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The word “auction” generally refers to a mechanism for allocating one or more resources

to one or more parties (or bidders). Generally, once the allocation is determined, some

amount of money changes hands; the precise monetary transfers are determined by the

auction process. While in some auction protocols, such as the English auction, bidders

repeatedly increase their bids in an attempt to outbid each other, this is not an essential

component of an auction. There are many other auction protocols, and we will study some

of them in this chapter.

Auctions have traditionally been studied mostly by economists. In recent years, com-

puter scientists have also become interested in auctions, for a variety of reasons. Auctions

can be useful for allocating various computing resources across users. In artificial intelli-

gence, they can be used to allocate resources and tasks across multiple artificially intelligent

“agents.” Auctions are also important in electronic commerce: there are of course several

well-known auction websites, but additionally, search engines use auctions to sell advertising

space on their results pages. Finally, increased computing power and improved algorithms

have made new types of auctions possible—most notably combinatorial auctions, in which

multiple items are for sale in the same auction, and bidders can bid on bundles of items.

We begin this chapter by studying single-item auctions. Even though most computer

scientists are perhaps more interested in combinatorial auctions, single-item auctions allow

us to more easily introduce certain concepts that are also of key importance in combinatorial

auctions.
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1 Standard single-item auction protocols

In this section, we review some basic protocols for auctioning a single item. The reader is

encouraged to think about which of these protocols are similar to each other; we will discuss

relationships among them shortly.

English. The English auction is the most familiar protocol to most people. In an

English auction, every bidder is allowed to place a bid higher than the current highest bid.

If at some point, no bidder wishes to place a higher bid, then the bidder with the current

highest bid wins the item, and pays her bid.

Dutch. The Dutch auction proceeds in the opposite direction from the English auction.

In a Dutch auction, an initial price is set that is very high, after which the price is gradually

decreased. At any moment, any bidder can claim the item. She then wins the item and has

to pay the current price.

Japanese. In a Japanese auction, the initial price is zero; the price is then gradually

increased. A bidder can leave the room when the price becomes too high for her. Once

there is only one bidder remaining, that bidder wins the item, and pays the price at which

the last other bidder left the room.

First-price sealed-bid. In a first-price sealed-bid auction, each bidder communicates

a bid privately to the auctioneer—say, in a sealed envelope. The auctioneer then opens all

the envelopes; the bidder with the highest bid wins the item, and pays the bid that she

placed.

Second-price sealed-bid (also known as Vickrey). The second-price sealed-bid auc-

tion proceeds exactly as the first-price sealed-bid auction, except the highest bidder (who

still wins the item) now pays the second-highest bid, instead of her own.

Let us consider which of these auction protocols are similar to each other. Perhaps the

most obvious similarity is between the English and Japanese auctions. For both, there is a

price that is rising, and the last remaining bidder wins. There is a distinction, however: in
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an English auction, two bidders may be bidding each other up, while a third bidder quietly

sits by, even though she remains interested in the item. In this case, the first two bidders are

unaware that they have another competitor. In a Japanese auction, this situation cannot

occur.

The Japanese auction and the second-price sealed-bid auction are also closely related

(and the English auction is related to the second-price sealed-bid auction in a similar way).

Suppose, for a second, that each bidder in a Japanese auction decides at the beginning of

the auction on the price at which she will leave the room. Of course, other strategies are

possible: a bidder may base how long she stays in the room on which other bidders are still

left. However, if the bidders follow such strategies, then the bidder who, at the beginning,

chose the highest price will end up winning, and she will end up paying the second-highest

price selected by a bidder—similarly to the second-price sealed-bid auction.

The Dutch auction and the first-price sealed-bid auction are even more closely related.

Similarly to the Japanese auction, in a Dutch auction, a bidder may decide at the beginning

on the price at which she will claim the item (if this price is reached). In fact, unlike in

the Japanese auction, there is little else that a bidder can do in terms of strategizing. In

a Japanese auction, a bidder can let her bidding strategy depend on who else is left; but

in a Dutch auction, there is nothing to condition her strategy on, since the only event that

can happen is that someone else claims the item—but at that point the auction is over and

it no longer matters what anyone does. Now, the bidder that chooses the highest price

will win, and pay that price—similarly to the first-price sealed-bid auction. Because of this

argument, the Dutch and first-price sealed-bid auctions are usually considered strategically

equivalent.

We will see some other single-item auctions later in this chapter. For most of this

chapter, we will focus on sealed-bid auctions. As we have seen, for each of the auctions

studied so far, there is a roughly equivalent sealed-bid auction; in a sense, this is true for

any auction, as we will see shortly. Nevertheless, there are reasons to use English, Japanese,
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and Dutch auctions (more generally, ascending and descending auctions). One reason is

that they allow bidders to postpone certain decisions until later. For example, if a bidder

in a Dutch auction is deciding whether to claim the item at $60 or $50, she may as well

wait until the price drops to, say, $70, before she starts to think about what she will do. If

another bidder claims the item before that, the former bidder will have saved herself some

unnecessary agonizing. This is related to preference elicitation, which we will discuss

towards the end of this chapter.

2 Valuations and utilities

How a bidder should bid in an auction depends on how much the item for sale is worth to her.

In this chapter, we will assume that each bidder can determine how much the item is worth

to her, and that events in the auction will not change her assessment. That is, each bidder

i has an unchanging valuation vi for the item, which she can determine at the beginning

of the auction. This assumption is not always realistic. For example, if a bidder sees that

other bidders are bidding aggressively on an item, this may be evidence to her that, before

the auction, those bidders inspected the item in person and found it to be of good quality.

This evidence may improve the first bidder’s perception of—and hence, valuation for—the

item. Settings such as these, where some bidders have private information that would affect

the valuation of other bidders for the item, are known as interdependent valuations

settings. Most research assumes away the possibility of interdependent valuations, and we

will do so in this chapter.

