwith the basic approach of Segal

et al. and proposed an alternative interpretation of the model as a generalization of mix-

ture models, which makes it easily interpretable (Banerjee, Krumpelman, Basu, Mooney, &

Ghosh, 2005). While the original model maximized likelihood over constant variance Gaus-

sians, we generalize it to work with any regular exponentialfamily distribution, and cor-

responding Bregman divergences, thereby making the model applicable for a wide variety

of clustering distance functions, e.g., KL-divergence, Itakura-Saito distance, I-divergence.

The general model is applicable to several domains, including high-dimensional sparse do-

mains, such as text and recommender systems. We additionally offer several algorithmic

modifications that improve both the performance and applicability of the model.

An interesting problem to consider in the case of overlapping clustering is how to

handle prior knowledge, e.g., pairwise interactions in theDatabase of Interacting Proteins

(DIP) can be used as constraints while performing overlapping clustering of gene data sets.

Moreover, the background knowledge in certain domains (e.g., biology) are available from

multiple heterogeneous sources with varying degrees of coverage and noise, which have to

be integrated using a robust algorithm. We want to investigate both these problems in our

future work.
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7.4 Model selection in semi-supervised clustering

The HMRF model also assumes that the right number of clustersis given as an input –

in the future, we want to select the number of clusters automatically by incorporating a

model selection criterion into the HMRF objective function. Several model selection criteria

exist in the literature for selecting the right number of clusters. Criteria like Minimum

Description Length (Rissanen, 1978), Bayesian Information Criterion (Pelleg & Moore,

2000) or Minimum Message Length (Wallace & Lowe, 1999) encode the Occam’s Razor

principle in some form, penalizing models according to their model complexity. These

criteria can be directly incorporated into the HMRF-KMEANS objective function.

Another interesting model selection technique for clustering that we want to in-

vestigate is the PAC-MDL method (Banerjee & Langford, 2004). The PAC-MDL method

defines a prediction accuracy model from a clustering; it then trades off between the accu-

racy of the clustering prediction on the provided labeled (training) data versus the model

description length of the clustering, with the goal of getting better prediction accuracy on

future unknown (test) data. We have some ideas on how to extend the PAC-MDL model

to work with supervision provided in the form of constraintsinstead of labeled data, which

can then be naturally applied to the HMRF-KMEANS model of constrained clustering.
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Chapter 8

Future Work

In this chapter, we outline potential future work related tothe problems that we discussed

in Chapters 3, 4 and 5 of this thesis.

8.1 Label-based semi-supervised clustering

In semi-supervised classification, all classes are assumedto be known a priori and labeled

training data is provided for all classes. In labeled semi-supervised clustering, when we

consider clustering a dataset that has an underlying class labeling, we would like to consider

incomplete seeding – where labeled data are not provided forevery underlying class. For

such incomplete semi-supervision, we would like to see if the labels on some classes can

help the clustering algorithm discover the unknown classes. An example of class discovery

using incomplete seeding is provided in the Fig. 8.1. Given the points in Fig. 8.1, if we are
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asked to do a 2-clustering, we can get a clustering as shown inFig. 8.1. Now, if we give

as input a pair of points labeled to be in the same cluster (shown by the annular points in

Fig. 8.2), we will get a clustering as in Fig. 8.2. In this case, even though we did not provide

any supervision about the top cluster, clustering using theprovided supervision helped us

to discover that cluster.

Figure 8.1: Clustering of a sample data set into 2 clusters

Figure 8.2: Incomplete seeding and class discovery
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Initial experiments for class discovery under incomplete seeding were considered

in Sec. 3.5, where seeds were not provided for different categories and the NMI measure

was calculated on the whole test dataset. In the future, we want to perform more detailed

experiments on real domains (e.g., biology) where incomplete supervision is present, with

the expectation that in these tasks the semi-supervised clustering algorithm will be able to

discover the categories for which no supervision was provided. We also want to come up

with a theoretically well-motivated model for class discovery for semi-supervised clustering

with labels, similar to the work of Miller et al. (Miller & Browning, 2003).

8.2 Constraint-based semi-supervised clustering

Some aspects of our current clustering model (e.g., initialization in HMRF-KMEANS, EX-

PLORE phase in active learning) assume that the constraints are consistent, i.e., there is no

noise in the constraints. An interesting area of future workwould be on incorporating a

noise model into our HMRF framework, so that it is able to handle noisy constraints. This

would involve some changes to the algorithm, e.g., not adding the inferred constraints be-

tween neighborhoods in the initialization step of HMRF-KMEANS, selectively rejecting

points using a noise model in the EXPLORE stage of the active learning algorithm, etc.

