
MINING TEMPORAL SEQUENCES TO DISCOVER
INTERESTING PATTERNS

Edwin O. Heierman, III, G. Michael Youngblood, Diane J. Cook
Department of Computer Science

The University of Texas at Arlington
Arlington, Texas 76019-0015

{heierman, youngbld, cook@cse.uta.edu

ABSTRACT
When mining temporal sequences, knowledge discovery
techniques can be applied that discover interesting patterns of
interactions. Existing approaches use frequency, and sometimes
length, as measurements for interestingness. Because these are
temporal sequences, additional characteristics, such as periodicity,
may also be interesting. We propose that information theoretic
principles can be used to evaluate interesting characteristics of
time-ordered input sequences. In this paper, we present a novel
data mining technique based on the Minimum Description Length
principle that discovers interesting features in a time-ordered
sequence. We discuss features of our real-time mining approach,
show applications of the knowledge mined by the approach, and
present a technique to bootstrap a decision maker from the mined
patterns.

Categories and Subject Descriptors
Mining data streams, novel data mining algorithms, preprocessing
and post processing for data mining, spatial and temporal data
mining.

General Terms
Algorithms.

Keywords
Discovering interesting episodes, knowledge discovery, mining
sequential data streams.

1. INTRODUCTION
With the proliferation of computers comes the proliferation of
data created by these computers. Every interaction with a
computer system or sensor can be recorded and preserved. It is
this abundance of data that has resulted in the emergence of the
field known as Data Mining. The number of computer systems
and the data these systems collect has far surpassed our ability to
review and understand the collected data, so we turn to the
computer itself to help us automatically analyze the data for

important information.

Data mining techniques have evolved that perform sequential
pattern mining by processing time-ordered input streams and
discovering the most frequently occurring patterns. Because these
input sequences contain temporal information, additional
interesting characteristics, such as periodicity, may also exist in
the data. The world, at times, tends to operate in a periodic
manner. The earth orbits around the sun every 365 days, and
completes a revolution about its axis every twenty-four hours. In
addition, mankind has subdivided these periods into years,
months, weeks, days, hours, and seconds. By doing so, we can
predict when the sun will rise again, when winter will approach,
and when the earth once again will orbit around the sun. By
taking advantage of the periodic behavior of our environment to
organize time, we also tend to exhibit behavior that is periodic.
We rise at about the same time everyday to eat. We go to work
five days a week, and take the weekends off. Our favorite TV
programs are shown at the same time on the same day of each
week. These periodic interactions provide predictability and add
stability to our lives. Thus, data collected by a computer system
responding to interactions with a human or an environmental
occurrence may also contain patterns that are governed by
periodic behavior.

In our work, we use information theoretic principles to evaluate
characteristics in an input sequence other than frequency, such as
length and periodicity. By using information theory as a
foundation, we anticipate that other characteristics can also be
evaluated for interestingness. In this paper, we describe our work,
discuss the knowledge that is discovered, and present a technique
that uses the mined knowledge to bootstrap a decision maker that
operates in a real-time environment.

2. SEQUENTIAL PATTERN MINING
Our work is related to techniques for sequential data mining,
which is the task of mining frequently occurring patterns related
in time or to other sequences [3]. An example of a sequential
pattern is:

An individual who bought a car three months
ago is likely to change the oil in the car
within the next two weeks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, WA, USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

A common characteristic of techniques that mine sequences is the
discovery of patterns that are frequent [1] [6]. The more frequently
a pattern occurs, the more likely it is that the pattern is important.
In addition, some approaches also take into account the length of
a pattern [1]. Important knowledge is provided if a system can
report that the symbols {a, b} occur frequently together, as

opposed to only reporting that {a} occurs frequently and {b}
occurs frequently. However, little attention has been given to
evaluating other characteristics of the patterns, such as
periodicity. This is surprising, given the emphasis individuals
place on organizing their time. Thus, we are interested in a data-
mining technique that can discover features about a pattern like
the following:

At 6:00pm on Monday, Wednesday, and
Friday of every other week, Dave leaves work
and travels to the gym.

