
Multi Sensor Data Fusion

Hugh Durrant-Whyte
Australian Centre for Field Robotics
The University of Sydney NSW 2006

Australia
hugh@acfr.usyd.edu.au

January 22, 2001

Version 1.2

c©Hugh Durrant-Whyte 2001

1

Multi-Sensor Data Fusion 2

Contents

1 Introduction 5
1.1 Data Fusion Methods . 6
1.2 Bibliography . 8

2 Probabilistic Data Fusion 9
2.1 Probabilistic Models . 9
2.2 Probabilistic Methods . 12

2.2.1 Bayes Theorem . 12
2.2.2 Data Fusion using Bayes Theorem 15
2.2.3 Recursive Bayes Updating . 19
2.2.4 Data Dependency and Bayes Networks 23
2.2.5 Distributed Data Fusion with Bayes Theorem 25
2.2.6 Data Fusion with Log-Likelihoods 27

2.3 Information Measures . 31
2.3.1 Entropic Information . 31
2.3.2 Conditional Entropy . 32
2.3.3 Mutual Information . 35
2.3.4 Fisher Information . 38
2.3.5 The Relation between Shannon and Fisher Measures 40

2.4 Alternatives to Probability . 40
2.4.1 Interval Calculus . 41
2.4.2 Fuzzy Logic . 42
2.4.3 Evidential Reasoning . 44

3 Multi-Sensor Estimation 47
3.1 The Kalman Filter . 47

3.1.1 State and Sensor Models . 48
3.1.2 The Kalman Filter Algorithm . 52
3.1.3 The Innovation . 56
3.1.4 Understanding the Kalman Filter 58
3.1.5 Steady-State Filters . 60
3.1.6 Asynchronous, Delayed and Asequent Observations 63
3.1.7 The Extended Kalman Filter . 67

3.2 The Multi-Sensor Kalman Filter . 71
3.2.1 Observation Models . 73
3.2.2 The Group-Sensor Method . 76
3.2.3 The Sequential-Sensor Method . 78
3.2.4 The Inverse-Covariance Form . 82
3.2.5 Track-to-Track Fusion . 88

3.3 Non-linear Data Fusion Methods . 92
3.3.1 Likelihood Estimation Methods . 93

Multi-Sensor Data Fusion 3

3.3.2 The Particle Filter . 94
3.3.3 The Sum-of-Gaussians Method . 94
3.3.4 The Distribution Approximation Filter (DAF) 95

3.4 Multi-Sensor Data Association . 95
3.4.1 The Nearest-Neighbour Standard Filter 96
3.4.2 The Probabilistic Data Association Filter 97
3.4.3 The Multiple Hypothesis Tracking (MHT) Filter 101
3.4.4 Data Association in Track-to-Track Fusion 103
3.4.5 Maintaining and Managing Track Files 104

4 Distributed and Decentralised Data Fusion Systems 105
4.1 Data Fusion Architectures . 105

4.1.1 Hierarchical Data Fusion Architectures 106
4.1.2 Distributed Data Fusion Architectures 109
4.1.3 Decentralised Data Fusion Architectures 110

4.2 Decentralised Estimation . 113
4.2.1 The Information Filter . 113
4.2.2 The Information Filter and Bayes Theorem 118
4.2.3 The Information filter in Multi-Sensor Estimation 119
4.2.4 The Hierarchical Information Filter 122
4.2.5 The Decentralised Information Filter 125

4.3 Decentralised Multi-Target Tracking . 127
4.3.1 Decentralised Data Association . 127
4.3.2 Decentralised Identification and Bayes Theorem 129

4.4 Communication in Decentralised Sensing Systems 130
4.4.1 Fully Connected and Broadcast Sensor Networks 131
4.4.2 Identification of Redundant Information in Sensor Networks 132
4.4.3 Bayesian Communication in Sensor Networks 136
4.4.4 The Channel Filter . 138
4.4.5 Delayed, Asequent and Burst Communication 140
4.4.6 Management of Channel Operations 143
4.4.7 Communication Topologies . 145

4.5 Advanced Methods in Decentralised Data Fusion 146

5 Making Decisions 147
5.1 Actions, Loss and Utility . 147

5.1.1 Utility or Loss . 147
5.1.2 Expected Utility or Loss . 148
5.1.3 Bayesian Decision Theory . 149

5.2 Decision Making with Multiple Information Sources 150
5.2.1 The Super Bayesian . 150
5.2.2 Multiple Bayesians . 150
5.2.3 Nash Solutions . 151

Multi-Sensor Data Fusion 4

1 Introduction

Data fusion is the process of combing information from a number of different sources to
provide a robust and complete description of an environment or process of interest. Data
fusion is of special significance in any application where a large amounts of data must be
combined, fused and distilled to obtain information of appropriate quality and integrity on
which decisions can be made. Data fusion finds application in many military systems, in
civilian surveillance and monitoring tasks, in process control and in information systems.
Data fusion methods are particularly important in the drive toward autonomous systems
in all these applications. In principle, automated data fusion processes allow essential
measurements and information to be combined to provide knowledge of sufficient richness
and integrity that decisions may be formulated and executed autonomously.

This course provides a practical introduction to data fusion methods. It aims to in-
troduce key concepts in multi-sensor modeling, estimation, and fusion. The focus of this
course is on mathematical methods in probabilistic and estimation-theoretic data fusion.
Associated with this course is a series of computer-based laboratories which provide the
opportunity to implement and evaluate multi-sensor tracking, estimation and identifica-
tion algorithms.

Data fusion is often (somewhat arbitrarily) divided into a hierarchy of four processes.
Levels 1 and 2 of this process are concerned with the formation of track, identity, or
estimate information and the fusion of this information from several sources. Level 1
and 2 fusion is thus generally concerned with numerical information and numerical fusion
methods (such as probability theory or Kalman filtering). Level 3 and 4 of the data fusion
process is concerned with the extraction of “knowledge” or decisional information. Very
often this includes qualitative reporting or secondary sources of information or knowledge
from human operators or other sources. Level 3 and 4 fusion is thus concerned with
the extraction of high-level knowledge (situation awareness for example) from low level
fusion processes, the incorporation of human judgment and the formulation of decisions
and actions. This hierarchy is not, by any means, the only way of considering the general
data fusion problem. It is perhaps appropriate for many military data fusion scenarios, but
is singularly inappropriate for many autonomous systems or information fusion problems.
The imposition of a “hierarchical” structure to the problem at the outset can also serve to
mislead the study of distributed, decentralised and network-centric data fusion structures.
Nevertheless, the separate identification of numerical problems (tracking, identification
and estimation) from decisional and qualitative problems (situation awareness, qualitative
reporting and threat assessment) is of practical value.

This course focus mainly on level 1-2 type data fusion problems. These are concerned
with the fusion of information from sensors and other sources to arrive at an estimate of
location and identity of objects in an environment. It encompasses both the direct fusion of
sensor information and the indirect fusion of estimates obtained from local fusion centers.
The primary methods in level 1-2 fusion methods are probabilistic. These include multi-
target tracking, track-to-track fusion, and distributed data fusion methods. Level 3-4 data
fusion problems are considered in less detail. These involve the modeling of qualitative

Multi-Sensor Data Fusion 5

information sources, the use of non-probabilistic methods in describing uncertainty and
general decision making processes. Level 3-4 data fusion, obviously, builds on level 1-2
methods.

1.1 Data Fusion Methods

In any data fusion problem, there is an environment, process or quantity whose true
value, situation or state is unknown. It would be unreasonable to expect that there is
some single source of perfect and complete knowledge about the problem of interest and
so information must be obtained indirectly from sources which provide imperfect and
incomplete knowledge, using these to infer the information needed. There may well be
many sources of information that could be used to help obtain the required knowledge:
some effect characteristic of a particular state may be observed, prior beliefs about possible
states may be available, or knowledge about certain constraints and relations may exist.
To use the available information to its maximum effect it is important to describe precisely
the way in which this information relates to the underlying state of the world.

In sensor data fusion problems these concepts of ‘world’, ‘state’, ‘information’ and
‘observation’ can be made precise:

• The quantity of interest will be denoted by x. This quantity may describe an
environment, process, statement or single number. Employing the terminology of
decision theory, the quantity x will be called the state of nature or simply ‘the
state’. The state of nature completely describes the world of interest. The state
of nature can take on a variety of values all of which are contained in the set X
of possible states of nature; x ∈ X . The current state of the world is simply a
singleton of this set. An environment model comprises this set of possible states
together with any knowledge of how elements of this set are related.

• To obtain information about the state of nature an experiment or observation is
conducted yielding a quantity z. The observation can take on a variety of values
all of which are contained in the sample space Z. The information obtained
by observation is a single realization z ∈ Z from this set. If the information we
obtain through observation is to be of any value we must know how this information
depends on the true state of nature. That is, for each specific state of nature x ∈ X
an observation model is required that describes what observations we will make
z = z(x) ∈ Z. The observation model describes precisely the sensing process.

• Given the information obtained through observation z, the goal of the data fusion
process is to infer an underlying state of nature x. To do this we describe a function
or decision rule δ which maps observations to states of nature; δ(z)→ x ∈ X . The
decision model must incorporate information about the nature of the observation
process, prior beliefs about the world, and a measure of the value placed on accuracy
and error in the state of the world. The decision rule is essential in data fusion
problems; it is the function that takes in all information and produces a single
decision and resulting action.

Multi-Sensor Data Fusion 6

These three elements; the state, the observation model and the decision rule, are the
essential components of the data fusion problem.

The most important problem in data fusion is the development of appropriate mod-
els of uncertainty associated with both the state and observation process. This course
begins in Section 2 by describing key methods for representing and reasoning about un-
certainty. The focus is on the use of probabilistic and information-theoretic methods
for sensor modeling and for data fusion. Probability theory provides an extensive and
unified set of methods for describing and manipulating uncertainty. It is demonstrated
how basic probability models can be used to fuse information, to describe different data
fusion architectures and to manage sensors and sensor information. Many of the data
fusion methods described in the remainder of this course are based on these probabilis-
tic methods. However, probabilistic modeling methods do have limitations. Alternatives
methods for describing uncertainty including fuzzy logic, evidential reasoning, and qual-
itative reasoning methods, are briefly considered. In certain circumstances one of these
alternative techniques may provide a better method of describing uncertainty than prob-
abilistic models.

Estimation is the single most important problem in sensor data fusion. Fundamentally,
an estimator is a decision rule which takes as an argument a sequence of observations and
whose action is to compute a value for the parameter or state of interest. Almost all data
fusion problems involve this estimation process: we obtain a number of observations from a
group of sensors and using this information we wish to find some estimate of the true state
of the environment we are observing. In particular, estimation encompasses problems such
as multi-target tracking. Section 3 of this course focuses on the multi-sensor estimation
problem. The Kalman filter serves as the basis for most multi-sensor estimation problems.
The multi-sensor Kalman filter is introduced. Various formulations of the multi-sensor
Kalman filter are discussed. The problem of asynchronous and delayed data is described
and solved. Alternatives to the Kalman filter such as likelihood filters, are discussed. The
problem of data association; relating observations to tracks, is introduced. The three key
methods for data association; the nearest neighbour filter, probabilistic data association
and the multiple hypothesis and track splitting filters, are described. Finally, the track-
to-track fusion algorithm is described as a method for combining estimates generated by
local estimators.

An increasingly important facet of data fusion is the design of system architecture.
As the complexity of data fusion systems increases, as more sensors and more informa-
tion sources are incorporated, so the need to provide distributed data fusion architectures
increases. While many block-diagrams of distributed data fusion systems exist, there
are few mathematical methods for manipulating and fusing information in these archi-
tectures. Section 4 describes the use of information-theoretic estimation methods in dis-
tributed and decentralised data fusion systems. It is demonstrated how multiple-target
tracking and identification problems can be effectively decentralised amongst a network of
sensors nodes. A detailed study of the required communication algorithms is performed.
This focuses on issues of delayed, intermittent, and limited band-width communications.
Advanced areas of interest including sensor management, model distribution and organi-

Multi-Sensor Data Fusion 7

sation control are also briefly described.
The final component in data fusion is the need to make decisions on the basis of infor-

mation obtained from fusion. These decisions encompass the allocation and management
of sensing resources, the identification of specific situations, and the control or deploy-
ment of sensing platforms. Section 5 briefly introduces key elements of decision theory
methods. These include ideas of utility, risk, and robustness. Some applications in sensor
management are described.

1.2 Bibliography

Data fusion is a generally poorly defined area of study. This is because data fusion methods
are based on techniques established in many other diverse fields. As a consequence many
data fusion books tend to be either quite broad summaries of methods, or are more
qualitative discussions of architectures and principles for specific applications. Some of
the key recommended books are described here:

Blackman: The recent book by Blackman and Popoli [9] is probably the most compre-
hensive book on data fusion methods. It covers both level 1-2 multi-target tracking and
identification problems as well as level 3-4 methods in situation assessment and sensor
management. Notably, it covers a number of current military systems in some detail and
gives develops a number of specific examples of multi-sensor systems.
Waltz and Linas: The book by Waltz and Linas [43] has become something of a classic
in the field. It was one of the first books that attempted to define and establish the field
of data fusion. The book consists of mainly qualitative descriptions of various data fusion
systems (with an emphasis on military systems). There are some quantitative methods
introduced but they are described only at a superficial level. However the general overview
provided is still of significant value.
BarShalom: Yakkov Barshalom has written and edited a number of books on data fusion
and tracking. Of note are his classic book [7] on tracking and data association, and his
two edited volumes on data fusion [5, 6]. Together these are reasonably definitive in terms
of current tracking and data association methods.
Artech House series: Artech house (www.artechhouse.com) are a specialist publishing
house in the radar, data fusion and military systems area. They publish by far the most
important and advanced technical books in the data fusion area.

Additional references are provided at the end of these notes.

Multi-Sensor Data Fusion 8

2 Probabilistic Data Fusion

Uncertainty lies at the heart of all descriptions of the sensing and data fusion process.
An explicit measure of this uncertainty must be provided to enable sensory information
to be fused in an efficient and predictable manner. Although there are many methods
of representing uncertainty, almost all of the theoretical developments in this course are
based on the use of probabilistic models. There is a huge wealth of experience and methods
associated with the development of probabilistic models of environments and information.
Probabilistic models provide a powerful and consistent means of describing uncertainty
in a broad range of situations and leads naturally into ideas of information fusion and
decision making.

It could be, and indeed often is, argued that probability is the only rational way to
model uncertainty. However, the practical realities of a problem often suggest alternative
uncertainty modeling methods. Probabilistic models are good at many things but it is
often the case that such a model cannot capture all the information that we need to define
and describe the operation of a sensing and data fusion system. For example it would be
difficult to imagine using probabilistic models alone to capture the uncertainty and error
introduced by the dependence of, say, an active electro-magnetic sensor information on
beam-width and radiation frequency effects. Alternative methods of modeling uncertainty
are briefly described in Section 2.4.

Even with limitations, probabilistic modeling techniques play an essential role in de-
veloping data fusion methods. Almost all conventional data fusion algorithms have prob-
abilistic models as a central component in their development. It would be impossible
to talk about data fusion in any coherent manner without first obtaining a thorough
understanding of probabilistic modeling methods.

This section begins by briefly introducing the essential elements of probabilistic mod-
eling: probability densities, conditional densities, and Bayes theorem. With these basic
elements, the basic data fusion problem is described and it is shown how information
can be combined in a probabilistic manner. From this, various data fusion architectures
are described and, mathematically, how they are implemented. The idea of information
and entropy is also introduced as a natural way of describing the flow of ‘information’ in
different data fusion architectures. These tools, together with the Kalman filter are the
underlying basis for all the data fusion methods developed in this course.

2.1 Probabilistic Models

In the following, familiarity with essential probability theory is assumed, and some simple
notation and rules to be used throughout this course are introduced. A probability density
function (pdf) Py(·) is defined on a random variable y, generally written as Py(y) or simply
P (y) when the dependent variable is obvious. The random variable may be a scalar or
vector quantity, and may be either discrete or continuous in measure.

The pdf is considered as a (probabilistic) model of the quantity y; observation or state.
The pdf P (y) is considered valid if;

Multi-Sensor Data Fusion 9

1. It is positive; P (y) > 0 for all y, and

2. It sums (integrates) to a total probability of 1;

∫
y
P (y)dy = 1.

The joint distribution Pxy(x,y) is defined in a similar manner.
Integrating the pdf Pxy(x,y) over the variable x gives the marginal pdf Py(y) as

Py(y) =
∫
x
Pxy(x,y)dx, (1)

and similarly integrating over y gives the marginal pdf Px(x). The joint pdf over n
variables, P (x1, · · · ,xn), may also be defined with analogous properties to the joint pdf
of two variables.

The conditional pdf P (x | y) is defined by

P (x | y) �
=

P (x,y)

P (y)
, (2)

and has the usual properties of a pdf with x the dependent variable given that y takes on
specific fixed values. The conditional pdf P (y | x) is similarly defined.

The chain-rule of conditional distributions can be used to expand a joint pdf in terms
of conditional and marginal distributions. From Equation 2,

P (x,y) = P (x | y)P (y). (3)

The chain-rule can be extended to any number of variables in the following form

P (x1, · · · ,xn) = P (x1 | x2 · · · ,xn) · · ·P (xn−1 | xn)P (xn), (4)

where the expansion may be taken in any convenient order. Substitution of Equation 3
into Equation 1 gives an expression for the marginal distribution of one variable in terms
of the marginal distribution of a second variable as

Py(y) =
∫
x
Px|y(y | x)Px(x)dx. (5)

This important equation is known as the total probability theorem. It states that the
total probability in a state y can be obtained by considering the ways in which y can
occur given that the state x takes a specific value (this is encoded in Px|y(y | x)), weighted
by the probability that each of these values of x is true (encoded in Px(x)).

If it happens that knowledge of the value of y does not give us any more information
about the value of x then x and y are said to be independent as

P (x | y) = P (x). (6)

Multi-Sensor Data Fusion 10

With Equation 6 substituted into Equation 3

P (x,y) = P (x)P (y). (7)

A weaker form of independence can be defined through the important idea of conditional
independence. Given three random variables x, y and z, the conditional distribution of
x given both y and z is defined as P (x | yz). If knowledge of the value of z makes the
value of x independent of the value of y then

P (x | y, z) = P (x | z). (8)

This may be the case for example if z indirectly contains all the information contributed
by y to the value of x. Conditional independence can be exploited in a number of different
ways. In particular, applying the chain-rule to the joint probability density function on
three random variables x, y, and z

P (x,y, z) = P (x,y | z)P (z)

= P (x | y, z)P (y | z)P (z),
(9)

together with the conditional independence result of Equation 8 the intuitive result

P (x,y | z) = P (x | z)P (y | z), (10)

is obtained. That is, if x is independent of y given knowledge of z then the joint probability
density function of x and y conditioned on z is simply the product of the marginal
distributions of x and y each conditioned on z, analogously to Equation 7.

The idea of conditional independence underlies many of the data fusion algorithms
developed in this course. Consider the state of a system x and two observations of this
state z1 and z2. It should be clear that the two observations are not independent,

P (z1, z2) 	= P (z1)P (z2),

as they must both depend on the common state x. Indeed, if the two observations were
independent (were unrelated to each other), there would be little point fusing the infor-
mation they contain ! Conversely, it is quite reasonable to assume that the only thing the
two observations have in common is the underlying state, and so the observations are in-
dependent once the state is known; that is, the observations are conditionally independent
given the state as

P (z1, z2 | x) = P (z1 | x)P (z2 | x).
Indeed, for the purposes of data fusion, this would not be a bad definition of the state;
simply what the two information sources have in common.

Multi-Sensor Data Fusion 11

2.2 Probabilistic Methods

2.2.1 Bayes Theorem

Bayes theorem is arguably the most important result in the study of probabilistic models.
Consider two random variables x and z on which is defined a joint probability density
function P (x, z). The chain-rule of conditional probabilities can be used to expand this
density function in two ways

P (x, z) = P (x | z)P (z)

= P (z | x)P (x). (11)

Rearranging in terms of one of the conditional densities, Bayes theorem is obtained

P (x | z) = P (z | x)P (x)

P (z)
. (12)

The value of this result lies in the interpretation of the probability density functions
P (x | z), P (z | x), and P (x). Suppose it is necessary to determine the various likelihoods
of different values of an unknown state of nature x ∈ X . There may be prior beliefs
about what values of x might be expect, encoded in the form of relative likelihoods in
the prior probability density function P (x). To obtain more information about
the state x an observation z ∈ Z is made. The observations made are modeled as a
conditional probability density function P (z | x) which describes, for each fixed state of
nature x ∈ X , the likelihood that the observation z ∈ Z will be made; the probability
of z given x. The new likelihoods associated with the state of nature x must now be
computed from the original prior information and the information gained by observation.
This is encoded in the posterior distribution P (x | z) which describes the likelihoods
associated with x given the observation z. The marginal distribution P (z) simply serves
to normalize the posterior. The value of Bayes theorem is now clear, it provides a direct
means of combining observed information with prior beliefs about the state of the world.
Unsurprisingly, Bayes theorem lies at the heart of many data fusion algorithms.

The conditional distribution P (z | x) serves the role of a sensor model. This distribu-
tion can be thought of in two ways. First, in building a sensor model, the distribution
is constructed by fixing the value1 of x = x and then asking what pdf in the variable z
results. Thus, in this case, P (z | x) is considered as a distribution on z. For example, if
we know the true range to a target (x), then P (z | x) is the distribution on the actual ob-
servation of this range. Conversely, once the sensor model exists, observations (numbers,
not distributions) are made and z = z is fixed. From this however, we want to infer the
state x. Thus the distribution P (z | x) is now considered as a distribution in x. In this
latter, case, the distribution is known as the Likelihood Function and the dependence
on x is made clear by writing Λ(x) = P (z | x).

1Random variables are denoted by a bold face font, specific values taken by the random variable are
denoted by normal fonts.

Multi-Sensor Data Fusion 12

In a practical implementation of Equation 12, P (z | x) is constructed as a function of
both variables (or a matrix in discrete form). For each fixed value of x, a distribution in
z is defined. Therefore as x varies, a family of distributions in z is created. The following
two examples, one in continuous variables and one in discrete variables, makes these ideas
clear.

Example 1
Consider a continuous valued state x, the range to target for example, and an ob-

servation z of this state. A commonly used model for such an observation is where the
observation made of true state is Normally (Gaussian) distributed with mean x and a
variance σ2

z as

P (z | x) = 1√
2πσ2

z

exp

(
−1

2

(z− x)2

σ2
z

)
. (13)

It should be clear that this is a simple function of both z and x. If we know the true
value of the state, x = x, then the distribution is a function of z only; describing the
probability of observing a particular value of range (Normally distributed around the true
range x with variance σ2

z). Conversely, if we make a specific observation, z = z, then
the distribution is a function of x only; describing the probability of the true range value
(Normally distributed around the range observation z with variance σ2

z). In this case, the
distribution is the Likelihood Function.

Now assume that we have some prior belief about the true state x encoded in a Gaussian
prior as

P (x) =
1√
2πσ2

x

exp

(
−1

2

(x− xp)
2

σ2
x

)
.

Note, this is a function of a single variable x (with xp fixed). Bayes theorem can be
directly applied to combine this prior information with information from a sensor, modeled
by 13. First, an observation (technically, an experimental realisation), z, is made and
instantiated in Equation 13. Then the prior and sensor model are multiplied together to
produce a posterior distribution (which is a function of x only, and is sometimes referred
to as the posterior likelihood) as

P (x | z) = C
1√
2πσ2

z

exp

(
−1

2

(x− z)2

σ2

)
.

1√
2πσ2

x

exp

(
−1

2

(x− xp)
2

σ2
x

)

(14)

=
1√
2πσ2

exp

(
−1

2

(x− x)2

σ2

)
(15)

where C is a constant independent of x chosen to ensure that the posterior is appropriately
normalized, and x and σ2 are given by

x =
σ2
x

σ2
x + σ2

z

z +
σ2
z

σ2
x + σ2

z

xp,

Multi-Sensor Data Fusion 13

and

σ2 =
σ2
zσ

2
x

σ2
z + σ2

x

=

(
1

σ2
z

+
1

σ2
x

)−1

Thus the posterior is also Gaussian with a mean that is the weighted average of the means
for the original prior and likelihood, and with a variance equal to the parallel combination
of the original variances.

Example 2
Consider a simple example of the application of Bayes theorem to estimating a discrete

parameter on the basis of one observation and some prior information. The environment
of interest is modeled by a single state x which can take on one of three values:

x1: x is a type 1 target.
x2: x is a type 2 target.
x3: No visible target.

A single sensor observes x and returns three possible values:
z1: Observation of a type 1 target.
z2: Observation of a type 2 target.
z3: No target observed.

The sensor model is described by the likelihood matrix P1(z | x):

z1 z2 z3

x1 0.45 0.45 0.1
x2 0.45 0.45 0.1
x3 0.1 0.1 0.8

Note, that this likelihood matrix is a function of both x and z. For a fixed value of the
true state, it describes the probability of a particular observation being made (the rows of
the matrix). When a specific observation is made, it describes a probability distribution
over the values of true state (the columns) and is then the Likelihood Function Λ(x).

The posterior distribution of the true state x after making an observation z = zi is
given by

P (x | zi) = αP1(zi | x)P (x)

where α is simply a normalizing constant set by requiring the sum, over x, of posterior
probabilities to be equal to 1.

In the first instance we will assume that we do not have any prior information about
the possible likelihood of target types 1 and 2, and so we set the prior probability vector
to P (x) = (0.333, 0.333, 0.333). If we now observe z = z1, then clearly the posterior
distribution will be given by P (x | z1) = (0.45, 0.45, 0.1) (i.e. the first column of the
likelihood matrix above; the likelihood function given z1 has been observed).

Multi-Sensor Data Fusion 14

If now we subsequently use this posterior distribution as the prior for a second obser-
vation P (x) = (0.45, 0.45, 0.1), and we again make the observation z = z1, then the new
posterior distribution will be given by

P (x | z1) = αP1(z1 | x)P (x)
= α× (0.45, 0.45, 0.1)⊗ (0.45, 0.45, 0.1)
= (0.488, 0.488, 0.024).

(where the notation ⊗ denotes an element-wise product).
Notice that the result of this integration process is to increase the probability in both

type 1 and type 2 targets at the expense of the no-target hypothesis. Clearly, although
this sensor is good at detecting targets, it is not good at distinguishing between targets of
different types.

2.2.2 Data Fusion using Bayes Theorem

It is possible to apply Bayes theorem directly to the integration of observations from
several different sources. Consider the set of observations

Zn
�
= {z1 ∈ Z1, · · · , zn ∈ Zn} .

It is desired to use this information to construct a posterior distribution P (x | Zn)
describing the relative likelihoods of the various values of the state of interest x ∈ X
given the information obtained. In principle, Bayes theorem can be directly employed to
compute this distribution function from

P (x | Zn) =
P (Zn | x)P (x)

P (Zn)

=
P (z1, · · · , zn | x)P (x)

P (z1, · · · , zn) .
(16)

In practice it would be difficult to do this because it requires that the joint distribution
P (z1, · · · , zn | x) is known completely; that is, the joint distribution of all possible combi-
nations of observations conditioned on the underlying state2. However, it is usually quite
reasonable to assume that given the true state x ∈ X , the information obtained from the
ith information source is independent of the information obtained from other sources. The
validity of this assumption is discussed below. With this assumption, Equation 8 implies
that

P (zi | x, z1, · · · , zi−1, zi+1, · · · , zn) = P (zi | x), (17)

and from Equation 10 this gives

P (z1, · · · , zn | x) = P (z1 | x) · · ·P (zn | x) =
n∏
i=1

P (zi | x). (18)

2In Example 2 above, this would require the construction of likelihood matrix of size mn where m is
the number of possible outcomes for each observation and where n is the number of observations made.

Multi-Sensor Data Fusion 15

Substituting this back into Equation 16 gives

P (x | Zn) = [P (Zn)]−1P (x)
n∏
i=1

P (zi | x). (19)

Thus the updated likelihoods in the state, the posterior distribution on x, is simply propor-
tional to the product of prior likelihood and individual likelihoods from each information
source. The marginal distribution P (Zn) simply acts as a normalising constant. Equa-
tion 19 provides a simple and direct mechanism for computing the relative likelihood in
different values of a state from any number of observations or other pieces of information.

Equation 19 is known as the independent likelihood pool [8]. In practice, the conditional
probabilities P (zi | x) are stored a priori as functions of both zi and x. When an observa-
tion sequence Zn = {z1, z2, · · · , zn} is made, the observed values are instantiated in this
probability distribution and likelihood functions Λi(x) are constructed, which are func-
tions only of the unknown state x. The product of these likelihood functions with the prior
information P (x), appropriately normalised, provides a posterior distribution P (x | Zn),
which is a function of x only for a specific observation sequence {z1, z2, · · · , zn} . Figure 1
shows the structure of the independent likelihood pool in a centralised architecture.

The effectiveness of Equation 19 relies crucially on the assumption that the information
obtained from different information sources is independent when conditioned on the true
underlying state of the world; this is defined in Equation 17. It would be right to question
if this assumption is reasonable. It is clearly unreasonable to state that the information
obtained is unconditionally independent;

P (z1, · · · , zn) 	= P (z1) · · ·P (zn), (20)

because each piece of information depends on a common underlying state x ∈ X . If the
information obtained were independent of this state, and therefore unconditionally inde-
pendent of other information sources, there would be little value in using it to improve
knowledge of the state. It is precisely because the information obtained is unconditionally
dependent on the underlying state that it has value as an information source. Conversely,
it is generally quite reasonable to assume that the underlying state is the only thing in
common between information sources and so once the state has been specified it is corre-
spondingly reasonable to assume that the information gathered is conditionally indepen-
dent given this state. There are sometimes exceptions to this general rule, particularly
when the action of sensing has a non-trivial effect on the environment. More complex
dependencies are considered in Section 2.2.4

Example 3
Consider again Example 2 of the discrete observation of target type. A second sensor is

obtained which makes the same three observations as the first sensor, but whose likelihood

Multi-Sensor Data Fusion 16

z1

znz i

Central
Processor

Λ 1(x) Λ i(x) Λ n(x)

P(x)

P(zn|x)

P(x|Zn)=C P(x) Π Λ i(x)
n

i=1

P(z i|x)P(z1|x)

X

Figure 1: The centralised implementation of the independent likelihood pool as a method
for combining information from a number of sources. The central processor maintains a
model of each sensor i in terms of a conditional probability distribution Pi(zi | x), together
with any prior probabilistic knowledge P (x). On arrival of a measurement set Zn, each
sensor model is instantiated with the associated observation to form a likelihood Λi(x).
The normalised product of these yields the posterior distribution P (x | Zn).

matrix P2(z2 | x) is described by

z1 z2 z3

x1 0.45 0.1 0.45
x2 0.1 0.45 0.45
x3 0.45 0.45 0.1

Whereas the first sensor was good at detecting targets but not at distinguishing between
different target types, this second sensor has poor overall detection probabilities but good
target discrimination capabilities. So for example, with a uniform prior, if we observe
z = z1 with this second sensor, the posterior distribution on possible true states will be
given by P (x | z1) = (0.45, 0.1, 0.45) (i.e the first column of the likelihood matrix) .

It clearly makes sense to combine the information from both sensors to provide a
system with both good detection and good discrimination capabilities. From Equation 19,
the product of the two likelihood functions gives us an overall likelihood function for the
combined system as P12(z1, z2 | x) = P1(z1 | x)P2(z2 | x). Thus if we observe z1 = z1

Multi-Sensor Data Fusion 17

using the first sensor, and z2 = z1 with the second sensor (assuming a uniform prior),
then the posterior likelihood in x is given by

P (x | z1, z1) = αP12(z1, z1 | x)
= αP1(z1 | x)P2(z1 | x)
= α× (0.45, 0.45, 0.1)⊗ (0.45, 0.1, 0.45)
= (0.6924, 0.1538, 0.1538)

Comparing this to taking two observations of z1 with sensor 1 (in which the resulting
posterior was (0.488, 0.488, 0.024)) it can be seen that sensor 2 adds substantial target
discrimination power at the cost of a slight loss of detection performance for the same
number of observations.

Repeating this calculation for each z1, z2 observation pair, results in the combined
likelihood matrix

z1 = z1

z2 = z1 z2 z3

x1 0.6924 0.1538 0.4880
x2 0.1538 0.6924 0.4880
x3 0.1538 0.1538 0.0240

z1 = z2

z2 = z1 z2 z3

x1 0.6924 0.1538 0.4880
x2 0.1538 0.6924 0.4880
x3 0.1538 0.1538 0.0240

z1 = z3

z2 = z1 z2 z3

x1 0.1084 0.0241 0.2647
x2 0.0241 0.1084 0.2647
x3 0.8675 0.8675 0.4706

The combined sensor provides substantial improvements in overall system performance3.
If for example we observe target 1 with the first sensor (the array block z1 = z1) and again

3Note that summing over any column still come to 1. In practical implementations, it is often sufficient
to encode relative likelihoods of different events and to normalize only when computing the posterior
distribution.

Multi-Sensor Data Fusion 18

observe target 1 with the second sensor (the first column of this block), then the posterior
distribution in the three hypotheses is

P (x | z1, z2) = (0.692, 0.154, 0.154),

and so target 1 is clearly the most probable target. If however, we observe a type 2
target with the second sensor after having observed a type 1 target with the first sensor,
a similar calculation gives the posterior as (0.154, 0.692, 0.154), that is target type 2 has
high probability. This is because although sensor 1 observed a type 1 target, the likelihood
function for sensor 1 tells us that it is poor at distinguishing between target types and so
sensor 2 information is used for this purpose. If now we observe no target with sensor 2,
having detected target type 1 with the first sensor, the posterior given both observations
is given by (0.488, 0.488, 0.024). That is we still believe that there is a target (because
we know sensor 1 is much better at target detection than sensor 2), but we still have no
idea which of target 1 or 2 it is as sensor 2 has been unable to make a valid detection.
The analysis for sensor 1 detecting target 2 is identical to that for detection of target 1.
Finally, if sensor 1 gets no detection, but sensor 2 detects target type 1, then the posterior
likelihood is given by (0.108, 0.024, 0.868). That is we still believe there is no target because
we know sensor 1 is better at providing this information (and perversely, sensor 2 confirms
this even though it has detected target type 1).

Practically, the joint likelihood matrix is never constructed (it is easy to see why here,
with n = 3 sensors, and m = 3 possible observations and k = 3 possible outcomes, the
dimension of the joint likelihood matrix has k ×mn = 27 entries.) Rather, the likelihood
matrix is constructed for each sensor and these are only combined when instantiated with
an observation. Storage then reduces to n arrays of dimension k × m, at the cost of a
k dimensional vector multiply of the instantiated likelihood functions. This is clearly a
major saving in storage and complexity and underlines the importance of the conditional
independence assumption to reduction in computational complexity.

2.2.3 Recursive Bayes Updating

The integration of information using Equation 19 would, in principle, require that all past
information is remembered and, on arrival of new information in the form P (zk | x), that
the total likelihood be recomputed based on all information gathered up to this time.
However, Bayes theorem, in the form of Equation 19, also lends itself to the incremental
or recursive addition of new information in determining a revised posterior distribution

on the state. With Zk
�
= {zk,Zk−1}

P (x,Zk) = P (x | Zk)P (Zk) (21)

= P (zk,Z
k−1 | x)P (x)

= P (zk | x)P (Zk−1 | x)P (x), (22)

Multi-Sensor Data Fusion 19

where it is assumed conditional independence of the observation sequence. Equating both
sides of this expansion gives

P (x | Zk)P (Zk) = P (zk | x)P (Zk−1 | x)P (x) (23)

= P (zk | x)P (x | Zk−1)P (Zk−1). (24)

Noting that P (Zk)/P (Zk−1) = P (zk | Zk−1) and rearranging gives

P (x | Zk) = P (zk | x)P (x | Zk−1)

P (zk | Zk−1)
. (25)

The advantage of Equation 25 is that we need compute and store only the posterior
likelihood P (x | Zk−1) which contains a complete summary of all past information. When
the next piece of information P (zk | x) arrives, the previous posterior takes on the role
of the current prior and the product of the two becomes, when normalised, the new
posterior. Equation 25 thus provides a significant improvement in computational and
memory requirements over Equation 19.

Example 4
An important example of the recursive application of Bayes theorem is in the calcu-

lation of the posterior distribution of a scalar x under the assumption that the likelihood
function for the observations given the true state is Gaussian with known variance σ2;

P (zk | x) = 1√
2πσ2

exp

(
−1

2

(zk − x)2

σ2

)
.