On a different note, using constraints as supervision has been lately studied in the

context of both discriminative classification (Kumar & Hebert, 2003; Yan, Zhang, Yang,

& Hauptmann, 2004) and discriminative clustering (Xu, Neufeld, Larson, & Schuurmans,
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2005). We want to explore the possibility of training discriminative graphical models for

semi-supervised clustering for getting better clusteringaccuracy.

8.3 Active learning for semi-supervised clustering

The EXPLORE stage of the active learning scheme is currently sensitive to outliers in the

data, since the farthest-first traversal can select outliers in the data that do not give much

information about the underlying cluster structure, thereby wasting queries during the active

learning process. Outlier sensitivity can be handled by density-weighted point selection in

EXPLORE, where we could have a modified farthest-first traversal thatselects distant points

from dense regions of the data space (McCallum & Nigam, 1998). Such a formulation of

active learning would be more robust to outliers, and can be used with more outlier-robust

clustering algorithms, e.g., KMedian (Mirchandani & Francis, 1990).
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Chapter 9

Conclusions

In this thesis, the focus of our research was on semi-supervised clustering, where we study

how prior knowledge, gathered either from automated information sources or human super-

vision, can be incorporated into clustering algorithms. Wepresented probabilistic models

for semi-supervised clustering, developed algorithms based on these models and empir-

ically validated their performances by extensive experiments on data sets from different

domains, e.g., text analysis, hand-written character recognition, and bioinformatics.

We proposed a methodology for incorporating supervision inthe form of labeled

data into clustering using a well-defined EM framework. The two proposed algorithms,

SEEDED-KM EANS and CONSTRAINED-KM EANS, use labeled data to form initial clusters

and constrain subsequent cluster assignment. Both methodscan be viewed as instances

of the EM algorithm, where labeled data provides prior information about the conditional

distributions of hidden category labels. This interpretation of the semi-supervised clus-
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tering algorithms enables us to prove convergence guarantees of both these iterative al-

gorithms. Experimental results clearly demonstrate the advantages of these methods over

standard random seeding and COP-KMeans (Wagstaff et al., 2001), an alternative semi-

supervised KMeans algorithm. In particular, experiments with simulated noise demon-

strated that SEEDED-KM EANS is quite robust to noise in the supervised data.

For supervision provided in the form of pairwise must-link and cannot-link con-

straints, which are more natural in certain clustering tasks, we proposed a generative prob-

abilistic framework for semi-supervised clustering with constraints. It uses the model of a

Hidden Random Markov Field (HMRF) to utilize both unlabeleddata and supervision in the

form of constraints during the clustering process. The framework is very general and can be

used with a wide variety of clustering distortion (distance) measures, including Bregman di-

vergences (e.g., squared Euclidean distance, KL divergence) and directional distances (e.g.,

cosine distance, Pearson’s correlation). We presented an algorithm, HMRF-KMEANS, for

performing clustering in this framework – it incorporates supervision in the form of pair-

wise constraints in both the initialization and cluster assignment stages of the clustering

algorithm. In order to demonstrate the effectiveness of each step of the HMRF-KMEANS

algorithm, we performed ablation experiments. Particularinstantiations of the algorithm

gave improved performance for different distortion measures: squared Euclidean distance

worked well for clustering low-dimensional UCI data sets, while KL divergence and co-

sine distance outperformed the individual ablations whileclustering high-dimensional di-

rectional text data sets.
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In a real-life interactive query-driven semi-supervised clustering framework, one

challenge is how to acquire pairwise constraints (via queries to the user) that are most

helpful to the underlying clustering process. We presenteda new active learning method

for acquiring supervision from a user in the form of effective pairwise constraints for semi-

supervised clustering, which to our knowledge is the first active learning algorithm for

constrained clustering. This algorithm has two phases, EXPLORE and CONSOLIDATE, and

we empirically demonstrate how both the phases have their utility in the active learning

process.

For all the problems mentioned above, we empirically evaluated the effectiveness

of our semi-supervised clustering algorithms by detailed experiments on different domains,

both low-dimensional (e.g., handwritten character recognition data sets) and high-dimensional

(e.g., text documents). Our experiments conclusively demonstrate that using either labeled

supervision or pairwise constraints substantially improve the clustering accuracy on differ-

ent domains, and that our active learning algorithm is able to acquire informative constraints

very effectively.

