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Auctions occupy a deservedly prominent place within microeconomics and game theory, for 

at least three reasons: 

• The auction is, in its own right, an important device for trade. Auctions have long been a 

common way of selling diverse items such as works of art and government securities. In 

recent years, their importance in consumer markets has increased through the ascendancy 

of eBay and other Internet auctions. At the same time, the use of auctions for transactions 

between businesses has expanded greatly, most notably in the telecommunications, 

energy and environmental sectors, and for procurement purposes generally. 

• Auctions have become the clearest success story in the application of game theory to 

economics. In most applications of game theory, the modeler has considerable (perhaps 

excessive) freedom to formulate the rules of the game, and the results obtained will often 

be highly sensitive to the chosen formulation. By way of contrast, an auction will 

typically have a well-defined set of rules, yielding clearer theoretical predictions. 

• There has been an increasing wealth of auction data available for empirical analysis in 

recent years. In conjunction with the available theory, this has led to a growing body of 

empirical work on auctions. Moreover, auctions are very well suited for laboratory 

experiments and they have been a very fruitful area for experimental economics. 

This entry is limited in its scope to auction theory. Other related entries include “Auctions: 

Empirics,” which reviews the growing body of empirical work relating to auctions, and 

“Mechanism Design,” which reviews a theoretical body of work that originated in the analysis of 

problems related to optimal auctions but extends well beyond. 

1. Introduction 

Auction theory is often said to have originated in the seminal 1961 article by William 

Vickrey. While Vickrey’s insights were initially unrecognized and it would be many years before 
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his work was followed up by other researchers, it eventually led to a formidable body of research 

by pioneers including Wilson, Clarke, Groves, Milgrom, Weber, Myerson, Maskin and Riley. 

The first wave of theoretical research into auctions concluded in the mid-1980’s, by which time 

there was a widespread sense that it had become a relatively complete body of work with very 

little remaining to be discovered. See McAfee and McMillan (1987) for an excellent review of 

the first wave of auction theory. 

However, the perception that auction theory was complete began to change following two 

pivotal events in the 1990’s: the Salomon Brothers scandal in the US Government securities 

market in 1991; and the advent of the Federal Communications Commission (FCC) spectrum 

auctions in 1994. In the aftermath of the former, the Department of the Treasury sought input 

from academia concerning the US Treasury auctions. In the preparation for the latter, the FCC 

encouraged the active involvement of auction theorists in the design of the new auctions. 

Each of these two episodes undoubtedly benefitted from the participation of academics. In 

particular, the FCC introduced an innovative dynamic auction format — the simultaneous 

ascending auction — whose empirical performance appears far superior to previous static sealed-

bid auctions. The Treasury’s experimentation with, and eventual adoption of, uniform-price 

auctions in place of pay-as-bid auctions, also appears to have resulted from economists’ input. 

At the same time, these two pivotal events underscored some extremely serious limitations 

in auction theory as it existed in the early- to mid-1990’s. It became apparent then that the theory 

that had been developed was almost exclusively one of single-item auctions, and that relatively 

little was established concerning multi-item auctions. As the flip side of the same coin, these 

episodes made obvious that many of the empirically-important examples of auctions involve a 

multiplicity of items. As a result, a second wave of theoretical research into auctions, focusing 

especially on multi-item auctions, emerged in the middle of the 1990’s and continues today. 

This entry begins by reviewing the theory of single-item auctions, largely completed during 

the first period of research. It then continues by reviewing the theory of multi-unit auctions, still 

a work in progress. 

The scope and detail of the present article is necessarily quite limited. For deeper and more 

comprehensive treatments of auctions, three recent and notable books, by Krishna (2002), 

Milgrom (2004) and Cramton, Shoham and Steinberg (2006), are especially recommended to 

readers. Earlier survey articles by McAfee and McMillan (1987) and Wilson (1992) also provide 
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excellent treatments of the literature on single-item auctions. A compendium by Klemperer 

(2000) brings together many of the best articles in auction theory. 

2. Sealed-Bid Auctions for Single Items 

Much of the analysis within traditional auction theory has concerned sealed-bid auctions 

(i.e., static games) for single items. Bidders submit their sealed bids in advance of a deadline, 

without knowledge of any of their opponents’ bids. After the deadline, the auctioneer unseals the 

bids and determines a winner. The two most commonly studied sealed-bid formats are: 

FIRST-PRICE AUCTION. The highest bidder wins the item, and pays the amount of his bid. 

SECOND-PRICE AUCTION. The highest bidder wins the item, and pays the amount bid by the 

second-highest bidder. 

Note that the above auction formats (and, indeed, all of the auctions described in this entry) have 

been described for a regular auction in which the auctioneer offers items for sale and the bidders 

are buyers. Each can easily be restated for a “reverse auction” (i.e., procurement auction) in 

which the auctioneer solicits the purchase of items and the bidders are sellers. For example, in a 

second-price reverse auction, the lowest bidder is chosen to provide the item and is paid the 

amount bid by the second-lowest bidder. 

A. The Private Values Model 

A seller wishes to allocate a single unit of a good or service among n bidders (i = 1, … , n). 

The bidders bid simultaneously and independently as in a noncooperative static game. Bidder i’s 

payoff from receiving the item in return for the payment y is given by vi – y (whereas bidder i’s 

payoff from not winning the item is normalized to zero). Each bidder i’s valuation, vi, for the 

item is private information. Bidder i knows vi at the time he submits his bid. Meanwhile, the 

opposing bidders j ≠ i view vi as a random variable whose realization is unknown, but which is 

drawn according to the known joint distribution function 1
ˆ ( , ... , , ... , )i nF v v v . 

This model is referred to as the private values model, on account that each bidder’s 

valuation depends only on his own — and not the other bidders’ — information. (By contrast, in 
a pure common values model, , for all i, j = 1, …, n; and in an interdependent values 

model, bidder i’s valuation is allowed to be a function of 
iv v= j

i{ }i j jv v− ≠= , as well as of .) With iv
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private values, some especially simple and elegant results hold, particularly for the second-price 

auction. 