In general, each bidder has a utility for each outcome of the auction, and acts to

maximize her expected utility. We will assume that a bidder’s utility for winning the item

and having to pay πi is ui = vi− πi, and her utility for not winning the item and having to

pay πi is ui = −πi. (Generally, losing bidders will not be made to pay anything; however,

later in this chapter, we will see an auction that makes payments to losing bidders, in which
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case πi is negative.) Thus, we are assuming that a bidder’s utility function decomposes

into separate valuation and payment components, and that utility is linear in money. This

assumption is known as the quasilinear preferences assumption. It, too, is not always

realistic, for the following reasons. In general, one’s utility may be strictly concave in

money (that is, one may have decreasing marginal utility for money: the utility of

having another (say) dollar may decrease as one accumulates more money), since at some

point one runs out of uses for money. Also, in general, the effect of money on utility may

depend on whether one has won the item: for example, if a bidder wins a pair of skis in

an auction, she needs money to travel on a skiing vacation (and hence has high marginal

utility for money), whereas if she does not win, she has less use for additional money (and

hence has low marginal utility for money). Nevertheless, the quasilinearity assumption is

usually made, and we will do so in this chapter.

Another assumption that is implicit in the above is that a bidder that does not win the

item does not care about which other bidder wins the item, and that bidders do not care

about how much other bidders pay. This assumption is known as the no externalities

assumption. Once again, this assumption is not always realistic: a bidder may prefer to see

the item end up with a friend rather than with an enemy, or she may prefer to see the other

bidders run out of money so that they will not compete in future auctions. Again, we will

not go into detail on this in this chapter.

3 Strategic bidding

It does not always make sense for a bidder to simply bid her true valuation. For example,

if bidder i bids her true valuation vi in a first-price sealed-bid auction, then even if she

wins, her utility will be vi − πi = vi − vi = 0. Hence, she should bid lower than her true

valuation to have any chance of obtaining positive utility. But how much lower should she

bid? Intuitively, this should depend on her beliefs about the other bidders’ valuations. If
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she expects to be the only bidder who is seriously interested in obtaining the item, she

can place a low bid and still probably win; whereas if she expects there to be many other

competitive bidders, she should bid closer to her true valuation to have a decent chance of

winning. However, it is not obvious how to calculate her optimal bid precisely, even given

a probability distribution over the others’ valuations. This is because she cannot expect

the other bidders to bid their true valuations, either: they also need to bid below their true

valuations to have a chance of obtaining positive utility. And precisely how much lower is

optimal for them to bid depends, in turn, on how the first bidder bids.

3.1 Solving the first-price sealed-bid auction

To resolve this circularity, we need to turn to game theory, which studies settings in which

each bidder’s (or, more generally, agent’s) optimal course of action depends on the actions

of the other bidders. To apply game theory to the first-price sealed-bid auction, we first

need to introduce the concept of a strategy. In a sealed-bid auction, a strategy for bidder

i is a function si : R≥0 → R≥0, where si(vi) is the bid that i will place if her true valuation

is vi. That is, for every valuation that the bidder may have, the strategy specifies what

she should bid. This may appear somewhat excessive: if the bidder already knows her true

valuation, why should she have to specify what she would have bid if her valuation had been

different? The reason that we need to think about this is that the other bidders do not

know bidder i’s valuation, and they need to think about what i would do for each valuation.

In turn, bidder i needs to think about what the other bidders will do, and hence also needs

to think about what they think she will do.

Let us suppose that for each bidder i, there is a (commonly known) prior probability

distribution pi over her valuation vi; moreover, let us assume that the valuations are drawn

independently. Hence, each bidder i knows her own valuation vi exactly, but for every other

bidder j 6= i, i’s probability distribution over j’s valuation is pj . Now, if bidder i knows the

strategies of the other bidders, then for every bid that she might place, she can evaluate her
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expected utility; and of course she should choose one that maximizes her expected utility.

As is typically done in game theory, we will look for an equilibrium, which prescribes a

strategy for every bidder such that, for every bidder, for every possible valuation for that

bidder, her strategy will prescribe a bid that maximizes her expected utility, given the other

strategies. Formally, a Bayes-Nash equilibrium consists of a strategy si : R≥0 → R≥0

for every bidder such that, for every bidder i, for every vi ∈ R≥0, and for every alternative

bid v̂i ∈ R≥0,

∫
v−i

(
∏
j 6=i

pj(vj))ui(vi, s−i(v−i), si(vi))dv−i ≥
∫

v−i

(
∏
j 6=i

pj(vj))ui(vi, s−i(v−i), v̂i)dv−i

Let us dissect this complicated inequality. First, the notation −i is shorthand for “the bid-

ders other than i,” so that v−i is shorthand for v1, . . . , vi−1, vi+1, . . . , vn. The notation v̂i is

generally used for bidder i’s bid, not necessarily equal to her true valuation vi. ui(vi, v̂−i, v̂i)

is the utility that bidder i obtains if her true valuation is vi, but she bid v̂i, and the other

bidders bid v̂−i. In the first-price sealed-bid auction, ui(vi, v̂−i, v̂i) = vi − v̂i if v̂i is higher

than all the bids in v̂−i, and it is 0 otherwise. Now we can see that the inequality says that,

if the bidders other than i follow their strategies, then i’s expected utility for bidding si(vi)

should be at least equal to her expected utility for bidding any other v̂i—that is, she should

not be able to do better by not following the strategy si, given that the other bidders are

indeed following their strategies s−i.

We will now give an example of an equilibrium. Suppose that each pi is a uniform

distribution over [0, 1]. We will show that the strategies defined by si(vi) = vi(n − 1)/n

(where n is the number of bidders) constitute an equilibrium. (We will not get into detail

here on how one might have actually derived these strategies, but there are techniques for

doing so.) Suppose that all other bidders (−i) indeed follow these strategies. Then, the

expected utility for i of bidding v̂i ≤ (n − 1)/n is (v̂in/(n − 1))n−1(vi − v̂i), because the

probability that a given other bidder bids less than v̂i is v̂in/(n − 1). (There is no reason
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to bid more than (n− 1)/n, because no other bidder will bid more than (n− 1)/n.) Using

simple calculus, one can check that this expression is maximized by setting v̂i equal to

vi(n − 1)/n—exactly as the strategy prescribes! This proves that these strategies indeed

constitute an equilibrium.

3.2 Solving the second-price sealed-bid auction

Now, let us turn to the second-price sealed-bid auction. As it turns out, the analysis needed

to solve this auction is not nearly as complicated. In fact, in the second-price sealed-bid

auction, it is always optimal for a bidder to bid her true valuation, regardless of the other

bids! That is, the strategy si(vi) = vi is a dominant strategy. While this may come as a

surprise at first, it is not so difficult to see why it is true. Suppose, for a second, that bidder

i can actually see the others’ bids before placing her own bid. Let us consider the value

v̂max, the highest bid among the other bidders. Bidder i effectively has only two choices:

to bid higher than v̂max, and obtain utility vi − v̂max; or to bid lower than (or the same

as) v̂max, and obtain utility 0. Clearly, she should do the former if and only if vi > v̂max.

