
Decision Trees

Defining the Task
 Imagine we’ve got a set of data

containing several types, or classes.
 E.g. information about customers, and

class=whether or not they buy anything.

 Can we predict, i.e classify, whether a
previously unseen customer will buy
something?

An Example Decision Tree

We create a ‘decision tree’. It
acts like a function that can
predict and output given an input

Attributen

Attributem
Attributek

Attributel

vn1 vn2

vn3

vm1 vm2

vl1 vl2

vk1 vk2Class1

Class2 Class2

Class2
Class1

Class1

Decision Trees
 The idea is to ask a series of

questions, starting at the root, that
will lead to a leaf node.

 The leaf node provides the
classification.

Decision Trees
Consider these
data:

A number of
examples of
weather, for
several days,
with a
classification
‘PlayTennis.’

Decision Tree Algorithm

Building a decision tree
1. Select an attribute
2. Create the subsets of the example

data for each value of the attribute
3. For each subset

• if not all the elements of the subset
belongs to same class repeat the
steps 1-3 for the subset

Building Decision Trees
Let’s start building the tree from scratch. We first need to decide which
attribute to make a decision. Let’s say we selected “humidity”

Humidity

high normal

D1,D2,D3,D4
D8,D12,D14

D5,D6,D7,D9
D10,D11,D13

Building Decision Trees
Now lets classify the first subset D1,D2,D3,D4,D8,D12,D14 using
attribute “wind”

Humidity

high normal

D1,D2,D3,D4
D8,D12,D14

D5,D6,D7,D9
D10,D11,D13

Building Decision Trees
Subset D1,D2,D3,D4,D8,D12,D14 classified by attribute “wind”

Humidity

high normal

D5,D6,D7,D9
D10,D11,D13

wind

strong weak

D1,D3,D4,D8D2,D12,D14

Building Decision Trees
Now lets classify the subset D2,D12,D14 using attribute “outlook”

Humidity

high normal

D5,D6,D7,D9
D10,D11,D13

wind

strong weak

D1,D3,D4,D8D2,D12,D14

Building Decision Trees
Subset D2,D12,D14 classified by “outlook”

Humidity

high normal

D5,D6,D7,D9
D10,D11,D13

wind

strong weak

D1,D3,D4,D8D2,D12,D14

Building Decision Trees
subset D2,D12,D14 classified using attribute “outlook”

Humidity

high normal

D5,D6,D7,D9
D10,D11,D13

wind

strong weak

D1,D3,D4,D8outlook
Sunny Rain Overcast

YesNo No

Building Decision Trees

Humidity

high normal

D5,D6,D7,D9
D10,D11,D13

wind

strong weak

D1,D3,D4,D8outlook
Sunny Rain Overcast

YesNo No

Now lets classify the subset D1,D3,D4,D8 using attribute “outlook”

Building Decision Trees

Humidity

high normal

D5,D6,D7,D9
D10,D11,D13

wind

strong weak

outlook
Sunny Rain Overcast

YesNo No

subset D1,D3,D4,D8 classified by “outlook”

outlook
Sunny Rain Overcast

YesNo Yes

Building Decision Trees

Humidity

high normal

D5,D6,D7,D9
D10,D11,D13

wind

strong weak

outlook
Sunny Rain Overcast

YesNo No

Now classify the subset D5,D6,D7,D9,D10,D11,D13 using attribute “outlook”

outlook
Sunny Rain Overcast

YesNo Yes

Building Decision Trees

Humidity

high normal

wind

strong weak

outlook
Sunny Rain Overcast

YesNo No

subset D5,D6,D7,D9,D10,D11,D13 classified by “outlook”

outlook
Sunny Rain Overcast

YesNo Yes

outlook

Sunny Rain Overcast

YesYes D5,D6,D10

Building Decision Trees

Humidity

high normal

wind

strong weak

outlook
Sunny Rain Overcast

YesNo No

Finally classify subset D5,D6,D10by “wind”

