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Preface

This booklet is based on the Hungarian textbook ” Méréstechnika példatdar villa-
mosmérndkoknek” published in 2006. Here only those items are presented which
are frequently used in the Measurement Technology classes.

The first part of the booklet contains the problems, while the second part
presents the solutions. Many of the solutions are much more detailed than the
original Hungarian version to help understanding. The difficulty level of the
problems increase in each chapter, therefore it is advised to solve them in a
consecutive order.

The Authors intend to draw the attention of the Reader that practicing using
only this booklet cannot substitute the careful learning and understanding of
the theoretical basics of measurement technology.

Budapest, June 2014 Ldszlo Sujbert
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Part 1

Problems



Chapter 1

Basic problems

1.1.1

Umax

A model car is tested on a straight road. The car first accelerates to vy, velocity,
then stops. Since the car was designed by engineers, its velocity looks like a
semicircle, as can be seen in the figure above. What is the total distance taken
by the car if vy, = 40 km/h, and the elapsed time is T'= 30 s?

1.2. Determine the SI unit of the below quantities and functions assuming that
the unit of the original signal is volt (V) as a function of the time (s). (Note
that some of the below quantities may not exist for a specific signal. SI: Systéme
International; International system of units)

a) signal power;

b) Fourier-transform;

c) correlation;

d) power density spectrum;
e) energy density spectrum;
f) effective value;

g) RMS-value;

h) variance;

1J. B. Csernyak, R. M. Rose, “A minszki csirke és tovdbbi 99 elgondolkodtato feladat az
orosz matematikai és fizikai hagyomdnyokbol”, in Hungarian
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i) mean square value;
j) expected value;
k) standard deviation.

1.3. A system is excited with voltage, the output is current. What is the ST unit
of the impulse response of the system?

1.4. Determine the complex Fourier-series of the x(t) = A cos(27 ft + ¢) signal!

1.5. Determine the complex Fourier-series of the z:(t) = A; cos(27 f,t)+As cos(5m f,t)
signal! What is the time period of this signal?

1.6. Is the following signal periodic?
x(t) = Ay Ao sin(2rm f1t) sin(27 fot),  fo = 1.6 f1.

If yes, what is the period time?
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Chapter 2

Error calculation I.

2.1. Velocity is measured by the measurement of time and displacement. The
measured value of the displacement is = 2000 m + 0.5%, and the measured
time is ¢t = 2000 s£0.1%. What is the worst case error of the estimated velocity?

2.2. 100 resistors of 1 k{2 nominal value and 1% tolerance (relative random error)
are connected in series. What is the relative error of the resulting resistance
having 100 k2 nominal value, using the (a) worst case and (b) probabilistic
summation of error components?

2.3.

The figure displays a voltage divider made up of two resistors. The values of the
resistors are R; = 49 k2 and Ry = 1 k(). The tolerance of both resistors is 100

a) What is the nominal value of the voltage division ratio?
b) What is the worst case relative error of the voltage divider?

c) Shall we consider the error of the divider as a systematic or random error,
if (1) we have a company which produces voltage dividers; (2) we have
bought one voltage divider for our laboratory for measurement purposes?

2.4. A 1111 ohm resistance is composed by connecting a 1000, a 100, a 10 and a
1 ohm resistor in series. The tolerances (random relative errors) of the resistors
are 0.01%, 0.1%, 1% and 10%, respectively. What is the tolerance of the 1111
ohm resistance, using the probabilistic summation of error components?

2.5. We construct a 900 ohm resistance using a 1 k€2, a 10 k2, a 100 k{2 and a

11



12 CHAPTER 2. ERROR CALCULATION L.

1 M2 resistor, which are connected in parallel. The tolerances (random relative
errors) of the resistors are 0.01%, 0.1%, 1% and 10%, respectively. What is the
worst case error of the 900 ohm resistor?

2.6. We are measuring the flow of water through a weir. The liquid flows through
a V-shaped opening. The expression of the volume velocity is the following:

4 d
- 2_5/2
Q=1\297 5",

where d is the width of the weir, [ is the height, s is the level of the liquid from
the bottom of the weir, and g is the acceleration due to gravity. What is the
most probable value of the measurement error, if the relative errors of d and [
are 1%, and the relative error of s is 3%?

2.7. Our task is to measure small distances in a mechanical system. For this
purpose metal sheets are fixed on the elements we want to measure. This results
in a capacitor which can be used as a part of an RC' oscillator. Then the distance
is calculated from the frequency of this oscillator. The required formulas are:
C =cA/d, f = 1/(2rRC); e = 885-107"2 F/m, A = 50 cm?, R = 10 k.
The error sources are the uncertainty in the frequency measurement and the
uncertainty of the resistor value (1% relative error for each), the other error
sources are neglected.

a) What is the worst case relative error of the distance measurement?

b) During the test of the equipment it turns out that the capacitance of the
wires of the capacitor cannot be neglected, which is connected in parallel
with the capacitor. What is the error of the measurement if the capacitance
of the wires is C, = 45 pF, and the nominal value of the distance is
d=1mm?

2.8. The velocity of a liquid in a pipe is measured with ultrasound. We place
two acoustic transceivers at the opposite sides of the pipe. The line connecting
them has an a angle with the cross-section of the pipe. The travel time of the
sound differs in the two directions due to the flow, and the velocity of the liquid
can be calculated using the following formula:

[ { 1 1 ]
v = — - —
28in o tl tQ ’
where [ is the distance between the transceivers, ¢; and ¢, are the propagation

times. In our case [ = 0.5 m, and the nominal velocity of the flow is v =5 m/s,
the propagation speed of the sound in the liquid is ¢ = 1500 m/s, and a = 30°.

a) Determine the required accuracy (relative error) of the propagation time
measurements if the allowed maximal error of the velocity measurement is

5%!
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b) What is the relative error of the velocity measurement if the propagation
time measurements have hgy = 1% systematic and Arapdom = 50 ppm
random error?

2.9. We are measuring the height of a building based on the air pressure differ-
ence between the ground floor and the top of the building. The height can be
calculated using the so-called barometric formula:

_ pPogl

p(l) = poe ¥,

where p is the pressure, py = 10° Pa is the pressure at sea-level, py = 1.29 kg/m?
is the sea-level air density, g = 9.81 m/s? is the acceleration due to gravity, [ is
the height above sea-level.

a) Calculate the height of the building if the pressure at the ground floor is
p1 = 99 kPa, and the pressure at the top of the building is p = 98 kPa !

b) The measurements are carried out in two ways. First we do a measurement
in parallel with two different instruments at the top and the ground floor of
the building, then we use only one instrument for pressure measurement,
first at the ground floor and then at the top. What is the relative error of
the height measurement if the maximum offset error of the instruments is
Dot = 200 Pa, and the maximum scaling error of the reading is ¢ = 0.1%.
For a given barometer, the offset and scaling errors can be considered
constant (can be considered as systematic errors), but the errors can be
different across the two barometers.
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Chapter 3

Error calculation II.

3.1. ¢ is a uniformly distributed random variable in the interval [—1, 1]. Draw
its probability density function, determine its expected value and standard de-
viation!

3.2. A measured quantity can be modeled with a random variable. The proba-
bility density function has a constant value in the [1,2] and in the [3, 4] intervals,
otherwise it is 0. Determine the expected value and standard deviation of the
random variable! Determine the width of the interval in which the measurements
can be found with 90% probability! What are the bounds of this interval?

3.3. x is a normally distributed random variable and its value is between 1 and
2 with 99.7% probability. Estimate the standard deviation of x!

3.4. Smurf village wants to be member of the Smurf Union. For this purpose
they have to standardize their main export item, the canned blueberries. Since
Handy constructed a blueberry counter device, every can contains exactly 120
blueberries. The weight of one blueberry is within 4.5 g and 5.5 g with uniform
distribution. Determine the 98% confidence interval for the weight of one can!

3.5. We are generating normally distributed samples with computer. A soft-
ware generates uniformly distributed random variables in the [0, 1] interval. A
normally distributed sample is created by summing 48 uniformly distributed
samples. Specify the required further operations to transform this variable so
that it has standard normal distribution!

3.6. We are measuring a constant value which is disturbed by independent
Gaussian noise with zero mean. The following six measurements were made:

13.6720 9.4190 21.3489 9.7298 14.6773 18.5959.

Determine the 90% confidence interval for the constant value!

3.7. The lengths of 3 tables are measured. The results are 100£1 cm, 135+1 cm
and 65 £ 0.5 cm. The measurements are unbiased, normally distributed with a
95.5% confidence level. What is the maximal total length of the 3 tables with
a 99.7% confidence level if they are placed one after the other? In other words,

15



16 CHAPTER 3. ERROR CALCULATION II

what is the space where the three tables fit with 99.7% probability?

3.8. Velocity is measured by the measurement of time and displacement. The
measured value for the displacement is z = 2000 m + 0.5%, and for the time it
is ¢ = 2000 s &+ 0.1%. The distribution of the measurement errors is Gaussian,
the confidence level is 90%. Determine the extended uncertainty of the velocity,
if the extension factor is k = 2!

3.9. The value of a resistor is obtained by the measurement of its voltage and
current. Two different instruments are used in the measurement. Determine the
resistance and its standard uncertainty if the measured voltage is 1 V, its stan-
dard deviation is 0.01 V, the measured current is 1 mA and its standard deviation
is 10 pA!

3.10. We are generating standard normally distributed samples. A software is
used for this purpose which returns the values a or —a with 50-50% chance, and
a = 2. A normally distributed sample is created by generating N = 256 sam-
ples and summing them. Give the required operations to transform this random
variable so that it has standard normal distribution!

3.11. The weight of a specific coin is measured. The standard deviation of the
weight of various items from the same type of coin is assumed to be negligible
compared to the precision of the weight-measurement. The systematic error of
the measurements is zero, the random error is normally distributed with zero
mean. The measurements are done using N = 20 laboratory scales of the same
type. The estimate of the weight of the coin is calculated as the average of the
20 measurements. Determine the 99% confidence interval for the weight of the
coin in the following two cases:

a) the same coin is measured with each instrument, the mean of the measure-
ments is m; = 3 g and the estimated standard deviation is s; = 0.02 g,

b) a pack of K = 40 coins is measured with each instrument, the mean of
the measurements is myx = 120 g and the estimated standard deviation is
sg = 0.02 g!

3.12. The precision of clocks is tested in a clock factory. The daily systematic
error of the clocks is assumed to be a constant value. The clocks also have a
daily random error which is a normally distributed variable. The clock under
test was set to 12.00.00 at noon, then in the next days at noon the displayed
time was recorded and they have obtained

12.00.09 12.00.18 12.00.32 12.00.41 12.00.51 12.01.03 [h,min,sec]|.

Determine the 95% confidence interval for the daily systematic error of the clock!

3.13. We would like to determine the average height of the students studying
measurement technology. The first measurements are

Ny =10; x =178 cm; s = 5.2 cm,
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where N is the number of measurements, 7 is the average of the measurements,
and s is the empirical standard deviation.

a) Give the confidence interval for the average height of the students with
p = 90%!

b) How this confidence interval would change if the above mean and standard
deviation values were calculated using Ny = 326 measurements?

3.14. We measure current using a digital voltmeter and a normal resistor. The
current is determined as the ratio of the voltage and the resistance. The value
of the resistor is R = 100.123 £ 0.046 Q at Ty = 20 °C temperature. The mea-
surement is done at T' = 26 °C and the temperature coefficient of the resistance
is « =2-107° 1/°C. The voltage was measured five times and the results are

138.75 mV  138.78 mV  138.72 mV  138.69 mV 138.74 mV.

a) Determine the estimate and the type-A standard uncertainty of the volt-
age!

b) Determine the type-B standard uncertainty of the voltage if the range
of the voltmeter is 200 mV and the error of the measurement is h =
0.02% 0.v.+0.005% o.r, where “o.v.” stands for “of value” and “o.r.” stands
for “of range”. The error components include the quantization error as well.

c) Determine the best estimate of the voltage and resistance, and their stan-
dard uncertainties!

d) Determine the value of the measured current and its standard uncertainty
with k& = 2 extension factor! The number of digits in the result should
represent the accuracy of the result!

e) Estimate the probability of the confidence interval to which the above
result corresponds!

f) The error h of the voltmeter was assumed to be a random error. Why
do we consider this error to be random and how could this be shown
experimentally?



18

CHAPTER 3. ERROR CALCULATION II



Chapter 4

Measurement of voltage and
current

4.1. A noisy sinewave is measured. Determine the RMS value of the sine wave if
the measured RMS value (sine + noise) is U, = 6.1 V, and the signal-to-noise
ratio is SNR = 14.7 dB!

4.2. Determine the expected value (DC component), RMS value and fundamen-
tal frequency of the following signals:

a) w(t) = A?sin?(2m fot);
b) x(t) = 1-sin(37fot) — 0.9 - sin(3 fot);
c) x(t) = 12sin(2r fot) + 12sin(67 fol);
d) z(t) = 12| cos(2m fot) ;

(t)

e) z(t) = /2e7%7fot)

4.3. We are measuring a voltage having a nominal value of U = 160 V, but
unfortunately the range of our voltmeters is limited to 100 V. Therefore, two
moving-coil galvanometers of the same type are connected in series. Determine
the worst case error of the measurement if the accuracy class of each instrument
is 1 (that is, he,. = 1%)!

