File name: vimm9084_21channel06.pdf

References: Lecture notes

2.1 CHANNEL CONDITIONS IN INDOOR AND MOBILE RADIO COMMUNICATIONS

Limits on radio communications

- Deep space communications: Thermal noise
- Indoor and mobile communications: Multipath propagation

Networking devices of embedded systems: Indoor radio and mobile applications

- Distance covered by radio communications is very short (10–100 m)
- Wideband signals must be used for communications to overcome multipath propagation problem
- Channel is time-varying (Mobile communication and varying channel)
- Random access to the radio channel, frequency re-use

CONTENTS:

- 2.1.1 Basic concepts in radio wave propagation
 - Unlicensed (ISM) radio bands; Basic questions in channel characterization; Propagation of radio waves; Strength of received signal in indoor communication
- 2.1.2 Calculation of free space attenuation

Antenna gain and radiation pattern; Friis free space formula; Channel attenuation

2.1.3 Characterization of a multipath channel Effects of multipath propagations: ISI and frequency selective fading; Power delay profile; RMS delay spread

2.1.4 Channel modeling

AWGN channel model including the effect of multipath; A simple equation for prediction of channel attenuation; Tapped delay line model

2.1.1 Basic concepts in radio wave propagation UNLICENSED RADIO BANDS

No need for governmental approval, usage is free of charge

Note: Compared to the size of typical obstacles, the wavelength is small

EFFECTS INFLUENCING THE STRENGTH OF RECEIVED SIGNAL

BASIC QUESTIONS TO BE ANSWERED

- How does the signal propagate?
- How much attenuation has the channel?
- How does the signal look like at the receiver input?
- Which model is suitable for modeling the radio channel?

Three basic mechanisms of radio wave propagation

- **Remark:** In indoor and metropolitan radio communications, many parallel propagation paths exist
 - Consequently, the overall channel attenuation depends strongly on the bandwidth of transmitted signal

Propagation in a "Real World" environment

A summary of indoor propagation mechanisms

Direct path exists between transmitter and receiver: Line-of-Sight (LOS) No direct path between transmitter and receiver: Non-Line-of-Sight (NLOS)

A summary of outdoor propagation mechanisms

Additional effects:

- The higher the carrier frequency, the larger the free space attenuation
- A multipath propagation exists in indoor and metropolitan communications
- Doppler effect has to be considered in mobile communications

STRENGTH OF RECEIVED SIGNAL IN OFFICE ENVIRONMENT

Mean value of path loss

Note: Attenuation varies from 50 dB to 110 dB

Standard deviation of signal fluctuation due to shadowing by moving people

Note: Variation due to shadowing goes from 4 dB to 7 dB

Variation in received signal strength

Simulation, a single office room, at desktop level

CONTENTS:

2.1.1 Basic concepts in radio wave propagation Unlicensed (ISM) radio bands; Basic questions in channel characterization; Propagation of radio waves; Strength of received signal in indoor communication

2.1.2 Calculation of free space attenuation Antenna gain and radiation pattern; Friis free space formula; Channel attenuation

2.1.3 Characterization of a multipath channel

Effects of multipath propagations: ISI and frequency selective fading; Power delay profile; RMS delay spread

2.1.4 Channel modeling

AWGN channel model including the effect of multipath; A simple equation for prediction of channel attenuation; Tapped delay line model

2.1.2 Calculation of free space attenuation ANTENNA RADIATION PATTERNS AND ANTENNA GAIN

KOLUMBÁN Géza — Méréstechnika és Információs Rendszerek Tanszék

FRIIS FREE SPACE FORMULA

Predict the received signal strength when transmitter and receiver have a clear Line-of-Sight (LOS) path between them

Isotropic power density: $P_{Di} = \frac{P_T}{4\pi d^2} \left[\frac{W}{m^2}\right]$ Power density along the direction of max. radiation: $P_D = \frac{P_T G_T}{4\pi d^2}$ Power received by the antenna: $P_R = P_D A_{eff}$ [W] where the effective area of an antenna is defined by $\frac{A_{eff}}{G} = \frac{\lambda^2}{4\pi}$ Received power (also known as Friis free space Formula) $P_R = P_T G_T G_R \left(\frac{\lambda}{4\pi d}\right)^2$