If we assume that the posterior distribution in x after taking the first k − 1 observations
is also Gaussian with mean xk−1 and variance σ2

k−1,

P (x | Zk−1) =
1√

2πσ2
k−1

exp

(
−1

2

(xk−1 − x)2

σ2
k−1

)
.

then the posterior distribution in x after the first k observations is given by

P (x | Zk) = K
1√
2πσ2

exp

(
−1

2

(zk − x)2

σ2

)
.

1√
2πσ2

k−1

exp

(
−1

2

(xk−1 − x)2

σ2
k−1

)

(26)

=
1√
2πσ2

k

exp

(
−1

2

(xk − x)2

σ2
k

)
(27)

where K is a constant independent of x chosen to ensure that the posterior is appropriately
normalized, and xk and σ2

k are given by

xk =
σ2
k−1

σ2
k−1 + σ2

zk +
σ2

σ2
k−1 + σ2

xk−1, (28)

Multi-Sensor Data Fusion 20

and

σ2
k =

σ2σ2
k−1

σ2 + σ2
k−1

(29)

The most important point to note about the posterior is that it too is a Gaussian; the
product of two Gaussian distributions is itself Gaussian. Distributions that have this sym-
metry property are known as conjugate distributions. Given this property, it is clearly
not necessary to go through the process of multiplying distributions together as it is suffi-
cient to simply compute the new mean and variance recursively from Equations 28 and 29
as these completely characterize the associated Gaussian distribution. With these simple
recursion equations any number of observations may be fused in a simple manner.

Example 5
Quite general prior and likelihood distributions can be handled by direct application of

Bayes Theorem. Consider the problem in which we are required to determine the location
of a target in a defined area. Figure 2(a) shows a general prior probability distribution de-
fined on the search area. The distribution is simply defined as a probability value P (xi, yj)
on a grid point at location xi, yj, of area dxi, dyj. The only constraints placed on this
distribution are that

P (xi, yj) > 0, ∀xi, yj
and that ∑

i

∑
j

P (xi, xj)dxidyi = 1

(which can easily be satisfied by appropriate normalisation.)
A sensor (sensor 1) now takes observations of the target from a sensor located at

x = 15, y = 0km. The likelihood function generated from this sensor following an ob-
servation z1 is shown in Figure 2(b). This likelihood P1(z1 | xi,yj) again consists of a
general location probability defined on the xi yj grid. The likelihood shows that the bearing
resolution of the sensor is high, whereas it has almost no range accuracy (the likelihood is
long and thin with probability mass concentrated on a line running from sensor to target).
The posterior distribution having made this first observation is shown in Figure 2(c) and
is computed from the point-wise product of prior and likelihood,

P (xi,yj | z1) = α× P1(z1 | xi,yj)⊗ P (xi,yj),

where α is simply a normalising constant. It can be seen that the distribution defining
target location is now approximately restrained to a line along the detected bearing. Figure
2(d) shows the posterior P (xi,yj | z1, z2) following a second observation z2 by the same
sensor. This is again computed by point-wise multiplication of the likelihood P1(z2 | xi,yj)
with the new prior (the posterior from the previous observation P (xi,yj | z1)). It can be
seen that there is little improvement in location density following this second observation;
this is to be expected as there is still little range data available.

Multi-Sensor Data Fusion 21

0
10

20
30

40
50

0

10

20

30

40

50

0

2

4

6

x 10
−3

X Range (km)

Prior Location Density

Y Range (km)

(a)

0
10

20
30

40
50

0

10

20

30

40

50

0

0.01

0.02

0.03

0.04

X Range (km)

Location likelihood from Sensor 1

Y Range (km)

(b)

0
10

20
30

40
50

0

10

20

30

40

50

0

0.02

0.04

0.06

X Range (km)

Posterior location density after one observation from sensor 1

Y Range (km)

(c)

0
10

20
30

40
50

0

10

20

30

40

50

0

0.02

0.04

0.06

0.08

0.1

X Range (km)

Posterior location density after two observations from sensor 1

Y Range (km)

(d)

0
10

20
30

40
50

0

10

20

30

40

50

0

0.01

0.02

0.03

0.04

X Range (km)

Location likelihood from Sensor 2

Y Range (km)

(e)

0
10

20
30

40
50

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

X Range (km)

Posterior location density following update from sensor 2

Y Range (km)

(f)

Figure 2: Generalised Bayes Theorem. The figures show plots of two-dimensional distri-
bution functions defined on a grid of x and y points: (a) Prior distribution; (b) likelihood
function for first sensor; (c) posterior after one application of Bayes Theorem; (d) posterior
after two applications; (e) likelihood function for second sensor; (f) final posterior.

Multi-Sensor Data Fusion 22

A second sensor (sensor 2) now takes observations of the target from a location x =
50, y = 20. Figure 2(e) shows the target likelihood P2(z3 | xi,yj) following an observation
z3 by this sensor. It can be seen that this sensor (like sensor 1), has high bearing resolution,
but almost no range resolution. However, because the sensor is located at a different site,
we would expect that the combination of bearing information from the two sensors would
provide accurate location data. Indeed, following point-wise multiplication of the second
sensor likelihood with the new prior (the posterior P (xi,yj | z1, z2) from the previous two
observations of sensor 1), we obtain the posterior P (xi,yj | z1, z2, z3) shown in Figure
2(f) which shows all probability mass highly concentrated around a single target location.

2.2.4 Data Dependency and Bayes Networks

Bayes Theorem provides a general method for reasoning about probabilities and fusing
information. As has been seen, in complex problems involving many sources of informa-
tion, it is usual to assume conditional independence of observation information (that is,
the observations are conditionally independent given the underlying state). This is neces-
sary to avoid the problem of specifying very large numbers of likelihoods associated with
each permutation of observations (if there are p possible outcomes for each observation
then the specification of the joint likelihood P (z1, · · · , zn | x) requires the specification of
pn probabilities, whereas if conditional independence is assumed, we need only specify n
likelihoods Pi(zi | x), or a total of p× n probabilities).

In many situations it is not possible to simply assume conditional independence of
observations, and indeed there is often a clear dependency between sources of information
(when each source depends on some underlying assumption or report from a third source,
for example). In such cases, it is easy to be swamped by the complexity of the various
dependencies between information reports. However, even in such cases, it is still possible
to make good use of the rules of conditioning to exploit any independence that may exist.
Recall that in general, without any assumptions of independence, the joint distribution
on any set of random variables xi may be expanded using the chain-rule of conditional
probabilities as

P (x1,x2, · · · ,xn) = P (x1 | x2, · · · ,xn) · · ·P (xn−1 | xn)P (xn),

where the expansion may be taken in any convenient order. If, all variables depend on all
other variables, then there is little to be gained by this expansion. If however a variable xj,
for example, depends directly on only one or a few other variables xh, then the appropriate
expansion can substantially reduce the number of probabilities that need be stored,

P (xj,xh, · · · ,xn) = P (xj | xh)P (xh · · ·xn).

Such direct conditional independencies are common if only because the acquisition of
information is causal. For example, information about a state xk+1 at time k + 1 will
depend on all information obtained up to time k+1. However, if all past information up to

Multi-Sensor Data Fusion 23

time k is summarised in the variable xk, then the new variable xk+1 becomes conditionally
independent of all past information (up to k), once xk is specified (essentially xk tells us
all we need to know about past observations and so re-stating these observations adds no
more knowledge; this is the well-known Markov property).

The issue of dependency between variables is often best expressed graphically, in
terms of a network describing relationships. Here, the relations between different states
are explicitly represented in a graph structure, with the vertices of the graph representing
individual states and their probability distributions, and the edges of the graph represent-
ing conditional probabilities of adjacent nodes. In the discrete case, the graph requires
the specification of a conditional probability matrix of dimension ni × nj for each edge
relating two states xi and xj which can take on respectively ni and nj distinct values.
From this a detailed computational scheme can be developed for propagating probabilistic
information through the graph. These networks are referred to as Bayes Networks, Be-
lief Networks or Probabilistic Networks. The landmark book by Pearl [35], describes the
construction and use of these dependency networks in probabilistic reasoning. A detailed
discussion of Bayes networks is beyond the scope of this course. The following example
provides a brief introduction.

Example 6

z4

z1
z2 z3

P(x1|z1,z2) P(x2|z3)

P(y1|x1,x2) P(y2|z4)

P(t|y1,y2)

x1 x2

Figure 3: A Simple Bayesian Network (see text for details).

It is required to determine a target identity t. Target identity probabilities are obtained
from two independent sources y1 and y2. The first source bases target reporting on two
sensor sources x1 and x2, the first of these two sensors employing a pair of dependent
observations z1, z2, and the second from a single observation z3. The second source y2

Multi-Sensor Data Fusion 24

bases its report directly on an observation z4. The dependency structure is shown in the
belief network of Figure 3. The conditional probabilities are specified at each of the nodes
in the network (tree) structure. It is possible to specify these at the arcs and use the nodes
as places where total probabilities (posteriors)are computed.

The structure shown in the figure simply exposes the dependencies between variables
and is a convenient way of describing, computationally, the role of each likelihood. The
tree structure shown is common in causal processes. It is sometimes the case that reports
are based on a common report or observation, in which case the tree becomes a general
network structure. These cases are difficult to deal with other than explicitly computing
the resulting dependence between report variables.

2.2.5 Distributed Data Fusion with Bayes Theorem

......

X

z1 znz i

Fusion Centre

P(z i|x)

Sensor i

P(z1|x)

Sensor 1

P(zn|x)

Sensor n

Λ 1(x) Λ i(x) Λ n(x)

P(x|Zn)=C P(x) Π Λ i(x)
n

i=1

P(x)

Figure 4: The distributed implementation of the independent likelihood pool. Each sensor
maintains it’s own model in the form of a conditional probability distribution Pi(zi | x).
On arrival of a measurement, zi, the sensor model is instantiated with the associated
observation to form a likelihood Λi(x). This is transmitted to a central fusion centre were
the normalised product of likelihoods and prior yields the posterior distribution P (x | Zn).

Providing the essential rules of conditional probabilities and Bayes Theorem are fol-
lowed, it is not difficult to develop methods for distributing the data fusion problem.
Figure 4 shows one such distributed architecture. In this case, the sensor models, in the

Multi-Sensor Data Fusion 25

form of likelihood functions, are maintained locally at each sensor site. When an obser-
vation is made, these likelihoods are instantiated to provide a likelihood function Λi(x)
describing a probability distribution over the true state of the world. Importantly, it is
this likelihood that is transmitted to the fusion centre. Thus, the sensor talks to the cen-
tre in terms of the underlying state of the world, and not in terms of the raw observation
(as is the case in Figure 1). This has the advantage that each sensor is ‘modular’ and
talks in a common ‘state’ language. However, it has the disadvantage that a complete
likelihood, rather than a single observation, must be communicated. The central fusion
center simply computes the normalised product of communicated likelihoods and prior to
yield a posterior distribution.

......

X

z1 zn

Fusion Centre

P(z1|x)

Sensor 1

P(xk|z1)

P1(xk|z)

P(zn|x)

Sensor n

P(xk|zn)

Pn(xk|z)P(xk|Z
n)

P(xk|Z
n)=C P(xk-1) Π

n

i=1

Pi(xk|z)

P(xk-1|Zn)

k k-1

Figure 5: A distributed implementation of the independent opinion pool in which each
sensor maintains both it’s own model and also computes a local posterior. The complete
posterior is made available to all sensors and so they become, in some sense, autonomous.
The figure shows Bayes Theorem in a recursive form.

A second approach to distributed data fusion using Bayes Theorem is shown in Figure
5. In this case, each sensor computes a likelihood but then combines this, locally, with
the prior from the previous time-step, so producing a local posterior distribution on the
state. This is then communicated to the central fusion centre. The fusion centre then
recovers the new observation information by dividing each posterior by the communicated
(global) prior and then taking a normalised product to produce a new global posterior.
This posterior is then communicated back to the sensors and the cycle repeats in recursive
form. The advantage of this structure is that global information, in state form, is made

Multi-Sensor Data Fusion 26

available at each local sensor site. This makes each sensor, in some sense, autonomous.
The disadvantage of this architecture is the need to communicate state distributions both
to and from the central fusion center. Distributed data fusion methods will be discussed
in detail later in this course.

z

P(x -
k+1 |Zk)

P(z|x)

P(x -|x+)

P(x+
k|Z

k)

P(x -
k|Z

k-1)k k-1

Figure 6: A Bayesian formulation of the classical feedback aided navigation system, fusing
rate data with external observation information (see text for details).

Almost any data fusion structure is possible as long as the essential rules of conditional
probability and Bayes theorem are followed. Figure 6 shows a Bayes filter in feedback
form. The filter outputs state predictions in the form of a pdf P (x−

k | Zk−1) of the state
x−
k at time k given all observations Zk−1 up to time k − 1. This is essentially a prior

distribution and provides a distribution on the state at time k prior to an observation being
made at this time (and thus is marked with a ‘−’ superscript to denote ‘before update’).
The prior is fed-back and multiplied by the likelihood Λ(x) associated with an incoming
observation. This multiplication essentially implements Bayes Theorem to produce the
posterior P (x+

k | Zk), where the superscript ‘+’ denotes ‘after observation’. The likelihood
itself is generated from the sensor model P (z | x) in the normal manner. The posterior
is fed-back and multiplied by another distribution P (x− | x+) which essentially predicts
the future state on the basis of current state. Multiplying this distribution by the fed-
back posterior generates a new prior. The cycle, after delay, then repeats. This structure
is a Bayesian implementation of the classical feed-back aided navigation system. The
state prediction distribution P (x− | x+) has the same role as an inertial system, using
integrated rate information to generate predictions of state. The feedback loop is corrected
by reference to some external observation (the aiding sensor) modeled by the likelihood
function P (z | x). Thus rate and external information are fused in a predictor-corrector
arrangement.

2.2.6 Data Fusion with Log-Likelihoods

In data fusion problems and in Bayes networks, it is often easier to work with the log of a
probability, rather than the probability itself. These ‘log-likelihoods’ are more convenient
computationally than probabilities as additions and subtractions rather than multiplica-
tions and divisions are employed in fusing probability information. Further, log-likelihoods
are also more closely related to formal definitions of information.

Multi-Sensor Data Fusion 27

The log-likelihood or conditional log-likelihood are defined as;

l(x)
�
= logP (x), l(x | y) �

= logP (x | y). (30)

It is clear that the log-likelihood is always less than zero and is only equal to zero when
all probability mass is assigned to a single value of x; l(x) ≤ 0. The log-likelihood itself
can sometimes be a useful and efficient means of implementing probability calculations.
For example, taking logs of both sides of Equation 12 we can rewrite Bayes theorem in
terms of log-likelihood as

l(x | z) = l(z | x) + l(x)− l(z). (31)

Example 7
Consider again the two-sensor discrete target identification example (Example 3). The

log-likelihood matrix for the first sensor (using natural logs) is

z1 z2 z3

x1 −0.799 −2.303 −0.799
x2 −2.303 −0.799 −0.799
x3 −0.799 −0.799 −2.303

and for the second
z1 z2 z3

x1 −0.799 −2.303 −0.799
x2 −2.303 −0.799 −0.799
x3 −0.799 −0.799 −2.303

The posterior likelihood (given a uniform prior) following observation of target 1 by sensor
1 and target 1 by sensor 2 is the sum of the first columns of each of the likelihood matrices

l(x | z1, z1) = l1(z1 | x) + l2(z1 | x) + C
= (−0.7985,−0.7985,−2.3026) + (−0.7985,−2.3026,−0.7985) + C
= (−1.5970,−3.1011,−3.1011) + C
= (−0.3680,−1.8721,−1.8721)

where the constant C = 1.229 is found through normalisation (which in this case requires
that the anti-logs sum to one). The first thing to note is that the computation is obviously
simpler than in the case of obtaining products of probability distributions, particularly as
the dimension of the state vectors increase. The second thing is that the normalising
constant is additive. Thus, normalisation need only occur if probabilities are required,
otherwise, the relative magnitude of the log-likelihoods are sufficient to indicate relative
likelihoods (the smaller the log-likelihood, the nearer the probability is to one).

Multi-Sensor Data Fusion 28

Example 8
A second interesting example of log-likelihoods is in the case where prior and sensor

likelihoods are Gaussian as in Example 4. Taking logs of Equation 27, gives

l(x | Zk) = −1

2

(xk − x)2

σ2
k

= −1

2

(zk − x)2

σ2
− 1

2

(xk−1 − x)2

σ2
k−1

+ C. (32)

as before, completing squares gives

xk =
σ2
k−1

σ2
k−1 + σ2

zk +
σ2

σ2
k−1 + σ2

xk−1,

and

σ2
k =

σ2σ2
k−1

σ2 + σ2
k−1

,

thus the log-likelihood is quadratic in x; for each value of x, a log-likelihood is specified as

−1
2

(xk−x)2

σ2
k

, modulo addition of a constant C.

1

N

2

Σ

log P(x|{Zk-1})

log P(x|{Zk})

log P(z 1(k)| x)

log P(z N(k)| x)

log P(z 2(k)| x)

z1(k)

z
2
(k)

zN(k)

k k-1

Sensor

Central Processor Sensor Models

Figure 7: A log-likelihood implementation of a fully centralised data fusion architecture.

Log-likelihoods are a convenient way of implementing distributed data fusion archi-
tectures. Figure 7 shows a log-likelihood implementation of a fully centralised data fusion
architecture (equivalent to Figure 1) in which observations are transmitted directly to
a central fusion centre which maintains the sensor likelihood functions. Fusion of infor-
mation is simply a matter of summing log-likelihoods. Figure 8 shows a log-likelihood
implementation of the independent likelihood architecture (equivalent to Figure 4). In
this case, each sensor maintains its own model and communicates log-likelihoods to a cen-
tral processor. The fusion of log-likelihoods is again simply a summation. Figure 9 shows
a log-likelihood implementation of the independent opinion pool (equivalent to Figure 5)

Multi-Sensor Data Fusion 29

1

N

2

Σ

log P(x|{Zk-1 })

log P(x|{Zk})

log P(z
1
(k)| x)

log P(z N(k)| x)

log P(z
2
(k)| x)

z1(k)

z2(k)

zN(k)

k k-1

Sensor

Central Processor

Sensor Models

Figure 8: A log-likelihood implementation of the independent likelihood pool architecture.

Central Processor

Σ

log P(z
1
(k)| x)

z1(k)

k k-1

log P(x|{Z k}1)

Sensor 1

Σ

log P(z
N
(k)| x)

zN(k)

k k-1

log P(x|{Z k}N)

Sensor N

Σ

log P(z
2
(k)| x)

z2(k)

k k-1

log P(x|{Z k}2)

Sensor 2

Σlog P(x|{Z k})

Figure 9: A log-likelihood implementation of the independent opinion pool architecture.

Multi-Sensor Data Fusion 30

in which each local sensor maintains a posterior likelihood which is communicate to the
central fusion center. In all cases, the log-likelihood implementation involves only simple
addition and subtraction in the form of classical feed-back loops. These can be easily
manipulated to yield a wide variety of different architectures.

2.3 Information Measures

Probabilities and log-likelihoods are defined on states or observations. It is often valuable
to also measure the amount of information contained in a given probability distribution.
Formally, information is a measure of the compactness of a distribution; logically if a
probability distribution is spread evenly across many states, then it’s information content
is low, and conversely, if a probability distribution is highly peaked on a few states, then
it’s information content is high. Information is thus a function of the distribution, rather
than the underlying state. Information measures play an important role in designing
and managing data fusion systems. Two probabilistic measures of information are of
particular value in data fusion problems; the Shannon information (or entropy) and the
Fisher information.

2.3.1 Entropic Information

The entropy or Shannon information4 HP (x) associated with a probability distribution
P (x), defined on a random variable x, is defined as the expected value of minus the
log-likelihood. For continuous-valued random variables this is given by (see [34] Chapter
15)

HP (x)
�
= − E{logP (x)} = −

∫ ∞

−∞
P (x) logP (x)dx (33)

and for discrete random variables

HP (x)
�
= − E{logP (x)} = − ∑

x∈X
P (x) logP (x). (34)

Note that following convention, we have used x as an argument for HP (·) even though
the integral or sum is taken over values of x so HP (·) is not strictly a function of x but
is rather a function of the distribution P (·).

The entropy HP (·) measures the compactness of a density P (·). It achieves a minimum
of zero when all probability mass is assigned to a single value of x; this agrees with an
intuitive notion of a ‘most informative’ distribution. Conversely, when probability mass
is uniformly distributed over states, the entropy in the distribution is a maximum; this
too agrees with the idea of least informative (maximum entropy) distributions. Maximum
entropy distributions are often used as prior distributions when no useful prior information
is available. For example, if the random variable x can take on at most n discrete values

4Properly, information should be defined as the negative of entropy; when entropy is a minimum,
information is a maximum. As is usual, we shall ignore this distinction and usually talk about entropy
minimization when we really mean information maximisation.

Multi-Sensor Data Fusion 31

in the set X , then the least informative (maximum entropy) distribution on x is one
which assigns a uniform probability 1/n to each value. This distribution will clearly have
an entropy of log n. When x is continuous-valued, the least informative distribution is
also uniform. However, if the range of x is continuous then the distribution is technically
not well defined as probability mass must be assigned equally over an infinite range. If
the information is to be used as a prior in Bayes rule this technical issue is often not a
problem as P (x) can be set to any convenient constant value over the whole range of
x;5 P (x) = 1,∀x, for example, without affecting the values computed for the posterior
P (x | z).

It can be shown that, up to a constant factor and under quite general conditions of
preference ordering and preference boundedness, this definition of entropy is the only rea-
sonable definition of ‘informativenss’. An excellent proof of this quite remarkable result
(first shown by Shannon) can be found in [14]. The implications of this in data fusion
problems are many-fold. In particular it argues that entropy is a uniquely appropri-
ate measure for evaluating and modeling information sources described by probabilistic
models. Such ideas will be examined in later sections on system performance measures,
organization and management.

2.3.2 Conditional Entropy

The basic idea of entropy can logically be extended to include conditional entropy; for
continuous-valued random variables

HP (x | zj) �
= − E{logP (x | zj)} = −

∫ ∞

−∞
P (x | zj) logP (x | zj)dx (35)

and for discrete random variables

HP (x | zj) �
= − E{logP (x | zj)} = −∑

x
P (x | zj) logP (x | zj). (36)

This should be interpreted as the information (entropy) about the state x contained in
the distribution P (· | z) following an observation zj. Note that HP (x | z) is still a function
of z, and thus depends on the observation made.

The mean conditional entropy, H(x | z), taken over all possible values of z, is given
by

H(x | z) �
= E{H(x | z)}
=

∫ +∞

−∞
P (z)H(x | z)dz

= −
∫ +∞

−∞

∫ +∞

−∞
P (z)P (x | z) logP (x | z)dxdz

= −
∫ +∞

−∞

∫ +∞

−∞
P (x, z) logP (x | z)dxdz, (37)

5A distribution such as this which clearly violates the constraint that
∫ +∞
−∞ P (x)dx = 1 is termed an

improper distribution, or in this case an improper prior.

Multi-Sensor Data Fusion 32

for continuous random variables and

H(x | z) �
=

∑
z
H(x | z)P (z)

= −∑
z

∑
x
P (x, z) logP (x | z). (38)

for discrete random variables. Note that H(x | z) is not a function of either x or z. It
is a essentially a measure of the information that will be obtained (on the average) by
making an observation before the value of the observation is known.

Example 9
Recall example 3 of two sensors observing a discrete state; type 1 target, type 2 target,

and no target. Consider first sensor 1. Assuming a uniform prior distribution, the infor-
mation (entropy) obtained about the state given that an observation z = z1 has been made
(first column of the likelihood matrix for sensor 1), is simply given by (using natural logs)

HP1(x | z1) = −
3∑
i=1

P1(xi | z1) logP1(xi | z1) = 0.9489. (39)

For the first sensor, the conditional entropy for each possible observation is

HP1(x | z) = −
3∑
i=1

P1(xi | z) logP1(xi | z) = (0.9489, 0.9489, 0.6390). (40)

Thus, observing either z1 or z2 is equally as informative (indeed it provides exactly the
same information as sensor 1 can not distinguish between targets), but observing z3 (no
target) is most informative because probability mass is relatively concentrated on the no
target state. Successive observation of the z1 or z2 with sensor 1, yields a posterior den-
sity on x of (0.5, 0.5, 0.0) which has an information value (entropy) of log(2) = 0.6931.
Successive observation of z3 yields a posterior of (0.0, 0.0, 1.0) which has an entropy of
zero (log(1), the minimum entropy).

Similar calculations for the likelihood matrix of sensor 2 give the conditional entropy
for each observation as HP2(x | z) = (0.948, 0.948, 0.948); that is any observation is equally
as informative. This is because, in the likelihood function for sensor 2, the relative distri-
bution of probability mass is the same for any observation, even though the mass itself is
placed on different states. Successive observation of any of z1, z2, or z3 results in probabil-
ity being assigned to only two of three states and thus for the posterior entropy to achieve
a minimum of log(2) = 0.6331. Note that, as with sensor 1 observing z1 or z2, entropy
achieves a lower bound not equal to zero.

To find the mean conditional entropy, the joint distribution P (x, y) is required. This

Multi-Sensor Data Fusion 33

is computed from
P (x, z) = P (z | x)P (x)

=

 0.45 0.45 0.1
0.45 0.45 0.1
0.1 0.1 0.8

⊗

 1/31/3
1/3

=

 0.1500 0.1500 0.0333
0.1500 0.1500 0.0333
0.0333 0.0333 0.2667

 ,

(Note the sum of elements is equal to 1). Substituting these values into Equation 38 and
summing over both x and z gives the mean conditional entropy as 0.8456.

Example 10
It is of considerable future interest to provide a measure for the entropy of a Gaussian

(normal) distribution. The pdf for an n-dimensional Gaussian is given by:

P (x) = N(x,P) = | 2πP |−1/2 exp
[
−1

2
(x− x)TP−1(x− x)

]
, (41)

where x is the mean of the distribution and P the covariance, and where | · | denotes
matrix determinant. The entropy for this distribution is obtained as follows

HP (x) = E{logP (x)}
= −1

2
E{(x− x)TP−1(x− x) + log[(2π)n| P |]}

= −1

2
E{∑ij(xi − xi)P

−1
ij (xj − xj)} − 1

2
log[(2π)n| P |]

= −1

2

∑
ij

E{(xj − xj)(xi − xi)} P−1
ij −

1

2
log[(2π)n| P |]

= −1

2

∑
j

∑
i

PjiP
−1
ij −

1

2
log[(2π)n| P |]

= −1

2

∑
j

(PP−1)jj − 1

2
log[(2π)n| P |]

= −1

2

∑
j

1jj − 1

2
log[(2π)n| P |]

= −n

2
− 1

2
log[(2π)n| P |]

= −1

2
log[(2πe)n| P |]. (42)

Thus the entropy of a Gaussian distribution is defined only by the state vector length n
and the covariance P . The entropy is proportional to the log of the determinant of the

Multi-Sensor Data Fusion 34

covariance. The determinant of a matrix is a volume measure (recall that the determinant
is the product of the eigenvalues of a matrix and the eigenvalues define axis lengths in n
space). Consequently, the entropy is a measure of the volume enclosed by the covariance
matrix and consequently the compactness of the probability distribution.

If the Gaussian is scalar with variance σ2, then the entropy is simply given by

H(x) = log σ
√
2πe

For a two random variables x and z which are jointly Gaussian, with correlation ρzx =
σxz√
σ2

xxσ
2
zz

, the conditional entropy is given by

H(x | z) = log σxx
√
2πe(1− ρ2

xz).

Thus when the variables are uncorrelated, ρxz = 0, the conditional entropy is just the
entropy in P (x), H(x | z) = H(x), as z provides no additional information about x.
Conversely, when the variables are highly correlated ρxz → 1, the conditional entropy goes
to zero as complete knowledge of z implies complete knowledge of x.

2.3.3 Mutual Information

With these definitions of entropy and conditional entropy, it is possible to write an ‘infor-
mation form’ of Bayes theorem. Taking expectations of Equation 31 with respect to both
the state x and the observation z gives (we will now drop the suffix P when the context
of the distribution is obvious)

H(x | z) = H(z | x) +H(x)−H(z). (43)

Simply, this describes the change in entropy or information following an observation from
a sensor modeled by the likelihood P (z | x).

Being able to describe changes in entropy leads naturally to asking an important
question; what is the most informative observation I can make? This question may be
answered through the idea of mutual information.

The mutual information I(x, z) obtained about a random variable x with respect to
a second random variable z is now defined as

I(x, z) = −E{log P (x, z)
P (x)P (z)

}

= −E{log P (x | z)
P (x)

}

= −E{log P (z | x)
P (z)

} (44)

Mutual information is an a priori measure of the information to be gained through ob-
servation. It is a function of the ratio of the density P (x | z) following an observation to

Multi-Sensor Data Fusion 35

the prior density P (x). The expectation is taken over z and x, so the mutual information
gives an average measure of the gain to be expected before making the observation. If the
underlying probability distributions are continuous then

I(x, z) = −
∫ +∞

−∞

∫ +∞

−∞
P (x, z) log

P (x, z)

P (x)P (z)
dxdz, (45)

and for discrete distributions

I(x, z) = − ∑
z∈Z

∑
x∈X

P (x, z) log
P (x, z)

P (x)P (z)
. (46)

Noting that
P (x, z)

P (x)P (z)
=

P (x | z)
P (x)

, (47)

then if x and z are independent, the expressions in Equation 47 become equal to one and
(taking logs) the mutual information becomes equal to zero. This is logical; if knowledge
of the state is independent of the observation, the information to be gained by taking an
observation (the mutual information) is zero. Conversely, as x becomes more dependent on
z, then P (x | z) becomes more peaked or compact relative to the prior distribution P (x)
and so mutual information increases. Note that mutual information is always positive (it
is not possible to lose information by taking observations).

Equation 44 can be written in terms of the component entropies as

I(x, z) = H(x) +H(z)−H(x, z)

= H(x)−H(x | z)
= H(z)−H(z | x) (48)

Equation 48 measures the ‘compression’ of the probability mass caused by an observation.
Mutual information provides an average measure of how much more information we would
have about the random variable x if the value of z where known. Most importantly mutual
information provides a pre-experimental measure of the usefulness of obtaining information
(through observation) about the value of z.

Example 11
Continuing the two sensors target identification example (Example 9), it is interesting

to see what value mutual information has in deciding which sensor should be used for
correctly identifying a target (this is a sensor management problem).

First assume that the prior information on x is uniform so that

P (x) = [1/3, 1/3, 1/3]T .

Consider taking an observation with sensor 1. The total probability of observation P (z)
can be found by summing the joint probability P (x, z) (computed in Example 9) to obtain

Multi-Sensor Data Fusion 36

P (z) = [1/3, 1/3, 1/3]. The mutual information, I(x, z), on using sensor 1 to take an
observation is then

I(x, z) = −∑j P (zj) logP (zj)−
(
−∑j∑i P (xi, zj) logP (zj | xi)

)
= 1.0986− 0.8456 = 0.2530.

Suppose we now go ahead and take an observation with sensor 1 and the result is z1, an
observation of target 1. The prior is now updated as (Example 2)

P (x) = P1(x | z1) = [0.45, 0.45, 0.1].

The mutual information gain from using sensor 1 given this new prior is I(x, z) = 0.1133.
Note, that this is smaller than the mutual information obtained with a uniform prior.
This is because we now have observation information and so the value of obtaining more
information is less. Indeed, mutual information shows that the more we observe, the less
value there is in taking a new observation. In the limit, if we repeatedly observe z1 with
sensor 1, then the prior becomes equal to [0.5, 0.5, 0.0] (Example 2). In this case the
predicted mutual information gain is zero. That is, there is no value in using sensor 1,
yet again, to obtain information.

Similarly, again assuming a uniform prior, the mutual information gain predicted
for using sensor 2 is 0.1497.This is lower than sensor 1, when the no-target density is
more highly peaked. If we observe target 1 with sensor 2 then the updated prior becomes
P (x) = [0.45, 0.1, 0.45]. Using this prior, the mutual information gain for using sensor
2 is only 0.1352; smaller, but not as small as the corresponding mutual information gain
from sensor 1 after the first measurement. Continual observation of target 1 with sensor
2 results in the posterior becoming equal to [0.5, 0.0, 0.5] and if, this is substituted into
the equation for mutual information gain, we obtain a predicted mutual information gain
of 0.1205; even after taking an infinite number of measurements. The reason for this
is subtle; as sensor 2 can not distinguish targets, any observation other than that of
target 1 will still provide additional information and as mutual information is an average
measure, it is still predicts, on the average, an increase in information (even though further
observation of target 1 will not provide any more information). Continual observation of
target 1 with sensor 2 would never happen in practice. As the likelihood suggests, if the
true state were target 1, then sensor 2 would be as likely to not to detect a target at all
as report a target 1. Indeed, if we mix detections as the likelihood suggests, the posterior
tends to [1, 0, 0] or [0, 1, 0] which then suggests zero mutual information gain from sensor
2.

Now, suppose sensor 1 is used to obtain the first measurement and target 1 is detected
so that the new prior is [0.45, 0.45, 0.1]. Which of sensor 1 or 2 should be used to make
the second observation ? With this prior, the predicted mutual information gain from
using sensor 1 is 0.1133, and from using sensor 2 is 0.1352. This (logically) tells us
to use sensor 2. Now sensor 2 is equally as likely to detect the correct target or return
a no-detect. Sensor 2 is now employed and a no-detect is returned yielding a posterior
[0.4880, 0.4880, 0.0241]. With this as a prior, mutual information will tell us to continue

Multi-Sensor Data Fusion 37

with sensor 2 until we get a return for either target 1 or 2. If this (target 2, say) happens
next time round, then the posterior will be [0.1748, 0.7864, 0.0388]; we now have, for the
first time a target preference (2) and sensor 1 and 2 can both be used to refine this estimate.
With this prior, the mutual information for sensor 1 is 0.0491 and for sensor 2 is 0.0851;
thus sensor 2 will be used on the fourth sensing action.

This process of predicting information gain, making a decision on sensing action, then
sensing, is an efficient and effective way of managing sensing resources and of determining
optimal sensing policies. However, it should be noted that this is an average policy. As
we saw with the behaviour of sensor 2, it is sometimes not the most logical policy if we
value things in a manner other than on the average. This issue will be dealt with in more
detail in the section on decision making.

Example 12
A second interesting application of mutual information gain is Example 5. In this

example, general probability distributions, defining target location, are defined on a location
grid. Entropy measures can be obtained for distributions on this grid from

H(x,y) = −E{logP (x,y)}

=
∫ ∫

P (x,y) logP (x,y)dxdy

≈ ∑∑
P (xi, yj) logP (xi, yj)δxiδyj

(49)

The total entropy associated with the prior shown in Figure 2(a), computed with Equation
49 is H(x) = 12.80. The total entropy associated with the sensor 1 likelihood shown in
Figure 2(b) is H(z | x) = 4.2578, and the entropy associated with the resulting posterior
of Figure 2(c) is H(x | x) = 3.8961. The predicted mutual information gain from this
observation is therefore I(x, z) = 8.9039 (a big gain). However, the predicted mutual
information gain from a second observation using sensor 1 is only 0.5225. This is reflected
in the slight change in posterior from Figure 2(c) to Figure 2(d). Conversely, the predicted
mutual information gain from sensor 2, with likelihood shown in Figure 2(e), is 2.8598 (a
relatively large gain). This is reflected in the posterior shown in Figure 2(f) which has an
entropy of only 0.5138.

This example shows that it is straight-forward to apply principles of entropy to any
probability type of probabilistic information; to measure compactness of information and
the prediction of information gain using mutual information.

2.3.4 Fisher Information

A second measure of information commonly used in probabilistic modeling and estimation
is the Fisher information. Unlike Shannon information, Fisher information may only be

Multi-Sensor Data Fusion 38

defined on continuous distributions. The Fisher information J(x) is defined as the second
derivative of the log-likelihood6

J(x) =
d2

dx2
logP (x). (50)

In general, if x is a vector, then J(x) will be a matrix, usually called the Fisher Information
Matrix. The Fisher information describes the information content about the values of
x contained in the distribution P (x). The Fisher information measures the surface of a
bounding region containing probability mass. Thus, like entropy, it measures compactness
of a density function. However, entropy measures a volume and is thus a single number,
whereas Fisher information is a series of numbers (and generally a matrix) measuring the
axes of the bounding surface.