4.4. A digital voltmeter displays 0.0245 V in 2 V range. Estimate the error of
the measurement if the data sheet or user’s manual is not available!

4.5. The first five harmonic components of a periodic signal were measured. The
RMS values of the components in dBV (0 dB corresponds to 1 V) are:

0 —12 —24 -36 —48 [dB].
a) Determine the RMS value of each component in volts!
b) Determine the RMS value of the periodic signal!

19



20 CHAPTER 4. MEASUREMENT OF VOLTAGE AND CURRENT
c) Determine the total harmonic distortion (THD)!

4.6. A non-symmetric square wave is generated. One period of the signal is
T = 10 ms long, within one period its value is U, =5 V for T} =4 ms and 0 V
for T, = 6 ms.

a) Determine the mean value, RMS value, crest factor and form factor of the
signal!

b) The voltage is measured with an AC-coupled peak meter. What is the
displayed value?

4.7. We measure a 1 V square wave with an absolute mean meter, a peak meter
and a true RMS meter. What do these three voltmeters display?

4.8. We are measuring the input resistance of a circuit. The maximum allowed
input voltage of the circuit is 100 mV. First a voltage generator is connected to
the input and both the current and voltage are measured with two multimeters
of the same kind.

a) Determine the input resistance and the relative error of the measurement if
the measured voltage is U; = 87.65 mV in 200 mV range and the measured
current is /; = 01.72 pA in 200 pA range. The error of both measurement
is 0.05% of value and 0.002% of range.

The above measurement is not accurate enough, so a potentiometer is connected
in series between the generator and the input. The value of the potentiometer
is changed until the measured signal is Uy = U;/2 which means that the value
of the input resistance equals with the resistance of the potentiometer.

b) Determine the relative error of the measurement of the input resistance if
the voltage is measured with the same instrument and the tolerance of the
potentiometer is 0.1% !

4.9. We are measuring a non-symmetric square wave having the period time
T =500 ps. The signal is 3 V for 7 = 100 ps, while for the rest of the period it
is 0 V.

a) Determine the first 10 components of the Fourier series!

b) We measure this signal with a true RMS meter. What does the voltmeter
measure and display?

c) What does the true RMS meter display if the signal is filtered with a
fe = 5 kHz lowpass filter? (The filter can be considered ideal, all compo-
nents below f. get through without any change, while it rejects everything
above.)



Chapter 5

Measurement circuits

5.1. Two thermistors are used in a bridge circuit with 5 V DC voltage supply.
The value of the two conventional resistors is 100 2. The resistance of each
thermistor is 100 2 at 20 °C temperature. Plot the wiring diagram! Determine
the output voltage of the bridge if the resistance of the thermistors increase by
AR =1 due to the temperature change! Determine the output voltage and
the systematic measurement error if each thermistor is connected to the bridge
by wires both having 1 €2 resistance!

5.2. The division ratio of a compensated voltage divider is 1:10. The resistance of
the lower component is 100 k€2, and a 100 pF capacitor is connected in parallel.
Determine the resistance and capacitance of the upper part of the divider!

5.3. The two inputs of a balanced analog multiplier are two sine waves with
10 V peak value, with the same phase and same frequency. The transfer factor
of the multiplieris £ = 0.1 1/V (uout(t) = k tin1(f) wina(t)). Determine the mean
value, absolute mean value and RMS value of the output signal of the multiplier!

5.4. Two thermistors are used to measure the temperature with a measurement
bridge.

a) How should we construct the bridge if the interval to be measured is
0...50 °C and the resistance of the thermistors is 100 €2 at 25 °C temper-
ature?

b) Determine the supply current if the voltage measured across the thermis-
tors should be 1 V at 25 °C!

c¢) Determine the output voltage at 40 °C if the temperature coefficient of the
thermistor is o = 200 ppm/°C?

d) Determine the required voltage gain of the output amplifier stage if the
temperature interval to be measured should correspond to an output volt-
age interval of £10 V!

21



22 CHAPTER 5. MEASUREMENT CIRCUITS

5.5. The effect of a force on an iron console is measured using two strain gauge
resistors. One of the strain gauges elongates (its resistance increases), while
the other compresses (its resistance decreases). The strain gauges are used in
a measurement, bridge which has two other ordinary resistors. The bridge has
voltage supply.

a) Determine how the resistors should be placed in the bridge if the output
voltage has to be a linear function of the resistance change!

b) If the mechanical system is unloaded (no stress), the output voltage of the
bridge is 0 V. Determine the output voltage if the excitation is Ug = 10 V,
the nominal value of the resistors is R = 400 2, and the relative change in
the strain gauge resistances is 0.2%!

¢) Determine the worst case measurement error if the tolerance of each strain
gauge is 0.2%, and the tolerance of the conventional resistors is 0.5%!

5.6. The input signals of a balanced multiplier are two sine waves of the same
frequency and 10 V peak value. The phase of the second sine wave is shifted
by 90° compared to the first signal. The transfer factor of the multiplier is
k=0.11/V (tout(t) = ktin1(t) uin2(t)). Determine the mean value, absolute
mean value and RMS value of the signal at the output of the multiplier!

5.7. The two inputs of a balanced multiplier are two sine waves. The first sine
wave has a peak value of 10 V and a frequency of 50 Hz, while the second one
has a peak value of 1 V and a frequency of 100 Hz. The transfer factor of the
multiplier is £ = 0.1 1/V (tout(t) = k win1(f) wina(t)). Determine the mean value
and RMS value of the output of the multiplier!

5.8. An inverting amplifier is built which has a prescribed nominal gain of Ag =
—5. We are using R; = 1 k{2 and Ry = 5.1 kf) resistors.

a) Plot the wiring diagram and determine the systematic error of the gain!
To reduce the systematic error, Ry is connected in parallel with R = 270 k().
b) Determine the new systematic error of the gain!

R; and R, are resistors having 0.1% accuracy, while R3 is a resistor of 5%
tolerance.

c) Determine the relative error of the gain using worst case summation of the
error components!

5.9. A noninverting amplifier with a gain of Ag = 10 is designed. We are using
R; =1k and Ry = 9.1 k€2 resistors.

a) Plot the wiring diagram and determine the systematic error of the gain!

R, is substituted with the serial connection of Rz = 6.8 k{2 and R4 = 2.2 k() to
reduce the systematic error.
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b) Determine the new systematic error of the gain!
All resistors have a tolerance of 0.1%.
¢) Determine the relative error of the gain using worst case summation!

5.10. A differential amplifier with a prescribed symmetric gain of A,o = 100
is designed. The available parts are the following: an operational amplifier and
resistors with values Ry = 1.5 k2, Ry = 2.8 k2, and R3 = 150 k2, Ry = 280 k(2.

a) Plot the wiring diagram and indicate the resistors clearly!

b) Determine the common-mode rejection ratio in dB using worst case sum-
mation, if the tolerance of each resistor is 0.2%!

5.11. A symmetric triangular wave of 1 V peak value and 50 Hz frequency is
measured with a moving coil voltmeter. This is done by connecting the output of
an active one-way rectifier to the voltmeter. All the resistors used in the circuit
are of R = 1 k2 and have 1% tolerance. The opening voltage of the diode is
Uy = 0.6 V, the full-scale range of the voltmeter is 1 V and its accuracy class is
0.5 (that is, her. = 0.5%). The operational amplifier is assumed to be ideal.

a) Plot the wiring diagram and the waveform at the input of the voltmeter!
b) Determine the voltage displayed by the voltmeter!

c) Determine the relative error of the measurement using standard summa-
tion of the error components and k = 2 extension factor! Assume a uniform
distribution of the errors of the resistors and the voltmeter.

5.12. An instrumentation amplifier is constructed. Besides the 3 operational
amplifiers, 4 resistors of 25 k€2, 2 of 5 k{2 and 1 piece of 5.55 k() are available.

a) Plot the wiring diagram and place the resistors to obtain a symmetric gain
of 50!

b) Determine the relative systematic error of the symmetric gain!

¢) Determine the minimal value (worst case) of the common mode rejection
ratio if the tolerance of each resistor is 0.02%!
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Chapter 6

Time and frequency measurement

6.1. Determine the value of the highest frequency which can be measured using
a digital frequency meter if the measuring time is 10 ms and the largest number
that can be represented by the counter is 10° !

6.2. Phase-shift is measured based on the Lissajous-plot. The oscilloscope dis-
plays an ellipse which has a vertical envelope of « = 3 ¢m and a vertical section
of b = 2.9, the reading uncertainty is h = 2%.

a) Determine the phase-shift if the major axis of the ellipse is (1) in the 1st
and 3rd; (2) in the 2nd and 4th quarter!

b) Determine the absolute error of the phase measurement!

6.3. The frequency of a signal of a noiseless sine-wave generator is measured
using a counter. The nominal frequency is f, = 100 kHz and the clock cycle
time of the counter is fy = 10 MHz.

a) Determine the relative error of the measurement of the time period if only
one period of the signal is measured!

b) The measurement error can be decreased by measuring more periods of
the signal (average time period measurement). How many periods have to
be averaged to decrease the relative error under 1074?

c) If we want to decrease the relative error even more, the signal can not
be assumed noiseless. In this case, measurements have to be averaged.
Determine the number of measurements to be averaged to decrease the
relative error until 107!

d) How many measurements have to be averaged to decrease the relative
error to the value of 107* if we can only measure single periods, as in
question a)? Determine the distribution of the averaged and non-averaged
measurement results!

6.4. The frequency of a periodic signal of 1325 Hz nominal value is measured
using a counter-based period time meter. The measurement time is ¢, = 0.1

25



26 CHAPTER 6. TIME AND FREQUENCY MEASUREMENT

sec. Determine the relative error of the measurement if the clock frequency is 10
MHz and the clock has no error!

6.5. The clock cycle of a programmable frequency and period time meter is
fo = 10" Hz with 107° relative error. A noiseless sine-wave of f, = 500 kHz is
measured.

a) Time period or frequency measurement should be used if the goal is the
highest measurement accuracy during a given amount of ¢,, measurement
time?

b) Determine the relative error of the measurement using worst case summa-
tion of the error components, if the measurement time is ¢,, = 200 us!

c) Determine the error if the measurement time is ¢/, = 20 ms! What kind of
additional errors should be considered in this case?

6.6. We are using a two-input counter (A and B). The device measures period
and frequency with a single input A, and time delay if both inputs are used.
Even if the device displays frequency, period time is measured internally, and an
arithmetic unit calculates the frequency. The clock cycle of the counter is fy =
50 MHz with h = 3 - 1075 tolerance. A pure sine-wave of f, = 1.2 kHz nominal
frequency is measured which is connected to the input of a linear system and to
input A of the instrument. The phase shift at the output of the system is ¢ = 8°
which should be measured as accurately as possible. The output is connected to
input B and time interval is measured. The phase shift is determined based on
the frequency and time delay measurements, the measurement time is ¢, = 0.1
in both cases.

a) Determine the relative error of the frequency measurement!

b) Determine the absolute error of the measured phase shift if the measure-
ment of time delay is started by the rising edge of the signal at input A
and stopped by the rising edge of the signal at input B! During the mea-
surement time the time delay is measured in each period of the signal and
these values are averaged by the arithmetic unit.

c¢) What do you think, can the precision of the measurement of phase shift
be increased by triggering the time interval measurement with the falling
edge of the signal on input A instead of the rising edge?



Chapter 7

Impedance and power

measurement
7.1.
L, Ry
®
—
R3 Ry C

4
N
U,

The so-called Hay-bridge in the above figure measures the equivalent parallel
circuit model (L., G,) of an inductance. The adjustable components are Ry
and 04, while R2 = Rg =1 kQ.

a) Determine the condition of balance and the values of L, and G, if Ry =
100 © and Cy = 100 nF at w = 1000 1/s!

b) At w’ = 2000 1/s the bridge is balanced for R = 25 2 and C} = 100 nF. Is
the parallel RL circuit a good model of the inductance? If not, determine
a more realistic model!

7.2. We measure the equivalent series RL circuit of an impedance. Determine the
quality factor (@), loss factor (tgd) and dissipation factor (D) of the impedance!
Determine the parallel RL, series RC' and parallel RC' equivalent circuits!

7.3. Plot the wiring diagram for connecting a resistor to an instrument which
supports four-wire resistance measurement! Determine the voltage on each mea-
suring lead! The resistor under test is R, = 1 € and the resistance of each
measuring lead is R; = 100 m2 (this contains the resistance of the plug as well),
and the measuring current is / = 100 mA!

27



28 CHAPTER 7. IMPEDANCE AND POWER MEASUREMENT

7.4. We measure an R = 10 €2 resistor with four-wire measurement. The measur-
ing frequency is 100 Hz, the resistance of each measuring lead is 0.1 §2. Determine
the worst-case measurement error of the resistance measurement if the tolerance
of the current- and voltage measurement is 0.5%! The ammeter and voltmeter
can be considered ideal (R, = oo and R, = 0).