We also discussed other interesting problems of semi-supervised clustering that we

studied in collaboration with other researchers, namely (1) integration of both constraint-

based and distance-based semi-supervised clustering methods using the HMRF model, (2)

semi-supervised graph-based clustering using kernels, (3) using prior knowledge to improve

overlapping clustering of data, and (4) model selection techniques that use the available

supervision to automatically select the right number of clusters.
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Overall, the research presented in this thesis has made significant contributions in

theoretically and empirically characterizing semi-supervised clustering, which has become

a research topic of significant interest lately. In the general learning setting, the work in this

thesis plays an important role in investigating the continuum between completely super-

vised classification and unsupervised clustering. In the last decade, semi-supervised classi-

fication algorithms, which try to improve the performance ofclassification algorithms using

unlabeled data, had been getting considerable attention from machine learning researchers.

This thesis takes a different viewpoint of the supervised-unsupervised continuum and looks

at another important aspect of semi-supervised learning, namely how to incorporate limited

supervision into unsupervised clustering.

The work in this thesis shows how prior knowledge available as labeled data or

constraints, which are naturally available in many clustering tasks, can be incorporated into

various clustering algorithms. As shown by both theoretical results and empirical evidence,

the proposed semi-supervised clustering algorithms give improved performances for vari-

ous domains, e.g., web search, biometrics, biological dataanalysis. The research in this

thesis would therefore be useful to a large community of clustering practitioners working

in different domains. Looking ahead, the algorithms proposed in this thesis and by other

researchers working on semi-supervised clustering would become useful tools in the tool-

boxes of machine learning researchers in the years to come.
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Appendix A

Global inference techniques for

E-step ofHMRF-KM EANS

In this appendix, we present two global approximate inference techniques for collective

assignment of data points to clusters in the E-step of HMRF-KMEANS: belief propagation

(BP) and linear programming (LP) relaxation (Basu, Bilenko, & Mooney, 2003).

A.1 Belief propagation approach

A global joint assignment of the points to clusters that (locally) minimizes the objective

functionJhmrf-kmeanscan be found by performing approximate inference on the HMRFusing

belief propagation (Pearl, 1988). This approach is similarto the technique used by Segal et

al. (Segal et al., 2003a).
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To implement the message passing algorithm for approximateinference on the

HMRF, we represent the HMRF as a factor graph model (Kschischang, Frey, & Loeliger,

2001). The sum-product/max-product algorithm on the factor graph model has been shown

to be a generalization of several well known inference algorithms on graphical models. In-

terpreting the HMRF model as a factor graph enables us to perform belief propagation on

the HMRF using the max-product message passing algorithm onthe corresponding factor

graph.

The factor graph corresponding to the example HMRF in Figure4.1 is shown in

Figure A.1. The factor graph has the following components:

(1) n variable nodesfxign
i=1 representing the data points.

(2) n factor nodesfDign
i=1 that encode the distance potential components of the

objective function. Each distance factor nodeDi has an edge connecting it to the corre-

sponding variable nodexi , and a table containing different values of the distance potential

function. This table has an entry for each possible cluster assignment of the variable; the

jth entry is exp(�d), whered is the distance from theith point to the jth cluster.

(3) jCMLj factor nodesfMigjCML j
i=1 andjCCLj factor nodesfCigjCCLj

i=1 , which respectively

encode the cost of violating the must-link and cannot-link constraints. There is one factor

node for each constraint, which is linked by edges to the 2 variable nodes involved in that

constraint.

The constraint potential table associated with each constraint factor node maps a

set ofk2 value-pairs (corresponding to possible cluster assignments to the pair of points in
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Figure A.1: Factor graph for the HMRF in Figure 4.1

the constraint) to potential values. For the factor node encoding the must-link constraint

betweenxi andx j , the potential value for the entry(yi ;y j) in the constraint potential table

is 1 if yi = y j , i.e., xi andx j have the same cluster assignments. Ifyi 6= y j , the potential

value is exp(�wi j ), wherewi j is the weight of the constraint. Similarly, for the cannot-link

factor nodes, the potential tables have values of 1 for the entry (yi ;y j) whereyi 6= y j , and

exp(�wi j ) if yi = y j .