But this is exactly what would happen if she just bid her true valuation—for which she

does not even need to know the others’ bids! Hence, by bidding her true valuation, she

performs as well as she could have performed even if she had known the others’ bids. This

implies that bidding truthfully is also a Bayes-Nash equilibrium, although the result is much

stronger than that. For example, in the first-price auction, if one knows the bids of the other

bidders, then certainly one might be better off bidding differently from the equilibrium that

we derived for that auction (which we derived under the assumption that bidders do not

know each other’s valuations). Hence, the strategies in the first-price auction equilibrium are

not dominant strategies. Mechanisms in which revealing one’s true valuation is a dominant

strategy (such as the second-price sealed-bid auction) are called (dominant-strategies)

incentive compatible, strategy-proof, or simply truthful.
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4 Revenue equivalence

Now that we have analyzed how bidders should bid in these two auctions, let us ask the

following question: which one obtains more revenue for the seller, in expectation? The

answer is not immediately obvious: näıvely, one might say that the first-price auction

should result in more revenue, since after all it charges the highest bid rather than the

second-highest; but then again, in equilibrium, the bids are lower in the first-price auction.

Which of these two effects is stronger?

For the case of independent uniform priors over [0, 1], we can compute the expected

revenues using the equilibrium strategies from above. For the first-price auction, the prob-

ability that all bids are below a given value b is bn/(n − 1), which is also the probability

that the revenue will be below b. That is, this expression gives the cumulative density func-

tion of the revenue of the first-price auction, and using it one can compute the expected

revenue to be (n − 1)/(n + 1). For the second-price auction, the probability that there is

at most one bid higher than b is bn + nbn−1(1 − b), which is also the probability that the

revenue will be below b. That is, this expression gives the cumulative density function of

the revenue of the second-price auction, and using it one can compute the expected revenue

to be (n − 1)/(n + 1)—the same as that for the first-price auction! This is no accident:

it is a special case of the following result, which is known as the revenue equivalence

theorem [Myerson, 1981; Riley and Samuelson, 1981].

Theorem 1 Suppose that the bidders’ valuations are independent and identically distributed

over a continuous interval [L,H], and that there are no “gaps” in this distribution. Then,

any two auction mechanisms that

1. in equilibrium always allocate the item to the bidder with the highest valuation, and

2. give a bidder with valuation L an expected utility of 0,

will result in the same expected revenue for the seller.
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(There are more general versions of this result.) In the next section, we will see single-

item auction mechanisms that result in different expected revenues, because they violate

one of the two conditions in the theorem. From this point on, we will study only truthful

mechanisms. This is justified by a result known as the revelation principle [Gibbard,

1973; Green and Laffont, 1977; Myerson, 1979, 1981], which states (roughly) that, if bidders

bid strategically, then for every mechanism that is not a truthful mechanism, there is a

truthful mechanism that performs equally well.

5 Auctions with different revenues

Suppose that we have a prior distribution over each bidder’s valuation, and that we wish

to design a mechanism that maximizes expected revenue. It is easy to see that running,

say, a second-price sealed-bid auction is not always optimal. For example, suppose there is

only one bidder. The second-price sealed-bid auction will never collect any revenue in this

case, because there is no second bidder. However, we can also make a take-it-or-leave-it

offer to the one bidder: the bidder will obtain the item if and only if it is worth more than

some fixed value k to her, in which case she will pay k; otherwise, the seller keeps the item.

This will generate a revenue of k at least some of the time. While this may not seem like

an auction, setting a reserve price of k in a second-price sealed-bid auction will have the

same effect. (In such an auction, if only one bid is above the reserve price, then that bid

pays the reserve price.)

In general, the auction that maximizes expected revenue is known as the Myerson

auction [Myerson, 1981], and it proceeds as follows. For each bidder i, compute her virtual

valuation ψi(v̂i) as a function of her bid, as follows:

ψi(v̂i) = v̂i − (1− Fi(v̂i))/fi(v̂i)

Here, Fi is the cumulative density function of i’s valuation, and fi is its derivative, the
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probability density function. The bidder with the highest virtual valuation wins, unless

this bidder has a virtual valuation below 0, in which case nobody wins. The price that the

winning bidder pays is the lowest value that she could have bid while still winning. For

example, if each bidder’s valuation is drawn from the uniform distribution over [0, 1], then

the Myerson auction becomes a second-price sealed-bid auction with a reserve price of 1/2.

This is because

ψi(1/2) = 1/2− (1− Fi(1/2))/fi(1/2) = 1/2− (1− 1/2)/1 = 0

It does not always make sense to try to maximize expected revenue. In some settings, our

main goal is to allocate the item efficiently (that is, to the bidder that values it most), and

payments are merely a necessary nuisance in achieving this goal. For example, suppose that

several parties jointly own an item, and they wish to run an auction amongst themselves to

decide on a single owner. What should happen to the revenue of this auction? It seems to

make sense to redistribute it back to the bidders themselves, but doing so effectively changes

the auction mechanism. For example, suppose that the bidders run a second-price sealed-

bid auction for the item, and then redistribute the revenue of this auction equally (each

bidder receives 1/n of the revenue). Unlike the second-price sealed-bid auction without

redistribution, this auction is actually not truthful: the second-highest bidder now has an

incentive to increase her bid to drive up the price that the highest bidder pays, because the

second-highest bidder will receive a fraction of this price.

Fortunately, it turns out that we can redistribute at least some of the revenue while

maintaining truthfulness. One auction mechanism that achieves this is the following (inde-

pendently invented on at least three different occasions [Bailey, 1997; Porter et al., 2004;

Cavallo, 2006]). Let us define v2
−i to be the second-highest bid among bidders other than

bidder i. For the top two bidders, this is the third-highest bid overall (v3); for the remain-

ing n − 2 bidders, it is the second-highest bid (v2). We run the second-price sealed-bid
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auction, and we redistribute v2
−i/n to bidder i. This redistribution payment does not af-

fect bidders’ incentives in bidding, because no bidder can affect her own redistribution

payment. Hence, the auction remains truthful. Additionally, the total redistributed is

2v3/n+ (n− 2)v2/n ≤ v2—so the total redistributed is no more than is collected from the

second-price sealed-bid auction. A total of 2(v2 − v3)/n is not redistributed. This money

must be given to someone else (but not someone that the bidders care about, since that

might affect their incentives), or, say, burned. It is impossible to achieve efficient allocation

without ever wasting any money, but it is possible to waste even less money (either on aver-

age or in the worst case): this is achieved by also letting bidder i’s redistribution payment

depend on v3
−i, v

4
−i, . . . , v

n−1
−i [Guo and Conitzer, 2007; Moulin, 2007].