The Fisher information is particularly useful in the estimation of continuous valued
quantities. If P (x) describes all the (probabilistic) information we have about the quantity
x, then the smallest variance that we can have on an estimate of the true value of x is
known as the Cramer-Rao lower bound, and is equal to the Fisher information J(x). An
estimator that achieves this lower bound is termed ‘efficient’.

Example 13
The simplest example of Fisher information is the information associated with a vector

x known to be Gaussian distributed with mean x and covariance P;

P (x) = N(x;x;P) =
1

(2π)n/2|P | exp
(
−1

2
(x− x)P−1(x− x)T

)
(51)

Taking logs of this distribution, and differentiating twice with respect to x gives J(x) =
P−1. That is, the Fisher information is simply the inverse covariance. This agrees with
intuition; Gaussian distributions are often drawn as a series of ellipsoids containing prob-
ability mass. P−1 describes the surface of this ellipsoid, the square root of it’s eigenvalues
being the dimensions of each axis of the ellipsoid.

The Fisher information plays an important role in multi-sensor estimation problems.
In conventional estimation problems when only a single source of information is used to
obtain information about an unknown state, it is common to talk of an estimate of this
state together with some associated uncertainty (normally a variance). However, in multi-
sensor estimation problems it is difficult to describe any (statistical) relations there may
be between the different estimates produced by different combinations of sensors. This
problem can only be overcome by dealing directly with the likelihood functions associ-
ated with the observations themselves and by explicitly accounting for any dependencies
between different estimates. The Fisher information provides a direct means of account-
ing for these dependencies as it makes explicit the information available in the likelihood
function. We will return to this again in the Chapter on multisensor estimation.

6The first derivative of the log-likelihood is called the score function

Multi-Sensor Data Fusion 39

2.3.5 The Relation between Shannon and Fisher Measures

The question arises that if entropy is considered to be the only reasonable measure of
information content in a distribution, why consider Fisher information at all as it must,
by definition, be an ‘unreasonable’ measure of information. Fortunately, there is a sensi-
ble explanation for this problem, in that for continuous variables, Fisher information and
Shannon information are indeed related by the log-likelihood function. Broadly, entropy
is related to the volume of a set (formally a ‘typical set’) containing a specified proba-
bility mass. Fisher information is related in the surface area of this typical set. Thus
maximization of Fisher information is equivalent to minimization of entropy. A detailed
development of this relation using the Asymptotic Equipartion Property (AEP) is given
in Cover [16].

Example 14
If the pdf associated with a random variable x is known to be Gaussian distributed

with mean x and covariance P (as Equation 51), then an explicit relation for the relation
between Fisher and Shannon information can be obtained, and indeed is given in Equation
42 (Example 10) as;

H(x) = −1

2
log[(2πe)n| P |]

This clearly shows the relation between the Fisher surface measure of information P−1

and the entropic volume measure through the determinant of P.

2.4 Alternatives to Probability

The representation of uncertainty is so important to the problem of information fusion that
a number of alternative modeling techniques have been proposed to deal with perceived
limitations in probabilistic methods7.

There are four main perceived limitations of probabilistic modeling techniques:

1. Complexity: the need to specify a large number of probabilities to be able to apply
probabilistic reasoning methods correctly.

2. Inconsistency: the difficulties involved in specifying a consistent set of beliefs in
terms of probability and using these to obtain consistent deductions about states of
interest.

3. Precision of Models: the need to be precise in the specification of probabilities for
quantities about which little is known.

4. Uncertainty about uncertainty: the difficulty in assigning probability in the face of
uncertainty, or ignorance about the source of information.

7In the literature on the subject, there appears to be no middle ground; you are either a religious
Bayesian or a rabid non-conformist.

Multi-Sensor Data Fusion 40

There are four main techniques put forward to address these issues; interval calculus,
fuzzy logic, and the theory of evidence (Dempster-Shafer methods). We briefly discuss
each of these in turn.

2.4.1 Interval Calculus

The representation of uncertainty using an interval to bound true parameter values has
a number of potential advantages over probabilistic techniques. In particular, intervals
provide a good measure of uncertainty in situations where there is a lack of probabilistic
information, but in which sensor and parameter error is known to be bounded. In interval
techniques, the uncertainty in a parameter x is simply described by a statement that the
true value of the state x is known to be bounded from below by a, and from above by b;
x ∈ [a, b]. It is important that no other additional probabilistic structure is implied, in
particular the statement x ∈ [a, b] does not necessarily imply that x is equally probable
(uniformly distributed) over the interval [a, b].

There are a number of simple and basic rules for the manipulation of interval errors.
These are described in detail in the book by Moore [30] (whose analysis was originally
aimed at understanding limited precision computer arithmetic). Briefly, with a, b, c, d ∈ �,
addition, subtraction, multiplication and division are defined by the following algebraic
relations;

[a, b] + [c, d] = [a+ c, b+ d] (52)

[a, b]− [c, d] = [a− d], b− c] (53)

[a, b]× [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)] (54)

[a, b]/[c, d] = [a, b]× [1/d, 1/c], 0 	∈ [c, d]. (55)

Interval addition and multiplication are both associative and commutative; with intervals
A,B,C ⊂ �,

A+ (B + C) = (A+B) + C, A× (B × C) = (A×B)× C, (56)

A+B = B + A, A×B = B × A. (57)

The distributive law does not always hold, however a weaker law of subdistributivity can
be applied on the basis that an interval is simply a set of real numbers;

A× (B + C) ⊆ A×B + A× C, (58)

with equality when A = [a, a] = a (a single number), or when B×C > 0 (the intervals B
and C contain numbers of the same sign.

Interval arithmetic admits an obvious metric distance measure;

d([a, b], [c, d]) = max(|a− c|, |b− d|) (59)

It follows that

d(A,B) = d(B,A), d(A,B) = 0 iff A = B, d(A,B) + d(B,C) ≥ d(A,C) (60)

Multi-Sensor Data Fusion 41

Matrix arithmetic using intervals is also possible, but substantially more complex, partic-
ularly when matrix inversion is required.

Interval calculus methods are sometimes used for detection. However, they are not
generally used in data fusion problems as: i) it is difficult to get results that converge to
anything of value (it is too pessimistic) and; ii) it is hard to encode dependencies between
variables which are at the core of many data fusion problems.

2.4.2 Fuzzy Logic

Fuzzy logic has found wide-spread popularity as a method for representing uncertainty
particularly in applications such as supervisory control and high-level data fusion tasks. It
is often claimed that fuzzy logic provides an ideal tool for inexact reasoning, particularly
in rule-based systems. Certainly, fuzzy logic has had some notable success in practical
application. However, the jury is still out on weather fuzzy logic offers more or less than
conventional probabilistic methods.

A great deal has been written about fuzzy sets and fuzzy logic (see for example [17]
and the discussion in [9] Chapter 11). Here we briefly describe the main definitions and
operations without any attempt to consider the more advanced features of fuzzy logic
methods.

Consider a Universal set consisting of the elements x; X = {x} . Consider a proper
subset A ⊆ X such that

A = {x | x has some specific property} .

In conventional logic systems, we can define a membership function µA(x) which reports
if a specific element x ∈ X is a member of this set:

A⇀↽ µA(x) = {1 if x ∈ A

0 if x 	∈ A

For example X may be the set of all aircraft. The set A may be the set of all supersonic
aircraft. In the fuzzy logic literature, this is known as a “crisp” set.

In contrast, a fuzzy set is one in which there is a degree of membership, ranging between
0 and 1. A fuzzy membership function µA(x) then defines the degree of membership of
an element x ∈ X in the set A. For example, if X is again the set of all aircraft, A may
be the set of all “fast” aircraft. Then the fuzzy membership function µA(x) assigns a
value between 0 and 1 indicating the degree of membership of every aircraft x to this set.
Formally

A⇀↽ µA �→ [0, 1].

Figure 10 shows an instance of this fuzzy membership function. Clearly, despite the
“fuzzy” nature of the set, it must still be quantified in some form.

Composition rules for fuzzy sets follow the composition processes for normal crisp sets,
specifically

Multi-Sensor Data Fusion 42

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fuzzy Membership Function for the Fast Aircraft Set

Maximum Speed m/s

M
em

be
rs

hi
p

of
 S

et

Figure 10: Example fuzzy membership function

AND is implemented as a minimum:

A ∩ B ⇀↽ µA∩B(x) = min [µA(x), µB(x)]

OR is implemented as a maximum:

A ∪ B ⇀↽ µA∪B(x) = max [µA(x), µB(x)]

NOT is implemented as a compliment:

B ⇀↽ µB(x) = 1− µB(x)

The normal properties associated with binary logic now hold; commutativity, associativity,
idempotence, distributivity De Morgan’s law and absorption. The only exception is that
the law of the excluded middle is no longer true

A ∪A 	= X , A ∩A 	= ∅

Together these definitions and laws provide a systematic means of reasoning about inexact
values.

The relationship between fuzzy set theory and probability is still hotly debated. It
should however be noted that the minimum and maximum operations above are highly
suggestive of the results provided by probability theory when the two sets are either wholly
dependent or wholly independent.

Multi-Sensor Data Fusion 43

2.4.3 Evidential Reasoning

Evidential reasoning (often called the Dempster-Shafer theory of evidence after the orig-
inators of these ideas) has seen intermittent success particularly in automated reasoning
applications.

Evidential reasoning is qualitatively different from either probabilistic methods or
fuzzy set theory in the following sense: Consider a universal set X . In probability theory
or fuzzy set theory, a belief mass may be placed on any element xi ∈ X and indeed on any
subset A ⊆ X . In evidential reasoning, belief mass can not only be placed on elements
and sets, but also sets of sets. Specifically, while the domain of probabilistic methods
is all possible subsets, the domain of evidential reasoning is the domain of all sets of all
subsets.

Example 15
Consider the set X = {rain, no rain} . The set is complete and mutually exclusive (at

least about the event rain). In probability theory, by way of a forecast, we might assign a
probability to each possible event. For example, P (rain) = 0.3, and thus P (no rain) = 0.7.

In evidential reasoning, we construct the set of all sets, otherwise called the power set
as

2X = {{rain, no rain} , {rain} , {no rain} , { } } ,
and belief mass is assigned to all elements of this set as

m({rain, no rain}) = 0.5
m({rain}) = 0.3

m({no rain}) = 0.2
m({ }) = 0.0

(traditionally, the empty set is assigned a belief mass of zero for normalisation purposes).
The interpretation of this is that there is a 30% chance of rain, a 20% chance of no rain
and a 50% chance of either rain or no rain. In effect, the measure placed on the set
containing both rain and no rain, is a measure of ignorance or inability to distinguish
between the two alternatives.

Evidential reasoning thus provides a method of capturing ignorance or an inability
to distinguish between alternatives. In probability theory, this would be dealt with in a
very different manner by assigning an equal or uniform probability to each alternative.
Yet, stating that there is a 50% chance of rain is clearly not the same as saying that it is
unknown if it will rain or not.

The use of the power set as the “frame of discernment” allows a far richer representa-
tion of beliefs. However, this comes at the cost of a substantial increase in complexity. If
there are n elements in the original set X , then there will be 2n (hence the definition of
the power set) possible sets of subsets on which a belief mass will be assigned. For large

Multi-Sensor Data Fusion 44

n, this is clearly intractable. Further, when the set is continuous, the set of all subsets is
not even measurable.

Given a frame of discernment, two mass assignments, m(A) and m(B), can be com-
bined to yield a third mass assignment, m(C) = m(C | A,B) using Dempster’s rule of
combination

m(C | A,B) = 1

1− κ

∑
i,j|Ai∩Bj=C

m(A)m(B) (61)

where κ is a measure of inconsistency between the two mass assignments m(A) and m(B)
defined as the mass product from the sets A and B which have zero intersection

κ =
∑

i,j|Ai∩Bj=∅
m(A)m(B) (62)

Note that the magnitude of κ is a measure of the degree to which the two mass distribu-
tions are in conflict. Since mass distribution can ‘move freely’ between singletons of the
set, two sets are not conflicting unless they have no common elements.

In addition to basic mass assignments, evidential reasoning introduces the concepts of
support Spt(C) and plausibility Pls(C) of any proposition C ⊆ X as

Spt(C | A,B) =
1

1− κ

∑
i,j|Ai∩Bj⊆C

m(Ai)m(Bj)

=
∑

D|D⊆C
m(D | A,B) (63)

and

Pls(C | A,B) =
1

1− κ

∑
i,j|(Ai∩Bj)∩C
=∅

m(Ai)m(Bj)

=
∑

D|D∩C
=∅
m(D | A,B)

= 1− Spt(C | A,B) (64)

The support for a proposition C is the evidence directly assigned to the proposition or any
subset of the proposition C (that is, any proposition which implies C). The plausibility of
a proposition C is the sum of all the mass assigned to propositions which have a non-null
intersection with C (that is, all propositions which do not contradict C).
Example 16

(After [9], p511). Spt(EFA) is the sum of masses assigned directly to the proposition
that an aircraft is any variant of the EFA. In contrast, the sum for Pls(EFA) would
include mass assigned to any proposition that does not contradict the EFA. The plausibility
sum would include the mass propositions such as aircraft, fixed wing aircraft, fighter or
friend. The plausibility sum would not include mass of propositions such as foe bomber
or helicopter.

Multi-Sensor Data Fusion 45

There is no doubt that evidential reasoning will find a role in advanced data fusion
systems, particularly in areas such as attribute fusion, and situation assessment. However,
it should be noted that the role played by probability theory in this is still generally
unresolved (see also [11, 13, 43]).

Multi-Sensor Data Fusion 46

3 Multi-Sensor Estimation

Estimation is the single most important problem in sensor data fusion. Fundamentally,
an estimator is a decision rule which takes as an argument a sequence of observations and
whose action is to compute a value for the parameter or state of interest. Almost all data
fusion problems involve this estimation process: we obtain a number of observations from
a group of sensors and using this information we wish to find some estimate of the true
state of the environment we are observing. Estimation encompasses all important aspects
of the data fusion problem. Sensor models are required to understand what information is
provided, environment models are required to relate observations made to the parameters
and states to be estimated, and some concept of information value is needed to judge
the performance of the estimator. Defining and solving an estimation problem is almost
always the key to a successful data fusion system.

This section begins with a brief summary of the Kalman filter algorithm. The intention
is to introduce notation and key data fusion concepts; prior familiarity with the basic
Kalman Filter algorithm is assumed (see either [18] or the numerous excellent books on
Kalman filtering [12, 7, 28]). The multi-sensor Kalman filter is then discussed. Three main
algorithms are considered; the group-sensor method, the sequential sensor method and
the inverse covariance form. The track-to-track fusion algorithm is also described. The
problem of multiple-target tracking and data association are described. The three most
important algorithms for data association are introduced. Finally, alternative estimation
methods are discussed. In particular, maximum likelihood filters and various probability-
distribution oriented methods. Subsequent sections consider the distributed Kalman filter
and different data fusion architectures.

3.1 The Kalman Filter

The Kalman Filter is a recursive linear estimator which successively calculates an estimate
for a continuous valued state, that evolves over time, on the basis of periodic observations
that of this state. The Kalman Filter employs an explicit statistical model of how the
parameter of interest x(t) evolves over time and an explicit statistical model of how the
observations z(t) that are made are related to this parameter. The gains employed in a
Kalman Filter are chosen to ensure that, with certain assumptions about the observation
and process models used, the resulting estimate x̂(t) minimises mean-squared error

L(t) =
∫ ∞

−∞
(x(t)− x̂(t))T (x(t)− x̂(t))P (x(t) | Zt)dx. (65)

Differentiation of Equation 65 with respect to x(t) and setting equal to zero gives

x̂(t) =
∫ ∞

−∞
x(t)P (x(t) | Zt)dx, (66)

which is simply the conditional mean x̂(t) = E{x(t) | Zt} . The Kalman filter, and indeed
any mean-squared-error estimator, computes an estimate which is the conditional mean;
an average, rather than a most likely value.

Multi-Sensor Data Fusion 47

The Kalman filter has a number of features which make it ideally suited to dealing
with complex multi-sensor estimation and data fusion problems. In particular, the explicit
description of process and observations allows a wide variety of different sensor models
to be incorporated within the basic algorithm. In addition, the consistent use statistical
measures of uncertainty makes it possible to quantitatively evaluate the role each sensor
places in overall system performance. Further, the linear recursive nature of the algorithm
ensure that its application is simple and efficient. For these reasons, the Kalman filter
has found wide-spread application in many different data fusion problems [38, 5, 7, 28].

3.1.1 State and Sensor Models

The starting point for the Kalman filter algorithm is to define a model for the states to
be estimated in the standard state-space form;

ẋ(t) = F(t)x(t) +B(t)u(t) +G(t)v(t), (67)

where

x(t) ∈ �n is the state vector of interest,

u(t) ∈ �s is a known control input,

v(t) ∈ �q is a random variable describing uncertainty in the evolution of the state,

F(t) is the n× n state (model) matrix,

B(t) is the n× s input matrix, and

G(t) is the n× q noise matrix.

An observation (output) model is also defined in standard state-space form;

z(t) = H(t)x(t) +D(t)w(t), (68)

where

z(t) ∈ �m is the observation vector,

w(t) ∈ �r is a random variable describing uncertainty in the observation,

H(t) is the m× n observation (model) matrix,

D(t) is the m× r observation noise matrix.

These equations define the evolution of a continuous-time system with continuous obser-
vations being made of the state. However, the Kalman filter is almost always implemented
in discrete-time. It is straight-forward to obtain a discrete-time version of Equations 67
and 68.

Multi-Sensor Data Fusion 48

First, a discrete-time set t = {t0, t1, · · · tk, · · ·} is defined. Equation 68 can be written
in discrete time as

z(tk) = H(tk)x(tk) +D(tk)w(tk), ∀tk ∈ t (69)

where z(tk), x(tk) and w(tk) are the discrete-time observation, state and noise vectors
respectively, and H(tk) and D(tk) the observation and noise models evaluated at the
discrete time instant tk. The discrete-time form of the state equation requires integration
of Equation 67 over the interval (tk, tk−1) as

x(tk) = Φ(tk, tk−1)x(tk−1) +
∫ tk
tk−1

Φ(tk, τ)B(τ)u(τ)dτ +
∫ tk
tk−1

Φ(tk, τ)G(τ)v(τ)dτ . (70)

where Φ(·, ·) is the state transition matrix satisfying the matrix differential equation

Φ̇(tk, tk−1) = F(tk)Φ(tk, tk−1), Φ(tk−1, tk−1) = 1. (71)

The state transition matrix has three important properties that should be noted:

1. It is uniquely defined for all t, t0 in [0,∞].

2. (The semi-group property) Φ(t3, t1) = Φ(t3, t2)Φ(t2, t1).

3. Φ(tk, tk−1) is non singular and Φ−1(tk, tk−1)=Φ(tk−1, tk).

When F(t) = F is a constant matrix, the state transition matrix is given by

Φ(tk, tk−1) = Φ(tk − tk−1) = expF(tk − tk−1). (72)

which clearly satisfies these three properties.
If u(t) = u(tk) and v(t) = v(tk) remain approximately constant over the interval

(tk−1, tk) then the following discrete-time models can be defined;

F(tk)
�
= Φ(tk, tk−1)

B(tk)
�
=

∫ tk
tk−1

Φ(tk, τ)B(τ)dτ

G(tk)
�
=

∫ tk
tk−1

Φ(tk, τ)G(τ)dτ .

(73)

Equation 70 can then be written in a discrete-time from equivalent to Equation 67 as

x(tk) = F(tk)x(tk−1) +B(tk)u(tk) +G(tk)v(tk). (74)

The accuracy of this model could be improved by taking mean values for both u(t) and
v(t) over the sampling interval.

Multi-Sensor Data Fusion 49

In almost all cases the time interval ∆t(k)
�
= tk − tk−1 between successive samples of

the state remains constant. In this case it is common particle to drop the time argument
and simply index variables by the sample number. In this case Equation 74 is written as

x(k) = F(k)x(k − 1) +B(k)u(k) +G(k)v(k), (75)

and Equation 69 as
z(k) = H(k)x(k) +D(k)w(k) (76)

Equations 75 and 76 are the model forms that will be used throughout this section unless
discussion of asynchronous data is relevant.

A basic assumption in the derivation of the Kalman filter is that the random sequences
v(k) and w(k) describing process and observation noise are all Gaussian, temporally
uncorrelated and zero-mean

E{v(k)} = E{w(k)} = 0, ∀k, (77)

with known covariance

E{v(i)vT (j)} = δijQ(i), E{w(i)wT (j)} = δijR(i). (78)

It is also generally assumed that the process and observation noises are also uncorrelated

E{v(i)wT (j)} = 0, ∀i, j. (79)

These are effectively equivalent to a Markov property requiring observations and successive
states to be conditionally independent. If the sequences v(k) and w(k) are temporally
correlated, a shaping filter can be used to ‘whiten’ the observations; again making the
assumptions required for the Kalman filter valid [28]. If the process and observation noise
sequences are correlated, then this correlation can also be accounted for in the Kalman
filter algorithm [2]. If the sequence is not Gaussian, but is symmetric with finite moments,
then the Kalman filter will still produce good estimates. If however, the sequence has a
distribution which is skewed or otherwise ’pathological’, results produced by the Kalman
filter will be misleading and there will be a good case for using a more sophisticated
Bayesian filter [40]. Problems in which the process and observation models are non-linear
are dealt in Section 3.1.7

We will use the following standard example of constant-velocity particle motion as the
basis for many of the subsequent examples on tracking and data fusion:

Example 17
Consider the linear continuous-time model for the motion of particle moving with

approximately constant velocity:

[
ẋ(t)
ẍ(t)

]
=
[
0 1
0 0

] [
x(t)
ẋ(t)

]
+
[

0
v(t)

]
.

Multi-Sensor Data Fusion 50

0 10 20 30 40 50 60 70 80 90 100
−5

0

5

10

15

20

25

Time(s)

P
os

iti
on

 (
m

)

True Target Track and Observations of Position

Target True Position
Target Observations

Figure 11: Plot of true target position and observations made of target position for the
constant velocity target model described in Example 17, with σq = 0.01m/s and σr = 0.1m

In this case the state-transition matrix from Equation 72 over a time interval ∆T is given
by

Φ(∆T) =
[
1 ∆T
0 1

]
.

On the assumption that the process noise is white and uncorrelated with E[v(t)] = 0 and
E[v(t)v(τ)] = σ2

q (t)δ(t− τ), then the equivalent discrete-time noise process is given by

v(k) =
∫ ∆T

0

[
τ
1

]
v(k∆T + τ)dτ =

[
∆T 2/2
∆T

]
v(k).

With the definitions given in Equation 73, the equivalent discrete-time model is given by[
x(k)
ẋ(k)

]
=
[
1 ∆T
0 1

] [
x(k − 1)
ẋ(k − 1)

]
+
[
∆T 2/2
∆T

]
v(k).

If observations are made at each time step k of the location of the particle the observation
model will be in the form

zx = [1 0]
[
x(k)
ẋ(k)

]
+ w(k), E{w2(k)} = σ2

r

Multi-Sensor Data Fusion 51

Figure 11 shows a typical constant-velocity target motion generated according to these
models. The target position executes a random walk. Observations are randomly dispersed
around true target position.

These equations can trivially be extended to two (and three) dimensions giving a two
dimensional model in the form:

x(k)
ẋ(k)
y(k)
ẏ(k)

 =

1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1

x(k − 1)
ẋ(k − 1)
y(k − 1)
ẏ(k − 1)

+

∆T 2/2 0
∆T 0
0 ∆T 2/2
0 ∆T

[
vx(k)
vy(k)

]
, (80)

and

[
zx
zy

]
=
[
1 0 0 0
0 0 1 0

]

x(k)
ẋ(k)
y(k)
ẏ(k)

+

[
wx(k)
wy(k)

]
(81)

with

R(k) = E{w(k)wT (k)} =
[
σ2
rx 0
0 σ2

ry

]
.

This motion model is widely used in target tracking problems (in practice as well as the-
ory) as it is simple, linear and admits easy solution for multiple-target problems. Figure
12 shows a typical x− y target plot generated using this model. Target velocity and head-
ing can be deduced from the magnitude and orientation of the estimated velocity vector
[ẋ(k), ẏ(k)]T (Figure 12 (c) and (d)). The plots show that this simple model is capable of
accommodating many reasonable motion and maneuver models likely to be encountered in
typical target tracking problems. It should however be noted that this track is equivalent to
running independent models for both x and y as shown in Figure 11. In reality, motions
in x and y directions will be physically coupled, and therefore correlated, by the heading
of the target. This (potentially valuable information) is lost in this target model.

As this example shows, it is always best to start with a continuous-time model for the
state and then construct a discrete model, rather than stating the discrete model at the
outset. This allows for correct identification of noise transfers and noise correlations.

3.1.2 The Kalman Filter Algorithm

The Kalman filter algorithm produces estimates that minimise mean-squared estimation
error conditioned on a given observation sequence

x̂(i | j) = arg min
x̂(i | j)∈�n

E{(x(i)− x̂)(x(i)− x̂)T | z(1), · · · , z(j)} . (82)

As has been previously demonstrated (Equation 66) the estimate obtained is simply the
expected value of the state at time i conditioned on the observations up to time j. The

Multi-Sensor Data Fusion 52

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
x 10

4

X−position (m)

Y
−

P
os

iti
on

 (
m

)

True Target Track

(a)

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

x 10
4

1.14

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23
x 10

4

X−position (m)

Y
−

P
os

iti
on

 (
m

)

True Target Track and Observations of Position

Target True Position
Target Observations

(b)

0 50 100 150 200 250 300 350 400 450 500
150

160

170

180

190

200

210

220

Time(s)

V
el

oc
ity

 (
m

/s
)

True Target Velocity

(c)

0 50 100 150 200 250 300 350 400 450 500
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time(s)

H
ea

di
ng

 (
ra

ds
)

True Target Heading

(d)

Figure 12: True target track for linear the uncoupled linear target model of Example 17
(a) x − y track; (b) Detail of track and corresponding observations; (c) Deduced target
velocity; (d) Deduced target heading.

Multi-Sensor Data Fusion 53

estimate is thus defined as the conditional mean

x̂(i | j) �
= E{x(i) | z(1), · · · , z(j)} �

= E{x(i) | Zj} . (83)

The estimate variance is defined as the mean squared error in this estimate

P(i | j) �
= E{(x(i)− x̂(i | j))(x(i)− x̂(i | j))T | Zj} . (84)

The estimate of the state at a time k given all information up to time k will be written
as x̂(k | k). The estimate of the state at a time k given only information up to time k− 1
is called a one-step-ahead prediction (or just a prediction) and is written as x̂(k | k − 1).

The Kalman filter algorithm is now stated without proof. Detailed derivations can
be found in many books on the subject, [28, 7] for example (see also [18]). The state is
assumed to evolve in time according to Equation 75. Observations of this state are made
at regular time intervals according to Equation 76. The assumptions about the noise
processes entering the system, as described by Equations 77, 78 and 79, are assumed true.
It is also assumed that an estimate x̂(k − 1 | k − 1) of the state x(k − 1) at time k − 1
based on all observations made up to and including time k − 1 is available, and that this
estimate is equal to the conditional mean of the true state x(k − 1) conditioned on these
observations. The conditional variance P(k − 1 | k − 1) in this estimate is also assumed
known. The Kalman filter then proceeds recursively in two stages:

Prediction: A prediction x̂(k | k − 1) of the state at time k and its covarianceP(k | k − 1)
is computed according to

x̂(k | k − 1) = F(k)x̂(k − 1 | k − 1) +B(k)u(k) (85)

P(k | k − 1) = F(k)P(k − 1 | k − 1)FT (k) +G(k)Q(k)GT (k). (86)

Update: At time k an observation z(k) is made and the updated estimate x̂(k | k) of
the state x(k), together with the updated estimate covariance P(k | k) is computed from
the state prediction and observation according to

x̂(k | k) = x̂(k | k − 1) +W(k) (z(k)−H(k)x̂(k | k − 1)) (87)

P(k | k) = (1−W(k)H(k))P(k | k − 1)(1−W(k)H(k))T +W(k)R(k)WT (k) (88)

where the gain matrix W(k) is given by

W(k) = P(k | k − 1)H(k)
[
H(k)P(k | k − 1)HT (k) +R(k)

]−1
(89)

The Kalman filter is recursive or cyclic (see Figure 13). We start with an estimate,
generate a prediction, make an observation, then update the prediction to an estimate.
The filter makes explicit use of the process model in generating a prediction and the

Multi-Sensor Data Fusion 54

State Prediction
x(k|k-1)=

F(k)x(k-1|k-1)+G(k)u(k)

State Estimate at t
k-1

x(k-1|k-1)

Measurement
Prediction

z(k|k-1)=H(k)x(k|k-1)

Innovation
ν(k)=z(k)-z(k|k-1)

Updated State
Estimate

x(k|k)=x(k|k-1)+W(k) ν(k)

State Error Covariance at t
k-1

P(k-1|k-1)

State Prediction
 Covariance

P(k|k-1)=
F(k)P(k-1|k-1)F(k)+Q(K)

Innovation Covariance
S(k)=H(k)P(K|k-1)H'(k)+R(k)

Filter Gain
W(k)=P(k|k-1)H'(k)S -1(k)

Updated State
Covariance

P(k|k)=P(k|k-1)-W(k)S(k)W'(k)

State Covariance
Computation

Estimation
of State

True State

Control at t
k

u(k)

State Transition
x(k)=F(k)x(k-1)
+G(k)u(k)+v(k)

Measurement at t k

z(k)=H(k)x(k)+w(k)

Figure 13: Block diagram of the Kalman filter cycle (after Barshalom and Fortmann 1988
[7])

observation model in generating an update. The update stage of the filter is clearly
linear, with a weight W(k) being associated with the observation z(k) and a weight
1−W(k)H(k) being associated with the prediction x̂(k | k − 1). The Kalman filter also
provides a propagation equation for the covariance in the prediction and estimate.

Example 18
It is straight-forward to build a state-estimator for the target and observation model

of example Example 17. The Kalman filter Equations 87–89 are implemented with F(k),
Q(k) as defined in Equation 80 and with H(k) and R(k) as defined in Equation 81.
Initial conditions for x̂(0 | 0) are determined from the first few observations and with
P(0 | 0) = 10Q(k) (see [18] for details). The results of the filter implementation are
shown in Figure 14. The Figure shows results for the x component of the track. It should
be noted that the estimate always lies between the observation and prediction (it is a
weighted sum of these terms). Note also the error (between true and estimated) velocity

Multi-Sensor Data Fusion 55

and heading is zero mean and white indicating a good match between model and estimator.

3.1.3 The Innovation

A prediction can be made as to what observation will be made at a time k based on the
observations that have been made up to time k − 1 by simply taking expectations of the
observation Equation 76 conditioned on previous observations:

ẑ(k | k − 1)
�
= E{z(k) | Zk−1}
= E{H(k)x(k) +W(k) | Zk−1}
= H(k)x̂(k | k − 1) (90)

The difference between the observation z(k) and the predicted observationH(k)x̂(k | k − 1)
is termed the innovation or residual ν(k):

ν(k) = z(k)−H(k)x̂(k | k − 1) (91)

The innovation is an important measure of the deviation between the filter estimates and
the observation sequence. Indeed, because the ‘true’ states are not usually available for
comparison with the estimated states, the innovation is often the only measure of how well
the estimator is performing. The innovation is particularly important in data association.

The most important property of innovations is that they form an orthogonal, uncor-
related, white sequence,

E{ν(k) | Zk−1} = 0, E{ν(i)νT (j)} = S(i)δij, (92)

where
S(k) = R(k) +H(k)P(k | k − 1)H(k) (93)

is the innovation covariance. This can be exploited in monitoring of filter performance.
The innovation and the innovation variance can be used to express an alternative,

simpler form of the update equations:

x̂(k | k) = x̂(k | k − 1) +W(k)ν(k) (94)

P(k | k) = P(k | k − 1)−W(k)S(k)WT (k) (95)

and from Equation 89
W(k) = P(k | k − 1)H(k)S−1(k) (96)

This is the preferred form of the update Equations in the remainder of this course.

Example 19
Continuing Example 18, the innovation and innovation covariance can be calculated

from Equations 91 and 93. These are shown in Figure 15(a). The most important points
to note are that the innovation sequence is zero mean and white, and that approximately

Multi-Sensor Data Fusion 56

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
x 10

4

Time(s)

P
os

iti
on

 (
m

)

Estimated and Predicted Target Track

Predicted Target Position
Estimated Target Position

(a)

5.4 5.5 5.6 5.7 5.8 5.9

x 10
4

1.42

1.425

1.43

1.435

1.44

1.445

1.45
x 10

4

X position (m)

Y
 P

os
iti

on
 (

m
)

Predicted, Observed and Estimated Target Position

Predicted Target Position
Estimated Target Position
Position Observation

(b)

0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

30

40

50

60

Time(s)

V
el

oc
ity

 E
rr

or
 (

m
/s

)

Error in Estimated Target Velocity

(c)

0 50 100 150 200 250 300 350 400 450 500
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time(s)

H
ea

di
ng

 E
rr

or
 (

ra
ds

)

Error in Estimated Target Heading

(d)

Figure 14: Estimated target track for the linear uncoupled target model of Examples 17
and 18 (a) Estimate and prediction of x − y track; (b) Detail of estimated track and
corresponding observations. Note the estimate always lies between the observation and
prediction; (c) Error in estimated target velocity; (d) Error in estimated target heading.
Note both heading and velocity errors are zero mean and white.

Multi-Sensor Data Fusion 57

65% of all innovations lie within the ‘one-sigma’ standard deviation bounds. Figure 15(b)
shows the standard deviation (estimated error) in state prediction and state estimate (for
the position state). It is clear that the standard deviation, and therefore covariance, rapidly
converge to a constant value. The innovation covariance and gain matrix will also there-
fore converge to a constant value.

3.1.4 Understanding the Kalman Filter

There are three different, but related ways of thinking about the Kalman filter algorithm:
as a simple weighted average; as a conditional mean computed from knowledge of the
correlation between observation and state; and as an orthogonal decomposition and pro-
jection operation. Each of these interpretations is exploited at different points in this
course.

The interpretation of the Kalman filter as weighted average follows directly from Equa-
tion 87 as

x̂(k | k) = [1−W(k)H(k)x̂(k | k − 1)] +W(k)z(k) (97)

It is interesting to explicitly determine the weights, 1−W(k)H(k) and W(k), associated
with the prediction and observation respectively. Pre-multiplying Equation 87 by H(k),
substituting for the gain matrix and simplifying, gives

H(k)x̂(k | k) =
[
(H(k)P(k | k − 1)H(k))−1 +R−1(k)

]−1

×
[
(H(k)P(k | k − 1)H(k))−1H(k)x̂(k | k − 1) +R−1(k)z(k)

]
.

This is just a weighted sum of the predicted observation H(k)x̂(k | k − 1) and the ac-
tual observation z(k) in which (H(k)P(k + 1 | k)H(k))−1 is the inverse of the predic-
tion covariance projected in to observation space and is the ‘confidence’ in the pre-
dicted observation, and R−1(k) is the inverse observation noise covariance and is the
‘confidence’ in the observation itself. The sum is normalised by the total confidence
[(H(k)P(k | k − 1)H(k))−1 + R−1(k)]−1 and the result is a new estimate for the state
projected into the observation space as H(k)x̂(k | k). The covariance in this projected
estimate is given simply by the normalisation factor of the weighted sum

H(k)P(k | k)H(k) =
[
(H(k)P(k | k − 1)H(k))−1 +R−1(k)

]−1
(98)

This averaging process works by first projecting the state vector into observation space
as H(k)x̂(k | k − 1) and corresponding covariance as H(k)P(k | k − 1)H(k), where the
observation z(k) and its corresponding covariance R(k) are directly available, and then
computes an updated estimate H(k)x̂(k | k) as a weighted sum of these, again in obser-
vation space. Clearly, this interpretation of the Kalman filter holds only for those states
which can be written as a linear combination of the observation vector.

The Kalman filter is also able to provide estimates of states which are not a linear
combination of the observation vector. It does this by employing the cross correlation

Multi-Sensor Data Fusion 58

0 50 100 150 200 250 300 350 400 450 500
−200

−150

−100

−50

0

50

100

Time(s)

In
no

va
tio

n
(m

)

X Innovations and Innovation Standard Deviation

Innovation
Innovation Standard Deviation

(a)

0 50 100 150 200 250 300 350 400 450 500
6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

Time(s)

P
os

iti
on

 E
rr

or
 (

m
)

Estimated and Predicted Position Standard Deviations

Predicted Postion SD
Estimated Position SD

(b)

Figure 15: Track Errors for the linear uncoupled target model of Examples 17 and 18:
(a) Innovation and innovation variance in x estimate; (b) Estimated error (standard de-
viation) in x estimate and x prediction.

