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1 Introduction

We rank everything. We rank movies, bands, songs, racing cars, politicians, professors, sports

teams, the plays of the day. We want to know “who’s number one?” and who isn’t. As a lo-

cal sports writer put it, “Rankings don’t mean anything. Coaches continually stress that fact.

They’re right, of course, but nobody listens. You know why, don’t you? People love polls.

They absolutely love ’em” (Woodling, December 24, 2004, p. 3C). Some rankings are just for

fun, but people at the top sometimes stand to make a lot of money. A study of films released

in the late 1970s and 1980s found that, if a film is one of the 5 finalists for the Best Picture

Oscar at the Academy Awards, the publicity generated (on average) generates about $5.5 mil-

lion in additional box office revenue. Winners make, on average, $14.7 million in additional

revenue (Nelson et al., 2001). In today’s inflated dollars, the figures would no doubt be higher.

Actors and directors who are nominated (and who win) should expect to reap rewards as well,
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since the producers of new films are eager to hire Oscar-winners.

This chapter is about the procedures that are used to decide who wins and who loses. De-

veloping a ranking can be a tricky business. Political scientists have, for centuries, wrestled

with the problem of collecting votes and moulding an overall ranking. To the surprise of un-

dergraduate students in both mathematics and political science, mathematical concepts are at

the forefront in the political analysis of voting procedures. Mathematical tools are important in

two ways. First, mathematical principles are put to use in the scoring process that ranks the al-

ternatives. Second, mathematical principles are used to describe the desired properties of a vot-

ing procedure and to measure the strengths and weaknesses of the procedures. Mathematical

concepts allow us to translate important, but vague, ideas like “logical” and “fair” into sharp,

formally defined expressions that can be applied to voting procedures.

In this chapter, we consider a number of example voting procedures and we discuss their

strengths and weaknesses.

2 Mathematical concepts

2.1 Transitivity.

Real numbers are transitive. Every school child knows that transitivity means that

If x > y and y > z, then x > z (1)

The symbol > means “greater than” and ≥ means “greater than or equal to.” Both of these

are transitive binary relations. “Binary” means only two numbers are compared against each

other, and transitivity means that many number can be linked together by the binary chain. For

example, we can work our way through the alphabet. If a > b, and b > c, and ... x > y, then

a > z.

If a , b, and c represent policy proposals or football teams being evaluated, we expect that
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voters are able to make binary comparisons, declaring that one alternative is preferred to an-

other, or that they are equally appealing. The parallel between “greater than” and “preferred

to” is so strong, in fact, that we use the symbol � to represent “preferred to.” The subscript i

indicates that we are talking about a particular voter, so x �i y means that voter i prefers x to

y and x �i y means that x is as good as y. If i is indifferent, we write x ≈i y.

Using the binary relations �i and �i, it is now possible to write down the idea of transi-

tive preferences. If a person’s preferences are transitive, the following holds:

If x �i y and y �i z, then x �i z (2)

This can be written more concisely as

x �i y �i z (3)

According to William Riker, a pioneer in the modern mathematical theory of voting, tran-

sitivity is a basic aspect of reasonable human behavior (Riker, 1982). Someone who prefers

green beans to carrots, and also prefers carrots to squash, is expected to prefer green beans to

squash. One of the truly surprising–even paradoxical–problems that we explore in this chap-

ter is that social preferences, as expressed through voting procedures, may not be transitive.

The procedure of majority rule, represented by the letter M , can compare alternatives so that

x �M y, y �M z, and yet x does not defeat z in a majority election. The fact that individu-

als may be transitive, but social decision procedures are not, has been a driving force in voting

research.

2.2 Ordinal versus Cardinal Preferences

If x �i y, we know that x is preferred to y, but we don’t know by “how much.” These are

called ordinal preferences because they contain information only about ordering, and not mag-

nitude. Can the magnitude of the difference be measured? The proponents of an alternative
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model, called cardinal preferences, have developed ingenious mathematical techniques to mea-

sure preferences.

The proponents of ordinal preferences argue that all of the information about the tastes

of the voters that is worth using is encapsulated in a statement like x �i y. Even if we could

measure the gap in the desirability between x and y in the eyes of voter i, it would still not

solve the problem that the gaps observed by voters i and j would not be comparable. There is

no rigorous, mathematically valid way to express the idea that i likes policy x “twice as much”

as voter j, even though such an interpersonal comparison is tempting. As a result, the ordinal-

ists argue that no voting procedure should be designed with the intention of trying to measure

“how much” more attractive x is than y. Only the ranking should be taken into account.

The approaches based on cardinal preferences offer the possibility of very fine-grained

and, at least on the surface, precise social comparisons. If we had a reliable measure of pref-

erences on a cardinal scale, perhaps it would be possible to say that x is .3 units more appeal-

ing than y. The most widely used method of deriving these preferences is the Von Neumann-

Morgenstern approach which is used in game theory (see chapter X). The theory that justifies

the measurement techniques is somewhat abstract and complicated. Even in a laboratory set-

ting, these preferences have proven difficult to measure reliably.

For whatever reasons, almost all voting procedures in use in the world today employ or-

dinal methods. We ask voters to declare their favorite or to rank the alternatives first, sec-

ond, and third. As we discuss the weaknesses of various voting methods, readers will often

be tempted to wonder if the use of cardinal preference information might lead to an easy fix.

We believe that such quick fixes are unlikely to be workable, but they are often very interest-

ing. The fact that one cannot compare preference scores across individual voters should never

be forgotten, because many proposals implicitly assume that such comparisons are meaningful.

6



XX.2 Exercises

1. Consider 3 lunch items, steak, fish, and eggplant. If Joe prefers steak to fish, we write

steak �Joe fish. Joe also prefers fish to eggplant. If Joe’s preferences are transitive,

should we conclude steak �Joe eggplant or eggplant �Joe steak.

2. Suppose Joe tells us steak �Joe fish and steak �Joe eggplant. Can we say whether

steak �Joe fish or fish �Joe steak?

3 The Plurality Problem

By far the most commonly used election procedure in the United States is simple plurality

rule. Each eligible voter casts one vote and the winner is the candidate that receives the most

votes. In terms borrowed from horse racing, it is sometimes called a “first past the post” pro-

cedure. The winner need only have more support than the second-placed competitor. This

method is used in elections in other countries (e.g., Great Britain) and it is the method of bal-

loting used in the selection of winners of the prestigious Oscar Awards, which are offered by

the Academy of Motion Picture Arts and Sciences.

3.1 Two Candidates? No Problem!

If there are only two candidates, then the plurality rule is a good method of choice. It is, in

fact, equivalent to majority rule. Suppose the alternatives are x and y and the voters are N =

{1, 2, 3, ..., n}. Voters for whom x �i y will vote for x. In majority rule, an alternative with

the support of more than one half of the voters is the winner. Using the notation |{i ∈ N : condition}|

to indicate “number of elements in N for which condition is true”, majority rule is stated as:

|{i ∈ N : x �i y}|

n
>

1

2
implies x �M y (4)
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The voters who oppose x, y �i x, or are indifferent, x ≈i y, are viewed as the opposition.

In contrast, under plurality rule, which we label P , the candidate that is preferred by a greater

number of voters wins. Plurality rule is formally defined as

|{i ∈ N : x �i y}| > |{i ∈ N : y �i x}| implies x �P y (5)

Note this ignores indifferent voters. In contrast, in a majority system, the indifference is treated

as opposition. If indifferent voters exist, but they abstain from voting, then plurality and major-

ity again coincide. Only if indifferent voters are given a way to register their indifference, such

as casting a “tie” vote, will the two methods diverge.

There is a mathematical proof of the superiority of majority rule known as May’s Theo-

rem (May, 1952). Many people have been confused by the fact that May is actually discussing

the system that we have defined as plurality rule. In the system that May calls majority rule,

votes in favor of two alternatives are collected and the one with the most favorable votes wins

(the indifferent voters are not counted as opposition). May’s theorem states that when there are

two alternatives, majority (what we call plurality) rule is the only decisive procedure that is

consistent with these three elementary properties:

• anonymity: each person’s vote is given the same weight

• neutrality: relabeling the alternatives (switching the titles x and y) in voter preferences

causes an equivalent relabeling of the outcome (the alternatives are undifferentiated by

their labels, sometimes called undifferentiatedness of alternatives)

• the electoral system is positively responsive in the following two senses:

– strong monotonicity: if there is a tie and then one voter elevates x in his prefer-

ences (that is, changes from y �i x to xIiy or x �i y, or from xIiy to x �y y), then

x must be the winner.
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– weak monotonicity: if x is the winner and one voter elevates x in his preferences,

then x must remain the winner.

The formalization and proof of May’s theorem is discussed in the exercises.

May’s theorem is one of the most encouraging results because it points our attention at a

particular method of decision making and it formally spells out the virtuous properties of the

procedure.

3.2 Shortcomings of Plurality Rule With More than Two Candidates

Because majority rule has so much appeal with two candidates, there is a natural tendency to

try to stretch it to apply in an election with more candidates. The two most important meth-

ods through which this has been tried are pure plurality rule and the majority/runoff elec-

tion system. In pure plurality, the winner is the one with the most votes, even if it is only 5 or

10 percent. In the majority/runoff system, all of the candidates run against each other and the

winner is required to earn more than one half of all votes cast. If no candidate wins a majority,

then the top two vote getters are paired off against each other in a runoff election. This system

does not typically include “none of the above” as an alternative in either stage, and so there is

no method for voters to register indifference (and hence, majority and plurality rule with two

candidates imply the same results).

The two stage majority/runoff system is used in some American state and local elections

and in French national elections. When the first stage whittles down the list of candidates, it

does not necessarily choose the most popular ones. The candidates who have the widest fol-

lowing might “knock each other out,” allowing little known candidates to sneak through. The

system puts voters in a difficult position of deciding whether they should vote for their fa-

vorite, who might be unlikely to win, or for one of the likely winners. The runoff system is

also expensive; it requires the government to hold two full elections (ballots aren’t free, after

all).
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Table 1: Plurality election with 4 candidates

Voters
Groups 1 2 3 4

Number of Members 20 24 26 30

Ranking
first z y x w

second x z y z
third y x z x

fourth w w w y

It is almost too easy to point out the flaws in pure plurality rule. The most obvious weak-

ness of the plurality rule is that the winner need not have widespread support. Suppose there

are four candidates, {w, x, y, z} running for mayor. The voters can be divided into groups

according to their preferences. In Table 1, the preference orderings of the four groups are il-

lustrated. Note that the largest group, group 4, has 30 members and their favorite is w. This

example is designed to emphasize the fundamental problem that a minority, 30 percent of the

population, is able to force its will on the rest, and all of the other voters think that w is the

worst possible choice!

It can even happen that a candidate who would lose to each of the others in a head-to-

head competition can win in a plurality election. Note that w would lose against x (because x

is preferred by groups 1,2,and 3), y, or z.

Holding a runoff between the top two vote getters would help somewhat, since x would

win in a head-to-head competition against w. However, the voters who support z would cer-

tainly protest. Note that z is unanimously preferred to x! How in the world can such a univer-

sally unlikeable character as x win an election?

The plurality problem is a “real life” problem with serious consequences. When a candi-

date wins an election with less than 50% of the vote, there is always concern that the wrong

candidate won. Consider, for example, the fact that, in 1998, voters in the state of Minnesota

elected former professional wrestler Jesse “The Body” Ventura as their governor. Ventura won
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with 37% of the vote, outdistancing the Republican candidate Norm Coleman (34%) and the

Democrat Hubert Humphrey (28%). There’s no way to know for sure what would have hap-

pened if either Coleman or Humphrey had faced Ventura in a one-on-one contest, but there’s

considerable speculation that either would have defeated him.

Even if you don’t care much about who is governor of Minnesota, you probably do care

who wins the coveted Grammy Awards for the best songs and albums. The winners are se-

lected by a plurality vote with 5 nominees on the ballot. There is often concern that the best

performers do not win. Music reporter Robert Hilburn suggested they consider changing their

voting procedure, noting, “Looking over previous Grammy contests, it’s easy to see where

strong albums may have drawn enough votes from each other to let a compromise choice win.