It is interesting to note that the revenue equivalence theorem from above does not apply

to Myerson’s auction because the first condition is not satisfied; it does not apply to the

redistribution mechanisms because the second condition is not satisfied.

6 Complementarity and substitutability

Now that we have studied single-item auctions, let us consider settings where multiple

items are for sale. One possibility is to sell each item in a separate single-item auction;

these auctions can be held simultaneously (parallel auctions) or back-to-back (sequential

auctions). If, for each item, each bidder’s valuation for that item does not depend on which

other items she wins, then the individual auctions are entirely separate events, and we can

apply the techniques that we have studied up to this point. However, this is not always a

realistic assumption. For example, if the items for sale are a plane ticket to Las Vegas and

a hotel reservation in Las Vegas, then it may be that the bidder’s valuation for the plane

ticket alone is 200, her valuation for the hotel reservation alone is 100, but her valuation for

both together is 500. The package of both items is worth more than the sum of its parts,

that is, the items are complementary.
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Now suppose that the plane ticket is auctioned first, and the hotel reservation second

(both in second-price sealed-bid auctions). How much should the bidder bid in the first

auction? If she bids 200 for the ticket, she may lose to a bidder bidding 201, only to later

find out she could have won the hotel reservation for 101, so that she regrets not bidding

higher in the first auction. However, if she bids 400 for the ticket, she may win it at a price

of 399, only to later find out that the hotel reservation sells for 1000, so that she regrets

winning the ticket. It is not clear what the bidder should do—she no longer has a dominant

strategy. Moreover, the resulting allocation of items can be inefficient.

Another possibility is that the package of items is worth less than the sum of its parts,

in which case the items are said to be substitutable. For example, if reservations for

two different hotels are for sale, a bidder may value each individual reservation at 100, but

the package for both reservations at 150. In sequential auctions, substitutability can cause

problems similar to those caused by complementarity. Both can also cause similar problems

in parallel auctions.

Instead of making the bidders agonize over the prices at which items in future or parallel

auctions are likely to sell, an alternative is to let each bidder report all her valuations, one

for each subset of the items, and decide on the allocation of items to bidders based on

that information. This is what is done in a combinatorial auction, and it circumvents the

problems that parallel and sequential auctions run into when there are complementarities

and substitutabilities.

7 Combinatorial auctions

In a combinatorial auction, a set I of multiple items is (simultaneously) for sale, and

bidders can bid on any bundle (that is, subset) of items. If we again make the assump-

tions that bidders’ valuations for the items do not change based on other bidders’ private

information, utilities are quasilinear, and there are no externalities, then each bidder i has
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a privately held valuation function vi : 2I → R≥0, where vi(S) is i’s valuation for bundle

S ⊆ I; and the utility of bidder i when she wins bundle S and pays πi is vi(S)−πi. Generally

it is assumed that vi(∅) = 0, and additionally that for S ⊆ S′, vi(S) ≤ vi(S′). (The latter

assumption is often called free disposal: receiving additional items can never decrease a

bidder’s valuation, because at worst the additional items can simply be discarded.) We will

start by looking at sealed-bid combinatorial auctions. An immediate problem with this ap-

proach is that in general, each bidder must reveal 2m−1 real numbers (where m = |I|), one

for each nonempty bundle. Once m gets to be somewhat large, this becomes impractical.

However, there is usually some structure in the bidders’ valuation functions, so that they

can be represented more concisely.

One very restrictive, but commonly studied assumption about this structure is that

bidders are single-minded. A bidder i is single-minded if there exists some bundle Si and

some real number vi such that vi(S) = vi if Si ⊆ S, and vi(S) = 0 otherwise. That is,

there is a single bundle of items that the bidder wishes to obtain; she will simply discard

any additional items, and if she fails to obtain even one item within her desired bundle, her

valuation drops to 0. If bidders are single-minded, then a bid can be represented simply as

an ordered pair (Si, vi) ∈ 2I × R≥0.

A single-minded bid cannot represent even fairly straightforward valuation functions,

such as additive valuation functions. (A valuation function vi is additive if for all S ⊆ I,

vi(S) =
∑

s∈S vi({s}). That is, there are no complementarities or substitutabilities.) We

would like to give bidders some more flexibility, by providing them with a richer bidding

language in which to describe their valuation function. One such bidding language is the

OR language, which effectively allows a bidder to submit multiple single-minded bids.

Formally, a bid in the OR language takes the form (S1, v1) OR (S2, v2) OR . . . OR (Sk, vk).

Such a bid is interpreted as follows: for any subset T ⊆ {1, . . . , k} with the property that

for any j1, j2 ∈ T, j1 6= j2, we have Sj1 ∩ Sj2 = ∅, vi(
⋃

j∈T Sj) =
∑

j∈T vj . That is, the

auctioneer can accept any subcollection of the single-minded bids within the OR-bid, as
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long as there is no overlap between the accepted Sj . (To be precise, the last = symbol

should really be a ≥ symbol, because it is possible that the same set
⋃

j∈T Sj (or a subset

thereof) can be written as a union of disjoint Sj in a different way that results in a greater

sum of vj . The bidder’s valuation for the subset is the maximum value that can be obtained

in this way. Hence, equality holds only if there is no better way to write the bundle as a

union of disjoint Sj . For example, given the bid ({A}, 1) OR ({A,B}, 3) OR ({B,C}, 3) OR

({C}, 2), we have vi({A,B,C}) = vi({A,B}) + vi({C}) = 5 > 4 = vi({A}) + vi({B,C}).)

The OR language allows for representing additive valuations, simply by OR-ing together

singleton bundles.