PATH LOSS ALSO REFERRED TO AS CHANNEL ATTENUATION

Received power (Friis formula)

$$P_{R} = P_{T}G_{T}G_{R}\left(\frac{\lambda}{4\pi d}\right)^{2} = P_{T}G_{T}G_{R}\frac{0.57*10^{-3}}{(df)^{2}}$$

where f and d are measured in GHz and m, respectively

$$P_{R}^{[\mathsf{dBm}]} = P_{T}^{[\mathsf{dBm}]} + G_{T}^{[\mathsf{dB}]} + G_{R}^{[\mathsf{dB}]} - 32.5 - 20 \log_{10} d^{[\mathsf{m}]} - 20 \log_{10} f^{[\mathsf{GHz}]}$$

Path loss represents the signal attenuation along the channel (antenna gains are excluded)

$$P_{loss}^{[\mathsf{dB}]} = 32.5 + 20 \log_{10} d^{[\mathsf{m}]} + 20 \log_{10} f^{[\mathsf{GHz}]}$$

KOLUMBÁN Géza — Méréstechnika és Információs Rendszerek Tanszék

Measured Received Signal Strength (RSS) in indoor channel

Same location but four different channel frequencies in the 2.4-GHz ISM band

Problems not considered by Friis formula: • Multipath propagation

• Near field behavior of the antenna

CONTENTS:

2.1.1 Basic concepts in radio wave propagation Unlicensed (ISM) radio bands; Basic questions in channel characterization; Propagation of radio waves; Strength of received signal in indoor communication

2.1.2 Calculation of free space attenuation

Antenna gain and radiation pattern; Friis free space formula; Channel attenuation

2.1.3 Characterization of a multipath channel

Effects of multipath propagations: ISI and frequency selective fading; Power delay profile; RMS delay spread

2.1.4 Channel modeling

AWGN channel model including the effect of multipath; A simple equation for prediction of channel attenuation; Tapped delay line model

2.1.3 Characterization of multipath channel

Output of a multipath channel characterized by the impulse response h(t)

Multipath propagation causes:

- **Delay spread:** Causes intersymbol interference (ISI) Solution: OFDM, i.e., ISI-free subchannels; channel equalization; UWB radio
- Frequency selective fading: Attenuates the symbol to be received Solution: Communications with wideband signal [SS, chaotic and UltraWideband (UWB) radio]

POWER DELAY PROFILE

Received signal when a very narrow pulse is transmitted

Characterization of power delay profile

Measured channel response:

Excess delay is considered as a statistical variable

 $\begin{array}{ll} \text{Mean excess delay:} & \overline{\tau} = \frac{0.01*0+0.1*1+0.1*2+1*5}{0.01+0.1+0.1+1} = 4.38 \ \mu\text{s} \\ \text{Weighted RMS of excess delay:} & \overline{\tau^2} = \frac{0.01*0^2+0.1*1^2+0.1*2^2+1*5^5}{0.01+0.1+0.1+1} = 21.07 \ \mu\text{s} \\ \text{RMS delay spread:} & \sigma_{\tau} = \sqrt{\overline{\tau^2} - \overline{\tau}^2} = \sqrt{21.07 - (4.38)^2} = 1.37 \ \mu\text{s} \end{array}$

RMS DELAY SPREAD: MEASURE OF ISI CAUSED BY MULTIPATH

Note: RMS delay spread characterizes the application very well

How to avoid intersymbol interference (ISI)

Rule of thumb: • Symbol time > $10\sigma_{\tau} \implies$ No channel equalization is required

• Symbol time $< 10\sigma_{\tau} \implies$ Channel equalization is required to avoid ISI

In the above example, symbol time should be longer than 14 μs to avoid ISI. Consequently, symbol rate must be less than \sim 70kb/s

- Solutions: Apply channel equalization
 - Reduce data rate: OFDM and ADSL
 - Use ultra-narrow pulses (UWB impulse radio) and apply a guard time after each pulse transmitted