Two additional assumptions are frequently made. First, we generally assume that bidders are 

risk neutral in evaluating their payoffs under uncertainty. That is, each bidder seeks merely to 

maximize the mathematical expectation of his payoff. Second, we often assume independence of 

the private information. That is, the joint distribution function, 1
ˆ ( , ... , )nF v v , is given by the 

product of separate distribution functions, ( )iF ⋅ , for each of the . However, both the risk 

neutrality and independence assumptions are unnecessary for solving the second-price auction, 

which we analyze first. 

iv

B. Solution of the Second-Price Auction 

Sincere bidding (i.e., the truthful bidding of one’s own valuation) is a Nash equilibrium of 

the sealed-bid second-price auction, under private values. That is, if each bidder i submits the bid 

, then there is no incentive for any bidder to unilaterally deviate. Moreover, sincere 

bidding is a weakly dominant strategy for each bidder; and sincere bidding by all bidders is the 

unique outcome of elimination of weakly dominated strategies. These facts make the sincere 

bidding equilibrium an especially compelling outcome of the second-price auction. 

ib v= i

Let { }ˆ maxi jj i
b b− ≠

= , the highest among the opponents’ bids. The dominant strategy property 

is easily established by comparing bidder i’s payoff from the sincere bid of  with his 

payoff from instead bidding (“shading” his bid). If 
ib v= i

iib v′ < ˆ
ib−  is less than  or greater than , 

then bid-shading has no effect on bidder i’s payoff; in the former case, bidder i wins either way, 

and in the latter case, bidder i loses either way. However, in the event that  is between 

ib ′
iv

ˆ
ib− ib ′  

and , the bid-shading makes a difference: if bidder i bids , he wins the auction and thereby 

achieves a positive payoff of ; whereas, if bidder i bids 
iv iv

ˆ 0i iv b−− > ib ′ , he loses the auction and 

receives zero payoff. Thus,  weakly dominates any bid ib v= i iib v′ < . A similar comparison 

finds that  weakly dominates any bid . Sincere bidding is optimal, regardless of 

the bidding strategies of opposing bidders. 
ib v= i iib v′ >

Note that the above argument in no way uses the risk neutrality or independence 

assumptions; nor does it require any form of symmetry. Another way of viewing this is that 

sincere bidding is an ex post equilibrium of the second-price auction, in the sense that the 

strategy would remain optimal even if the bidder were to learn his opponents’ bids before he was 
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required to submit his own bid. Indeed, one of the strengths of the result that sincere bidding is a 

Nash equilibrium in weakly dominant strategies is that it basically relies only upon the private 

values assumption, and is otherwise extremely robust to the specification of the model. 

C. Incentive Compatibility in any Sealed-Bid Auction Format 

Consider any equilibrium of any sealed-bid auction format, in the private values model. 

Given that bidder i’s valuation is private information, observe that there is nothing to force 

bidder i to bid according to his true valuation  instead of some other valuation . As a result, 

the equilibrium must have a structure that gives bidder i the incentive to bid according to his true 

valuation. This requirement is known as incentive compatibility. 

iv iw

In the following derivation, we assume that the support of each bidder i’s valuation is the 

interval [ , ]i iv v . We will make both the risk-neutrality and independence assumptions. Let 

 denote bidder i’s expected payoff, let  denote bidder i’s probability of winning the 

item, and let  denote bidder i’s expected payment in this equilibrium, when his valuation 

is . The reader should note that  refers here to bidder i’s unconditional expected 

payment — not to his expected payment conditional on winning. Given the risk-neutrality 

assumption,  is given by: 

( )i ivΠ ( )i iP v

( )i iQ v

iv ( )i iQ v

( )i ivΠ

(1)  ( ) ( ) ( ) .i i i i i i iv P v v Q vΠ = −

Next, we pursue the observation that there is nothing forcing bidder i to bid according to his 

true valuation  rather than according to another valuation . Define iv iw ( , )i i iw vπ  to be bidder 

i’s expected payoff from employing the bidding strategy of a bidder with valuation  when his 

true valuation is . Observe that: 
iw

iv

(2) ( , ) ( ) ( ) ,i i i i i i i iw v P w v Q wπ = −  

since bidder i’s probability of winning and expected payment depend exclusively on his bid, not 

on his true valuation. Bidder i will voluntarily choose to bid according to his true valuation only 

if his expected payoff is greater than from bidding according to another valuation , that is, if: iw

(3) ( ) ( , ), for all , [ , ] and all 1 , ... , .i i i i i i i i iv w v v w v v i nπΠ ≥ ∈ =  

Inequality (3), referred to as the incentive-compatibility constraint, has very strong implications. 

Next, note that [ , ]( ) ( , ) max ( , )
i i ii i i i i w v v i i iv v v w vπ π∈Π = = . It is straightforward to see that 

 is monotonically nondecreasing and continuous. Consequently, it is differentiable almost ( )iΠ ⋅
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everywhere and equals the integral of its derivative. Applying the Envelope Theorem at any  

where  is differentiable yields: 
iv

( )iΠ ⋅

(4) 
( ) ( , ) ( ) ( ) .i i i i i

i i i i
i i

i i
i i

w v
w v

d v w v P w P v
dv v

π
=

=

Π ∂
= = =

∂
 

Integrating Eq. (4), we have: 

(5) ( ) ( ) ( ) , for all [ , ] and all 1 , ... , .i

i i i i i i i i

v

v
v v P x dx v v v i nΠ = Π + ∈ =∫  

D. Solution of the First-Price Auction 

The sealed-bid first-price auction requires two symmetry assumptions in order to yield a 

fairly simple solution. First, we assume symmetric bidders, in the sense that the joint distribution 

function 1
ˆ ( , ... , , ... , )i nF v v v  governing the bidders’ valuations is a symmetric function of its 

arguments. This assumption and the associated notation are simplest to state if independence is 

assumed. In this case, we write  for the distribution function of each ; symmetry is the 

assumption that , or in other words, the assumption that the various  

are identically distributed, as well as independent, random variables. However, a similar 

derivation with only slightly more cumbersome notation is possible if the bidders are symmetric 

but the  are affiliated random variables. We write 

( )iF ⋅ iv

, for all 1 , ... ,iF F i n= = iv

iv [ , ]v v  for the support of . In addition, 

we assume that  is a continuous function, so that there are no mass points in the common 

probability distribution of the bidders’ valuations. 

( )F ⋅

( )F ⋅

Second, we restrict attention to symmetric, monotonically increasing equilibria in pure 

strategies. The assumed symmetry of bidders opens the possibility for existence of a symmetric 

equilibrium. (Meanwhile, asymmetric equilibria are also possible in symmetric games, but 

Maskin and Riley, 2003, establish that, under slightly stronger assumptions, the construction here 

gives the unique equilibrium of the auction.) Any pure-strategy equilibrium can be characterized 

by the bid functions  , which give bidder i’s bid 1{ ( )} n
i iB =⋅ ( )i iB v when his valuation is . Our 

assumption is that 
iv

, for all 1 , ... ,iB B i= = n , where ( )B ⋅  is a strictly increasing function. 

Observe that in any symmetric equilibrium, bidder i wins against bidder j if and only if 
( ) ( )j iB v B v<  and, given strict monotonicity, if and only if jv vi< . (We can ignore the event 

; this is a zero-probability event, since we have assumed the distribution of valuations has 

no mass points.) Consequently, bidder i wins the item if and only 
jv v= i

ifor allj iv v j< ≠ . Since the 
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{ }j j iv ≠  are i.i.d. random variables, bidder i has probability 1( )i
nF v −  of winning the auction w

his valuation is iv . We write: ( )i iP v

hen 

 ( )i
nF v 1−= , for all [iv v , ]v∈  and a

i

ll i = 1 , … , n. 

