
Stochastic inference methods in
Bayesian networks

P. Antal, P. Sárközy
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Bayesian inference with Monte Carlo I.

Integration/summation is a central operation in Bayesian statistics (c.f. optimization in the
frequentist approach)

f̄ = Eπ(X)[f(X)] (1)

For example

p(y|x, DN ) = Ep(G|DN )[Ep(θ|G,DN )[p(y|x, θ, G)]]

L
Ĝ|DN

= Ep(G|DN )[L(G, Ĝ)] =
∑

G

L(G, Ĝ)p(G|DN ),

p(α(G)|DN ) =
∑

G

1(α(G) is true)p(G|DN )

Idea:

1. sampling from π(X) to generate i.i.d random samples {Xt, t = 1..N};

2. computation of the estimate f̂N = 1/N
∑N

t=1 f(Xt);

3. providing confidence measure for |f̄ − f̂N |, where f̄ = Eπ(X)[f(X)].
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Consistency and convergence speed I.

The estimate f̂N is strongly consistent (by the ”strong law of large number"), that is

P (limN→∞f̂N = f̄) = 1 (2)

The standardized of f̂N has asymptotically Gaussian distribution (by the ”central limit
theorem"), that is

f̂N − f̄

σN

→ N(0, 1) as N → ∞ where σN = V ar(f(X))/
√

N. (3)

If f(X) is bounded, then non-asymptotic results about the speed of convergence are also
available by the Hoeffding’s inequality including the bound and by the Bernstein’s inequality.
Specifically, if f(X) is within [0, 1], then

p(|f̂N − f̄ | ≥ ǫ) ≤ 2 exp(−2ǫ2N) ≤ δ (4)

E[ |f̂N − f̄ | ] ≤
√

c0/N. (5)
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Consistency and convergence speed II.

It is strongly consistent, its standardized is asymptotically Gaussian, additionally its variance

V arq(X)(f(X))/N = 1/N

∫

(
f(x)π(x)

q(x)
− f̄)2q(x)dx (6)

that is the quadratic estimation error, can be smaller than of the standard Monte Carlo with
V arπ(X)(f(X))/N and shown to be minimized by the selection of q(X) ∝ f(x)π(x), but in
general it is advisable to select q(X) as close as possible to π(X) maintaining efficient
sampling from q(X)

In the case of using the prior p(X) as importance distribution for the (normalized) posterior
p(X|D) the (normalized) weights are the likelihoods normalized by the estimation of the data
likelihood p(D):

w∗(Xt) =
p(Xt|D)

p(Xt)
=

p(D|Xt)

p(D)
(7)

p(D) =

∫

p(D|x)p(x)dx ≈ 1/N
N

∑

t=1

p(D|Xt) (8)
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Markov chains I.

Let X = {X0, X1, . . .} is a sequence of random variables. The values of Xt are frequently
interpreted as states from a state space, the index parameter frequently has a temporal or in
biological sequence analysis a location interpretation.

1. Definition. A sequence of random variables X = {X0, X1, . . .} is called a (first-order)
Markov chain, if p(Xt|Xt−1, . . . , X0) = p(Xt|Xt−1). The Markov chain is
(time-)homogeneous, if the so called transition kernels p(Xt|Xt−1) does not depend on t.

In this section, unless otherwise stated that the values of Xt are discrete and finite, denoted
by nonnegative integers S = {0, 1, . . . , K}. We use the notation p(t) for the distribution of

Xt and p(Xt = i) = p
(t)
i . We always assume homogeneity and these allows a shorthand

notation pij for the transition probabilities as pij = p
(1)
ij = P (Xt+1 = j|Xt = i), which are

forming the (one-step) transition probability matrix P = P (1)[pij ] (a stochastic matrix).
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Markov chains II.

The ”n-step" transition probability matrix P (n) containing p
(n)
ij = P (Xt+n = j|Xt = i) is the

nth power of P and

p′(n) = p′(0)P (n), where P (n) = P n. (9)

A special distribution is the so called invariant distribution pinv.

2. Definition. The distribution p′inv is called an invariant distribution of a homogeneous
Markov chain X with transition probability matrix P , if p′inv = p′invP (Consequently, if
p(0) = p′inv, then p(t) = p′inv for ∀ t.)