In 1985, two of the great albums of the decade-Bruce Springsteen’s "Born in the U.S.A." and

Prince’s "Purple Rain"-went head to head in the best album category, allowing Lionel Richie’s

far less memorable "Can’t Slow Down" to get more votes” (Hilburn, February 28, 2002). Clever

voters might try to outsmart the system, voting for their second-ranked alternative in order to

stop a weak candidate from winning. Dishonest voting is euphemistically called strategic vot-

ing in the literature.

The plurality problem has been known for centuries. It was a focus of concern in French

academic circles in the late 1700s. Two extremely interesting characters are the philosopher/scientists

Jean-Charles de Borda and the Marquis de Condorcet. Recall that it was a time of revolution,

both in America and in France. The philosophy of democracy was becoming well accepted.

The Marie Jean Antoine Nicolas Caritat, Marquis de Condorcet (1743-1794), was an extremely

influential philosopher of the Enlightenment, studying not only voting (Condorcet, 1785), but

also publishing on the rights of women, slavery and free markets. He was highly placed in

academic circles, an eager proponent of revolution against the King and, eventually, elected to

the legislature (and then later imprisoned by an opposing faction). He is credited with a com-

ment which translates as, “The apparent will of the plurality may in fact be the complete oppo-

site of their true will” (cited in Mackenzie, 2000b). Condorcet proposed a system of voting in
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which alternatives were paired off for comparison. Traveling in the same circles as Condorcet

was Borda (1733-1799), an explorer, soldier, and scholar whose study of physics and mathe-

matics had wide-ranging impact on science. He agreed with Condorcet on the shortcomings of

the plurality system and he also proposed a new election procedure based on rank order vot-

ing. His manuscript, which was written sometime between 1781 and 1784 (see Saari, 1994),

indicates that he had previously presented his results on June 16, 1770 (Borda, 1781). It ap-

pears that Borda had the best of it in the eyes of the French because, after the French Revo-

lution (and until Napoleon took over) the Borda procedure was used in French elections. The

Borda count fell into disuse after that, only to be revived in the modern era for rankings in

American sports. Variants are used in legislative elections in the Pacific Island countries of

Kiribati and Nauru (Reilly, 2002).

The debate between Borda and Condorcet has framed research on elections for two cen-

turies. In the next section we consider Borda’s method.

XX.3 Exercises

1. In the American criminal justice system, the members of a jury must agree unanimously

in order to reach a verdict. If the result is not unanimous when deliberations end, there

is a “hung jury” and a mistrial is declared. Explain why this system does not satisfy the

principle of strong monotonicity.

2. Suppose there are 50 shares of stock in a company and the stockholders are allowed to

vote on company policy. Each stockholder is allowed to cast one vote per share owned.

Does this system violate the criterion of neutrality or anonymity?

3. This example has 50 voters and 3 alternatives.
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Voters

Groups 1 2 3

Number of Members 24 16 10

Ranking

first x y x

second y z z

third z x y

(a) Calculate the plurality vote totals for the candidates

(b) Does the plurality winner have a majority of the votes?

(c) Confirm that a runoff election will choose the same winner. What changes could

you make in the example in order to cause a difference to emerge between the plu-

rality and majority/runoff elections?

4. In 2003, the voters of California were presented with an interesting choice. First, do you

want to remove Governor Gray Davis? Second, if Davis is to be replaced, which of the

following 150 candidates would you most prefer? California law states that if the num-

ber who answer yes to the first question is more than 50% of the votes cast, then the

candidate who receives the most votes will become governor. About 54% of the voters

wanted to remove Davis, and the plurality winner of the second vote was body builder &

movie star Arnold Schwartzenegger. Consider these questions about the 2003 California

election.

(a) Can we be sure that a majority (or even a plurality) prefer Schwartzenegger to

Davis as governor?

(b) The results indicated that 46% of the people voted to keep Davis, but they lost.

What percentage of the vote must the replacement receive in order to take office?
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Does that seem sensible?

(c) What incentives did voters have to vote strategically (untruthfully) in the first and

second parts of the ballot?

5. Kenneth May showed that a system based on majority rule (in which indifferent voters

abstain) is equivalent to a system in which the voters are anonymous, the alternatives are

undifferentiated, and the procedure is strongly and weakly monotonic. In May’s treat-

ment, the voters consider 2 alternatives x and y and then cast votes by selecting a value

from the set {−1, 0, 1}. A vote of 0 to indicates indifference, while 1 indicates a prefer-

ence for x and -1 indicates a preference for y.

(a) Create a mathematical definition of majority rule, assuming that the indifferent vot-

ers are ignored.

(b) Use your definition to consider the following: the winner is x and then one voter

who favored y decides she is indifferent. If you apply your procedure for majority

rule to the new voter preference data, does the result change?

(c) Suppose there is a tie and one voter changes her mind to prefer x. Apply your pro-

cedure to find out who the winner will be.

(d) On the basis of your calculations in b and c of this question, do you think your def-

inition of majority rule is consistent with the Monotonicity Principle?

4 Rank-order voting: The Borda Count

If you are a fan of college football, you may be aware of the fact that (until 2006, at least)

there has been no national tournament to answer the question “which team is the best.” In-

stead, 100 (or so) college football teams are ranked at the end of the season, and eight of the

top teams are selected to play in 4 spotlighted games that are known as the Bowl Champi-
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onship Series. The top two ranked teams play in the national championship game, and after

that game, there is another series of votes intended to rank all of the teams from top to bottom.

The formula used by the BCS to decide which teams should play in the national champi-

onship game has been a source of frustration and controversy. In 2001, the University of Ne-

braska was soundly defeated by the University of Colorado in the final regular season game.

That loss prevented Nebraska from winning the Northern division of the Big 12 conference

and it was not in the Conference championship game (which Colorado won). Nevertheless,

the BCS scores had Nebraska ahead of Colorado and the Nebraska Cornhuskers were selected

to face the University of Miami in the championship game. Nebraska was soundly defeated,

giving grounds to the contention that the BCS had chosen the wrong team. At the end of the

2003 season, the University of Southern California was not selected for the championship

game, even though the polls of writers and coaches placed USC in the top two. Decisions

like that have led to a chorus of complaints over the years, summarized aptly a student sports

writer at the University of Kansas: division 1A college football uses “what may be the most

complicated monstrosity on the planet” (Bauer, December 8, 2004, p. 2) to rank the teams.

The people who run the BCS are not oblivious to the criticism of their methods of rank-

ing teams, and every few years, they make repairs in their voting system. They raise or lower

the weight put on the votes cast by coaches, sports writers, and, strangely enough, computers!

So far, at least, they have not strayed far from the same basic system. Individuals (coaches,

writers, and computers) are asked to provide rankings of the top 25 teams. The many individ-

ual rankings are summed to build an overall ranking. This is a variant of the method that was

proposed by Jean-Charles de Borda (de Borda, 1781).

4.1 The Borda Count

The Borda count, which we label BC, is a method of combining the rankings of many indi-

vidual voters. Suppose there are k alternatives. The voters rank the alternatives and assign in-

teger scores to them, beginning with 0 (for the worst) stepping up in integer units to k − 1 (for
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the best). The rankings assigned by the voters are summed and the alternative with the largest

Borda count is the winner. The Borda count generates a complete, transitive social ordering of

the alternatives.

In mathematical terms, each voter submits a vector of scores that are keyed to the list of

candidates. If the candidates are {x, y, z} and voter i submits the vector vi = (0, 2, 1), that

means that the voter thinks y is the best, z is second, and x is the worst. The Borda count

earned by a candidate j is the sum of rankings assigned by the voters,
∑n

i=1
vij. The nota-

tion x �BC y to indicates that x defeats y in the Borda count. Although we do not concern

ourselves with ties in this chapter, we should mention that voters are allowed to register indif-

ference by assigning two alternatives the same value. For example, (0.5, 0.5, 2) indicates that x

and y are equally desirable (one vote is split between them), and both are less appealing than

z.

The Borda count works sensibly in many situations. For example, if all of the voters

agree about the ranking for all of the alternatives, it is easy to see that the Borda count gives

a meaningful reflection of their rankings. The rankings assigned by the 3 voters are presented

in Table 2. This demonstrates that the “sum of ranks” procedure used in the BCS and other

poll-style ranking systems is the same as the Borda count. It is, of course, painfully obvious

that x should win. It is the most-preferred alternative for all of the voters and it has the highest

Borda count.

A system of this sort has been the basis of many ranking systems used in sports and en-

tertainment. Although there are bitter squabbles about the outcomes of these ranking proce-

dures, the commentary in the public media seldom considers the possibility that there is a fun-

damental problem in the basic idea of the Borda count itself. Very peculiar–even alarming–

things can happen with the Borda count.
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Table 2: Borda Count with Homogeneous Voters

Voter Rankings
Voter: 1 2 3

Rankings
first x x x

second y y y
third z z z

Borda Votes Borda Count
Voter: 1 2 3

Alternatives
x 2 2 2 6
y 1 1 1 3
z 0 0 0 0

4.2 A Paradox in the Borda Procedure

The problem that we now introduce has sometimes been called the “Inverted-Order Paradox”

or the “Winner Turns Loser Paradox”. It is a famous example that has been widely investi-

gated (Riker, 1982, p. 82; Fishburn, 1974). There are seven voters, {1, 2, 3, 4, 5, 6, 7} and four

alternatives, {w, x, y, z}. In Table 3, the columns represent the Borda voting vectors assigned

by the voters.

The winner, the candidate with the largest Borda count, is y. The overall ranking, from

top to bottom, is y �BC x �BC w �BC z. This is a strength of the Borda count. It generates a

transitive ordering. Nevertheless, in the eyes of its critics, the ordering is complete nonsense.

To bring some life into this discussion, suppose that the alternatives w, x, y, and z are

bands competing the prestigious Grammy award. After the votes have been collected, an in-

vestigative reporter exposes the fact that group z is composed of frauds who lip-sync their per-

formances. (A group later shown to have been lip-syncing, Millie Vanilli, actually did win a
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Table 3: Borda count with 4 alternatives

Borda Votes Borda Count
Voters 1 2 3 4 5 6 7

Alternatives
w 3 3 0 0 1 1 3 11
x 2 2 3 3 0 0 2 12
y 1 1 2 2 3 3 1 13
z 0 0 1 1 2 2 0 6

Table 4: Borda count after making z ineligible

Borda Votes Borda Count
Voter 1 2 3 4 5 6 7

Alternatives
w 3 3 1 1 2 2 3 15
x 2 2 3 3 1 1 2 14
y 1 1 2 2 3 3 1 13
z 0 0 0 0 0 0 0 0

Grammy award for Best New Artist after their success in 1989.1) After z has been exposed,

the Grammy managers declare z ineligible. It would seem logical to expect that, if the order-

ing was y �BC x �BC w �BC z, and we rule the last-place candidate ineligible, then the new

ordering among the remaining alternatives should simply be y �BC x �BC w. Band z was a

loser, anyway. The winner should still bey, shouldn’t it?

Sadly enough for the proponents of the Borda count, the answer is no. Assuming that y

would still win was a terrible mistake caused by a fundamental flaw in the Borda count. We

can re-calculate the votes, supposing either that z is completely eliminated from consideration

or that it is forced into last place on all of the ballots (the result is the same, either way). Lets

begin by simply moving z to the bottom of each voter’s ranking. This will assure that z cannot

be the winner because it will finish in last place. The alternatives that were ranked below z are

shifted up one notch, as indicated in Table 4.
1That award was revoked and Millie Vanilli was removed from the official list of award-winning performers.
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After moving z to the bottom of each ballot, the Borda Count indicates that w should be

the winner. The ranking from top to bottom, is w �BC x �BC y �BC z. Compare that with

the previous result and a truly astonishing outcome is revealed: the ordering of the top three

alternatives is exactly reversed. Instead of winning, y now finishes in third place.