Multi-Sensor Data Fusion 59

between observed and unobserved states to find that part of the observation information
which is correlated with the unobserved states. In this sense, the Kalman filter is some-
times referred to as a linear observer. This interpretation of the Kalman filter algorithm
is most easily appreciated by considering the estimator as derived from the conditional
mean, computed directly from Bayes theorem [14, 28]. In this case the estimator of
Equation 87 may be written as

x̂(k | k) = x̂(k | k − 1) +PxzP
−1
zz [z(k)−H(k)x̂(k | k − 1)] (99)

with Equation 88 being written as

P(k | k) = Pxx −PxzP
−1
zz P

T
xz (100)

where

Pxz = E{(x(k)− x̂(k | k − 1))(z(k)−H(k)x̂(k | k − 1))T | Zk−1}
Pzz = E{(z(k)−H(k)x̂(k | k − 1))(z(k)−H(k)x̂(k | k − 1))T | Zk−1}
Pxx = P(k | k − 1)

are respectively the cross correlation between prediction and observation, the observation
covariance and the prediction covariance. Equation 99 shows how new observations z(k)
contribute to the updated estimate x̂(k | k). First, the difference between observation and
predicted observation is computed. Then the term Pxz, by definition, tells us how the
states are correlated with the observations made, and finallyP−1

zz is used to ‘normalise’ this
correlation by the confidence we have in the new observation. This shows that provided
we have knowledge of how the states are correlated to the observations made, we may use
the observation information to estimate the state even in cases where the state is not a
linear combination of the observation vector.

A third method of interpreting the Kalman filter is as geometric operation that projects
the true state x(k) on to the subspace spanned by the observation sequence Zk. Figure 16
shows this graphically using multi-dimensional space representation. The space spanned
by the set Zk is shown as a plane embedded in the overall state space, Zk−1 as a line
embedded in the Zk plane, the new observation z(k) as a line so arranged that Zk−1 and
z(k) together generate Zk. The innovation ν(k) is described as a line orthogonal to Zk−1

also embedded in the Zk. The prediction x̂(k | k − 1) lies in the space Zk−1, W(k)ν(k)
lies in the space orthogonal to Zk−1, and the estimate x̂(k | k) lies in the space Zk and is
again the projection of x(k) in to this space. Figure 16 makes clear the role of W(k) and
[1−W(k)H(k)] as complimentary projections. The estimate can be thought of either as
the orthogonal sum of prediction x̂(k | k − 1) and weighted innovation W(k)ν(k), or as
the sum of the parallel vectors [1−W(k)H(k)]x̂(k | k − 1) and W(k)z(k).

3.1.5 Steady-State Filters

When filtering is synchronous, and state and observation matrices time-invariant, the
state and observation models may be written as

x(k) = Fx(k − 1) +Gu(k) + v, (101)

Multi-Sensor Data Fusion 60

Zk-1

Zk

Xk

x(k)

ν(k)
z(k)

x(k|k)

x(k)-x(k|k-1)

W(k) ν(k)

W(k)H(k)x(k|k-1) I-W(k)H(k)x(k|k-1)

Figure 16: A projection diagram for the Kalman filter. The complete space is the true
state space Xk. The sub-space spanned by the first k observations is shown as the ellipse
Zk. The space Zk−1 spanned by the first k − 1 observations is shown as a line sub-space
of the space Zk. The true state x(k) lies in the space Xk, the estimate x̂(k | k) lies in the
space Zk (because x̂(k | k) is a linear combination of observations up to time k), prediction
x̂(k | k − 1) lies in the space Zk−1. The estimate is a perpendicular projection of the true
state on to the space Zk. By construction, the innovation space ν(k) is perpendicular
to the space Zk−1. The new estimate x̂(k | k) is the sum of: 1) the projection of x(k)
onto Zk−1 along z(k), given by [1 −W(k)H(k)]x̂(k | k − 1); and 2) the projection of
x(k) onto z(k) along Zk−1, given by W(k)z(k). For comparison, the estimate that would
result based only on the observation z(k) is x̂(k | z(k)), the projection of x(k) onto z(k).
Diagramatic method from [41] (see also [14])

Multi-Sensor Data Fusion 61

z(k) = Hx(k) +w, (102)

with
E{vvT} = Q, E{wwT} = R. (103)

The calculations for the state estimate covariances and filter gains do not depend on the
value of the observations made. Consequently, if F, H, Q, and R are time invariant, then
the innovation covariance S will be constant and the covariance and gain matrices will
also tend to a constant steady state value

P(k | k)→ P+
∞, P(k | k − 1)→ P−

∞, W(k)→W∞ (104)

This convergence is often rapid as is graphically demonstrated in Figure 15.
If the covariances and gain matrix all tend to a constant steady-state value after only a

few time-steps, it seems sensible that the computationally intensive process of computing
these values on-line be avoided by simply inserting these constant values in to the filter
from the start. In effect, this means that a constant gain matrix is used in the computation
of the estimates

x̂(k | k) = x̂(k | k − 1) +W [z(k)−Hx̂(k | k − 1)] . (105)

The steady-state value of the gain matrixW is most easily computed by simply simulating
the covariance calculation off-line (which does not require that any observations are made).

In the case of a ‘constant velocity’ model, the gain matrix can be described by two
dimensionless coefficients α and β,

x̂(k | k) = x̂(k | k − 1) +
[

α
β/T

]
[z(k)−Hx̂(k | k − 1)] . (106)

This is known as the α–β filter. In the case of a ‘constant acceleration’ model, the gain
matrix can be described by three dimensionless coefficients α, β and γ,

x̂(k | k) = x̂(k | k − 1) +

 α
β/T
γ/T 2

 [z(k)−Hx̂(k | k − 1)] . (107)

This is known as the α–β–γ filter. These constant parameters are usually obtained through
simulation and a degree of judgement.

The steady-state filter provides a substantial reduction in the amount of on-line com-
putation that must be performed by the filter. In many situations this may be invaluable;
particularly in multi-target tracking applications where many thousands of filters must
be employed simultaneously. Providing that the assumption of constant system and noise
models applies, the error incurred by using a steady-state filter is insignificant. In prac-
tice, steady-state filters are used even in situations where the basic assumptions of linear
time-invariance and constant noise injection are violated.

Multi-Sensor Data Fusion 62

0 10 20 30 40 50 60

−16

−14

−12

−10

−8

−6

−4

−2

0

Difference in Position Estimate Produced by Full Gain and Steady−State Gain Estimators

Time (s)

D
iff

er
en

ce
 in

 P
os

iti
on

 E
st

im
at

e
(m

)

Figure 17: Plot of the difference between x position estimates computed using a full
gain history and a steady state-gain for the constant velocity target model described in
Example 17.

Example 20
Consider again the Example 18 of constant-velocity particle motion. With a process

and observation noise standard deviations given by σq = 0.01, and σr = 0.1 respectively
and with a constant sample period of one second, the steady-state gain matrix is found to
be W = [0.4673, 0.1460]T . The equivalent steady-state filter (with T = 1) will therefore
have parameters α = 0.4673 and β = 0.1460. Figure 17 shows the error between estimates
produced by the constant-velocity filter (with full covariance and gain calculation), and the
estimates produced by the equivalent α–β filter. It can be seen that after an initially large
error, but after only a few time-steps, the error between these two filters is negligible. The
large error at the start is caused by initialisation with the steady-state values of gain.

3.1.6 Asynchronous, Delayed and Asequent Observations

In data fusion systems the observation process is almost never synchronous. This is be-
cause information must come from many different sensors, which will each have different
sample rates and latencies associated with the acquisition and communication of obser-
vations.

Generally, three timing issues of increasing complexity must be addressed;

• Asynchronous data: Information which arrives at random intervals but in a timely
manner.

Multi-Sensor Data Fusion 63

• Delayed data: Information that arrives both at random intervals and late; after an
estimate has already been constructed.

• Asequent data: Information that arrives randomly, late and out of time sequence
(temporal order).

The asynchronous data problem is relatively easy to accommodate in the existing Kalman
filter framework. For asynchronous observations, the general discrete-time state and ob-
servation models of Equations 74 and 69 apply. With these definitions, the Kalman filter
for asynchronous observations remains essentially the same as for the synchronous case.
It is assumed the existence of an estimate for the state x̂(tk−1 | tk−1) at time tk−1 that
includes all observations made up to this time. At a later time tk > tk−1 an observation
is made according to Equation 69. The first step is simply to generate a prediction of the
state at the time the observation was made according to

x̂(tk | tk−1) = F(tk)x̂(tk−1 | tk−1) +B(tk)u(tk), (108)

together with an associated prediction covariance

P(tk | tk−1) = F(tk)P(tk−1 | tk−1)F
T (tk) +G(tk)Q(tk)G

T (tk). (109)

An innovation and innovation covariance are then computed according to

ν(tk) = z(tk)−H(tk)x̂(tk | tk−1), (110)

S(tk) = H(tk)P(tk | tk−1)H
T (tk) +R(tk), (111)

from which an updated state estimate and associated covariance can be found from

x̂(tk | tk) = x̂(tk | tk−1) +W(tk)ν(tk), (112)

P(tk | tk) = P(tk | tk−1)−W(tk)S(tk)W
T (tk), (113)

where
W(tk) = P(tk | tk−1)H

T (tk)S(tk) (114)

is the associated gain matrix. The main point to note here is that the injected process
noise variance Q(tk) and all the model matrices (F(tk), B(tk), G(tk), and H(tk)) are all
functions of the time interval tk − tk−1. Consequently, the computed variances P(tk | tk),
P(tk | tk−1), S(tk), and the gain matrix W(tk) will not remain constant and must be
computed at every time slot.

Example 21
Consider again the example of the constant-velocity particle motion described by the

continuous-time process model

[
ẋ(t)
ẍ(t)

]
=
[
0 1
0 0

] [
x(t)
ẋ(t)

]
+
[

0
v(t)

]
.

Multi-Sensor Data Fusion 64

300 305 310 315 320 325 330 335 340 345 350
9700

9750

9800

9850

9900

9950

10000

10050

10100

10150

10200

Time (s)

P
os

iti
on

 (
m

)

True Target Track and Observations of Position

Target True Position
Target Observations

(a)

300 305 310 315 320 325 330 335 340 345 350
9700

9750

9800

9850

9900

9950

10000

10050

10100

10150

10200

Time (s)

P
os

iti
on

 (
m

)

Predicted, Observed and Estimated Target Position

Predicted Target Position
Estimated Target Position
Position Observation

(b)

300 305 310 315 320 325 330 335 340 345 350
−40

−30

−20

−10

0

10

20

30

40

Time(s)

In
no

va
tio

n
(m

)

X Innovations and Innovation Standard Deviation

Innovation
Innovation Standard Deviation

(c)

300 305 310 315 320 325 330 335 340 345 350

5

6

7

8

9

10

11

12

13

Time(s)

P
os

iti
on

 E
rr

or
 (

m
)

Estimated and Predicted Position Standard Deviations

Predicted Postion SD
Estimated Position SD

(d)

Figure 18: Estimated target track for the linear constant velocity particle model with
asynchronous observations and updates. A time-section shown of: (a) True state and
asynchronous observations; (b) State predictions and estimates, together with observa-
tions; (c) Innovations and innovation standard deviations; (d) State prediction and state
estimate standard deviations (estimated errors).

Multi-Sensor Data Fusion 65

We assume observations of the position of the particle are made asynchronously at times
tk according to

zx(tk) = [1 0]
[
x(tk)
ẋ(tk)

]
+ w(tk), E{w2(tk)} = σ2

r .

We define δtk = tk − tk−1 as the time difference between any two successive observations
made at time tk−1 and tk. With the definitions given by Equation 73, the discrete-time
process model becomes

[
x(tk)
ẋ(tk)

]
=
[
1 δtk
0 1

] [
x(tk−1)
ẋ(tk−1)

]
+
[
δt2

δt

]
v(tk),

with

Q(tk) = E[v(tk)v
T (tk)] =

∫ δt
0

[
δt
1

]
[δt 1] qdτ =

[
δt3/3 δt2/2
δt2/2 δt

]
q.

The implementation of an asynchronous filter looks similar to the implementation of a
synchronous filter except that the matrices defined in Equation 73 must be recomputed at
every time-step. However, the variances computed by the asynchronous filter look quite
different from those computed in the synchronous case even if they have the same average
value. Figure 18 shows the results of an asynchronous constant-velocity filter. The process
and observation noise standard-deviations have been set, as before, to σq = 0.01 and
σr = 0.1. Observations are generated with random time intervals uniformly distributed
between 0 and 2 seconds (an average of 1 second). Figure 18(a) shows the computed
position estimate and prediction standard deviations . Clearly, these covariances are not
constant, unsurprisingly, the variance in position estimate grows in periods where there
is a long time interval between observations and reduces when there is a small interval
between observations. Figure 18(b) shows the filter innovations and associated computed
standard deviations. Again, these are not constant, however they do still satisfy criteria
for whiteness with 95% of innovations falling within their corresponding ±2σ bounds.

To deal with delayed observations is to maintain two estimates, one associated with
the true time at which the last observation was obtained, and the second a prediction,
based on this last estimate, which describes the state at the current time. When a new,
delayed, observation is made, the current prediction is discarded and a new prediction up
to the time of this delayed observation is computed, based on the estimate at the time
of the previous delayed observation. This is then combined with the new observation to
produce a new estimate which is itself predicted forward to the current time. Let tc be the
current time at which a new delayed observation is made available, let tp be the previous
time a delayed observation was made available and let tc > tk > tk−1, and tc > tp > tk−1.
We assume that we already have an estimate x̂(tk−1 | tk−1) and an estimate (strictly a
prediction) x̂(tp | tk−1) and that we acquire an observation z(tk) taken at time tk. We start
by simply discarding the estimate x̂(tp | tk−1), and generating a new prediction x̂(tk | tk−1)
and prediction covariance P(tk | tk−1) from Equations 108 and 109. These together with

Multi-Sensor Data Fusion 66

the delayed observation are used to compute a new estimate x̂(tk | tk), at the time the
delayed observation was made, from Equations 112, 113, and 114. This estimate is then
predicted forward to the current time to produce an estimate x̂(tc | tk) and its associated
covariance P(tc | tk) according to

x̂(tp | tk) = F(tp)x̂(tk | tk) +B(tp)u(tp), (115)

P(tp | tk) = F(tp)P(tk | tk)FT (tp) +G(tp)Q(tp)G
T (tp). (116)

Both estimates x̂(tk | tk) and x̂(tp | tk) together with their associated covariances should
be maintained for the next observations.

It should be clear that if the observations are delayed, then the estimate provided at
the current time will not be as good as the estimates obtained when the observations are
obtained immediately. This is to be expected because the additional prediction required
injects additional process noise into the state estimate.

It is also useful to note that the same techniques can be used to produce estimates
for any time in the future as well as simply the current time. This is sometimes use-
ful in providing advance predictions that are to be used to synchronize with incoming
observations.

Asequent data occurs when the observations made are delayed in such a way that
they arrive at the filter for processing out of time-order. Although this does not often
happen in single-sensor systems, it is a common problem in multi-sensor systems where
the pre-processing and communication delays may differ substantially between different
sensors. The essential problem here is that the gain matrix with and without the delayed
observation will be different and the previous estimate, corresponding to the time at
which the delayed observation was taken, cannot easily be “unwrapped” from the current
estimate. With the tools we have so far developed, there is no simple way of dealing with
this problem other than by remembering past estimates and recomputing the current
estimate every time an out-of-order observation is obtained. However, a solution to this
problem is possible using the inverse-covariance filter which we will introduce latter in
this chapter.

3.1.7 The Extended Kalman Filter

The extended Kalman filter (EKF) is a form of the Kalman filter that can be employed
when the state model and/or the observation model are non-linear. The EKF is briefly
described in this section.

The state models considered by the EKF are described in state-space notation by a
first order non-linear vector differential equation or state model of the form

ẋ(t) = f [x(t),u(t),v(t), t], (117)

where

x(t) ∈ �n is the state of interest,

Multi-Sensor Data Fusion 67

u(t) ∈ �r is a known control input,

f [·, ·, ·] a mapping of state and control input to state ‘velocity’, and

v(t) a random vector describing both dynamic driving noise and uncertainties in the
state model itself (v(t) is often assumed additive).

The observation models considered by the EKF are described in state-space notation by
a non-linear vector function in the form

z(t) = h[x(t),u(t),w(t), t] (118)

where

z(t) ∈ �m is the observation made at time t,

h[·, ·, ·] is a mapping of state and control input to observations, and

w(t) a random vector describing both measurement corruption noise and uncertainties
in the measurement model itself (w(t) is often assumed additive).

The EKF, like the Kalman filter, is almost always implemented in discrete-time. To do
this, a discrete form of Equations 117 and 118 are required. First, a discrete-time set
t = {t0, t1, · · · tk, · · ·} is defined. Equation 118 can then be written in discrete time as

z(tk) = h[x(tk),u(tk),w(tk), tk], ∀tk ∈ t (119)

where z(tk), x(tk) and w(tk) are the discrete-time observation, state and noise vectors
evaluated at the discrete time instant tk. The discrete-time form of the state equation
requires integration of Equation 117 over the interval (tk, tk−1) as

x(tk) = x(tk−1) +
∫ tk
tk−1

f [x(τ),u(τ),v(τ), τ]dτ . (120)

In practice, this integration is normally solved using a simple Euler (backward difference)
approximation as

x(tk) = x(tk−1) + ∆Tkf [x(tk−1),u(tk−1),v(tk−1), tk−1], (121)

where ∆Tk = tk − tk−1. As with the Kalman filter, when the sample interval is constant,
time is indexed by k and Equations 121 and 119 are written as

x(k) = x(k − 1) + ∆T f [x(k − 1),u(k − 1),v(k − 1), k], (122)

and
z(k) = h[x(k),u(k),w(k), k]. (123)

To apply the Kalman filter algorithm to estimation problems characterised by non-
linear state and observation models, perturbation methods are used to linearise true non-
linear system models around some nominal state trajectory to yield a model which is

Multi-Sensor Data Fusion 68

itself linear in the error. Given a non-linear system model in the form of Equation 117,
a nominal state trajectory is described using the same process model (assuming v(t) is
zero mean),

ẋn(t) = f [xn(t),un(t), t]. (124)

Then, Equation 117 is expanded about this nominal trajectory as a Taylor series;

ẋ(t) = f [xn(t),un(t), t]

+∇fx(t)δx(t) +O
[
δx(t)2

]
+∇fu(t)δu(t) +O

[
δu(t)2

]
+∇fv(t)v(t), (125)

where

∇fx(t) �
=

∂f

∂x

∣∣∣∣∣x(t)=xn(t)
u(t)=un(t)

, ∇fu(t) �
=

∂f

∂u

∣∣∣∣∣x(t)=xn(t)
u(t)=un(t)

, ∇fv(t) �
=

∂f

∂v

∣∣∣∣∣x(t)=xn(t)
u(t)=un(t)

(126)

and
δx(t)

�
= (x(t)− xn(t)) , δu(t)

�
= (u(t)− un(t)) . (127)

Subtracting Equation 124 from Equation 125 provides a linear error model in the form

δẋ(t) = ∇fx(t)δx(t) +∇fu(t)δu(t) +∇fv(t)v(t). (128)

Identifying F(t) = ∇fx(t), B(t) = ∇fu(t), and G(t) = ∇fv(t), Equation 128, is now in
the same form as Equation 67 and may be solved for the perturbed state vector δx(t)
in closed form through Equation 70, yielding a linear discrete-time equation for error
propagation. Clearly this approximation is only valid when terms of second order and
higher are small enough to be neglected; when the true and nominal trajectories are close
and f(·) is suitably smooth. With judicious design of the estimation algorithm this can
be achieved surprisingly often. It is also possible to retain or approximate higher-order
terms from Equation 125 and so improve the validity of the approximation.

Similar arguments can be applied to linearise Equation 68 to provide an observation
error equation in the form

δż(t) = ∇hx(t)δx(t) +∇fh(t)δw(t). (129)

Identifying H(t) = ∇fx(t), and D(t) = ∇fw(t), Equation 129, is now in the same form as
Equation 68.

The discrete-time extended Kalman filter algorithm can now be stated. With appro-
priate identification of discrete time states and observations, the state model is written
as

x(k) = f (x(k − 1),u(k),v(k), k) , (130)

and the observation model as

z(k) = h (x(k),w(k)) . (131)

Multi-Sensor Data Fusion 69

Like the Kalman filter, it is assumed that the noises v(k) and w(k) are all Gaussian, tem-
porally uncorrelated and zero-mean with known variance as defined in Equations 77–79.
The EKF aims to minimise mean-squared error and therefore compute an approximation
to the conditional mean. It is assumed therefore that an estimate of the state at time
k − 1 is available which is approximately equal to the conditional mean,

x̂(k − 1 | k − 1) ≈ E{x(k − 1) | Zk−1} . (132)

The extended Kalman filter algorithm will now be stated without proof. Detailed deriva-
tions may be found in any number of books on the subject. The principle stages in the
derivation of the EKF follow directly from those of the linear Kalman filter with additional
step that the process and observation models are linearised as a Taylor’s series about the
estimate and prediction respectively. The algorithm has two stages:

Prediction: A prediction x̂(k | k − 1) of the state at time k and its covarianceP(k | k − 1)
is computed according to

x̂(k | k − 1) = f (x̂(k − 1 | k − 1),u(k)) (133)

P(k | k − 1) = ∇fx(k)P(k − 1 | k − 1)∇T fx(k) +∇fv(k)Q(k)∇T fv(k) (134)

Update: At time k an observation z(k) is made and the updated estimate x̂(k | k) of
the state x(k), together with the updated estimate covariance P(k | k) is computed from
the state prediction and observation according to

x̂(k | k) = x̂(k | k − 1) +W(k) [z(k)− h(x̂(k | k − 1))] (135)

P(k | k) = P(k | k − 1)−W(k)S(k)WT (k) (136)

where
W(k) = P(k | k − 1)∇Thx(k)S

−1(k) (137)

and
S(k) = ∇hx(k)P(k | k − 1)∇Thx(k) +∇hw(k)R(k)∇Thw(k). (138)

and where the Jacobian ∇f·(k) is evaluated at x(k − 1) = x̂(k − 1 | k − 1) and ∇h·(k) is
evaluated at and x(k) = x̂(k | k − 1).

A comparison of Equations 85–96 with Equations 133–138 makes it clear that the
extended Kalman filter algorithm is very similar to the linear Kalman filter algorithm,
with the substitutions F(k)→ ∇fx(k) and H(k)→ ∇hx(k) being made in the equations
for the variance and gain propagation. Thus, the extended Kalman filter is, in effect, a
linear estimator for a state error which is described by a linear equation and which is
being observed according to a linear equation of the form of Equation 76.

The extended Kalman filter works in much the same way as the linear Kalman filter
with some notable caveats:

Multi-Sensor Data Fusion 70

• The Jacobians ∇fx(k) and ∇hx(k) are typically not constant, being functions of
both state and timestep. This means that unlike the linear filter, the covariances
and gain matrix must be computed on-line as estimates and predictions are made
available, and will not in general tend to constant values. This significantly increase
the amount of computation which must be performed on-line by the algorithm.

• As the linearised model is derived by perturbing the true state and observation
models around a predicted or nominal trajectory, great care must be taken to ensure
that these predictions are always ‘close enough’ to the true state that second order
terms in the linearisation are indeed insignificant. If the nominal trajectory is too
far away from the true trajectory then the true covariance will be much larger than
the estimated covariance and the filter will become poorly matched. In extreme
cases the filter may also become unstable.

• The extended Kalman filter employs a linearised model which must be computed
from an approximate knowledge of the state. Unlike the linear algorithm, this means
that the filter must be accurately initialized at the start of operation to ensure that
the linearised models obtained are valid. If this is not done, the estimates computed
by the filter will simply be meaningless.

3.2 The Multi-Sensor Kalman Filter

Many of the techniques developed for single sensor Kalman filters can be applied directly
to multi-sensor estimation and tracking problems. In principle, a group of sensors can
be considered as a single sensor with a large and possibly complex observation model. In
this case the Kalman filter algorithm is directly applicable to the multi-sensor estimation
problem. However, as will be seen, this approach is practically limited to relatively small
numbers of sensors.

A second approach is to consider each observation made by each sensor as a separate
and independent realization, made according to a specific observation model, which can
be incorporate into the estimate in a sequential manner. Again, single-sensor estimation
techniques, applied sequentially, can be applied to this formulation of the multi-sensor
estimation problem. However, as will be seen, this approach requires that a new prediction
and gain matrix be calculated for each observation from each sensor at every time-step,
and so is computationally very expensive.

A third approach is to explicitly derive equations for integrating multiple observations
made at the same time into a common state estimate. Starting from the formulation of
the multi-sensor Kalman filter algorithm, employing a single model for a group of sensors,
a set of recursive equations for integrating individual sensor observations can be derived.
As will be seen, these equations are more naturally expressed in terms of ‘information’
rather than state and covariance.

The systems considered to this point are all ‘centralized’; the observations made by
sensors are reported back to a central processing unit in a raw form where they are
processed by a single algorithm in much the same way as single sensor systems. It is also

Multi-Sensor Data Fusion 71

possible to formulate the multi-sensor estimation problem in terms of a number of local
sensor filters, each generating state estimates, which are subsequently communicated in
processed form back to a central fusion centre. This distributed processing structure has
a number of advantages in terms of modularity of the resulting architecture. However,
the algorithms required to fuse estimate or track information at the central site can be
quite complex.

In this section, the multi-sensor estimation problem is first defined in terms of a set of
observation models and a single common process model. Each of the three centralised pro-
cessing algorithms described above will be developed and compared. techniques described
above; deriving appropriate equations and developing simple examples. The following sec-
tion will then show how these multi-sensor estimation algorithms are applied in simple
tracking problems.

Example 22
This example introduces a fundamental tracking problem which is further developed in

the remainder of this section. The problem consists of the tracking of a number of targets
from a number of tracking stations. The simulated target models and observations are
non-linear, while the tracking algorithms used at the sensor sites are linear. This is fairly
typical of actual tracking situations.

The targets to be tracked are modeled as 2-dimensional platforms with controllable
heading and velocity. The continuous model is given by:

 ẋ(t)ẏ(t)
φ̇(t)

 =

V (t) cos(φ+ γ)
V (t) sin(φ+ γ)

V (t)
κ

sin(γ)

where (x(t), y(t)) is the target position, φ(t) is the target orientation, V (t) and γ(t) are the
platform velocity and heading, and κ is a constant minimum instantaneous turn radius
for the target. Then x(t) = [x(t), y(t), φ(t)]T is defined as the state of the target and
u(t) = [V (t), γ(t)]T as the target input.

This model can be converted into a discrete time model using a constant (Euler) inte-
gration rule over the (asynchronous) sample interval ∆Tk = tk − tk−1 as

 x(k)y(k)
φ(k)

 =

x(k − 1) + ∆TV (k) cos(φ(k − 1) + γ(k))
y(k − 1) + ∆TV (k) sin(φ(k − 1) + γ(k))

∆Tφ(k − 1) + V (k)
κ

sin(γ(k))

which is in the standard form x(k) = f(x(k − 1),u(k)). For the purposes of simulation,
the model is assumed driven by Brownian models for velocity and heading,

V̇ (t) = V (t) + vV (t), γ̇(t) = γ(t) + vγ(t),

where v(t) = [vV (t), vγ(t)]
T is a zero mean white driving sequence with strength

E{v(t)vT (t)} =
[
σ2
v 0
0 σ2

γ

]

Multi-Sensor Data Fusion 72

The discrete-time model for this is simply

V (k) = V (k − 1) + ∆TkvV (k), γ(k) = γ(k − 1) + ∆Tkvγ(k).

A group of typical trajectories generated by this model is shown in Figure 19(a).
The targets are observed using sensors (tracking stations) i = 1, · · · , N whose location

and pointing angles Ti(t) = [Xi(t), Yi(t), ψi(t)]
T are known. This does not preclude the

sensors from actually being in motion. Each sensor site i is assumed to make range and
bearing observations to the jth targets as

[
zrij(k)
zθij(k)

]
=

√
(xj(k)−Xi(k))

2 + (yj(k)− Yi(k))
2

arctan
(
yj(k)−Yi(k)

xj(k)−Xi(k)

)
− ψi(k)

+ [wrij(k)

wθij(k)

]
,

where the random vector wij(k) = [rrij(k), r
θ
ij(k)]

T
describes the noise in the observation

process due to both modeling errors and uncertainty in observation. Observation noise
errors are taken to be zero mean and white with constant variance

E{wij(k)wTij(k)} =
[
σ2
r 0
0 σ2

θ

]
.

A typical set of observations generated by this model for a track is shown in Figure 19(b).

3.2.1 Observation Models

Figure 20 shows the centralised data fusion architecture developed in the following three
sections. A common model of the true state is provided in the usual linear discrete-time
form;

x(k) = F(k)x(k − 1) +G(k)u(k) + v(k), (139)

where x(·) is the state of interest, F(k) is the state transition matrix, G(k)the control
input model, u(k) the control input vector, and v(k) a random vector describing model
and process uncertainty, assumed zero mean and temporally uncorrelated;

E{v(k)} = 0, ∀k,

E{v(i)vT (j)} = δijQ(i).
(140)

It is important to emphasise that, because all sensors are observing the same state (there
would be little point in the data fusion problem otherwise) this process model must be
common to all sensors.

Observations of the state of this system are made synchronously by a number of
different sensors according to a set of linear observation models in the form

zs(k) = Hs(k)x(k) +ws(k), s = 1, · · · , S. (141)

Multi-Sensor Data Fusion 73

3 4 5 6 7 8

x 10
4

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

x 10
4 True Target Motions

x−position (m)

y−
po

si
tio

n
(m

)

Target True Position

(a)

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

x 10
4

5

5.2

5.4

5.6

5.8

6

6.2

6.4

x 10
4 True Target Motions

x−position (m)

y−
po

si
tio

n
(m

)

Target True Position
Tracking Stations
Target Observations

(b)

Figure 19: Typical tracks and observations generated by the ‘standard’ multi-target track-
ing example of Example 22: (a) true x–y tracks; (b) detail of track observations.

Multi-Sensor Data Fusion 74

w1

H1

Sensor 1

+

+ ws

Hs

Sensor s

+

+ wS

HS

Sensor S

+

+

......

x(k)= Fx (k-1)+ Gu (k)+v(k)

z1 zSzs

Fusion Centre
Generating x(k|k)

Figure 20: The structure of a centralised data fusion architecture. Each sensor
has a different observation model but observes a common process. Observa-
tions are sent in unprocessed form to a central fusion center that combines
observations to provide an estimate of the common state.

where zs(k) is the observation made at time k by sensor s of a common state x(k)
according to the observation model Hs(k) in additive noise ws(k). The case in which
the observations made by the sensors are asynchronous, in which different sensors make
observations at different rates, can be dealt with by using the observation model Hs(tk).

It is assumed that the observation noise models ws(k) are all zero mean, uncorrelated
between sensors and also temporally uncorrelated;

E{ws(k)} = 0, s = 1, · · · , S, ∀k

E{wp(i)wq(j)} = δijδpqRp(i).
(142)

It is also assumed that the process and observation noises are uncorrelated

E{v(i)wTs (j)} = 0, ∀i, j, s. (143)

This assumption is not absolutely necessary. It is relatively simple, but algebraically
complex, to include a term accounting for correlated process and observation errors (see
[12] Chapter 7, or [21].)

Multi-Sensor Data Fusion 75

3.2.2 The Group-Sensor Method

The simplest way of dealing with a multi-sensor estimation problem is to combine all
observations and observation models in to a single composite ‘group sensor’ and then
to deal with the estimation problem using an identical algorithm to that employed in
single-sensor systems. Defining a composite observation vector by

z(k)
�
=
[
zT1 (k), · · · , zTS (k)

]T
, (144)

and a composite observation model by

H(k)
�
=
[
HT

1 (k), · · · ,HT
s (k)]

]T
, (145)

with
w(k)

�
=
[
wT1 (k), · · · ,wTs (k)

]T
, (146)

where from Equation 142

R(k) = E{w(k)wT (k)}

= E{
[
wT1 (k), · · · ,wTs (k)

]T [
wT1 (k), · · · ,wTs (k)

]
}

= blockdiag{R1(k), · · · ,Rs(k)},

(147)

the observation noise covariance is block-diagonal with blocks equal to the individual
sensor observation noise covariance matrices. The set of observation equations defined
by Equation 141 may now be rewritten as a single ‘group’ observation model in standard
form

z(k) = H(k)x(k) +w(k). (148)

With a process model described by Equation 139 and a group observation model defined
by Equation 148, estimates of state can in principle be computed using the standard
Kalman filter algorithm given by Equations 94, 95, and 96.

Example 23
Consider again the tracking of a particle moving with constant velocity with process

model as defined in Example 17. Suppose we have two sensors, the first observing the
position and the second observing the velocity of the particle. The two observation models
will be

z1 = [1 0]
[
x(k)
ẋ(k)

]
+ w1(k), E{w2

1(k)} = σ2
r1
,

and

z2 = [0 1]
[
x(k)
ẋ(k)

]
+ w2(k), E{w2

2(k)} = σ2
r2
.

The composite group sensor model is simply given by[
z1

z2

]
=
[
1 0
0 1

] [
x(k)
ẋ(k)

]
+
[
w1

w2

]
, E{

[
w1

w2

]
[w1 w2]} =

[
σ2
r1

0
0 σ2

r2

]
.

Multi-Sensor Data Fusion 76

We could add a third sensor making additional measurements of position according to the
observation model

z3 = [1 0]
[
x(k)
ẋ(k)

]
+ w3(k), E{w2

3(k)} = σ2
r3
,

in which case the new composite group sensor model will be given by

 z1

z2

z3

 =

 1 0
0 1
1 0

[
x(k)
ẋ(k)

]
+

w1

w2

w3

 ,

E{

w1

w2

w3

 [w1 w2 w3]} =

σ

2
r1

0 0
0 σ2

r2
0

0 0 σ2
r3

 .

It should be clear that there is no objection in principle to incorporating as many sensors
as desired in this formulation of the multi-sensor estimation problem.

The prediction phase of the multi-sensor Kalman filter algorithm makes no reference to
the observations that are made and so is identical in every respect to the prediction phase
of the single-sensor filter. However, the update phase of the cycle, which incorporates
measurement information from sensors, will clearly be affected by an increase in the
number of sensors. Specifically, if we have a state vector x(k) of dimension n and S
sensors each with an observation vector zs(k), s = 1, · · · , S of dimension ms together
with an observation model Hs(k) of dimension ms× n then the group observation vector
z(k) will have dimension m =

∑S
s=1 ms and the group observation model H(k) will have

dimension m × n. The consequence of this lies in Equations 94, 95 and 96. Clearly

the group-sensor innovation ν(k)
�
=
[
νT1 (k), · · · , νT1 (k)

]T
will now have dimension m, and

the group-sensor innovation covariance matrix S(k) will have dimension m×m. As the
number of sensors incorporated in the group sensor model increases, so does the dimension
of the innovation vector and innovation covariance matrix. This is a problem because the
inverse of the innovation covariance is required to compute the group-sensor gain matrix
W(k) in Equation 96. It is well known that the calculation of a matrix inverse increase
in proportion to the square of its dimension.

For a small number of sensors and so for a relatively small innovation dimension, the
group-sensor approach to multi-sensor estimation may be the most practical to implement.
However, as the number of sensors increases, the value of this monolithic approach to the
data fusion problem becomes limited.

Example 24
It is common practice to use linear models to track targets that are clearly not linear,

particularly in multiple-target tracking problems. Consider again the tracks and obser-
vations generated by Example 22. The range and bearing observation vector zij(k) =

Multi-Sensor Data Fusion 77

[zrij(k), z
θ
ij(k)]

T can be converted into an equivalent observation vector in absolute carte-
sian coordinates as [

zxij(k)
zyij(k)

]
=
[
Xi(k) + zrij(k) cos z

θ
ij(k)

Yi(k) + zrij(k) sin z
θ
ij(k)

]
.

The observation covariance matrix can also be converted into absolute cartesian coordi-
nates using the relationship

Rxy(k) =
[
σ2
xx σxy

σxy σ2
yy

]
= Rot(zθij(k))

[
σ2
r 0
0 (zrij(k))

2σ2
θ

]
RotT (zθij(k))

where Rot(θ) is the rotation matrix

Rot(θ) =
[
cos θ − sin θ
sin θ cos θ

]
.