For a first-order Markov chain X the identical marginals p(t) = pinv implies that X is
strongly stationer, that is the distributions of time-shifted finite marginals are identical, so the
invariant distribution pinv is frequently called a stationer distribution.
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Stability, irreducibility, aperiodicity

3. Definition. A Markov chain X is stable, if limt→∞ p(Xt) = p(∞) exists, independent of
the initial distribution p(X0) and it is a distribution (called limiting distribution or equilibrium
distribution).

Now we need the concept of irreducibility and aperiodicity to state a central result about the
limiting and invariant distributions.

4. Definition. The discrete and finite state space Markov chain X is called

1. irreducible, if there exists nij > 0 for all i, j that p
(nij)

ij > 0,

2. aperiodic, if for some i (and with irreducibility for all), there exists ni > 0 that for all

n ≥ ni p
(n)
ii > 0,

1. Theorem. If a discrete and finite state space Markov chain X is irreducible and aperiodic,
then the chain is stable and there is a unique invariant distribution that is also the limiting

distribution (i.e p′∞ is a unique, nonnegative solution of p′∞ = p′∞P and
∑

i p
(∞)
i = 1).

To simplify notation, for a stable chain we denote this unique limiting and invariant
distribution (p∞, pinv with π(X)).
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Ergodicity, confidence

2. Theorem. If a discrete and finite state space Markov chain X is stable and
f̄ = Eπ(X)[f(X)] < ∞, then P (limN→∞f̂N = f̄) = 1, where f̂N = 1/N

∑N
t=1 f(Xt).

5. Definition. The discrete and finite state space Markov chain X is called geometrically
ergodic, if there exists 0 ≤ λ < 1 and function V (.) > 1 such that

∑

j

|p(t)
ij − πj | ≤ V (i)λt for all i (10)

The smallest such λ is called a rate of convergence.

3. Theorem. If a discrete and finite state space Markov chain X is geometrically ergodic (so
stable), started with its invariant distribution π(X) and for a real valued function f
f̄ = Eπ[f(X)], σ2 = V arπ(f(X)), Eπ [f(X)2+ǫ] ≤ ∞ with some ǫ > 0, then for
f̂N = 1/N

∑N
t=1 f(Xt)

τ2 = σ2 + 2
∞
∑

k=1

Eπ [(f(X0) − f̄)(f(Xk) − f̄)] (11)

exists, nonnegative and finite, and

√
N

f̂N − f̄

τ
→ N(0, 1) in distribution as N → ∞. (12)
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Reversibility

6. Definition. The discrete and finite state space Markov chain X with transition probability
matrix P and invariant distribution pinv is called reversible, if it satisfies the detailed balance
condition

∀ i, j pinv
i Pij = pinv

j Pji. (13)

By summation it gives pinvP.j = pinv
j , which is the defining equation of an invariant

distribution. Consequently, if for a given P q satisfies detailed balance, then it is an invariant
distribution and vice versa, if for a given target distribution q we can construct a P such that
it satisfies detailed balance with q, then q is its invariant distribution. Furthermore, if the
constructed P is such that the corresponding reversible Markov chain is irreducible and
aperiodic as well, then q is its unique, invariant, limiting distribution, so we can generate
(dependent) samples by sequential simulation and use it to estimate expectations and to
provide confidence measures.
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The Metropolis-Hastings Algorithm I.

Let π(X) denote the unnormalized, strictly positive target distribution over S = {0, 1, . . . , K}
(πi = π(X = i) ≥ 0). Let Q be a transition probability matrix (Q1 = 1), the so called
proposal distribution (for transitions), such that (qij ≥ 0) iff (qji ≥ 0). Define a Markov
chain X with probability transition matrix P such that

pij = qij min (1,
πjqji

πiqij

); ∀i 6= j (14)

using 0/0 = 0 and define pii = 1 − ∑

j 6=i pij . Note that the construction needs only the
ratios of the target distribution, which fits to the practical case of unnormalized posterior in
Bayesian analysis.
Now π(X) is the stationary distribution of the defined Markov chain, which can be proved by
showing that the detailed balance condition is satisfied. The cases i = j and if qij = qji = 0

are trivially satisfied. For i 6= j with qij ≥ 0, suppose that πiqij ≥ πjqji, then

πipij = πi

πjqji

πiqij

= πjqji = πjpji (15)
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The Metropolis-Hastings Algorithm II.