CONTENTS:

- 2.1.1 Basic concepts in radio wave propagation Unlicensed (ISM) radio bands; Basic questions in channel characterization; Propagation of radio waves; Strength of received signal in indoor communication
- 2.1.2 Calculation of free space attenuation
 - Antenna gain and radiation pattern; Friis free space formula; Channel attenuation

2.1.3 Characterization of a multipath channel

Effects of multipath propagations: ISI and frequency selective fading; Power delay profile; RMS delay spread

2.1.4 Channel modeling

AWGN channel model including the effect of multipath; A simple equation for prediction of channel attenuation; Tapped delay line model

2.1.4 Channel modeling

AWGN: Additive White Gaussian Noise **RF:** Radio Frequency

MODEL OF AWGN RF CHANNEL INCLUDING THE EFFECT OF MULTIPATH AND CHANNEL SELECTION

MEASURED PATH LOSS IN INDOOR RADIO

In indoor communications the received power is a statistical variable

- Parameters Transmit power 0 dBm, 2.4-GHz ISM frequency band
 - Receiver sensitivity \leq -85 dBm

In case of many propagation paths the received power may be modeled by a Gaussian distribution where the variance σ varies from 3 to 11

Approximate formulas for the 2.4-GHz ISM band derived from the measured data

Near field, i.e., close to the antenna where $d \leq 8 \text{ m}$

Far field where d > 8 m

Path loss =
$$58.3 + 10 \log_{10} \left(\frac{d^n}{8}\right)$$

where constant n describes the effect of multipath propagation:

Free space (Friis formula)	n=2
Indoor office environment	n = 3.3
Indoor home environment	n = 4.5

TAPPED DELAY LINE MODEL OF AN RF MULTIPATH CHANNEL

- where: RF wave travels along the N propagation paths
 - Each path is characterized by a delay T_l and gain $k_l,$ where $l=1,2,\ldots,N$
- **Remark:** Tapped delay line models are available for many applications. They can be downloaded from the websites of IEEE 802 Working Groups

KOLUMBÁN Géza — Méréstechnika és Információs Rendszerek Tanszék

Frequency response of a two-ray ($k_1 = k_2 = 1/2$) channel

Magnitude of frequency response

2.4-GHz Industrial, Scientific and Medical (ISM) radio band

Let $\Delta \tau = T_2 - T_1$ denote the excess delay of path two. The single-tone received signals cancel each other completely if

$$\Delta \tau \omega_c = (2n+1)\pi, \quad n = 0, 1, \dots$$

Multipath-related nulls appear at

$$f_{null} = \frac{2n+1}{2\Delta\tau}, \quad n = 0, 1, 2, 3...$$

Bandwidth of multipath fading is

$$\Delta f_{null} \approx \frac{0.2}{\Delta \tau}$$

Note: The shorter the excess delay, the wider the bandwidth over which the signal is highly attenuated

Influence of the center frequencies of multipath-related nulls

- FM-DCSK: Frequency modulated differential chaos shift keying. A wideband chaotic communication system operating without carrier recovery
- RF bandwidth is 2B=17 MHz, bit duration is $T=2~\mu{\rm s},$ excess delay of path two is $\Delta\tau=75~{\rm ns}$
- A wideband signal is transmitted to overcome multipath propagation problem

Transmitted (solid curve) and received (dashed curve) spectra

Conclusions:

- In indoor and mobile systems the BER performance of radio communications is limited by the multipath propagation
- Especially in indoor radio communication, the channel attenuation is almost impossible to predict. Recall, a time-varying channel has to be considered where the parameters are random quantities
- To overcome the frequency selective fading caused by multipath propagation, a wideband signal has to be transmitted (Problem appearing in the frequency domain). Solutions:
 - Spreading the spectrum of a narrowband system: Spread spectrum communications
 - Application of a wideband carrier: Chaotic communications and impulse radio
- Large RMS delay spread limits the maximum attainable data rate since it causes ISI (Problem appearing in the time domain)
- Detection without carrier recovery offers the most robust solution