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ABSTRACT 
When mining temporal sequences, knowledge discovery 
techniques can be applied that discover interesting patterns of 
interactions. Existing approaches use frequency, and sometimes 
length, as measurements for interestingness. Because these are 
temporal sequences, additional characteristics, such as periodicity, 
may also be interesting. We propose that information theoretic 
principles can be used to evaluate interesting characteristics of 
time-ordered input sequences. In this paper, we present a novel 
data mining technique based on the Minimum Description Length 
principle that discovers interesting features in a time-ordered 
sequence. We discuss features of our real-time mining approach, 
show applications of the knowledge mined by the approach, and 
present a technique to bootstrap a decision maker from the mined 
patterns.   

Categories and Subject Descriptors 
Mining data streams, novel data mining algorithms, preprocessing 
and post processing for data mining, spatial and temporal data 
mining. 

General Terms 
Algorithms. 

Keywords 
Discovering interesting episodes, knowledge discovery, mining 
sequential data streams. 

1. INTRODUCTION 
With the proliferation of computers comes the proliferation of 
data created by these computers. Every interaction with a 
computer system or sensor can be recorded and preserved. It is 
this abundance of data that has resulted in the emergence of the 
field known as Data Mining. The number of computer systems 
and the data these systems collect has far surpassed our ability to 
review and understand the collected data, so we turn to the 
computer itself to help us automatically analyze the data for 

important information. 

Data mining techniques have evolved that perform sequential 
pattern mining by processing time-ordered input streams and 
discovering the most frequently occurring patterns. Because these 
input sequences contain temporal information, additional 
interesting characteristics, such as periodicity, may also exist in 
the data. The world, at times, tends to operate in a periodic 
manner. The earth orbits around the sun every 365 days, and 
completes a revolution about its axis every twenty-four hours. In 
addition, mankind has subdivided these periods into years, 
months, weeks, days, hours, and seconds. By doing so, we can 
predict when the sun will rise again, when winter will approach, 
and when the earth once again will orbit around the sun. By 
taking advantage of the periodic behavior of our environment to 
organize time, we also tend to exhibit behavior that is periodic. 
We rise at about the same time everyday to eat. We go to work 
five days a week, and take the weekends off. Our favorite TV 
programs are shown at the same time on the same day of each 
week. These periodic interactions provide predictability and add 
stability to our lives. Thus, data collected by a computer system 
responding to interactions with a human or an environmental 
occurrence may also contain patterns that are governed by 
periodic behavior. 

In our work, we use information theoretic principles to evaluate 
characteristics in an input sequence other than frequency, such as 
length and periodicity. By using information theory as a 
foundation, we anticipate that other characteristics can also be 
evaluated for interestingness. In this paper, we describe our work, 
discuss the knowledge that is discovered, and present a technique 
that uses the mined knowledge to bootstrap a decision maker that 
operates in a real-time environment. 

2. SEQUENTIAL PATTERN MINING 
Our work is related to techniques for sequential data mining, 
which is the task of mining frequently occurring patterns related 
in time or to other sequences  [3]. An example of a sequential 
pattern is: 

An individual who bought a car three months 
ago is likely to change the oil in the car 
within the next two weeks. 
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A common characteristic of techniques that mine sequences is the 
discovery of patterns that are frequent  [1] [6]. The more frequently 
a pattern occurs, the more likely it is that the pattern is important. 
In addition, some approaches also take into account the length of 
a pattern  [1]. Important knowledge is provided if a system can 
report that the symbols {a, b} occur frequently together, as 

 



opposed to only reporting that {a} occurs frequently and {b} 
occurs frequently. However, little attention has been given to 
evaluating other characteristics of the patterns, such as 
periodicity. This is surprising, given the emphasis individuals 
place on organizing their time. Thus, we are interested in a data-
mining technique that can discover features about a pattern like 
the following: 

At 6:00pm on Monday, Wednesday, and 
Friday of every other week, Dave leaves work 
and travels to the gym.  