The befuddling aspect of this result is that the Borda ranking of w and x is influenced

by the placement of the alternative z. If we are completely focused on the comparison of w

and x, then z is an irrelevant alternative. When the irrelevant alternative affects the outcome,

then the decision making procedure is said to violate the principle of Independence from Ir-

relevant Alternatives, which holds that the social ranking of two alternatives should not be

influenced by the placement of other alternatives in the ballots of the voters.

A story might persuade readers that a voting procedure ought to respect the principle of

Independence from Irrelevant Alternatives. Suppose your friend Daffy and his family have

received a gift certificate for a new car, either a Toyota or a Honda. When the Daffy family is

focused on those two alternatives, the desirability of all other makes should be irrelevant. Sup-

pose you are discussing this in the car dealer’s parking lot and Daffy says out loud, “We prefer

the Toyota to Honda. We will go in to pick that one.” You figure all the work is done, so you

go home. Later, Daffy drives up to your house in a shiny new Honda. You say, “what hap-

pened? you preferred Toyota!” Daffy says, “While we were in line, my son heard that Cadil-

lacs have great durability. So we changed from Toyota to Honda!” Could the outcome be more

ridiculous? It cannot possibly make sense to have the choice between a Honda and a Toyota

depend on the road performance of a Cadillac. And yet, that can happen with the Borda count.

In the example illustrated in Tables 3 and 4, the terminology says z an irrelevant alterna-

tive, but it is not, in fact, irrelevant when the Borda count is used. That is the sense in which

the Borda count violates the principle of Independence from Irrelevant Alternatives. Although

commentators on amateur figure skating competitions do not know the terminology, they have

certainly puzzled over it many times because skating uses a Borda-style ranking system. In the

1995 World Figure Skating Championships, Michelle Kwan’s surprisingly good performance
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Table 5: Borda Count with Three Alternatives

Borda Voter Borda Count
Voter: 1 2 3 4 5 6 7

Alternatives
w 2 2 0 0 1 1 2 8
x 1 1 2 2 0 0 1 7
y 0 0 1 1 2 2 0 4

put her in fourth-place, but caused a reversal in the ranking of the second and third ranked

skaters who had already finished before Kwan took the ice (Mackenzie, 2000a).

Another variant of this story begins with three alternatives. In Table 5, the three alterna-

tives are w, x and y. The Borda winner is w. Now, suppose that someone who is in charge of

the election desperately wants y to win. That someone is so desperate, in fact, that he is will-

ing to sponsor the entry of a new candidate into the race. The new candidate, z, is chosen very

carefully. When z is in the race, the preferences of the voters are the same ones we considered

in Table 3. After adding in the losing candidate z, the Borda count selects y, just as the elec-

tion manager wants. This displays the truly insidious nature of the violation of the principle of

irrelevant alternatives. Not only is the decision illogical, but now it is prone to electoral manip-

ulation. Without having precise information about that tastes of the voters, it might be difficult

to slide in just the right candidate to bring about the desired outcome. One might mistakenly

make the outcome even less desirable.

4.3 Another Paradox: The Borda Winner Is A Loser?

There is another closely-related (equally serious) problem with the Borda count. The Borda

count can produce a winner that would lose in a head-to-head election against one of the other

alternatives. In Table 3, the Borda winner is y, but in a head-to-head contest between y and x,

x would win because it is preferred to y by voters {1, 2, 3, 4, 7}. This result is not necessarily

a sign of trouble in the eyes of the advocates of the Borda count. The Borda method, they ar-
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Table 6: Condorcet Winner (w) Rejected by Borda Count

Borda Votes Borda Count
Voter: 1 2 3 4 5

Alternatives
w 3 3 1 1 1 9
x 2 2 0 3 3 10
y 1 0 2 0 2 5
z 0 1 3 2 0 6

gue, averages out the extreme opinions, so that the winner is somehow “more representative”

of the overall opinions of the voters.

The problem is actually more serious. When he proposed his voting system, Jean-Charles

de Borda drew the attention of a fellow French academic, the Marquis de Condorcet. Con-

dorcet pointed out what he thought was a crippling weakness in Borda’s method. Consider

Table 6, an example in which there are five voters and four alternatives. The Borda winner is

x, but x is defeated in a head-to-head contest with w. In fact, w would defeat each of the other

alternatives in a head-to-head contest. Alternative w is preferred to x by voters {1, 2, 3}, and

to y by voters {1, 2, 4}, and to z by voters {1, 2, 5}. In Condorcet’s honor, we call an alter-

native that can win a pairwise (head-to-head) contest against each of the other alternatives the

Condorcet Winner. A voting procedure which does not select the Condorcet Winner is said to

violate the Condorcet Criterion.

4.4 Inside the Guts of the Borda Count

The ranking created by the Borda count is vulnerable to manipulation by the addition or sub-

traction of candidates. By working on a few examples, one can gain some good working knowl-

edge of what kinds of changes will make a difference. One of the clearest examples is found

by comparing an election with two candidates against an election with three candidates. Sup-

pose there are 100 voters and they are divided into two groups. There are 60 voters in group 1
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and they prefer x to y. Formally speaking,

Group 1 : x �i y for i ∈ {1, 2, . . . , 60}.

There are 40 voters on the other side of the issue,

Group 2 : y �i x for i ∈ {61, 62, . . .100}.

The Borda count is summarized in Table 7. Since group 1 has the most voters, its favorite is

the winner.

Next, suppose that a third alternative is added, and it is very similar to the loser, y. We

want to insert this new alternative into the preferences of the voters so that z is always right

next to y. Because z is always grouped together with y, it is sometimes called a clone. (One

standard for voting procedures is that their outcomes should not be changed by the addition

of redundant alternatives (clones). This example is intended to show that the Borda count is

not “cloneproof”). There are four possible orderings. The first two new orderings are found by

placing z about y in the tastes of group 1:

• Group 1a: x �i y �i z

• Group 1b: x �i z �i y

The last two are obtained by inserting z into the preferences of group 2:

• Group 2a: z �i y �i x

• Group 2b: y �i z �i x

By inserting z, which is very similar to y in the eyes of the voters, we thus obtain preferences

for four groups. The relative sizes of these groups are referred to as n1a, n1b, n2a, and n2b in

Table 8.
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Suppose that the original groups are split exactly in half, so n1a = 30, n1b = 30, n2a = 20,

and n2b = 20. With that even division within the two groups, the Borda count is 120, 90, 90

for x, y, and z, respectively. Since y is similar to z in the eyes of the voters, the result seems

plausible because y and z are tied in the Borda count. The original winner, the most favored

alternative of the majority group, still wins.

We can make some magic by fiddling with the sizes of the subgroups. Keep in mind that

there are always 60 voters for whom x is the most attractive alternative and there are always

40 for whom x is the least attractive. The only manipulation that we consider is the subdivi-

sion of the original two groups. (If you use a computer spreadsheet, it is pretty easy to con-

sider lots of conjectures.) For most of the examples that you try, the winner will be x, but

there are some exceptions. The exceptions are found when there are many voters who have y

preferred to z. That is, if you increase the values of n1a and n2b enough, then the Borda win-

ner will change from x to y. If the groups are divided n1a = 50, n1b = 10, n2a = 5, and

n2b = 35, then the Borda counts for x, y, and z are 120, 125, and 105. Even though x is still

the first-ranked alternative for 60 of 100 voters, the alternative y is the Borda winner.

The algebra of the situation is enlightening. Alternative y will defeat x (i.e., have a higher

Borda count) if

1 ∗ n1a + 1 ∗ n2a + 2 ∗ n2b > 2 ∗ n1a + 2 ∗ n1b

which is easily simplified:

n1a + 2 ∗ n1b − n2a − 2 ∗ n2b < 0

Keeping in mind that 0 ≤ n1b ≤ 60 and n1b = 60 − n1a as well as 0 ≤ n2a ≤ 40 and

n2a = 40 − n2b, the Borda count for y will be superior if

n1a + n2b ≥ 80

In the above example, where we set n1a = 50 and n2b = 35, this inequality was satisfied and

so y was the winner.
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Table 7: Borda Count with Two Alternatives

Borda Votes Borda Count
Groups 1 2

Number of Members 60 40

Alternatives
x 1 0 60*1=60
y 0 1 40*1=40

Recall that the premise of this example is that the new alternative, z, is similar to (a clone

of) y, and z is inserted into the preferences in the spot immediately preceding or following y.

In order for the introduction of z to cause a change in the Borda count that benefits y, it is vi-

tal that y be more desirable than z in the eyes of many (at least 80) of the voters. One might

criticize this example by pointing out that y and z are not truly similar because a vast majority

of the voters see y as more desirable than z, and if they were really similar, the split would be

more even. This argument, while interesting, does not rehabilitate the Borda count. Rather, it

simply refocuses our attention on the problem of irrelevant alternatives. If the overall ranking

of x against y depends on the question of whether y is more desirable than z, then one ought

to be cautious about the result from a Borda count. If x loses, its supporters must surely feel

abused because the position of their favorite against y is not changed in the transition from Ta-

ble 7 to Table 8. On the other hand, if y is the loser and x is the winner, then the supporters

of y are unhappy and feel unjustly treated because their loss was caused by the high placement

of z in the rankings of some voters. It just doesn’t seem right. It seems this kind of illogic is

fundamental about procedures based on the Borda method of voting. And, in case you were

wondering, that means the BCS football ranking system will likely produce exasperating re-

sults.
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Table 8: Add One Alternative to Table 7

Borda Votes Borda Count
Groups 1 2 3 4

Number of Members n1a n1b n2a n2b

Alternatives
x 2 2 0 0 2 ∗ n1a + 2 ∗ n1b

y 1 0 1 2 1 ∗ n1a + 1 ∗ n2a + 2 ∗ n2b

z 0 1 2 1 1 ∗ n1b + 2 ∗ n2a + 1 ∗ n2b

4.5 Digression on the Use of Cardinal Preferences

The element of the Borda procedure that is most often thought to be the culprit is the simple

method in which preferences are registered. The preferences of the voters are registered as

integer-valued rankings. If a voter thinks that x is much better (or just a little better) than y,

and y is much (or just a little bit better) than z, the ranking will be submitted as 1-2-3 and the

magnitude of preference is ignored. A proponent of cardinal preferences would rather have us

figure out a way to precisely measure these differences so that the voter could submit a vote

like 1-1.8-2.0 to signify the fact that the first one is the best and the other two are far worse.

In the advanced literature on social choice theory, there are in fact some highly prestigious au-

thors, such as Nobel Prize Winners John Nash (1950) and John Harsanyi (1955) who have ad-

vocated decision-making based on these fine-grained evaluations. John Nash, the game theorist

whose life story was the basis of the movie A Beautiful Mind, was probably the first to contend

that these cardinal scores should be collected and multiplied together to create a social ranking.

In his honor, Riker calls this the Nash method (see Riker, 1982).

The use of cardinal scores has intuitive appeal. Harsanyi offers a rigorous mathematical

argument in favor of this system, contending that it optimizes the welfare of the community in

a utilitarian sense. That may be, but, as Riker demonstrates (1982, p. 110-111), the problem

of irrelevant alternatives remains. In fact, the problem may be more severe in the Nash method

than in the Borda method. In the Borda method, the fact that voters are restricted to casting
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votes in integer values limits the extent to which the placement of z might influence the com-

parison of x and y. In a cardinal election, the votes can range across a continuum, seemingly

opening up a much larger range of outcomes that are influenced by irrelevant alternatives.

XX.4 Exercises

1. This example has 65 voters and 3 alternatives.

Voters

Groups 1 2 3

Number of Members 22 12 31

Ranking

first x y z

second y x y

third z z x

(a) Which candidate would win a plurality election?

(b) What would be the results of a majority/runoff election?

(c) What would the Borda vectors be and what would be the Borda count?

(d) Is there a Condorcet Winner in this example?

