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Abstract

A technique used in the flight control industry for estimation when

combining measurements is the complementary filter. This filter is
usually designed without any reference to Wiener or Kalman filters,

although it is related to them. This paper, which is mainly tutorial,
reviews complementary filtering and shows its relationship to Kal-

man and Wiener filtering.

A simple estimation technique that is often used in the
flight control industry to combine measurements is the
complementary filter [1]. This filter is actually a steady-
state Kalman filter (i.e., a Wiener filter) for a certain class
of filtering problems. This relationship does not appear to
be well known by many practitioners of either comple-
mentary or Kalman filtering. One exception is the tutorial
paper by Brown [2] which discusses this relationship
without going into the mathematical details.

The complementary filter users do not consider any
statistical description for the noise corrupting the signals,
and their filter is obtained by a simple analysis in the fre-
quency domain. The proponents of the Kalman filtering
approach work in the time domain and do not pay much
attention to the transfer function or frequency domain
(Wiener filter) approach to the filtering problem, since it is
a less general approach to the filtering problem. The
Wiener filter solution to this class of multiple-input estima-
tion problems appeared in the literature [3], [4] well be-
fore Kalman published his classic paper [5].

This paper reviews complementary filtering and shows
how this technique is related to Kalman and Wiener filter-
ing. Since both Kalman and complementary filtering are
under consideration for use in the Space Shuttle Reentry
and Landing Navigation System, the relationship between
them should be well understood.

11. Complementary Filtering
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The basic complementary filter is shown in Fig. 1(A)
where x and y are noisy measurements of some signal z and
z is the estimate of z produced by the filter. Assume that
the noise in y is mostly high frequency, and the noise in x
is mostly low frequency. Then G(s) can be made a low-
pass filter to filter out the high-frequency noise in y. If
G(s) is low-pass, [1 - G(s)] is the complement, i.e., a high-
pass filter which filters out the low-frequency noise in x.
No detailed description of the noise processes are consid-
ered in complementary filtering.

The complementary filter can be reconfigured as in
Fig. 1(B). In this case the input to G(s) is y - x = n2 - n I,
so that the filter G(s) just operates on the noise or error in
the measurements x and y. Note that, in the case of noise-
less or error-free measurements, z = z [1 - G(s)] + zG(s) =
z; i.e., the signal is estimated perfectly.
A typical application of the complementary filter is to

combine measurements of vertical acceleration and baro-
metric vertical velocity to obtain an estimate of vertical
velocity. To fit the previous discussion, assume that the
acceleration measurement is integrated to produce a veloc-
ity signal ha, as shown in Fig. 2. The integration attenu-
ates the high-frequency noise in the acceleration measure-
ment, whereas the noise in hb is not changed. Therefore, if
hb is filtered by the low-pass filter

G(s) = 1/(rs + 1), (1)
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Fig. 1. (A) Basic complementary filter. If G(s) is a low-pass filter,
1 - G(s) is a high-pass filter. (B) Alternate version of the filter in
which the filter operates only on the noise.

Fig. 2. Complementary filter for estimating vertical velocity. (A)
Basic complementary filter. (B) Actual realization of the filter.
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thten ha is filtered by the high-pass filter

1 - G(s) = 1 - l/(Ts + 1) = TS/(TS + 1). (2)

The filter of Fig. 2(A) can be simplified, and the actual reali-
zation of the filter is shown in Fig. 2(B). The time constant
T is usually between 2 and 6 seconds and is adjusted during
simulation or flight testing. Note that the measurement
ha is actually low-pass filtered even though ha is high-pass
filtered.