There are several important attributes of the problem we are 
investigating that influence our work. First, our data source will 
be time-ordered input sequences that consist of occurrences of 
events with no natural points that indicate the start or stop of the 
pattern. Therefore, our approach must partition the input sequence 
by grouping together interactions that are related. Second, the 
nature of the patterns is not known a priori. As a result, the 
pattern-ordering characteristics (e.g., ordered, unordered) must 
also be discovered. Third, frequency is only one of the 
characteristics that should be evaluated. Additional features, such 
as pattern length and periodicity (occurs daily, weekly), should 
also be considered. Therefore, the approach will need to balance 
the values of more than one interestingness measurement. 
With these attributes in mind, we have developed an Episode 
Discovery (ED) algorithm that processes a time-ordered input 
stream and identifies clusters of events, or episodes, that are 
closely related in time. These episodes are represented as an 
unordered set of events. Repeating symbolic patterns in the 
episodes are evaluated with an approach based on the Minimum 
Description Length principle. A pattern is described with an 
encoding, which may result in a reduction in the description 
length of the original input sequence. The symbolic-pattern 
encodings that result in the greatest compression of the input 
sequence are selected as interesting, and the associated patterns 
are presented to the user as interesting episodes. The details of our 
approach are presented in the next section. 
Several works address mining sequential patterns. Agrawal and 
Srikant  [1] present three techniques for mining sequential patterns 
from time-ordered transactions. Each transaction is a set of items, 
and variations of the Apriori property are used to find large 
sequences by first computing the large itemsets and then 
constructing the large sequences. Finally, selecting the sequences 
of largest length first and then pruning the subsets of that 
sequence yields the set of maximal sequences. Mannila, 
Toivonen, and Verkamo  [6] consider the problem of discovering 
frequent episodes in an event sequence. A user-defined event 
window partitions the event stream into overlapping collections of 
events that are close to each other in time. These collections are 
examined to find frequent parallel and serial episodes by use of 
the Apriori property. All frequent episodes are output by the 
algorithm. Srikant and Agrawal  [8] extend their previous work by 
supporting maximum and minimum time gaps between sequence 
elements, a sliding time window (event window) across 
transaction sets, and user-defined taxonomies. The support used 
for the Apriori-based algorithm is supplanted with additional 
measures that account for the new features. 

3. EPISODE DISCOVERY 
We view our data-mining task as the process of describing a time-
ordered input sequence with encodings that represent the 
interesting characteristics that may be present in the sequence. 
Rissanen’s work  [7] on the Minimum Description Length (MDL) 
principle, which proposes searching for models and model classes 
with the shortest description length, serves as the underlying 
theory for our work. Rissanen reasons that by using an encoding 
of a dataset to reduce its description length, constraints are 
applied to the data that reduce the uncertainty about the nature of 
the data. Here, encoding is used as a general term to mean an 
exact representation. The resulting “minimum-encoded” 
description captures the properties that provide the most likely 
explanation for the data. Stated another way, the model defines a 
distribution that assigns the maximum probability to the observed 
data. Therefore, we will define encodings that encompass 
interesting characteristics, and use these encodings to find a 
model that exhibits the minimum description length. The end 
result will be descriptions that provide a likely explanation of the 
input. 
We reason that if a pattern exhibits periodicity, then describing 
the pattern with terms that include its periodicity would reduce 
the overall description length of the input sequence because the 
occurrences of the periodic pattern can be replaced by the 
description. In addition, because patterns in the sequence may not 
be periodic, an encoding will need to be defined that describes 
non-periodic patterns. Finally, we consider pattern length and 
frequency to also be interesting characteristics, so the encodings 
should also describe these features. We anticipate that “more 
frequent” and “greater length” encodings will also reduce the 
description length of the input sequence. We now present our 
MDL-based approach that makes use of encodings to discover if 
patterns present in a time-ordered input sequence exhibit these 
interesting characteristics.  

3.1 Terminology 
We start our discussion by defining the input, processing, and 
output of our approach. The time-ordered input sequence is 
defined as follows. We will let П represent the set of all possible 
symbols or interactions that could appear in an input stream (the 
domain alphabet), and let s represent any symbol that is a member 
of П. An event δ is denoted as the pair (s, t), where t is a 
timestamp consisting of time and date information. An event 
sequence O is defined as an ordered sequence of events, O = (δ1, 
δ2, …, δn). The event sequence consists of all events that have 
occurred up to the point in time represented by tn. The sequence 
must be in non-descending order based on the timestamp value, 
such that ti≤ ti+1. Events in which the timestamp values are the 
same can be placed in any order. 
Our objective is to discover the symbolic patterns in O that are 
considered interesting. In order to find these patterns, we will 
collect sets of events from the input sequence into an ordered 
collection, which we refer to as episodes. Formally, we define an 
episode ε to be a sequence of event occurrences, ε = (δ j, δ j+1, δ 