Note now that observation variance is strongly range dependent and is lined up with the
sensor bore-sight.

Once the observation vector has been converted into a global cartesian coordinate frame,
a linear filter can be used to estimate a linear target track. The two-dimensional particle
model of Example 17 with process model defined in Equation 80 and with an observation
model (now not constant) defined in Equation 81, can be used in the filter defined by
Equations 87–89 in Example 18.

Figure 21 shows the results of tracking four targets from two (stationary) sensor sites.
First note that the state variances and innovation variances are not constant because the
observation variances are strongly dependent on the relative position of observer and tar-
get. The asynchronous nature of the observations also contributes to this non-constancy.
It can be observed in Figure 21(c) and (d) the rising and falling as variance values as the
target shown comes closer to and then further away from the tracking sites.

The algorithm implemented here is equivalent to the group sensor method, but the
results will also be the same for the sequential and inverse covariance algorithms.

3.2.3 The Sequential-Sensor Method

A second approach to the multi-sensor estimation problem is to consider each sensor obser-
vation as an independent, sequential update to the state estimate and for each observation
to compute an appropriate prediction and gain matrix. In contrast to the group-sensor
approach in which a single sensor model was constructed by combining all sensor mod-
els, the sequential update approach considers each sensor model individually, one by one.
This means that the dimension of the innovation and innovation covariance matrix at
each update stage remains the same size as their single-sensor equivalents at the cost of
computing a new gain matrix for each observation from each sensor.

The description of the state to be estimated is assumed in the form of Equation 139.
Observations are made of this common state by S sensors according to Equation 141. It

Multi-Sensor Data Fusion 78

4.5 5 5.5 6 6.5 7 7.5 8

x 10
4

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

x 10
4 True Target Motions

x−position (m)

y−
po

si
tio

n
(m

)

Target True Position
Tracking Stations
Target Observations

(a)

6.05 6.1 6.15 6.2 6.25 6.3 6.35 6.4

x 10
4

5.5

5.6

5.7

5.8

5.9

6

x 10
4 Estimated Tracks

x−position (m)

y−
po

si
tio

n
(m

)

Target True Position
Tracking Stations
Target Observations
Estimated Tracks

(b)

100 150 200 250 300 350 400

−800

−600

−400

−200

0

200

400

600

800

x−innovation for Track 1 from Tracking Site 1

Time (s)

In
no

va
tio

n
(m

)

(c)

50 100 150 200 250 300 350 400 450
−200

−150

−100

−50

0

50

100

150

x−estimate error for Track 1 from all Tracking Sites

Time (s)

E
rr

or
 (

m
)

(d)

Figure 21: A multiple sensor multiple target tracking example with four targets and two
tracking stations: (a) True state and asynchronous observations; (b) Detail of true states,
track estimates, and observations; (c) Innovations and innovation standard deviations for
a particular track and tracking station; (d) Track position estimates from all sites together
with standard deviations (estimated errors).

Multi-Sensor Data Fusion 79

is assumed that every sensor takes an observation synchronously at every time step. The
case of asynchronous observations is straight-forward in this sequential-sensor algorithm.

It is assumed that it is possible to consider the observations made by the sensors at
any one time-step in a specific but otherwise arbitrary order so that the observation zp(k),
1 ≤ p ≤ S, from the pth sensor will be before the observation zp+1(k) from the (p + 1)th.
The set of observations made by the first p sensors at time k is denoted by (caligraphic
notation is used to denote sets across sensors compared to bold-face notation for sets
associated with a single sensor)

Zp(k) �
= {z1(k), · · · , zp(k)} , (149)

so that at every time-step the observation set ZS(k) is available to construct a new state
estimate. The set of all observations made by the pth sensor up to time k will be denoted
by

Zkp
�
= {zp(1), · · · , zp(k)} , (150)

and the set of all observations made by the first p sensors up to time k by

Zkp �
= {Zk1, · · · ,Zkp} , p ≤ S. (151)

Of particular interest is the set of observations consisting of all observations made by the
first p sensors up to a time i and all observations made by the first q sensors up to a time
j

Z i,jp,q = {Z ip ∪ Zjq} = {Zi1, · · · ,Zip,Zjp+1, · · · ,Zjq} , p < q, i ≥ j. (152)

and in particular the set consisting of all observations made by all sensors up to a time
k − 1 together with the observations made by the first p sensors up to time k

Zk,k−1
p,S = {Zkp ∪ Zk−1

S }

= {Zk1, · · · ,Zkp,Zk−1
p+1, · · · ,Zk−1

S }

= {Zp(k) ∪ Zk−1
S } , p < S.

(153)

The estimate constructed at each time-step on the basis of all observations from all sensors
up to time k−1 and on the observations made by the first p sensors up to time k is defined
by

x̂(k | k, p) = E{x(k) | Zk,k−1
p,S } , (154)

where in particular

x̂(k | k, 0) = x̂(k | k − 1) = E{x(k) | Zk−1
S } , (155)

is the prediction of the state at time k before any observations are made and

x̂(k | k, S) = x̂(k | k) = E{x(k) | ZkS} , (156)

Multi-Sensor Data Fusion 80

is the estimate at time k based on the observations made by all sensors.
It is assumed that Equations 140, 142, and 143 hold. For the first observation con-

sidered at any one time-step, the prediction stage for the sequential-sensor estimator is
very similar to the prediction stage for the single-sensor estimator. The state prediction
is simply

x̂(k | k, 0) = x̂(k | k − 1)

= F(k)x̂(k − 1 | k − 1) +G(k)u(k)

= F(k)x̂(k − 1 | k − 1, S) +G(k)u(k),

(157)

with corresponding covariance

P(k | k, 0) = P(k | k − 1)

= F(k)P(k − 1 | k − 1)FT (k) +Q(k)

= F(k)P(k − 1 | k − 1, S)FT (k) +Q(k).

(158)

The new estimate found by integrating the observation z1(k) made by the first sensor at
time k is then simply given by

x̂(k | k, 1) = x̂(k | k, 0) +W1(k) [z1(k)−H(i)kx̂(k | k, 0)] (159)

with covariance
P(k | k, 1) = P(k | k, 0)−W1(k)S1(k)W

T
1 (k), (160)

where
W1(k) = P(k | k, 0)HT

1 (k)S
−1
1 (k) (161)

and
S1(k) = H1(k)P(k | k, 0)HT

1 (k) +R1(k) (162)

To now integrate the observation made by the second sensor we need to employ the
estimate x̂(k | k, 1) to generate a prediction. However, if the observations made by the
sensors are assumed synchronous, the state does not evolve between successive sensor
readings from the same time-step and so F(k) = 1 and Q(k) = 0 (this is not true in
the asynchronous case). This means that the estimate x̂(k | k, 1) is itself the prediction
for the next update. In general, the estimate of the state x̂(k | k, p) at time k based on
observations made by all sensors up to time k − 1 and by the first p sensors up to time k
can be computed from the estimate x̂(k | k, p− 1) as

x̂(k | k, p) = x̂(k | k, p− 1) +Wp(k) [zp(k)−Hp(k)x̂(k | k, p− 1)] (163)

with covariance
P(k | k, p) = P(k | k, p)−Wp(k)Sp(k)W

T
p (k), (164)

Multi-Sensor Data Fusion 81

where
Wp(k) = P(k | k, p− 1)HT

p (k)S
−1
p (k) (165)

and
Sp(k) = Hp(k)P(k | k, p− 1)HT

p (k) +Rp(k) (166)

The state update at each time-step could be computed in a batch-mode by explicitly
expanding Equation 163 to become

x̂(k | k) =
[∏S

s=1 (1−Wi(k)Hi(k))
]
x̂(k | k − 1)

+
∑S
i=1

[∏S
j=i+1 (1−Wj(k)Hj(k))

]
Wi(k)zi(k)

(167)

The case in which the observations are not synchronous may be dealt with in a similar
way to the single-sensor asynchronous case providing that due care is taken to generate a
proper prediction at each time each sensor records an observation.

As with the group-sensor approach to multi-sensor estimation, this method works
well for small numbers of sensors8. However the amount of computation that must be
performed increases with an increase in the number of sensors as a new gain matrix
must be computed for each observation from each sensor at each time step. Although
this increase is linear (the dimension of the innovation covariance matrix which must be
inverted does not increase), it may still become a problem when large numbers of sensors
are employed.

3.2.4 The Inverse-Covariance Form

Neither the group-sensor nor the sequential-sensor algorithms are of much help when the
number of sensors becomes large. In such cases it would be useful to find an explicit set of
equations and provide an algorithm which would allow the direct integration of multiple
observations into a single composite estimate.

The multi-sensor estimation problem would be considerably simplified if it were possi-
ble to write the estimate as a simple linear combination of the innovations and prediction
in the standard Kalman filter form. Unfortunately

x̂(k | k) 	= x̂(k | k − 1) +
S∑
i=1

Wi(k) [zi(k)−Hi(k)x̂(k | k − 1)] , (168)

with
Wi(k) = P(k | k − 1)HT

i (k)S
−1(k), i = 1, · · · , S,

and
Si(k) = Hi(k)P(k | k − 1)HT

i (k) +Ri(k), i = 1, · · · , S.
8Indeed the sequential-sensor method is to be preferred when the observations are not synchronous as

in the asynchronous case a new prediction and gain matrix must be computed for each new observation
regardless.

Multi-Sensor Data Fusion 82

If the equality in Equation 168 were to hold, the group-sensor gain matrix would need to
be in block-diagonal form. For the gain-matrix to be block-diagonal, Equation 96 shows
that the group-sensor innovation covariance matrix must also be in block-diagonal form.
Unfortunately, this is never the case. For example with two sensors, the group-sensor
observation vector is

z(k) = [zT1 (k), z
T
2 (k)]

T
,

the group-sensor observation matrix is

H(k) = [HT
1 (k),H

T
2 (k)]

T
,

and the group-sensor observation noise covariance matrix

R(k) = blockdiag{R1(k),R2(k)}.
The group sensor innovation covariance is thus

S(k) = H(k)P(k | k − 1)HT (k) +R(k)

=
[
H1(k)
H2(k)

]
P(k | k − 1) [HT

1 (k) HT
2 (k)] +

[
R1(k) 0
0 R2(k)

]

=

 H1(k)P(k | k − 1)HT

1 (k) +R1(k)
H2(k)P(k | k − 1)HT

1 (k)H1(k)P(k | k − 1)HT
2 (k)

H2(k)P(k | k − 1)HT
2 (k) +R1(k)

 ,

(169)

which is clearly not block-diagonal; so the gain matrix

W(k) = P(k | k − 1)HT (k)S−1(k)

will also not be block-diagonal.
Fundamentally, the reason why Equation 168 may be used to integrate single-sensor

observations over time but not for integrating multiple observations at a single time-
step is that the innovations are correlated9. This correlation is due to the fact that the
innovations at a single time-step have a common prediction. This correlation is reflected
in the off-diagonal terms of Equation 169 of the form Hi(k)P(k | k − 1)HT

j (k).
The fact that the innovations generated by each sensor are correlated results in sig-

nificant problems in the implementation of multi-sensor estimation algorithms. Ignoring
correlations between innovations (assuming equality in Equation 168 and constructing
an estimate from a simple weighted sum of innovations) will result in disaster. This is
because the information due to the prediction will be ‘double counted’ in each update
thus implying considerably more information (and confidence) than is actually the case.
The use of ‘forgetting factors’ or ‘fading memory filters’ are routinely used to address this
issue, although these are really no more than domain-specific hacks. It should also be
pointed out that the correlatedness of innovations in multi-sensor estimation exposes the
popular fallacy that it is always ‘cheaper’ to communicate innovations in such algorithms.

9the innovations from one time-step to the next are uncorrelated but the innovations generated by
many sensors at a single time are correlated.

Multi-Sensor Data Fusion 83

Example 25
For a two-sensor system we can explicitly evaluate the combined innovation covariance

matrix using the matrix inversion lemma and compute the appropriate gain matrices for
the innovations of both sensors. Dropping all time subscripts, the inverse innovation
covariance may be written as [24]

S−1 =
[
S11 S12

ST12 S22

]−1

=
[

∆−1 −∆−1S12S
−1
22

−S−1
22 S

T
12∆

−1 S−1
22 + S−1

22 S
T
12∆

−1S12S
−1
22

]
, (170)

where
∆ = S11 − S12S

−1
22 S

T
12.

Making appropriate substitutions from Equation 169, and employing the matrix inversion
lemma twice, we have

∆−1 =
[
S11 − S12S

−1
22 S

T
12

]−1

=
[
H1PH

T
1 +R1 −H1PH

T
2

[
H2PH

T
2 +R2

]−1
H2PH

T
1

]−1

=
[
R1 +H1

(
P−PHT

2

[
H2PH

T
2 +R2

]−1
H2P

)
HT

1

]−1

=
[
R1 +H1

[
P−1 +HT

2R
−1
2 H2

]−1
HT

1

]−1

= R−1
1 −R−1

1 H1

[
P−1 +HT

1R
−1
1 H1 +HT

2R
−1
2 H2

]−1
HT

1R
−1
1 .

The two gain matrices may now be computed from

[W1 W2] = P
[
HT

1

HT
2

] [
S11 S12

ST12 S22

]−1

.

Substituting in from Equations 169 and 170 we have for the first gain

W1 = PHT
1∆

−1 −PHT
2

[
H2PH

T
2 +R2

]−1
H2PH

T
1∆

−1

=
(
P−PHT

2

[
H2PH

T
2 +R2

]−1
H2P

)
HT

1∆
−1

=
[
P−1 +HT

2R
−1
2 H2

]−1
HT

1∆
−1

=
[
P−1 +HT

2R
−1
2 H2

]−1

×
(
1−HT

1R
−1
1 H1

[
P−1 +HT

1R
−1
1 H1 +HT

2R
−1
2 H2

]−1
)
HT

1R
−1
1

=
[
P−1 +HT

1R
−1
1 H1 +HT

2R
−1
2 H2

]−1
HT

1R
−1
1 ,

Multi-Sensor Data Fusion 84

and similarly for the second gain

W2 =
[
P−1 +HT

1R
−1
1 H1 +HT

2R
−1
2 H2

]−1
HT

2R
−1
2

To derive a set of explicit equations for multi-sensor estimation problems, we could
begin by employing the matrix inversion lemma to invert the innovation matrix for the
two-sensor case given in Equation 169, and then proceed to simplify the equation for the
group-sensor gain matrix. However, it is easier in the first instance to write the gain and
update equations for the group-sensor system in inverse covariance form.
Rewriting the weights associated with the prediction and observation.

I−W(k)H(k) = [P(k | k − 1)−W(k)H(k)P(k | k − 1)]P−1(k | k − 1)

= [P(k | k − 1)−W(k)S(k) (S−1(k)H(k)P(k | k − 1))]

×P−1(k | k − 1)

=
[
P(k | k − 1)−W(k)S(k)WT (k)

]
P−1(k | k − 1)

= P(k | k)P−1(k | k − 1).

(171)

Similarly,

W(k) = P(k | k − 1)HT (k)
[
H(k)P(k | k − 1)HT (k) +R−1(k)

]−1

W(k)
[
H(k)P(k | k − 1)HT (k) +R−1(k)

]
= P(k | k − 1)HT (k)

W(k)R(k) = [1−W(k)H(k)]P(k | k − 1)HT (k)

so
W(k) = P(k | k)HT (k)R−1(k). (172)

Substituting Equations 171 and 172 into Equation 94 gives the state update equation as

x̂(k | k) = P(k | k)
[
P−1(k | k − 1)x̂(k | k − 1) +HT (k)R−1(k)z(k)

]
. (173)

From Equations 95, 96 and 171 we have

P(k | k) = [I−W(k)H(k)]P(k | k − 1)[I−W(k)H(k)]T +W(k)R(k)WT (k). (174)

Substituting in Equations 171 and 172 gives

P(k | k) = [P(k | k)P−1(k | k − 1)]P(k | k − 1)[P(k | k)P−1(k | k − 1)]
T

+
[
P(k | k)HT (k)R−1(k)

]
R(k)

[
P(k | k)HT (k)R−1(k)

]T
.

(175)

Multi-Sensor Data Fusion 85

Pre and post multiplying by P−1(k | k) then simplifying gives the covariance update
equation as

P(k | k) =
[
P−1(k | k − 1) +HT (k)R−1(k)H(k)

]−1
. (176)

Thus, in the inverse-covariance filter10, the state covariance is first obtained from Equation
176 and then the state itself is found from Equation 173.

Consider now S sensors, each observing a common state according to

zs(k) = Hs(k)x(k) + vs(k), s = 1, · · · , S, (177)

where the noise vs(k) is assumed to be white and uncorrelated in both time and between
sensors;

E{vs(k)} = 0,

E{vs(i)vp(j)} = δijδspRi(k) s, p = 1, · · · , S; i, j = 1, · · · .
(178)

A composite observation vector z(k) comprising a stacked vector of observations from the
S sensors may be constructed in the form

z(k) =

 z1(k)
· · ·

zTS (k)

 , (179)

a composite observation matrix H(k) comprising the stacked matrix of individual sensor
observation matrices

H(k) =

H1(k)
· · ·

HS(k)

 , (180)

and a composite noise vector v(k) comprising a stacked vector of noise vectors from each
of the sensors

v(k) =

 v1(k)
· · ·

vTS (k)

 . (181)

From Equation 178, the covariance in this composite noise vector is a block diagonal
matrix

R(k) = E{v(k)vT (k)} = blockdiag (R1(k), · · · ,RS(k)) . (182)

With these definitions, we have

HT (k)R−1(k)z(k) = [HT
1 (k) HT

2 (k) · · · HT
S (k)]

×

R−1

1 (k) 0 · · · 0
0 R−1

2 (k) · · · 0
...

...
. . .

...
0 0 · · · R−1

S (k)

z1(k)
z2(k)
...

zS(k)

=
∑S
i=1 H

T
i (k)R

−1
i (k)zi(k),

(183)

10Strictly, the inverse covariance filter is defined using the inverse of Equation 176 [28].

Multi-Sensor Data Fusion 86

and

HT (k)R−1(k)H(k) = [HT
1 (k) HT

2 (k) · · · HT
S (k)]

×

R−1

1 (k) 0 · · · 0
0 R−1

1 (k) · · · 0
...

...
. . .

...
0 0 · · · R−1

S (k)

H1(k)
H2(k)

...
HS(k)

=
∑S
i=1 H

T
i (k)R

−1
i (k)Hi(k).

(184)

Substituting Equation 183 into Equation 173, the state update equation becomes

x̂(k | k) = P(k | k)
[
P−1(k | k − 1)x̂(k | k − 1) +

S∑
i=1

HT
i (k)R

−1
i (k)zi(k)

]
. (185)

Substituting Equation 184 into Equation 176, the state-covariance update equation be-
comes

P(k | k) =
[
P−1(k | k − 1) +

S∑
i=1

HT
i (k)R

−1
i (k)Hi(k)

]−1

. (186)

The multi-sensor inverse-covariance filter thus consists of a conventional state and state-
covariance prediction stage given by Equations 85 and 86, followed by a state and state-
covariance update from Equations 185 and 186.

Example 26
Consider again the multi-sensor tracking problem of Example 23 with three sensors:

z1 = [1 0]
[
x(k)
ẋ(k)

]
+ w1(k), E{w2

1(k)} = σ2
r1
,

z2 = [0 1]
[
x(k)
ẋ(k)

]
+ w2(k), E{w2

2(k)} = σ2
r2
,

and

z3 = [1 0]
[
x(k)
ẋ(k)

]
+ w3(k), E{w2

3(k)} = σ2
r3
.

Thus the group sensor model is given by

H =

H1

H2

H3

 =

 1 0
0 1
1 0

 ,

R =

R1 0 0

0 R2 0
0 0 R3

 =

σ

2
r1

0 0
0 σ2

r2
0

0 0 σ2
r3

 .

Multi-Sensor Data Fusion 87

It follows that

HTR−1z =
[
1 0 1
0 1 0

]

1
σ2

r1

0 0

0 1
σ2

r2

0

0 0 1
σ2

r3

 z1

z2

z3

 =

[z1
σ2

r1

+ z3
σ2

r3
z2
σ2

r2

]
=

3∑
i=1

HT
i R

−1
i zi,

and

HTR−1H =
[
1 0 1
0 1 0

]

1
σ2

r1

0 0

0 1
σ2

r2

0

0 0 1
σ2

r3

 1 0
0 1
1 0

=

 1
σ2

r1

+ 1
σ2

r3

0

0 1
σ2

r2

=
3∑
i=1

HT
i R

−1
i Hi,

The advantages of the information-filter form over the group-sensor and asynchronous
approaches to the multi-sensor estimation problem derive directly from the formulation of
the update equations. Regardless of the number of sensors employed, the largest matrix
inversion required is of dimension the state vector. The addition of new sensors simply
requires that the new terms HT

i (k)R
−1
i (k)zi(k) and HT

i (k)R
−1
i (k)Hi(k) be constructed

and added together. Thus the complexity of the update algorithm grows only linearly
with the number of sensors employed. In addition, the update stage can take place in one
single step.

The advantages of the inverse-covariance estimator only become obvious when sig-
nificant numbers of sensors are employed. It is clear from Equation 186 that both the
prediction covariance and the updated inverse covariance matrix must be inverted in each
cycle of the filter, and so the inverse-covariance filter obtains an advantage only when the
dimension of the composite observation vector is approximately two times the dimension
of the common state vector. As we shall see later, it is possible to write the predic-
tion stage directly in terms of the inverse covariance, although this does not significantly
reduce the amount of computation required.

3.2.5 Track-to-Track Fusion

Track-to-track fusion encompasses algorithms which combine estimates from sensor sites.
This is distinct from algorithms that combine observations from different sensors; the
former is often called track fusion, the latter “scan” fusion. In track-to-track fusion
algorithms, local sensor sites generate local track estimates using a local Kalman filter.
These tracks are then communicated to a central fusion site where they are combined to

Multi-Sensor Data Fusion 88

Sensors

z1(k) x1(k|k), P 1(k|k)^
Local Tracker

zn(k) xn(k|k), P n(k|k)^
Local Tracker

z2(k) x2(k|k), P 2(k|k)^
Local Tracker

Track-to-Track
 Fusion

Algorithm

xT(k|k), P T(k|k)^

Figure 22: A typical track-to-track fusion architecture in which local tracks are generated
at local sensor sites and then communicated to a central fusion centre where a global
track file is assimilated.

generate a global track estimate. A typical track-to-track fusion architecture is shown
in Figure 22 In some configurations, the global estimate is then communicated back to
the local sensor sites (called a feed-back configuration). Track-to-track fusion algorithms
have a number of potential advantages over scan fusion methods:

1. Local track information is made available for use locally at each sensor sites.

2. Track information may be communicated at a lower, more compact, rate to the
central site for fusion.

However track-to-track fusion algorithms also add additional complexity to a system.
Detailed expositions of the track-to-track fusion method can be found in [4, 9].

The track-to-track fusion method begins by assuming a common underlying model of
the state being observed in the standard form

x(k) = F(k)x(k − 1) +B(k)u(k) +G(k)v(k). (187)

The state is assumed to be observed by a number of sensors each with different observation
models in the form

zi(k) = Hi(k)x(k) +wi(k), i = 1, 2, (188)

but where observation noises are assumed independent.

E{wi(k)wj(k)} = δijRi(k). (189)

A local track is formed by each sensor node, on the basis of only local observations, using
the normal Kalman filter algorithm as

x̂i(k | k) = x̂i(k | k − 1) +Wi(k) [zi(k)−Hi(k)x̂i(k | k − 1)] , (190)

Multi-Sensor Data Fusion 89

and
Pi(k | k) = Pi(k | k − 1)−Wi(k)Si(k)W

T
i (k), (191)

where
Wi(k) = Pi(k | k − 1)HT

i (k)S
−1
i (k), (192)

and
Si(k) =

[
Hi(k)Pi(k | k − 1)HT

i (k) +Ri(k)
]
. (193)

Local state predictions are generated from a common state model

x̂i(k | k − 1) = F(k)x̂i(k − 1 | k − 1) +B(k)u(k) (194)

and
Pi(k | k − 1) = F(k)Pi(k − 1 | k − 1)FT (k) +G(k)Q(k)GT (k) (195)

A straight-forward track fusion algorithm is simply to take the variance weighted
average of tracks as follows:

x̂T (k | k) = PT (k | k)
N∑
i=1

P−1
i (k | k)x̂i(k | k) (196)

PT (k | k) =
[
N∑
i=1

P−1
i (k | k)

]−1

. (197)

This is a commonly practically used track-to-track fusion method.
However, a central issue in track-to-track fusion is that any two tracks x̂i(k | k) and

x̂j(k | k) are correlated because they have a common prediction error resulting from a
common process model. This correlation is intrinsic to the problem; it is only because the
states have this process model in common that there is a reason to fuse the two. Thus it
is not possible in general to compute a fused track x̂T (k | k) from a simple linear weighted
sum of local tracks.

To address the general track-to-track fusion problem, it is necessary to find an expres-
sion for the correlation between two tracks. When this is known, it is possible to fuse the
two estimates. To begin, we compute an expression for the track estimate and prediction
errors as

x̃i(k | k) = x(k)− x̂i(k | k)
= x(k)− x̂i(k | k − 1)−Wi(k) [zi(k)−Hi(k)x̂i(k | k − 1)]

= x(k)− x̂i(k | k − 1)−Wi(k) [Hi(k)x(k) +wi(k)−Hi(k)x̂i(k | k − 1)]

= [1−Wi(k)Hi(k)] x̃i(k | k − 1)−Wi(k)wi(k) (198)

and

x̃i(k | k − 1) = x(k)− x̂i(k | k − 1)

= F(k)x(k − 1)− F(k)x̂i(k − 1 | k − 1) +G(k)v(k)

= F(k)x̃i(k − 1 | k − 1) +G(k)v(k) (199)

Multi-Sensor Data Fusion 90

Squaring and taking expectations of Equation 199 yields and expression for the predicted
track-to-track cross-correlation

Pij(k | k − 1) = E{x̃i(k | k − 1)x̃Tj (k | k − 1) | Zk−1}
= E{[F(k)x̃i(k − 1 | k − 1) +G(k)v(k)]

× [F(k)x̃i(k − 1 | k − 1) +G(k)v(k)]T}
= F(k)E{x̃i(k − 1 | k − 1)x̃Tj (k − 1 | k − 1) | Zk−1} FT (k)

+G(k)E{v(k)vT (k)} GT (k)

= F(k)Pij(k − 1 | k − 1)FT (k) +G(k)Q(k)GT (k). (200)

Squaring and taking expectations of Equation 198 yields an expression for the estimate
track-to-track cross-correlation

Pij(k | k) = E{x̃i(k | k)x̃Tj (k | k)}
= E{[(1−Wi(k)Hi(k)) x̃i(k | k − 1)−Wi(k)wi(k)]

[(1−Wj(k)Hj(k)) x̃j(k | k − 1)−Wj(k)wj(k)] | Zk}
= [1−Wi(k)Hi(k)] E{x̃i(k | k − 1)x̃Tj (k | k − 1)} [1−Wj(k)Hj(k)]

T

+Wi(k)E{wi(k)wTj (k)}WT
j (k)

= [1−Wi(k)Hi(k)]Pij(k | k − 1) [1−Wj(k)Hj(k)]
T (201)

where we have used the fact that E{wi(k)wTj (k)} = 0. Together, Equations 200 and 201
provide a recursive relationship for computing the cross-correlation Pij(k | k) between the
two track estimates x̂i(k | k) and x̂j(k | k).

Fusing together two tracks is essentially the same as adding observation information
except that the data are correlated. Recall

x̂(k | k) = x̂(k | k − 1) +PxzP
−1
zz [z(k)− ẑ(k | k − 1)] (202)

and
P(k | k) = P(k | k − 1)−PxzP

−1
zz P

T
xz (203)

so
x̂T (k | k) = x̂i(k | k) +Pi|j(k | k)P−1

i+j(k | k) [x̂j(k | k)− x̂i(k | k)] (204)

and
PT (k | k) = Pi(k | k)−Pi|j(k | k)P−1

i+j(k | k)PTi|j(k | k) (205)

identify
Pi|j(k | k) = Pi(k | k)−Pij(k | k) (206)

and
Pi+j(k | k) = Pi(k | k) +Pj(k | k)−Pij(k | k)−PTij(k | k) (207)

Multi-Sensor Data Fusion 91

Substituting Equations 206 and 207 into Equation 204 gives

x̂T (k | k) = x̂i(k | k) + [Pi(k | k)−Pij(k | k)]
×
[
Pi(k | k) +Pj(k | k)−Pij(k | k)−PTij(k | k)

]−1

× [x̂j(k | k)− x̂i(k | k)] (208)

as the combined track estimate, and

PT (k | k) = Pi(k | k)− [Pi(k | k)−Pij(k | k)]
×
[
Pi(k | k) +Pj(k | k)−Pij(k | k)−PTij(k | k)

]−1

× [Pi(k | k)−Pij(k | k)]T (209)

Equations 208 and 209 are in the form of predictor-corrector equations. As written,
x̂i(k | k) is the predicted track, and x̂j(k | k)− x̂i(k | k) is the correction term, weighted
by a gain proportional to the corresponding covariances. The equations are symmetric so
that the role of i and j are interchangeable.

There are a number of basic extensions to the basic track-to-track fusion algorithm.
Notable is the use of “equivalent” measurements described in [9]. However, these methods
are more appropriately described in context of the information filter.

3.3 Non-linear Data Fusion Methods

In a wide number of practical problems, the errors in process model predictions and
in observation model updates are not easily described by symmetric and well-behaved
Gaussian distributions. Further, the process and observation models themselves may not
be linear or even smooth in the state. In such cases the Kalman filter, as a method
for fusing information, may not be the appropriate data fusion algorithm for the task.
Instances where this will be the case include:

• Systems in which the process or observation model are highly sensitive to the state
prediction values and thus the point around which an extended Kalman filter may
be linearised.

• Systems in which the process model is discontinuous, and indeed might have been
formed from fitting of lines or curves to experimental data.

• Systems in which the error models for either process or observation or highly skewed
so that the mean and the most likely values are substantially different.

• Systems in which the error models are multi-modal, having more than one “likely”
value.

In general, the most appropriate course of action in these situations is to return to Bayes
Theorem and seek an estimator which can more readily deal with either non Gaussian
errors or with non-linear process or observation models.

Multi-Sensor Data Fusion 92

3.3.1 Likelihood Estimation Methods

The recursive estimation problem can be derived entirely in probabilistic form using Bayes
theorem. The general estimation problem requires that the probability distribution

P (xk | Zk,Uk,x0) (210)

be computed for all times k. This probability distribution describes the posterior density
of vehicle state (at time k) given the recorded observations and control inputs up to
and including time k together with the initial state. To develop a recursive estimation
algorithm, a prior P (xk−1 | Zk−1,Uk−1) at time k−1 is assumed. The posterior, following a
control uk and observation zk, is then computed using Bayes Theorem. This computation
requires that a state transition model and an observation model are defined.

The observation model is generally described in the form

P (zk | xk), (211)

and is assumed conditionally independent, so that

P (Zk | Xk) =
k∏
i=1

P (zi | Xk)

=
k∏
i=1

P (zi | xi). (212)

The transition model for the state can be described in terms of a probability distribu-
tion on state transitions in the form

P (xk | uk,xk−1). (213)

The state transition may reasonably be assumed to be a Markov process in which the
next state xk depends only on the immediately proceeding state xk−1 and the applied
control uk, and is independent of the observations made.

With these definitions and models, Bayes Theorem may be employed to define a
recursive solution to Equation 210.

To derive a recursive update rule for the posterior, the chain rule of conditional prob-
ability is employed to expand the joint distribution on the state and observation in terms
of the state

P (xk, zk | Zk−1,Uk,x0) = P (xk | zk,Zk−1,Uk,x0)P (zk | Zk−1,Uk,x0)

= P (xk | ZkUk,x0)P (zk | Zk−1Uk,x0), (214)

and then in terms of the observation

P (xk, zk | Zk−1,Uk,x0) = P (zk | xk,Zk−1,Uk,x0)P (xk, | Zk−1,Uk,x0)

= P (zk | xk)P (xk | Zk−1,Uk,x0) (215)

Multi-Sensor Data Fusion 93

where the last equality employs the assumptions established for the sensor model in
Equation 211.

Equating Equations 214 and 215 and rearranging gives

P (xk | Zk,Uk,x0) =
P (zk | xk)P (xk | Zk−1,Uk,x0)

P (zk | Zk−1,Uk)
. (216)

The denominator in Equation 216 is independent of the state and can therefore be set to
some normalising constant K. The total probability theorem can be used to rewrite the
second term in the numerator in terms of the state process model and the joint posterior
from time-step k − 1 as

P (xk | Zk−1,Uk,x0) =
∫
P (xk,xk−1 | Zk−1,Ukx0)dxk−1

=
∫
P (xk | xk−1,Z

k−1,Uk,x0)P (xk−1 | Zk−1,Uk,x0)dxk−1

=
∫
P (xk | xk−1,uk)P (xk−1 | Zk−1,Uk−1,x0)dxk−1 (217)

where the last equality follows from the assumed independence of state transition from
observations, and from the causality of the control input on state transition.

P (xk | Zk,Uk,x0) = K.P (zk | xk)
∫
P (xk | xk−1,uk)P (xk−1 | Zk−1,Uk−1,x0)dxk−1

(218)
Equation 218 provides a recursive formulation of the posterior in terms of an obser-

vation model and a motion model. It is completely general in allowing any probabilistic
and kinematic model for both state transition and observation. It also allows, post pos-
terior, any estimation scheme (maximum likelihood, mini-max, minimum-mean-squared,
for example) to be applied.

The following algorithms use this formulation of the estimation problem. They are
becoming increasingly important as available computational resources increase and as data
fusion problems addressed become more complex. However, time precludes discussing
these algorithms in detail.

3.3.2 The Particle Filter

The particle filter is essentially a monte-carlo simulation of Equation 218. See in particular
[40] for data fusion application of the particle filter method. This also incorporates other
related report information (such as shoreline boundaries) in full probabilistic form).

3.3.3 The Sum-of-Gaussians Method

The sum-of-Gaussians method replaces the distributions in the general formulation with
an approximation as a sum of Gaussians. In principle, this can be used to model any dis-
tribution. Further, there are efficient update rules for a sum-of-Gaussians approximation.
See in particular [22, 1, 29].

Multi-Sensor Data Fusion 94

3.3.4 The Distribution Approximation Filter (DAF)

The distribution approximation filter (DAF) is a recent method which provides an efficient
method of approximating the non-linear transformation of Gaussians. See [23] for details.

3.4 Multi-Sensor Data Association

Hx (k-1|k-1)^

Hx (k|k-1)^

z(k)
d2

d2=γ

Figure 23: The validation gate. The gate is defined in the observation space and is centered
on the observation prediction H(k)x̂(k | k − 1). The gate is the normalised innovation.
For a fixed value of d2 = γ the gate is ellipsoidal and defined by the eigenvalues of the
inverse innovation covariance. The size of the gate is set by requiring the probability of
correct association to be above a certain threshold. Observations that fall within this gate
are considered ‘valid’.

In multi-sensor estimation problems, the many measurements made need to be cor-
rectly associated with the underlying states that are being observed. This is the data
association problem.

The data association problem includes issues of validating data (ensuring it is not
erroneous or arising from clutter11 for example), associating the correct measurements to

11The term clutter refers to detections or returns from nearby objects, weather, electromagnetic in-
terference, acoustic anomalies, false alarms, etc., that are generally random in number, location, and
intensity. This leads to the occurrence of (possibly) several measurements in the vicinity of the target.
The implication of the single target assumption is that the undesirable measurements constitute ran-

Multi-Sensor Data Fusion 95

the correct states (particularly in multi-target tracking problems), and initialising new
tracks or states as required. Whereas conventional tracking is really concerned with
uncertainty in measurement location, data association is concerned with uncertainty in
measurement origin.

The foundations of data association lie in the use of the normalised innovation or
’validation gate’. The innovation νij(k) is the difference between the observation zi(k)
actually made, and that predicted by the filter ẑj(k | k − 1) = Hj(k)x̂j(k | k − 1);

νij(k) = zi(k)− ẑj(k | k − 1) = zi(k)−Hj(k)x̂j(k | k − 1).

The innovation variance is simply defined as

Sij(k) = E{νij(k)νTij(k)}
= Hj(k)Pj(k | k − 1)HT

j (k) +Ri(k).