Nevertheless, there are valuation functions that the OR language cannot capture. For

example, suppose there are two items, a and b, and that bidder i’s valuation function is

given by vi({a}) = 1, vi({b}) = 1, vi({a, b}) = 1. That is, she wants either item, and having

both items is no more useful to her than having a single one. This function cannot be

represented in the OR language: the bid would have to contain the terms ({a}, 1) and

({b}, 1), but this would already imply that vi({a, b}) ≥ 2. A language that can capture

this valuation function is the XOR language. The difference between the OR and XOR

languages is that the auctioneer can accept at most one of the single-minded bids that are

XORed together, even if they do not overlap. For example, the above valuation function

is easily expressed as ({a}, 1) XOR ({b}, 1): this bid implies a valuation of only 1 for the

bundle {a, b}, since it is not possible to accept both single-minded bids in the bid. Using

XORs, we can in fact represent any valuation function, by using a single-minded bid for

every possible bundle and XOR-ing them all together. Of course, this is not a very concise

representation. Unfortunately, even representing additive valuation functions can require

exponentially long bids if we use only XORs. But it is also possible to use ORs and XORs

simultaneously, to get the best of both worlds. For example, the bid (({a}, 1) XOR ({b}, 1))

OR ({c}, 2) indicates a value of 1 + 2 = 3 for the bundle {a, b, c}. There are other bidding

languages that are not based on ORs and XORs, but we will not discuss them in this
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chapter.

8 The winner determination problem

Now that we have considered how to bid in a (sealed-bid) combinatorial auction, we must

consider how to determine who wins what. Of course, we cannot award a single item to two

different bidders. But this still leaves plenty of options. One natural approach is to maximize

efficiency, the total value generated. That is, if Si is the bundle of items that we award to

bidder i, then we should maximize
∑n

i=1 v̂i(Si) (under the constraint that Si ∩ Sj = ∅ for

all i 6= j). This optimization problem is known as the winner determination problem

(WDP).

As it turns out, the WDP is computationally hard. Even if we consider the special case

where each bidder submits a single-minded bid, the problem turns out to be equivalent

to WEIGHTED-SET-PACKING, which is NP-hard [Rothkopf et al., 1998] and inapprox-

imable [Sandholm, 2002]. On the other hand, the problem does not become any harder if

we allow bidders to use ORs, since a bidder using ORs is effectively submitting multiple

single-minded bids. In fact, even if we allow XORs, the problem in a sense becomes no

harder: this is because, for the purpose of solving the WDP, we can transform an instance

with XORs into one with only ORs using the following trick [Fujishima et al., 1999; Nisan,

2000]. Given a bid of the form (S1, v1) XOR (S2, v2), we create a new “dummy” item, d,

and replace the bid by (S1∪{d}, v1) OR (S2∪{d}, v2). Even though there is an OR between

these two bids, they cannot both be accepted, since they have an item in common; more-

over, since no other bids mention this item, everything else remains unaffected. Because

of this, in the next two subsections, we will focus on algorithms for the single-minded case

only. We will consider optimal algorithms for both the general case and special cases. We

will postpone discussion of approximation algorithms until later, because we will require a

particular kind of approximation algorithm in this context.
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8.1 General-purpose winner determination algorithms

Given single-minded bids {(Si, v̂i)}, one straightforward way to solve the winner determi-

nation problem is to solve the following integer program, which uses a binary variable bi to

indicate whether bid i is accepted:

maximize
∑

i biv̂i

subject to

for each s ∈ I, (
∑

i:s∈Si
bi) ≤ 1

for each i, bi ∈ {0, 1}

The main constraint of this integer program ensures that each item is awarded at most

once. Software packages such as CPLEX can be used to solve such an integer program;

since the WDP is NP-hard, it should come as no surprise that solving integer programs is

also NP-hard.

One interesting aside is that in some settings, bids can be accepted partially. For

example, if we have three bids, ({a, b}, 2), ({a, c}, 2), and ({b, c}, 2), it may be possible to

accept half of each bid, awarding half of a and half of b to the first bidder for a value of

1, half of a and half of c to the second bidder for a value of 1, and half of b and half of

c to the third bidder for a value of 1. This gives us a total value of 3 (we note that if

we cannot accept bids partially, then we can obtain only 2). If accepting bids partially is

possible, then we can solve the WDP by modifying the above program slightly. We make

the bi continuous variables, replacing the last constraint by

for each i, 0 ≤ bi ≤ 1

At this point, the program has become a linear program, and linear programs can be solved

in polynomial time [Khachiyan, 1979]. However, in the remainder of this chapter we will

assume that it is not possible to accept bids partially.

An alternative approach to solving the general WDP is to write a search algorithm
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based on techniques from artificial intelligence; for an overview of work along this line,

see [Sandholm, 2006]. It should be noted that such algorithms are in many ways similar to

algorithms for solving integer programs.

Yet another option is to use the following dynamic programming approach [Rothkopf

et al., 1998]. For any subset S ⊆ I, let w(S) be the maximum total value that can be

obtained using only items in S (that is, if we threw away the items in I − S). Let B(S) be

the collection of all proper subsets S′ ⊂ S such that there is at least one bid on exactly S′.

Then, we have:

w(S) = max{max
i
v̂i(S), max

S′∈B(S)
w(S′) + w(S − S′)}

Since the occurrences of w on the right-hand side involve subsets smaller than S, we can use

dynamic programming to compute w(S) for every subset, starting with the small ones and

working our way up to I—and w(I) gives the maximum value that can be obtained overall.

This algorithm runs in O(n3m) time (where m is the number of items). It is straightforward

to extend the dynamic program to keep track not only of the values that can be obtained,

but also of the bids that need to be accepted to obtain these values.

8.2 Special-purpose winner determination algorithms

The WDP is NP-hard in general. Nevertheless, if the bids have some structure, then the

WDP is sometimes solvable in polynomial time. For example, suppose that there are only

(single-minded) bids on pairs of items [Rothkopf et al., 1998]. Certainly, if multiple bids

bid on the same pair of items, it never makes sense to accept a bid that is not the highest.

Hence, we know the value of pairing any two given items together for sale (namely, the

highest bid for that pair), and the only decision left is which items to pair together. This

is a MAXIMUM-WEIGHTED-MATCHING problem, which can be solved in polynomial

time. (This can easily be extended to also allow for bids on individual items—for example,

by adding dummy items.) Unfortunately, if we allow for bids on sets of three items, the
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problem becomes NP-hard (by reduction from EXACT-COVER-BY-3-SETS).

As another example, suppose that the items are arranged as the vertices of a graph, and

that every bid is on a bundle of items that constitutes a connected component in the graph.