j+2, …, δ j+m), which is a sub-sequence of O starting at time stamp 
tj and ending at tj+m. Upon partitioning the input sequence into 
overlapping episodes, the algorithm will evaluate patterns found 
in multiple episodes by encoding a description of the pattern 
occurrences. The encodings that contribute to a minimum 



description length of the input sequence will be selected as 
interesting. 
ED will evaluate if a pattern occurs at repeatable time intervals. 
An interval may consist of just a single value or a sequence of 
values. In order to explain an interval consisting of a single value, 
assume the existence of symbols a and b. After partitioning O into 
episodes, ED discovers that the symbols a and b appear together 
in multiple episodes, and that these episodes occur every 24 
hours. Intuitively, then, this represents a situation in which the 
symbols {a, b} occur on a daily basis.  
The interval may also be an ordered sequence of values, such as 
48 hours, 48 hours, and 72 hours. Once again using the symbols a 
and b, assume ED has discovered a situation in which these 
symbols appear together in multiple episodes, and that the time 
interval between the episodes repeats the pattern 48 hours, 48 
hours, and 72 hours over and over. We will assume the first 
episode occurs on Monday. There is 48 hours until the next 
occurrence of an episode containing {a, b}, which now makes it 
Wednesday. After an additional 48 hours passes, now making it 
Friday, another episode occurs that contains {a, b}. Finally, 72 
hours elapses until another occurrence of an episode containing 
{a, b}, which makes it Monday again. Thus, {a, b} occurs on 
Monday, Wednesday, and Friday of every week. 
ED will output a collection of interesting episodes, ω, that are 
discovered in an input sequence O. We will let λ, called a 
symbolic pattern, represent an unordered collection of symbols, 
{s1, s2, …, sn}. In the previous discussion, λ would be the set {a, 
b}. The symbolic pattern will be output as part of the discovered 
knowledge. Because we will treat the pattern as an unordered 
collection, a set of symbolic patterns that represent the 
permutations of λ that actually occur in the dataset will be 
provided as part of the output, represented as Λ={λ1, λ2,…, λm}. 
An example of such a set is Λ={(a,b), (b,a)}, where λ1=(a, b) and 
λ2=(b, a). We will let µ=(µ1,…, µi) represent the repeating interval 
sequence. In the example above, the interval sequence would be 
µ=(48, 48, 72). If the interesting episode follows no repeating 
interval, then the sequence will be empty. Finally, Ψ={ε1, ε2,…, 
εj} represents the episodes that contain the symbols defined by λ. 
With this notation, we define an interesting episode as ω = {λ, Λ, 
µ, Ψ}. 

3.2 Pattern Encodings 
We now turn our attention to the encodings that will be used. 
When encoding a symbolic pattern, we are interested in 
determining if the episodes containing the pattern repeat 
according to an interval sequence µ. We will evaluate two types 
of repeating interval sequences: fined-grained and course-grained. 
In order to present an example of a fine-grained interval, assume 
the symbols {a, b} occur periodically in multiple episodes on 
Mondays, Wednesdays, and Fridays. We will assume that a 
always occurs at 12:00:00pm, and that b always occurs at 
12:00:30pm. An input sequence of events consisting of symbols a 
and b, and a possible collection of associated episodes, is shown 
in Table 1. We will let x represent a candidate episode that 
describes this situation based on the number of hours between the 
episode occurrences. Upon inspection of the table, it can be seen 
that x has the following characteristics: 

{ }bax ,=λ , 

( ){ }bax ,=Λ , 
( )72,48,48=xµ , and 
{ }7654321 ,,,,,, εεεεεεε=Ψx .  

In some situations, episodes containing common symbol patterns 
may not occur at exactly the same exact time interval, but can still 
be represented by an interval sequence. For example, it may be 
that an individual washes their clothes every Sunday, but not 
necessarily at the same time each Sunday. Consider once again 
the example shown in Table 1. A course-grained interval is 
computed by partitioning the timestamps into calendar days, 
which results in µ=(2, 2, 3). The interval between two timestamps 
that occur on the same day is zero. The time-based partition could 
be other categories, such as month or even year. We have chosen 
to use days because it is a common course-grained interval that 
balances the granularity of the partitions. 
 

Table 1. Example Input Sequence of {a, b}. 