Finding the collective assignment of points to minimizeJhmrf-kmeansin the E-step

corresponds to running the max-product message-passing algorithm on the factor graph (Kschis-

chang et al., 2001). Once the message-passing algorithm converges, the cluster assignment

for each data point is obtained from the value in the corresponding variable node.

A.2 Linear programming relaxation approach

The task of finding an assignment of instances to clusters to minimize the objective function

can be posed as an integer programming problem. Such a formulation has been proposed
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by Kleinberg and Tardos in the context of the generalmetric labelingproblem, where they

considered the cost of assigning labels to instances while attempting to satisfy a set of

must-link pairwise constraints (Kleinberg & Tardos, 1999). We extend this formulation to

include cannot-link constraints, which allows using it forassigning instances to clusters in

the E-step of HMRF-KMEANS.

LetU = fuihg, i = 1; : : : ;n, h= 1; : : : ;k, be a set of nonnegative binary variables that

encode membership of instances in clusters:uih = 1 signifies that theith instance belongs

to the hth cluster. Sets of nonnegative binary variablesU (M) = fu(M)
i gjCMLj

i=1 andU (C) =fu(C)i gjCCLj
i=1 encode violations of must-link and cannot-link pairwise constraints respectively.

Eachu(M)
k = 1 signifies that thekth must-link pairwise constraintek = (xk1;xk2) is violated,

while u(C)k = 1 signifies that thekth cannot-link pairwise constraintek = (xk1;xk2) is violated.

The objective function to be optimized in the E-step of HMRF-KM EANS then becomes:

Jhmrf-kmeans= ∑
xi2X

∑
h2L

D(xi ;µh) uih + ∑(xk1;xk2)2CML

wku
(M)
k + ∑(xk1;xk2)2CCL

wku
(C)
k ; (A.1)

whereL = f1; : : : ;kg. Assigning each instance to only one cluster imposes the following

linear constraint on variables inU :

∑
h2L

uih = 1; xi 2 X: (A.2)

Also, consistency of pairwise constraint violation variables inU (M) andU (C) with the as-
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signment variables inU requires satisfaction of the following linear constraints:

u(M)
k = 1

2 ∑
h2L

juk1h�uk2hj;ek = (xk1;xk2) 2CML;
u(C)k = 1� 1

2 ∑
h2L

juk1h�uk2hj;ek = (xk1;xk2) 2CCL: (A.3)

These constraints can be expressed in a linear program by replacing variablesU (M) and

U (C) with corresponding sets of auxiliary variablesZ(M) andZ(C), wherez(M)
kh = 1 iff the

kth must-link pairek = (xk1;xk2) is violated and eitherxk1 or xk2 is assigned tohth cluster.

Semantics ofz(C)kh are similar:z(C)kh = 1 iff kth cannot-link pairek = (xk1;xk2) is violated and

bothxk1 andxk2 are assigned tohth cluster. Variables inU (M) andU (C) can be expressed via

variables inZ(M) andZ(C) as follows:

u(M)
k = 1

2 ∑
h2L

z(M)
kh ; ek = (xk1;xk2) 2CML;

u(C)k = ∑
h2L

z(C)kh ; ek = (xk1;xk2) 2CCL: (A.4)

Consistency of assignment variables inU with pairwise constraint violation variables in

Z(M) andZ(C) can then be achieved by introducing the following linear constraints:
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z(M)
kh � uk1h�uk2h; ek = (xk1;xk2) 2CML (A.5)

z(M)
kh � uk2h�uk1h; ek = (xk1;xk2) 2CML (A.6)

z(C)kh � uk1h+uk2h; ek = (xk1;xk2) 2CCL (A.7)

z(C)kh � uk1h+uk2h�1; ek = (xk1;xk2) 2CCL: (A.8)

Minimization of objective function Eqn. (A.1) under the constraints Eqn. (A.2) and Eqns. (A.5)-

(A.8) to solve for binary variablesU , Z(M), andZ(C) is NP-hard. Kleinberg and Tardos pro-

posed a linear programming relaxation of this integer programming problem by allowing

U , Z(M), andZ(C) to be non-negative real numbers, and provided a randomized method for

rounding the real solution to the linear program to integers(Kleinberg & Tardos, 1999). We

follow their approach, which allows us to perform collective assignment of all instances in

X to cluster centroids.
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Appendix B

Active learning for constraint

acquisition

In this appendix, we provide some analysis of the 2-phase active learning algorithm pre-

sented in Chapter 5.