This is always possible by adding an edge between every pair of items (that is, making

the graph a complete graph), but we will be interested in restricted classes of graphs. In

particular, if the graph is a tree or a cycle, or, more generally, has bounded treewidth,

then the WDP can be solved in polynomial time using dynamic programming [Sandholm

and Suri, 2003; Conitzer et al., 2004]. To use a result like this, we can either collect the

bids first and then find a graph with which they are consistent, or we can specify the graph

beforehand and require all bids to be consistent with this graph. A later result generalizes

this even further by considering hypertree decompositions [Gottlob and Greco, 2007].

There is various other work on structure that bids may have that makes the WDP

easier [Tennenholtz, 2000; Penn and Tennenholtz, 2000; Sandholm and Suri, 2003]. Even if

the bidders’ valuations are not likely to have the required structure exactly, one possibility

is to force the bidders to only use bids with this structure. This comes at the loss of

some economic efficiency, because bidders can no longer express their exact valuations;

nevertheless, it is generally better than reverting to single-item auctions.

9 The Generalized Vickrey Auction

So far, we have not yet considered how much a winning bidder should pay in a combinatorial

auction. We could simply make such a bidder pay her bid (that is, her reported valuation

for the bundle she won), resulting in a first-price sealed-bid combinatorial auction. As in

the case of a first-price sealed-bid single-item auction, no bidder would ever bid her true

valuation function, since this would guarantee that even if she wins something, she will have

a utility of 0. We recall that an auction is truthful if revealing one’s true valuation function

is always optimal, regardless of the others’ bids. Can we create a truthful combinatorial
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auction? A natural approach is to try to generalize the (truthful) second-price sealed-bid

(aka. Vickrey) auction to the combinatorial setting. There are multiple ways in which one

can generalize the Vickrey auction. For example, one can charge a winning bidder the

highest other bid that was placed on the exact same bundle. To see that this is not a

good idea, consider the following example. Suppose that the bids are ({a}, 1), ({b}, 1),

and ({a, b}, 5), all from different bidders. The third bidder would win both items, and this

bidder would pay 0, because nobody else bid on the bundle {a, b}. This intuitively feels

wrong, since there was demand for the items from the other bidders. If the third bidder

had bid ({a}, 5) instead, she would have had to pay 1; thus, by bidding for more items, the

bidder actually pays less! This also shows that this particular generalization is not truthful:

if the third bidder is in fact interested only in a, she is still better off bidding on both items,

and just throwing b away.

Fortunately, there is another generalization that does work. Let V̂ be the total value

of the accepted bids. Let V̂−i be the total value that would have resulted if i had never

entered the auction. (Computing this requires solving the winner determination problem

again, this time without i.) Then, if Si is the bundle that bidder i wins (possibly the empty

bundle), she must pay V̂−i − (V̂ − v̂i(Si)). This expression is the difference between how

much the other bidders would have valued the allocation that would have resulted if i had

never been present, and how much they value the current allocation. (For this reason, it is

sometimes said that i pays the externality that she imposes on the other bidders.) Let us

consider the above example with bids ({a}, 1), ({b}, 1), and ({a, b}, 5). If the third bidder

had not been present, the first two bids would have been accepted, so V−3 = 2. Hence,

bidder 3 pays 2 − (5 − 5) = 2. Let us make the example slightly richer, by adding bids

({c}, 2) and ({a, c}, 5), again from different bidders. Now, the third and fourth bidders win,

for a total value of 5 + 2 = 7. Without the third bidder, the second and fifth bidders would

have won, for a total value of 1 + 5 = 6. Hence, the third bidder must pay 6− (7− 5) = 4.

Without the fourth bidder, again, the second and fifth bidders would have won, for a total
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value of 6. Hence, the fourth bidder must pay 6− (7− 2) = 1.

This way of computing payments is usually called the Generalized Vickrey Auction

(GVA). It is sometimes also called the Clarke mechanism, or the VCG mechanism (for

Vickrey, Clarke, and Groves [Vickrey, 1961; Clarke, 1971; Groves, 1973]). (Clarke and

VCG refer to generalizations beyond auctions.) The GVA has several nice properties. For

one, it is truthful. To see this, we note that bidder i’s eventual utility is vi(Si) − πi =

vi(Si)− (V̂−i− (V̂ − v̂i(Si))) = vi(Si)+(V̂ − v̂i(Si))− V̂−i. It is impossible for i to affect V̂−i;

therefore, i can focus on maximizing vi(Si) + (V̂ − v̂i(Si)) = vi(Si) +
∑

j 6=i v̂j(Sj). There

is only one way in which this expression depends on i’s bid v̂i: her bid affects the chosen

allocation S1, . . . , Sn. Now, if i had complete control over the chosen allocation (which

she does not, but let us suppose for a second that she does), then she would choose the

Sj to maximize vi(Si) +
∑

j 6=i v̂j(Sj). The winner determination algorithm, on the other

hand, chooses the Sj to maximize
∑

j v̂j(Sj) = v̂i(Si) +
∑

j 6=i v̂j(Sj). The only difference

between the two expressions is that the first uses vi, and the second uses v̂i. But then, if

bidder i truthfully reports v̂i = vi, the two expressions will be the same, and the winner

determination algorithm will choose exactly the allocation that maximizes i’s utility! Hence,

the GVA is truthful.

A very observant reader may have noticed that in the proof of truthfulness, the only

property of the payment term V̂−i that we used is that i cannot affect it with her bid. There-

fore, if truthfulness is all that we care about, we can replace the term V̂−i in the payment

expression with any other term that does not depend on i’s bid. The mechanisms that can

be obtained in this way are the Groves mechanisms (the G in VCG). The GVA mechanism,

however, does have some additional nice properties that not all Groves mechanisms have.

For one, it satisfies voluntary participation (aka. individual rationality): a bidder

never receives negative utility as a result of participating in the auction, as long as she bids

truthfully. This is because V̂ ≥ V̂−i (if this were false, it would mean that we had chosen a

suboptimal allocation), and hence vi(Si)−πi = vi(Si)+(V̂ − v̂i(Si))− V̂−i ≥ vi(Si)− v̂i(Si);
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and the last expression is zero if i reports truthfully. A final nice property of the GVA is the

nondeficit (aka. weak budget balance) property: at least as much money is collected

from the bidders as is given to them. In fact, no money is ever given to a bidder. This is

because V̂−i ≥ V̂ − v̂i(Si) (V̂ − v̂i(Si) is the value of an allocation that is feasible even when

i is not present), and hence πi = V̂−i − (V̂ − v̂i(Si)) ≥ 0.