If Q is irreducible, so will be P and the same is true for aperiodicity. Consequently, if we
provide a proposal distribution Q that (its corresponding Markov chain) is irreducible and
aperiodic, then for a given target distribution π(X) the construction above defines a stable
and reversible Markov chain with (invariant) limiting distribution π(X)).
If Q is symmetric, then we fall back to the original Metropolis algorithm without ratio of the
proposal distributions

pij = qij min (1,
πj

πi

); ∀i 6= j. (16)

If Q depends on only some distance between the current state xt and a proposed state x∗

(q(x∗|xt) = q(|x∗ − xt|)), then we get the random-walk Metropolis algorithm (the distance can be
semantically defined in discrete spaces). If Q is independent of the current state
(q(x∗|xt) = q(x∗)), then we get the independence sampler , which is geometrically convergent
determined by inf q(x)/π(x) (by the closeness to the target distribution) ?. If Q is such that
changes at most one component of X based on its full conditional distribution, then we get
the Gibbs sampler , with an acceptance probability 1.
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The Metropolis-Hastings Algorithm III.

0. [ Construct an approximate distribution P S of the posterior using mixture model
around modes for checking and initialization of the MCMC. ]

1. Construct an irreducible and aperiodic proposal distribution Q specific to the domain.

2. Draw an initial state x0 from P S .

3. For t = 1, 2, . . .

(a) Draw a candidate state x∗ from the proposal distribution Q given xt.

(b) Calculate the acceptance probability of a step from xt to x∗

α(xt, x∗) = min(1,
πx∗qxtx∗

πxt
qxtx∗

) .

(c) Set xt+1 = x∗ with probability α(xt, x∗), otherwise xt+1 = xt.

4. Continue until convergence and specified confidence.

5. [ Evaluate speed of convergence and improve efficiency by redesigning Q. Step back
to 2.]

6. [ Compare against base-line method using importance resampling with P S . Step back
to 1.]
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Convergence and confidence issues

The Metropolis-Hastings algorithm offers complete freedom to design the proposal
distribution specific to the domain, because it is ensured that the distribution and the
averages will converge asymptotically. However for a Metropolis-Hastings algorithm with a
specified proposal Q and target π(X) distributions there are no analytic results with general,
practical applicability for the rate of convergence to the target distribution, for forgetting the
starting values or for the Monte Carlo variance of the average Eq. 11. Consequently, the
length of the necessary simulation is usually determined by observing and analyzing
simulations, practically based on the actual sampling.

These two problems of the convergence to the limiting distribution and the convergence of

the ergodic average shows the dual usage of MCMC methods: generation of samples from

the target distribution for its exploration and computing ergodic averages for approximating

expectations. Clearly, to solve the second in general much easier than the first in many

respect, e.g. the induced distribution of the target quantity can converge much faster than

the target distribution. Furthermore, as our primary goal is the reliable approximation of

expectations of the target quantities and not per se the convergence of the induced

distribution of the target quantity, an optimal method would provide an estimate with a

confidence interval without answering the question of convergence to the limiting distribution
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Convergence diagnostic I.

The first method related to burn in is based on a single chain and the mean?. It tests the
convergence of a single realization from the sequence {Yi; i = 1..N} exploiting that after
burn-in (i.e. in case of convergence) the distribution of an ergodic average is asymptotically
Gaussian. Formally, define the averages Ŷb after a (putative) burn-in m and Ŷa at the end of
sequence

Ŷb =
1

Nb

m+Nb
∑

i=m+1

Yi and Ŷa =
1

Na

N
∑

i=N−Na+1

Yi (17)

with no overlap (m + Nb + Na < N ). If Na/N and Nb/N are fixed, then

zG =
Ŷb − Ŷa

√

ˆV ar(Yb) + ˆV ar(Ya)

→ N(0, 1) in distribution. (18)

The second method is using independently initialized multiple chains and analyze the

variance ?. Its test is based on the relation of the estimators of the (Monte Carlo) variance of

the target quantity using a between-sequence estimation (i.e. the variance of the

(independent) estimates for the chains) and a within-sequence estimation (i.e. average of

the within-sequence estimates of the variance).