There are several important attributes of the problem we are
investigating that influence our work. First, our data source will
be time-ordered input sequences that consist of occurrences of
events with no natural points that indicate the start or stop of the
pattern. Therefore, our approach must partition the input sequence
by grouping together interactions that are related. Second, the
nature of the patterns is not known a priori. As a result, the
pattern-ordering characteristics (e.g., ordered, unordered) must
also be discovered. Third, frequency is only one of the
characteristics that should be evaluated. Additional features, such
as pattern length and periodicity (occurs daily, weekly), should
also be considered. Therefore, the approach will need to balance
the values of more than one interestingness measurement.
With these attributes in mind, we have developed an Episode
Discovery (ED) algorithm that processes a time-ordered input
stream and identifies clusters of events, or episodes, that are
closely related in time. These episodes are represented as an
unordered set of events. Repeating symbolic patterns in the
episodes are evaluated with an approach based on the Minimum
Description Length principle. A pattern is described with an
encoding, which may result in a reduction in the description
length of the original input sequence. The symbolic-pattern
encodings that result in the greatest compression of the input
sequence are selected as interesting, and the associated patterns
are presented to the user as interesting episodes. The details of our
approach are presented in the next section.
Several works address mining sequential patterns. Agrawal and
Srikant [1] present three techniques for mining sequential patterns
from time-ordered transactions. Each transaction is a set of items,
and variations of the Apriori property are used to find large
sequences by first computing the large itemsets and then
constructing the large sequences. Finally, selecting the sequences
of largest length first and then pruning the subsets of that
sequence yields the set of maximal sequences. Mannila,
Toivonen, and Verkamo [6] consider the problem of discovering
frequent episodes in an event sequence. A user-defined event
window partitions the event stream into overlapping collections of
events that are close to each other in time. These collections are
examined to find frequent parallel and serial episodes by use of
the Apriori property. All frequent episodes are output by the
algorithm. Srikant and Agrawal [8] extend their previous work by
supporting maximum and minimum time gaps between sequence
elements, a sliding time window (event window) across
transaction sets, and user-defined taxonomies. The support used
for the Apriori-based algorithm is supplanted with additional
measures that account for the new features.

3. EPISODE DISCOVERY
We view our data-mining task as the process of describing a time-
ordered input sequence with encodings that represent the
interesting characteristics that may be present in the sequence.
Rissanen’s work [7] on the Minimum Description Length (MDL)
principle, which proposes searching for models and model classes
with the shortest description length, serves as the underlying
theory for our work. Rissanen reasons that by using an encoding
of a dataset to reduce its description length, constraints are
applied to the data that reduce the uncertainty about the nature of
the data. Here, encoding is used as a general term to mean an
exact representation. The resulting “minimum-encoded”
description captures the properties that provide the most likely
explanation for the data. Stated another way, the model defines a
distribution that assigns the maximum probability to the observed
data. Therefore, we will define encodings that encompass
interesting characteristics, and use these encodings to find a
model that exhibits the minimum description length. The end
result will be descriptions that provide a likely explanation of the
input.
We reason that if a pattern exhibits periodicity, then describing
the pattern with terms that include its periodicity would reduce
the overall description length of the input sequence because the
occurrences of the periodic pattern can be replaced by the
description. In addition, because patterns in the sequence may not
be periodic, an encoding will need to be defined that describes
non-periodic patterns. Finally, we consider pattern length and
frequency to also be interesting characteristics, so the encodings
should also describe these features. We anticipate that “more
frequent” and “greater length” encodings will also reduce the
description length of the input sequence. We now present our
MDL-based approach that makes use of encodings to discover if
patterns present in a time-ordered input sequence exhibit these
interesting characteristics.

3.1 Terminology
We start our discussion by defining the input, processing, and
output of our approach. The time-ordered input sequence is
defined as follows. We will let П represent the set of all possible
symbols or interactions that could appear in an input stream (the
domain alphabet), and let s represent any symbol that is a member
of П. An event δ is denoted as the pair (s, t), where t is a
timestamp consisting of time and date information. An event
sequence O is defined as an ordered sequence of events, O = (δ1,
δ2, …, δn). The event sequence consists of all events that have
occurred up to the point in time represented by tn. The sequence
must be in non-descending order based on the timestamp value,
such that ti≤ ti+1. Events in which the timestamp values are the
same can be placed in any order.
Our objective is to discover the symbolic patterns in O that are
considered interesting. In order to find these patterns, we will
collect sets of events from the input sequence into an ordered
collection, which we refer to as episodes. Formally, we define an
episode ε to be a sequence of event occurrences, ε = (δ j, δ j+1, δ