outlook
Sunny Rain Overcast

YesNo Yes

outlook

Sunny Rain Overcast

YesYes D5,D6,D10

Building Decision Trees

Humidity

high normal

wind

strong weak

outlook
Sunny Rain Overcast

YesNo No

subset D5,D6,D10 classified by “wind”

outlook
Sunny Rain Overcast

YesNo Yes

outlook

Sunny Rain Overcast

YesYes wind

strong weak

YesNo

Decision Trees and Logic

Humidity

high normal

wind

strong weak

outlook
Sunny Rain Overcast

YesNo No

(humidity=high ∧ wind=strong ∧ outlook=overcast) ∨
(humidity=high ∧ wind=weak ∧ outlook=overcast) ∨
(humidity=normal ∧ outlook=sunny) ∨
(humidity=normal ∧ outlook=overcast) ∨
(humidity=normal ∧ outlook=rain ∧ wind=weak) ⇒ ‘Yes’

outlook
Sunny Rain Overcast

YesNo Yes

outlook

Sunny Rain Overcast

YesYes wind

strong weak

YesNo

The decision tree can be expressed
as an expression or if-then-else
sentences:

Using Decision Trees

Humidity

high normal

wind

strong weak

outlook
Sunny Rain Overcast

YesNo No

Now let’s classify an unseen example: <sunny,hot,normal,weak>=?

outlook
Sunny Rain Overcast

YesNo Yes

outlook

Sunny Rain Overcast

YesYes wind

strong weak

YesNo

Using Decision Trees
Classifying: <sunny,hot,normal,weak>=?

Humidity

high normal

wind

strong weak

outlook
Sunny Rain Overcast

YesNo No

outlook
Sunny Rain Overcast

YesNo Yes

Rain Overcast

Yeswind

strong weak

YesNo

outlook

Sunny

Yes

Using Decision Trees
Classification for: <sunny,hot,normal,weak>=Yes

Humidity

high normal

wind

strong weak

outlook
Sunny Rain Overcast

YesNo No

outlook
Sunny Rain Overcast

YesNo Yes

outlook

Sunny Rain Overcast

YesYes wind

strong weak

YesNo

A Big Problem…
Here’s another tree from the same training
data that has a different attribute order:

Which attribute should we choose for each branch?

Choosing Attributes
We need a way of choosing the best

attribute each time we add a node to
the tree.

 Most commonly we use a measure
called entropy.

 Entropy measure the degree of
disorder in a set of objects.

Entropy
 In our system we have

 9 positive examples
 5 negative examples

 The entropy, E(S), of
a set of examples is:
 E(S) = Σ-pi log pi

 Where c = no of classes
and pi = ratio of the
number of examples of
this value over the total
number of examples.

 P+ = 9/14
 P- = 5/14
 E = - 9/14 log2 9/14 - 5/14 log2 5/14
 E = 0.940

- In a homogenous (totally
ordered) system, the entropy is 0.

- In a totally heterogeneous
system (totally disordered), all
classes have equal numbers of
instances; the entropy is 1

i=1

c

Entropy
 We can evaluate each

attribute for their
entropy.
 E.g. evaluate the

attribute “Temperature”
 Three values: ‘Hot’, ‘Mild’,

‘Cool.’

 So we have three
subsets, one for each
value of ‘Temperature’.

Shot={D1,D2,D3,D13}

Smild={D4,D8,D10,D11,D12,D14}

Scool={D5,D6,D7,D9}

We will now find:
E(Shot)
E(Smild)
E(Scool)

Entropy
Shot= {D1,D2,D3,D13}

Examples:
2 positive
2 negative

Totally heterogeneous
+ disordered therefore:
p+= 0.5
p-= 0.5

Entropy(Shot),=
-0.5log20.5
-0.5log20.5 = 1.0

Smild= {D4,D8,D10,
D11,D12,D14}

Examples:
4 positive
2 negative

Proportions of each
class in this subset:
p+= 0.666
p-= 0.333

Entropy(Smild),=
-0.666log20.666
-0.333log20.333 = 0.918

Scool={D5,D6,D7,D9}

Examples:
3 positive
1 negative

Proportions of each
class in this subset:
p+= 0.75
p-= 0.25

Entropy(Scool),=
-0.25log20.25
-0.75log20.75 = 0.811

Gain
Now we can compare the entropy of the system before we divided it into
subsets using “Temperature”, with the entropy of the system afterwards.
This will tell us how good “Temperature” is as an attribute.