In the case of an augmented inertial system, an accelera-
tion measurement is combined with a position measure-
ment, and position and velocity are estimated. Fig. 3 shows
how the complementary filter approach can be used to
solve this problem. Fig. 3(A) illustrates the complemen-
tary filter which estimates the velocity from position and
acceleration measurements. Gl(s) must be a second-order
transfer function in order for the transfer function from
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Fig. 3. Complementary filters to estimate (A) velocity and (B)
position from acceleration and position measurements.

xp to x to provide attenuation at high frequencies. G1(s)
must also have unity gain at low frequencies. Fig. 3(B)
shows the complementary filter for estimating position
from the position and acceleration measurements. In this
case, in order to have a second-order transfer function be-
tween xa and x, 1 - G2(s) must be of the form

1 - G2(s) = s2/(s2 + as + b). (3)

Again, G2(s) has unity gain at low frequencies. The param-
eters a and b can be chosen to give the filter some desired
natural frequency and damping factor.

Fig. 4 shows the actual realization of the filter. This
multiple-input/multiple-output system can be realized by
just the simple second-order system. The transfer func-
tions from xa and xp to x and x are the same as in Fig.
3(A) and (B). This version of the filter also can be ob-
tained by a direct argument as follows. The acceleration
measurement is integrated to produce a velocity estimate
and a position estimate. The position estimate is differ-
enced with the position measurement to produce an error
signal which is fed back to produce corrections in the esti-
mates.

Ill. The Kalman Filter

Kalman filters, as they are used in navigation systems,
are based on the complementary filtering principle.
Brown, in his paper, refers to this as the complementary
constraint. The basic block diagram is given in Fig. 5, al-
though, as in the previous cases, the actual implementation
may be different. Note the similarity between Fig. 5 and
Fig. 1(B). The complementary constraint means that the
filter just operates on the noise and is not affected by
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Fig. 5. Typical application of the Kalman filter in inertial naviga-
tion [2].
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Fig. 4. Actual implementation and equations of complementary
filter to estimate position and velocity.

where 6k is the estimate of the error vector and k is the
Kalman filter gain. k, an n X 1 matrix, is obtained from
the equations

k =Ph1 TR-1 = - PhTR-l (12)

actual signals that are to be estimated. The advantages and
disadvantages of removing this constraint are discussed by
Brown.

hInapplying Kalman filtering to the problem of combin-
ing noisy measurements, the philosophy used is that the
processing of one class of measurements defines the basic
process equations. The other measurements, sometimes
referred to as augmenting measurements, define the meas-
urement equations for the filter. After discussing the basic
equations, the two examples of the previous section are re-
worked using the steady-state Kalman filter approach.
These examples can also be solved by the Wiener filter ap-
proach using spectrum factorization. The relationship be-
tween the steady-state or stationary Kalman filter and the
Wiener filter is discussed in the book by Sage and Melsa [6].

Basically, there are two measurements, one of which
serves as an input to a differential equation which serves as
the process model. The ideal equations are

XI = Fxj + gu (process)

zj = hxj (measurement)

(4)

(5)

where P, the n X n error covariance matrix, is the solution
of the Riccati equation

P = FP +PFT - Ph TR-h1p+gQgT (13)

in which R = u2 is the variance of the measurement noise
and Q = u2 is the variance of the process noise. The sta-
tionary Kalman filter is obtained by setting P = 0 in the
Riccati equation. The actual estimates of the signals are

x=x- x. (14)

In order to show the relationship with the complemen-
tary filters, the above equations can be manipulated to
produce a differential equation for x directly:

x =x -6*x
x=Fx+g(u + w) -FA -k[6z -h,6x].

Butk= x - Ax,6x = x -i, andhi = -h, so that
x = Fk + g(u + w) - k [z - hx + h(x - x)]
x = Fk + g(u + w) - k[z - hx].

where u is one noiseless measurement and zj is the other.
F, g, h, andx are n X n, n X 1, 1 X n, and n X I matrixes,
respectively; zj and u are scalars. In actuality, we have two
noisy measurements, so that the equations are

x = Fx + g(u + w)

z =hxj + v

where w and v are zero-mean, white, Gaussian noise.
The error equations are

Ax =x -XI

X= X -X= Fx +gu +gw - Fx1 -gu
6x = F8x + gw

6z = z -hx = -hbx +1v =hlx + v

where 6x is the error vector.
The Kalman filter equation is [7]

x6 =F~x +k[6z -hl x6]

(6)

(7)

(8)

As is shown below, this equation is identical to the differ-
ential equations of the complementary filters for the two
examples under consideration.