7.5. We measure an R = 10 (Q resistor with three-wire measurement. The mea-
suring frequency is 100 Hz, the resistance of each measuring lead is 0.1 2. De-
termine the worst-case measurement error of the resistance measurement if the
tolerance of the current- and voltage measurement is 0.5%! The ammeter and
voltmeter can be considered ideal (R, = oo and R, = 0).

7.6. We measure an R = 10 2 resistor with five-wire measurement. The measur-
ing frequency is 100 Hz, the resistance of each measuring lead is 0.1 §2. Determine
the worst-case measurement error of the resistance measurement if the tolerance
of the current- and voltage measurement is 0.5%! The ammeter and voltmeter
can be considered ideal (R, = oo and R, = 0).

7.7. We are constructing a model of a magnetic-core inductance. First we mea-
sure the equivalent series circuit with an impedance meter at 50 Hz frequency
and we obtain R, = 0.5395 Q and L., = 20 mH. Next, the DC resistance of
the coil is measured with an ohmmeter, and we read Ry, = 0.5 2. Determine
an appropriate three parameter model for the magnetic-core inductance which
represents the inductance, the core losses, and the winding (or copper) losses!

7.8. We measure an R, = 100 2 resistor of a circuit using a three-wire
impedance meter. Both ends of the resistor are connected to the ground with
R, = 1 k resistors. The voltmeter is ideal, (i.e., R, = o0), but the input
resistance of the ammeter is R4 = 1 €.

a) Calculate the relative error of the measurement of R,!

b) Determine the error caused solely by the R, resistors, despite the three-
wire measurement!

7.9. We measure power with the 3-voltmeter method. The supply voltage is
Ugs = 10 V and the value of the reference resistor is R = 100 2. The voltage
drops on the reference resistor and on the impedance under test are both Uy =
Uz =58V.

a) Determine the dissipated active power and the value of cos ¢!

b) Determine the relative error of the measurement using k = 2 extension
factor if the accuracy class of all voltmeters is 0.5 (ho,. = 0.5%) and the
measurement range is Upa.x = 10 V. The errors are uniformly distributed
and the error of the reference resistor can be neglected!

c) Determine whether the load is inductive or capacitive!
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7.10. We measure impedance with the 3-voltmeter method. The supply voltage
is U, = 10.000 V, the value of the reference resistor is R = 100 €2, and the
voltage drops on the reference resistor and the impedance under test are Uy =
07.053 V and U, = 06.877 V, respectively.

a) Determine the absolute value and phase of the impedance!

b) The uncertainty of the voltmeter is unknown, but its display is digital.
In 20 V range the voltmeters display exactly the same numbers as given
above, that is, U, = 10.000 V, Uy = 07.053 V, and U, = 06.877 V. The
uncertainty of the reference resistance is 0.01%. Determine the worst case
relative error of the absolute value of the impedance based on the available
information!

¢) Determine whether the absolute value or the phase of the impedance can
be measured more precisely!

7.11.
R, L, R,
£ {1

N R,
gl
L 1
P
C,y
=)
N\
Ug

The so-called Maxwell-Wien bridge in the above figure measures the equivalent
series model (L., R,) of an inductance. The adjustable elements of the bridge
are R, and Cy, and Ry = R3 = 100 2.

a) Determine the condition of balance and the value of L, and R,, if at
f =159.1 Hz frequency Ry = 10 k) and Cy = 500 nF'!

b) Determine the quality factor of the inductance!

¢) Determine the measurement error of R, if the loss factor of C, is Dy =
0.002 at the measuring frequency of f = 159.1 Hz!
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7.12.

[ 1 R,
Rs _i

The so-called Schering bridge in the above figure measures the equivalent series
model (C,, R,) of a capacitor. The adjustable elements are R3 and Cj, and
Ry =10k, Cy =10 nF.

a) Determine the condition of balance and the value of C, and R,, if at
w=1000 1/s R3 =909 Q and C; = 1.11 nF!

b) Determine the loss factor of the capacitor! (tgd)!
c) How can this bridge be used to perform an insulation test?

7.13. We measure the capacitance of a capacitor mounted in a metal box. The
nominal value of the capacitor is 2 nF.

a) Between each wire of the capacitor and the metal box there is a 100 pF
stray capacitance. Determine the relative error of the measurement due to
the stray capacitances, when the two wire measurement method is used!

b) What kind of measurement layout should be used if we wish to cancel the
above error?

¢) How could we measure the value of the stray capacitances?



Chapter 8

AD- and DA-converters

8.1. The reference voltage of a b = 12 bit ADC is U, = 1 V with h, = +0.05%
error. We measure a DC voltage with nominal value U, = 0.15 V by the ADC.
Determine the relative and absolute errors of the measurement in the worst case!

8.2. In Switzerland alternate voltage of 16 2/3 Hz is used for heavy rail traction.
One of the instruments of an electric locomotive contains a dual-slope ADC. How
should we choose the integration time so that the error caused by the traction
current is eliminated? Do we need to change the integration time if we want to
use the instrument in Hungary, where the network frequency is 50 Hz?

8.3. A dual slope ADC converts voltage in the [0,1] V range. The reference
voltage is U, =1 V.

a) Determine the maximum allowed relative error of the reference voltage if
the ADC has 20 bits resolution! The error of time measurement can be
neglected.

b) Determine the integration time if the effect of sinusoidal disturbances with
frequencies 50 Hz and 60 Hz should be suppressed!

¢) Determine the maximum allowed error of the time measurement to achieve
if the error of the integration time can be neglected!

8.4. A dual-slope ADC has a reference voltage U, = 2 V with h, = £80 ppm
tolerance. Inside the converter the time is measured by a fy = 20 MHz crystal
oscillator. The error of the oscillator is negligible. The converter first integrates
the input signal for 7" = 20 ms, which is an integer multiple of the clock cy-
cle provided by the crystal oscillator. Then the reference voltage is integrated
and the time is measured by counting the full periods of the clock cycle. The
measured voltage is then calculated by an arithmetic unit.

a) Determine the resolution of the ADC in bits!

b) Determine the accuracy (useful number of bits) of the converter!
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Part 11

Solutions
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Chapter 1

Basic problems

1.1. The distance taken by the car is the time-integral of the velocity function
v(t), written as

s = /OTk F(t)dt,

where k is the coefficient which synchronizes the dimensions. Considering that
f(t) is a semicircle, we can write

T T
(3)=3
According to the figure
T
k f (5) = Umax;
therefore 5
v
k — max
T

Because f(t) is a semicircle, the taken distance is

1.2. Although the below expressions are given for ergodic signals, the validity
of the units is general. Note that in terms of dimensions, integration means
multiplication with the integration variable.

a)

1 /T
P = lim T/ 22(t)dt = [P]=1V?
0

T—o00
b)

X(f) = /O:O 2(t)e 2t = [X(f)] =1 Vs = 1 V/Hy;

34
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c)
_mﬂ:n@&llfaoar+ﬂﬁ:¢[R@n:1v%
d)
S(f)=F{R(1)} = [S(f)]=1V?s=1V?/Hg
e)
E(f)=|X(HI* = [E(f)] =1V?*=1V>s/Hz;
f)
Xeg =VP = [X] =1V;
g)
Xpus = VP = [Xpus] = 1V;
h)
0 =E{(x —p)’} = E{2*} —p* =P — > = [0 =1V
i)
V=F{2?}=P = [¥]=1V%
j)

1 /7
p = lim —/ z(t)dt = [p)=1V;
T Jo

T—o00

k) based on the solution of h):

o] =1V.

1.3. The time domain expression of the output is

Mﬂ:/mhﬁﬂ@—Tﬂr

—00

Then we write the above expression in terms of the units of the variables:

Which means that the unit of the impulse response is

bl _ A _
2]~ Vs

) =

» | W
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1.4. The complex trigonometric expression of the signal is

A, .
x(t) = Acos2rft+ )= o) (e](27rft+<p) n e’](%f”v’)) _

_ éejgoej%rft + ée—jgoe—j%rft.

The general form of the complex Fourier series is
o

z(t) =Y C,,ei2mfotn.
—0oQ

where fj is the fundamental frequency of the signal (the time periodis T = 1/ fy).
Since we have only one frequency component in z(t) = Acos(2w ft + ), that
will be the fundamental, that is, fy = f.

We have to set C,, so that the complex Fourier series equals the expression
of x(t). We see that we need two complex exponentails, meaning that only the
C} and C_; values will be nonzero, since f, = f:

Aj2ei?,  iftn=1
Cn=1% Af2e77¢ ifn=-1
0 otherwise

1.5. The fundamental frequency is the largest common divider of the frequencies
of the components. The components have the frequency of f, and 2.5f,. (We
have to divide the angular frequencies given in the cosine functions by 27 to
obtain the frequencies, that is 27 f,/(27) and 57 f,/(27).) Their largest common
divider is fo = 0.5f,, and the time period is T = 1/ fy = 2/ f.

By computing the complex form of x(¢) using Euler’s formula similarly to
the problem 1.5 (here ¢ = 0), we obtain

Al A Ay Ay
.Z'(t) — 71€J27rfat 4 7167]27rfat + ?2€J57rfat + ?2635771”(11‘/.

which we again make equal to the general form of the complex Fourier series
0 .
z(t) =Y Cpel?mom,
—00

The component with frequency f, is the second harmonic (n = 2) of the Fourier
series since f, = 2fy, and the component having the frequency 2.5f, is fifth
(n = 5), since 2.5f, = 5fy. Thus, the coefficients of the complex Fourier series

are:
Ay/2, ifn=2-2
Co=14 Ay/2, ifn=5-5 .

0 otherwise
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1.6. By using trigonometric identities we get

AyA,

5 {cos[27(fo — f1)t] — cos2n(fa + f1)t]},

w(t)

Therefore the frequencies of the two components are f, = 0.6f; and f, = 2.6f;.
The fundamental frequency is the largest common divider of the frequency com-
ponents of the signal, which is fy = 0.2f; in this case. The period time is
T=1/fo=5/f.

Since we were able to find the fundamental frequency, the signal is periodic.
This is always the case if the frequencies have a rational ratio. On the other
hand, for example, a signal having the components with frequencies f; and 7 f;
is not periodic.
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Chapter 2

Error calculation I.

2.1.

r = 2000 m =+ 5% = (2000 + 10) m = & + Az — & = 2000 m, Az = 10 m,
t = 2000s+0.1% = (20004 2) s = {4+ At — t = 2000 s, At =2s.

The estimate of the velocity is

b= % —1 ?
and the worst case error is
Av e |9 nq| 4 @At> = lA;c‘ + —ﬁAt} —6-10% =, (2.1)
or ot t t2 S

So the result for the velocity can be written as
v=(1+6-107%) 2 =1 2 £ 0.6%.
s s

The relative value of the error can be calculated directly by dividing (1) with
0 = Z/hatt:
oA

A
v |z
Remark. From this point the approximation signal = will be replaced with the
equal sign. In addition, the hat sign = will be left behind also. These signs will be
used only in the case when the indistinguishability of the actual and estimated

values would be confusing.

At
+ ‘_ | = (0.5 +0.1)% = 0.6%.

2.2. The nominal value and error of each resistance is:
R = Room =1k, AR, = +hR; = AR om = £hRyom = £10 €,

where h is the tolerance (relative error) of the resistors. The total resistance is

100
R =>_ R; = 100Rom = 100 k.
i=1
We can solve the problem in two ways: we can either sum the absolute errors and
then convert to relative error (I), or we can sum the relative error components
directly (II).
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I. The change of the total resistance for the change in the ith resistor’s value
is

OR
ARe . = —eARZ == ARZ
T
The total error for case (a) is
X AR. 100AR AR
AR, = S |AR,|; = 100ARym, —vt = nom _ Sltwom _ g qoz
; | | R, 100 Rnom Riom %

The total error for case (b) is

100

AR, = > (AR.)? = \JI00ARZ,, = 10AR,om,

i=1
AR, 10A Ryom AR

= =0.1 o —0.1h = 0.1%.
Re ]-OORnom Rnom %

II. The relative change of the total resistance caused by the relative change
of the ¢th resistor’s value is
AR OR. R; AR; R; R 1
¢l = e e N Ly N
Re 7 aRz Re Rz

R, 100Ruem 100"

The total error for case (a) is

ARe 100

R, :;

AR,
R,

=h =1%.

7

The total error for case (b) is:

A 100 A 2
RRe _S ( RRG) — V100- 10972 = 0.1h = 0.1%.