j+2, …, δ j+m), which is a sub-sequence of O starting at time stamp
tj and ending at tj+m. Upon partitioning the input sequence into
overlapping episodes, the algorithm will evaluate patterns found
in multiple episodes by encoding a description of the pattern
occurrences. The encodings that contribute to a minimum

description length of the input sequence will be selected as
interesting.
ED will evaluate if a pattern occurs at repeatable time intervals.
An interval may consist of just a single value or a sequence of
values. In order to explain an interval consisting of a single value,
assume the existence of symbols a and b. After partitioning O into
episodes, ED discovers that the symbols a and b appear together
in multiple episodes, and that these episodes occur every 24
hours. Intuitively, then, this represents a situation in which the
symbols {a, b} occur on a daily basis.
The interval may also be an ordered sequence of values, such as
48 hours, 48 hours, and 72 hours. Once again using the symbols a
and b, assume ED has discovered a situation in which these
symbols appear together in multiple episodes, and that the time
interval between the episodes repeats the pattern 48 hours, 48
hours, and 72 hours over and over. We will assume the first
episode occurs on Monday. There is 48 hours until the next
occurrence of an episode containing {a, b}, which now makes it
Wednesday. After an additional 48 hours passes, now making it
Friday, another episode occurs that contains {a, b}. Finally, 72
hours elapses until another occurrence of an episode containing
{a, b}, which makes it Monday again. Thus, {a, b} occurs on
Monday, Wednesday, and Friday of every week.
ED will output a collection of interesting episodes, ω, that are
discovered in an input sequence O. We will let λ, called a
symbolic pattern, represent an unordered collection of symbols,
{s1, s2, …, sn}. In the previous discussion, λ would be the set {a,
b}. The symbolic pattern will be output as part of the discovered
knowledge. Because we will treat the pattern as an unordered
collection, a set of symbolic patterns that represent the
permutations of λ that actually occur in the dataset will be
provided as part of the output, represented as Λ={λ1, λ2,…, λm}.
An example of such a set is Λ={(a,b), (b,a)}, where λ1=(a, b) and
λ2=(b, a). We will let µ=(µ1,…, µi) represent the repeating interval
sequence. In the example above, the interval sequence would be
µ=(48, 48, 72). If the interesting episode follows no repeating
interval, then the sequence will be empty. Finally, Ψ={ε1, ε2,…,
εj} represents the episodes that contain the symbols defined by λ.
With this notation, we define an interesting episode as ω = {λ, Λ,
µ, Ψ}.

3.2 Pattern Encodings
We now turn our attention to the encodings that will be used.
When encoding a symbolic pattern, we are interested in
determining if the episodes containing the pattern repeat
according to an interval sequence µ. We will evaluate two types
of repeating interval sequences: fined-grained and course-grained.
In order to present an example of a fine-grained interval, assume
the symbols {a, b} occur periodically in multiple episodes on
Mondays, Wednesdays, and Fridays. We will assume that a
always occurs at 12:00:00pm, and that b always occurs at
12:00:30pm. An input sequence of events consisting of symbols a
and b, and a possible collection of associated episodes, is shown
in Table 1. We will let x represent a candidate episode that
describes this situation based on the number of hours between the
episode occurrences. Upon inspection of the table, it can be seen
that x has the following characteristics:

{ }bax ,=λ ,

(){ }bax ,=Λ ,
()72,48,48=xµ , and
{ }7654321 ,,,,,, εεεεεεε=Ψx .

In some situations, episodes containing common symbol patterns
may not occur at exactly the same exact time interval, but can still
be represented by an interval sequence. For example, it may be
that an individual washes their clothes every Sunday, but not
necessarily at the same time each Sunday. Consider once again
the example shown in Table 1. A course-grained interval is
computed by partitioning the timestamps into calendar days,
which results in µ=(2, 2, 3). The interval between two timestamps
that occur on the same day is zero. The time-based partition could
be other categories, such as month or even year. We have chosen
to use days because it is a common course-grained interval that
balances the granularity of the partitions.

Table 1. Example Input Sequence of {a, b}.