B.1 Model assumptions

First of all, we present the formal model of the dataset basedon which the analysis of active

learning will be done. The data is assumed to be coming fromk disjoint uniform density

balls of unequal size in a metric space. The balls are defined in terms of the metric. All

data points inside any particular ball are assumed to be in the same cluster, and points from

different balls are assumed to be from different clusters. The oracle is assumed to know
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this model. Letn be the total number of points under consideration. Letfπhgk
h=1 be the

probabilities of drawing a point randomly from thehth ball Bh. Without loss of generality,

we assumeπ1 � π2 � �� � � πk. Further, let 1=l � π1. Let mh be the number of points in the

dataset fromBh. Then,πh = mh=n andπh ∝ Vh, the volume ofBh, 8h. Now, the number

of possiblecannot-linksis ∑fh;l ;h<lg mhml and the number ofmust-linksis ∑h

�mh
2

�
. Let

α = ∑fh;l ;h<lg mhml=∑h

�mh
2

�
.

B.2 Analysis of random initialization

We argue that within a small number of random queries, the probability of getting even a 3-

point neighborhood from any cluster is very low. GivenQ pairs at random, on average there

will be onemust-linkin every(1+α) pairs. Hence, there will be a total ofQ=(1+α) must-

link pairs in the expected behavior. Then, for thehth cluster, there will berh = πhQ=(1+
α)�mh must-linkpairs on average. We focus on a particular clusterBh on whichrh pairs

have been selected at random. The size of the cluster ismh = n=k. We will not get a 3-point

neighborhood fromBh if none of the pointsx2Bh gets drawn more than once in the random

pair sampling. If the sampling ofrh pairs is replaced by the sampling of 2rh vertices without

replacement, the probability of getting a vertex twice is increased. Hence, the probability

ph of notgetting a 3-point neighborhood is lower bounded by the probability of not getting
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a vertex twice in the vertex sampling setting. So,

ph � ∑
∑l βl=2rh
βl<2;8l

�
2rh

β1 � � � βmh

��
1

mh

�2rh= 1��1� 1
mh

� ��1� 2
mh

� � � ��1� 2rh�1
mh

�� �
1� 2rh

mh

�2rh � 1� 4r2
h

mh
= 1� 4mhQ2

n2(1+α)2

which is close to 1 for small values ofQ. Hence, the probability of getting 3-point neighbor-

hoods is very low. Therefore, the initialization is essentially done byk random draws from

a set of approximatelyQ=(1+α) 2-point neighborhoods. In this setting, the probability of

getting exactly one neighborhood from each cluster is

k!
k

∏
h=1

πh � k!
kk = p

2πk
ek (1+ 1

12k
+O( 1

k2))
using the AM-GM inequality and the Stirling’s formula. Clearly, the probability is quite

low. This results in significant variance in the initializing neighborhoods and explains the

initial jitter for the non-active algorithms for low valuesof Q.

B.3 Analysis ofEXPLORE

Given 2 balls of unequal size, we will now try to see how many farthest-first traversals will

be required to get atleast one point from each ball.
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In the worst case, if the disjoint balls are placed by an adversary, the adversary will

try to place the balls such that getting a point from at least one ball is very difficult. One can

show that the optimum strategy for the adversary will be to make the smaller ball difficult

to reach. Using a packing argument, we show that irrespective of the placement of the balls,

the farthest first traversal cannot avoid any particular ball for long. Consider two ballsb;B
with probabilitiesπb;πB. Let rb; rB be the radii of the two balls, andVb;VB be the volumes

of the two balls. Further, letσb(B) denote the packing number ofB with b balls — the

maximum number of disjointb balls that can be packed inside the ballB. Now, if there

are just these two balls in the universe and if farthest-firsttraversal starts inB, the points

obtained fromB before enteringb must have pairwise distances (between their centers) of

at least 2rb, because otherwise the traversal would have picked the farthest point fromb

and got a distance of at least 2rb. Hence, the traversal cannot stay inB for more thatσb(B)
farthest-first jumps because there are exactly these many points insideB that can be at a

distance of at least 2rb from each other. Now, the packing numberσb(B)�VB=Vb = πB=πb,

the ratio of their probabilities. So, the farthest first traversal will atmost stay in the larger

ball for atmostπB=πb = (1�πb)=πb = 1=πb�1� `�1 jumps before being forced to pick

a point from the smaller ball. So, the farthest-first scheme is sure to get one point from each

of the balls in at most̀ traversals.

We are currently working on extending this argument to the general case ofk balls.
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