=1 [

The two ways (I) and (II) lead to the same result as expected.
2.3.

a) The voltage division ratio is

R 1
- — — =002
TR+ R, 50

b) The error can be determined by first differentiating the expression above
to obtain the sensitivities

Oa — Ry oa Ry

M OR, T (Rit R)? ™ T OR,  (Ri+ Ro)?
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The error components of the division ratio a coming from the errors of R;

and R, are
& . CRlRl ARl . —RQ Rl + R2R ARl . —R1 ARl
alp,  a R (Ri+R)?> Ry, 'R Ri+Ry R’
and
& . CR2R2 ARQ . Rl Rl + R2R ARQ . R1 ARQ
alp, a R (Ri+R)?> Ry Ry Ri+Ry Ry

Since the worst case error has to be computed, the above components are
summed with absolute value:

Aa_|Aa| |, |Aa

a a a

Ry (ARl AR,

A A Rg) ppm

R Ry

c) 1) For the manufacturer of the voltage divider, this is a random error.
The tolerance means that the error in each voltage divider may have
any value within known bounds. So the error of the ratio will be
random and it is within the bounds [—196 ppm, 196 ppm | calculated
above using the worst case summation.

2) For the user this is a systematic error. Our divider is made of resis-
tances with fixed values, so the deviation from the nominal value of
the ratio is always the same and can be taken into account during
measurements (that is, the voltage divider can be calibrated).

2.4. The solution is exactly the same as that of problem 2.3, where we had
100 resistors instead of 4. Here we solve the problem using absolute errors. The
absolute errors of the resistors are

which are 0.1 ohm for all the resistors. The net resistance is
Re:R1+R2+R3—|—R4.

The sensitivities are

B oR, B

=R

thus, the total absolute error of R, with probabilistic summation is

C; ]_,

AR, = \JAR} + ARZ + AR} + AR} = 0.2 ),

which is then converted to relative error:

AR,

R = 0.018%.
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2.5. The inaccuracy in the value of the total resistance can be traced back to
the errors in each value of the used resistors, and in addition, a systematic error,
since the total resistance of the parallel connection is:

1
Re - —4 1 == 90009 Q
i=1 R,
instead of the required R, = 900 2 nominal value, so the realization has a

hsyst = 0.01%

systematic error. The random error is computed by first taking the derivative of
R, to obtain the sensitivities:

IR, 1 1 R2

Ci = = — _— = —

OR; OV R R
e

I
j=1

The relative error components are

AR, R, AR, R.AR;
Re R; Re Rz Rz Rz
and thus the worst case relative random error is
1 AR, 4 IR, AR,
Rrand = = — = (0.036%.
¢ ; R |p, 2 R, R, %

To determine the worst case total error, the random and systematic errors have
to be summed:

AR,
R,

Note that since we know the sign of the systematic error, this leads to an asym-
metric error interval

= Niotal = hsyst * Mpand = 0.01% 4+ 0.036%.

htotal - [—0026%, 0046%]

If we want to express the error with a single number, we choose the bound with
the larger absolute value, that is

|Piotal] < 0.046%.

2.6. First we rewrite the formula of the measured volume velocity as

4 d
Q= E\/%755/2 — Kdl 52,

Since this is a product of variables at different powers, the resulting relative
errors can be simply computed by scaling the input errors with the corresponding
powers:

Ad

AQp _  Ad
d )

o =1

d
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AQp A
Q |, I’
5| _5as
Ql, 2s

To determine the most probable value of the error, the components have to be
summed quadratically:

AQ | [(Ad\® (AN 5As\2
U—\J<7> +<T) +<§?) = T7.63%.

2.7. Using the given expressions we obtain

d= % =21RfcA= Kf'R". (2.2)

a) The worst case error can be computed simply noticing that Eq. (2.2) is
the product of variables at the first power, thus we have

+ |—| = 2%.

ad_ g, \AR
d | f R

b) The capacitance C, which connects in parallel with C'is added to the value
of the capacitor, thus, we meausre C,,, = C' + C),. This causes a systematic
error, which has a known value so it can be compensated:

1
- QWfR_Cp'

C=Cn-0C,

Accordingly, Eq. (2.2) changes in the following way:

_eA 27RfeA

d = s
C ~ 1-C,2nRf

(2.3)

Since the function has changed, the effects of the frequency measurement
error and of the resistor uncertainty have to be recalculated. First the
effect of the frequency error is evaluated (the details of the derivation are

omitted here):
Ad 1 Af

d f_ 1—-C2nRf f°
Using the above expression the actual value of the error can be deter-
mined. However, the expression contains an intermediate parameter (the
frequency) which is the function of the variable we want to measure. The
value of f can be expressed from (2.3), so the expression of the error can

be simplified as:

Ad; A+ CdAf  C+C,Af
d A f C [

(2.4)
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It can be seen that when C' is small compared to C, (d is large), the error
is much larger than for case a), where it was simply Af/f.

Since R in Eq. (2.3) is the same position as f, the derivations for R would
result in an expression having the same form as Eq. (2.4). As a result,
AR/R has to be multiplied with the same parameter in the total error, so
the worst case error is:

Ad  C+C,[Af AR
— =5 lf+R1_4.o3%.

2.8. The sensitivities are

O
YT ot 2sina \ £

ov l 1
Co=—= — = ———— —
T ot 2sina \12)°

and thus the error components become

Av . tl Atl . tz Atl
voly Yot -t
Av ta Aty 1y Al
v t2_2U ty  ty—t; by

a) The error of the velocity measurement in the worst case is

av
v

ta Aty
to—1t1 4

t1 Aty
to —t1 1o

Since t; ~ t9, and we can assume that the two time measurements have
the same accuracy Aty /t; = Aty/ta = At/t, we can write

av
v

to
to — 1

At
=

(2.5)

By rearranging the original expression of v we obtain

to—t;  v2sina
toty, 1

where we substitute ¢; = [/c in the numerator:

to — 1t . v2sina

to(l/c) [
giving

~Y

lo—t v, .
& - 2sina = —.
to c 300
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Now we can get back to the expression of velocity error Eq. (2.5):

Av ty | At At
— = — = 600—.
v tg — tl t t
Solving this for At/t gives
At 1 Aw
— =~ =833-10"".
t 600 v

b) For the systematic error, the error components already computed in b)
have to be summed with sign (not by absolute value):

Av tz Atl tl Atz tl — tQ

syst t2 - tl t2 syst B t2 - tl

hsyst = _hsyst = 1%

U lsyst _t2 -t U

For the random error we have already developed the expression Eq. (2.5),
now with a given h.,nq = 50 ppm error in time measurement we get

Av tg
v tg — U

=2 hrand = 3%

rand

The total error is the sum of the systematic and random error components:
Av  Av Av

v (% v

+

syst

= [-2%, 4%],
rand
which is again an asymmetric error interval. To express the error with a
single number, we may write

Av

v

< 4%.

2.9.
a) The pressure at height [; is

_pogh

P1 :p(l1> = po€ Po
which leads to

D1 — 209l
— =€ PO

Do

Y

pogli
Inp; —Inpy = — .
Po

Thus,
h = &(lnpo —Inpy)
Pog
and similarly for [,
ly = &(lnpo —Inp,)
Pog
So the height of the building is

l=1y— 1, = p—o(lnp1 — Inpsy) = 80.22 m.
Pog
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b) The sensitivities are

ol Po 1
== ——
YT pogm

CO=7F—=—|—].
dp2  pog \ P2

The components of the error are thus

Al piApr 1 Apy
J— e Cl_ f—

[ n [ p Inp; —Inpy py
All - pApy 1 Ap,
—| == = — .

l P2 [ po Inp; —Inpy po

The error of the height measurement is:

ﬁ _ 1 (Apl?APQ

[ _lnpl_lnp2 y4! . D2

) =c(e; ? e),

where at the place of the question mark the summation has to be done
with respect to the chosen method (e.g., worst case or systematic).

To evaluate the error components first we study the case when two inde-
pendent instruments are used:
_ DPoft 1 _ Doft,11

€1 = +¢€1, e =
b1 P2

+ 11

where pog 1 and pog 11 are the offset errors, e; and e, are the scaling errors
using instrument I and II, respectively. Since the errors are independent
(we use two different barometers), they have to be summed by the prob-
abilistic or by the worst case method. We choose worst case summation
since we have only a few (two) error components:

Al

/ = C(|61| + |€2|) ~ 60%

On the other hand, if the same instrument is used in the two measurements:

poff,l poff,l
= + €1, €2 =

D1 b2

€1 + €1.

Using index I refers to the use of the same instrument. The errors are not
independent since we are using the same barometer. Thus, they have to
be summed with their signs:

Al Doft 1 Doft 1
—:C|€1—62|:C — ter—

l b1 P2

— &1l = 02%

The above results lead to the following consequences:
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— Since the pressure difference is small, ¢ has a large value, so even a
small error in the measurement of the pressure results in a high error
in the measurement of the height.

— When using the same instrument, the scaling errors ¢; cancel out
completely, since the expression of the height contains the ratio of
the pressures. On the other hand, the offset errors pog; of the two
measurements do not completely cancel to zero, but still the effect
of offset is significantly reduced. In summary, since the measurement
errors are systematic, it is a better choice to use a single barometer
for both pressure measurements.

Further remarks. The given error components correspond to the specifica-
tion of the instrument, which are the same for every instrument of the same
type. Since the value of the actual offset error is not known (can be anywhere
within the given specification), corrections can not be applied to the result of the
measurement. The actual scaling error can also be anywhere within the given
interval (e.g. £0.1%), so this cannot be corrected either.
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Chapter 3

Error calculation 1I.

3.1. The probability density function is the following:
f(x) 0.5

=z

The expected value is

E{x}:/_o:oxf(x)dx:/l 0.5 dv = lxﬂl—l:o.

The standard deviation can be calculated using Steiner’s theorem as
oy = B{2’} — E*{z} = B{a?},
since the expected value is 0. The variance is

3

B{a*} = /_O:O a? f(z)de = /_11 22 0.5 do = l%rl -

so the standard deviation becomes

1
=\ = 0.5774.
-

3.2. The probability density function is the following:

f(z)
0.5

49
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The expected value can be read from the figure, since it is always the middle of
the curve for symmetric distributions. It can also be calculated by the following
integral:

2 4
E{:p}:/_ xf(:p)d:p:/:x 0.5 d:p—i—/;x 0.5 dzx = l%ﬂ + [%2] = 2.5.
e 1

3

The standard deviation can be determined using Steiner’s theorem as

0, = \/E{a?} — B2{z} = V733 - 6.25 = 1.04,

since

) 2 4 3 23 4
E{$2} = / fo(x)dx = / 22 0.5 dx —I—/ 22 05dr=|=—| +|=| =17.33.
—00 1 3 6 1 6 5

The interval in which the measurements can be found with 90% probability can
be read from the figure: it is an interval in which the integral is 0.9. Any interval
having the width d = 2.8 is appropriate within the interval [1,4]. Thus, the
bounds of the interval are [1 + z, 3.8 4+ z], where 0 < z < 0.2.

3.3. Since the distribution is normal, the 99.7% confidence level corresponds to
+30. This means that

1
— Z —0.1667.
775

3.4. The expected value and standard deviation of one blueberry is

4.5+5.5 5 5.5 —4.5 1
[ — s o1 = = .
ME TR T R U

The standard deviation was determined by assuming uniform distribution. The
expected value, variance and standard deviation of the weight of N = 120 blue-
berries are

20 = Ny = 600 g
1
07y = No? = 12075 g? =10 g*

0120 = \/Nal = 3.162 g.

Since we need to give a confidence interval with p = 1 —b = 0.98 = 98%
probability, then, assuming a symmetric interval, b/2 =1% is the probability that
the random variable is higher than the upper bound p190 + Am, and b/2 =1% is
the probability that it is smaller than the lower bound p159 — Am. Since we were
summing 120 independent random variables with uniform distribution, we can
assume that the sum has a normal distribution. Therefore we need the 2,5 = 20,01
value of a standard normal distribution which corresponds to 1% probability (the
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area between 2/, and +o00 is b/2 = 0.01). However, the normal distribution table
in the Appendix on page 103 lists probability values between 0 and 22, so we
actually look for a probability value of 1/2 —b/2 = 0.5 — 0.01 = 0.49 in the
table. This value is

20.01 — 2.33.

Therefore the width of the symmetric confidence interval is
Am = 01902001 = 7.3675 g.
The confidence interval becomes:
P 120 — Am < m < 199 + Am] = 98%,

P[592.63 g < m < 607.37 g] = 98%,

meaning that 98% of the cans have a weight between 592.63 ¢ and 607.37 g,
while only 1% are below, and 1% are above.

3.5. The expected value and variance of the random variable x; which is uni-
formly distributed in [0, a], a = 1:

a2

a
=5 =05, o? = 5 = 08333,
where (i is the expected value and oy is the standard deviation. Summing N =
48 independent samples:

248
I —

Since we are summing a large number of independent uniformly distributed ran-
dom variables, we can assume that the resulting distribution is normal. However,
it is not a standard normal distribution, since its mean is not 0, and its standard
deviation is not 1. To obtain standard normal distribution, the above variable
has to be standardized. First, we subtract the expected value puy and by this we
shift the probability density function (PDF) to the origin. Then we divide by oy
which scales the PDF to have a unity standard deviation. Thus, the following
operations are required:
First we sum the samples

N
TN =)
1
and then apply the operation

.I'N—,LLN:ZL‘N—24
ON 2

to get a standard normally distributed variable.
Remark I. The probability density function is a mathematical abstraction.
In reality we have samples and the distribution of these samples converges to
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the theoretical PDF. If we want to change the distribution of a given set of
samples, then we can only apply the transformation on the samples, and not on
the (only theoretically existing) PDF. For example, if we want to shift the PDF
of a variable to the left by 5, we have to subtract 5 from the random variable.