Events Episode Interval  
{a, 4/26/04,12:00:00pm} 
{b, 4/26/04,12:00:30pm} 

ε1   

{a, 4/28/04,12:00:00pm} 
{b, 4/28/04,12:00:30pm} 

ε2 48 hours 
2 days 

{a, 4/30/04,12:00:00pm} 
{b, 4/30/04,12:00:30pm} 

ε3 48 hours 
2 days 

{a, 5/3/04,12:00:00pm} 
{b, 5/3/04,12:00:30pm} 

ε4 72 hours 
3 days 

{a, 5/5/04,12:00:00pm} 
{b, 5/5/04,12:00:30pm} 

ε5 48 hours 
2 days 

{a, 5/7/04,12:00:00pm} 
{b, 5/7/04, 12:00:30pm} 

ε6 48 hours 
2 days 

{a, 5/10/04, 12:00:00pm} 
{b, 5/10/04, 12:00:30pm} 

ε7 72 hours 
3 days 

 
When describing patterns that follow an interval sequence, the 
encodings must account for mistakes that occur when the episodes 
do not completely follow the interval sequence. The greater the 
number of mistakes, the less predictable behavior the pattern 
displays, and the less the periodic description compresses the 
original input sequence. Other mistakes, such as a difference in 
the included events, are not part of the encoding. For example, if 
the pattern is {a, b, c} and the input data contains an occurrence of 
{a, b}, that occurrence of {a, b} will be evaluated as a separate 
pattern. Only if the mistake is a variation in start time is it counted 
as an encoding mistake. 
We have chosen to use three potential encodings for each pattern 
candidate: one that reflects a fine-grained periodicity, one that 
reflects a course-grained periodicity, and one that reflects 
frequency. The periodic encodings include length, frequency, 
periodicity, and mistakes in periodicity. The encoding for 
frequency includes frequency and length characteristics, and 
represents a non-periodic description of the pattern.  
Rissanen notes there is no way to determine if an encoding is 
optimal  [7], so we make no guarantee that these encodings are 
optimal. However, we rely on this premise of the MDL principle: 

By defining a description and searching for 
the minimum length using that description, 



the best model will remain as the best 
explanation of the observations  [7].  

By evaluating encodings and searching for a model that is the 
minimum description of the original input, at the very least the 
algorithm discovers a model that can be used for comparison with 
other models that may be discovered in the future. In addition, we 
will be selecting the most likely model based on our encoding, 
which will allow us to determine if patterns do indeed exhibit the 
characteristics our encodings describe. 
Specifically, we will use the three encodings to compute a 
compression ratio for each candidate pattern. The compression 
ratio measures how much of the original input sequence is 
compressed by the encoding. A compression ratio of 2:1 implies 
that it takes just one unit in the compressed description to 
represent two units of the original input sequence. Of the three 
potential encodings, the encoding that results in the greatest 
compression ratio is selected as the encoding for that repeating 
pattern. The selected encoding will result in the greatest decrease 
in the description length of the original input sequence. Once all 
candidates are assigned an encoding, candidates with the greatest 
compression ratio will be selected as interesting episodes. By 
using these encodings, the description length of the input 
sequence will be reduced. Because candidates that provide the 
greatest compression are selected, the description with the 
minimum length will be discovered. If a fine-grained or course-
grained encoding is used for an interesting episode, then we 
consider this candidate to be a periodic episode. When the 
frequency-based encoding is selected, then we use the term 
frequent episode to describe the interesting episode. 
Using these encodings, a compression ratio was computed for the 
input sequence reflected by Table 1 for candidate episode x. 
These values are shown in Table 2. Based on these values, a fine-
grained encoding would be selected for x because the encoding 
results in the greatest compression. We would consider x to be a 
periodic episode if it is chosen as an interesting candidate. 
 

Table 2. Summary of Compression Ratios for x. 

Encoding Compression 
Ratio 

Fine Grained  1.45 
Course Grained 1.20 
Frequency 1.27 

 

3.3 Attributes of the Interestingness Measures 
ED evaluates the patterns in the input sequence using encodings 
that incorporate length, frequency, and periodicity. Because of the 
encodings, the algorithm evaluates the characteristics in the 
following manner: 

• Length - If two patterns have the same frequency 
and periodicity, the pattern that has a greater pattern 
length will be more interesting (greater compression 
ratio).  

• Frequency - If two patterns have the same length 
and periodicity, the pattern that is more frequent 
will be more interesting. 

• Periodicity - If two patterns have the same length 
and frequency, the pattern that contains fewer 
periodicity mistakes will be more interesting. 