Moreover, in a first-price auction, the bidder’s payoff equals ( )iv B v−  if he wins the 

auction and zero if he loses. Consequently his expected payoff equals: 

(6) [ ] [ ]1( ) ( ) ( ) ( ) ( ) .i i i i i i i i i
nv P v v B v F v v B v−Π = − = −  

Observe from Eq. (6) that, if iv = v , bidder i’s probability of winning equals zero and, hence, 

( ) 0i vΠ = . Substituting this fact and 1( ) ( )i i i
nP v F v −=  into Eq. (5) yields: 

(7) 1( ) ( ) , for all [ , ] and all 1 , ... , .i

i i i

v n
v

v F x dx v v v i−Π = ∈ =∫ n  

Combining Eq. (6) with Eq. (7), and solving for ( )B ⋅ , yields the equilibrium bid function: 

(8) 
1

1 1

( )( )( ) .( ) ( )

i

i i
i i i

i i

v n
v

n n

F x dxvB v v v
F v F v

−

− −
Π

= − = −
∫  

The posited strict monotonicity is verified by differentiating Eq. (8) with respect to , 

which shows that . Thus, Eq. (8) provides us with the unique symmetric equilibrium in 

pure strategies of the sealed-bid first-price auction. This result holds for arbitrary continuous 

distribution functions  with support on an interval 

iv

( ) 0iB v′ >

( )F ⋅ [ , ]v v . 

3. Revenue Equivalence, Efficient Auctions and Optimal Auctions 
Standard practice in auction theory is to evaluate auction formats according to either of two 

criteria: efficiency and revenue optimization. With the quasi-linear utilities generally assumed in 

auction theory, efficiency means putting the items in the hands of those who value them the 

most. Revenue maximization means maximizing the seller’s expected revenues or, in a 

procurement auction, minimizing the buyer’s expected procurement costs. In auctions of 

government assets such as spectrum licenses, the explicit objective is often efficiency. In 

auctions by private parties, the explicit objective is often revenue optimization. 

A. Efficient Auctions 

The above solutions to the second-price and first-price auctions both yield full efficiency. In 

the symmetric increasing equilibrium of the first-price auction, the highest bid corresponds to the 

highest valuation, and so the item is assigned efficiently for every realization of the random 
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variables. In the dominant strategy equilibrium of the second-price auction, the identical 

conclusion holds. Thus, in a symmetric private values model, an objective of efficiency looks 

kindly upon both auction formats — but does not prefer one over the other. 

B. Revenue Equivalence 

One of the classic and most far-reaching results in auction theory is Revenue Equivalence, 

which provides a set of assumptions under which the seller’s and buyers’ expected payoffs are 

guaranteed to be the same under different auction formats. 

Revenue Equivalence (Vickrey, 1961; Myerson, 1981; Riley and Samuelson, 1981) may be 

stated as follows. Assume that the random variables representing the bidders’ valuations are 

independent, and assume that bidders are risk neutral. Consider any two auction formats 

satisfying both of the following properties: (1) The two auction formats assign the item(s) to the 

same bidder(s), for every realization of random variables; and (2) the two auction formats give 

the same expected payoff to the lowest valuation type, iv , of each bidder i. Then each bidder 

earns the same expected payoff under each of the two auction formats and, consequently, the 

seller earns the same expected revenues under each of the two auction formats. 

For an auction of a single item, the result follows directly from Eq. (5) above. Recall that 

this equation holds for any equilibrium of any sealed-bid auction format. If for every realization 

of the random variables, the two auction formats assign the item to the same bidder, then each 

bidder’s probability, , of winning is the same under the two auction formats. If in addition, ( )iP ⋅

( )i ivΠ  is the same under the two auction formats, then Eq. (5) implies that the entire function 

 is the same under the two auction formats. Since this holds for every bidder i, and since 

the expected gains from trade are the same under the two auction formats, it follows from an 

accounting identity that the seller’s expected revenues are also the same under the two auction 

formats. 

( )iΠ ⋅

One of the most important applications of Revenue Equivalence is that the above solutions 

to the second-price and first-price auctions give the seller the same expected revenues (and also 

give each buyer the same expected payoffs). Revenue equivalence is applicable because, as 

argued above, the item is assigned efficiently for every realization of the random variables in 

each of these auction formats. Moreover, when iv v= , the expected payoff of bidder i equals 

zero in each of these auction formats. To understand this result, observe that (all other things 

equal) a bidder in a first-price auction will bid lower than in a second-price auction, since the 
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payment rule is less generous. Expected revenues will be greater in the first-price or the second-

price auction depending on whether the highest of a collection of smaller bids or the second-

highest of a collection of larger bids is greater in expectation. The Revenue Equivalence theorem 

establishes that, in the symmetric private values model, the two effects exactly offset one 

another. 

C. Optimal Auctions 

Another classic result of auction theory is the determination of the auction format that 

optimizes revenues. This result, known in the literature as the optimal auction, is due to Harris 

and Raviv (1981), Myerson (1981), and Riley and Samuelson (1981). Any possible auction 

format is considered — the item may be assigned to the bidder who submitted the highest bid (as 

in the second-price or first-price auction), but it may alternatively be allocated to another bidder, 

randomized in its allocation, or withheld from sale entirely, depending on the collection of bids 

submitted. At the outset, this might be viewed as a very complicated problem, since it requires 

selecting simultaneously the probability of winning and a payment that optimizes revenues. 

However, using analysis similar to the treatment of incentive compatibility, above, it can be 

shown that the expected payment is determined up to a constant by the probability of winning. 

Consequently, the problem simplifies to determining the probability of each bidder winning (for 

every realization of the random variables) that optimizes revenues. 

For symmetric bidders, each of whose distributions satisfy a regularity condition, a 

particularly simple characterization of the optimal auction can be obtained. Let  be the 

distribution function of the valuation  of each bidder i, let 

( )F ⋅

iv ( )f ⋅  be the associated density 

function and suppose that 1 ( )
( )i

i
i

F v
f vv −−  is strictly increasing in  for all iv [ , ]iv v v∈ . Then the 

optimal auction assigns the item to the bidder i with the highest , if and only if the highest  

exceeds the reserve valuation r, where r is defined by 
iv iv

0
1 ( )

( )
F r

f rr v−− =  and where  is the seller’s 

valuation for the item. 

0v

In other words, with symmetric bidders, both the second-price and the first-price auctions 

become optimal auctions, once a reserve price of r is inserted. 

D. Full Rent Extraction 

The optimal auctions problem can be reconsidered without the independence assumption. 

However, Crémer and McLean (1985) demonstrate that, if the bidders’ private information is 
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correlated, then there exists a mechanism that enables the seller to extract all of the gains from 

trade. The mechanism includes a procedure for allocating the item efficiently. Superimposed on 

this, the mechanism provides rewards to bidders if their reports of private information “agree” 

with each other and penalties to bidders if their reports “disagree” with each other. The amounts 

of the rewards and penalties — both potentially quite large in magnitude — are set so as to make 

the bidders indifferent between participating and not participating in the mechanism. As such, 

the mechanism enables the seller to extract the entire surplus, including the informational rents 

that the bidders are able to obtain under the independence assumption. This is referred to as full 

rent extraction. 