2. This is a set of preferences for a society of 1000 voters with 4 alternatives
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Voters

Groups 1 2 3 4 5 6

Number of Members 200 150 150 300 100 100

Ranking

first z y x w y x

second x z y z x y

third y x z x w z

fourth w w w y z w

(a) Is there a Condorcet winner?

(b) Which candidate would win according to the Borda Count?

(c) If you delete candidate w, does the Borda Count change? Does the Condorcet win-

ner change?

3. Calculate the Borda count for the following table. Then add an alternative that finishes in

last place in the Borda Count, but also causes the ranking of the top-placed alternatives

to change.

Borda Votes Borda Count

Voter: 1 2 3 4 5 6 7

Alternatives

w 2 2 0 0 1 1 2 8

x 1 1 2 2 0 0 1 7

y 0 0 1 1 2 2 0 4

4. Condorcet’s original example that was used to criticize the Borda count involved an elec-

tion with candidates named Jacques, P ierre, and Paul.
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Borda Votes

Groups: 1 2 3 4 5 6

Number of Voters: 30 1 10 29 10 1

Alternatives

Pierre 2 2 1 1 0 0

Paul 1 0 0 2 2 1

Jacques 0 1 2 0 1 2

(a) Find the Condorcet Winner

(b) Find the Borda Winner

(c) How many ballots would you have to change in order to make the outcome of the

two procedures match up? (Hint: you can solve this by trial and error, but you

should not have to. Recall that the Borda count equals the aggregated pairwise

vote.)

5 Sequential Pairwise Comparisons

The critics of the Bowl Championship Series often contend that college football should adopt

a tournament format to select a national champion. A tournament is used in many other col-

lege sports as well as professional baseball, basketball and football. Would a tournament solve

the controversy over “who’s number one?” There are good reasons to be skeptical. A tourna-

ment might increase advertising revenue, but we doubt it would put an end to questions about

whether the best team was actually ranked number one at the end.

5.1 A Single Elimination Tournament

The teams are eliminated in a series of games, the final of which would be the national cham-

pionship game. A hypothetical bracket for such a tournament is presented in Figure 1. The
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Figure 1: Hypothetical Football Tournament

Sasnak State U.

U. of Odaroloc

U of Aksarben

U. of Amohalko

U. of Iruossim

U. of Sasnak
U. of Sasnak

U. of Sasnak

U. of Sasnak

Awoi State U.
Awoi State U.

U. of Odaroloc

Amohalko St. U.

U. of Odaroloc

Amohalko State U.

teams that are defeated at each stage are eliminated, and the winners advance to play each

other.

The people who want a Division IA college football tournament usually claim that this is

the best way to select the “true champion.” In the hypothetical example in Figure 1, the Uni-

versity of Sasnak wins. Whether or not Sasnak is greeted as the “true champion” may be open

to question, however. Suppose, for example, that Sasnak could be defeated by Sasnak State,

Aksarben, Amohalko State, or Iruossim. Those other teams are not given their “fair chance”

to prove their superiority because the tournament structure governs their opportunities. If even

one team can defeat the eventual winner of the tournament, it seems we are going to be for-

ever debating what would have happened if the contests had been re-organized. The tourna-

ment does not so much solve the problem of deciding “which team is best” as it does create a

new set of arguments for people in bar rooms and sports talk shows.

The tournament concept, it turns out, is widely used, not just for sporting events, but for
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political decision making as well. For example, in American elections, the candidates of the

top two political parties face each other in the general election (the “championship game”).

Those candidates are the winners of earlier contests. Like the winners of sporting tournaments,

these winners are no less open to after-the-fact challenges from contenders who did not get

their fair chance.

There is one case in which a tournament structure produces an unequivocal, certain win-

ner. If there is a Condorcet winner, one candidate (or team) that defeats each of the others in a

one-on-one competition, then that winner will be the only survivor of the tournament.

5.2 Dominated Winner Paradox

Like the Borda count, the majority rule tournament format can produce some truly bizarre out-

comes. The tournament never rejects a Condorcet winner, if there is one, but interesting things

can still happen. Perhaps the most well known is the “dominated winner paradox.” It is pos-

sible that the winner of a tournament can be unanimously defeated by another alternative. We

mean to say not just that the tournament picks the second-best or third-best, but rather, that the

tournament winner is unanimously considered inferior. The preferences in Table 9 are used to

illustrate this paradox. There three voters and four alternatives, w,x,y, and z. In the tourna-

ment structure that is drawn in Figure 2, there is a a sequence of three votes. First, alternative

x is defeated by w. Then, in the second stage, the winner, w is defeated by y, and then the fi-

nal vote pitsy against z. Note that the first outcome to be eliminated, x, is preferred to w by

every single voter. 2

5.3 The Intransitivity of Majority Rule

In the first section of this chapter, we drew the reader’s attention to the concept of transitiv-

ity. Now that concept comes to the forefront again. There are majority rule examples in which
2This is called the “dominated winner paradox” because, in the field of cooperative game theory, one alternative

is said to dominate another if every participant prefers it to the other.
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Table 9: Dominated Winner Paradox

Voter Preferences
Rankings Voters: 1 2 3

best w y x
second x w z
third z x y

fourth y z w
Sequence of Votes w �M x y �M w z �M y

Figure 2: Tournament Structure for the Dominated Winner Paradox

w

x

w

y

y

z

z
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Table 10: Preferences for Three Candidates
Voter Groups

1 2 3
Favorite Candidate Thing 1 Cat in the Hat Thing 2
Second Choice Thing 2 Thing 1 Cat in the Hat
Third Choice Cat in the Hat Thing 2 Thing 1

x �M y, and y �M z, but (and here’s nontransitive part) z �M x. Social comparisons some-

times lack the fundamental properties of reason and logic summarized by the principle of tran-

sitivity that is present in the tastes of voters.

Consider an example with three candidates (two Democrats, one Republican) and three

groups of voters. The Democrats, named Thing 1 and Thing 2, are pitted in a tightly contested

electoral campaign, and the winner will face the Republican candidate, named Cat in the Hat.

Lets suppose there are three equally sized groups of voters. The transitive orderings of the vot-

ers are presented in Table 10. Readers will note that this kind of table is slightly different than

the one used for the Borda count, but the information that it contains is the same.

It is especially important to note that the preferences of the voters are transitive. Con-

sider the preferences in Table 10. For Group 1 we are told that Thing 1 is preferred to Thing 2,

and Thing 2 is preferred to Cat in the Hat. Then transitivity of preference implies we are safe

in concluding that Thing 1 is preferred to the Cat in the Hat by members of Group 1.

The tournament begins with Thing 1 and Thing 2 facing each other and all three groups

of voters are allowed to have their say. Since Thing 1 is preferred to Thing 2 by groups 1 and

2, Thing 1 is the winner of that stage. The final stage pits Thing 1 against Cat in the Hat, and

with the backing of groups 2 and 3, Cat in the Hat wins.

If majority rule were transitive, then we could conclude that Cat in the Hat is socially pre-

ferred to Thing 2. It is a startling and truly paradoxical fact that majority rule does not support

that prediction. Majority rule does not obey the property of transitivity.

Imagine what would happen if, in the time-honored tradition of politicians, Thing 2 hires

a large team of lawyers who appeal the case to the highest court. The court might order an-
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other election pitting Thing 2 against Cat in the Hat. The Cat in the Hat should do everything

he can to avoid another vote. Note that groups 1 and 3 prefer Thing 2 to Cat in the Hat, so

Thing 2 would win that final electoral competition.

Even though the individual voter preferences are transitive, the majority rule ordering is

not! This peculiar finding, sometimes called The Voter’s Paradox, means that where we ex-

pect to find logic and reason: x �M y,y �M z, and x �M z, instead we find nonsense and

irrationality: x �M y,y �M z, and z �M x. We could keep voting forever, with each win-

ner being defeated in turn. This is called a voting cycle. A person who is intransitive lacks the

fundamental properties of reason and logic and would be incapable of making decisions and

managing personal affairs. Should a society that is intransitive be viewed in the same harsh

light? For centuries, political scientists have been locked in debate over the issue.

Despite these problems, majority rule is very widely used in legislatures. There are some

arguments that can be advanced in favor of the majority rule method and to justify its con-

tinued use. By far the most important justification for the use of majority rule is offered by

May’s theorem, which we have already discussed.

The second reason why majority rule is still widely used, even though cycles are possible,

is that cycles are thought to be rare. If there are only three voters with three alternatives, and

we ignore the possibility that voters may be indifferent, then we can make a list of all possible

“societies.” There are 216 possible 3 voter societies, and a cycle can arise in 12, or approx-

imately 5.6% (Johnson, 1998, p. 23). Many computer simulation studies have been done to

try to find out how likely a cycle is to arise when the numbers of voters and alternatives are

increased. A review of several studies led Riker (1982) to contend that the probability of cy-

cles rises dramatically (near 1.0) as the number of alternatives and voters increase, while Jones

et al. (1995) contended that if voter indifference is taken into account, then the probability of

cycles is not quite so high.

If cycles are possible in the real world, why don’t we observe them more often? Quite

simply, we do not use voting procedures that are designed to discover them. Election pro-
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cedures are generally written so that candidates are eliminated and are not given a second

chance. Voting in legislatures is tightly controlled by party leaders who refuse to let the mem-

bers propose frivolous alternatives in a “fishing expedition”. In his discussion of the American

Constitutional Convention of 1787, Riker tells the story of a cycle that was revealed when the

delegates were attempting to formalize the system for presidential elections (1986, p. 46-7).

The cycle caused confusion and uncertainty, and eventually the matter was delegated it to a

subcommittee that was trusted to write up something good. That’s how the Electoral College

was created.

XX.5 Exercises

1. Consider the preferences in problem 1 of section 4. Design a single elimination tourna-

ment and find the winner. Is there any way to re-design your tournament so that a differ-

ent alternative will win?

2. In the following table, we provide preferences for 7 out of 11 voters.

(a) Fill in the preferences for the last 3 voters in such a way that there is a pairwise

voting cycle in which x �P y, y �P z, and z �P x. You can insert any transitive

rankings for groups 4, 5, and 6.

Voters

Groups 1 2 3 4 5 6

Number of Members 3 3 1 1 1 1

Ranking

first z y x

second x z w

third y w z

fourth w x y
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(b) Choose your favorite letter from the set {x, y, z}. Design a single-elimination tour-

nament in which your selected alternative wins.

6 Condorcet Methods: The Round Robin Tournament

On the basis of the preceding analysis, the reader should believe that the following claims are

correct.

1. If there is a Condorcet Winner, then a single-elimination tournament format will select

that alternative.

2. If there is no Condorcet Winner, the tournament winner is determined by the pairings of

the alternatives.

The presiding officer of a town council might exercise the power to set the agenda to advan-

tage some community groups over others. There’s a charming essay about an economist and a

lawyer who studied social choice theory and then used it to hornswaggle the voters in a club

that purchased airplanes for recreational use (Riker, 1986).

To address this problem, Condorcet’s approach was to search for a method of voting that

will give a meaningful result when all of the pairwise comparisons are considered. Condorcet’s

suggested that we collect enough information from voters so that we can hold (what is now

called) a “round robin” tournament. In a round robin, each alternative faces each of the others

in a head-to-head competition.

The Condorcet Criterion states that if there is a Condorcet winner–one alternative can

defeat each of the others head-on–then it should win. If there is no Condorcet winner, then

problem is to find a way to summarize the pairwise information and choose or shape the re-

sults into a ranking. Duncan Black, a pioneer of modern social choice research, suggested

“The reasons may not seem so overwhelmingly convincing, but we are moving in a region

where all considerations are tenuous and fine-spun; and the claims of the Condorcet criterion
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Figure 3: The Smith Set
(a) The Smith Set is a “top cycle” (b) The Smith Set includes all alternatives
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to rightness seem to us much stronger than those of any other”(Black, 1958). In the time since

Condorcet, many different schemes have been proposed to summarize the outcomes of pair-

wise comparisons. Black suggested the use of a Borda Count. We consider just a few of the

many interesting proposals.