The normalised innovation between an observation i and a track j is then given by

d2
ij(k) = νTij(k)S

−1
ij (k)νij(k). (219)

The normalised innovation is a scalar quantity. It can be shown that if the innovations are
zero mean and white (the filter is operating correctly) then the normalised innovation is
a χ2 random variable in nz degrees of freedom (the dimension of the observation vector).
It is therefore possible to establish values for d2

ij which enclose a specific probability of
the observation and predicted observation being correctly associated [7, 18]. This is key
to establishing data association methods. Referring to Figure 23, for a fixed value of d2

ij

the normalised innovation describes a quadratic centered on the prediction generating
an ellipsoidal volume (of dimension nz) whose axes are proportional to the reciprocal of
the eigenvalues of S−1

ij (k). This ellipsoid defines an area or volume in observation space
centered on the observation prediction. If an observation falls within this volume then it
is considered ‘valid’; thus the term validation gate.

The normalised innovation serves as the basis for all data association techniques. The
reasons for this are clear. First, the innovation is practically the only measure of divergence
of state estimate from observation sequence. Second, it admits a precise probabilistic
measure of correct association.

3.4.1 The Nearest-Neighbour Standard Filter

The nearest neighbour standard filter (NNSF) applies the obvious data association policy:
It simply chooses the measurement ‘nearest’ to the predicted measurement as the only
validated observation, and the remaining observations are rejected from consideration
(Figure 24). The single validated measurement is used for updating the state estimate
of the target. The definition of ‘nearest’ is the observation which yields the minimum

dom interference. A common mathematical model for such interference is a uniform distribution in the
measurement space.

Multi-Sensor Data Fusion 96

Hx (k|k-1)^

z1(k)

d1
2

d3
2

d
2

2

z3(k)

z2(k)

Figure 24: For a single target track, the nearest-neighbour standard filter selects the
observation ‘nearest’ the prediction for association. All other observations are rejected.
The proximity measure is the normalised innovation.

normalised innovation as defined in Equation 219. If there are no observations with
normalised innovation values less than some defined d2

ij, then no observation is associated.
The NNSF algorithm implicitly assumes a high probability of detection for the target and
a low rate of clutter in the gate. In such situations, the NNSF algorithm is usually
adequate and is practically used in many applications.

There are a number of problems with the basic NNSF algorithm particularly in situ-
ations where there is a high degree of clutter and where there are potentially a number
of closely spaced target states to be tracked. Figure 25 shows a particular situation in
which two track validation gates overlap. In this, and many other cases, the problem of
correctly associating an observation with a track is complex. This is first because the
obvious pair-wise closest association is not necessarily correct, and second because associ-
ation is order dependent and so all associations must be considered together to achieve a
correct assignment (even when the probability of detect is unity and the false alarm rate
is zero). The following two algorithms are the most widely used and common methods of
overcoming these two problems (see [7, 9] for detailed expositions of the data association
problem).

3.4.2 The Probabilistic Data Association Filter

The Probabilistic Data Association Filter (PDAF) and Joint Probabilistic Data Associ-
ation Filter (JPDAF) are Bayesian algorithms which compute a probability of correct
association between an observation and track. This probability is then used to form a

Multi-Sensor Data Fusion 97

z1(k)

z3(k)
z

2
(k)

Hx 1(k|k-1)^

Hx 2(k|k-1)^

d2
1-1

d2
2-1

d2
2-2

d2
1-2

d2
1-3

Figure 25: For multiple targets, each target track selects its nearest observation indepen-
dently of other possible observation-track associations. This can easily lead to erroneous
assignments in high target density situations.

weighted average ’correct track’.
The PDAF algorithm starts with a set of validated measurements (those that fall

within the initial validation gate). Denoting the set of validated measurements at time k
as

Z(k) ≡ {zi(k)}mk

i=1

where mk is the number of measurements in the validation region. The cumulative set of
measurements is denoted

Zk ≡ {Z(j)}kj=1

A basic (sub-optimal) assumption is made that the latest state is assumed normally
distributed according to the latest estimate and covariance matrix:

p[x(k) | Zk−1] = N[x(k); x̂(k | k − 1),P(k | k − 1)]

This assumption means that Z(k) contains measurements from the same elliptical vali-
dation gate as used in the NNSF algorithm. This is shown in Figure 26.

In the PDAF algorithm, it is assumed that there is only one target of interest whose
track has been initialized (the JPDAF algorithm deals with the more complex problem
of coupled multi-target tracks). At each time step a validation region is set up. Among
the possibly several validated measurements, one can be target originated, if the target
was detected. The remaining measurements are assumed due to false alarms or residual

Multi-Sensor Data Fusion 98

Hx (k|k-1)^ z
1
(k)β1

z2(k)

β2

x2(k|k)^

x1(k|k)^

β2x2(k|k)^

β1x1(k|k)^

x(k|k)^

Σ

Figure 26: The probabilistic data association algorithm associates all valid observations
with a track. For each validated observation, an updated estimate xjikk is computed. A
probability of correct association βi is computed for each such track. Then a combined
track is formed from the weighted average of these tracks: x̂(k | k) = ∑

βix̂i(k | k). For
multiple targets, the same process occurs although the probability calculations are more
complex.

Multi-Sensor Data Fusion 99

clutter and are modeled as IID random variables with uniform density. Define θi(k) to be
the event that the measurement zi(k) originated from the target, and θ0(k) as the event
that no measurement originated from the target. Let the probabilities of these events be

βi(k) ≡ P [θi(k) | Zk], i = 0, 1, · · · ,mk

The events are assumed mutually independent and exhaustive:
mk∑
i=0

βi(k) = 1

Using the total probability theorem with respect to the above events, the conditional
mean of the state at time k can be written as

x̂(k | k) = E{x(k) | Zk}
=

mk∑
i=0

E{x(k) | θi(k), Zk} P (θi(k) | Zk)

=
mk∑
i=0

x̂i((| k)k)βi(k) (220)

where x̂i(k | k) is the updated estimate conditioned on the event θi(k) that the ith vali-
dated measurement is correct. This estimate is itself found from

x̂i(k | k) = x̂(k | k − 1) +W((k)i)νi(k), i = 1, · · · ,mk (221)

where
νi(k) = zi(k)−Hi(k)x̂(k | k − 1)

and if none of the measurements are correct, the estimate is

x̂0(k | k) = x̂(k | k − 1)

The PDAF algorithm now proceeds as follows:

1. The set of validated measurements is computed.

2. For each validated measurement an updated track is computed using Equation 221.

3. For each updated track an association probability βi is computed. The calculation
of this probability can be quite complex and dependent on the assumed clutter
densities. However, it is normally adequate to set βi proportional to the normalised
innovation for the association.

4. A combined (average) track is computed using Equation 220. A combined average
covariance can also be computed although this can become quite complex (see [7]
for details.

5. A single prediction of the combined track is then made to the next scan time and
the process is repeated.

The PDAF and JPDAF methods are appropriate in situations where there is a high degree
of clutter. As pointed out to the author in conversation once: “The great advantage with
the PDAF method is that you are never wrong. The problem is you are also never right”.

Multi-Sensor Data Fusion 100

3.4.3 The Multiple Hypothesis Tracking (MHT) Filter

The Multiple Hypothesis Tracking (MHT) filter (and the related Track Splitting Filter
(TSF)), maintain separate tracks for each possible associated observation. At each time
step, the predicted observation is used to establish a validation gate (see Figure 27).
For each measurement that is found in this validation gate, a new hypothesis track is
generated. Thus a single track is split in to n tracks, one associated with each valid
measurement plus one track (usually denoted 0) for the no-association hypothesis. Each
of these new tracks is then treated independently and used to generate new predictions
for the next time step. Since the number of branches into which the track is split can grow
exponentially, the likelihood function of each split track is computed and the unlikely ones
are discarded.

The MHT algorithm works on complete sequences of observations. That is, the prob-
ability that a given branch sequence of observations (from root to leaf) is correct. Denote
the lth sequence of measurements up to time k as:

Zkl ≡ {zi1,l
(1), · · · , zik,l

(k)}
where zi(()j) is the ith measurement at time j. Let Θk,l be the event that the sequence
Zkl is a correct track, then the likelihood function for this event is clearly

Λ(Θk,l) = P (Zk,l | Θkl) = P (zi1,l
(1), · · · , zik,l

(k) | Θkl) (222)

Denoting Zk the cumulative set of all measurements up to time k, Equation 222 reduces
to

Λ(Θk,l) =
k∏
j=1

P (zij,l
| Zj−1Θk,l)

Under assumptions of linearity and Gaussianity, this reduces to

Λ(Θk,l) = ck exp

−1

2

k∑
j=1

νT (j)S−1(j)ν(j)

where ν(j) = z(j)− ẑ(j | j − 1) is the innovation between track and measurement.
The corresponding modified log-likelihood function is given by

λ(k) ≡ −2 log
[
Λ(Θk,l)

ck

]
=

k∑
j=1

νT (j)S−1(j)ν(j) (223)

which can be recursively computed as

λ(k) = λ(k − 1) + νT (k)S−1(k)ν(k). (224)

The last term above is a measure of the “goodness of fit” of the measurements. A statis-
tical test for accepting a track is that the log-likelihood function satisfies λ(k) < d.

The MHT algorithm now proceeds as follows

Multi-Sensor Data Fusion 101

Hx (k|k-1)^

z1(k)

λ1

z2(k)

λ2

x2(k|k)^

x
1
(k|k)^

x0(k|k)^

λ0

z2(k+1)

z1(k+1)

x02(k|k)^

x22(k|k)^

x21(k|k)^

λ02

λ22

λ21

x(k-1|k-1)^

x10(k|k)^

λ10

Figure 27: In the track splitting or multiple hypothesis filter, every validated observation
zp(k) is used to establish a new track x̂p(k | k). In addition the ’false alarm’ and/or ’missed
observation’ hypothesis also generates a track x̂0(k | k). These tracks are propagated
forward to the next gate and again each track is associated with each valid observation
zq(k + 1) and the tracks are again split into tracks associated with each possible pair-wise
association x̂pq(k + 1 | k + 1). Probabilities or likelihoods λpq of correct track histories
are maintained to prune the resulting hypothesis tree.

Multi-Sensor Data Fusion 102

1. A predicted observation is produced and a validation region around the prediction
established.

2. All observations that fall within the validation gate are considered candidate asso-
ciations. In addition, the no-association hypothesis ‘0’ is formed.

3. The track is updated with each validated hypothesis according to Equations 221.

4. A likelihood associated with correct association is computed according to Equation
223.

5. The likelihood of association is recursively added to the likelihood of the prediction
path having been correctly associated according to Equation 224. This yields a
likelihood of the entire sequence of observations to this point being correct.

6. Some pruning of the hypothesis tree may take place at this point.

7. Each track hypothesis is now independently predicted forward to the next time-step,
effectively splitting the track equally into each possible competing hypothesis.

8. The process repeats.

There are three points to note about the MHT (and related TSF) algorithm:

• We have implicitly assumed that the detection probability of detection is unity.
That is only complete sequences of measurements are considered in the track for-
mation process. ¡issing observations can be taken into account by incorporating a
probability of detection at each stage.

• In practice, the likelihood pruning method does not work well with long measure-
ment sequences as it becomes dominated by old measurements. One “hack” around
this is to use a fading-memory window.

• The method is clearly dominated by the computational and memory requirements
of the splitting algorithm. At each stage each hypothesis can generate many new
hypotheses and filters that must be run in parallel.

The MHT algorithm is generally good in situation where there are low clutter rates
but high track uncertainty (crossing tracks, maneuvering targets, etc). Practically, the
algorithm is dominated by the approach used for pruning unlikely target hypotheses.

3.4.4 Data Association in Track-to-Track Fusion

Data association methods can be extended to association of tracks rather than observa-
tions. Such situations occur in distributed architectures and particularly in track-to-track
fusion algorithms.

Multi-Sensor Data Fusion 103

Following the track-to-track fusion algorithm of Equations 208 and 209 a gate equiva-
lent to Equation 219 can be established for testing of two tracks i and j can be associated

d2
ij(k) = [x̂i(k | k)− x̂j(k | k)]

[
Pi(k | k) +Pj(k | k)−Pij(k | k)−PTij(k | k)

]−1

× [x̂i(k | k)− x̂j(k | k)]T . (225)

This gate defines a similar ellipsoidal region to the normal validation gate. The test
statistic is also χ2 distributed, but in nx degrees of freedom (the dimension of the state
vector).

Having established this gate, the normal NNSF type algorithm is usually used for
associating tracks. However, there is no objection in principle using either PDAF or
MHT algorithms for a similar purpose.

3.4.5 Maintaining and Managing Track Files

In multiple target problems in particular, there is a need to maintain a record of how
observations and tracks are associated together. This is generally termed a Track File.
Track files may be maintained centrally as a ’Joint Assignment Matrix’ (JAM)12. Track
files may also be maintained locally at a sensor site, although these must then be coordi-
nated in some way. A detailed exposition of track file maintenance is beyond the scope
of this course (see [9] p603–605 for a detailed discussion).

12The Joint Assignment Matrix is used, algorithmically, in a number of advanced data association
methods.

Multi-Sensor Data Fusion 104

4 Distributed and Decentralised Data Fusion Sys-

tems

The section addresses the development of data fusion algorithms for distributed and de-
centralised data fusion architectures.

The nature of data fusion is that there are a number of sensors physically distributed
around an environment. In a centralised data fusion system, raw sensor information is then
communicated back to a central processor where the information is combined to produce
a single fused picture of the environment. In a distributed data fusion system, each sensor
has it’s own local processor which can generally extract useful information from the raw
sensor data prior to communication. This has the advantage that less information is
normally communicated, the computational load on the central processor is reduced and
the sensors themselves can be constructed in a reasonably modular manner. The degree
to which local processing occurs at a sensor site varies substantially from simple validation
and data compression up to the full construction of tracks or interpretation of information
locally.

While for many systems a centralised approach to data fusion is adequate, the increas-
ing sophistication, functional requirements, complexity and size of data fusion systems,
coupled with the ever reducing cost of computing power argues more and more toward
some form of distributed processing. The central issue in designing distributed data fusion
systems is the development of appropriate algorithms which can operate at a number of
distributed sites in a consistent manner. This is the focus of this section.

This section begins with a general discussion of data fusion architectures and the chal-
lenges posed in developing distributed data fusion algorithms. The information filter, and
more generally the log-likelihood implementations of Bayes theorem are then developed
and it is shown how these can readily be mapped to many distributed and decentralised
data fusion systems. The issue of communication is a major problem in distributed data
fusion systems. This is because of both limited communication bandwidth and also time
delays and communication failures that can occur between sensing and fusion processes.
The communication problem is dealt with in depth in this section. Finally, some advanced
issues in distributed and decentralised data fusion are briefly considered. These include
the problem of model distribution, where each local sensor maintains a different model
of the environment; sensor management, in which a limited set of sensor resources must
be used cooperatively; and system organisation, in which the optimal design of sensor
networks is addressed.

4.1 Data Fusion Architectures

Distributed data fusion systems may take many forms. At the simplest level, sensors could
communicate information directly to a central processor where it is combined. Little or
no local processing of information need take place and the relative advantage of having
many sources of information is sacrificed to having complete centralised control over the
processing and interpretation of this information. As more processing occurs locally, so

Multi-Sensor Data Fusion 105

computational and communication burden can be removed from the fusion center, but at
the cost of reduced direct control of low-level sensor information.

Increasing intelligence of local sensor nodes naturally results in a hierarchical structure
for the fusion architecture. This has the advantage of imposing some order on the fusion
process, but the disadvantage of placing a specific and often rigid structure on the fusion
system.

Other distributed architectures consider sensor nodes with significant local ability to
generate tracks and engage in fusion tasks. Such architectures include ‘Blackboard’ and
agent based systems.

Fully decentralised architectures have no central processor and no common communi-
cation system. In such systems, nodes can operate in a fully autonomous manner, only
coordinating through the anonymous communication information.

The following sections consider these architectures and their associated data fusion
algorithms.

4.1.1 Hierarchical Data Fusion Architectures

In a hierarchical structure, the lowest level processing elements transmit information
upwards, through successive levels, where the information is combined and refined, until
at the top level some global view of the state of the system is made available. Such
hierarchical structures are common in many organisations and have many well-known
advantages over fully centralised systems; particularly in reducing the load on a centralised
processor while maintaining strict control over sub-processor operations.

z1(k)

z
2
(k)

z
N
(k)

Sensors

Tracking
System 2

Tracking
System 1

Tracking
System N

x1(k)^

x
2
(k)^

x
N
(k)^

Tracks

Track Fusion
Algorithms

Combined
Track

Figure 28: Single Level Hierarchical Multiple Sensor Tracking System

The hierarchical approach to systems design has been employed in a number of data
fusion systems and has resulted in a variety of useful algorithms for combining information
at different levels of a hierarchical structure. General hierarchical Bayesian algorithms are
based on the independent likelihood pool architectures shown in Figures 4 and 5, or on the
log-likelihood opinion pools shown in Figures 8 and 9. Here the focus is on hierarchical
estimation and tracking algorithms (See Figures 28 and 29).

Multi-Sensor Data Fusion 106

Site-level
Track Fusion

Group
Picture
Tracks

z1(k)

zn(k) Tracking
System n

Tracking
System 1

x1(k)^

xn(k)^

z1(k)

z
n
(k) Tracking

System n

Tracking
System 1

x1(k)^

x
n
(k)^

z1(k)

z
n
(k) Tracking

System n

Tracking
System 1

x1(k)^

x
n
(k)^

Combined
Picture
Tracks

Group
Picture
Tracks

Figure 29: Multiple Level Hierarchical Multiple Sensor Tracking System

Multi-Sensor Data Fusion 107

First it is assumed that all sensors are observing a common state or track x(k). Ob-
servations are made at local sites of this common state according to a local observation
equation in the form

zi(k) = Hi(k)x(k) +wi(k), i = 1, · · · , S (226)

In principle, each site may then operate a conventional Kalman filter or state estimator
to provide local state estimates based only on local observations in the form

x̂i(k | k) = x̂i(k | k − 1) +Wi(k) [zi(k)−Hi(k)x̂i(k | k − 1)] , i = 1, · · · , S. (227)

These local estimates x̂i(k | k) may then be passed further up the hierarchy to a central
or intermediate processor which combines or fuses tracks to form a global estimate based
on all observations in the form

x̂(k | k) =
S∑
i=1

ωi(k)x̂k(k | i), (228)

where ωi(k) are site weighting matrices.
The essential problem, as described in Section 3, is that each sensor site must be

observing a common true state and so the local process models are related through some
common global model in the form

xi(k) = Fi(k)x(k) +Bi(k)u(k) +Gi(k)v(k), i = 1, · · · , S.
This means that the predictions made at local sites are correlated and so the updated local
estimates in Equation 227 must also be correlated despite the fact that the observations
made at each site are different. Consequently, the local estimates generated at each site
cannot be combined in the independent fashion implied by Equation 228.

The correct method of dealing with this problem is to explicitly account for these
correlations in the calculation of the site weighting matrices ωi(k). In particular, the
track-to-track fusion algorithms described in Section 3.2.5 in the form of Equations 208
and 209 are appropriate to this problem. These algorithms require that the correlations
between all sites be explicitly computed in addition to the covariance associated with each
local state estimate.

There have been a number of papers on hierarchical estimation systems. The paper by
Hashemipour, Roy and Laub [21] is notable in employing, indirectly, the information form
of the Kalman filter to derive a hierarchical estimation algorithm. The earlier paper by
Speyer [39] has a similar formulation, and although it is concerned with distributed linear
quadratic Gaussian (LQG) control problems, also specifically deals with communication or
transmission requirements. Other large scale systems in control exhibit similar properties
[37]. In addition, the track-to-track fusion techniques described by Bar-Shalom [15, 4]
serve as the basis for many derived architectures.

A hierarchical approach to the design of data fusion systems also comes with a number
of inherent disadvantages. The ultimate reliance on some central processor or controlling

Multi-Sensor Data Fusion 108

level within the hierarchy means that reliability and flexibility are often compromised.
Failure of this central unit leads to failure of the whole system, changes in the system often
mean changes in both the central unit and in all related sub-units. Further, the burden
placed on the central unit in terms of combining information can often still be prohibitive
and lead to an inability of the design methodology to be extended to incorporate an
increasing number of sources of information. Finally, the inability of information sources
to communicate, other than through some higher level in the hierarchy, eliminates the
possibility of any synergy being developed between two or more complimentary sources
of information and restricts the system designer to rigid predetermined combinations of
information. The limitations imposed by a strict hierarchy have been widely recognised
both in human information processing systems as well as in computer-based systems.

4.1.2 Distributed Data Fusion Architectures

The move to more distributed, autonomous, organisations is clear in many information
processing systems. This is most often motivated by two main considerations; the desire
to make the system more modular and flexible, and a recognition that a centralised
or hierarchical structure imposes unacceptable overheads on communication and central
computation. The migration to distributed system organisations is most apparent in
Artificial Intelligence (AI) application areas, where distributed AI has become a research
area in its own right. Many of the most interesting distributed processing organisations
have originated in this area.

Track Fusion
Algorithms

Blackboard
Medium

z1(k)
Tracking
System 1

z2(k)
Tracking
System 2

Track Identity
Knowledge Base

Situation
Knowledge Base

Remote Sensor
Knowledge Base

Figure 30: Blackboard Architecture in Data Fusion

Notable is the “Blackboard” architecture (see Figure 30), originally developed in the
Hearsay speech understanding programme, but now widely employed in many areas of AI

Multi-Sensor Data Fusion 109

and data fusion research. A Blackboard architecture consists of a number of independent
autonomous “agents”. Each agent represents a source of expert knowledge or specialised
information processing capability. Agents exchange information through a common com-
munication facility or shared memory resource. This resource is called a blackboard. The
blackboard is designed to closely replicate its physical analogue. Each agent is able to
write information or local knowledge to this resource. Every agent in the system is able
to read from this resource, in an unrestricted manner, any information which it considers
useful in its current task. In principle, every agent can be made modular and new agents
may be added to the system when needed without changing the underlying architecture or
operation of the system as a whole. The flexibility of this approach to system organisation
has made the Blackboard architecture popular in a range of application domains [33]. In
data fusion, the Blackboard approach has been most widely used for knowledge-based
data fusion systems in data interpretation and situation assessment (see [19] and [20] for
example). However, the structured nature of tracking and identification problems does
not lend itself to this anarchic organisational form.

The Blackboard architecture has a number of basic problems. All of these stem from
the use of a common communication or memory resource. The core problem is that a
central resource naturally entails the need for some type of central control in which a single
decision maker is used to sequence and organise the reading and writing of information
from the shared resource. Practically, with such a control mechanism, a blackboard
architecture becomes no more than a one level hierarchy with consequent lack of flexibility
and with the inherent limitations imposed by the use of a central resource.

4.1.3 Decentralised Data Fusion Architectures

A decentralized data fusion system consists of a network of sensor nodes, each with its
own processing facility, which together do not require any central fusion or central com-
munication facility. In such a system, fusion occurs locally at each node on the basis of
local observations and the information communicated from neighbouring nodes. At no
point is there a common place where fusion or global decisions are made.

A decentralised data fusion system is characterised by three constraints:

1. There is no single central fusion center; no one node should be central to the suc-
cessful operation of the network.

2. There is no common communication facility; nodes cannot broadcast results and
communication must be kept on a strictly node-to-node basis.

3. Sensor nodes do not have any global knowledge of sensor network topology; nodes
should only know about connections in their own neighbourhood.

Figures 31 and 32 and 33 show three possible realisations of a decentralised data fusion
system. The key point is that all these systems have no central fusion center (unlike
the ‘decentralised’ systems often described in the literature which are actually typically
distributed or hierarchical).

Multi-Sensor Data Fusion 110

The constraints imposed provide a number of important characteristics for decen-
tralised data fusion systems:

• Eliminating the central fusion center and any common communication facility en-
sures that the system is scalable as there are no limits imposed by centralized
computational bottlenecks or lack of communication bandwidth.

• Ensuring that no node is central and that no global knowledge of the network
topology is required for fusion means that the system can be made survivable to
the on-line loss (or addition) of sensing nodes and to dynamic changes in the network
structure.

• As all fusion processes must take place locally at each sensor site and no global
knowledge of the network is required a priori, nodes can be constructed and pro-
grammed in a modular fashion.

These characteristics give decentralised systems a major advantage over more traditional
sensing architectures, particularly in defense applications.

Sensor Node

Sensor

Fusion Processor

Communications Medium

Figure 31: A decentralised data fusion system implemented with a point-to-point com-
munication architecture.

A decentralized organization differs from a distributed processing system in having
no central processing or communication facilities. Each sensor node in a decentralized

Multi-Sensor Data Fusion 111

Communications Medium

Sensor Node

Sensor

Fusion Processor

Figure 32: A decentralised data fusion system implemented with a broadcast, fully con-
nected, communication architecture. Technically, a common communication facility vio-
lates decentralised data fusion constraints. However a broadcast medium is often a good
model of real communication networks.

Sensor Payloads

Internal Communciation

External Communication

Figure 33: A decentralised data fusion system implemented with a hybrid, broadcast and
point-to-point, communication architecture.

Multi-Sensor Data Fusion 112

organization is entirely self contained and can operate completely independently of any
other component in the system. Communication between nodes is strictly one-to-one
and requires no remote knowledge of node capability. Throughout this section we distin-
guish between decentralized organizations that have no common resources, and distributed
organizations where some residual centralized facility is maintained.

4.2 Decentralised Estimation

Decentralised data fusion is based on the idea of using formal information measures as
the means of quantifying, communicating and assimilating sensory data. In decentralised
estimation of continuous valued states, this is implemented in the form of an information
filter. In this section, the full form of the information filter is derived. It is then demon-
strated how the filter may be decentralised amongst a number of sensing nodes. Later
sections then describe how to deal with issues of communication and data association in
decentralised sensing

4.2.1 The Information Filter

Conventional Kalman filters deal with the estimation of states x(i), and yield estimates
x̂(i | j) together with a corresponding estimate variance P(i | j). The information filter
deals instead with the information state vector ŷ(i | j) and information matrix Y(i | j)
defined as

ŷ(i | j) = P−1(i | j)x̂(i | j), Y(i | j) = P−1(i | j). (229)

These information quantities have an interpretation related to the underlying probability
distributions associated with the estimation problem. The information matrix in par-
ticular is closely associated with the Fisher information measures introduced in Section
2.

A set of recursion equations for the information state and information matrix can be
derived directly from the equations for the Kalman filter. The resulting information filter
is mathematically identical to the conventional Kalman filter.

Recall the update stage for the Kalman filter:

x̂(k | k) = (1−W(k)H(k))x̂(k | k − 1) +W(k)z(k) (230)

P(k | k) = (1−W(k)H(k))P(k | k − 1)(1−W(k)H(k))T +W(k)R(k)WT (k) (231)

Now, from Equations 171 and 172, we have

1−W(k)H(k) = P(k | k)P−1(k | k − 1), (232)

and
W(k) = P(k | k)HT (k)R−1(k). (233)

Substituting Equations 232 and 233 into Equation 230 gives

x̂(k | k) = P(k | k)P−1(k | k − 1)x̂(k | k − 1) +P(k | k)HT (k)R−1(k)z(k).

Multi-Sensor Data Fusion 113

Pre-multiplying through by P−1(k | k) gives the update equation for the information-state
vector as

P−1(k | k)x̂(k | k) = P−1(k | k − 1)x̂(k | k − 1) +HT (k)R−1(k)z(k). (234)

Defining

i(k)
�
= HT (k)R−1(k)z(k) (235)

as the information-state contribution from an observation z(k), and with the definitions
in Equation 229, Equation 234 becomes

ŷ(k | k) = ŷ(k | k − 1) + i(k). (236)

A similar expression can be obtained for the covariance update of Equation 231. Substi-
tuting Equations 232 and 233 into Equation 231 and rearranging gives

P−1(k | k) = P−1(k | k − 1) +HT (k)R−1(k)H(k). (237)

Defining

I(k)
�
= HT (k)R−1(k)H(k) (238)

as the information matrix associated with the observation, and with the definitions in
Equation 229, Equation 237 becomes the information matrix update equation

Y(k | k) = Y(k | k − 1) + I(k). (239)

A comparison of the Kalman filter update stage (Equations 230 and 231) with the in-
formation filter update stage (Equations 236 and 239) highlights the simplicity of the
information filter update over the Kalman filter update. Indeed, in information form, the
update stage is a straight addition of information from a prediction and from an observa-
tion. It is this simplicity which gives the information filter it’s advantage in multi-sensor
estimation problems.

The simplicity of the update stage of the information filter comes at the cost of in-
creased complexity in the prediction stage. Recall the covariance prediction equation

P(k | k − 1) = F(k)P(k − 1 | k − 1)FT (k) +G(k)Q(k)GT (k) (240)

To derive the prediction stage for the information filter, the following version of the matrix
inversion lemma is noted [28]

(
A+BTC

)T
= A−1 −A−1BT

(
1+CA−1BT

)−1
CA−1.

Identifying

A = F(k)P(k − 1 | k − 1)FT (k), BT = G(k)Q(k), C = G(k),

Multi-Sensor Data Fusion 114

the inverse of Equation 240 becomes

P−1(k | k − 1) = M(k)−M(k)G(k)
[
GT (k)M(k)G(k) +Q−1(k)

]−1
GT (k)M(k) (241)

where
M(k) = F−T (k)P−1(k − 1 | k − 1)F−1(k) (242)

when Q(k) is non singular. Noting the definition of the state transition matrix

F(k)
�
= Φ(tk, tk−1)

implies F−1(k) always exists and indeed

F−1(k) = Φ(tk−1, tk)

is simply the state transition matrix defined backwards from a time tk to tk−1. Now,
defining

Σ(k)
�
=
[
GT (k)M(k)G(k) +Q−1(k)

]
, (243)

and

Ω(k)
�
= M(k)G(k)

[
GT (k)M(k)G(k) +Q−1(k)

]−1
= M(k)G(k)Σ−1(k), (244)

the information matrix prediction equation becomes

Y(k | k − 1) = P−1(k | k − 1) = M(k)−Ω(k)Σ(k)ΩT (k). (245)

A number of alternate expressions for the information prediction stage can also be derived:

Y(k | k − 1) =
[
1−Ω(k)GT (k)

]
M(k) (246)

and

Y(k | k − 1) =
[
1−Ω(k)GT

]
M(k)

[
1−Ω(k)GT

]T
+Ω(k)Q−1(k)ΩT (k). (247)

The information-state prediction equations may also be obtained as

ŷ(k | k − 1) =
[
1−Ω(k)GT (k)

]
F−T (k)

× [ŷ(k − 1 | k − 1) +Y(k − 1 | k − 1)F−1(k)B(k)u(k)]

=
[
1−Ω(k)GT (k)

] [
F−T (k)ŷ(k − 1 | k − 1) +M(k)B(k)u(k)

]
=

[
1−Ω(k)GT (k)

]
F−T (k)ŷ(k − 1 | k − 1)

+Y(k | k − 1)B(k)u(k). (248)

It should be noted that the complexity of the inversion of Σ(k) is only of order the
dimension of the driving noise (often scalar). Further Q(k) is almost never singular, and

Multi-Sensor Data Fusion 115

indeed if it were, singularity can be eliminated by appropriate definition of G(k). The
special case in which Q(k) = 0 yields prediction equations in the form:

Y(k | k − 1) = M(k), ŷ(k | k − 1) = F−T (k)ŷ(k − 1 | k − 1)+M(k)B(k)u(k) (249)

The information filter is now summarised
Prediction:

ŷ(k | k − 1) =
[
1−Ω(k)GT (k)

]
F−T (k)ŷ(k − 1 | k − 1) +Y(k | k − 1)B(k)u(k) (250)

Y(k | k − 1) = M(k)−Ω(k)Σ(k)ΩT (k) (251)

where
M(k) = F−T (k)Y(k − 1 | k − 1)F−1(k), (252)

Ω(k) = M(k)G(k)Σ−1(k), (253)

and
Σ(k) =

[
GT (k)M(k)G(k) +Q−1(k)

]
. (254)

Estimate:
ŷ(k | k) = ŷ(k | k − 1) + i(k) (255)

Y(k | k) = Y(k | k − 1) + I(k). (256)

where
i(k) = HT (k)R−1(k)z(k), I(k) = HT (k)R−1(k)H(k) (257)

Given the interpretation of the information matrix Y(i | j) as the Fisher information, the
update Equation 256 is simply seen to add the information contributed by the observa-
tion. Conversely, the prediction Equation 251 subtracts information caused by process
uncertainties.

Example 27
Consider again Example 17 of constant velocity particle motion:

[
ẋ(t)
ẍ(t)

]
=
[
0 1
0 0

] [
x(t)
ẋ(t)

]
+
[
0
1

]
v(t).

where v(t) is a zero mean white noise process with E{v2(t)} = q. The state transition
matrix and its inverse over a time interval δtare given by

F(δt) =
[
1 δt
0 1

]
, F−1(δt) =

[
1 −δt
0 1

]

and the noise transition matrix by (Equation 73)

G(δt) =
∫ δt
0

[
1 τ
0 1

] [
0
1

]
dτ =

[
δt2/2
δt

]

Multi-Sensor Data Fusion 116

Setting

Y(k − 1 | k − 1) =
[
Yxx Yxv
Yxv Yvv

]
,

the propagated information is

M(k) = F−T (k)Y(k − 1 | k − 1)F−1(k) =
[

Yxx Yxv − Yxxδt
Yxv − Yxx Yxxδt

2 − 2Yxvδt+ Yvv

]
.

Then

Σ(k) =
[
GT (k)M(k)G(k) +Q−1(k)

]
= δt2

[
Yxxδt

2/4− Yxvδt+ Yvv
]
+ q−1

and

Ω(k) = M(k)G(k)Σ−1(k)

=
1

Yxxδt
4/4− Yxvδt

3 + Yvvδt
2 + q−1

[
Yxvδt− Yxxδt

2/2
Yxxδt

3/2− 3Yxvδt
2/2 + Yvv

]
.

Finally, denoting

M(k) =
[
Mxx Mxv

Mxv Mvv

]
,

the propagation gain matrix is found as

1−Ω(k)GT (k) =
1

δt2
4
Mxx − δtMxv +Mvv +

q−1

δt2

×
[
Mxvδt/2 +Mvv + q−1/δt2 Mxxδt/2 +Mxv

Mxvδt
2/4 +Mvvδt/2 Mxx +Mxvδt/2 + q−1/δt2

]
.

Note also the term

F−T (k)ŷ(k − 1 | k − 1) =
[

1 0
−δt 1

] [
y
ẏ

]
=
[

y
ẏ − δty

]

Assume observations are made of the position of the particle at discrete synchronous
time intervals according to

z(k) = [1 0]
[
x(k)
ẋ(k)

]
+ w(k)

where w(t) is a zero mean white noise process with E{w2(t)} = r. The information state
is simply given by

i(k) = HT (k)R−1(k)z(k) =
[
1
0

]
r−1zx =

[
zx/r
0

]
,

and the information matrix by

I(k) = HT (k)R−1(k)H(k) =
[
1
0

]
r−1 [1 0] =

[
1/r 0
0 0

]
.

Multi-Sensor Data Fusion 117

A key problem with this information state vector ŷ(i | j) is that it has no obvious
metric properties; the difference between two information-state vectors does not relate at
all to the difference in state vectors because of scaling by the information matrix. This
can make the interpretation of the information filter more difficult than the (state-based)
Kalman filter.

There is a clear duality between the information filter and the conventional Kalman
filter, in which the prediction stage of the information filter is related to the update stage
of the Kalman filter, and the update stage of the information filter to the prediction stage
of the Kalman filter [2]. In particular, identifying the correspondences

Ω(k)→W(k), Σ(k)→ S(k), GT (k)→ H(k)

Ω(k) is seen to take on the role of an information prediction gain matrix, Σ(k) an ‘in-
formation innovation matrix’, and GT (k) an ‘information observation’. This duality is
instructive in understanding the relationship of information to state as equivalent repre-
sentations. It is also of assistance in implementation of the information filtering equations.

With this interpretation, The information-filter form has the advantage that the up-
date Equations 255 and 256 for the estimator are computationally simpler than the cor-
responding equations for the Kalman Filter, at the cost of increased complexity in pre-
diction. The value of this in decentralized sensing is that estimation occurs locally at
each node, requiring partition of the estimation equations which are simpler in their in-
formation form. Prediction, which is more complex in this form, relies on a propagation
coefficient which is independent of the observations made and so is again simpler to de-
couple and decentralize amongst a network of sensor nodes. This property is exploited in
subsequent sections.