Crémer and McLean’s result may be viewed as fundamentally negative, in that it suggests 

that the optimal auctions analysis may be of limited relevance. Real-world auction mechanisms 

appear to be broadly consistent with the predictions of the optimal auctions theory under the 

independence assumption, but they look nothing like the full rent-extracting mechanisms 

possible with correlated private information. Given that there are good reasons to believe that 

bidders’ private information is correlated with one another, it would appear that the optimal 

auctions analysis does not provide us with great insight into real-world auctions. Some 

subsequent research has attempted to weaken the extreme conclusion of full rent extraction by 

positing that bidders have limited liability or by introducing opportunities for auctioneer 

collusion or cheating, but in many respects these devices appear to be ineffectual patches for an 

elegant theory (optimal auctions) that suffers from only limited empirical relevance. 

4. Dynamic Auctions for Single Items 
The next two formats considered for auctioning single items are dynamic auctions: 

participants bid sequentially over time and, potentially, learn something about their opponents’ 

bids during the course of the auction. In the first dynamic auction, the price ascends; and in the 

second dynamic auction, the price descends: 

ENGLISH AUCTION. Bidders dynamically submit successively higher bids for the item. The 

final bidder wins the item, and pays the amount of his final bid. 

DUTCH AUCTION. The auctioneer starts at a high price and announces successively lower 

prices, until some bidder expresses his willingness to purchase the item by bidding. The 

first bidder to bid wins the item, and pays the current price at the time he bids. 
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Note that, as in Section 2, each of these auction formats has been described for a regular auction 

in which the auctioneer offers items for sale, but can easily be restated for a “reverse auction.” 

For example, in an English reverse auction, the bids would descend rather than ascend; while in a 

Dutch reverse auction, the auctioneer would offer to buy at successively higher prices. 

A. Solution of the Dutch Auction 

An insight due to Vickrey (1961) is that the Dutch auction is strategically equivalent to the 

sealed-bid first-price auction. To see the equivalence, consider the real meaning of a strategy bi 

by bidder i in the Dutch auction: “If no other bidder bids for the item at any price higher than bi, 

then I am willing to step in and purchase it at bi.” Just as in the sealed-bid first-price auction, the 

bidder i who selects the highest strategy bi in the Dutch auction wins the item and pays the 

amount bi. Furthermore, although the Dutch auction is explicitly dynamic, there is nothing that 

can happen that would lead any bidder to want to change his strategy while the auction is still 

running. If strategy bi was a best response for bidder i evaluated at the starting price p0, then bi 

remains a best response evaluated at any price p < p0, assuming that no other bidder has already 

bid at a price between p0 and p. Meanwhile, if another bidder has already bid, then there is 

nothing that bidder i can do; the Dutch auction is over. Hence, any equilibrium of the sealed-bid 

first-price auction is also an equilibrium of the Dutch auction, and vice versa. 

B. Solution of the English Auction 

By way of contrast, some meaningful learning and/or strategic interaction is possible during 

an English auction, so the outcome is potentially different from the outcome of the sealed-bid 

second-price auction. 

We model the English auction as a “clock auction”: the auctioneer starts at a low price and 

announces successively higher prices. At every price, each bidder is asked to indicate his 

willingness to purchase the item. The price continues to rise so long as two or more bidders 

indicate interest. The auction concludes at the first price such that fewer than two bidders 

indicate interest, and the item is awarded at the final price. This clock-auction description is used 

instead of a game where bidders successively announce higher prices, since it yields simpler 

arguments and clean results. 

With pure private values, the reasonable equilibrium of the English auction corresponds to 

the dominant-strategy equilibrium of the sealed-bid second-price auction. A bidder’s strategy 
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designates the price at which he will drop out of the auction (assuming that at least one opponent 

still remains); in equilibrium, the bidder sets his drop-out price equal to his true valuation. 

However, matters become more complicated in the case of interdependent valuations, where 

each bidder’s valuation depends not only on his own information, , but also on the opposing 

bidders’ information, . We turn to this case next. 
iv

iv−

C. The Winner’s Curse and Revenues under Interdependent Values 

One of the most celebrated phenomena in auctions is the “Winner’s Curse”. Whenever a 

bidder’s valuation depends positively on other bidders’ information, winning an item in an 

auction may confer “bad news” in the sense that it indicates that other bidders possessed adverse 

information about the item’s value. The potential for falling victim to the Winner’s Curse may 

induce restrained bidding, curtailing the seller’s revenues. In turn, some auction formats may 

produce higher revenues than others, to the extent that they mitigate the Winner’s Curse and 

thereby make it safe for bidders to bid more aggressively. 

The basic intuition, which is often referred to as the “linkage principle” and is due to 

Milgrom and Weber (1982), is that the Winner’s Curse is mitigated to the extent that the 

winner’s payment depends on the opposing bidders’ information. Thus, under appropriate 

assumptions, the second-price auction will yield higher expected revenues than the first-price 

auction: the price paid by the winner of a second-price auction depends on the information 

possessed by the highest losing bidder, while the price paid by the winner of a first-price auction 

depends exclusively on his own information. Moreover, the English auction will yield higher 

expected revenues than the second-price auction: the price paid by the winner of an English 

auction may depend on the information possessed by all of the losing bidders (who are observed 

as they drop out), while the price paid by the winner of a (sealed-bid) second-price auction 

depends only on the information of the highest losing bidder. 

These conclusions require an assumption known as “affiliation,” which intuitively means 

something very close to “nonnegative correlation.” More precisely, let 1( , ... , )nv v v=  and 

 be possible realizations of the n bidders’ random variables, and let  

denote the joint density function. Let v
1( , ... , )nv v v′ ′ ′= ( , , )f ⋅ ⋅…

v′∨  denote the component-wise maximum of v and v′ , 

and let  denote the component-wise minimum. The random variables v and v are said to be 

affiliated if: 

v v′∧ ′

(9) ( ) ( ) ( ) ( )f v v f v v f v f v′ ′∨ ∧ ≥ ′ , for all , [ , ... , ]nv v v v′∈ . 
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Affiliation provides that two high realizations or two low realizations of the random variables are 

at least as likely as one high and one low realization, etc., meaning something close to 

nonnegative correlation. Independence is included (as a boundary case) in the definition: for 

independent random variables, the affiliation inequality (9) is satisfied with equality. To obtain 

strict revenue rankings, the affiliation inequality must hold strictly. 

These conclusions also rely on several symmetry assumptions. Bidders are symmetric, the 

equilibria considered are symmetric, and each bidder’s valuation depends on all of its opponents’ 

information in a symmetric way.  Each bidder’s valuation increases (weakly) in its own and its 

opponents’ information, and attention is restricted to equilibria in monotonically increasing 

strategies. As before, each bidder is risk neutral in evaluating its payoff under uncertainty. 

These conclusions also rely on a monotonicity assumption: each bidder’s valuation increases 

(weakly) in its own and in the opposing bidders’ information. In addition, as before, each bidder 

is risk-neutral in evaluating its payoff under uncertainty. Furthermore, the two symmetry 

assumptions of Section 2D are made: bidders are symmetric, in the sense that the joint 

distribution governing the bidders’ information is a symmetric function of its arguments; and 

attention is restricted to symmetric, monotonically increasing equilibria in pure strategies. 