Events Episode Interval
{a, 4/26/04,12:00:00pm}
{b, 4/26/04,12:00:30pm}

ε1

{a, 4/28/04,12:00:00pm}
{b, 4/28/04,12:00:30pm}

ε2 48 hours
2 days

{a, 4/30/04,12:00:00pm}
{b, 4/30/04,12:00:30pm}

ε3 48 hours
2 days

{a, 5/3/04,12:00:00pm}
{b, 5/3/04,12:00:30pm}

ε4 72 hours
3 days

{a, 5/5/04,12:00:00pm}
{b, 5/5/04,12:00:30pm}

ε5 48 hours
2 days

{a, 5/7/04,12:00:00pm}
{b, 5/7/04, 12:00:30pm}

ε6 48 hours
2 days

{a, 5/10/04, 12:00:00pm}
{b, 5/10/04, 12:00:30pm}

ε7 72 hours
3 days

When describing patterns that follow an interval sequence, the
encodings must account for mistakes that occur when the episodes
do not completely follow the interval sequence. The greater the
number of mistakes, the less predictable behavior the pattern
displays, and the less the periodic description compresses the
original input sequence. Other mistakes, such as a difference in
the included events, are not part of the encoding. For example, if
the pattern is {a, b, c} and the input data contains an occurrence of
{a, b}, that occurrence of {a, b} will be evaluated as a separate
pattern. Only if the mistake is a variation in start time is it counted
as an encoding mistake.
We have chosen to use three potential encodings for each pattern
candidate: one that reflects a fine-grained periodicity, one that
reflects a course-grained periodicity, and one that reflects
frequency. The periodic encodings include length, frequency,
periodicity, and mistakes in periodicity. The encoding for
frequency includes frequency and length characteristics, and
represents a non-periodic description of the pattern.
Rissanen notes there is no way to determine if an encoding is
optimal [7], so we make no guarantee that these encodings are
optimal. However, we rely on this premise of the MDL principle:

By defining a description and searching for
the minimum length using that description,

the best model will remain as the best
explanation of the observations [7].

By evaluating encodings and searching for a model that is the
minimum description of the original input, at the very least the
algorithm discovers a model that can be used for comparison with
other models that may be discovered in the future. In addition, we
will be selecting the most likely model based on our encoding,
which will allow us to determine if patterns do indeed exhibit the
characteristics our encodings describe.
Specifically, we will use the three encodings to compute a
compression ratio for each candidate pattern. The compression
ratio measures how much of the original input sequence is
compressed by the encoding. A compression ratio of 2:1 implies
that it takes just one unit in the compressed description to
represent two units of the original input sequence. Of the three
potential encodings, the encoding that results in the greatest
compression ratio is selected as the encoding for that repeating
pattern. The selected encoding will result in the greatest decrease
in the description length of the original input sequence. Once all
candidates are assigned an encoding, candidates with the greatest
compression ratio will be selected as interesting episodes. By
using these encodings, the description length of the input
sequence will be reduced. Because candidates that provide the
greatest compression are selected, the description with the
minimum length will be discovered. If a fine-grained or course-
grained encoding is used for an interesting episode, then we
consider this candidate to be a periodic episode. When the
frequency-based encoding is selected, then we use the term
frequent episode to describe the interesting episode.
Using these encodings, a compression ratio was computed for the
input sequence reflected by Table 1 for candidate episode x.
These values are shown in Table 2. Based on these values, a fine-
grained encoding would be selected for x because the encoding
results in the greatest compression. We would consider x to be a
periodic episode if it is chosen as an interesting candidate.

Table 2. Summary of Compression Ratios for x.

Encoding Compression
Ratio

Fine Grained 1.45
Course Grained 1.20
Frequency 1.27

3.3 Attributes of the Interestingness Measures
ED evaluates the patterns in the input sequence using encodings
that incorporate length, frequency, and periodicity. Because of the
encodings, the algorithm evaluates the characteristics in the
following manner:

• Length - If two patterns have the same frequency
and periodicity, the pattern that has a greater pattern
length will be more interesting (greater compression
ratio).

• Frequency - If two patterns have the same length
and periodicity, the pattern that is more frequent
will be more interesting.