Example 1

The process equation from Fig. 2(A) is

xi =k =Fxl +gh, =Fxj +g(h+w)

Z=hb =h + v.

Therefore, F = 0, g = 1, and h = 1, so that the algebraic
(9) Riccati equation is

(10) -PR-lP+ Q = 0

or

(11) P=V-=aa,
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assumption that the measurements are corrupted by sta-
tionary white noise produces a stationary Kalman filter
that is identical in form to the complementary filter.

The filter equation is obtained by substituting into (15):

x ha + (wlav) [hb-X]

x=(-ow lav)xi + (awulav)hb +ha (16

This equation is identical to the equation of the comple-
mentary filter in Fig. 2(B), where the time constant of the
filter is now r = a,/ow Note that a time constant of four,
as in the complementary filter, means that the barometric
signal is assumed to be much noisier than the accelerome-
ter signal. In the complementary filter, the time constant
is chosen to get most of the information from the accelero-
meter signal and use the barometric information only as a
long-term reference.

Example 2

The process equation from Fig. 3(B) is

KlX ] FF[olX[!]L=X$LX1i=Li[i]+[jY.w

IV. Digital Implementation

Since modern inertial navigation systems use digital com-
puters, the continuous filters can be replaced by discrete

) approximations, or the problem can be formulated as a
sampled measurement problem from the start. The com-
plementary or stationary Kalman filter has a considerable
advantage over the normal Kalman filter because the Ric-
cati equation and Kalman gains are not computed. There-
fore, the update rate of the complementary filter can be
higher than the normal Kalman filter. This is an important
consideration in the applications to automatic landing
problems, especially in an unpowered vehicle, such as the
space shuttle, which has a rapid descent rate before final
flare.

One simple method to obtain discrete equations is to
replace the integrators in the block diagrams by digital
integrators. Another method is to obtain difference equa-
tions directly from the differential equations of the filter.
Consider the solution to the differential equation (17)
from one sample time to the next:

i(nT) = eFTx[(n - 1)7] +
nT

eF(t-) (kAx +gx,) dr
(n-l)T

Therefore,

F=[ ] g= h=[l 0].

The solution to the algebraic Riccati equation is

Pi1 = /2u u3

P12 = UcwJv

P22 = gw 2av

and the Kalman gain is

L 2aw/lav
k= _ P [av2]-1 = _

The filter equation is

X=; X+ uxa + (x; P -X 1) (I
L0 0 1 aw /Or

This equation is identical to the complementary filter of
Fig. 3(C) if a and b of the complementary filter are set
equal to k, and k2 of the Kalman filter. Therefore, the

where the state transition matrix is
I T

eFT =

LO 1

and

Ax(t) =x14t) - x(t).
Assuming that T is small, Ax(t) and x, (t) can be assumed
constant over the sampling interval, so that the integral
becomes

nT -r

L ] dr(kAxn-1 +gxan-)
(n-1)T 0 1

T T2.
L 2 (kAx1n- +gxan-1)
0 T

1T ~~T/2
17) L 2 kTAxn-1 + [T2vxnfl

where Txa - Avx . Avx is the usual output of an inertial
measurement unit. Therefore, the final set of difference
equations is
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T T1/T 2

Xn=[l0 1 n-i + 01]kTAxn-1 + [11 Av1n-

V. Conclusions

The relationship between the complementary filter and
the Kalman filter has been shown. The complementary
filter is simpler because it involves less computation. The
question that remains to be answered is how does the ac-

curacy of the two techniques compare? Does the use of
fixed or preprogrammed gains degrade the filter perform-
ance significantly? In idealized cases, as the examples in
this paper, the mean-squared error for given white-noise in-
puts can be compared. However, in a specific real-world
problem, the noise is not really white, the position meas-

urement is a nonlinear function of certain ranges and
angles, and the filter equations are higher order, since there
are three positions and velocities to be determined. A true
comparison of the two filters would probably involve an

extensive Monte Carlo simulation.
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