Under these assumptions, the sealed-bid first-price and second-price auctions and the 

English auction possess symmetric, monotonic equilibria. However, while these equilibria are all 

efficient, Milgrom and Weber (1982) establish that they may be ranked by revenues: the English 

auction yields expected revenues greater than or equal to those of the sealed-bid second-price 

auction, which in turn yields expected revenues greater than or equal to those of the sealed-bid 

first-price auction. Their theorem provides one of the most powerful results of auction theory, 

justifying the conventional wisdom that dynamic auctions yield higher revenues than sealed-bid 

auctions. 

5. Auctions of Homogeneous Goods 

A. Sealed-Bid, Multi-Unit Auction Formats 

The defining characteristic of a homogeneous good is that each of the M individual items is 

identical (or a close substitute), so that bids can be expressed in terms of quantities without 

indicating the identity of the particular good that is desired. Treating goods as homogeneous has 

the effect of dramatically simplifying the description of the bids that are submitted and the 
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overall auction procedure. This simplification is especially appropriate in treating subject matter 

such as financial securities or energy products. Any two $10,000 US government bonds with the 

same interest rate and the same maturity are identical, just as any two megawatts of electricity 

provided at the same location on the electrical grid at the same time are identical. 

There are three principal sealed-bid, multi-unit auction formats for M homogeneous goods. 

In each of these, a bid comprises an inverse demand function, i.e., a (weakly) decreasing function 

( )ip q , for , representing the price offered by bidder i for a first, second, etc. unit of 

the good. (Note that this notation may be used to treat situations where the good is perfectly 

divisible, as well as situations where the good is offered in discrete quantities.) The bidders 

submit bids; the auctioneer then aggregates the bids and determines a clearing price. Each bidder 

wins the quantity demanded at the clearing price, but his payment varies according to the 

particular auction format: 

[0, ]q M∈

PAY-AS-BID AUCTION.1 Each bidder wins the quantity demanded at the clearing price, and 

pays the amount that he bid for each unit won.  

UNIFORM-PRICE AUCTION.2 Each bidder wins the quantity demanded at the clearing price, 

and pays the clearing price for each unit won.  

MULTI-UNIT VICKREY AUCTION. Each bidder wins the quantity demanded at the clearing 

price, and pays the opportunity cost (relative to the bids submitted) for each unit won.  

Sealed-bid, multi-unit auction formats are best known in the financial sector for their 

longtime and widespread use in the sale of government securities. For example, a survey of 

OECD countries in 1992 found that Australia, Canada, Denmark, France, Germany, Italy, Japan, 

New Zealand, the United Kingdom and, of course, the United States then used sealed-bid 

auctions for selling at least some of their debt. The pay-as-bid auction was the traditional format 

used for government securities, and it was used for all US Treasury bills until a decade ago. The 

uniform-price auction was first proposed seriously as a replacement for the pay-as-bid auction by 

Milton Friedman in testimony at a 1959 Congressional hearing. Wilson (1979) gave the first 

theoretical analysis of a uniform-price auction. In 1993, the US began an “experiment” of using 

                                                      
1 Pay-as-bid auctions are also known as “discriminatory auctions” or “multiple-price auctions.” 
2 Uniform-price auctions are often referred to in the financial press as “Dutch auctions,” generating some 
confusion with respect to the standard usage of the auction theory literature. They are also known as 
“nondiscriminatory auctions,” “competitive auctions,” or “single-price auctions.” 
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the uniform-price auction for two- and five-year government notes and, beginning in 1998, the 

US switched entirely to the uniform-price auction for all issues. Meanwhile, the multi-unit 

Vickrey auction was introduced and first analyzed in Vickrey’s 1961 paper. 

The pay-as-bid auction can be correctly viewed as a multi-unit generalization of the first-

price auction. However, it is quite difficult to calculate Nash equilibria of the pay-as-bid auction, 

unless efficient equilibria exist. Three symmetry assumptions together guarantee the existence of 

efficient equilibria. First, bidders are assumed to be symmetric, in the sense that the joint 

distribution governing the bidders’ information is symmetric with respect to the bidders. Second, 

bidders regard every unit of the good as symmetric: that is, each bidder i has a constant marginal 

valuation for every quantity [0, ]iq iλ∈ , up to a capacity of iλ , and a marginal valuation of zero 

thereafter. Third, the bidders are symmetric in their capacities: that is, iλ λ= , for all bidders i. 

With these assumptions, the pay-as-bid auction has a solution very similar to that of the first-

price auction for a single item. However, without these assumptions, it inherits an undesirable 

property from the single-item auction: absent symmetry, all Nash equilibria of the pay-as-bid 

auction will generally be inefficient (Ausubel and Cramton, 2002, Theorems 3 and 4). 

The uniform-price auction bears a superficial resemblance to the second-price auction of a 

single item, in that a high winning bid gains the benefit of a lower marginal bid. However, any 

similarity is indeed only superficial as, except under very restrictive assumptions, all equilibria 

of the uniform-price auction are inefficient. The argument is simplest in the same model of 

constant marginal valuations as in the previous paragraph. If the capacities of all bidders are 

equal (i.e., if iλ λ=  for all i) and if the supply is an integer multiple of λ , then there exists an 

efficient Bayesian-Nash equilibrium of the uniform-price auction. (For example, if there are M 

identical units available and if every bidder has a unit demand, then sincere bidding is a Nash 

equilibrium in dominant strategies.) However, if if the bidders’ capacities are unequal or if the 

supply is not an integer multiple of λ , then all equilibria of the uniform-price auction are 

inefficient (Ausubel and Cramton, 2002, Theorems 2 and 5). 

The intuition for inefficiency in the uniform-price auction can be found by taking a close 

look at optimal bidding strategies. Sincere bidding is weakly dominant for a first unit: if a 

bidder’s first bid determines the clearing price, then the bidder wins zero units. However, the 

bidder’s second bid may determine the price he pays for his first unit, providing an incentive to 

shade his bid. The extent of demand reduction, as this bid shading is known, increases in the 

number of units, since the number of inframarginal units whose price may be affected increases. 
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Further, note that the allocation rule in the auction has the effect of equating the amounts of the 

bidders’ marginal bids. Since a large bidder will likely have shaded his marginal bid more than a 

small bidder, the large bidder’s marginal value is probably greater than a small bidder’s. 

Consequently, the bidders’ marginal values will be unequal, contrary to efficiency. 

Meanwhile, the Vickrey auction is the correct multi-unit generalization of the second-price 

auction. As in the pay-as-bid and uniform-price auctions, bidders simultaneously submit inverse 

demand functions and each bidder wins the quantity demanded at the clearing price. However, 

rather than paying the bid price or the clearing price for each unit won, a winning bidder pays the 

opportunity cost. If a bidder wins K units, he pays the Kth highest rejected bid of his opponents 

for his first unit, the (K – 1)st highest rejected bid of his opponents for his second unit, … , and 

the highest rejected bid of his opponents for his Kth unit. The dominant strategy property of the 

sealed-bid second-price auction generalizes because a bidder’s payment is determined solely by 

his opponents’ bids. Consequently, given pure private values and nonincreasing marginal values, 

sincere bidding is an efficient equilibrium in weakly dominant strategies. 