Remark II. Since the pseudo-random generator functions (e.g., rand function
in C) in computers do indeed generate a uniformly distributed random number,
this is a practical way to go if you need a normally distributed variable.

3.6. The measured data is a constant value disturbed by a normally distributed
noise with zero mean. This means that the constant value is actually the expected
value of the measured data, and the best estimate for this constant is the average.
Therefore, we will construct a confidence interval for the expected value.

The estimate of the expected value and the empirical standard deviation can
be calculated by the following formulas:

o= ivj 14.5738 ! §< 1)? = 4.7527
= — T; = . s S = _ T; — = 4. .
NiH N—-1:35 g
where i is the estimate of the expected value, s is the empirical standard devi-
ation, and N = 6 is the number of samples. The expected value and standard
deviation of the average [ is:
s

E{ﬂ}::ua Jﬂ:\/—ﬁ

since averaging decreases the standard deviation by 1/v/N. The standard devi-
ation was estimated using the samples, therefore we have to use the Student-t
distribution to determine the confidence level.

Since we want to determine a symmetric interval with 1 — b = 90% proba-
bility, we need the value ty_1 /2 of the N —1 =5 degrees of freedom Student-t
variable which the random variable can only exceed with b/2 probability (the
area between ty_j/2 and +oo is b/2 = 0.05) From the table on page 104 we
obtain:

t(5,0.05) = 2.015.

So the width of the symmetric confidence interval is
S
AL = ot = —t = 3.9096.
w 20(5,0.05) VN (5,0.05)

and the confidence interval is

S S

Plp \/Nt(5’0'05) <p<pr+ N

t(570.05) — 90%
After substitution:
P [10.6642 < p < 18.4835] = 90%,

meaning that the constant value we are measuring is between 10.6642 and
18.4835 with 90% probability.
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Remark. If the question were for an interval within the noisy data are with
90% probability, then we would have to construct the confidence interval for the
data z; and not for the expected value ji. In that case we don’t divide s with
VN and thus Az = st(5,0.05)- So the confidence interval is:

P {ﬂ — S li005 <p<fit+s t(5,0.05)} = 90%.
After substitution we get
P[4.9971 < p < 24.1505] = 90%,

meaning that 90% of the random measured data are between 4.9971 and 24.1505.
(We note that for N = 6 this is only true approximately, but for larger N the
above procedure can be used to give a confidence interval for the data x; with
good accuracy.)

3.7. The 95.5% confidence level corresponds to a 20 interval, therefore

A A A
:i:Oﬁcm, 02:£:0.5cm, agzﬂzo.%cm.

a= 2 2

The expected value and standard deviation of the total length of the three tables
are

pe = p1+ pi2+ pg =300 cm,

o2 = oi+o5+ 05— 0,=0.75cm.

Since the length of each table is a normally distributed random variable, the total
length is also such a quantity. We have to determine the value that the total
length of the three tables does not exceed with 99.7% probability. This condition
limits only the maximal length of the three tables, and not the minimum, thus
a one-side probability interval should be computed:

P [l < e + 052(0_003)} = 99.7%.

The table of the standard normal distribution on page 103 gives the values for the
positive side of the density function, thus, we are looking for 0.5—0.003 = 0.497,
which is:

Z(0_003) ~ 2.74.

As a result, the total length of the three tables is less than
e + 0cZ(0.003) = 302 cm

with 99.7% probability.

3.8. The errors have to be converted to standard uncertainties (standard devi-
ations) by dividing with the extension factor z corresponding to the confidence
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level. Since the confidence level 1 — b is 90%, and the interval is symmetric, we
use b/2 = 0.05. From the table, 2/, = 1.64, and we obtain

A At
u(x):ax:—xzﬁl m, u(t)=o0=——=122s.
20.05 20.05

The velocity and the sensitivities are

T ov 1 ov T
v = — Cl = — = — Co—= — — ——.
Yot P ot 12

The total standard uncertainty becomes

u(v) = 0, = \/(eru(@))? + (cou(t))? = 0.0031 m/s.
Thus, Av = ku(v) = 0.0062 m/s. The velocity given in a standardized form is

v = 1.0000(62) m/s.

3.9. The value of the standard uncertainties equal to the standard deviations:
uw(U) = oy, u(l)=oy.

The formulas of the resistance and the sensitivities are

p. U _OR_1 ~ OR_ U
T YTouT T YT or T I

So the value of the resistance and its standard uncertainty are

R=1kQ, u(R)=o0g=/(cou(U))? + (cru(I))? = 0.0141 k2.

3.10. The solution is similar to the problem of 3.5. The expected value of the
given discrete distribution is obtained by summing the outcomes weighted by
the probabilities:

w1 = aP{a} + —aP{-a}=2-05-2-0.5=0,
and the variance is
0} = B{(x — m)*} = (a — m)*P{a} + (—a — in)*P{—a} = a® = 4,

and thus the standard deviation is 07 = 2. We sum N independent samples to
get xy, for which we have

pn =0, oz = Noj = 1024.
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Thus, the sum x has zero mean, but the standard deviation is not unity, but
on = 32. Therefore, the sum has to be divided by the standard deviation

TN TN
ON 32

to get standard normal distribution.

3.11. Student-t distribution has to be used since no a priori knowledge was
available about the expected value and standard deviation, but it had to be
estimated from the measured data.

a) The confidence interval has to determined for the average of the mea-
surements, since we want an estimate for the nominal value of the coin.
Therefore, the estimated standard deviation s; has to be divided by the
square root of the number of samples. The confidence interval becomes

Pml—it]\flbg <m<m1—i—8—tN1b2 =1-9b
\/N( /2) \/N( /2) )

That is
P[2.9872 g < m < 3.0128 g] = 99%.

b) For the second case, let’s first write the confidence interval for the pack of
K =40 coins:
P K 4 <Km< + K 1-0b
Mg — —— m<m — =1-0.
K \/N (N—-1,b/2) K \/N (N—-1,b/2)
This can be transformed into the confidence interval of one coin by dividing
all the sides of the inequality by K:

P[@ K t(N 1,b/2) <m< mK+ oK ] 1-— b,

K KN K K\/—Nlb/2)

After substitution, we obtain

P[2.99968 g < m < 3.00032 g| = 99%.

Remark. We see that averaging decreases the standard deviation as a factor
1/v/'N, while measuring K coins in the same time by a factor of 1/K. This
difference can be explained because in the averaging case we take N separate
measurements with independent errors, and thus the total error (standard devi-
ation) becomes VN times larger when summing N measurements, which is then
divided by N to give the average, and v/N/N = 1/4/N. On the other hand,
when we measure K coins together, only one measurement is made with a single
error, but this is still divided by K to get the mass of one coin.

A similar practical problem would be how to measure the weight of an A4
paper: here again it is better to measure a package of 500 sheets together and
divide by 500, instead of measuring 500 sheets separately and averaging, not to
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mention that it takes much less time.
3.12. The error of each day can be calculated as the difference between the times
displayed by the clocks at noon on consecutive days:

9 9 14 9 10 12 |sec|

Since we are interested in the constant component of the total error (the sys-
tematic error), we need to estimate the expected value of the daily error. The
estimates of the expected value and the standard deviation are

1 X 1 &
ﬂ:ﬁ;xizmﬁs, 5= mi21(xi—ﬂ)2=2-07368-

We have estimated the standard deviation, therefore we use a Student distribu-
tion in the confidence interval:

N S R S
P [M - ﬁt(Nq,b/Q) <p<p+ ﬁt(Nl,bﬂ)] =1-0.

S

t = 95%.
NG (5,0.025)] 0

P lﬂ - i?5(5,0.025) <p<p+
V6
where t(570.025) = 2.571. That is
P[8.3235 s < pu < 12.6765 s| = 95%.

3.13.

a) Since we are measuring students, we have to use the Student distribution.
2. Seriously, the real reason why we use the Student distribution because
we have estimated the standard deviation. The confidence interval is

s s

P - tin,— << [ tn. —1-9
lﬂ m(m 1,6/2) < M HJF\/E(NI 1,b/2)] ;

S

t = 90%.
NG (9,0.05)1 0

P i t < < i+
K /9 (9,005) < U < [
After substitution, we get

P[174.99 cm < p < 181.01 em] = 90%.

b) Here we utilize the fact that for large N Student distribution converges to
normal distribution:

£(325,0.05) = Z(0.05) = 1.64.
Thus, the confidence interval becomes
S

N 2(0.05) = 90%,
VIV2

N S .
Pl — —=2005) <p < fi+

VN,
which is
P[177.53 cm < p < 178.47 cm] = 90%.
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3.14. The estimate of the current is

.U
I —_ —=.
R
The sensitivities are
ol 1
C = _— = —
v ou R
ol B U

a)

b)

Cr = @__ﬁ

To determine the type-A standard uncertainty of the voltage U first its
standard deviation is estimated as

5 1 5
Z =138.736 mV, s= $ 1 S (U~ )’ = 33.616 uV.

=1

1

Cﬂ

Since we obtain the estimate of the voltage by averaging N = 5 measure-
ments, the standard uncertainty is

w(U) 4 = % = 15.033 uV.

To determine the type-B standard uncertainty, first the specification of
the manufacturer has to be studied. The quantization error is a part of the
type-B uncertainty, so we don’t have to consider it separately. Therefore
we have

AUvm = Uho.v. + ho.r.Umax-

We assume that the error is uniformly distributed. Therefore, the type-B
standard uncertainty can be calculated using the expression of the stan-
dard deviation of a uniformly distributed random variable:

AU,

The best estimate of the voltage is the average U = 138.736 mV. The
total uncertainty of U is the quadratic sum of the type-A and type-B
uncertainties:

= \Ju2(U) 4 +u2(U)p = 26.475 pV.

To determine the actual value of the resistance a temperature corrections
is needed. Its expected value and best estimate after the correction using
the temperature-coefficient is:

A

R = Ry[1+ a(T — Ty)] = 100.131 €,
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d)

f)

CHAPTER 3. ERROR CALCULATION II

where Ry is the resistance at Ty = 20 °C, R and T are the actual resistance
and temperature, respectively. (Note that this correction will not be used
when computing the uncertainty since it is the “error of the error”.)

Only the type-B uncertainty can be calculated for the normal resistance.
By assuming uniformly distributed measurement error we get

u(R) =u(R)p = A_\/Z; = 0.0266 2

where AR = 0.046 €2 is the random error of the resistance.

The estimate of the current and its standard uncertainty is

u

i = = 138550 mA, u(l) = V&uR(U) + Gu?(R) = 4.5323 - 10~ mA.

The current given with its extended uncertainty with k£ = 2 is

I =1.38554(91) mA.

The extended uncertainty with & = 2 above represents a 95% confidence
interval, under the assumption of normal distribution. The uncertainty
has three sources in this problem: the two type-B uncertainties were de-
termined assuming uniform distribution, the distribution of the type-A
uncertainty of the voltage measurement is unknown, but it can be as-
sumed as Gaussian. If more random variables are added, their probability
density functions have to be convolved. The convolution of the above dis-
tributions is only approximately normal. In practice, the sum of 10-12
uniformly distributed random variables with a similar standard deviation
can be assumed to be Gaussian.

The error of the voltmeter is a constant which does not change during the
short time of the measurement. This error takes value inside the interval
specified by the manufacturer. This interval was determined based on the
parts of the instrument and observations during the testing. While the
error is not random itself (it is constant), it is still treated as a random
variable since we don’t know where the actual error lies within the interval
specified by the manufacturer. The randomness of the error can only be
proven by taking measurements with more instruments of the same kind.



Chapter 4

Measurement of voltage and
current

4.1. The definition of the signal-to-noise ratio is

Psi na
SNR = 101g Pi‘.

noise

So the ratio of the signal power and noise power is:

U2

== 105NR/10 =~ 99 57

a

since Pignal = U2 and Ppgise = U2. The RMS value of the measured signal U, is
the quadratic sum of the RMS values of the signal and noise components:

U2
UL =U2+UR = U2 + 22,

so the expression for the noiseless signal U, becomes

12
U, = = —=6V.
1+1/a

4.2. The expected value is the mean value of the signal, thus, it is the same as
the DC component. The RMS value can be calculated from the RMS value of
the different frequency components with quadratic summation.

The DC component has zero frequency and its RMS value equals the DC
value. The RMS value of a sine wave is its peak value scaled by 1/4/2. The fun-
damental frequency of the signal is the largest common divider of all frequency
components (see also problems 1.5 and 1.6).

a)

x(t) = A?sin® (27 fot) = A?/2(1 — cos(4r fot)).