4. ALGORITHM DETAILS 
The following summarizes the high-level steps of the algorithm. 
Given as input a stream O of event occurrences δ, ED: 

1. Partitions the event sequence O into possibly 
overlapping maximal episodes, εi, by using an 
event-folding window W with a time span of tw and 
a capacity of cw. 

2. Creates an initial set of candidate episodes, Ci, from 
the maximal episodes.  

3. Creates additional candidate episodes from the 
subsets of the maximal episodes. 

4. Computes a compression ratio for each Ci. 
5. Identifies interesting episodes by evaluating the 

compression ratios of the candidate episodes. 
Additional candidate episodes may be generated 
when a candidate episode is selected as interesting. 

6. Outputs a list of interesting episodes. 

4.1 Step One: Partition the Input Sequence 
ED partitions the input into maximal episodes by incrementally 
processing the events. An event-folding window collects the 
events and creates an episode when the time span or capacity of 
the window exceeds the corresponding parameter value. This is 
similar to the approach taken by Mannila, et al.  [6]. The tw 
parameter represents the time span of the window, and cw the 
capacity. If tw=∞, then the window partitions the input sequences 
into episodes of size cw. If cw=∞, then the window partitions the 
input sequence solely on the time span. The current time interval 
of the window is calculated based on the time stamp of the event 
being processed and tw. Thus, if event δi is being added to the 
window, then the time interval of the window is ti - tw. The 
capacity is computed by counting the number of events currently 
contained in the window. When one or more events contained in 
the window are now outside of the specified parameter values due 
to the addition of the new event, those events are pruned from the 
window. The window contents prior to pruning are maximal for 
that particular window instance, and are used to generate a 
maximal episode. Our approach generates overlapping maximal 
episodes with potentially different lengths. 
Table 3 shows an example of creating maximal episodes with 
tw=15 and cw=∞. Five events are incrementally processed. We 
have simplified this example by considering the timestamp to be 
an integer value. Because events (a, 1), (b, 5), and (c, 10) all 
occur within the fifteen time-unit window, they are accumulated 
and kept as part of the episode window. When occurrence (d, 20) 
is processed, event (a, 1) must be removed from the window. At 
this point, the episode window contains the maximal episode ((a, 
1), (b, 5), (c, 10)). When event (e, 40) is encountered, the 
occurrences (b, 5), (c, 10), and (d, 20) must be removed. Thus, the 
window contains the maximal episode ((b, 5), (c, 10), (d, 20)). 
Assuming no other events are processed, the final maximal 
episode is ((e, 40)). 



Table 3. Creating a Maximal Episode, tw=15 and cw=∞. 

Event  Episode 
Window 

Start Stop Maximal 
Episodes 

(a, 1) ((a, 1)) 1 1  
(b, 5) ((a, 1), 

 (b, 5)) 
1 5  

(c, 10) ((a, 1), 
 (b, 5), 
 (c, 10)) 

1 10  

(d, 20) ((b, 5), 
 (c, 10), 
 (d, 20)) 

5 20 ((a, 1), 
 (b, 5), 
 (c, 10)) 

(e, 40) ((e, 40)) 40 40 ((b, 5), 
 (c, 10), 
 (d, 20)) 

<end>    ((e, 40)) 
 

4.2 Steps 2 and 3: Create Candidates 
The algorithm constructs the initial collection of candidate 
episode by creating a corresponding candidate for each maximal 
episode. However, additional symbolic patterns exist within each 
maximal episode that may need to be evaluated. For example, if 
the maximal episode contains the symbolic pattern {a,b,c,d,e}, 
then additional patterns that could be examined would be 
{a,b,c,d}, {c,d,e}, and so on. The power set of each symbolic 
pattern is the complete list of potential patterns that could be 
evaluated.  
One possible approach to generating the additional candidates 
would be to generate the power set as new candidates. However, 
this would be intractable because it generates as 2n candidates, 
where n is the number of symbols in the pattern. Thus, the 
candidate generation method must prune the complete set of 
potential candidates in a tractable manner, while ensuring that it 
does not eliminate any candidates that ultimately do represent 
interesting episodes. 
The Apriori property prunes a search space by deleting non-
frequent candidates, and then generating new candidates from the 
current list of candidates  [3]. However, because frequency is not 
our only discriminator of interestingness, the Apriori approach 
does not work as a pruning technique. Nevertheless, it is possible 
to prune the candidate search space by selecting a subset of a 
symbolic pattern as an additional candidate based on one of the 
following conditions:  

• The subset represents the intersection of a maximal 
episode with one or more other maximal episodes. 
Because the subset represents pattern occurrences in 
multiple episodes, it may be more significant than 
its parents. 