B. Efficiency and Revenue Comparisons 

Under pure private values, the dominant strategy equilibrium of the Vickrey auction attains 

full efficiency. It can be shown that neither the pay-as-bid nor the uniform-price auction 

generally attains efficiency; moreover, the efficiency ranking of these two formats is inherently 

ambiguous. Continuing the argument of the previous subsection, it is sufficient to examine 

environments in which bidders have constant marginal valuations. If iF F=  and iλ λ=  for all 

bidders i, but the supply is not an integer multiple of λ , then the pay-as-bid auction has an 

efficient equilibrium while all equilibria of the uniform-price auction are inefficient. Conversely, 

if iλ λ=  for all bidders i and if the supply is an integer multiple of λ , but  for two 

bidders i and j, then the uniform-price auction has an efficient equilibrium while all equilibria of 

the pay-as-bid auction are generally inefficient (Ausubel and Cramton, 2002). 

jiF F≠

On revenues, the policy literature has generally assumed that the uniform-price auction 

outperforms the pay-as-bid auction; however, the argument of the previous paragraph can be 

extended to reverse the assumed ranking. Maskin and Riley (1989) extend Myerson’s (1981) 

characterization of the optimal auction to multiple homogeneous goods: with symmetric bidders 

and constant marginal valuations, their characterization requires allocating items efficiently. 

Thus, as in the previous paragraph, if iF F=  and iλ λ=  for all bidders i, but the supply is not 
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an integer multiple of λ , then the efficient equilibrium of the pay-as-bid auction outranks all 

equilibria of the uniform-price auction on revenues (as well as efficiency). 

C. Uniform-Price Clock Auctions 

The “clock auction” — a practical design for dynamic auctions of one or more types of 

goods, with its origins in the “Walrasian auctioneer” from the classical economics literature — 

has seen increasing use as a trading institution since 2001. A fictitious auctioneer is often 

presented as a device or thought experiment for understanding convergence to a general 

equilibrium. The Walrasian auctioneer announces a price vector, p; bidders report the quantity 

vectors that they wish to transact at these prices; and the auctioneer increases or decreases each 

component of price according as excess demand is positive or negative (Walrasian tâtonnement). 

This iterative process continues until a price vector is reached at which excess demand is zero, 

and trades occur only at the final price vector. In real-world applications, instead of a fictitious 

auctioneer serving as a metaphor for a market-clearing process, the process is taken literally; a 

real auctioneer announces prices and accepts bids of quantities. Applications, to date, have 

largely been in the electricity, natural gas, and environmental sectors. 

The basic clock auction differs from the standard Sotheby’s or eBay auction in that bidders 

do not propose prices. Rather, the auctioneer announces prices, and bidders’ responses are 

limited to the reporting of quantities desired at the announced prices, until clearing is attained. 

As such, it is closest to the auction-theorist’s depiction of the English auction for a single item 

(or the traditional Dutch auction) — but generalized, so that instead of bidders merely giving 

binary responses of whether they are “in” or “out” as prices ascend, they indicate their quantities 

desired. 

Observe that the uniform-price clock auction is correctly viewed as a dynamic version of the 

sealed-bid uniform-price auction reviewed in the previous two subsections. The important 

difference is that, in the dynamic auction, bidders will typically receive repeated feedback as to 

the aggregate demand at the various prices. 

As such, the clock auction may inherit the advantages that dynamic auctions have over 

sealed-bid auctions, First, under conditions that can be made precise, the insight from single-item 

auctions that feedback about other bidders’ valuations would ameliorate the Winner’s Curse and 

lead to more aggressive bidding carries over to the multi-unit environment. Second, clock 

auctions, better than sealed-bid auctions, allow bidders to maintain the privacy of their valuations 

 17



for the items being sold. Bidders never need to submit any indications of interest at any prices 

beyond the auction’s clearing price. Third, when there are two or more types of items, auctioning 

them simultaneously enables bidders to submit bids based on the substitution possibilities or 

complementarities among the items at various price vectors. At the same time, the iterative 

nature of the auction economizes on the amount of information submitted: demands do not need 

to be submitted for all price vectors, but only for price vectors reached along the convergence 

path to equilibrium. 

Unfortunately, the uniform-price clock auction also inherits the demand reduction and 

inefficiency of the sealed-bid uniform-price auction. Indeed, as a theoretical proposition, the 

problem of bidders optimally reducing their quantities bid well below their true demands can 

become substantially worse in the dynamic version of the auction. The reductio ad absurdum is 

provided by Ausubel and Schwartz (1999), who analyze a two-bidder clock auction game of 

complete information in which the bidders alternate in their moves. For a wide set of 

environments, the unique subgame perfect equilibrium has the qualitative description that, at the 

first move, the first player reduces his quantity to approximately half of the supply and, at the 

second move, the second player reduces his quantity to clear the market. Thus, the outcome is 

inefficient and the revenues barely exceed the starting price. 

As a practical matter, demand reduction may not undermine the outcome of a uniform-price 

clock auction where there is substantial competition for every item being sold. However, if one 

or more of the bidders has considerable market power, it may become important to use an 

auction format which avoids creating incentives for demand reduction. 

D. Efficient Clock Auctions 

Ausubel (2004, 2006) proposes an alternative clock auction design, which utilizes the same 

general structure as the uniform-price clock auction, but adopts a different payment rule that 

eliminates the incentives for demand reduction. In essence, the design provides a dynamic 

version of the (multi-unit) Vickrey auction, and thereby inherits its incentives for truth-telling. 

The Ausubel auction is easiest described for a homogeneous good. After each set of bidder 

reports, the auctioneer determines whether any bidder has “clinched” any of the units offered 

(i.e., whether any bidder is mathematically guaranteed to win one or more units). For example, in 

an auction with a supply of 5 units, and three bidders demanding 3, 2 and 2 units, respectively, 

the first bidder has clinched 1 unit, as his opponents’ total demand of 4 is less than the supply of 
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5. Rather than awarding units only at a final uniform price, the auction awards units at the 

current price whenever they are newly clinched. 

If this alternative clock auction is represented as a static auction, it collapses to the Vickrey 

auction in the same sense that an English auction collapses to the sealed-bid second-price 

auction. Consequently, it can be proven that sincere bidding is an equilibrium and, in a suitable 

discrete specification of the game under incomplete information, sincere bidding is the unique 

outcome of iterated elimination of weakly-dominated strategies. Thus, unlike the uniform-price 

clock auction, there is no incentive for demand reduction. 

6. Auctions of Heterogeneous Goods 
In many significant applications, the multiple items offered within an auction are each 

unique, so it is not adequate for bidders merely to indicate the quantities that they desire. For 

example, an FCC spectrum auction might include a New York license, a Washington license and 

a Los Angeles license. Moreover, there might be synergies in owning various combinations: for 

example, a New York and a Washington license together might be worth more together than the 

sum of their values separately. Such environments pose particular challenges for auction theory. 