• Periodicity - If two patterns have the same length
and frequency, the pattern that contains fewer
periodicity mistakes will be more interesting.

4. ALGORITHM DETAILS
The following summarizes the high-level steps of the algorithm.
Given as input a stream O of event occurrences δ, ED:

1. Partitions the event sequence O into possibly
overlapping maximal episodes, εi, by using an
event-folding window W with a time span of tw and
a capacity of cw.

2. Creates an initial set of candidate episodes, Ci, from
the maximal episodes.

3. Creates additional candidate episodes from the
subsets of the maximal episodes.

4. Computes a compression ratio for each Ci.
5. Identifies interesting episodes by evaluating the

compression ratios of the candidate episodes.
Additional candidate episodes may be generated
when a candidate episode is selected as interesting.

6. Outputs a list of interesting episodes.

4.1 Step One: Partition the Input Sequence
ED partitions the input into maximal episodes by incrementally
processing the events. An event-folding window collects the
events and creates an episode when the time span or capacity of
the window exceeds the corresponding parameter value. This is
similar to the approach taken by Mannila, et al. [6]. The tw
parameter represents the time span of the window, and cw the
capacity. If tw=∞, then the window partitions the input sequences
into episodes of size cw. If cw=∞, then the window partitions the
input sequence solely on the time span. The current time interval
of the window is calculated based on the time stamp of the event
being processed and tw. Thus, if event δi is being added to the
window, then the time interval of the window is ti - tw. The
capacity is computed by counting the number of events currently
contained in the window. When one or more events contained in
the window are now outside of the specified parameter values due
to the addition of the new event, those events are pruned from the
window. The window contents prior to pruning are maximal for
that particular window instance, and are used to generate a
maximal episode. Our approach generates overlapping maximal
episodes with potentially different lengths.
Table 3 shows an example of creating maximal episodes with
tw=15 and cw=∞. Five events are incrementally processed. We
have simplified this example by considering the timestamp to be
an integer value. Because events (a, 1), (b, 5), and (c, 10) all
occur within the fifteen time-unit window, they are accumulated
and kept as part of the episode window. When occurrence (d, 20)
is processed, event (a, 1) must be removed from the window. At
this point, the episode window contains the maximal episode ((a,
1), (b, 5), (c, 10)). When event (e, 40) is encountered, the
occurrences (b, 5), (c, 10), and (d, 20) must be removed. Thus, the
window contains the maximal episode ((b, 5), (c, 10), (d, 20)).
Assuming no other events are processed, the final maximal
episode is ((e, 40)).

Table 3. Creating a Maximal Episode, tw=15 and cw=∞.

Event Episode
Window

Start Stop Maximal
Episodes

(a, 1) ((a, 1)) 1 1
(b, 5) ((a, 1),

 (b, 5))
1 5

(c, 10) ((a, 1),
 (b, 5),
 (c, 10))

1 10

(d, 20) ((b, 5),
 (c, 10),
 (d, 20))

5 20 ((a, 1),
 (b, 5),
 (c, 10))

(e, 40) ((e, 40)) 40 40 ((b, 5),
 (c, 10),
 (d, 20))

<end> ((e, 40))

4.2 Steps 2 and 3: Create Candidates
The algorithm constructs the initial collection of candidate
episode by creating a corresponding candidate for each maximal
episode. However, additional symbolic patterns exist within each
maximal episode that may need to be evaluated. For example, if
the maximal episode contains the symbolic pattern {a,b,c,d,e},
then additional patterns that could be examined would be
{a,b,c,d}, {c,d,e}, and so on. The power set of each symbolic
pattern is the complete list of potential patterns that could be
evaluated.
One possible approach to generating the additional candidates
would be to generate the power set as new candidates. However,
this would be intractable because it generates as 2n candidates,
where n is the number of symbols in the pattern. Thus, the
candidate generation method must prune the complete set of
potential candidates in a tractable manner, while ensuring that it
does not eliminate any candidates that ultimately do represent
interesting episodes.
The Apriori property prunes a search space by deleting non-
frequent candidates, and then generating new candidates from the
current list of candidates [3]. However, because frequency is not
our only discriminator of interestingness, the Apriori approach
does not work as a pruning technique. Nevertheless, it is possible
to prune the candidate search space by selecting a subset of a
symbolic pattern as an additional candidate based on one of the
following conditions:

• The subset represents the intersection of a maximal
episode with one or more other maximal episodes.
Because the subset represents pattern occurrences in
multiple episodes, it may be more significant than
its parents.