59
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2 2

b)
x(t) = 1-sin(3wfot) — 0.9 - sin(37 fot) = 0.1sin(37 fot)
0.1

2o =0, xRMs:jjizzQOﬂW,lﬁ::L5ﬁ.

(The frequency is obtained by dividing the angular frequency 37 fo by 27.)

12\ 12\°
2o =10, Trms = <%> + <ﬁ> =12, f.=fo.

d) Since for real signals |z(t)|*> = 2%(t), the absolute value sign does not
influence the RMS value, therefore it is the same as for a normal sine wave
(1/+/2 times the peak value). Moreover, the mean value equals the absolute
mean of a normal sine wave (2/7 times the peak value).

c)

Since now the half-periods are equal because of the absolute sign, the time
period of x(t) is the half of the original sine wave. Thus, the frequency is
the double.

2 2
Ty = Tabs — ;12 = 76394, TRMS — ——= — 8485, f:c = 2f0

EH

o =0, zrus=V2=1414, f, = fo,

since for complex signals, the the absolute value is used to calculate the
RMS value (we integrate |z(¢)[?), and |z(t)| = v/2.

4.3.
v

U1 = UQ = B = 80 V, AUl — AUv2 = ho.r.UmaX'

The worst case error is
AU = AU, + AUy = 2hg . Uppax = 2 V.

The relative error is AU 5V
— = ——=1.25%.
U 160 V 5%
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4.4. Without any data about the errors of the instrument only the quantization
error can be computed. Thus, we assume that the accuracy of the instrument
corresponds to the accuracy of the display.

00001V 1

ha~h, = ——— = —
70.0245V 245

~ 0.4%.

4.5.

a) The voltage of the components can be computed as

U [V] = 10Y [BI/20 — 1 000 0.2512 0.0631 0.0158 0.0040] V.

b) The RMS value is
5
U=,> U}V]=1.033V.

%
i=1

¢) The THD is

k = 25.12%.

ELuv) o - UpY)
N U N U

Note that dividing by the voltage of fundamental U; instead of the total
RMS value U is also acceptable and it gives almost the same result since
U 1~ U.

4.6.

a) The mean value of the signal is

1T 1 m T,
=~ [ x(t)dt = dt = 20U, =2V,
U, T/Ox() = |t = 20, =2V

The RMS value is

1 (/T 1 /M T
_ /= 1)2dt = —/ 20t — | =AU, = 3.162 V.
U \/T/Ox() \/TOUp |7 Up = 3162V
The crest factor k, and form factor k; are
U, T
E, = —L£=,/—=1.581
P v \m ’
U U T T T
ky = = — = /222 = /= = 1581,
Uabs UO TTl Tl

because the signal is never negative, the absolute mean value equals to the
mean value Uy, = Up.
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b) The AC coupled measurement eliminates the DC component of the signal.
This means that during the 77 part of the period the value of the signal
is U, — Uy, while in the T, part its value is —Uj. The instrument may
measure the positive or the negative peak of the signal, depending on
its implementation. The displayed value is 1/4/2 times of the measured
peak, since that is the correction factor for the sine wave. If the voltmeter
measures the positive peak, we see

1 3V
Ugisp1 = —=|U, — Up] = —= =2.121 V,
disp,1 \/Q[ P 0] \/§
while if it measures the negative peak we read
! 2V =1.414 V.

Udisp2 = EUO = %

4.7. For the square wave:
Uabs = Up = URMS =1V.

The displayed voltages for the absolute mean meter (U;), the peak meter (Us)
and the true RMS meter (U;) are the measured values multiplied by the correc-
tion factor of the instrument:

T

Uy = kU = ——Upe = 1111V,
1 fYab 2\/5 b
U, U,
Uy = 22—"2_07071V,
? k, 2

where k; is the form factor and k, is the crest factor of the sine wave.

4.8. The expression of the input resistance is:

Ui

Rin = —.
I

a) The error of the voltage and current measurement can be expressed as:

AU 1 Umax

— how + hos — 0.066%, 41
0, v lor T m N % (4.1)
Ajl Imax 1
— = hoy. + hor.—— + — = 0.864%,
L v L - Ny %

where h,,. and h,, are the relative errors of value and of range, respec-
tively, and 1/Ny, and 1/N; are the quantization errors for the voltage and
current measurement (Ny, = 8765 and N; = 172). The total error using
probabilistic summation becomes:

AR;, AU N? AL
= — ) = 0.87%.
| (32) + (52 oo
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b) The expression of the input resistance is

Uz
Ry, = ——R,,
1n Ul UQ
where U, is the voltage at the input after the connection of the poten-
tiometer, and R, is the value of the resistance of the potentiometer. If

U2 = U1/2, then Rin = Rs.

Next, we calculate the error of R;,. The sensitivities are

_ ORw R,
VT U, T (U= Uy
ORin R,U,
Cu, = = )
2 U, (U, — U)?
_ ORw U
R T R T U —Uy
and thus the relative error components become
AR.| UAU,  RU, U -UAU, U AU
R b,  PRa Un  (Gh—0a2 VRO, U, U —U, Uy
ARy| U, AU,  RU, U -U,AU, U, Al
Ry, Ra Us (-2 ° Rl Us Uh—0, Uy
AR.|  R.AR, U, _U—-U,AR, AR,
R ln,  "“Rwm R, Ui—Us ° RU, R, R,

so the error using probabilistic summation is

AR, AR\ ? AU\ 2 AU\ 2
= 4 4 =0.145
J<Rs>+<w>+<@> z

where AU, /Uy = 0.0819% can be calculated similarly to (4.1).

In the above calculations we have assumed that the error components are
independent. Since the measurements are done with the same voltmeter,
this might not be actually true. If the errors are not independent, and thus,
summed with sign, they cancel because their opposite sign. Let’s study the
independence of the various error components separately!

1. The “of value” error. This is the gain error of the instrument which
has the same value in the two cases so the summation with sign (as
for systematic errors) should be used, and thus, these errors cancel
each other. The condition for this is to use the instrument in the same
range for both measurements. If the instrument was used in different
ranges for the two measurements, this could not have been done!

2. The “of range” error. This can have more components: offset error,
linearity error, and electrical noise. In the last two cases the errors are
independent. Since there is no information about the proportion of
the components, it is safer to assume that these errors do not cancel
each other.
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3. The quantization error. The exact value of this error depends on
the method of quantization (rounding, truncation). The quantization
errors are not completely independent since U, was set based on the
value of U;. However, they don’t cancel out completely. Since it is
better practice to overestimate the error than to underestimate it, we
will take them into account in the final error calculation.

This means that we get a better estimate for the error if the “of value”
errors are eliminated from the calculations, and only the “of range” and
quantization errors are used:

AU, Upax 1

— p, L 0.016%,
Uy U * Ny, %
AU} Upnax

— h, L 0.032%,
Us U, * Ny, %

Thus, a more accurate estimate of the error is

AR! AR\? AU? AUL?
in _ 4 4 =0.1
S sz)*(Ul)*(UZ 0.106%,

4.9. The Fourier series can be written in many ways, here we will show various
cases. The square wave given in the problem has no starting phase, thus, we
can shift it with respect to time. In general, if we are analyzing a signal in the
frequency domain, the absolute phases of the components are not important,
only their relative phase (phase differences). The phase is more important when
analyzing more signals in parallel, e.g., in transfer function measurement, where
the phase difference of the output and the input gives the phase shift of the
transfer function. In our case, shifting the positive impulse of the signal into the
origin t = 0, we get an even function, displayed below:

U

In the figure T is the period time, while 7 is the length of the impulse.

a) The real Fourier series is defined as follows:

00 00 9
u(t) %U0+2Ufcoskwt+ZUkBsinkwt, W = %,
k=1 k=1



4. MEASUREMENT OF VOLTAGE AND CURRENT 65

where Uj is the mean value of the signal, computed as
1 /T T
U :—/ Updt = — = 0.6V,
07Ty P T

where U, is the peak voltage of the signal. Since the signal is represented
by an even function, it has only cosine components, thus, U? = 0. The
coefficients for the cosine can be computed by the integral

T

2 (T 2 [7/2 2
Uf = T/o cos(kwt)u(t)dt = T/o cos(kwt)Updthf cos(kwt)U,dt =

T—7/2

B 4Up T/2

20U,
T cos kwtdt = k—; sin (knr%) ,

where we have substituted w = 27/T. Thus, we obtain

Ur = [1.1226 0.9082 0.6055 0.2806 0.0
—0.1871 —0.2595 —0.2270 —0.1247 0.0] V.

Note that the 5th and 10th harmonics have zero amplitude, since the duty
cycle of the square wave is 1/5. This is because for a square wave with a
duty cycle 1/k we are integrating a whole (or integer) period of sines and
cosines with frequency kw, and the integral of an integer period is zero.
This property is independent of the starting phase.

If consider our signal so that the rising edge of the impulse is at ¢ = 0, the
Fourier coefficients become

T

2 (T 20, (7 U, t
A = — = ' — PG 2 _
U; T/o cos(kwt)u(t)dt T /0 cos(kwt)dt k [ sm( kWT):| )

™ 0
2 T 20, [T U, t\1"
Uup = T/o sin(kwt)u(t)dt = Tp/o sin(kwt)dt = ﬁ [cos (QkWT)]O
By performing the calculations, we obtain
U2 = [0.9082 0.2806 —0.1871 —0.2270 0.0
0.1514 0.0802 —0.0702 —0.1009 0.0] V,

UP = [0.6598 0.8637 0.5758 0.1650 0.0
0.1100 0.2468 0.2159 0.0733 0.0] V.

where again the 5th and 10th components are missing.
The complex Fourier series approximates the signal in the following way:
+o0 )
u(t) 2 Y Ufer
k=—o00

Note that the index £ runs from —oo to 400, and k = 0 corresponds to
the DC component. In general, we obtain ', as

1 T —jwkt
Cr = T/o e 1M (t)dt.
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b)
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However, since we have already computed the real Fourier series, it is
easier to convert the real coefficients to complex ones. For the even case
displayed in the figure, only the cosine components are nonzero, and they
can be converted by the Euler formula as

Uit up o
UL cos(kwt) = —edwkt 4 Tk o=jwke,
2 2
Thus,
U
UISZUE’ :7]67 ]{j:l’Q’_”’
and

U§ = Us.

The coefficients for positive and negative frequencies equal only because
of the even symmetry. In general, U is the complex conjugate of US for
real signals.

The RMS value can be computed according to the definition (root-mean-
square integral). The true RMS meter displays the correct RMS value:

1 T
Udisp,RMS = URMS = ?/0 u(t)Zdt = Up\/; =1.3416 V.

The lowpass filter lets through the components below f. = 5 kHz. Since
f = 1/T = 2 kHz, thus, only the DC component, and the first and the
second harmonics have to be summed:

2 2
U, = ¢Ug + (%) + (%) =1.1843 V.




Chapter 5

Measurement circuits

5.1. As an introduction to the problem, we provide a summary for the basic
bridge circuits. The circuit can be seen in the following figure.

Ry Ry
L1 l L1
\l/Uout
T T T
R R
3 US 4
—
/R
_/

The output voltage of the bridge is the voltage difference between the two voltage

dividers:
Rs Ry

Ri + R, USR3+R4'
All the various cases can be computed based on this basic equation.

Generally the resistances of the circuit has the same nominal value, where
the fixed resistors are R, and the sensors are R+ AR = (1+hg)Ror R— AR =
(1 — hg)R. The behavior of the bridge depends on the number sensors and
on their positions. The type of excitation (voltage or current) also affects the
behavior. The most important four cases are the following:

Uout = US

1. One resistance increases, the value of the other resistors do not change:
the position of the sensor is arbitrary. Here we choose Ry = (1 + hg)R.
The absolute value of the output voltage is

(1+hg)R R\ _ he o Ur,
R+(1+hgp)R R+R)  “4+2h; 4 7

|Uout| - US <

2. Two resistors change in the same direction, these should be R; and R, or
Ry and Rj3. Here we choose Ry = R3 = (1 + hg)R. The absolute value of
the output voltage is

(1+hg)R R )—U hg . Us

Uou =U - T 5 — 5 'R
Vo S<R+(1+hR)R (1+hg)R+ R “hp+2 27

67
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3. If the value of one resistor increases, another one decreases then they should
be R; and R; or R3 and R, to obtain linear behavior. Here we choose
Ry = (1+ hg)R and Ry = (1 — hg)R. The absolute value of the output
voltage is

U, t|=Us< L the) R i ) Us

_ = 2h,
(1-hg)R+(1+hg)R R+R 2

4. If the value of two resistor increases and the value of the other two resistors
decreases, then the value of the diagonally opposing resistors should change
in the same direction, for example, we can choose Ry = Ry = (1 + hg)R
and Ry = Ry = (1 — hg)R. The absolute value of the output voltage is

B (1+hg)R (1—hg)R B
Voul = Us ((1 —hp)R+ (1 +hg)R (14 hg)R+ (1 - hR)R) = Ushz.

where hg = AR/R, R is the nominal value of the resistances. In the first two
cases the output voltage is a nonlinear function of the input (the linear approx-
imations are given with the = sign). When a current supply is used, the output
becomes linear for the second case as well. The output can be calculated as

Is
2

I IsR
(Ry — Ry) = 3"’((1 +hg)R—R) = SThR,

|Uout| -
where [g is the supply current.