A. Simultaneous Ascending Auctions 

The simultaneous ascending auction, proposed in comments to the FCC by Paul Milgrom, 

Robert Wilson and Preston McAfee, has been used in auctions on six continents allocating more 

than $100 billion worth of spectrum licenses. Some of the best known applications of the 

simultaneous ascending auction include: the Nationwide Narrowband Auction (July 1994), the 

first use of the simultaneous ascending auction; the PCS A/B Auction (December 1994 – March 

1995), the first large-scale auction of mobile telephone licenses, which raised $7 billion; the 

United Kingdom UMTS Auction (March – April 2000), which raised 22.5 billion British pounds; 

and the German UMTS Auction (July – August 2000), which raised 50 billion euro. 

In the simultaneous ascending auction, multiple items are put up for sale at the same time 

and the auction concludes simultaneously for all of the items. As such, it is a modern version of 

the “silent auction” that is frequently used in fundraisers by charitable institutions. Bidders 

submit bids in a sequence of rounds. Each bid comprises a single item and an associated price, 

which must exceed the standing high bid by at least a minimum bid increment. After each round, 

the new standing high bids for each item are determined. The auction concludes after a round 
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passes in which no new bids are submitted, and the standing high bids are then deemed to be 

winning bids. Payments equal the amounts of the winning bids. 

The critical innovation in the simultaneous ascending auction is the inclusion of activity 

rules into the auction design. Activity rules are bidding constraints that limit a bidder’s bidding 

activity in the current round based on his past bidding activity (i.e., his standing high bids and 

new bids). Without activity rules, bidders would tend to wait as “snakes in the grass” until nearly 

the end of the auction before placing their serious bids, thwarting any price discovery (the main 

reason for conducting a dynamic auction in the first place). Conversely, activity rules have the 

effect of forcing bidders to place meaningful bids in early rounds of the auction and thereby to 

reveal information to their opponents. 

B. Walrasian Equilibria as Outcomes of Simultaneous Ascending 
Auctions 

A Walrasian equilibrium — consisting of prices for the various items and an allocation of the 

items to the bidders such that each item with a non-zero price is assigned to exactly one bidder 

and such that each bidder prefers his assigned allocation to any alternative bundle at the given 

prices — is a plausible outcome for the simultaneous ascending auction. Assuming that a 

Walrasian equilibrium was reached, no bidder would have any incentive to attempt to upset the 

allocation, even if he believed he could obtain additional items without further increasing their 

prices. Thus, it becomes interesting to identify the conditions needed for existence of Walrasian 

equilibria with discrete items. 

Kelso and Crawford (1982) show that the substitutes condition is sufficient for the existence 

of Walrasian equilibrium. “Substitutes” literally refers to the price-theoretic condition that if the 

price of one item is increased while the price of every other item is held fixed, then the demand 

for every other item weakly increases. Moreover, the substitutes condition is “almost necessary” 

for existence. Suppose that the set of possible bidder preferences includes all valuation functions 

satisfying the substitutes condition, but also includes at least one valuation function violating the 

substitutes condition. Then if there are at least two bidders, there exists a profile of valuation 

functions such that no Walrasian equilibrium exists (Gul and Stacchetti, 1999, and Milgrom, 

2000). 

The reader should avoid losing sight of the fact that, just because a Walrasian equilibrium 

exists for a discrete environment, it does not necessarily follow that the simultaneous ascending 

 20



auction will terminate at a Walrasian equilibrium. The strongest statement that can be made is 

that, if bidders bid “straightforwardly” (i.e., if they demand naïvely the bundle of items that 

maximizes their utility, while ignoring strategic considerations), then a Walrasian equilibrium 

will be reached. However, observe that even with homogeneous goods, consumers with weakly 

diminishing marginal valuations satisfy the substitutes condition. Nonetheless, the uniform-price 

auction is susceptible to demand reduction — meaning that bidders are likely to reduce their 

demands and thereby end the auction before reaching a Walrasian equilibrium. Indeed, we know 

from the Fundamental Theorem of Welfare Economics that the Walrasian equilibrium is 

efficient, so that any conclusion of inefficiency in a uniform-price auction implies that the 

outcome must be non-Walrasian. 

C. Static Pay-as-Bid Combinatorial Auctions 

Let us consider an example with two bidders, 1 and 2, and two items, A and B, where the 

substitutes condition is not satisfied and the existence of Walrasian equilibrium fails. Bidder 1 

has a valuation of 3 for the package of A and B, but has a valuation of 0 for each item separately. 

(Thus, for Bidder 1, the goods are complements — not substitutes.) Bidder 2 has a valuation of 2 

for item A, 2 for item B, and only 2 for the package of A and B. The efficient allocation assigns 

both items to Bidder 1. Consequently, any Walrasian equilibrium (if it exists) must assign both 

items to Bidder 1. However, to dissuade Bidder 2 from purchasing either item, the prices pA and 

pB of items A and B, respectively must satisfy pA > 2 and pB > 2. Consequently,  pA + pB > 4, 

exceeding Bidder 1’s valuation for the package of two items and yielding a contradiction. 

Given the argument of the previous paragraph, we should not expect the simultaneous 

ascending auction — or any auction format with bids for individual items — to generate the 

efficient allocation in this example. Bidder 1’s dilemma is often referred to as the exposure 

problem: a bidder may refrain from bidding more than his stand-alone valuations for each of the 

individual items, knowing that if he is outbid on some of the individual items, he will remain 

“exposed” as the high bidder on the remaining items. This may prevent the available synergies 

from being realized. Indeed, if Bidder 1 understands this example, he may be unwilling to bid 

any positive price for either item, since Bidder 2 is sure to win one of the items and therefore 

Bidder 1 would obtain zero value from the item that he wins. 

The exposure problem can be avoided by using a combinatorial auction. The rules are 

modified to permit bidders to place package bids, each comprising a set of items and a price. For 
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example, the bid ({A, B}, p) is interpreted as an all-or-nothing offer in the amount of p for the 

package of A and B — with no requirement that the bidder is willing to accept a part of the 

package for a part of the price. The allocation is determined by a combination of compatible bids 

that maximizes the seller’s revenues. In this example, Bidder 2 is unwilling to bid any more than 

2 for any combination of items, while Bidder 1 is able to exceed 2 for {A, B}. Consequently, the 

solution has Bidder 1 receiving both items, the efficient allocation. 

To the extent that bidders value some of the items in the auction as substitutes, then it may 

be important for any two bids by the same bidder to be treated as mutually exclusive. For 

example, Bidder 2 in the above example may have been willing to bid 1.5 for item A and 1.5 for 

item B — but not if there was a significant risk that both bids would be accepted. This difficulty 

is avoided if the auction rules permit at most one of his bids to be accepted. (Such mutually 

exclusive bids are sometimes referred to as “XOR” bids.) Observe that a rule of mutual 

exclusivity is fully expressive in the sense that it enables the bidder to express any arbitrary 

preferences. For example, if Bidder 2 in the above example wished to allow both of his bids to be 

accepted, he could effectively opt out of the mutual exclusivity by submitting a third bid 

comprising the package {A, B} at a price of 3. 