4.2.2 The Information Filter and Bayes Theorem

There is a strong relationship between the information state and the underlying proba-
bility distribution. Recall Bayes Theorem

P (x(k) | Zk) = P (z(k) | x(k))P (x(k) | Zk−1)

P (z(k) | Zk−1)
. (258)

If it is assumed that the prior and likelihood are Gaussian as

P (x(k) | Zk) ∝ exp
{
−1

2
[x(k)− x̂(k | k)]T P−1(k | k) [x(k)k − x̂(k | k)]

}

P (z(k) | x(k)) ∝ exp
{
−1

2
[z(k)−H(k)x(k)]T R−1(k) [z(k)−H(k)x(k)]

}
,

then the posterior will also be Gaussian in the form

P (x(k) | Zk−1) ∝ exp
{
−1

2
[x(k)− x̂(k | k − 1)]T P−1(k | k − 1) [x(k)− x̂(k | k − 1)]

}
.

Multi-Sensor Data Fusion 118

Now, substituting these distributions into Equation 258 and take logs gives

[x(k)− x̂(k | k)]T P−1(k | k) [x(k)− x̂(k | k)] =

[z(k)−H(k)x(k)]T R−1(k) [z(k)−H(k)x(k)]

+ [x(k)− x̂(k | k − 1)]T P−1(k | k − 1) [x(k)− x̂(k | k − 1)] + C(z(k)) (259)

where C(z(k)) is independent of x(k). This equation relates the log likelihoods of these
Gaussian distributions and is essentially a quadratic in x(k). Now, differentiating this
expression once with respect to x(k) and rearranging gives Equation 255. Differentiating
a second time and rearranging gives

P−1(k | k) = HT (k)R−1(k)H(k) +P−1(k | k − 1),

which is Equation 256. The first derivative of the log-likelihood is known as the score
function. The second derivative is, of course, the Fisher information Equation 50.

This analysis suggests that the information filter is, fundamentally, a log likelihood
implementation of Bayes Theorem. The first and second derivatives of the log likelihood
are essentially moment generating functions (the first derivative is the centre of mass,
and the second, the moment of inertia [34]). The information filter is thus a means for
recursive calculation of sufficient statistics (the mean and variance) in the case when the
distributions of interest our Gaussian.

This interpretation of the information filter shows the relationship between the Kalman
filter and the more general probabilistic estimation problem. Indeed, if the distributions
were not Gaussian and indeed possibly discrete, the information filter would reduce to
the general fusion of log likelihoods as described in Section 2.2.6. This can be exploited
in the development of efficient distributed data fusion algorithms for problems which are
not linear or Gaussian.

4.2.3 The Information filter in Multi-Sensor Estimation

The information filter is reasonably well known in the literature on estimation [2, 28].
However, its use in data fusion has been largely neglected in favour of conventional state-
based Kalman filtering methods. The reasons for this appear to be somewhat spurious,
based largely on the incorrect hypothesis that it is “cheaper” to communicate innovation
information (of dimension the observation vector) than to communicate information state
vectors (of dimension the state vector). The basic problem is that it is generally not possi-
ble to extend Equations 230 and 231 in any simple way to deal with multiple observations.
The reason for this, as we have seen, is that although the innovation vectors at different
times are uncorrelated (by construction), the innovations generated by different sensors
at the same time are correlated, by virtue of the fact that they use a common prediction.
Thus, the innovation covariance matrix S(k) can never be diagonal, and so can not be
simply partitioned and inverted to yield a gain matrix for each individual observation.

Multi-Sensor Data Fusion 119

Thus, for a set of sensors i = 1, · · · , N , it is not possible to compute the simple sum of
innovations as

x̂(k | k) 	= x̂(k | k − 1) +
N∑
i=1

Wi(k) [zi(k)−Hi(k)x̂(k | k − 1)]

in which the individual gains are given by

Wi(k) = P(k | k − 1)HT
i (k)S

−1
i (k).

However, the information filter provides a direct means of overcoming these problems.
As will be seen, for the same set of sensors, i = 1, · · · , N , and without any additional
assumptions, it is the case that the information contributions from all sensors can simply
be added to obtain an updated estimate in the form

ŷ(k | k) = ŷ(k | k − 1) +
N∑
j=1

ij(k),

which is algebraically equivalent to a full (all sensor) state-based Kalman filter estimate.
The reason why this can be done with the information filter is that the information

contributions made by the observations are directly related to the underlying likelihood
functions for the states rather than to the state estimates themselves. This can be appreci-
ated by considering the interpretation of the information filter directly an implementation
of Bayes theorem in terms of log-likelihood rather than in terms of state. Indeed, making
the usual assumption that the observations made by the various sensors are conditionally
independent given the true state as

P (z1(k) · · · , zN(k) | x(k)) =
N∏
i=1

P (zi(k) | x(k)), (260)

then Bayes Theorem gives (Equation 19)

P (x(k) | Zn(k)) = P (x(k) | Zn(k − 1))
n∏
i=1

P (zi(k) | x(k)).[P (Zn(k) | Zn(k − 1))]−1.

(261)
Taking logs of Equation 261 then gives

lnP (x(k) | Zn(k)) = lnP (x(k) | Zn(k − 1))

+
n∑
i=1

lnP (zi(k) | x(k))− lnP (Zn(k) | Zn(k − 1)). (262)

Given Equation 259, an identification can be made as

n∑
i=1

lnP (zi(k) | x(k)) ⇀↽ {∑ni=1 i(k),
∑n
i=1 I(k)} . (263)

Multi-Sensor Data Fusion 120

This demonstrates why, fundamentally, it is possible to add information states and Infor-
mation matrices from different sensors while it is not possible to add innovations without
accounting for cross-correlations. For this reason also, the information filter is occasionally
referred to as the likelihood filter.

Computationally, the information filter thus provides a far more natural means of as-
similating information than does the conventional Kalman filter and a far simpler method
of dealing with complex multi-sensor data fusion problems.

The linear addition of information in the information filter can also be obtained by
direct algebraic manipulation. Consider a system comprising N sensors each taking ob-
servations according to

zi(k) = Hi(k)x(k) + vi(k) (264)

with
E{vp(i)vTq (j)} = δijδpqRp(i). (265)

The observations can be stacked into a composite observation

z(k) =
[
zT1 (k), · · · , zTN(k)

]T
(266)

The observation model can also be stacked into a composite model

H(k) =
[
HT

1 (k), · · · ,HT
N(k)

]T
, (267)

and
v(k) =

[
vT1 (k), · · · ,vTN(k)

]T
(268)

to give a composite observation equation in familiar form

z(k) = H(k)x(k) + v(k).

Noting that

E{v(k)vT (k)} = R(k) = blockdiag{RT1 (k), · · · ,RTN(k)} , (269)

a multiple sensor form of Equation 257 can be obtained as

i(k) =
N∑
i=1

ii(k) =
N∑
i=1

HT
i (k)R

−1
i (k)zi(k) (270)

and

I(k) =
N∑
i=1

Ii(k) =
N∑
i=1

HT
i (k)R

−1
i (k)Hi(k) (271)

where
ii(k)

�
= HT

i (k)R
−1
i (k)zi(k) (272)

is the information-state contribution from observation zi(k) and

Ii(k)
�
= HT

i (k)R
−1
i (k)Hi(k) (273)

Multi-Sensor Data Fusion 121

is its associated information matrix.
Equations 270 and 271 show that the total information available to the filter at any

time-step is simply the sum of the information contributions from each of the individual
sensors. Further, Equations 255 and 256 describing the single sensor information update
are easily extended to multiple sensor updates in a straight-forward manner as

ŷ(k | k) = ŷ(k | k − 1) +
N∑
i=1

ii(k) (274)

Y(k | k) = Y(k | k − 1) +
N∑
i=1

Ii(k). (275)

These equations should immediately be compared to the considerably more complex mul-
tiple sensor form of the Kalman filter update Equations.

4.2.4 The Hierarchical Information Filter

It is now shown how the information filter may be partitioned to provide a simple hierar-
chical estimation architecture based first on the communication of the information terms
i(·) and I(·) from sensor nodes to a common fusion center, and second on the communica-
tion of partial information-state estimates from nodes to a central assimilation point. The
latter case corresponds to the algorithm developed in [21]. In Section 2.2.6 it was demon-
strated that, because of simple information summation, the log-likelihood form of Bayes
theorem can readily be mapped to a number of different architectural forms. For the same
reasons, the information additions in Equations 274 and 275 can also be distributed in a
simple manner.

One hierarchical architecture that employs this additive property is shown in Figure 34
(this is the information filter form of Figure 8). Each sensor incorporates a full state model
and takes observations according to Equation 264. They all calculate an information-
state contribution from their observations in terms of ii(k) and Ii(k). These are then
communicated to the fusion centre and are incorporated into the global estimate through
Equations 274 and 275. The information-state prediction is generated centrally using
Equations 250 and 251 and the state estimate itself may be found at any stage from
x̂(i | j) = Y−1(i | j)ŷ(i | j). To avoid communicating predictions to nodes, any validation
or data association should take place at the fusion center.

A second hierarchical system which allows local tracks to be maintained at local sensor
sites, is shown in Figure 35 (this is the information filter form Figure 9). In this system,
each sensing node produces local information-state estimates on the basis of its own obser-
vations and communicates these back to a central fusion center where they are assimilated
to provide a global estimate of information-state. Let ỹi(· | ·) be the information-state
estimate arrived at by each sensor site based only on its own observations and local
information-state prediction ŷi(k | k − 1). This local estimate can be found from a local
form of Equations 255 and 256 as

ỹi(k | k) = ŷi(k | k − 1) + ii(k) (276)

Multi-Sensor Data Fusion 122

H1

Hn

H2

{ i 1(k), I 1(k) }
z1(k)

z2(k)

zN(k)

Sensor

Sensor Models

{ i
n
(k), I

n
(k) }

{ i 2(k), I 2(k) }

Σ

k k-1

Central Processor

y(k|k-1), Y(k|k-1)^

y(k|k), Y(k|k)^

Prediction

Figure 34: A hierarchical data fusion system where information-state contributions are
calculated at each sensor node and transmitted to a central fusion center where a common
estimate is obtained by simple summation. All state predictions are undertaken at the
central processor.

Σ

k k-1

Central Processor

y(k|k-1), Y(k|k-1)^

y(k|k), Y(k|k)^

Σ
{ i

1
(k), I

1
(k) }

z
1
(k)

k k-1

HTR-1
1 1y1(k|k), Y 1(k|k)~ ~

y
1
(k|k-1), Y

1
(k|k-1)^

Prediction

Σ
{ i

n
(k), I

n
(k) }

zn(k)

k k-1

HTR-1
n n

Prediction

y
n
(k|k-1), Y

n
(k|k-1)^

y
n
(k|k), Y

n
(k|k)~ ~

Sensor node n

Sensor node 1

Figure 35: A hierarchical data fusion system where tracks are formed locally and com-
municated to a central fusion site. Each sensor node undertakes a prediction stage and
maintains a track based only on it’s local observations. The central processor fuses these
tracks.

Multi-Sensor Data Fusion 123

and
Ỹi(k | k) = Yi(k | k − 1) + Ii(k). (277)

These partial information-state estimates are communicated to a fusion center where they
can be assimilated according to

ŷ(k | k) = ŷ(k | k − 1) +
N∑
i=1

[ỹi(k | k)− ŷ(k | k − 1)] (278)

and

Y(k | k) = Y(k | k − 1) +
N∑
i=1

[
Ỹi(k | k)−Y(k | k − 1)

]
. (279)

With the assumption that the local predictions at each node are the same as the prediction
produced by a central fusion center, it can be seen that these assimilation equations are
identical to Equations 274 and 275.

Σ

k k-1

Central Processor

y(k|k-1), Y(k|k-1)^

y(k|k), Y(k|k)^

y(k|k)-[y n(k|k)-y n(k|k-1)]~

~y(k|k)-[y 1(k|k)-y 1(k|k-1)]

Σ
{ i

n
(k), I

n
(k) }

zn(k)

k k-1

HTR-1
n n

Prediction

y
n
(k|k-1), Y

n
(k|k-1)^

y
n
(k|k), Y

n
(k|k)~ ~

Sensor node n

Σ

Σ
{ i

1
(k), I

1
(k) }

z
1
(k)

k k-1

HTR-1
1 1y1(k|k), Y 1(k|k)~ ~

y
1
(k|k-1), Y

1
(k|k-1)^

Prediction

Sensor node 1

Σ

Figure 36: A hierarchical data fusion system where tracks are formed locally and commu-
nicated to a central fusion site, then track updates are communicated back to the sensor
nodes. Each sensor node undertakes a prediction stage and maintains a global track based
on the observations of all sensor nodes.

A third hierarchical system which allows global tracks to be maintained at local sensor
sites is shown in Figure 36. This architecture is similar to that shown in Figure 35 except
that once a global estimate is obtained at the central fusion site, it is communicated back
to the local site where it is assimilated to form a global estimate. The advantage of this
architecture is that each site can now act in an “autonomous” manner with access to
global track information.

There are a number of other possible implementations of these hierarchical estimation
equations, depending on where it is most efficient to generate predictions and where
different parts of the system model reside. The important point to note is that the
information filter provides a simple and natural method of mapping estimation equations
to different architectures.

Multi-Sensor Data Fusion 124

4.2.5 The Decentralised Information Filter

Σ
{ i

n
(k), I

n
(k) }

zn(k)

k k-1

HTR-1
n n

Prediction

y
n
(k|k-1), Y

n
(k|k-1)^

y
n
(k|k), Y

n
(k|k)~ ~

Sensor node n

Σ
~

[y1(k|k)-y 1(k|k-1)]

Σ
{ i

1
(k), I

1
(k) }

z
1
(k)

HTR-1
11

Prediction

Sensor node 1

Σ
y

1
(k|k-1), Y

1
(k|k-1)^

y
1
(k|k), Y

1
(k|k)

~~

k k-1

Σ
{ i

2
(k), I

2
(k) }

z
2
(k)

k k-1

HTR-1
2 2y2(k|k), Y 2(k|k)~ ~

y
2
(k|k-1), Y

2
(k|k-1)^

Prediction

Sensor node 2

Σ

~[y2(k|k)-y 2(k|k-1)]

~[y
n
(k|k)-y

n
(k|k-1)]

Figure 37: A Decentralized, fully connected, data fusion system where tracks are formed
locally and communicated to neighbouring nodes where they are assimilated to provide
global track information. Each sensor node undertakes a prediction stage and maintains
a global track based on the observations of all sensor nodes. This architecture is also
directly equivalent to a broadcast or bus communication system.

It is a relatively simple step to decentralize the assimilation Equations 278 and 279
in systems where there is a fully connected network of sensing nodes as shown in Figure
37. In this type of system, each node generates a prediction, takes an observation and
computes a local estimate which is communicated to all neighbouring nodes. Each node
receives all local estimates and implements a local form of the assimilation equations to
produce a global estimate of information-state, equivalent to that obtained by a central
fusion center. In effect, this is the same as replicating the central assimilation equations
of Figure 36 at every local sensor site, and then simplifying the resulting equations.

It is assumed that each local sensor site or node maintains a state-space model
(F(k),G(k),Q(k)) identical to an equivalent centralized model so that ŷi(· | ·) ≡ ŷ(· | ·)
for all i = 1, · · · , N . Each node begins by computing a local estimate ỹi(k | k) based
on a local prediction ŷi(k | k − 1) and the observed local information ii(k) according to
(Equations 250 and 251)

Prediction:

ŷi(k | k − 1) =
[
1−Ωi(k)G

T (k)
]
F−T (k)ŷi(k − 1 | k − 1) +Yi(k | k − 1)B(k)u(k)

(280)
Yi(k | k − 1) = Mi(k)−Ωi(k)Σi(k)Ω

T
i (k) (281)

where
Mi(k) = F−T (k)Yi(k − 1 | k − 1)F−1(k), (282)

Ωi(k) = Mi(k)G(k)Σ−1
i (k), (283)

Multi-Sensor Data Fusion 125

and
Σi(k) =

[
GT (k)Mi(k)G(k) +Q−1(k)

]
. (284)

Estimate:
ỹi(k | k) = ŷi(k | k − 1) + ii(k) (285)

Ỹi(k | k) = Yi(k | k − 1) + Ii(k). (286)

these partial information-state estimates are then communicated to neighbouring nodes
where they are assimilated according to
Assimilate:

ŷi(k | k) = ŷi(k | k − 1) +
N∑
j=1

[ỹj(k | k)− ŷj(k | k − 1)] (287)

Yi(k | k) = Yi(k | k − 1) +
N∑
j=1

[
Ỹj(k | k)−Yj(k | k − 1)

]
(288)

If each node begins with a common initial information-state estimate ŷj(0 | 0) = 0,
Yj(0 | 0) = 0 and the network is fully connected, then the estimates obtained by each
node will be identical.

The quantities communicated between sensor nodes; (ỹj(k | k) − ŷj(k | k − 1)) and
(Ỹj(k | k) − Yj(k | k − 1)), consist of the difference between the local information at
a time k and the prediction based only on information up to time k − 1. This can be
interpreted as the new information obtained by that node at the current time step. Indeed,
the communicated terms are algebraically equivalent to ij(k) and Ij(k); logically the new
information available at a time k is just the information obtained through observation
at that time. Thus, the operation of the sensor network can be envisioned as a group of
local estimators which communicate new, independent, information between each other
and which assimilate both local and communicated information to individual obtain a
globally optimal local estimate.

There are three interesting points that can be made about these decentralized equa-
tions:

• The additional computation required of each node to assimilate information from
adjacent nodes is small; a summation of vectors in Equation 287 and a summation of
matrices in Equation 288. This is a direct consequence of the use of the information
form of the Kalman filter which places the computational burden on the generation
of predictions.

• The amount of communication that needs to take place is actually less than is
required in a hierarchical organization. This is because each node individually com-
putes a global estimate so that there is no need for estimates or predictions to be
communicated prior to an estimation cycle. This results an a halving of required
communication bandwidth, which may be further improved if model distribution is
incorporated.

Multi-Sensor Data Fusion 126

• The assimilation equations are the same as those that would be obtained in a system
with distributed sensing nodes and a broadcast communication system.

The algorithm defined by Equations 280–288 is appropriate for both fully connected sensor
networks or for sensors connected to a broadcast communication facility (such as a bus
or Blackboard).

4.3 Decentralised Multi-Target Tracking

4.3.1 Decentralised Data Association

Data association in distributed systems is a complex problem. The reason for this is
that hard association decisions made locally, in an optimal manner with respect to local
observations, may not be optimal at the global level when all sensor information is made
available. Further, an incorrect association decision is almost impossible to undo once
data has been fused into a track.

The normal approach to this problem is to maintain both a local and a global track
file and periodically to synchronize the two (see for example [9] pp602–605). Alterna-
tive approaches involve using either probabilistic data association methods or multiple-
hypothesis trackers both of which avoid the need to make hard local association decisions
(as described in Section 3.4).

All data association methods require that the normalised innovation is made available
at each of the local processor nodes. In a decentralised data fusion architecture the infor-
mation transmitted from one node to another is in the form of the information-theoretic
quantities i(k) and I(k). To implement a local validation procedure it is therefore neces-
sary to derive an expression from the prediction and communication terms which allow
computation of a normalised innovation by every node on the basis of local information
ŷ(k | k − 1) and Y(k | k − 1). The result is normalised information residual from which
an information gate, equivalent to the innovation gate, can be obtained.

To formulate the information gate, the inverse of the information matrix I(k) is re-
quired. Generally, the dimension of the observation vector is less than that of the state
vector, so the information matrix I(k) = HT (k)R−1(k)H(k) is singular since it has rank
nz, equal to the size of the observation vector, but has dimension nx × nx, the size of the
state vector; and generally nx > nz. Consequently the inverse information matrix (the
corresponding covariance matrix) is not well defined and instead the generalised-inverse
I†(k). The generalised-inverse is defined such that

I(k)I†(k) = E, (289)

where E is an idempotent matrix which acts as the identity matrix for the information
matrix and its generalised-inverse [25, 36]

I(k)E = I(k), I†(k)E = I†(k), (290)

so that
I(k)I†(k)I(k) = I(k), I†(k)I(k)I†(k) = I†(k). (291)

Multi-Sensor Data Fusion 127

Amongst all possible generalised inverses that satisfy Equation 289, 290 and 291, the
most appropriate definition is that which projects I(k) into the observation space in the
following form;

I†(k)
�
= HT (k)

[
H(k)I(k)HT (k)

]−1
H(k) (292)

This generalised inverse exploits the role of H(k) as a projection operation, taking state
space to observation space, and HT (k) as a back-projection, taking observation space to
state space [42]. Both projections do not change the content of the projected matrix
so they can be applied without modifying the information contribution. Multiplying
Equation 292 by H(k)I(k) demonstrates this

H(k)I(k)I†(k) = H(k)I(k)HT (k)
[
H(k)I(k)HT (k)

]−1
H(k) = H(k) (293)

The innovation measure is essential for data association and fault detection. The
innovation is based on the difference between a predicted and observed measurement

ν(k) = z(k)−H(k)x̂(k | k − 1). (294)

In information form, the measurement information is provided by the information vector
i(k) = HT (k)R−1(k)z(k). The information residual vector is therefore defined analogously

υ(k)
�
= HT (k)R−1(k)ν(k), (295)

which is simply the innovation ν(k) projected into information space. Substituting Equa-
tion 294 into Equation 295 gives

υ(k) = HT (k)R−1(k)z(k)−HT (k)R−1(k)H(k)x̂(k | k − 1) (296)

or
υ(k) = i(k)− I(k)Y−1(k | k − 1)ŷ(k | k − 1) (297)

The information residual variance is computed from

Υ(k) = E{υ(k)υT (k) | Zk−1(k)} . (298)

Substituting in Equation 295 gives

Υ(k) = HT (k)R−1(k)E{ν(k)νT (k) | Zk−1(k)} R−1(k)H(k)

= HT (k)R−1(k)
[
HT (k)P(k | k − 1)H(k) +R(k)

]
R−1(k)H(k)

= I(k) + I(k)Y−1(k | k − 1)I(k)

= I(k)
[
I†(k) +Y−1(k | k − 1)

]−1
I(k) (299)

The normalised information residual can now be computed from

Γ(k) = υT (k)Υ†(k)υ(k) (300)

Multi-Sensor Data Fusion 128

noting that the pseudo-inverse for Υ(k) is

Υ†(k) = HT (k)
[
H(k)Υ(k)HT (k)

]−1
H(k)

= HT (k)
[
H(k)HT (k)R−1(k)S(k)R−1(k)H(k)HT (k)

]−1
H(k)

= HT (k)
[
H(k)HT (k)

]−1
R(k)S−1(k)R(k)

[
H(k)HT (k)

]−1
H(k) (301)

and substituting Equations 295 and 301 into Equation 300 gives

υT (k)Υ†(k)υ(k) = νT (k)R−1(k)H(k)HT (k)
[
H(k)HT (k)

]−1
R(k)

×S−1(k)R(k)
[
H(k)HT (k)

]−1
H(k)HT (k)R−1(k)ν(k)

= νT (k)S−1(k)ν(k). (302)

That is, the normalised information residual is identically the conventional (observation)
residual.

Thus to implement a data association or gating policy for a decentralised sensing
network using the information filter, a normalised gate (or modified log-likelihood) can
be constructed using Equations 297 and 299. This gate will be identical to the gate used
in conventional multi-target tracking algorithms. Once the gate is established, it becomes
possible to use any of the data association methods described in Section 3.4.

4.3.2 Decentralised Identification and Bayes Theorem

Decentralised data fusion principles can be easily extended to situations in which the
underlying probability densities are not Gaussian and indeed where the densities are
discrete. This provides a means of implementing decentralised (discrete) identification
algorithms. The method is based on the use of log-likelihoods and extends the hierarchical
log-likelihood architectures described in Section 2.2.6.

Recall the recursive form of Bayes theorem

P (x | Zk) = P (z(k) | x)P (x | Zk−1)

P (z(k) | Zk−1)
, (303)

which may be written in terms of log-likelihoods as

lnP (x | Zk) = lnP (x | Zk−1) + ln
P (z(k) | x)

P (z(k) | Zk−1)
, (304)

where x is the state to be estimated and Zk is the set of observations up to the kth

timestep. As has been previously demonstrated, the information form of the Kalman
filter, for example, can be derived directly from this expression.

In Equation 304, the term lnP (x | Zk−1) corresponds to information accumulated
about the state up to time k − 1. The term

ln
P (z(k) | x)

P (z(k) | Zk−1)

Multi-Sensor Data Fusion 129

Σ

zi(k)

k k-1

log P(x|{Z k}i)

Sensor i

log P(x|{Zk-1 }
i
)

P(z i(k)| x)
P(z i(k)|Z k)

log

P(z i(k)| x)
P(z i(k)|Z k)

log

P(z j(k)| x)
P(z j(k)|Z k)

log

P(z n(k)|x)
P(z

n
(k)|Z k)

log

Communicated
Terms

Figure 38: A Decentralized, fully connected, Bayesian data fusion system appropriate for
decentralised identification tasks.

corresponds to the new information generated at time k. Equation 304 exactly represents
the communication requirements of a fully connected decentralised system, in which each
node communicates a likelihood based on its own observation to all others and receives the
likelihoods of all its neighbours which are then fused to form a global estimate. Rewriting
Equation 304 in terms of an individual node i, this global estimate is computed as

lnP (xi | Zk) = lnP (xi | Zk−1) +
∑
j

ln
P (zj(k) | xj)
P (zj(k) | Zk−1)

, (305)

where the summation represents the communicated terms. This is illustrated for a node
i in Figure 38.

4.4 Communication in Decentralised Sensing Systems

The decentralised data fusion algorithms described so far are implicitly limited in requiring
full communication, either as a fully connected sensing network or as a broadcast system.
The reason for this is that it is assumed that all new information in the network is made
available to all sensors at observation time.

Fully connected, “complete information” networks are not practically viable: Any re-
alisable distributed sensing network should be able to cater for a variety of communication
topologies, variable communication delays and insertion of new sensors into the network.
The key to providing these abilities lies in the algorithms used to decide what information
should be communicated between different sensing nodes. This is the focus of this section.

It is first demonstrated that the need for fully-connectedness is a result of the assump-
tion that all nodes share a common prediction. Implementation of the straight-forward
decentralised data fusion equations consequently results in a nearest-neighbour commu-
nication policy in which information is not propagated through the network.

Multi-Sensor Data Fusion 130

To overcome this, the idea of a channel filter is introduced. A channel filter records
the information that is communicated between nodes. In a tree-connected network the
information communicated between nodes is clearly also the information they have in
common. By subtracting this common information from any future communication, only
“new” information is communicated. However, it is also demonstrated that in general
sensor network topologies, the channel filter is impossible to implement in practice. This
is because the common information between two nodes can not be established uniquely.
Three (sub-optimal) methods of overcoming this problem are described.

The channel filter provides a valuable buffer between a sensor node and the remainder
of the sensing network. The channel filter can be used to implement many practical aspects
of network operation including intermittent communication, insertion of new and removal
of old communication links. An algorithm is developed to dealing with information that
is delayed or asequent (out of temporal order). Using this algorithm, general channel
operations are described.

4.4.1 Fully Connected and Broadcast Sensor Networks

The assumption of a fully connected topology is, in general, unrealistic within the node-to-
node communication constraints imposed. This is because as the number of nodes grows,
the number of communication links required by each node also increases. In addition,
the loss of any one communication channel will result in the fully-connected assumption
being violated.

Recall the assimilation equations

ŷi(k | k) = ŷi(k | k − 1) +
∑
j

[ỹj(k | k)− ŷj(k | k − 1)]

= ŷi(k | k − 1) +
∑
j∈Ni

ij(k) (306)

and

Yi(k | k) = Yi(k | k − 1) +
∑
j

[
Ỹj(k | k)−Yj(k | k − 1)

]

= Yi(k | k − 1) +
∑
j∈Ni

Ij(k). (307)

Equations 306 and 307 make it clear that the estimate arrived at locally by a node i
is based on the observation information ij(k) and Ij(k) communicated to it by nodes j.
If node i only communicates with a local neighbourhood Ni, a subset of the complete
network, then the estimate arrived at locally will be based only on this information and
will not be equivalent to a centralised estimate.

In effect, each time a new local estimate ỹj(k | k) is obtained at a node j, the prior
information at this node ŷj(k | k − 1) is subtracted to provide the ‘new’ information
to be communicated to a node i. The assumption here is that the prior information
ŷj(k | k − 1) at node j is the information that nodes i and j have in common up to time

Multi-Sensor Data Fusion 131

k−1. Subtracting this from the local estimate should then give the new information to be
communicated from node j to node i. In the fully-connected case, the prior information
at node j is indeed the common information between nodes i and j and so only the
information ij(k) is communicated. In the non-fully connected case, the prior information
at node j includes not only information common to node i but also information from other
branches in the network. Subtracting this from the local estimate however, again results
in only the information ij(k) being communicated to node i. This is because it assumes
that node i already has the information communicated to node j through other branches
of the network. The net result of this is that nodes only exchange information in their
immediate neighbourhoods and do not propagate information from distant branches.

ZB

ZD

ZA

Z
C

C

A B

D

Figure 39: A fully connected sensor network consisting of four nodes, A, B, C, and D.
All nodes in this network can generate estimates, equal to a centralised estimate, using
only Equations 306 and 307.

Figure 39 shows a fully connected network in which local estimates will be equal to
global estimates using only Equations 306 and 307 for assimilation. Figure 40 shows a
linear connected sensor network and Figure 41 shows a tree connected sensor network.
Here, the estimates arrived at by each node, using Equations 306 and 307 for assimilation,
will be based only on observations made by sensors in the immediate neighbourhood.

4.4.2 Identification of Redundant Information in Sensor Networks

The key step in deriving fusion equations for decentralised sensing networks is to identify
the common information among estimates so that it is not used redundantly. The problem
of accounting for redundant information in decentralised communication structures is en-

Multi-Sensor Data Fusion 132

ZB

Z
C ZD

ZA

A B

C D

Figure 40: A linear sensor network consisting of four nodes, A, B, C, and D. Nodes in
this network, using only Equations 306 and 307, can only generate estimates based on
information available in their immediate neighbourhood.

ZA ZB

Z
C ZD

A B

C D

Figure 41: A tree connected sensor network consisting of four nodes, A, B, C, and D.
Nodes in this network, using only Equations 306 and 307, generate estimates based on
information available in their immediate neighbourhood.

Multi-Sensor Data Fusion 133

countered in many applications13. In decentralised data fusion systems, the incorporation
of redundant information may lead to bias, over-confidence and divergence in estimates.

The problem of identifying common information is most generally considered in terms
of information sets. A neighbourhood of a node is the set of nodes to which it is linked
directly. A complete neighbourhood includes the node itself. A node i forms an infor-
mation set Zki at time k based on a local sensor observation zi(k) and the information
communicated by its neighbours. The objective of each node is to form the union of the
information sets in the complete neighbourhood [Ni] :

⋃
j∈[Ni] Z

k
j . In particular, consider

communications between node i and a neighbour j. The union of information sets, on
which estimates are to be based, may be written as

Zki ∪ Zkj = Zki + Zkj − Zki∩j, (308)

that is, the union is equal to the sum of information sets communicated minus the inter-
section of, or common information between, these information sets. A fully decentralised
solution to the estimation problem is only possible where the intersection or common
communicated information Zki∩j can be determined from information which is available
locally.

The topology of the sensing network is the most important factor in determining
common communicated information. Consider the following three cases:

• Full Connection: Consider the case in which each node is connected to every other
in a fully connected, or completely connected topology (Figure 39). In this case, the
sensor nodes may acquire observation information from the entire network through
direct communication and the neighbourhood of any node is the full network. In a
fully connected network, the problem of locally detecting and eliminating redundant
information is considerably simplified as every node has access to the same infor-
mation. In this situation, the estimates formed by the nodes are identical and new
information is immediately communicated after the removal of the estimate from
the previous time-step as

⋃
j∈[Ni]

Zkj =

 ∑
j∈[Ni]

Zkj −
⋃
j∈[Ni]

Zk−1
j

 . (309)

This gives rise to a communication strategy where each node subtracts the estimate
formed at the previous timestep prior to communicating its current observation in-
formation. Thus, Equation 309 is an information-set equivalent of Equations 306
and 307 which explicitly subtract the common prediction from the local partial
estimates. Since the fully connected condition means that global and local informa-
tion are in fact the same, this must be regarded as a special case of the common
information problem.

13In human communication decentralised and cyclic communication structures give rise to “rumour
propagation” or the “chicken licken” problem.

Multi-Sensor Data Fusion 134

• Tree Connection: In a tree connected topology, there is only one path between
each pair of nodes (see Figures 40 and 41). Therefore, a receiving node can be
certain that the only redundant information communicated by a neighbour is the
information that they have exchanged in the past. Thus, the observation information
history that is required for a tree communication system extends only to the previous
timestep. The only common information between node i and a neighbour j at time
k is the information which they exchanged in the last time interval k − 1. This
results in a pair-wise communication algorithm. For a node i on link (i, j),

Zki ∪ Zkj = Zki + Zkj − Zki∩j,

where, crucially, the intersection can be found from information sets at the previous
timestep,

Zk−1
i∩j = Zk−1

i ∪ Zk−1
j . (310)

This generalises to a communication strategy over the neighbourhood as

⋃
j∈[Ni]

Zkj = Zki +

∑
j∈Ni

Zkj −
⋃
j∈Ni

Zk−1
j

 , (311)

where [Ni] is the complete neighbourhood, and i 	∈ Ni.

• Arbitrary Networks: In an arbitrary network, the connectedness of nodes is un-
known and may be partially connected, or non fully connected non-trees. Removal of
common information in arbitrary network topologies is complex because the pattern
of communication varies from node to node, yet each node is required to implement
the same algorithm. Consider again two communicating nodes

Zki ∪ Zkj = Zki + Zkj − Zki∩j.

In the arbitrary network case, the intersection term Zki∩j can not be simply deter-
mined from past communication on a single link. In the tree case, the common
information term depends only on the observation information of i and j. In a
non-tree network, the information common to i and j may contain terms from other
nodes outside of the neighbourhood. This is because multiple propagation paths
are possible. Figure 42 illustrates the information that is communicated to nodes
in three cases. The communicated information terms at i and j are denoted Ti and
Tj respectively. The information Tj is integrated into the observation information
sets Zj upon arrival at j. This information must then be acquired by i through
some operation of union or intersect of information sets. To main the constraints
imposed by full decentralisation, it must be possible to eliminate common commu-
nicated information terms between any pair of communicating nodes, on the basis
of local information only. In a fully connected network, the solution is immediate
since Ti = Tj at every time-step and Equation 309 follows. A tree network is par-
titioned about any pair of connected nodes (i, j) such that the information Ti held

Multi-Sensor Data Fusion 135

in the subtree from i and that held in the subtree from j are disjoint: Ti ∩ Tj = ∅.
Therefore, i acquires the terms from the subtree Tj only through j. In an arbitrary
network, it may be possible for i to acquire the information known to j along other
routes. The problem is that the communicated terms are not necessarily disjoint,
therefore, each node must be able to determine Ti ∩ Tj locally. As shown in Figure
42, information in the region of intersection arrives at both i and j. This multi-
ple propagation must be accounted for. The problem of arbitrary networks can be
alternately be considered as estimation in networks which admit multiple cycles.

Determination of the communication requirements for non-fully connected decentralised
networks therefore hinges on the extraction of common information.

Ti

i j

Tj

Subtrees Connected
Through (i,j)

Ti=Tj

i j
Full Connection

Ti

i j

Tj

Subtnetworks Connected
Through (i,j)

Figure 42: Communicated information sets in the three classes of topology.

4.4.3 Bayesian Communication in Sensor Networks

Expressions for the common information between two nodes are now derived from Bayes
theorem. This in turn establishes the relationships between log-likelihoods from which

Multi-Sensor Data Fusion 136

common information filters can be derived.
The interaction of pairs of nodes are considered. For each communicating pair (i, j),

the required probability is P (Zi ∪ Zj). Let the union of the individual observation infor-
mation sets be partitioned into disjoint sets as

Zi ∪ Zj = Zi\j ∪ Zj\i ∪ Zij (312)

where
Zi\j = Zi\Zij, Zj\i = Zj\Zij, Zij = Zi ∩ Zj,

and where the notation p\r (the restriction operation) means elements of the set p ex-
cluding those elements that are also in set r. Note also that

Zi\j ∪ Zij = Zi, Zj\i ∪ Zij = Zj.