6.1 Searching for an Unbeatable Set of Alternatives

Here’s an obvious starting point: eliminate undesirable alternatives from consideration. Sup-

pose the alternatives under consideration are {u, v, w, x, y, z}. In Figure 3, the relationships

among the alternatives are represented by arrows. In this type of graph, an arrow from x to

y means that x defeats y is a pairwise competition. In panel (a) of Figure 3, note that u, y,

and x, the ones that are inside the dotted line, have a special quality. Each of them can de-

feat each of the others that are outside the dotted line in a head-to-head race. It seems clear

that the winner must not be drawn from {v, w, z}. Each of these can be defeated by each of

the proposals in {u, x, y}. The Smith Criterion is based on the idea that, if we can spot some

“rejects” in this way, then we ought to make sure they don’t win.

Formally, the Smith set is defined as the smaller of two sets:

1. The set of all alternatives, X .

2. A subset A ⊂ X such that each member of A can defeat every member of X that is
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not in A, which we call B=X − A. Formally, the Smith Criterion states if x ∈ A and y ∈ B =

X − A, x �P y.

Note we are using the plurality rule notation here, x �P y (see 6). Indifferent voters are

ignored. As we have seen in Figure 3a, the Smith set may include a voting cycle, and that’s

why some authors refer to it as the “top cycle set.” The top cycle includes only the “best of

the best.” The rest of the alternatives should be rejected.

One major shortcoming of the Smith Criterion is illustrated in Figure 3b. We have turned

around a few arrows, so there is no subset of alternatives in which each can defeat the rest. In

such a case, the Smith set includes all alternatives. As a result, the Smith Criterion sheds no

light at all on the problem. While the Smith criterion can be useful in ruling out alternatives in

some examples, but not too many.

6.2 The Win-Loss Record

A second simple approach is to choose a winner on the basis of the win-loss records. This

is often called the Copeland rule. We simply subtract the number of losses from the number

of wins for each alternative and then rank the alternatives accordingly. If one reads the sports

page during professional baseball or football seasons, the win-loss record is a very familiar

concept. While simple in principle, this procedure has many shortcomings. Most importantly,

if there is a voting cycle, then there are likely to be many ties in the win-loss column. Each

alternative will have one win and one loss in the pairwise comparisons, so none can be distin-

guished from the others. Another problem with this approach its sensitivity to the introduction

of clones. One could pad the number of wins for an alternative by making copies of the alter-

natives that it can defeat. (For Three Stooges fans, if Curly is a loser, then nominate Moe and

Larry as well so that the alternatives that defeat Curly also defeat Moe and Larry.)
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6.3 Aggregated Pairwise Voting: The Borda Count Strikes Back!

The aggregated pairwise vote is a method of evaluating a tournament. The alternatives accu-

mulate votes in their head-to-head contests and the one with the most votes wins. It creates a

transitive overall ranking, even if there is a pairwise majority rule cycle.

Suppose the voters are N = {1, 2, . . . , n} and that none of them are indifferent between

any of the alternatives. Recall that the number of voters who prefer x to y can be represented

as |{i ∈ N : x �i y}|. The aggregated vote for alternative x is the sum of the support it

receives against y and z in pairwise contests:

|{i ∈ N : x �i y}| + |{i ∈ N : x �i z}|.

The aggregated pairwise vote has a number of interesting properties. Readers should eas-

ily convince themselves that the following claims are true:

1. A Condorcet winner (one who is undefeated by each of the others) is never ranked last

by the aggregated pairwise vote, and

2. A Condorcet loser (one that is unable to defeat any of the others) is never ranked first by

the aggregated pairwise vote.

The aggregated pairwise vote is never afflicted by the “dominated winner paradox” that was

discussed above. While the Condorcet winner does not always come out on top in an aggre-

gated pairwise vote, that candidate does not suffer the indignity of a last place finish either.

It turns out that these two properties of the aggregated pairwise vote have a powerful im-

plication: the aggregated pairwise vote places a very meaningful limitation on the kinds of

paradoxes and peculiarities that can happen. With two alternatives, the aggregated pairwise

system is really just plurality rule, so we might write either x �AP y or x �P y. If the pair-

wise result is x �AP y, then a supporter of Condorcet’s view of the problem would expect that

the social ranking should be x �AP y �AP z or z �AP x �AP y. As long as the procedure
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applied to all 3 alternatives has x preferred to y, then everything makes sense. On the other

hand, there is trouble if we observe social rankings like y �AP x �AP z or z �AP y �AP x.

Mathematician Donald Saari offers a way to catalogue these so-called anomalies. For

a given set of voters (a preference profile), any voting procedure can be applied to rank the

pairs, {x, y}, {y, z}, {x, z}, and also give an ordering of all three alternatives, {x, y, z}. Since

the pairwise comparison is really just a plurality vote, let’s use P as the subscript for pairwise

comparisons, and we will use AP for the comparisons that take into account 3 or more alter-

natives. Saari uses the term word to refer to a combined set of pairwise and aggregated pair-

wise rankings, such as

word 1. x �P y, y �P z, x �P z, x �AP y �AP z

or

word 2. x �P y, y �P z, x �P z , z �AP y �AP x

There are 351 words possible with 3 alternatives (hint: 3 · 3 · 3 · 13 = 351). In word 1,

there is no anomaly because each of the pairwise plurality decisions is the same as the order-

ing implied by the aggregated pairwise votes. On the other hand, word 2 is very anomalous.

The pairwise comparisons are at odds with the overall ranking. In fact, recalling the first claim

above, readers should notice that word 2 is impossible. The aggregated pairwise vote could not

assign last place to the Condorcet winner, x.

Saari observes that only 135 out of the 351 words are actually possible with the aggre-

gated pairwise vote applied to three alternatives (1994, p. 186). The driving force behind that

result is the fact that the Condorcet winner can’t finish last in the aggregated pairwise vote.

The complete explanation of this result is given in the focus box 41.

In case you were wondering why the subtitle of this section is “the Borda count strikes

back!” we are ready to give the answer: The aggregated pairwise voting procedure is equiva-
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lent to the Borda count (Saari, 1994). The strengths of the aggregated pairwise vote are thus

inherited by the Borda count. Saari advocates the use of the Borda count for a number of rea-

sons, but the fact that it “is the ’natural’ extension of the standard vote between two candi-

dates” (Saari, 1994, p. 178) to an election with more candidates is one of the most persuasive

reasons.

How do we know that the two procedures equivalent? Consider a voter i for whom x �i

y �i z. The aggregation shows that i casts 2 votes for x (i prefers x to both y and z). Simi-

larly, i votes for y against z, and the aggregation records 1 vote for y. This is, of course, ex-

actly the same as casting a Borda ballot vector (2, 1, 0). The conclusion is that the Borda count

has the same information that is collected by the aggregation of pairwise votes.

The fundamental difference between plurality/majority voting and the Borda count is laid

bare by this discovery. Recall the definition of plurality rule, which is the same as majority

rule if none of the voters are indifferent.

P lurality rule : x �P y if and only if |{i ∈ N : x �i y}| > |{i ∈ N : y �i x}|

(6)

Note that the first term on each side of the inequality is the same in the following:

Borda rule : x �BC y if and only if

|{i ∈ N : x �i y}|+ |{i ∈ N : x �i z}| > |{i ∈ N : y �i x}|+ |{i ∈ N : y �i z}|

(7)

The Borda comparison between x and y always includes some information about the irrele-

vant alternative z. The violation of the independence from irrelevant alternatives that we en-

counter in examples involving the Borda count appears to be inherent within it. At the same
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time, however, the Borda count avoids both intransitivities and the danger of allowing a Con-

dorcet loser to win an election.

===========================================

Feature Box: In The Geometry of Voting, mathematics professor Donald Saari argues that

the Borda count is less prone to peculiarities than other voting methods that are based on ranked

lists. The Borda count admits only 135 out of 351 possible words (combinations of pairwise

and listwise outcomes). In contrast, other methods of tabulation allow anything (literally!) to

happen. A central part of his argument is the fact that the Borda count is equivalent to aggre-

gated pairwise voting, and in the latter we have observed that a Condorcet winner never places

last.

To establish that fact, begin by considering all of the Borda orderings with 3 alternatives.

They are divided into three columns, representing social orderings in which the number of ties

is zero, one, or two.
1. x �BC y �BC z 7. x �BC y ≈BC z 13.x ≈BC y ≈BC z

2. x �BC z �BC y 8. x ≈BC y �BC z

3. y �BC x �BC z 9. y ≈BC z �BC x

4. y �BC z �BC x 10. y �BC z ≈BC x

5. z �BC x �BC y 11. z �BC x ≈ BCy

6. z �BC y �BC x 12. z ≈BC x �BC y

We now have to figure out which pairwise outcomes are consistent with each of these

Borda outcomes. The problem is attacked by the timeless method of “divide and conquer.”

Consider outcomes 1-6, the ones in which there are no ties. Keeping in mind the fact that

a Condorcet winner cannot finish in last place in the Borda count (and the Condorcet loser

cannot finish first), we can figure out which pairwise comparisons are possible. We focus on

this one case x �BC y �BC z (and will generalize to the others).
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Possible if x �BC y �BC z Not possible if x �BC y �BC z

x �P y, y �P z, x �P z x ≈P y, y �P z, x �P z x ≈P y, y �P z, x ≈P z

x �P y, y �P z, z �P x x ≈P y, y ≈P z, x �P z x ≈P y, y �P z, z �P x

x �P y, y �P z, z ≈P x x ≈P y, z �P y, x �P z x ≈P y, y ≈P z, z �P x

x �P y, z �P y, z ≈P x y �P x, y �P z, x �P z x ≈P y, y ≈P z, z ≈P x

x �P y, y ≈P z, z �P x y �P x, y ≈P z, x �P z x ≈P y, z �P y, z �P x

x �P y, y ≈P z, z �P x y �P x, z �P y, x �P z x ≈P y, z �P y, z ≈P x

x �P y, y ≈P z, z ≈P x y �P x, z �P y, z �P x y �P x, y �P z, z �P x

x �P y, z �P y, x �P z y �P x, z �P y, z ≈P x y �P x, z �P y, z �P x

x �P y, z �P y, z �P x y �P x, z ≈P y, z �P x

y �P x, y �P z, x ≈P z

There are 17 sets of pairwise contests that are consistent with x �BC y �BC z. Since the

setup of the problem is completely symmetric, the same must be true of Borda orderings 2-6

in ??. Since 6*17=102, we have found 102 of the 135 legal words.

Next consider the six Borda outcomes that have only one tie, which are items 7-12 in ??.

There are 30 sets of pairwise outcomes that are consistent with these Borda results (five for

each one). Considering Borda ordering 7, we find that the following are the legal words.

1. x �P y, x �P z, y ≈M z, x �BC y ≈BC z

2. x �P y, x �P z, y �P z,, x �BC y ≈BC z

3. x �P y, z �P x, y �P z, , x �BC y ≈BC z

4. x �P y, x ≈M z, y �P z, x �BC y ≈BC z

5. x ≈M y, x �P z, y �P z,x �BC y ≈BC z

(8)

With 5 more legal words for each of the 6 Borda outcomes, we have thus added 5*6 = 30

valid words. The proof of this result is left as an exercise for the reader (but it is very infor-

mative, and so a complete answer is included at the end of the book).

Finally, consider Borda ordering 13. If the Borda count yields total social indifference,
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x ≈BC y ≈BC z, only three sets of pairwise matchings are possible:

1 x �P y, y �P z, z �P x

2 y �P x, z �P y, x �P z

3 x ≈P y, y ≈P z, z ≈P x

(9)

The first two are the cyclical pairwise comparisons, and the final is generalized indifference.

With those 3 legal words, our total is now 135.