• The subset represents the difference between a
maximal episode and one of its episode subsets,
which has been selected as an interesting pattern. In
this situation, if a subset candidate is evaluated as
interesting, then the remainder of the maximal
episode must be evaluated to see if it is interesting.

Our approach relies on the following principle to prune the
candidate space:

The subset candidates of a candidate episode
that have the same episode occurrences as the
parent episode (the episode sets of the
candidate episodes are equivalent) do not
need to be generated as candidates.

Because these subset patterns are shorter in length, but have the
same frequency and periodicity as their parent, their compression
ratio cannot be greater than their parent’s value. Our pruning
method generates patterns of shorter lengths from longer ones,
which is essentially the opposite of an Apriori approach [1] where
larger itemsets are generated from smaller ones.
An example of the algorithm incrementally generating candidates
is shown in Table 4. For simplicity, in the example it is assumed
that one maximal episode is identified each day, and the
timestamps have been omitted. The creation of the first maximal
episode generates one candidate, {a, b, c, d}. The second maximal
episode results in the generation of two additional candidates: {a,
b, c, e} from the maximal episode, and {a, b, c} from the
intersection of the two maximal episode. The last maximal
episode results in the generation of four additional candidates. By
inspection, it can be seen that {a, b} should be identified as a
significant episode because it occurs every day. In the example,
we see that {a, b} is indeed generated as a candidate. Notice that it
is not necessary to generate {a} and {b} as candidates, because
these subsets of {a, b} only occur in episodes that contain both a
and b. The pruning technique effectively eliminates these and
several other unnecessary candidates from consideration. It is also
important to note that in Steps 2 and 3, only those candidates that
are common across multiple episodes are generated. Candidates
that need to be created because a candidate is selected as
interesting are generated in Step 5.

Table 4. Generating Candidates.

Day Maximal
Episodes

List of Generated Candidates

1 (a, b, c, d) {{a, b, c, d}}
2 (a, b, c, e) {{a, b, c, d}, {a, b, c}, {a, b, c, e}}
3 (a, b, d, e) {{a, b, c, d}, {a, b, c}, {a, b, c, e},

 {a, b, d}, {a, b, e}, {a, b},
 {a, b, d, e}}

4.3 Step 4: Compute compression ratios
The list of maximal episodes is walked, so that the episode set of
each Cn is updated with those maximal episodes containing the
symbolic pattern represented by the candidate. Once the episode
assignments have been completed, the algorithm uses auto-
correlation techniques to determine the best repeating interval
sequence. In Table 1, we presented an example in which the
interval sequence {48, 48, 72} repeats. By calculating auto-
correlation values, it can be discovered that a pattern repeats and
is of length three. The auto-correlation analysis is performed for
the fine-grained and course-grained interval sequence. Once the
search for an interval sequence has been completed, the individual
entries are evaluated to identify any mistakes that occur in the
repeating pattern. Then, a fine-grained, course-grained, and
frequency compression ratio is computed. The ratio with the
largest value is selected as the compression for that candidate.
The algorithm steps are shown in Figure 1.

foreach maximal episode εi
foreach candidate Cn that contains εi

add εi to the episode set of
candidate Cn
foreach candidate Cm

compute compression ratios
select largest compression
ratio

Figure 1. Steps for Computing Compression Ratios.

4.4 Step 5 and 6: Select and output interesting
episodes
The candidates are sorted, and the algorithm greedily identifies an
interesting episode by selecting from the sorted list the candidate
with the largest compression ratio. The events represented by the
interesting episode are marked. To avoid selecting overlapping
candidates, the second and subsequent candidates are rejected if
any of the events represented by the occurrences of the candidate
are already marked. Once a candidate is selected, additional
candidates are generated by subtracting the selected pattern from
all remaining candidates containing the pattern, and generating
the difference as additional candidates. This was discussed in
Steps 2 and 3. In Table 4, we present an example of candidates
that would be generated because they were subsets of multiple
episodes. In Table 5, we show the additional candidates that
would be generated if {a,b} were selected as interesting. These
steps are repeated until all candidates have been processed.
Candidates that are selected as interesting are output.