The entropy of the system after we use attribute “Temperature” is:
(|Shot|/|S|)*E(Shot) + (|Smild|/|S|)*E(Smild) + (|Scool|/|S|)*E(Scool)

This difference between the entropy of the system before and after the
split into subsets is called the gain:

(4/14)*1.0 + (6/14)*0.918 + (4/14)*0.811 = 0.9108

Gain(S,Temperature) = 0.940 - 0.9108 = 0.029

E(before) E(afterwards)

Decreasing Entropy

7red class 7pink class: E=1.0
All subset: E=0.0Both subsets

E=-2/7log2/7 –5/7log5/7

H
as

 a
 c

ro
ss

?

H
as

 a
 ri

ng
?

H
as

 a
 ri

ng
?

no

no

no

yes

yes

yes

From the initial state,
Where there is total disorder…

…to the final state where all
subsets contain a single class

Tabulating the Possibilities
Attribute=value |+| |-| E E after dividing

by attribute A
Gain

Outlook=sunny 2 3 -2/5 log 2/5 – 3/5 log 3/5 = 0.9709 0.6935 0.2467

Outlook=o’cast 4 0 -4/4 log 4/4 – 0/4 log 0/4 = 0.0

Outlook=rain 3 2 -3/5 log 3/5 – 2/5 log 2/5 = 0.9709

Temp’=hot 2 2 -2/2 log 2/2 – 2/2 log 2/2 = 1.0 0.9111 0.0292

Temp’=mild 4 2 -4/6 log 4/6 – 2/6 log 2/6 = 0.9183

Temp’=cool 3 1 -3/4 log 3/4 – 1/4 log 1/4 = 0.8112

Etc…

… etc This shows the entropy calculations…

Table continued…
E for each subset of A Weight by proportion of

total
E after A is the sum of
the weighted values

Gain = (E before dividing
by A) – (E after A)

-2/5 log 2/5 – 3/5 log 3/5
= 0.9709

0.9709 x 5/14
= 0.34675

0.6935 0.2467

-4/4 log 4/4 – 0/4 log 0/4
= 0.0

0.0 x 4/14
= 0.0

-3/5 log 3/5 – 2/5 log 2/5
= 0.9709

0.9709 x 5/14
= 0.34675

-2/2 log 2/2 – 2/2 log 2/2
= 1.0

1.0 x 4/14
= 0.2857

0.9111 0.0292

-4/6 log 4/6 – 2/6 log 2/6
= 0.9183

0.9183 x 6/14
= 0.3935

-3/4 log 3/4 – 1/4 log 1/4
= 0.8112

0.8112 x 4/14
= 0.2317

…and this shows the gain calculations

Gain
 We calculate the

gain for all the
attributes.

 Then we see which
of them will bring
more ‘order’ to the
set of examples.

 Gain(S,Outlook) = 0.246
 Gain(S,Humidity) = 0.151
 Gain(S,Wind) = 0.048
 Gain(S, Temp’) = 0.029

 The first node in the
tree should be the
one with the highest
value, i.e. ‘Outlook’.

ID3 (Decision Tree Algorithm)

 ID3 was the first proper decision tree
algorithm to use this mechanism:

 Or in more detail…

Building a decision tree with ID3 algorithm
1. Select the attribute with the most gain
2. Create the subsets for each value of the attribute
3. For each subset

1. if not all the elements of the subset belongs to same
class repeat the steps 1-3 for the subset

ID3 (Decision Tree Algorithm)
•Function DecisionTtreeLearner(Examples, TargetClass, Attributes)

•create a Root node for the tree
•if all Examples are positive, return the single-node tree Root, with label = Yes
•if all Examples are negative, return the single-node tree Root, with label = No
•if Attributes list is empty,