In a static pay-as-bid combinatorial auction, each bidder simultaneously and independently 

submits a collection of package bids. The auctioneer then solves the winner determination 

problem: find a combination of bids (at most one from each bidder) that maximizes the seller’s 

revenues subject to the constraint that each item can be allocated to at most one bidder. The 

submitter of each bid selected in the winner determination problem wins the items specified in 

the bid and pays the amount of the bid. 

Rassenti, Smith and Bulfin (1982) are credited with the first experimental study of 

combinatorial auctions. They studied a static combinatorial auction treating the problem of 

allocating airport time slots, a natural application given that landing and takeoff slots are strong 

complements. Bernheim and Whinston (1986) provided an important characterization of 

equilibria of static pay-as-bid combinatorial auctions under complete information. 

D. The Vickrey-Clarke-Groves (VCG) Mechanism 
Just as the payment rule of a pay-as-bid auction for a single item or for homogeneous goods 

can be modified to be “second-price”, an analogous modification can be done in the case of a 

combinatorial auction for heterogeneous goods. This generalization is due to Clarke (1971) and 
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Groves (1973). Let N be an arbitrary finite set of items and let L be the set of bidders. In the 

Vickrey-Clarke-Groves (VCG) mechanism, each bidder L∈  submits  package bids, for all 

subsets of set N. After the bids are submitted, the auctioneer finds a solution, , to the 

winner determination problem. While bidder  is allocated the subset 

| |2 N

( ) Lx ∈

x N⊂ , he does not pay 

his bid . Rather, his payment ( )b x y ∈  is calculated so that , 

where 

* *( ) ( ) ( \ )b x y R L R L− = −

*( )R L  denotes the maximized revenue of the winner determination problem with bidder 

 present and  denotes the maximized revenue of the winner determination problem 

with bidder  absent. With sincere bidding, each bid  corresponds to the bidder’s 

valuation , and 

*( \ )R L

( )b x

( )v x *( )R L  corresponds to the (maximized) social surplus. Thus, bidder  is 

allowed a payoff equaling the incremental surplus that he brings to the auction. As in the 

Vickrey auction for homogeneous goods, a bidder’s payment thus equals the opportunity cost of 

assigning the items to the bidder. 

 Applied to a setting with a single item, observe that the VCG mechanism reduces to the 

sealed-bid second-price auction. Applied to a setting of homogeneous goods and nonincreasing 

marginal valuations, the VCG mechanism reduces to the (multi-unit) Vickrey auction. By the 

same reasoning as before, the dominance properties of these special cases extend to the setting 

with heterogeneous items: if bidders have pure private values, sincere bidding is a weakly 

dominant strategy for every bidder, yielding an efficient allocation. 

E. Dynamic Combinatorial Auctions 

In auctions for a single item, we have seen that a close relationship exists between a 

dynamic procedure with a pay-as-bid payment rule (i.e., the English auction) and a static 

procedure with a second price rule (i.e., the sealed-bid second-price auction). Furthermore, for 

homogeneous goods with nonincreasing marginal values, an analogous relationship holds 

between the dynamic Ausubel auction and the static Vickrey auction. An important question for 

heterogeneous goods is the extent to which outcomes of a dynamic combinatorial auction with a 

pay-as-bid rule map to the static VCG mechanism. 

Banks, Ledyard and Porter (1989) conducted an early and influential study of dynamic 

combinatorial auctions. They defined several alternative sets of rules for the auction, developing 

some theoretical results and conducting an experimental study. Other important contributions 
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have included Parkes and Ungar (2000), who independently provided a formulation of the 

ascending proxy auction described below, and Kwasnica, Ledyard, Porter and DeMartini (2005). 

Ausubel and Milgrom (2002) give two formulations of a combinatorial auction and use them 

to provide a partial answer to the relationship between dynamic combinatorial auctions and the 

VCG mechanism: 

 ASCENDING PACKAGE AUCTION. Bidders submit package bids in a sequence of bidding 

rounds. Each new bid must exceed the bidder’s prior bids for the same package by at 

least a minimum bid increment. After each round, the winner determination problem is 

solved, on all past and present bids, to determine a provisional allocation and 

provisional payments. The auction concludes after a round in which no new bids are 

submitted. 

ASCENDING PROXY AUCTION. Each bidder enters his valuations for the various packages 

into a proxy bidder. The proxy bidders then bid on behalf of the bidders in an ascending 

package auction in which the minimum bid increment is taken arbitrarily close to zero. 

The second formulation may be viewed both as a new auction format which greatly speeds the 

progress of the auction, as well as a modeling device for obtaining results about the first 

formulation. While the first formulation is an extremely complicated dynamic game, efficiency 

results and a partial equilibrium characterization are available for the second formulation. 

A bidder  in the ascending proxy auction is said to bid sincerely if he submits his true 

valuation, , for every package ; and he is said to bid semi-sincerely if he submits his 

true valuation less a positive constant,  – c, where the same constant c is used for all 

packages S with valuations of at least c. The following results refer to the coalitional form game 

(with transferable utility) corresponding to the package economy: the value of any coalition that 

includes the seller is the total value associated with an efficient allocation among the buyers in 

the coalition; and the value of any coalition without the seller equals zero. The core is defined as 

the set of all payoff allocations that are feasible and upon which no coalition of players can 

improve. 

( )v S S N⊂

( )v S

Ausubel and Milgrom (2002) establish that the payoff allocation from the ascending proxy 

auction, given any reported preferences, is an element of the core (relative to the reported 

preferences). Furthermore, for any payoff vector π that is a bidder-Pareto-optimal point in the 

core, there exists a Nash equilibrium of the ascending proxy auction with associated payoff 
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vector π. Conversely, for any Nash equilibrium in semi-sincere strategies at which losing bidders 

bid sincerely, the associated payoff vector is a bidder-Pareto-optimal point in the core. 

Furthermore, the set of all economic environments essentially dichotomizes into two cases. 

First, if all bidders’ preferences satisfy the substitutes condition, then a single point in the core 

dominates all other points in the core for every bidder, and it equals the payoff vector from the 

Vickrey-Clarke-Groves mechanism. Thus, in this first case, the outcome of the ascending proxy 

auction coincides with the outcome of the VCG mechanism. Second, if at least one bidder’s 

preferences violate the substitutes condition, then there exists an additive preference profile for 

the remaining bidders such that there is more than one bidder-Pareto-optimal point in the core. In 

this second case, the VCG payoff vector is not an element of the core; and the low revenues of 

the VCG mechanism may become problematic. 

7. Conclusion 

The proportion of goods and services transacted by auction processes has dramatically 

increased in recent years and is likely to increase further, making the understanding of auctions 

and the improvement of their designs increasingly important. At the same time, auctions will 

remain one of the most useful test-beds for game theory, since the rules of the game are better 

defined than in most other markets. Consequently, auction theory will almost certainly continue 

to be a central area of study in economics. 
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