Table 5. Candidates Generated Upon Selecting {a,b}.

5. EPISODE DISCOVERY FEATURES
It has been empirically demonstrated [5] that ED detects symbolic
patterns that exhibit periodicity, improves the performance of
predictors in an intelligent environment, and operates efficiently.
We now discuss additional algorithm features and other
information output by ED.

5.1 Ordering Knowledge
ED can output ordering information about the pattern. Because
ED tracks the different permutations of the pattern, statistics can
be presented on how many permutations there are and how many
times each permutation occurs. If a pattern were totally ordered,
then ED would only output a single permutation. If it were
unordered, then ED would output multiple patterns, with no
pattern occurring significantly more often than another.

5.2 Discovering Event Folding Window
Parameters
The compression ratios can be used to search for the optimal
window span and capacity parameters. Based on our encodings, a
window size search should start from a small window size and
continue to the largest. As the window size is increased, patterns
of increasing length will be evaluated. Because the encodings
favor longer patterns, the overall compression should also
increase because patterns of longer length will be discovered. At
some point, the compression will stabilize as the optimum
window size is discovered. Using a synthetic dataset representing
inhabitant activities in an intelligent environment [5], we show
the compression ratios plotted for various values of tw in Figure 2.
For this dataset, the compression ratio peaked at a window span of
20 minutes. The dataset was constructed such that all interesting
interactions occur within a fifteen-minute time frame, which
corresponds to the window span indicated by the plot. This same
approach can also be used with the window capacity parameter.

1

1.2

1.4

1.6

1.8

0 20 40 60

Window Span

Compression

 Selected
Episode

Candidates Additional
Candidates

{a, b} {{a,b,c,d},
 {a,b,c},
 {a,b,c,e},
 {a,b,d},
 {a,b,e}, {a,b},
 {a,b,d,e}}

{{c,d}, {c},
 {c,e}, {d},
 {e},
 {d,e}}

Figure 2. Window Span vs Compression Ratio.

5.3 Incremental Processing of Data and
Knowledge Generation in Real-Time
Steps 1, 2, and 3 of the algorithm can be performed independently
of steps 4, 5, and 6. Thus, the algorithm is able to incrementally
process the events, and can be invoked when desired to produce
the interesting episodes. This is important for a real-time system,
because knowledge produce by the algorithm can be used at the
same time the algorithm is collecting the necessary information to
provide a knowledge update. In addition, it should be more
efficient to generate knowledge based on an increment of data,
rather than having to process the entire dataset.
To confirm our assumption, ED was run in an incremental manner
by generating knowledge every month on a dataset consisting of
intelligent environment events covering a nine-month period [5].
The following was observed:

• The exact same set of interesting episodes was
generated once all of the input data was processed.

• It took thirty-four seconds to process the full nine
months of activity data.

• It took eighteen seconds to incrementally process
the ninth month. The processing time was reduced
almost 50% by incrementally generating the
knowledge.

5.4 Computing Interesting Episode
Memberships
ED maintains the following statistical information on the
interesting episodes:

1. For each interesting episode, ED maintains a list of
the subsets that have been generated as candidates.
Thus, we can quickly determine if a subset of a
candidate has also been generated.

2. For each interesting episode, ED maintains a list of
episodes that represent an occurrence of that
symbolic pattern. Thus, we know how many
occurrences there are of that symbolic pattern.

3. A collection of the episodes that have been
generated by the event-folding window is
maintained. Thus, we know the total number of
episodes.

As events are processed, the contents of the current event-folding
window maintained by ED can be retrieved. Using Bayes' rule
and these statistics, it is possible to determine for each interesting
episode the probability that the current event-folding window will
contain this interesting episode. For example, if the window
contains {a,b,d,e}, ED could report a probability of 82% that the
window will eventually contain interesting episode {a,b,c}.
Because ED incrementally processes the events, membership
computation can be performed on-line as every event is
processed.