• The subset represents the difference between a 
maximal episode and one of its episode subsets, 
which has been selected as an interesting pattern. In 
this situation, if a subset candidate is evaluated as 
interesting, then the remainder of the maximal 
episode must be evaluated to see if it is interesting. 

Our approach relies on the following principle to prune the 
candidate space:  

The subset candidates of a candidate episode 
that have the same episode occurrences as the 
parent episode (the episode sets of the 
candidate episodes are equivalent) do not 
need to be generated as candidates.  

Because these subset patterns are shorter in length, but have the 
same frequency and periodicity as their parent, their compression 
ratio cannot be greater than their parent’s value. Our pruning 
method generates patterns of shorter lengths from longer ones, 
which is essentially the opposite of an Apriori approach  [1] where 
larger itemsets are generated from smaller ones. 
An example of the algorithm incrementally generating candidates 
is shown in Table 4. For simplicity, in the example it is assumed 
that one maximal episode is identified each day, and the 
timestamps have been omitted. The creation of the first maximal 
episode generates one candidate, {a, b, c, d}. The second maximal 
episode results in the generation of two additional candidates: {a, 
b, c, e} from the maximal episode, and {a, b, c} from the 
intersection of the two maximal episode. The last maximal 
episode results in the generation of four additional candidates. By 
inspection, it can be seen that {a, b} should be identified as a 
significant episode because it occurs every day. In the example, 
we see that {a, b} is indeed generated as a candidate. Notice that it 
is not necessary to generate {a} and {b} as candidates, because 
these subsets of {a, b} only occur in episodes that contain both a 
and b. The pruning technique effectively eliminates these and 
several other unnecessary candidates from consideration. It is also 
important to note that in Steps 2 and 3, only those candidates that 
are common across multiple episodes are generated. Candidates 
that need to be created because a candidate is selected as 
interesting are generated in Step 5. 

Table 4. Generating Candidates. 

Day Maximal 
Episodes 

List of Generated Candidates 

1 (a, b, c, d) {{a, b, c, d}} 
2 (a, b, c, e) {{a, b, c, d}, {a, b, c}, {a, b, c, e}} 
3 (a, b, d, e) {{a, b, c, d}, {a, b, c}, {a, b, c, e},  

  {a, b, d}, {a, b, e}, {a, b},  
  {a, b, d, e}} 

  

4.3 Step 4: Compute compression ratios 
The list of maximal episodes is walked, so that the episode set of 
each Cn is updated with those maximal episodes containing the 
symbolic pattern represented by the candidate. Once the episode 
assignments have been completed, the algorithm uses auto-
correlation techniques to determine the best repeating interval 
sequence. In Table 1, we presented an example in which the 
interval sequence {48, 48, 72} repeats. By calculating auto-
correlation values, it can be discovered that a pattern repeats and 
is of length three. The auto-correlation analysis is performed for 
the fine-grained and course-grained interval sequence. Once the 
search for an interval sequence has been completed, the individual 
entries are evaluated to identify any mistakes that occur in the 
repeating pattern. Then, a fine-grained, course-grained, and 
frequency compression ratio is computed. The ratio with the 
largest value is selected as the compression for that candidate. 
The algorithm steps are shown in Figure 1. 



foreach maximal episode εi 
foreach candidate Cn that contains εi

add εi to the episode set of 
candidate Cn  
foreach candidate Cm 

compute compression ratios 
select largest compression 
ratio

Figure 1. Steps for Computing Compression Ratios. 

4.4 Step 5 and 6: Select and output interesting 
episodes  
The candidates are sorted, and the algorithm greedily identifies an 
interesting episode by selecting from the sorted list the candidate 
with the largest compression ratio. The events represented by the 
interesting episode are marked. To avoid selecting overlapping 
candidates, the second and subsequent candidates are rejected if 
any of the events represented by the occurrences of the candidate 
are already marked. Once a candidate is selected, additional 
candidates are generated by subtracting the selected pattern from 
all remaining candidates containing the pattern, and generating 
the difference as additional candidates. This was discussed in 
Steps 2 and 3. In Table 4, we present an example of candidates 
that would be generated because they were subsets of multiple 
episodes. In Table 5, we show the additional candidates that 
would be generated if {a,b} were selected as interesting. These 
steps are repeated until all candidates have been processed. 
Candidates that are selected as interesting are output. 
 