10 Collusion and false-name bidding

The GVA is truthful, so it is not possible for an individual bidder to benefit from misre-

porting her valuation function. However, if multiple bidders simultaneously misreport, that

is, they collude, then it is possible that all of them benefit from this. To some extent, this

problem occurs even in a single-item Vickrey auction. For example, suppose that there are

three bidders with valuations 1, 3, and 4. If the third bidder can convince the second bidder

not to place any bid, then the third bidder has to pay only 1 instead of 3. The third bidder

may even pay the second bidder 1 for staying out, so that they each increase their utility

by 1 from this. (In general, the colluders need some protocol for colluding [Graham and

Marshall, 1987; Leyton-Brown et al., 2000, 2002], but we will not concern ourselves with

that here.)

Still, there is a limit on what colluders can achieve in a single-item Vickrey auction.

For example, they can never win the item at a price lower than the highest bid by a

noncolluder; nor can they reduce the seller’s revenue below what the seller would have

made if the colluders had not participated. It turns out that in a combinatorial auction,

not even these properties are true. For example, consider a GVA with only two items, a and

b. Suppose two bidders have each placed a bid ({a, b}, 1). If these are the only bidders, then

one of them will win, and pay 1. However, let us now suppose that there two additional

bidders (the colluders): one of them bids ({a}, 2), and the other bids ({b}, 2). The colluders

then win. How much does each colluder pay? If we remove one of the colluders, then the
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other colluder still wins—that is, the remainder of the allocation does not change. Thus,

each colluder (individually) imposes no externality on the other bidders, and hence pays 0.

The colluders benefit from this (assuming they have some value for the items they receive),

and the auction’s revenue has actually decreased as a result of the additional bids. More

detail on collusion in the GVA can be found, for example, in [Ausubel and Milgrom, 2006]

and [Conitzer and Sandholm, 2006].

The same example can also be used to demonstrate a different vulnerability of the GVA.

Suppose that the auction is run in an open, anonymous environment such as the Internet. In

such an auction, it is usually possible for a single bidder to participate in the auction under

multiple identifiers (for example, e-mail addresses). Thus, given two other bids ({a, b}, 1), a

single bidder can place a bid ({a}, 2) under one identifier, and a bid ({b}, 2) under another

identifier. As a result, the “false-name” bidder will win both items, and, as before, the price

charged to each bid is 0. Hence, bidders sometimes have an incentive to bid under multiple

identifiers; that is, the GVA is not false-name-proof [Yokoo et al., 2001, 2004].

It should be emphasized that this manipulation cannot be performed simply by submit-

ting multiple bids under a single identifier (for example by bidding ({a}, 2) OR ({b}, 2)). In

this case, to compute the bidder’s GVA payment, we would remove the bidder’s OR-bid in

its entirety, so that the resulting payment would be 1. In the example where the bidder uses

two different identifiers, there would be no problem if we could tell that the two identifiers

correspond to the same real bidder, because in that case we would remove both identifiers’

bids simultaneously to compute the bidder’s GVA payment. Unfortunately, it is generally

not possible to tell which identifiers were created by the same bidder.

One may wonder whether we can address some of these problems by using a combina-

torial auction mechanism other than the GVA. It has been shown that any mechanism that

avoids these issues (revenue nonmonotonicity, collusion, and false-name bidding) must have

some unnatural properties [Rastegari et al., 2007]. Still, several false-name-proof combina-

torial auction mechanisms have been designed [Yokoo et al., 2001; Yokoo, 2003; Yokoo et
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al., 2004, 2006]. It is also possible to make the use of multiple identifiers suboptimal by

verifying the identities of some of the bidders [Conitzer, 2007].

11 Computationally efficient truthful combinatorial auctions

Another problem with the GVA is that it requires us to solve the winner determination

problem to optimality. In fact, to compute the GVA payments, we need to solve up to n

additional WDP instances: for each winning bidder, we need to solve the problem again

with that bidder omitted. (It should be noted that at least in some settings, some of the

computational work can be reused across the different instances [Hershberger and Suri,

2001].) An obvious idea is to not solve the WDP to optimality, but rather to use an

approximation algorithm that returns a solution that is close to optimal. However, this

effectively changes the mechanism, and there is no reason to think that desirable properties

such as truthfulness and voluntary participation will continue to hold [Nisan and Ronen,

2001].

Let us consider the special case of single-minded bidders. One natural approximation

algorithm is the following. Sort the bids (Si, vi) by vi/|Si|, the per-item value of the bid, in

descending order. Then, consider the bids in this order, and accept any bid that can still

be accepted. For example, suppose the bids are, in sorted order,

({a}, 11), ({b, c}, 20), ({a, d}, 18), ({a, c}, 16), ({c}, 7), ({d}, 6). The algorithm will accept the

first two bids; the next three bids can then no longer be accepted, because one of their items

has already been allocated; finally, the last bid is accepted. The total value of this allocation

is 11 + 20 + 6 = 37 (which is less than the 20 + 18 = 38 that could have been obtained

by accepting just the second and third bid). Now, if we wish to calculate the first bidder’s

GVA payment using this approximation algorithm, we must remove this bid, and run the

algorithm again. After removing the first bid, the algorithm will actually accept the bids

({b, c}, 20) and ({a, d}, 18), the optimal solution. Hence, the first bidder’s (approximated)
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GVA payment is 38− (37− 11) = 12. This is more than the bidder’s valuation! It follows

that this approximation of the GVA mechanism does not satisfy voluntary participation

(and hence it is also not truthful, because the bidder would have been better off bidding 0).

However, we can use this approximation algorithm for the WDP to obtain a truthful

mechanism that satisfies voluntary participation: we just need to compute the payments

somewhat differently [Lehmann et al., 2002]. For each winning bid, consider the first bid

in the sorted list that was forced out by this bid. The ratio vi/|Si| for that bid is what the

winning bid must pay per item. For example, in the above instance, the first bid forced out

by the winning bid ({a}, 11) is ({a, d}, 18). Hence, the bid ({a}, 11) pays 18/|{a, b}| = 9

per item—and since it wins only one item (a), that means it pays 9. As for the winning bid

({b, c}, 20), the first bid forced out by it is ({c}, 7) (it is not ({a, c}, 16), because this bid was

already forced out by ({a}, 11)), so the bid pays 7/|{c}| = 7 per item, and since it wins two

items, it pays 14. The final winning bid, ({d}, 6), forces no other bids out and hence pays 0.