======================================

6.4 The Schulze Method

If you search the Internet, this one is often found under the unseemly titles “Cloneproof Schwartz

Sequential Dropping” or the “Beatpath Method”. We have named it for its originator, Markus

Schulze, who has been an active proponent of the method since 1997 and has shown that it

has many desirable qualities (Schulze, 2003). This is a method that evolved in a sequence of

email and Internet postings by a group of enthusiasts who sought to develop workable voting

methods that can actually be put to use in “real life.” Schulze notes that this method is used

in organizations that have an aggregate membership of more than 1,700 and that it is the most

widely-used of all of the Condorcet round-robin methods. People who use the Linux operating

system might be interested to know that the Schulze method is used in decision making in the

Debian Linux project, one of the most widely disseminated Linux distributions.

Of all of the methods we have considered so far, this is the most difficult to understand

and interpret at face value. In order to justify it, the proponents do not rely on intuition. Rather,

they rely on the mathematical fact that this procedure meets many of the criteria against which

voting procedures are judged. If there is a Condorcet winner, this method selects it as the win-

ner. The Schulze method satisfies many of the other most important priorities, including undif-

ferentiatedness (same as neutrality), anonymity, monotonicity, independence of clones (clone-

proofness) and several others.
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Schulze’s method also satisfies a property known as Smith-IIA. Recall the Smith Crite-

rion, which held that the winner should be a member of the Smith Set. Smith-IIA adds the

additional stipulation that if a candidate is added in an election, it can only affect the election

outcome if it is in the Smith set. If it is not in the Smith set, then it is an irrelevant alternative

(so far as the choice among alternatives in the Smith set is concerned) and it should not matter.

The voters submit rankings of as many candidates as they wish, and the ones they do not

rank are assumed to be interchangeable and less desirable than the ones they do rank. There

are two mathematically equivalent descriptions of the Schulze method for picking the winner

in a competitive election. These methods employ the idea of “transitive defeat”. A “transitive

defeat” (also known as a chain) allows x to assert itself against y through a chain of compar-

isons, like x �P w and w �p y. Even if y defeats x in a head-to-head comparison, if a chain

from x to y exists, then x can “transitively defeat” y. You might think of the chain as a sort of

“self defense” or “political countermeasure” for electoral candidates. The chains can be quite

long, and to save space we might as well write x �P w �P z �P y to mean that x transitively

defeats y with w and z in the middle of the chain.

As the old saying goes, a chain is only as strong as its weakest link. The strength of a

chain from x to y is measured by the smallest margin of victory between any two alternatives

in the chain. The symbol P [x, y] represents the strength of the strongest chain from x to y. If

there are two chains leading from x to y, we measure the strength of each one (i.e, find the

smallest margin of victory), and P [x, y] is the largest value. If there is no chain from x to y,

then the strength is P [x, y] = 0.

The “beatpath method” is the one that Schulze uses as the definition of the social rank-

ing process. The aim is to find an alternative with the strongest chains through which it can

defeat all other alternatives. If the chain from x to y is stronger than the chain from y to x,

P [x, y] > P [y, x], then x disqualifies y from further consideration. If we collect up all the al-

ternatives that are not disqualified, then we have a set of “potential winners.” If we are lucky

enough to have only one candidate left, then it is the beatpath winner. If we have several left,
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then a tie breaking procedure is needed. Quite frankly, the emphasis in this method is to nar-

row the alternatives down to this set of unbeaten candidates, and the tie breaking procedure is

something of an afterthought.

To bring this down to earth, consider the application of this method to choosing a national

football champion after gathering votes from sports writers and coaches. The voters rank three

undefeated teams, Auburn (AU), the University of Southern California (USC), and the Uni-

versity of Oklahoma (OU). In 4, the arrow from USC to OU indicates that USC is preferred

to OU by 44 of the voters. Here, we are using the number of voters as the indicator of the

strength of the defeat (we could use the margin instead). Note there is a cycle, where OU is

ranked higher than AU (strength=22) and AU is preferred to USC (strength=18). This exam-

ple is particularly simple because there is only one path from each alternative to each of the

others. The beatpaths are:

1 P [OU, AU ] = 22

2 P [OU, USC] = 18

3 P [AU, USC] = 18

4 P [AU, OU ] = 18

5 P [USC, OU ] = 44

6 P [USC, AU ] = 22

Because P [USC, OU ] > P [OU, USC]and P [USC, AU ] > P [AU, USC], USC is the

beatpath winner.

The implications of the beatpath calculations are difficult to grasp for many people. Why

does the procedure satisfy so many of the desirable qualities? How can we make sense of

it? Shortly after Schulze proposed his method in 1997, it was shown that it is equivalent to a

method in which we sequentially measure the strength of the candidates and then remove the

weak ones, and then re-evaluate. The sequential evaluation process is organized around an en-

hancement of the Smith set which is called the Schwartz set. This view of the procedure is of-
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Figure 4: Beatpath for College Football
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ten called Cloneproof Schwartz Sequential Dropping (CSSD). Recall the Smith set is the “top

cycle” set of winners. The Smith set is not always selective; frequently it includes all of the

alternatives. In order to be a member of the Schwartz set, an alternative must either be unde-

feated in pairwise competition (it may defeat or tie each other alternative) or it must be able to

transitively defeat every other alternative that can transitively defeat it. To be in the Schwartz

set, a candidate must have “electoral self defense” against each of the other candidates. More

formally, x is in the Schwartz set if for any y such that P [y, x] > 0, then P [x, y] > 0. Even

if x transitively defeats y, y can be in the Schwartz set if there is a chain of plurality decisions

reaching from y to x. An alternative y is rejected from the Schwartz set if y cannot transitively

defeat another alternative which can transitively defeat y. If there are no pairwise tie votes, the

Schwartz set equals the Smith set. If there are ties, then the Schwartz set can be much smaller.

In Figure 5, ties are represented by dotted lines that connect alternatives. The ties make a dif-

ference because the transitive defeat concept is based on pairwise victories and ties are treated

the same as losses. In other words, ties break chains.

The sequential approach can be thought of as a way to find the strongest chains. The

Schwartz sequential dropping version of the Schulze procedure is the one that is described in

the Constitution of the Debian software organization http://www.debian.org/vote/

2003/vote_0002. In Figure 5, we illustrate the sequential narrowing of the Schwartz set

that results when ties (dotted lines) are inserted.
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Figure 5: Schwartz Sequential Dropping
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Schwartz sequential dropping proceeds iteratively, repeatedly narrowing down the alterna-

tives. It is easy to make this sound more complicated than it really is, but we will try not to.

Step 1. Collect the ranking information from the voters. The results of all pairwise com-

parisons are known. Voters are allowed to rank all of the alternatives or just some of them.

They are allowed to register their indifference between alternatives. From the ballots, we can

calculate the pairwise outcomes for all alternatives, either x �P y or xIP y or y �P x. It is

important to remember the number of votes for each alternative and the margins of victory.

Now the decision-making starts.

Step 2. Eliminate Rejects. Begin by simplifying the problem by isolating “rejects,” alter-

natives that are losers in the round robin tournament. These losers are the ones that are left

out of the Schwartz set. Recall that y is rejected if it is transitively defeated by some other

proposal and there is no chain that leads from y to that other alternative. The rejects are elimi-

nated from consideration, permanently.

Step 3. Evaluate the remaining contenders.

A. If there is only one contender, then it is the winner.

B. If there is more than one contender, check the pairwise comparisons among all of the

contenders. If all pairs are tied, it means, in some sense, that we have found all of the alter-

natives that are “equally good.” If all are tied, proceed to the tie-breaking procedure in Step

4.

C. If all contenders are not tied pairwise, then we need to make some changes so we can

reject more alternatives. Here is where the “sequential dropping” kicks in. Among all pairs

of contenders, find the “weakest pairwise defeat.” (To us, a name like “least impressive vic-

tory” would be more fitting.) The idea is to spot the least worthy pairwise victor and demote

it. How to spot the least impressive winner? Look for the alternative that wins with the small-

est number of votes.3 When the weakest pairwise defeat is found, that victory can be erased
3Some versions of this procedure use the margin of victory, rather than the absolute number of votes received

by the winner. Schulze recommends the total number of votes because he feels it gives voters a positive incentive to
report their rankings as completely as possible. Otherwise, they might have an incentive to report just the rankings of
the top one or two alternatives in order to “game” the election system.
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by changing it to a tie in the data. That is, we change the result in the round robin data for the

weakest defeat from �P to ≈P . (Caution: contrary to what some Web sites say, neither the

weakest defeat nor the tied alternatives are not dropped literally. The weakest defeat is con-

verted to a tie and the Schwartz set is recalculated.) If there are several alternatives that are

equally weak winners–many weakest defeats exist–then choose the one with the most votes for

the loser and declare that one to be the weakest defeat. If there are several pairs tied in both

the number of votes for the winner and the loser, treat them all in the same way: change the

pairwise comparison to a tie. This generates new round robin data.

Go back to Step 2 and repeat the procedure. Use the new round robin data, of course.

The rejects that were eliminated in previous stages are never re-admitted. Since we have in-

serted some ties into the results, the members of the Schwartz set will change: some con-

tenders will become rejects and then they are dropped. The procedure will repeatedly loop

between Steps 2 and 3 until the condition described in Step 3B is obtained.

Step 4. If we arrived at this stage, it means we have narrowed down the alternatives to

the most appealing set of more-or-less equally good outcomes. Schulze calls these “potential

winners.” A winner is selected by a tie breaking rule.

The tie breaking rule that is suggested by Schulze is, more-or-less, going to rank the tied

outcomes by listening to the opinions of randomly drawn voters. Suppose the tied candidates

are {w, x, y, z}. Randomly draw a ballot and copy down the preferences of the voter. If that

ballot states a ranking for all of the alternatives, then that is the end of the procedure. The

group result will match that ballot. If the ballot is only partially filled in, for example, it states

only x �i y, then we take that information and mark down x �Schulze y (it is “set in stone,”

unalterable) and we draw another ballot. If that ballot has preference information about can-

didates that are not already sorted by �Schulze, such as w, and y, then use that information

w �Schulze y. We draw ballots at random until every pairwise comparison is filled in, and we

never change any of the Schulze comparisons we have already completed. If we happen to go

through all ballots without ranking all of the alternatives, then the final ranking is assigned at
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random.

The Schulze method can be applied to any of the voting examples we have considered.

Of course, if the preferences imply the existence of a Condorcet Winner, then that alternative

is chosen and the solution is simple. To find a more interesting case, we need to select an ex-

ample in which there is a voting cycle. Recall the Borda paradox considered in section 4.2. In

Figures 6 and 7, we have used the preferences from Tables 3 and 4 with the Schwartz sequen-

tial dropping approach.

In Figure 6, we note that the original preferences allow a majority rule cycle across all of

the alternatives, so the first stage Schwartz set includes all of the alternatives. There are two

comparisons tied for the weakest defeat, each with the support of 4 voters, so in 6b, those ar-

rows are changed to dotted lines representing ties. After those ties are taken into account, the

Schwartz set is recalculated, and it includes only w.

Recall that alternative z is exposed as a fraud in that example. The effect of dropping z

to the bottom of the voter preference orderings appears in 7. Note that the initial Schwartz set

now includes only three alternatives, {w, x, y}. Alternative z is excluded (it is a Condorcet

loser). The weakest defeat is between w and y. After that is changed to a tie, then w is the

only potential winner remaining. The same alternative, w, wins with the Schulze method in

both cases.

The Schulze method has the apparent strength of solving the paradox in the Borda count:

w wins in both cases. The Schulze method is thus more stable and, in some sense, more log-

ical. The fact that the Borda method chose y in the original example (Table 3) and Schulze

chooses w deserves mention. From a beatpath point of view, it appears that we did not cor-

rectly understand the Borda problem in section 4.2. We thought the paradox was that y was

turned from a winner into a loser when the fortunes of z changed. Now it appears that the

original Borda winner, y, was “wrong.” Borda chose the wrong winner because it allowed z

to play the role of a spoiler, somehow distracting voters from their purpose, thus allowing y to

win. When z is moved to the bottom in Table 4, its role (its influence as an irrelevant alterna-
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Figure 6: Schulze Method Applied to Table 3
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Figure 7: Schulze Method Applied to Table 4
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tive) is eliminated, and the “correct alternative” w wins.