Problem 5.1 corresponds to the second case with voltage supply. Since AR =

1 Q and hr = 0.01:
hr

hr + 2
If the thermistors are connected with 2 x 1 {2 wires to the bridge, the relative
change of the resistances is hl; = 0.03, so we get

|Uout| = Us =249 mV.

!/

h
ULl = Ugh,R i 5 =739 mV.

The systematic error is that part of the output voltage which corresponds to the
voltage drop on the wires. Its value is

U . —U

hy =~ = 1.97 = 197%.
Uout

We see that the wire resistance leads to an unacceptable error. Note, however,
that because this is a systematic error, it can be measured and compensated.
Another solution to the problem is to connect the ordinary resistors with wires
having the same 2 x 1 2 resistance, so that the errors cancel.
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5.2. The resistance and capacitance of the upper and lower parts of the divider
are Ry, C, and Ry, Cy, respectively. The value Ry = 100 k{2 is given, and in the
compensated case the division ratio is

Ry

= —— =0.1.
R+ Ry

a

Thus, the resistance of the upper part of the divider is
Ry =900 k€.

In the compensated case the time constants equal to each other:
R Cy = RyCs.

Therefore, the capacitor connected in parallel with the upper resistor should be

R,y 100

C = — pF~11.1 pF.
2 i) 9 p p

5.3. The time function of the voltage appearing on the output of the multiplier

1S:
2

U
Uoys (t) = kU2 sin® wt = k%(l — cos 2wt) = 5(1 — cos2wt) V.

n,p
The mean value, absolute mean and RMS value can be determined based on

problem 4.2:

UO - 5V,
Uabs 5 Va

Upms = /52 +5%/2V =6.124 V.

5.4.

a) The circuit corresponds to the second case in problem 5.1. The value of
the conventional resistors is R = 100 2, so that the output voltage at
25 °C is zero. We are using a current supply because that leads to a linear
behavior.

b) The current supply equals to the sum of the currents of the two branches
of the bridge:
U

Is =2—5 =20 mA,

where U; = 1 V is the voltage measured across the thermistor.
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5.5.

b)
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AR

So the output voltage is
I IsR
Uoutl = S((1+ hr)R = R) = Z=hp =3 mV.

The output voltage is linear function of the change of the value of the
resistor, and

Uyt = £5mV, if T=0°C or T =50 °C.

So we need an amplification of

10V
Ay = —— = 2000.
U s mV

The circuit corresponds to the third case in problem 5.1. The value of the
ordinary resistors is R = 400 €2, the output voltage is zero.

U, t\=U5< U the) R 4 ) Us

- = “Shp=10mV.
(1—hp)R+(IL+hg)R R+R) 2 ®- MW

The problem can be solved with the usual steps of error propagation com-
putation (sensitivities, etc.). However, a simpler way is to consider what
signs the resistance errors should have to give the largest output voltage
error (worst case). This is similar to the problem of ordering the resistive
sensors in a bridge so that the output voltage is maximal. This happens
when the voltages at output points of the bridge change in the opposite di-
rection. This is similar to the fourth case in problem 5.2, but the changes
of the resistances have different values. Thus, the output voltage of the
bridge is

B (1+h)R (1—hy)R _
|AU] = Us ((1 —h)R+(1+h)R (14 h)R+(1 - h2)R> -

U
= 75(111 + hy) = 35 mV,

where hy = 0.2% and ho = 0.5% are the relative changes of the strain gauge
resistors and the conventional resistors, respectively. Thus, the error of the
measurement is

_ AU

h =
|Uout|

= 350%.
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5.6. By using trigonometric formulas we get

U_2
Uout (t) = kUinp sin(wt) Uiy, cos(wt) = k g’p cos(2wt) = Hsin(2wt) V.

And thus
UO = 0 V,
10
Uws = — V=3183V,
T
5
Upms = —= V=23.536V.

V2

5.7. The relative phases of the signals are not given, but actually this does not
matter for our case. Let’s assume that they are the same. By using trigonometric
formulas we obtain

Up,lUp,2

Uout (t) = kUp 1 sin(wit)Up 2 sin(wot) = k [cos((wy—wa)t)—sin((wi+ws)t)] =

= 0.5 cos((wy — wq)t) — 0.5 cos((wy + we)t) V.

As a result,

UO == OV,

Ve = w_yg)ﬂ(ojg)%:o.w.

5.8.

a) The wiring diagram is the following:

Ry
]
Ry
e
Uin ]
\Ll + I \l/ Usus




72 CHAPTER 5. MEASUREMENT CIRCUITS

b) The new value of the feedback resistance is

Ry Rs
Ry = Ry x Ry = ———— = 5.005 kQ.
2 T Ry + Ry
The new values of the gain and the systematic error are
R A — Ay
A= ——2 = —50055, h= = +0.11%.
R , by i +0.11%
c) The total error is the sum of the systematic error and the random error of
the gain:
AA
— =hl =+ |h,
=2 = b,
where the random error is
o AR, AR,
' Ry Ry |’
since A’ = —R'JRy! is the product of variables.

The error of Ry is given, while the error of R/, has to be calculated from
the errors of R, and R3 which are connected in parallel. For the detailed
solution with sensitivity calculation, see problem 2.5, from which we obtain

AR, _ E’Q AR, E’Q ARs
R Ry Ry R; Rj
And thus the total worst case error is
AA AR,y Rs AR, Ry, ARs
—zh’i( ) = 0.11%+0.29%,
A B Ry Ry + Rs Ry Ry + Rs Rj % i’

which is an asymmetric error interval between —0.18% and 0.4%. If we
want, to describe the total error with a symmetric interval, thus, with a

single number, then we choose the bound with the larger absolute value,
that is, 0.4%.

5.9.

a) The wiring diagram is the following:

Uin \L °
l — I \LUout
R1 R2
The systematic error of the gain is
A-—A
A:1+@:10.1, h, = 0 = 11%.

R, A
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b) The value of the feedback resistors using R3 and Ry is
Ry, = Ry + Ry = 9 k.

The new values of the gain and the systematic error are

A — A
Ao

R+ Rs+ Ry

Al
Ry

=10, K. = = 0.

c) The worst case error coming from the random errors can be determined
using the usual error calculation. The sensitivities are

0A _R3 + Ry

T 9R, T T R
0A 1

Cry = aRB—E,
oA 1

B T B9R, Ry

The absolute error of A’ is therefore

R3 + R4 AR;«; AR4
AA =|AR
‘ "R R IR
The relative error is
AAI R3 —f- R4 ARg A}%4
=|AR —I—‘ —f-‘ =0.27%.
A |1&mﬁﬁﬁﬁg Ry + Ry + Ryl |Ry + Ry + Ry !
5.10.
a) The wiring diagram is the following:
R
]
Ry
¢ N >
Uin —
+ \i/ Uout

R
2 [1 g, J

The solution is fine even if the Ry — R3 and R, — R4 pairs are exchanged.

b) By using the notations of the figure, the common gain is the following:

_ RiRy— RyRy

A= ———r—
Ri(Rs + Ry)
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5.11.

a)

b)
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The actual value of a single resistance is

where h is the maximum value of the relative deviation. Substituting this
into the expression of A., and choosing the signs in 4 so that A, is maximal
(since this is the worst case), we get

o RiR(1+h)?— RyRy(1—h)* Ry
o R1 (RQ —f- R4) B RQ + R4

A 4h.
Note that the dependency of the denominator on the error was neglected

and we utilized the fact that R; Ry = Ry Rs3. The common-mode rejection
ratio is

_|A] RyRy+R,
" A ~ R: Rk

The solution remains the same even if the exchanged resistor sets are used.

= 12625 = 82 dB.

The wiring diagram and the measured waveform can be seen below:

R
[ 1
| Vot
& R
U ¢l .
Uout (t
U. L
' AN PN
T ‘ t

First the absolute mean of the signal has to be determined, which is the
half of the absolute mean value in the case of a triangular wave

U,
Uabs = Zp =0.25 V.

The displayed value is
Uout = 0.25 V.
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c) The measured voltage is

Ry U,
Up = —— A2
R4

where A is a gain factor coming from the error of the voltmeter, determined
by its accuracy class hor.. The value of the latter is:

AA Umax
T = Ry X — 9%,
A ”Uout %

We see that in the total measurement error the relative error of the two
resistors R; and Ry and the error caused by the voltmeter have a weight
of 1 since they are either at power 1 or —1 in the expression of U,,. There-
fore, the total measurement error assuming uniform distribution for all
components and using k = 2 extension factor is

AU, AR 1\° [AA 1)\°
ZUmo_ oo 22 =2 ) = 2.83%.
U J (Rﬁ> +<A¢§> "

5.12.

a) The schematics can be seen below.

s R, R,
T L L

_ .

Ube R7 o
Uy

~ R ¢ k
L L] L]

p Rs R l

The values of the resistors are

R1:R3:5kQ, R2:R4:R5:R6:25k9, R7I555kQ

b) The symmetric gain is

Ry 2R;
Ay = —— (1 —) = —50.045,
Ry - Ry
so the systematic error is
A, — A
hy = =20 — 0.09%.

As,O
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c) For computing the common-mode rejection ratio, first we compute the

common-mode gain of the second stage (differential amplifier), which is

_ RiRy— RyRy

Ay = 24— 7270
? " Ri(Rs + Ry)

(5.1)

Here Ry = R3 = R, Ry = R4 = 5R, based on their nominal values. The
actual values of the resistors are

Ri=R(1+h), Ro=5R(1+h), Rs=R(1+h), Ry=5R(1+h),

where h is the maximal deviation from the nominal value. This can be
substituted to (5.1), and for the worst case we obtain

SRX(14h)> —5R2(1—h)2  5R2(4h) 10

6R2 ~ 6R2 3

1%

AC,Z

Since the common-mode gain of the first stage is A.; = 1, we have A, =
Ac2. The common-mode rejection ratio is thus
As

1
A 0.3A; N 75000 = 97.5
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Time and frequency measurement

6.1. The gate time is ¢, = 10 ms, and during this time the counter can measure

maximum N, = 10° periods of the input signal. This corresponds to the
frequency
Nmax 7
f;L"maX - t = 10 HZ - 10 MHZ
6.2.

a)

b)

First a base angle is computed:
b o
o = arcsin — = 1.312 = 75.16°, (6.1)
a

From this, the phase shit can be expressed as

== , if the major axis is in the 1st and the 3rd quarter
LA T o , if the major axis is in the 2nd and the 4th quarter

The error components can be obtained from equation (6.1) by the usual
rules of error calculation:

r Ab
A900|b = /71—7’277
A B r  Aa
oo = e

where r = b/a.
The reading errors are generally independent random variables with arbi-
trary sign. When using worst case error summation, the total error becomes

r Aa AD
Apg = —— | — + —| =0.1510 =~ 8.65°.
%o T l + b ]

a
The above error calculation can be used until » < 1. If » &~ 1, the results
are going to be wrong because |po| < 7/2, but this error interval might

77
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6.3.

b)
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enable an angle higher than 7/2. Furthermore as r ~ 1 the errors are not
independent. The error interval has to be limited in this case: |¢o| < /2.
Remark. The above expression results in an absolute error based on relative
errors, and the multiplication factor is a value without unit (radian). Care
had to be taken that the final result is not given in percents, but in radians.

Since we do not have any information about the error of the clock, we
assume that Afy/fo = 0. Therefore, the only error that occurs is due to

the rounding when counting the periods of the input signal (quantization
error), which is AN = +1 in absolute terms, and AN/N = +1/N when
relative errors are computed.

When one period is measured, the counter has the value of

_L_f
TO fz’

where T, = 1/f, is the time period of the input signal and Ty = 1/fj is
the clock period. Thus, the measurement error is

1 z

:N1_f0

N

When measuring n periods, the counter has n times higher value:

= =n— =nN
n T() fm 1,
thus, the error decreases n-times compared to hq:
1 1 h
By = — = —— = L
Nn an n

In the problem hs is given, so we have to rearrange the above expression
to obtain

Further reduction of the error needs statistical averaging, meaning that
separate measurements are taken, their results are recorded and the num-
bers are arithmetically averaged. Arithmetic averaging of k£ data is de-
creasing the standard deviation by a factor of v/k. Thus, when averaging k
measurements of the above type with error hy, we get the following error:

h
hgz 2

5

Since hg is given, we obtain k as

h2
k= -2 =100.
h3
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d) The previous expression can be used, but since now we use data from
single-period measurements, the initial error is hy, the required resulting
error is hy = 1074, so

m = h—% = 10000
=5 = .
The quantization error has uniform distribution. Due to the averaging of
many independent random variables, the result will be normally distrib-
uted.