Then,

P (Zi ∪ Zj | x) = P (Zi\j ∪ Zj\i ∪ Zij | x)
= P (Zi\j | Zj\i ∪ Zij,x)P (Zj\i ∪ Zij | x) = P (Zi\j | Zij,x)P (Zj | x)
=

P (Zi\j ∪ Zij | x)
P (Zij | x) P (Zj | x) = P (Zi | x)

P (Zij | x)P (Zj | x)

=
P (Zi | x)P (Zj | x)
P (Zi ∩ Zj | x) . (313)

Substituting Equation 313 into Bayes theorem gives

P (x | Zi ∪ Zj) =
P (Zi ∪ Zj | x)P (x)

P (Zi ∪ Zj)
=

P (Zi | x)P (Zj | x)
P (Zi ∩ Zj | x)

P (x)

P (Zi ∪ Zj)
=

P (x | Zi)P (x | Zj)
P (x | Zi ∩ Zj)

P (Zi)P (Zj)

P (Zi ∩ Zj) P (Zi ∪ Zj)

= c.
P (x | Zi)P (x | Zj)
P (x | Zi ∩ Zj) . (314)

This shows that the relation between the posterior probability in the unknown state given
information from both nodes, P (x | Zi ∪ Zj), as a function of the posteriors based only
on locally available information, P (x | Zi) and P (x | Zj), and the information the two
nodes have in common P (x | Zi ∩ Zj).

Taking logs of Equation 314, gives

lnP (x | Zi ∪ Zj) = lnP (x | Zi) + lnP (x | Zj)− lnP (x | Zi ∩ Zj). (315)

Equation 315 simply states that the fused information is constructed from the sum of the
information from each of the nodes minus the information they have in common. The
term lnP (x | Zi ∩ Zj) describes the common information between two nodes which must
be removed before fusion.

Equation 315 serves as the basis for developing information communication policies
for non-fully connected sensor networks.

Multi-Sensor Data Fusion 137

4.4.4 The Channel Filter

The probability density functions in Equation 315 can represent four different information
or Kalman filter estimates:

• The local estimate at node i:

x̂i(k | k) �
= E{x(k) | Zki }

with covariance Pi(k | k).
• The local estimate at node j:

x̂j(k | k) �
= E{x(k) | Zkj}

with covariance Pj(k | k).
• The estimate based on the union of all information possessed by nodes i and j (in

effect the global estimate):

x̂i∪j(k | k) �
= E{x(k) | Zki ∪ Zkj}

with covariance Pi∪j(k | k).
• The estimate based on the common information between nodes i and j:

x̂i∩j(k | k) �
= E{x(k) | Zki ∩ Zkj}

with covariance Pi∩j(k | k).
Following Equation 259; Substituting Gaussian distributions for the probability density
functions in Equation 315 and taking natural logarithms immediately gives the informa-
tion filter equivalent of Equation 315 as

ŷi∪j(k | k) = ỹi(k | k) + ỹj(k | k)− ŷi∩j(k | k) (316)

Yi∪j(k | k) = Ỹi(k | k) + Ỹj(k | k)−Yi∩j(k | k) (317)

where

ỹi(k | k) = ŷi(k | k − 1) + ii(k), ỹj(k | k) = ŷj(k | k − 1) + ij(k) (318)

Ỹi(k | k) = Yi(k | k − 1) + Ii(k), Ỹj(k | k) = Yj(k | k − 1) + Ij(k) (319)

It remains to evaluate the common information terms

ŷij(k | k) �
= ŷi∩j(k | k), Yij(k | k) �

= Yi∩j(k | k).
There are three cases

Multi-Sensor Data Fusion 138

• Fully Connected: When the network is fully connected, the common information
between two nodes at a time k is exactly the information communicated up to time
k − 1. This is simply the common prediction

ŷij(k | k) = ŷi(k | k − 1) = ŷj(k | k − 1)

Yij(k | k) = Yi(k | k − 1) = Yj(k | k − 1). (320)

Substitution of Equations 320, 318 and 319 into Equations 316 and 317, yields the
previously derived decentralised data fusion Equations 306 and 307.

• Tree Connected: When there is only one pathway joining any two sensor nodes,
the common information between these nodes can be obtained locally by simply
adding up the information that has previously been communicated on the channel
connecting the two nodes. Equations 287 and 288 provide a recursive expression to
for the total information communicated between the two nodes as

ŷij(k | k) = ŷij(k | k − 1)

+[ỹi(k | k)− ŷij(k | k − 1)]

+[ỹj(k | k)− ŷij(k | k − 1)]

= ỹi(k | k) + ỹj(k | k)− ŷij(k | k − 1) (321)

and

Yij(k | k) = Yij(k | k − 1)

+[Ỹi(k | k)−Yij(k | k − 1)]

+[Ỹj(k | k)−Yij(k | k − 1)]

= Ỹi(k | k) + Ỹj(k | k)−Yij(k | k − 1) (322)

This estimate of common information replaces the prior information terms in Equa-
tions 287 and 288. The local updates at each node remain unchanged

ỹi(k | k) = ŷi(k | k − 1) + ii(k) (323)

Ỹi(k | k) = Yi(k | k − 1) + Ii(k) (324)

and the assimilation stage becomes

ŷi(k | k) = ỹi(k | k) +
∑
j∈Ni

[ỹj(k | k)− ŷji(k | k − 1)] (325)

Yi(k | k) = Ỹi(k | k) +
∑
j∈Ni

[
Ỹj(k | k)−Yji(k | k − 1)

]
. (326)

This filter is clearly symmetric, ŷij(· | ·) = ŷji(· | ·), as two nodes have the same
common information, so need only be computed once for each channel.

Multi-Sensor Data Fusion 139

• General Networks: In networks which admit multiple cycles, it is possible for
information from a node j to be communicated to a node i both directly through
the link (i, j) and indirectly through other nodes connected to both i and j. In such
cases, simply adding up information transmitted through the direct connection (i, j)
is not the same as determining the common information ŷij(k | k) and Yij(k | k)
between these two nodes. Indeed, in general it is not possible to determine this
common information on the basis of local information only. A number of alternative
approaches to fusion in general networks are considered in Section 4.4.7.

Equations 321 and 322 define an information filter which estimates the common infor-
mation between nodes. The filter is completed by addition of a corresponding prediction
stage as

ŷij(k | k − 1) =
[
1−Ωij(k)G

T (k)
]
F−T (k)ŷij(k − 1 | k − 1)

+Yij(k | k − 1)B(k)u(k)

Yij(k | k − 1) = Mij(k)−Ωij(k)Σij(k)Ω
T
ij(k) (327)

where

Mij(k) = F−T (k)Yij(k − 1 | k − 1)F−1(k), Ωij(k) = Mij(k)G(k)Σ−1
ij (k), (328)

and
Σij(k) =

[
GT (k)Mij(k)G(k) +Q−1(k)

]
. (329)

The channel filter is simply an information-state estimator which generates estimates on
the basis of information communicated through a channel joining two adjacent nodes.
The channel filter The effect of the channel filter is to provide information to nodes from
further afield in the network with no extra communication cost. If the network is strictly
synchronous (all nodes cycle at the same speed) then the information arriving at a specific
node will be time delayed in proportion to the number of nodes through which it must
pass. This gives rise to a characteristic triangular ‘wave-front’ in the information map
which describes the way information is used at any one node to obtain an estimate.

4.4.5 Delayed, Asequent and Burst Communication

The channel filter provides a mechanism for handling the practical problems of communi-
cation between sensor nodes. A communication medium for a sensor network will always
be subject to bandwidth limitations, and possibly intermittent or jammed communica-
tions between nodes. This in turn gives rise to data that is delayed prior to fusion and
possibly data that is asequent (arriving out of temporal order). If problems of data de-
lay and order can be resolved, then efficient strategies can be developed for managing
communications in sensor networks.

At the heart of practical communication issues is the delayed data problem. The
solution to the delayed data problem requires an ability to propagate information both
forward and backward in time using the information prediction Equations 250 and 251.

Multi-Sensor Data Fusion 140

Consider the information matrix Y(k | k) obtained locally at a node at time k. Follow-
ing Equation 251, this information matrix can be propagated forward in time n steps
according to

Y(k + n | k) = Mn(k)−Mn(k)Gn(k)Σ
−1
n (k)GT

n (k)Mn(k) (330)

where
Mn(k) =

[
F−T (k)

]n
Y(k | k) [F−1(k)]

n
,

Σn(k) = GT
n (k)Mn(k)Gn(k) +Q−1

n (k)

and where the subscript n denotes that the associated transition matrices are evaluated
from the integrals in Equation 73 over the interval n∆T . Likewise, from Equation 250
the information-state vector can be propagated forward according to

ŷ(k + n | k) =
[
1−Mn(k)Gn(k)Σ

−1
n (k)GT

n (k)
] [
F−T (k)

]n
ŷ(k | k)

+Y(k + n | k)Bn(k)un(k). (331)

An equivalent expression can be obtained for propagating information backwards in time
as

Y(k − n | k) = M−n(k) +M−n(k)G−n(k)Σ−1
−n(k)G

T
−n(k)M−n(k) (332)

where
M−n(k) =

[
FT (k)

]n
Y(k | k) [F(k)]n ,

Σ−n(k) = Q−1
n (k)−GT

−n(k)M−n(k)G−n(k)

and where the subscript −n denotes that the associated transition matrices are evaluated
from the integrals in Equation 73 over the interval−n∆T . Similarly, the information-state
vector can be propagated backward according to

ŷ(k − n | k) =
[
1−M−n(k)G−n(k)Σ−1

−n(k)G
T
−n(k)

] [
FT (k)

]n
ŷ(k | k)

+Y(k − n | k)B−n(k)un(k). (333)

The delayed data problem can now be solved using the following algorithm:

1. Back-propagate the estimate Y(k | k) to the time, k − n, at which the information
I(k − n) was obtained, using Equations 332 and 333.

2. Add the delayed data I(k − n) to the estimate Y(k − n | k) in the normal manner.

3. Propagate the new fused estimate back to time k using Equations 330 and 331.

It can be demonstrated that the net effect of this algorithm is to produce an estimate in
the form

Y(k | k) = YY (k | k) +YI(k | k) +YY I(k | k)

Multi-Sensor Data Fusion 141

where YY (k | k) is the estimate obtained without the delayed information, YI(k | k) is
the estimate obtained using only the delayed information, and YY I(k | k) is a cross-
information term (uniquely definedYY (k | k) andYI(k | k)) describing the cross-correlation
between the information states caused by propagation through a common process model.
It should be noted that YY I(k | k) is additive, so the obvious approximation

Y(k | k) = YY (k | k) +YI(k | k)
is conservative.

Recall that the channel filter is simply a standard information filter used to maintain
an estimate of common data passed through a particular channel. A channel filter on
node i connected to node j maintains the common information vector ŷij(k | k) and the
common information matrix Yij(k | k).

The prediction equations (for both forward and backward propagation) used in the
channel filter are the same as Equations 330–333 described above. For the update stage
a channel filter receives information estimates from other nodes. When this happens, the
channel filter predicts the received information to a local time horizon and then determines
the new information at that time. The new information at the channel filter at node i
when data arrives through the channel connected to node j is the information gain from
node j

mj(k) = ŷj(k | k − n)− ŷij(k | k −m)

Mj(k) = Yj(k | k − n)−Yij(k | k −m) (334)

Note now that the time indices Yj(k | k − n) and Yij(k | k −m) are different as the dif-
ferent nodes are asynchronous and the two information sets can be predicted over different
time horizons. This information gain m(k) and M(k) is analogous to the observation in-
formation vector i(k) and I(k), and is merely added in the update stage. The update for
the channel filter between nodes i and j when new information has been received from
node j can then be written as

ŷij(k | k) = ŷij(k | k −m) +mj(k)

Yij(k | k) = Yij(k | k −m) +Mj(k) (335)

This can be further simplified by substituting Equation 334

ŷij(k | k) = ŷij(k | k −m) +mj(k)

ŷij(k | k) = ŷij(k | k −m) + ŷj(k | k − n)− ŷij(k | k −m)

ŷij(k | k) = ŷj(k | k − n) (336)

This reveals a trivial update stage where the channel filter merely overwrites the previous
state with the newer one. When a new information set arrives at node i from node j, the
channel filter is updated by

ŷij(k | k) = ŷj(k | k − n)

Yij(k | k) = Yj(k | k − n) (337)

Multi-Sensor Data Fusion 142

Alternatively, if the new information at the channel filter of node i is from the local filter
at node i, the update becomes

ŷij(k | k) = ŷi(k | k)
Yij(k | k) = Yi(k | k) (338)

While the normal information filter update of Equation 335 is perfectly valid, implemen-
tation in the form of Equation 337 and 338 is much simpler as there is no computation,
just the overwriting of the previous state.

Together, the channel update equations allow data delayed from neighbouring nodes
to be fused in an optimal manner. This together with local assimilation equations per-
mits burst communication of estimates accumulated over a time period, in a manner
that ensures no double counting of information. This also means that the channel filter
algorithms are robust to intermittent communication failure.

4.4.6 Management of Channel Operations

Σ

Σ

i(k) yi(k|k)~

Channel Filters

Prediction

Preprocess
Channel
Manager

Sensor Node

yi(k|k)^

yi(k|k-1)^

yi(k|k)- yiq(k|k-n)^~

yi(k|k)- yip(k|k-n)^~

∆ypi(k|k), ∆yqi(k|k)^ ^

P

Q

Figure 43: Algorithmic structure of a decentralised sensing node.

Figure 43 shows a typical sensor node, i, in a decentralised data fusion system. The
node generates information measures ŷi(k | k) at a time k given observations made locally
and information communicated to the node up to time k. The node implements a local
prediction stage to produce information measure predictions ŷi(k | k − 1) at time k given
all local and communicated data up to time k− 1 (this prediction stage is often the same
on each node and may, for example, correspond to the path predictions of a number of
common targets). At this time, local observations produce local information measures
i(k) on the basis of local observations. The prediction and local information measures
are combined, by simple addition, into a total local information measure ỹi(k | k) at
time k. This measure is handed down to the communication channels for subsequent
communication to other nodes in the decentralised network. Incoming information from
other nodes ŷji(k | k) is extracted from appropriate channels and is assimilated with the
total local information by simple addition. The result of this fusion is a locally available
global information measure ŷi(k | k). The algorithm then repeats recursively.

Multi-Sensor Data Fusion 143

The communication channels exploit the associativity property of information mea-
sures. The channels take the total local information ỹi(k | k) and subtract out all in-
formation that has previously been communicated down the channel, ŷij(k | k), thus
transmitting only new information obtained by node i since the last communication. In-
tuitively, communicated data from node i thus consists only of information not previously
transmitted to a node j; because common data has already been removed from the com-
munication, node j can simply assimilate incoming information measures by addition.
As these channels essentially act as information assimilation processes, they are usually
referred to as channel filters

Channel filters have two important characteristics:

1. Incoming data from remote sensor nodes is assimilated by the local sensor node be-
fore being communicated on to subsequent nodes. Therefore, no matter the number
of incoming messages, there is only a single outgoing message to each node. Conse-
quently, as the sensor network grows in size, the amount of information sent down
any one channel remains constant. This leads to an important conclusion: A decen-
tralised data fusion system can scale up in size indefinitely without any increase in
node-to-node communication bandwidth.

2. A channel filter compares what has been previously communicated with the total
local information at the node. Thus, if the operation of the channel is suspended,
the filter simply accumulates information in an additive fashion. When the channel
is re-opened, the total accumulated information in the channel is communicated
in one single message. The consequences of this are many-fold; burst transmission
of accumulate data can be employed to substantially reduce communication band-
width requirements (and indeed be used to manage communications); if a node is
disconnected from the communications network, it can be re-introduced and in-
formation synchronised in one step (the same applies to new nodes entering the
system, dynamic network changes and signal jamming). This leads to a second im-
portant conclusion: A decentralised data fusion system is robust to changes and loss
of communication media.

Together, the node and channel operation define a system which is fully modular in
algorithmic construction, is indefinitely scalable in numbers of nodes and communication
topology, and is survivable in the face of failures of both sensor nodes and communication
facility.

To summarise, this algorithm provides a framework that enables information to flow
through the network with a fixed communication overhead, independent of network size.
Information flow is achieved without any additional communication over that required for
the simple nearest neighbour fusion algorithm described in Equations 306 and 307. This
involves the transmission and reception of one information matrix and one information-
state vector to and from each neighbouring node. The algorithm yields estimates equiv-
alent to those of a centralised system with some data delays (due to the time taken for
information to travel across the network).

Multi-Sensor Data Fusion 144

4.4.7 Communication Topologies

The sensor networks considered in preceding sections were restricted to having only a
single path between any two nodes. Clearly such networks are not robust as failure of
any one channel or node will divide the network into two non-communicating halves.
Networks which are to be made reliable must ensure that there are multiple, redundant,
paths between sensor nodes.

However, the algorithms described in the previous section will not produce consistent
information-state estimates for networks with multiple paths. The reason for this is that
the channel filter ŷij(· | ·), which is intended to determine information common to nodes
i and j, does so only by summing up information communicated through the channel
linking these two nodes. The assumption is that there is only one path between two
neighbouring nodes so the information they have in common must have passed through the
communication link connecting them. If information is communicated to both nodes i and
j directly by some third node then this information will clearly be common information
held by both i and j, but will not appear in the channel filter ŷij(· | ·) because it has not
passed through the channel between them.

There are three possible solutions to this problem

• Data Tagging: An obvious solution is to tag information as passes through the
network so that nodes can determine which comments are “new” and which have
already been communicated through other links. The problem with this method is
that it will not scale well with large data sets and with large sensor networks.

• Spanning Trees: A viable solution is to use an algorithm which dynamically selects
a minimal spanning tree for the network. This, in effect would allow redundant
links to be artificially “broken” at run-time so allowing tree-based communication
algorithms to function in a consistent manner. Links can be artificially broken by
setting ŷij(· | ·) = ỹj(· | ·), ensuring no information is communicated across the cut.
The distributed Belman-Ford algorithm is one algorithm which allows such a tree
to be constructed in a fully distributed or decentralised manner (it is commonly
used for internet routing). Overall system performance depends on reducing data
delays by choosing a topology with short paths between nodes. The best topology
can then be implemented by artificially breaking the necessary links and using the
channel filter algorithm. The network remains scalable although reconfiguration
may be necessary if nodes are to be added or removed. This may, at first, seem to
be a disadvantage but, should the network sustain damage to links or nodes such
a strategy will enable the surviving nodes to reconfigure to form a new topology,
bringing formerly disused links into service to bypass damaged nodes or links. Such
a system will be more robust than a purely tree connected system which will be
divided into two non-communicating parts by the loss of a node or link.

• Dynamic Determination of Cross-Information: A promising approach in
highly dynamic large scale networks is to use a local algorithm which attempts
to determine how the information in two incoming channels is correlated. One such

Multi-Sensor Data Fusion 145

method is the covariance intersect filter. This computes the relative alignment be-
tween information matrices and produces a conservative local update based on the
worst-case correlation between incoming messages. The advantage of this method
is that it is fully general and will work in any network topology. The disadvantage
with this method is that the estimates arrived at, while consistent, are often too
conservative and far from optimal.

4.5 Advanced Methods in Decentralised Data Fusion

Essential decentralised data fusion algorithms have been developed and extended in a
number of ways. These include model distribution methods [31], in which each local
sensor node maintains only a part of the global state-space model, in sensor manage-
ment methods [27], using natural entropic measures of information arising from the log-
likelihood definitions intrinsic to the channel filter, and in system organisation. These are
not addressed further in this course.

Multi-Sensor Data Fusion 146

5 Making Decisions

Low-level data fusion tasks are concerned with the problem of modeling and combining
information. Having obtained this information it is usually necessary to make some kind
of decision; to make an estimate of the true state, to perform a control action, or to decide
to obtain more information. Higher level data fusion problems involve significant decision
making processes.

A decision model is a function which takes as an argument all the information cur-
rently available to the system and which produces an action corresponding to the required
decision. Central to the decision model is the idea of loss or utility. A loss function (or
equivalently a utility function) provides a means of evaluating different actions, allow-
ing for direct comparison of alternative decision rules. Given a loss function, it becomes
possible to model the decision making process and to evaluate different data-fusion strate-
gies. This section briefly defines the concepts of action loss or utility14 and by describing
the decision making process that results. Some important elements of statistical decision
theory are then introduced with particular emphasis on multiple-person decision making
problems. This provides some powerful techniques for modeling the organization and
control of information in complex data fusion systems.

5.1 Actions, Loss and Utility

Decision making begins with an unknown state of nature x ∈ X . An experiment is made
which generates an outcome or observation z ∈ Z. On the basis of this observation an
action a ∈ A must be computed. The action may be to make an estimate of the true
state, in which case a ∈ X , but in general it is simply to choose one of a specified set
of possible actions in A. A decision rule δ is simply a function taking observations into
actions; δ : Z −→ A, so that for every possible observation z ∈ Z, δ defines what action
a ∈ A must be taken; a = δ(z).

5.1.1 Utility or Loss

A loss function L(·, ·) (or corresponding utility function U(·, ·)) is defined as a mapping
from pairs of states and actions to the real line;

L : X ×A −→ �, U : X ×A −→ �.

The interpretation of a loss function L(x, a) is that L is the loss incurred in taking the
action a when the true state of nature is x. Similarly, the interpretation of a utility
function U(x, a) is that U is the gain obtained in taking the action a when the true state
of nature is x. In principle, it should be the case that for a fixed state of nature, both

14Engineers, being pessimists by nature, tend to use the term ‘Loss’ to compare different decisions.
Economists, being optimists by necessity, use the term ‘Utility’. With the obvious sign change, the terms
can be used interchangeably and results derived with respect to one can always be interpreted in terms
of the other.

Multi-Sensor Data Fusion 147

utility and loss will induce a preference ordering on A. To ensure this, loss and utility
functions must obey four rules called the utility or ‘rationality axioms’ which guarantee
a preference pattern. We state these rules here in terms of utility, following convention.
An analogous set of rules applies to loss functions. For fixed x ∈ X :

1. Given any a1, a2 ∈ A, either U(x, a1) < U(x, a2), U(x, a1) = U(x, a2), or U(x, a1) >
U(x, a2). That is, given any two actions we can assign real numbers which indicate
our preferred alternative.

2. If U(x, a1) < U(x, a2) and U(x, a2) < U(x, a3) then U(x, a1) < U(x, a3). That is,
if we prefer action a2 to a1 and action a3 to a2, then we must prefer action a3 to
action a1; the preference ordering is transitive.

3. If U(x, a1) < U(x, a2), then αU(x, a1) + (1 − α)U(x, a3) < αU(x, a2) + (1 −
α)U(x, a3), for any 0 < α < 1. That is, if a2 is preferred to a1 then, in a choice
between two random situations which are identical except that both a1 and a2 occur
with probability α, the situation involving a2 will be preferred.

4. If U(x, a1) < U(x, a2) < U(x, a3), there are numbers 0 < α < 1 and 0 < β < 1
such that αU(x, a1)+(1−α)U(x, a3) < U(x, a2) and αU(x, a1)+(1−α)U(x, a3) <
U(x, a2). That is, there is no infinitely desirable or infinitely bad reward (no heaven
or hell).

A proof that these axioms imply the existence of a utility function can be found in [8].
The first three axioms seem intuitively reasonable. The final axiom is rather more difficult
to justify. Indeed, the well-known least-squares loss function does not satisfy this final
axiom because it is not bounded from above. However, it turns out that the need for
boundedness rarely affects a decision problem. One exception to this, in group decision
making problems, will be discussed in later sections.

It is well known and much discussed by economists that people do not always act
rationally according to the ‘rationality axioms’ and that indeed they normally have con-
siderable problems constructing any kind of consistent utility function by which to judge
decisions. The definition of rationality does not really concern us when dealing with a
data fusion system that consists of deterministic algorithms; we can always enforce the
definition of rationality chosen. What is of importance is the construction of the loss
function itself. It is, in principle, important to ensure that the loss (or utility) function
employed truly represents the value we place on different decisions. Constructing such a
loss function can be quite difficult (see [8] for a systematic approach to the construction
of utility functions). Fortunately however, many of the decision rules we will have cause
to consider are insensitive to the exact form of the loss function employed provided it is
restricted to a certain class; all symmetric loss functions for example.

5.1.2 Expected Utility or Loss

Except in case of perfect knowledge, a loss function in the form of L(x, a) is not very useful
because the true state of nature x ∈ X will not be known with precision and so the true

Multi-Sensor Data Fusion 148

loss incurred in taking an action will not be known. Rather, there will be a probability
distribution P (x) summarizing all the (probabilistic) information we have about the state
at the time of decision making. With this information, one natural method of defining loss
is as an expected loss (or Bayes expected loss) which for continuous-valued state variables
is simply

β(a)
�
= E{L(x, a)} =

∫ ∞

−∞
L(x, a)P (x)dx, (339)

and for discrete-valued state variables is given by

ρ(a) =
�
= E{L(x, a)} =

∑
x∈X

L(x, a)P (x). (340)

Clearly, Bayes expected loss simply weights the loss incurred by the probability of occur-
rence (an average loss). More pessimistic approaches, such as game-theoretic methods,
could also be used (this depends also on the risk).

5.1.3 Bayesian Decision Theory

It is most likely that probabilistic information concerning x is obtained after taking a
number of observations, in the form of a posterior distribution P (x | Zn). An expected
utility (or loss) β following an action a may then be defined with respect to a specified
posterior distribution in the true state, as

β(P (x | Zn), a) �
= E{U(x, a)}
=

∫
x
U(x, a) P (x | Zn) dx. (341)

The Bayes action â is defined as the strategy which maximises the posterior expected
utility

â = argmax
a

β(P (x | Zn), a) (342)

It can be shown that this is equivalent to maximising∫
x
U(x, a) P (Zn | x) P (x) dx. (343)

Many well-known decision theoretic principles can be stated in terms of a Bayes action.
For example, in estimation problems, the action set is made equal to the set of possible
states of nature (A = X). In particular, the MMSE estimate defined by

x̂ = arg min
a∈X

∫
x
(x− a)T (x− a)P (x | Zn)dx

= arg min
a∈X

∫
x
L(x, a)P (x | Zn)dx, (344)

is clearly a Bayes action with respect to a squared error loss function defined by L(x, x̂) =
(x− x̂)T (x− x̂).

Multi-Sensor Data Fusion 149

5.2 Decision Making with Multiple Information Sources

Decision-making with multiple sources of information is fundamentally more complex
than the problem of single source decision making. The essential reason for this is that
it is difficult to provide a consistent measure of utility or loss for each decision maker.
In particular, two basic problems exist. First, how can the utilities of two different
decision makers be compared unless there is a common measure of value. This is known
as the problem of inter-personal utility comparison. Second, should decision makers aim
to maximize a utility which expresses only local preferences, or should each decision
maker evaluate its actions with respect to some common or group utility function. In the
literature on the subject, no single agreed solution exists for these two problems. However,
for specific decision making problems in which concepts of utility may be simplified and
made precise, it is possible to arrive at consistent and useful solutions to both the utility
comparison and the group utility problems. These are briefly discussed here.

The problem of making decisions involving multiple information sources has been
formulated under a variety of assumptions in the literature [10][26]. We shall consider the
following representative cases:

5.2.1 The Super Bayesian

Case 1: Consider a system consisting of N information sources and a single overall
decision maker. The task of the decision maker is, in the first instance, to combine
probabilistic information from all the sources and then to make decisions based on the
global posterior. Given that the global posterior is P (x | Zk), the Bayes group action is
given by

â = argmax
a

β(P (x | Zk), a)
= argmax

a
E{U(x, a) | Zk} , (345)

where U(x, a) is a group utility function. The solution in this case is well defined in terms
of classical Bayesian analysis and is often termed the “super Bayesian” approach [44].

5.2.2 Multiple Bayesians

Case 2: Consider a system consisting of N Bayesians each able to obtain its own prob-
abilistic information which it shares with all the other Bayesians before computing a pos-
terior PDF. From the previous discussion, the posterior PDF obtained by each Bayesian
i is identical and is given by P (xi | Zki). Each Bayesian is then required to compute an
optimal action which is consistent with those of the other Bayesians.

This second case describes a fully decentralised system. It presents a considerable chal-
lenge for which a universally prescribed solution is not possible. This is partly because of
the lack of generally applicable criteria for determining rationality and optimality, coupled
with the question of whether to pursue group or individual optimality. The trivial case

Multi-Sensor Data Fusion 150

exists where the optimal action ai at each Bayesian i happens to be the same for all the
Bayesians and thus becomes the group action. In general local decisions are not the same,
and so a solution proceeds as follows; each Bayesian i computes an acceptable (admissi-
ble) set of actions Ai ⊆ A and if the set A = ∩jAj is non-empty, then the group action is
selected from the set A. An acceptable class of actions can be obtained by maximising

β(P (x | Zk), a) =∑
j

wj E{Uj(x, a) | Zk} (346)

where 0 ≤ wj ≤ 1 and
∑
j wj = 1. Equivalently, from the Likelihood Principle (Equa-

tion 343), this can be written as a maximisation of

∑
j

wj

∫
Uj(x, a) P (Zkj | x) P (x) dx. (347)

Although it is clear that Equation 346 and Equation 347 represent acceptable actions, it
is extremely difficult to choose a single optimal action â from this acceptable set. The
real problem is that the individual utilities Ui can not, in general, be compared as they
may correspond to completely different scales of value. If each local utility function Ui
were described on a common scale, then maximisation of Equation 346 or Equation 347
clearly gives the optimal group action. The general problem of comparing local utilities
to arrive at an optimal group decision is known to be unsolvable (Arrow’s impossibility
theorem [3]). However it is also known that with a few additional restrictions on the form
of Ui, such comparisons can be made to give sensible results.

In the case where comparison between local utilities can be justified, a solution to the
group decision problem may be obtained by maximising Equation 346. A rather more
general solution to the group decision problem in this case has been suggested in [44].
The optimal group decision is obtained from

â = argmax
a

∑
j

wj [E{Uj(x, a)} − c(j)]γ

1/γ

, (348)

where c(j) is regarded as decision maker j’s security level which plays the role of “safe-
guarding j’s interests”. The weight wj is as given in Equation 346 and −∞ ≤ γ ≤ ∞. The
case when γ = 1, gives a solution which minimises Equation 346 and γ = −∞ and γ =∞
give the so-called Bayesian max-min and min-max solutions respectively [8][44]. The so-
lution arising from using γ = 1 and γ = ∞ can result in an individual decision-maker
ending up with a net loss of expected utility, depending on the value of c(j).

5.2.3 Nash Solutions

One soloution to the case when direct comparisons of utility cannot be justified is the well
known Nash product [32] . The Nash product consists simply of a product of individual

Multi-Sensor Data Fusion 151

utilities. In this case, the absolute scale of each individual utility has no effect on the
optimal action chosen. The Nash solution may be obtained from

â = argmax
a

∏
j

[E{Uj(x, a)} − c(j)] , (349)

in which the value of c(j) can be used to maintain some level of individual optimality.
The value of c(j) plays no part in the actual derivation of the Nash solution and is thus
arbitrary.

In many situations, it may be that the various decision makers do not come to a single
unified opinion on what the global decision should be. Such a situation occurs when the
local utility of a global decision is much poorer than the value that would be obtained
by “agreeing to disagree”. This leads to a range of further issues in cooperative game
playing and bargaining.

Multi-Sensor Data Fusion 152

References

[1] D.L. Alspace and H.W. Sorenson. Gaussian filters for nonlinear filtering problems. IEEE
Trans. Automatic Control, 17(2):439–448, 1972.

[2] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice Hall, 1979.

[3] K.J. Arrow. Social Choice and Individual Values. Wiley, 1966.

[4] Y. Bar-Shalom. On the track to track correlation problem. IEEE Trans. Automatic Control,
25(8):802–807, 1981.

[5] Y. Bar-Shalom. Multi-Target Multi-Sensor Tracking. Artec House, 1990.

[6] Y. Bar-Shalom. Multi-Target Multi-Sensor Tracking II. Artec House, 1990.

[7] Y. Bar-Shalom and T.E. Fortmann. Tracking and Data Association. Academic Press, 1988.

[8] J.O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer Verlag, 1985.

[9] S. Blackman and R. Popoli. Design and Analysis of Modern Tracking Systems. Artec
House, 1999.

[10] D. Blackwell and M. A. Girshick. Theory of Games and Statistical Decisions. Dover
Publications, 1954.

[11] P. L. Bogler. Shafter-dempster reasoning with applications to multisensor target identifi-
cation systems. IEEE Trans. Systems Man and Cybernetics, 17(6):968–977, 1987.

[12] R.G. Brown and P.Y.C. Hwang. Introduction to Applied Kalman Filtering. John Wiley,
1992.

[13] D.M. Buede. Shafer-Dempster and Bayesian reasoning: a response to Shafer-Dempster rea-
soning with applications to multisensor target identification systems. IEEE Trans. Systems
Man and Cybernetics, 18(6):1009–1011, 1988.

[14] D.E. Catlin. Estimation, Control and the Discrete Kalman Filter. Springer Verlag, 1984.

[15] C. Chong, K. Chang, and Y. Bar-Shalom. Joint probabilistic data association in distributed
sensor networks. IEEE Trans. Automatic Control, 31(10):889–897, 1986.

[16] T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley, 1991.

[17] D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications. Academic
Press, 1980.

[18] H.F. Durrant-Whyte. Introduction to Estimation and The Kalman Filter. Australian Centre
for Field Robotics, 2000.

[19] S.Y. Harmon. Sensor data fusion through a blackboard. In Proc. IEEE Int. Conf. Robotics
and Automation, page 1449, 1986.

Multi-Sensor Data Fusion 153

[20] C.J. Harris and I. White. Advances in Command, Control and Communication Systems.
IEE press, 1987.

[21] H.R. Hashemipour, S. Roy, and A.J. Laub. Decentralized structures for parallel Kalman
filtering. IEEE Trans. Automatic Control, 33(1):88–93, 1988.

[22] K. Ito and K. Xiong. Gaussian filters for nonlinear filtering problems. IEEE Trans. Auto-
matic Control, 45(5):910–927, 2000.

[23] S. Julier, J. Uhlmann, and H.F. Durrant-Whyte. A new method for the non-linear approxi-
mation of means and covariances in filters and estimators. IEEE Trans. Automatic Control,
45(3):477–481, 2000.

[24] T. Kilath. Linear Systems. John Wiley, 1980.

[25] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, 1985.

[26] R.D. Luce and H. Raiffa. Games and Decisions. Wiley, 1957.

[27] J. Manyika and H.F. Durrant-Whyte. Data Fusion and Sensor Management: An
Information-Theoretic Approach. Prentice Hall, 1994.

[28] P.S. Maybeck. Stochastic Models, Estimaton and Control, Vol. I. Academic Press, 1979.

[29] V. Mazya and G. Schmidt. On approximating approximations using gaussian kernels. IMA
J. Numerical Anal., 16:13–29, 1996.

[30] R.E. Moore. Interval Analysis. Prentice Hall, 1966.

[31] A.G.O Mutambura. Decentralised Estimation and Control for Multisensor Systems. CRC
Press, 1998.

[32] J.F. Nash. The bargaining problem. Econometrica, page 155, 1950.

[33] H.P. Nii. Blackboard systems. AI Magazine, 1986.

[34] A. Papoulis. Probability, Random Variables, and Stochastic Processes; Third Edition.
McGraw-Hill, 1991.

[35] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausable Inference.
Morgan Kaufmann Publishers Inc., 1988.

[36] C.R. Rao. Linear Statistical Inference and its Applications. John Wiley, 1965.

[37] N.R. Sandell, P. Varaiya, M. Athans, and M.G. Safonov. Survey of decentralized control
methods for large scale systems. IEEE Trans. Automatic Control, 23(2):108–128, 1978.

[38] H.W. Sorenson. Special issue on applications of Kalman filtering. IEEE Trans. Automatic
Control, 28(3), 1983.

[39] J.L. Speyer. Communication and transmission requirments for a decentralized linear-
quadratic-gaussian control problem. IEEE Trans. Automatic Control, 24(2):266–269, 1979.

Multi-Sensor Data Fusion 154

[40] L.D. Stone, C.A. Barlow, and T.L. Corwin. Bayesian Multiple Target Tracking. Artech
House, 1999.

[41] M. Stone. Coordinate Free Multivaribale Statistics. Oxford University Press, 1989.

[42] G. Strang. Linear Algebra and its Applications, Third Edition. Harcourt Brace Jovanovich,
1988.

[43] E.L. Waltz and J. Llinas. Sensor Fusion. Artec House, 1991.

[44] S. Weerahandi and J.V. Zidek. Elements of multi-Bayesian decision theory. The Annals of
Statistics, 11(4):1032–1046, 1983.