• return the single-node tree Root, with label = most common value of TargetClass in Examples
•else

•A = the attribute from Attributes with the highest information gain with respect to Examples
•Make A the decision attribute for Root
•for each possible value v of A:

•add a new tree branch below Root, corresponding to the test A = v
•let Examplesv be the subset of Examples that have value v for attribute A
•if Examplesv is empty then

•add a leaf node below this new branch with label = most common value of TargetClass in
Examples

•else
•add the subtree DTL(Examplesv, TargetClass, Attributes - { A })

•end if
•end
•return Root

Hypothesis Space
ID3 is a heuristic
to select a tree in
top-down fashion.

It’s a form of Best-
first search!

The Problem of Overfitting
 Trees may grow to

include irrelevant
attributes (e.g.
color of dice).

 Noise may add
spurious nodes to
the tree.

 This can cause
overfitting of the
training data
relative to test data.

Hypothesis H overfits the data if there exists
H’ with greater error than H, over training

examples, but less error than H over entire
distribution of instances.

Fixing Overfitting
Two approaches to pruning

Prepruning: Stop growing tree during the training when it is
determined that there is not enough data to make reliable choices.

Postpruning: Grow whole tree but then remove the branches that do
not contribute good overall performance.

Determining which branch to prune

Cross-validation: Reserve some of the training data(validation set) to
evaluate the performance of the tree.

Statistical testing: Use a statistical test (chi-square) to determine if
going below a branch is likely to produces an improvement behind the
training set (a good explanation of chi-square is at.
http://www.physics.csbsju.edu/stats/chi-square.html)

Minimum Description Length: Use an explicit measure (MDL) to
determine if the additional complexity of the hypothesis is less complex
than just remembering any exceptions.

Reduced-Error Pruning

Reduced-error pruning
1. divide data into training set and validation set
2. build a decision tree using the training set, allowing overfitting to occur
3. for each node in tree

•consider effect of removing subtree rooted at node, making it a leaf,
and assigning it majority classification for examples at that node
•note performance of pruned tree over validation set

4. remove node that most improves accuracy over validation set
5. repeat steps 3 and 4 until further pruning is harmful

Rule Post-Pruning
Rule post-pruning
•infer decision tree, allowing overfitting to occur
•convert tree to a set of rules (one for each path in tree)
•prune (generalize) each rule by removing any preconditions (i.e., attribute tests)
that result in improving its accuracy over the validation set
•sort pruned rules by accuracy, and consider them in this order when classifying
subsequent instances

•IF (Outlook = Sunny) ^ (Humidity = High) THEN PlayTennis = No
•Try removing (Outlook = Sunny) condition or (Humidity = High) condition from the rule and
select whichever pruning step leads to the biggest improvement in accuracy on the
validation set (or else neither if no improvement results).

•advantages of rule representation:
•each path's constraints can be pruned independently of other paths in the tree
•removes distinction between attribute tests that occur near the root and those that
occur later in the tree
•converting to rules improves readability

	Decision Trees
	Defining the Task
	An Example Decision Tree
	Decision Trees	
	Decision Trees	
	Decision Tree Algorithm
	Building Decision Trees
	Building Decision Trees	
	Building Decision Trees	
	Building Decision Trees	
	Building Decision Trees	
	Building Decision Trees	
	Building Decision Trees	
	Building Decision Trees	
	Building Decision Trees	
	Building Decision Trees	
	Building Decision Trees	
	Building Decision Trees	
	Decision Trees and Logic	
	Using Decision Trees	
	Using Decision Trees	
	Using Decision Trees	
	A Big Problem…	
	Choosing Attributes
	Entropy	
	Entropy	
	Entropy	
	Gain	
	Decreasing Entropy
	Tabulating the Possibilities
	Table continued…
	Gain	
	ID3 (Decision Tree Algorithm)	
	ID3 (Decision Tree Algorithm)	
	Hypothesis Space
	The Problem of Overfitting
	Fixing Overfitting
	Reduced-Error Pruning
	Rule Post-Pruning