The Schulze method leads to a full, transitive ordering of all of the candidates. The beat-

path values P [x, y] can be used to sort alternatives from top to bottom. As a result, the method

could be used to determine the winner of the Division 1A College football championship on

the basis of the rankings submitted by coaches, writers, or computers.

The reader might be wondering, “if this method is so great, why isn’t everyone using it?”

Well, if you ask its proponents, we expect they will say “because everyone is not very smart!”

Ordinary people–not academics–are not particularly interested in election procedures, much

less complicated ones. As a result, the most widely used argument against the method seems

to be that it is too complicated. To academics, this is not a very good argument, but it carries

a lot of weight with real life policy makers. In response, the Schulze proponents will point out

that, from a voter’s point of view, it is no more complicated than a Borda count. All the voters

need to do is submit rankings of some alternatives. The counting process is more complex, of

course, but the effort is justified. The proponents can list a long list of favorable qualities that

we have already mentioned, plus some more.

The beatpath approach is not completely free from the anomalies that infect the other vot-

ing mechanisms. Schulze draws our attention to the paradoxical fact that his method violates

the Participation Criterion. The participation criterion says that if an election has been de-

cided, and then you add voters who prefer the winner to another alternative, then adding those

new voters must not result in the victory of that other (less favored) alternative. More formally,

the winner is x, hence socially x �Schulze y. Add more voters such that x �i y. Adding those

voters should not change the social result to y �Schulze x. The criterion does not require that

x must still win, only that adding voters who do not prefer y should not make y the winner.

Please note that the participation criterion is different from the monotonicity principle. Mono-

tonicity states that among existing voters, a change in voter preferences that favors x against y

must not hurt x’s position in the final decision. Participation concerns the addition of new vot-

ers. Schulze is a monotonic procedure, but examples can be found to show that it violates the

53



Table 11: The Schulze Method

Group: 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of voters: 4 2 4 2 2 2 4 12 8 10 6 4 3

Preferences
favorite u u u u v w w x y z z z u
second v v y y z x x y w u u y y
third w z v z u v v w x v v x z

fourth x x z v w y z u v w x v w
fifth y y w w x z y v z x y w v
sixth z w x x y u u z u y w u x

participation criterion.

Schulze’s example of the violation of the Participation Criterion is presented in an ex-

ample that has 6 candidates, {u, v, w, x, y, z} (see Table 11). The winner is u when the elec-

torate includes the 60 voters from groups 1-12 . The violation of the participation principle is

shown when group 13, which has 3 members, is added to the electorate. For all of the mem-

bers of group 13, note that u is the most preferred alternative and x is the least desirable. One

would expect that their favorite, the winner u, would remain in good position. Unfortunately,

the Schulze rule applied to this 63 voter electorate declares x to be the winner. After the se-

quential dropping process, u is the only contender (the only member of the final Schwartz set),

no use of the “tie breaker” is required.

Among the collection of peculiar election outcomes that we have been accumulating, this

is surely one of the most bizarre. In order to investigate it more carefully, consider the graphs

that illustrate the sequential dropping process in Figure 8. On the left, the pairwise data for the

12 group problem is illustrated. Note there are many ties in this example. The weakest defeat

is the step y �P z which is supported by 32 voters. After that is changed to a tie, the Schwartz

set shrinks to {u, v, w}, and from there it is easy to drop the weakest defeat and see that u

wins. On the right side of the figure, note that when group 13 is added, there are no pairwise

ties. When the weakest defeats are changed to ties, then the pattern of ties and pairwise com-

parisons in the initial results on with 12 groups re-appear. The ties are the same, but the mar-
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Figure 8: Schulze Method with Preferences in Table 11
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gins of victory are different. With 13 groups, the weakest defeat is now v �P w. After a tie

is drawn between v and w, the Schwartz set shrinks to {x, w, y}, and from there, the result is

easy to see: x wins. Why did u lose? When the path from v to w was removed, then u lost its

chains of self defense. The alternatives x,y, and z can all transitively defeat u, and there is no

path leading from u back to them if v ≈P w.

This is a variant of the problem of independence from irrelevant alternatives. What is

driving the problem here is not the relative evaluation of u and x, but rather the careful place-

ment of u, v, w, and z in the orderings of group 13 voters. The careful placement ends up

changing the magnitude of pairwise victories, thus impacting the order in which the sequen-

tial dropping eliminates candidates. If you think of the sequential dropping process as a series

of games in a tournament, then, we have simply found another example of the way in which

the ordering of the matches affects the outcome.

XX.6 Exercises

1. The following table describes the tastes of 3 voters. Conduct a round robin tournament

and use the win-loss records to try to decide which candidate should win the tournament.

Voters

1 2 3

Ranking

first x y z

second y z x

third z x y

2. Consider the table in the previous question. Describe a couple of changes you might

make in voter preferences (either by changing voters or adding new ones) if z is to be-

come the winner.
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3. Using the preference table used in problem 1 of Section 4, conduct a round robin tour-

nament and calculate the aggregated pairwise vote totals for the candidates. Confirm that

the results are the same as the Borda count.

4. Consider the preferences used in problem 1 of Section 4. Create a graph of the type

shown in Figure 4. Use that graph to figure out which candidate would win with the

Schulze procedure.

5. Consider the preferences used in problem 2 of Section 4. Repeat the exercise of the pre-

vious question.

6. Use the graph you created in the previous question to figure out which alternatives are in

the Schwartz set. Then change the weakest defeats to ties and re-calculate the Schwartz

set.

7. This is a challenging problem, one which we refer to in the feature box on 42. Show

that if the Borda count (or, equivalently, the aggregated pairwise vote) outcome is x �AP

y ≈AP z, then the only pairwise outcomes that are consistent with that outcome are the

ones listed in equation 8.

7 Single Vote Systems: Cousins of Plurality and Majority Rule

We began this chapter with the plurality problem. A plurality election with twenty or thirty

candidates might award victory to a very unpopular candidate. The poster children for the

problem might be the Democratic and Republican candidates in Minnesota’s gubernatorial

election who were edged-out by Jesse Ventura. In the words of mathematician Keith Devlin,

Jesse Ventura “won not because the majority of the voters chose him, but because plurality

voting effectively thwarted the will of the people. Had the voters been able to vote in such

a way that, if their preferred candidate were not going to win, their preference between the

remaining two would be counted, the outcome would have been quite different” (2004). The
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alternative schemes, the Borda rank order voting plan and the pairwise Condorcet systems, of-

fer some hope. They have not won the hearts and minds of electoral reformers with the same

power as the alternative to which we now turn our attention.

This system requires the voters to come to the polls only once. The voters rank the alter-

natives and then the election officials can proceed “as if” there really were a run-off election.

When this procedure is used to select a single winner in an election, it is generally referred to

as an Instant Runoff Vote (IRV) or an Alternative Vote system. When the method is used to

select a group of candidates, such as the top 5 nominees for the Grammy Awards, or in a pro-

portional legislative election, the procedure is called the Single Transferable Vote (STV). The

procedures are the same for choosing a single winner, but the details get complicated for se-

lecting the additional winners. There are two prominent implementations of the STV concept,

the Hare system (in honor of Thomas Hare, an English proponent of this system), the Hare-

Clark system (add an honorific for Andrew Inglis Clark, a Tasmanian Attorney-General who

pushed a variant of the STV into usage). The transferable vote is in use in national elections

in Australia, Malta and Ireland as well as in local elections in Cambridge, Massachusetts, San

Francisco, California, and cities in Northern Ireland, and New Zealand. The method is used in

faculty elections at Cornell University.

We will focus our attention on the selection of a single winner from a field of candidates,

so we will detail only that part of the procedure.

The winner must obtain a target number of votes, dubbed the quota. If there is only one

spot open–only one candidate can win–the usual quota is the majority of the votes:

quota = majority ≥
Number of voters + 1

2

On election day, the voters go to the polls and rank the candidates from first to last in

order of desirability. Then election managers name the winner by applying the following algo-

rithm.
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Step 1. A voter’s support on the first ballot is given to the voter’s top-ranked candidate.

If one of the candidates has a majority, then that candidate is the winner. If no candidate has a

majority, proceed to Step 2.

Step 2. The candidate with the smallest number of votes is eliminated from consideration.

The ballots of the voters who had supported that eliminated candidate are reconsidered. Their

votes are transferred to their second-ranked candidates. Then the votes are re-tabulated. If a

candidate has a majority, then it is declared the winner. Otherwise, repeat Step 2. (The candi-

date that was eliminated in this step is excluded throughout the remainder of the process.)

If the election is choosing 5 members of a commission or a legislative delegation, the pro-

cedure is slightly more involved. Not only are the votes cast for the losers transferred, but also

the votes received by the winners can be transferred. The details of this would take us too far

away from the central purpose of this section, but we are able to describe the process in gen-

eral terms. Candidates qualify for victory by exceeding a vote quota4, a number smaller than

a majority. If there is no candidate who meets the quota, then a loser is eliminated and votes

are transferred to the second-ranked candidates. If a winning candidate has more votes than

the quota requires–a “surplus” of votes–the surplus is reallocated to the next-best candidate on

the surplus ballots. The calculations in that re-allocation are a bit involved; that is where the

variants of STV diverge. The main idea in the procedure is that candidates are removed one-

by-one, and the votes cast for the removed candidates are either counted for them (as part of

their quota) or transferred and counted for other candidates that the voter also supports.

The proponents of this method claim that it does not throw away information in the same

way as a plurality election. It saves voters from the terrible choice that is forced on them by

a plurality vote. If the voters who favor either the Democrat or the Republican against Jesse

Ventura have a chance to declare that priority, then Ventura might not end up winning in the

Instant Runoff. The “Ventura problem,” coupled with the on-going use of the procedure in
4

quota =
Number of votes cast

Number of winners to be chosen + 1
+ 1

Note that if there is one winner to be chosen, the winner must have a bare majority.
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some places, gives the STV advocates some persuasive ammunition. Krist Novoselic, most

well known as a member of the band Nirvana, has written a book that combines his band

memoir with an endorsement of transferable votes, Of Grunge and Government: Let’s Fix This

Broken Democracy (2004). He also hosts a website (http://www.fixour.us) where he posts ed-

itorials. He eagerly watched the introduction of STV in San Francisco for the 2004 Board of

Supervisors elections. Steven Hill of the Center for Voting and Democracy, a proponent of the

transferable vote systems, enthusiastically proclaimed, “More voters picked their supervisor,

and fast results mean that San Francisco avoided a December runoff election, saving millions

in taxes (the cost of the second election)”(Novaselic, 2004).

There is no doubt that the STV might work to correct bad outcomes in some particular

examples. Perhaps Jesse Ventura might not have been governor of Minnesota. There are ex-

ample problems that we can consider in which the STV does not seem to perform too badly.

If the STV procedure is applied to the preferences of groups 1-12 in Table 11 (the data for

the Schulze example that violated the participation criterion), the STV stages eliminate v, then

w, then y, and then u. The two remaining candidates, x and z, are tied with 30 votes. After

adding group 13 into the calculations, the elimination process rejects the alternatives in the

same order (v, w, y, and then u). The winner is z, which earns 33 votes against the 30 for x.

The new voters prefer z to x, and it seems quite reasonable that adding them to the electorate

would tip the scales in favor of z.

On the other side of the ledger, however, the STV has several properties that should cause

concern. The fact that the STV system does not always select a Condorcet Winner (when one

exists) is a serious shortcoming. Academic research has often concentrated on another issue:

STV is not monotonic. The principle of monotonicity has first come to our attention in the

consideration of majority rule and May’s Theorem. Now it comes to the forefront again. The

basic idea of the Monotonicity Criterion is that an election system should be responsive, and

not in a perverse way. If a voter changes his mind and decides to rank an alternative more

highly, then that alternative’s electoral fortunes should be helped, or at least not hurt. This is
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the property commonly called weak monotonicity.

Consider the preference rankings in Table 12. There are preferences for five groups, {1, 2, 3, 4, 5}

and four alternatives, {w, x, y, z}. The STV algorithm proceeds as follows.