Stochastic inference methods in Bayesian networks – p. 14/18



Convergence diagnostic II.

Formally, for M chains with N samples {Yi, j; i = 1..N j = 1 . . . , M} define

B =
N

M − 1

M
∑

j=1

(Ȳ+,j − (̄Y )+,+)2, where Ȳ+,j =
1

N

N
∑

i=1

Yij, Ȳ+,+ =
1

M

M
∑

j=1

Y+,j

W =
1

M

M
∑

j=1

s2
j where s2j =

1

N − 1

N
∑

i=1

(Ȳij − (̄Y)+,j)
2.

If the simulations are started independently from an overdispersed starting distribution, then
the quantity

√

R̂ =

√

ˆvar+(Y )

W
, where v̂ar+(Y) =

N − 1

N
W +

1

NB
(19)

called ”potential scale reduction" can be used to monitor convergence, because ˆvar+(Y )

overestimates the variance as the chains are still overdispersed and W underestimates the
variance as they are still confined to small regions. Various approximate distributions can be
constructed for B/W ??? , which could be used to construct statistical tests or to select a

task specific constant and continue the simulation until
√

R̂ decline below this for all the
target quantities using small number of chains.

Stochastic inference methods in Bayesian networks – p. 15/18



Confidence estimation I.

The second task after the determination and elimination of the burn-in period is to determine
the stopping time and/or providing confidence measure(s) for the estimate(s) (see Eq. 11 for
the ”MCMC" variance and Eq. ?? for an ”MCMC" central limit theorem). The first method is
related to the between-sequence variance of the earlier method, though using a single chain
{Yi; i = 1, . . . , NM}. It partitions a sufficiently long chain into M parts with length N such
that the ergodic averages are approximately independently Gaussian with mean Eπ [f(X)]

and variance τ2/N (see Eq. 11). Then approximate τ2 as follows

τ̂2 =
N

(M − 1)

M
∑

j=1

(Ȳj − ¯̄Y )2, where Ȳj =
1

N

jN
∑

i=(j−1)N+1

Yi,
¯̄Y =

1

M

M
∑

j=1

Ȳj

Stochastic inference methods in Bayesian networks – p. 16/18



Confidence estimation II.

Another method is based on the direct estimation of the autocovariance terms
γk = Eπ[(f(X0) − f̄)(f(Xk) − f̄)] in the Eq. 11 of the Monte Carlo variance with

γ̂k =
1

N − k

N−k
∑

i=1

(Yi − f̄)(Yi+k − f̄) (20)

and use a special weighting to eliminate the not reliable autocorrelation terms as follows

τ̂2
N = γ̂0 + 2

∞
∑

i=1

wN (i)γ̂0, where 0 ≤ wN(i) ≤ 1. (21)
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Speeding up MCMC

The Metropolis-Hastings algorithm allows the incorporation of any proposal distribution
satisfying only mild conditions (see ??). However, the general improvement of a proposal
distribution for faster convergence to the limiting distribution and for better estimates of the
scalar quantities is an open issue. A general empirical method for random walk Metropolis,
where the proposal distribution depends on only some distance between the current state x

and a proposed state x is to calibrate this distribution as follows. The average step size is
increased till the acceptance rate (the average acceptance probability, see Eq. 12)

aq = Eπ(X)[Eq(Y |X)[α(X, Y )]] (22)

is close to 1. But this is not enough as the following example from ? shows.

1. Example. Let the target distribution be a Gaussian with a diagonal covariance matrix in
which the maximum and minimum are σmax and σmin. Assume a proposal distribution
corresponding to a random walk Metropolis that is a centralized Gaussian with an identical
diagonal covariance matrix with value ǫ corresponding to an acceptance rate close to 1.
Then the coordinates evolves as independent one-dimensional random walks and ǫ is in the
range of σmin. Consequently, after T steps it explored a region less than ǫ

√
2T ln ln T and

located about ǫ
√

T . So an estimate for the necessary number of steps to explore the
direction with σmax is σmax/σmin2.

This problem can be solved with an (offline) coordinate transformation (reparameterezation)
and/or dimension reduction (model projection). Stochastic inference methods in Bayesian networks – p. 18/18
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