Given that bidders are single-minded, this mechanism satisfies voluntary participation and

truthfulness (each winning bidder pays the lowest amount that they could have bid while

still winning).

The above approximation algorithm for the WDP has a worst-case approximation ratio

of m, the number of items. If we sort the bids by vi/
√
|Si| instead, then the approximation

ratio is improved to
√
m.

There is a significant body of work on computationally efficient truthful combinatorial

auctions: see, for example, [Nisan and Ronen, 2000; Mu’alem and Nisan, 2002; Bartal et

al., 2003; Archer et al., 2003; Dobzinski et al., 2006; Bikhchandani et al., 2006; Dobzinski

and Nisan, 2007a,b].
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12 Iterative combinatorial auctions and preference elicita-

tion

In a perfect world, every bidder would have a valuation function that can be concisely

expressed in the bidding language of the combinatorial auction. Unfortunately, in reality,

this is often not the case. This does not mean that bidders usually submit extremely long

bids (such as an XOR of 2m−1 bundles): this is too impractical, not only because it requires

the communication of an exponential amount of information, but also because determining

one’s valuation for a given bundle is generally a nontrivial task. Instead, bidders bid on a

few bundles on which they think their bids will be competitive. But they may not know

exactly on which bundles they would be competitive, and if they do not bid on the right

bundles, this results in decreased economic welfare.

A potential remedy for this is to, during the auction, give the bidders feedback on how

they are doing in the auction. This means that we must abandon the sealed-bid format,

and instead consider iterative auction mechanisms. We have already seen some examples

of iterative auctions in the single-item context, namely the English, Japanese, and Dutch

auctions. For example, in an English auction, a bidder knows if she is currently winning,

and if she is not, she can choose to raise her bid. The English and Japanese auctions are

ascending auctions.

It turns out that we can also create ascending combinatorial auctions. As an example,

let us study the iBundle ascending combinatorial auction [Parkes and Ungar, 2000]. This

auction maintains, for each bidder i, for each bundle S, a current price pi(S). In each round

of the auction, the bidder is supposed to choose the bundle(s) most attractive to her at her

current prices, that is, the set arg maxS vi(S)− pi(S), and bid pi(S) on these bundles. The

exception is if vi(S) − pi(S) < 0 for every bundle S, in which case the bidder is supposed

to drop out. If a bidder follows this strategy, she is said to bid straightforwardly. At

the end of the round, the winner determination problem is solved with the submitted bids.
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Then, for every active bidder i that is not winning anything, for every bundle S that she

bid on, the price pi(S) is increased by some predetermined amount ε. Eventually, there

will be a round where every active bidder wins something, and at this point the auction

terminates with the current allocation and payments. This auction is known to have some

nice properties: for example, if the bidders’ valuations satisfy a condition known as buyer

submodularity, then straightforward bidding is an ex-post equilibrium, and the GVA

outcome results [Ausubel and Milgrom, 2002]. Informally, buyer submodularity means that

the more bidders are already present, the less having additional bidders adds to the final

allocation value. Strategies are said to be in ex-post equilibrium if for each bidder i, it

is optimal to follow the strategy, assuming that the other bidders follow their strategies

(but regardless of what the other bidders’ valuations are). Numerous other iterative com-

binatorial auctions have been proposed (for an overview, see [Parkes, 2006]), and inherent

limitations of this approach have also been studied [Blumrosen and Nisan, 2005].

More generally, the auctioneer can sequentially ask the bidders various queries about

their valuation functions, until the auctioneer has enough information to determine the final

outcome. If the final outcome is (always) the GVA outcome, then responding truthfully to

the auctioneer is an ex-post equilibrium. This flexible query-based approach is generally

referred to as preference elicitation [Conen and Sandholm, 2001]. Common queries

include value queries (“What is your valuation for bundle S?”) and demand queries

(“Given these prices, which bundle(s) do you prefer?”). Demand queries can use either

item prices, where the price for a bundle is the sum of the prices of the individual items,

or bundle prices, where each bundle has a separate price (as we saw in the iBundle

auction above). For some restricted classes of valuation functions, it has been shown that a

polynomial number of queries suffices to learn a bidder’s valuation function completely (if

we assume that the valuation function lies in that class). For example, a valuation function

can be elicited using a number of (bundle-price) demand queries that is polynomial in the

length of the function’s XOR-representation [Lahaie and Parkes, 2004], though in general
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an exponential number of queries is required if only item prices (and value queries) are

allowed [Blum et al., 2004]. Various other results have been obtained on classes of valuation

functions that can(not) be elicited using a polynomial number of queries [Zinkevich et al.,

2003; Santi et al., 2004; Conitzer et al., 2005; Blumrosen and Nisan, 2005; Lahaie et al.,

2005].

Without any restrictions on the valuation functions, negative results are known: for ex-

ample, solving the winner determination problem in general requires an exponential amount

of communication, regardless of what types of query are used [Nisan and Segal, 2005].

13 Additional topics

In this final section, we mention a few additional topics and provide some references for the

interested reader.

There are several important variants of (combinatorial) auctions, including (combina-

torial) reverse auctions and (combinatorial) exchanges. In a reverse auction, the

auctioneer seeks to buy one or more items, and the bidders submit bids indicating how

much they need to be compensated to provide the items. In an exchange, bidders can act

as buyers as well as sellers. While these variants display some significant similarities to

regular (forward) auctions, there are also important differences [Sandholm et al., 2002].

Quite a few researchers have tried to generalize Myerson’s expected-revenue maximizing

auction to combinatorial auctions; this turns out to be surprisingly difficult [Avery and

Hendershott, 2000; Armstrong, 2000; Conitzer and Sandholm, 2004; Likhodedov and Sand-

holm, 2004, 2005]. A different take on this problem is to design competitive auctions,

which obtain a revenue that is within a factor of the revenue that can be obtained with a

single sale price [Goldberg et al., 2006].

A final important direction is the design of online auctions. “Online” here does not

refer to Internet auctions; rather, it refers to settings in which the bidders arrive at and
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depart from the auction over time, and allocation decisions must be made before all the

bidders have arrived. More detail can be found in, for example, [Lavi and Nisan, 2000;

Awerbuch et al., 2003; Friedman and Parkes, 2003; Kleinberg and Leighton, 2003; Blum et

al., 2003; Hajiaghayi et al., 2004, 2005; Bredin and Parkes, 2005; Blum et al., 2006; Babaioff

et al., 2007; Parkes and Duong, 2007; Hajiaghayi et al., 2007].
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