1. The first place votes are, in order, w=9, x=6, y=6, z=5.

2. Eliminate z, so the candidates are w, x and y. Re-allocate the votes of group 1 to their

second-ranked candidate, x. The votes are retabulated: x=11, w=9, y=6.

3. Eliminate y, so the final 2 candidates are w and x. Reallocate the votes of groups 2

and 3 to x. The final vote totals are x=17, w=9. So x is declared the winner.

We make only one small change in order to demonstrate the fact that STV is nonmono-

tonic. We will replace group 3 with the voters in group 3′, so that the columns being used in

the vote are {1, 2, 3′, 4, 5}. We hope the reader will agree that this seems to be an innocuous

change. The voters in 3 think x is second best, but the voters in 3′ think that x is the most de-

sirable of all; x should still win, shouldn’t it?

Observe how the STV result changes.

1. The first place votes are, in order, w=9, x=8, y=4, z=5.

2. Eliminate y, so the candidates are w, x and z. Re-allocate the votes of group 2 to their

second-ranked candidate, z. The votes are thus retabulated: z=9, w=9, x=8.

3. Eliminate z, so the final 2 candidates are z and w. Reallocate the votes of groups 3′

and 4 from x to z. The final vote totals are z=17, w=9. The winner is z.

This is a clear violation of weak monotonicity (and, we might add, plain old common

sense). The winner of the original STV was x, but after we raise x’s popularity by replacing 3

with 3′, the winner is z. Alternative x was eliminated in stage 3. This would be interpreted to

mean that x finished in third place. And the only change between the first and second example

was that the voters in group 3 became group 3′, meaning they raised x in their preferences.

After noting this fact, William Riker concluded “It is hard to believe that there is any good

justification for the single transferable vote.” (1982, p. 51).
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Table 12: Single Transferable Vote Violates Monotonicity

Voters Alternative Preferences
Groups 1 2 3 4 5 3’

Number of Members 5 4 2 6 9

Ranking
first z y y x w x

second x z x y z y
third y x z z x z

fourth w w w w y w

XX.7 Exercises

1. Consider the preferences used in problem 1 of Section 4. Conduct an STV election. In

what order will the candidates be eliminated? How will the votes be re-allocated? Who

will be the eventual winner?

2. Repeat the previous exercise with the preferences used in problem 2 of Section 4.

3. Suppose you are a member of the book of the month club. The club must choose be-

tween the classics The Grapes of Wrath and Superman: Battle to the Finish with Luther!

You would love to have Superman, but you know for sure that at least 70% of the club

members are snobs who would vote for Grapes. Think of two methods you might try in

order to bring about the eventual selection of Superman. Note, you are not allowed to

make a persuasive speech to change their minds or do anything that would change the

pairwise comparison of the two books, but you can introduce new alternatives and differ-

ent voting methods.
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8 Conclusion

After reviewing the many voting systems and studying the many principles by which they are

judged, the reader has a right to ask the author, “how do you rank these systems? Which is the

best?”

We find ourselves wishing that there were some voting system that would meet all of the

requirements that seem fair and logical. Wishing does not make it so, sadly enough. In fact,

there is a theorem, known as Arrow’s Possibility Theorem, which states, basically, that it is

mathematically impossible to find a voting system that satisfies what appear to be the most

basic, bare-minimum requirements. Arrow, an economist, was awarded the Nobel prize, partly

on the basis of this research (Arrow, 1963).

Arrow’s theorem can be stated in several ways. We think this is the most useful version.

Suppose there is an election ranking system that meets these requirements:

Nondictatorial The social ranking does not mirror the tastes of one voter i without regard to

the tastes of the other voters.

Pareto Principle If all voters favor one alternative over another, then the social ranking should

respect that and rank the alternatives accordingly.

These seem like such simple, fundamental elements that they can be assumed as necessary in-

gredients in a social ranking procedure. Arrow’s Possibility Theorem says the following. If an

election system is nondictatorial and obeys the Pareto principle, then it is possible to find an

example set of voter preferences such that:

1. The social ranking is intransitive (a voting cycle), and/or

2. Independence of irrelevant alternatives (IIA) is violated.

It is very important to emphasize that the Possibility Theorem does not mean that a rank-

ing procedure is always intransitive or in violation of IIA. Rather, it is always possible to find

an example society, a set of voter preferences, such that the result is somehow illogical. If the

result is intransitive, then we have the paradox of “rational man, irrational society”(Barry and

63



Hardin, 1982). If we adopt a system that blocks intransitivity, such as the Borda count, then

we know for sure there are examples in which independence from irrelevant alternatives is vio-

lated.

Arrow’s theorem is sometimes overstated. For example, some students think it says that

democracy is always illogical. It does not mean anything of the kind. Rather, it means that it

is not possible to find a democratic procedure that works in a sensible way all of the time.

If it is not possible to meet such basic, simple criteria as nondictatorship, of course it is

not possible to meet even more elaborate properties like the participation criterion. As a result,

the choice of electoral system has to be based not on which system meets all of the specified

criteria, but rather on a value judgment about what sorts of peculiarities are the most harmful

and which sorts of societal preference profiles are most likely to arise and cause peculiarities.

If the reader wants to know “which ranking system is best?” we can sympathize. We

want to know the same thing. And so do most political scientists, economists, mathematicians,

physicists, and psychologists.

Personally speaking, we have found a pleasant results by using procedures that elimi-

nate the obviously bad candidates (by some principle like the Smith set or the Schwartz set)

and then choosing among the remainder by a positional method like the Borda count or the

Schulze method. We have been very unhappy with decisions reached by pure plurality or a

runoff election. The STV might be preferable to a plurality or majority rule election, but the

fact that it is so badly nonmonotonic causes us to shy away from it. That is to say, plurality

rule is truly bad, as both Borda and Condorcet had contended, and we would rather have STV

than plurality, but we’d rather have one of the more elaborate two-stage procedures instead of

either one.

Suggested Readings

Readers who look into this further will no doubt find ten or twenty seriously proposed

election procedures, all of which have advantages worth considering. Perhaps one would begin

with the textbook by by William Riker (1982) and then do some soaking and poking in the In-
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ternet. We have found many fascinating Web sites and would encourage readers to adventure,

but keep in mind that these sites are not peer reviewed by experts and we have noticed a non-

trivial number of mistakes in interpretation and mathematics. Perhaps the most rigorous analy-

sis is to be found on the election-methods email list, which is hosted on http://electorama.com.

In the next two sections, we discuss two of the procedures that have been recently been pro-

posed and have well-documented merit.

Exercises

Answer to question XX.6.7.

We want to show that if x �BC y ≈ BCz, then the valid pairwise outcomes are:

1. x �P y, x �P z, y ≈P z

2. x �P y, x �P z, y �P z

3. x �P y, z �P x, y �P z

4. x �P y, x ≈P z, y �P z

5. x ≈P y, x �P z, y �P z

(10)

Recall that the none of the voters are indifferent between alternatives. Use the shorthand nota-

tion qx,y to represent the number of voters who prefer x to y.

qx,y = |{i ∈ N : x �i y}|.

Because there is no indifference, then a tie means qx,y = qy,x = N/2. If qx,y > qy,x, then x de-

feats y in a head-to-head comparison (equivalently, qx,y − qy,x > 0 means x �P y). The results

of the aggregated pairwise vote, which is equivalent to the Borda count, can be expressed as

aggregated pairwise vote for x : qx,y + qx,z
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We calculate that aggregates (equivalently, Borda Counts) for y and z as well

aggregated pairwise vote for y : qy,x + qy,z

aggregated pairwise vote for z : qz,x + qz,y

If the Borda outcome is x �BC y ≈ BCz, then it must be true that:

qx,y + qx,z > qy,x + qy,z

qx,y + qx,z > qz,x + qz,y

qy,z + qy,x = qz,x + qz,y

. (11)

Keep in mind that qy,x = N − qx,y,qz,x = N − qx,z, and qz,y = N − qy,z; although it appears

there are six variables in these expressions, there are really just three unknowns.

Re-arrange the inequalities in 11 so that they have the pairwise majority rule conditions

on the left hand side:
qx,y − qy,x > qy,z − qx,z

qx,z − qz,x > qz,y − qx,y

qy,z − qz,y = qz,x − qy,x

(12)

To find all sets of pairwise outcomes that are consistent with x �BC y ≈ BCz, consider 3

cases, y ≈P z, y �P z, and z �P y.

Case 1: y ≈P z. This is a majority rule tie between y and z. Are there pairwise outcomes

for x against y implied by this outcome? If y ≈P z, then x defeats both y and z in pairwise

contests. By definition, y ≈p z means qy,z − qz,y = 0, and since qz,y = N − qy,z, then qy,z =

qz,y = N/2. The second condition in 12 reduces to:

qx,z − qz,x >
N

2
− qx,y (13)

The third condition in 12 also implies the restriction qz,x = qy,x. That means the support in

favor of z against x must be exactly equal to the support for y against x, so qx,y = qx,z. Substi-
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tute qz,x in place of qx,y in 13 and we find:

qx,z >
N

2

This means that x �P z and x �P y are implied by the condition y ≈P z, so one word has

to be the first one listed in 10. That is to say, in order to be consistent with the Borda outcome

x �BC y ≈BC z, then if y ties z in a plurality election, then x must defeat both y and z (and

by the same margin).

Case 2: y �P z. Alternative y defeats z in a pairwise majority contest. It is difficult to

understand how it is possible for this to happen if y ≈BC z. Beginning with the information

supplied by the Borda outcomes, we can use the identities qx,y = N − qy,x, qy,z = N − qz,y,and

qz,x = N − qx,z to arrive at the following:

qx,y −
N
2

> 1

2
qy,z −

1

2
qx,z

qx,z −
N
2

> N
2
− 1

2
qy,z −

1

2
qx,y

qy,z = N
2
− 1

2
qx,z + 1

2
qx,y

(14)

Insert the value of qy,zimplied by the third expression in the second one to obtain

qx,z −
N

2
>

N

4
+

1

4
qx,z −

3

4
qx,y

which can be rearranged as:

3

4
qx,z −

3N

4
> −

3

4
qx,y,

or

qx,z + qx,y > N (15)

We do not know for sure if x defeats y or x defeats z in pairwise votes, but we can say
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for sure that x will defeat at least one (possibly both) of them.

That seems like pretty thin gruel, but it actually helps us to narrow down the possibilities

quite a bit. Since we assumed y �P z, then 15 implies that the only majority rule outcomes

possibly consistent with the Borda result x �BC yIBCz are:

1 x �P y, x �P z, y �P z

2 y �P x, x �P z, y �P z

3 x �P y, z �P x, y �P z

4 x ≈P y, x �P z, y �P z

5 x �P y, x ≈P z, y �P z

(16)

Possibilities 2 and 4 can be ruled out. If y �P z, it must also be true that z �P x. To see

why, recall x �BC y ≈ BCz, so it must be that

qy,z + qy,x = qz,x + qz,y

Equivalently,

qy,z − qz,y = qz,x − qy,x

If y �P z, qy,z − qz,y > 0 and so qz,x − qy,x > 0 and using the identities like qx,y + qy,x = N ,

we find qx,y − qx,z > 0. If x �P z, then qx,z > N
2

, and it must be that qx,y > N
2

(equivalently,

x �P y). The possibilities 2 and 4 violate that restriction. That leaves possibilities 1, 3, and 5,

which correspond to three of the words in the solution.

Case 3: z �P y. If we repeat the same exercise as the previous case, we arrive at the

same set of possible words, except that the last one “swaps” the positions of y and z .

1 x �P y, x �P z, y �P z

3 x �P y, z �P x, y �P z

5 x ≈P y, x �P z, y �P z

(17)

68



Notice that two of these solutions are identical to the ones found in the previous paragraph,

only the third one is unique. Collecting up the unique solutions, we have finished our work.

All five of the words that are compatible with the Borda outcome x �BC y ≈BC z have been

found.
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