Table 5. Candidates Generated Upon Selecting {a,b}. 

 

5. EPISODE DISCOVERY FEATURES 
It has been empirically demonstrated  [5] that ED detects symbolic 
patterns that exhibit periodicity, improves the performance of 
predictors in an intelligent environment, and operates efficiently. 
We now discuss additional algorithm features and other 
information output by ED.   

5.1 Ordering Knowledge 
ED can output ordering information about the pattern. Because 
ED tracks the different permutations of the pattern, statistics can 
be presented on how many permutations there are and how many 
times each permutation occurs. If a pattern were totally ordered, 
then ED would only output a single permutation. If it were 
unordered, then ED would output multiple patterns, with no 
pattern occurring significantly more often than another.  

5.2 Discovering Event Folding Window 
Parameters 
The compression ratios can be used to search for the optimal 
window span and capacity parameters. Based on our encodings, a 
window size search should start from a small window size and 
continue to the largest. As the window size is increased, patterns 
of increasing length will be evaluated. Because the encodings 
favor longer patterns, the overall compression should also 
increase because patterns of longer length will be discovered. At 
some point, the compression will stabilize as the optimum 
window size is discovered. Using a synthetic dataset representing 
inhabitant activities in an intelligent environment  [5], we show 
the compression ratios plotted for various values of tw in Figure 2. 
For this dataset, the compression ratio peaked at a window span of 
20 minutes. The dataset was constructed such that all interesting 
interactions occur within a fifteen-minute time frame, which 
corresponds to the window span indicated by the plot. This same 
approach can also be used with the window capacity parameter. 
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Figure 2. Window Span vs Compression Ratio. 

5.3 Incremental Processing of Data and 
Knowledge Generation in Real-Time 
Steps 1, 2, and 3 of the algorithm can be performed independently 
of steps 4, 5, and 6. Thus, the algorithm is able to incrementally 
process the events, and can be invoked when desired to produce 
the interesting episodes. This is important for a real-time system, 
because knowledge produce by the algorithm can be used at the 
same time the algorithm is collecting the necessary information to 
provide a knowledge update. In addition, it should be more 
efficient to generate knowledge based on an increment of data, 
rather than having to process the entire dataset.  
To confirm our assumption, ED was run in an incremental manner 
by generating knowledge every month on a dataset consisting of 
intelligent environment events covering a nine-month period  [5]. 
The following was observed: 

• The exact same set of interesting episodes was 
generated once all of the input data was processed. 

• It took thirty-four seconds to process the full nine 
months of activity data. 



• It took eighteen seconds to incrementally process 
the ninth month. The processing time was reduced 
almost 50% by incrementally generating the 
knowledge. 

5.4 Computing Interesting Episode 
Memberships 
ED maintains the following statistical information on the 
interesting episodes:  

1. For each interesting episode, ED maintains a list of 
the subsets that have been generated as candidates. 
Thus, we can quickly determine if a subset of a 
candidate has also been generated. 

2. For each interesting episode, ED maintains a list of 
episodes that represent an occurrence of that 
symbolic pattern. Thus, we know how many 
occurrences there are of that symbolic pattern. 

3. A collection of the episodes that have been 
generated by the event-folding window is 
maintained. Thus, we know the total number of 
episodes. 

As events are processed, the contents of the current event-folding 
window maintained by ED can be retrieved. Using Bayes' rule 
and these statistics, it is possible to determine for each interesting 
episode the probability that the current event-folding window will 
contain this interesting episode. For example, if the window 
contains {a,b,d,e}, ED could report a probability of 82% that the 
window will eventually contain interesting episode {a,b,c}. 
Because ED incrementally processes the events, membership 
computation can be performed on-line as every event is 
processed.  