6. INTEGRATING ED WITH A DECISION
MAKER
We have implemented an intelligent environment architecture
called MavHome [2]. The MavHome decision-making component
uses the periodic episode and ordering knowledge output of ED to
create a hierarchical hidden Markov model (HHMM) [3] [9]. The
system controls the environment by automating the most likely
event based upon the current observation. This model is built
from multiple passes through the dataset, which creates an
increasing hierarchy of abstraction. Statistical information
collected and derived through knowledge discovery is used to
define the horizontal and vertical transitions of the model.
Experiments using simulated environment data have proven the
ability of this approach to automatically create HHMMs from
inhabitant interaction data. We have created datasets [5]
containing months of inhabitant data based on stochastic
simulation, organizing the data into human-perceived episodes
(e.g., watching TV, entering room, exiting room, reading), and
then using a simulator to distribute activities over specified peri-
ods of time. For example, we establish activity patterns that show
someone entering the living room, watching TV, going to the
kitchen, leaving, entering, and so forth all distributed over
specified times of occurrence over a specified period. A test
dataset was generated that contains twenty-three embedded
behaviors. ED processed the data and found thirteen periodic
episodes that correspond to those various environmental activities.
A HHMM was automatically constructed, and it was manually

verified that it correctly encoded the ED data. We are continuing
our efforts in this area, and will eventually perform a comparison
of our approach with other techniques.

7. CONCLUSIONS
In this paper, we have shown that the ED algorithm automatically
detects regularity intervals, provides statistics on pattern ordering,
and computes interesting episode membership values. We have
also demonstrated that ED supports discovery of the parameters
for the event-folding window, can be operated in an incremental
manner to support real-time environments, and can be used to
bootstrap the states of a decision maker.
In our future work, we intend to evaluate adding ordering as a
characteristic of the encodings. We also are investigating using
the compression ratios to understand drift and shift. In addition,
we will investigate temporal aspects of the membership
calculation in order to provide even more information on the
likelihood of an episode occurrence. Finally, we will continue the
integration of ED with a decision maker, and ultimately
incorporate the technique into a setting with live inhabitants.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential patterns. In

Proc. 11th International Conference Data Engineering
(ICDE 1995), pp. 3-14, Taipei, Taiwan, March 1995.

[2] S. Das, D. Cook, A. Bhattacharaya, E. Heierman, and T. Lin.
The Role of Prediction Algorithms in the MavHome Smart
Home Architecture. IEEE Wireless Communications, vol. 9,
no. 6, pp. 77-84, December 2002.

[3] Shai Fine, Yoram Singer, and Naftali Tishby. The
Hierarchical Hidden Markov Model: Analysis and
Applications. Machine Learning, 32(1):41– 62, 1998.

[4] J. Han and M. Kamber. Data Mining. Morgan Kaufman
Publishers, 2001.

[5] E. Heierman and D. Cook. Improving home automation by
discovering regularly occurring device usage patterns. In
Proc. 3rd International Conference on Data Mining
(ICDM’03), pp. 537-540, Melbourne, FL, November 2003.

[6] H. Mannila, H. Toivonen, and A. Verkamo. Discovering
frequent episodes in sequences. In Proc. 1st International
Conference on Knowledge Discovery and Data Mining
(KDD'95), pp. 210-215, Montreal, Canada, August 1995.

[7] J. Rissanen. Stochastic Complexity in Statistical Inquiry.
World Scientific Publishing Company, 1989.

[8] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In
Proceedings of the Fifth International Conference on
Extending Database Technology (EDBT-96), pp. 3-17,
Avignon, France, 1996.

[9] G. Theocharous, K. Rohanimanesh, and S. Mahadevan.
Learning Hierarchical Partially Observable Markov Decision
Processes for Robot Navigation, 2001. IEEE Conference on
Robotics and Automation.

	INTRODUCTION
	SEQUENTIAL PATTERN MINING
	EPISODE DISCOVERY
	Terminology
	Pattern Encodings
	Attributes of the Interestingness Measures

	ALGORITHM DETAILS
	Step One: Partition the Input Sequence
	Steps 2 and 3: Create Candidates
	Step 4: Compute compression ratios
	Step 5 and 6: Select and output interesting episodes

	EPISODE DISCOVERY FEATURES
	Ordering Knowledge
	Discovering Event Folding Window Parameters
	Incremental Processing of Data and Knowledge Generation in R
	Computing Interesting Episode Memberships

	INTEGRATING ED WITH A DECISION MAKER
	CONCLUSIONS
	REFERENCES