6. INTEGRATING ED WITH A DECISION 
MAKER  
We have implemented an intelligent environment architecture 
called MavHome  [2]. The MavHome decision-making component 
uses the periodic episode and ordering knowledge output of ED to 
create a hierarchical hidden Markov model (HHMM)  [3] [9]. The 
system controls the environment by automating the most likely 
event based upon the current observation. This model is built 
from multiple passes through the dataset, which creates an 
increasing hierarchy of abstraction. Statistical information 
collected and derived through knowledge discovery is used to 
define the horizontal and vertical transitions of the model.   
Experiments using simulated environment data have proven the 
ability of this approach to automatically create HHMMs from 
inhabitant interaction data. We have created datasets  [5] 
containing months of inhabitant data based on stochastic 
simulation, organizing the data into human-perceived episodes 
(e.g., watching TV, entering room, exiting room, reading), and 
then using a simulator to distribute activities over specified peri-
ods of time. For example, we establish activity patterns that show 
someone entering the living room, watching TV, going to the 
kitchen, leaving, entering, and so forth all distributed over 
specified times of occurrence over a specified period. A test 
dataset was generated that contains twenty-three embedded 
behaviors. ED processed the data and found thirteen periodic 
episodes that correspond to those various environmental activities. 
A HHMM was automatically constructed, and it was manually 

verified that it correctly encoded the ED data. We are continuing 
our efforts in this area, and will eventually perform a comparison 
of our approach with other techniques.  

7. CONCLUSIONS 
In this paper, we have shown that the ED algorithm automatically 
detects regularity intervals, provides statistics on pattern ordering, 
and computes interesting episode membership values. We have 
also demonstrated that ED supports discovery of the parameters 
for the event-folding window, can be operated in an incremental 
manner to support real-time environments, and can be used to 
bootstrap the states of a decision maker.  
In our future work, we intend to evaluate adding ordering as a 
characteristic of the encodings. We also are investigating using 
the compression ratios to understand drift and shift. In addition, 
we will investigate temporal aspects of the membership 
calculation in order to provide even more information on the 
likelihood of an episode occurrence. Finally, we will continue the 
integration of ED with a decision maker, and ultimately 
incorporate the technique into a setting with live inhabitants. 

8. REFERENCES 
[1] R. Agrawal and R. Srikant. Mining sequential patterns. In 

Proc. 11th International Conference Data Engineering 
(ICDE 1995), pp. 3-14, Taipei, Taiwan, March 1995. 

[2] S. Das, D. Cook, A. Bhattacharaya, E. Heierman, and T. Lin. 
The Role of Prediction Algorithms in the MavHome Smart 
Home Architecture. IEEE Wireless Communications, vol. 9, 
no. 6, pp. 77-84, December 2002. 

[3] Shai Fine, Yoram Singer, and Naftali Tishby. The 
Hierarchical Hidden Markov Model: Analysis and 
Applications. Machine Learning, 32(1):41– 62, 1998. 

[4] J. Han and M. Kamber. Data Mining. Morgan Kaufman 
Publishers, 2001. 

[5] E. Heierman and D. Cook. Improving home automation by 
discovering regularly occurring device usage patterns. In 
Proc. 3rd International Conference on Data Mining 
(ICDM’03), pp. 537-540, Melbourne, FL, November 2003. 

[6] H. Mannila, H. Toivonen, and A. Verkamo. Discovering 
frequent episodes in sequences. In Proc. 1st International 
Conference on Knowledge Discovery and Data Mining 
(KDD'95), pp. 210-215, Montreal, Canada, August 1995. 

[7] J. Rissanen. Stochastic Complexity in Statistical Inquiry. 
World Scientific Publishing Company, 1989. 

[8] R. Srikant and R. Agrawal. Mining sequential patterns: 
Generalizations and performance improvements. In 
Proceedings of the Fifth International Conference on 
Extending Database Technology (EDBT-96), pp. 3-17, 
Avignon, France, 1996. 

[9] G. Theocharous, K. Rohanimanesh, and S. Mahadevan. 
Learning Hierarchical Partially Observable Markov Decision 
Processes for Robot Navigation, 2001. IEEE Conference on 
Robotics and Automation. 

 



 


	INTRODUCTION
	SEQUENTIAL PATTERN MINING
	EPISODE DISCOVERY
	Terminology
	Pattern Encodings
	Attributes of the Interestingness Measures

	ALGORITHM DETAILS
	Step One: Partition the Input Sequence
	Steps 2 and 3: Create Candidates
	Step 4: Compute compression ratios
	Step 5 and 6: Select and output interesting episodes

	EPISODE DISCOVERY FEATURES
	Ordering Knowledge
	Discovering Event Folding Window Parameters
	Incremental Processing of Data and Knowledge Generation in R
	Computing Interesting Episode Memberships

	INTEGRATING ED WITH A DECISION MAKER
	CONCLUSIONS
	REFERENCES