6.4. This corresponds to constant gate time measurement, where the measure-
ment is done for full periods of the input signal. Therefore, in practice the actual
gate time ¢, can be longer than the required measurement time since we wait
for the last period of the signal after t,, has passed. However, we neglect this
small time difference when computing the measurement error, assuming ¢, = t,,.
Since in this problem the clock has no error, only quantization error can occur.
In time period measurement, we are counting the clock cycles during the gate
time ¢4, thus, the counter has the value of

N =ty fo Xty fo = 10°.

The relative error is therefore

Al AL 1o 1
Je I, N twfo
6.5.
a) The worst case error of the frequency measurement is
AL _ Ak, 1
fo fo N

for both cases. The only difference is due to the quantization error 1/N,
and that method will be more accurate which results in a larger number
N in the counter. When we are measuring frequency, we count the input
signal f, for ¢, time, giving

Ni=tmfs
as a counter value.

When measuring time period, we use constant gate time measurement to
maximally utilize the available measurement time ¢,,. In this case we count
the clock cycles f; for the gate time ¢, = t,,:

Nt = tng = tme-

Since for our case fy > f,, we obtain N; > Ny, thus, the quantization error
will be smaller for the time period measurement. In general, whenever the
clock frequency is higher than the frequency of the input signal, the time
period measurement is more accurate (this is the case for many practical
applications, since fp is in the order of few MHz). On the contrary, if
fe > fo, the frequency metering principle should be used.
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b)

6.6.

b)
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The error with time period measurement is
Afp 1 _Afo 1 4
hf=—1—+—>_—"" 4+ —  =501-10"".
ok TN fo fotw
A 1 A 1
ho 2o ~ 2o =6-107°.

fo Ni{ fo foti,

The measurement error is very small in the second case. Therefore, the
assumption of noiseless input is unrealistic. Furthermore, as many as 10000
periods of the signal fits the measurement time so the frequency of the
signal may change during the measurement, thus it cannot be assumed
constant. It might be that the frequency stability of the signal is less
precise than the actual measurement.

The error of the frequency measurement equals to the measurement error
of the time period,

Af, B AT,
fl‘ N TCE ’
since ]
f:v = i

In general, the sign of the error does not matter, so we write

Af. AT,  Afy 1 Afy 1 .
- ~ 200, - 20 302.1070.
fx Tac fO N fO tme

The phase shift can be calculated using the following expression:
= = nrf (6.2)
Y =27 T~ T [, :

where 7 is the time delay between the two signals. So the absolute error
of the phase measurement is

2.2

The explanation of the A(f,) and A7’ notations are the following: The
clock cycle of the instrument causes the same relative error in the measure-
ment of 7 and T, (assuming stable frequency), so this error is canceled in
equation (6.2). Nevertheless, there are other independent error sources in
the measurement of 7 and 7}, which present in the above equation. These
are denoted with commas since the value of these errors differ from the
total measurement error of 7 and 7T,,.

As@z@[
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During the measurement time the 7 interval and 7, are both measured
n = [tmfs] = tmf. times. However, the 7 intervals are separated, so (as-
suming that f, and fy are not synchronized) n independent measurements
are available, and only y/n-fold decrease occurs in the error during the
averaging instead of the n-fold decrease of the average time period mea-
surement. So the error of the measurement of 7 is:

AT 1 1 1 1

T VTl VimleTh

and for the frequency, it is:

Af o 1
fa: B tme'

Thus, the total error of the phase measurement is

PR R S
LR P Yy

=1.379-107° rad = 7.903 - 10~ °.

Stopping the time-delay measurement with the falling edge of the output
signal means that we are measuring a larger time delay and larger phase
difference, so at first glance we would assume that this decreases the error.
This indeed decreases the relative error since we are dividing by a larger
o value, but the question was about the absolute error Ay, which leads to
a different result.

The absolute error of the phase measurement by denoting the measured
time delay as ¢ and using equation (6.2) is

1 1 1
+ — .
tme \/tmf:vth

The measurement error of the time delay is independent from ¢, and the ab-
solute error coming from the frequency measurement depends on t. Thus,
larger t values correspond to larger error, and so this second method ac-
tually decreases the precision of the phase measurement.

Ay = 2nt f,
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Chapter 7

Impedance and power
measurement

7.1. The bridge is balanced when the voltages are the same at the two inputs

of the voltmeter:
Zy Z3

Zh+ Zy 9= Zs+ Zy
This leads to the condition of balance

U,. (7.1)

Zy  Zy
Zy  Zy
or, equivalently,
VAR
— = —. 7.2
7.~ 7 (7.2)

Note that it is worthy to solve such problems by starting from Eq. (7.2) instead
of Eq. (7.1). Substituting the imdepance values into Eq. (7.1) would lead to
much more tedious calculations compared to the relatively simple derivations
below.

a) In our case, 7, = Z, = 1/(G, + 1/jwG.), Zo = Ry, Z3 = R3, and Z4 =
R, 4+ 1/jwCj. By substituting these into the balance condition Eq. (7.2)
we obtain

1 B Ry
Rs(G, +1/jwLl,) R4+ 1/jwCy
Since the above equation is complex, both the real and imaginary parts
must equal. After flipping the fractions the equations for the real and
imaginary parts become

Ry
R:G, = 2
3 Ry

R3 1
JwlLy JwCyRy
Thus, the elements of the measured impedance are
Ry
RyR;

G, = =100 pS, (R, =10%kQ), L,=C4RyR3= 100 mH.
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b) In the case of w’ = 2000 1/s the elements of the impedance are the follow-

ing:

/
G = Ri o ©S, L, = C4RyRs = 100 mH.
RyR;

Two-parameter impedance models can be parallel or series RL or RC
elements, thus, 4 different equivalent circuits exist. The simplest way to
see whether the model is acceptable is to check the sign of the reactive
element: a negative capacitance means that an inductive model should
be used instead, and a negative inductance shows that a capacitive model
should be used. In addition, a good model should be valid at a wide range of
frequencies meaning that the parameters of the model should be frequency
independent. In our problem L, = L/ > 0, thus, we need an inductive
model indeed. However, G! = (G,/4 means that the parameters of the
model are different at the two measurement frequencies. Therefore, we
may try to convert the parallel RL model to a series RL model and check
how the new parameters depend on frequency. The series RL model Z;
can be related to the parallel one Y, as

1
> va
Y,
! Ry + jwL
— = R, +jwL,.
G, + 1/jwL, J

The left hand side contains j in the denominator, so we multiply with the
complex conjugate:

G, —1/jwL, G, 1/jwL,

(Gy — 1/jwL)(Gy + 1/jwl,) G2+ Ljw?l2 G2+ 1/w?L2

Then, equating the first term with R, and the second term with jwL, we
obtain

WG, L?
R, = 7% _ (9999 Q,
1 +w2G2L?
L 7[@ 99.99 mH
s = = . m .
1 +w2G2L2

For the higher measurement frequency w’ we get

WG L?
/ L

Since R, = R, and Ly = L’ = L,, the series RL model is better than the
parallel one.
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7.2. The quality factor @)s is the ratio of the reactive and active power on the
impedance. For a series RL or RC model, we assume that the current I is known
and thus we can write

Q 1 2w _ wl,

P PR, R’

where L, and R, are the elements of the series RL model. Note that in the
general case, the following expression is also true:

~ Im{Z} Im{Y}

~ Re{Z} Re{Y}’

Qr =

Qy

where Re{Z} and Im{Z} are the real and imaginary parts of Z. A good quality
inductance or capacitor have small dissipation, thus, small P compared to @,
meaning that Q) is large.

The loss factor tgd equals to the dissipation ratio D, and it is the reciprocal
of in

bt b LR

Q@ Qr wiLs
We compute the values of the equivalent circuits such that at the measurement
frequency the real and imaginary parts of the two models should be equal. The
impedance and admittance of the series RL circuit are

ZL,S - Rs+jWst
1 R,—jwL, 11-jwL/R, 11-jQ,

R, +jwl, RI+w?l? R 1+o?L2/R2 R, 1+Q3

YL,s = . (73)
First we compute the parameters of the parallel RL model. For parallel
models, it is more straightforward to work with admittance instead of impedance.
Thus, the admittance of the parallel RL model is
1 1

Y - — + . 9
Lp R, jwlL,

and now the task is to make the real and imaginary parts equal to the real and
imaginary parts of Eq. (7.3):

1 R,
R, R 4wl
1 B JwlLg

jwL, RZ4w2L2

After rearrangement, we obtain the parameters of the parallel RL model as

L
R, = R, <1 ‘H«Uzﬁ) = Ry(1+ Q?‘)a
1+ w?L?/R? 1+ Q7 2
s/ [, = L,(1+ D?).
LR g~

L, = L,
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In the case of low loss factor (high quality factor) L, ~ L.
Next, we compute the parameters of the series RC' model. For series models,
working with impedances leads to simpler equations. Thus, we write

1

ZL,s = Rs + jWLs = ZC,s = RC,s + = .
JwCy

Now we make the real and imaginary parts of Zj , equal to the impedance
formulation of Eq. (7.3) and we obtain

RC,S = R57

1
C, = — )
w2l

Note that the capacitance is negative.

For the parallel RC' circuit we utilize the fact that we have already com-
puted a parallel RL model, thus, we make the real and imaginary parts of the
admittance for these two models equal:

1 1 1

Y —_ == Y =
Lr = R, * jwL, “’~ Re,

+ jwCy.
Then we obtain

Rcp, = R, =R, <1+w2—5):35(1+62§),

c, = — = — )
P wLI% R? 4+ w?L?

The capacitance is negative again. In the case of low loss factor (high quality
factor) C, = Cs.

7.3. The wiring diagram is the following:

With the notations of the figure we have

U1:U4 == IR5:10 IIlV,
U, IR,
Uy=U; = —R,=—R,=100nV.
275 T R, R, "
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The voltage drop on the measured resistance is U, = 100 mV. When using the
two-wire measurement, the voltmeter measures U,, = Uy + U, + Uy = 120 mV,
leading to a 20% measurement error. For four-wire measurement, U,, = U, +
U, + Us; = 100.0001 mV, showing that the error due to the voltage drop on the

wires is practically eliminated.
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7.4. The resistance of the measuring leads does not affect the result in the case of
four-wire measurement. The effect of stray capacitances can be neglected since
the frequency is quite low. Thus, the error depends only on the errors of the
voltage and current measurement:

AR AU Al
L e T
R-u T =W

7.5. The measuring leads cause systematic error, since the three-wire technique
does not cancel the error due to wire resistance. The signs of the systematic and
random errors is the same in the worst case, thus the total error is

AR AU Al 2R, AU Al

R_hTJrUJFI R+U+T:3%.

7.6. In theory, the five-wire measurement cancels the errors both coming from
the stray impedances and wire resistance. At 10 kHz frequency this is true also
in the practice. So the measurement error comes only from the inaccuracy of
voltage and current measurements:

AR AU Al
a2t Al g
R-u tT =W

7.7. The three parameter model of the magnetic-core coil can be seen in the
following figure:

L
o YY) o
R, Ll:l—‘
R,

where R, and R, represent the copper and core losses, respectively, and L is the
inductance. At DC, R, is shunted by L, thus, the DC ohmmeter measurement
gives the value of R, directly:

Ry =0.5 €L

The impedance of the three parameter model is

jwLR, jwLR,(R, — jwL)
Z3 =Ry + —— =R, -
’ YOI TR, LYy

R4 Ww?L*R, Y LR?
=R+ ——— wl—=—2+—=1,
2t rz) U\ R

where the expression in the first parenthesis equals to R, and the one in the
second parenthesis equals to L. since the impedance of the series RL model is

Z.= R, + jwLe..
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After some maths, the parameters can be expressed as

r? + w?

R, = R =0995,
L = Cﬁv:20meH;
where I
r:L—:; R, = R. — R;

7.8. The impedance meter measures the voltage between the “high” node of R,
and the ground, and the current flowing from the “low” node of R, to the ground.
These are U, and I,,, respectively. The resistor R, is estimated by the ratio of
them:

R, = 2™ (7.4)

We first compute I, that is the current of R,, assuming U,, excitation voltage
to the measurement circuit:

I, = Um
* R,+RaxR,

However, the ammeter measures less current, as a small portion of the current
flows to the ground through R,. Therefore the measured current is

[ Ry, Un R,

" "Ra+R, R,+RaxR, Ri+R,

Substituting this into Eq. (7.4), after some math we get

A R+ R R4
R.,=R,|——2+—2.

a) Thus the relative error of the measurement is

AR, R,— R, Ra+R, Ra Ry R
= — A=A 44 11%.
R, R, R, R, R, R, %

b) The above expression shows that the non-ideal ammeter is responsible for
the systematic error of the measurement of R,. Nevertheless, only the first
item depends on R, that is the error caused by the R, resistors is the

following: AR "
T A
= — =0.1%.

R, g, Ry %

Note that this error does not depend on the value of R,.
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7.9.
a) The active power P and cos ¢ are

U2 — U2 — U3
2R

UL~ U2~ U2
2U,Ug

P = = (0.4863.

= 163.6 mW, cosp =

b) The relative errors of the voltage measurements can be expressed using
the accuracy class hg, = 0.5%:

U, U, U,
max ho . b, — max ho . B — max
UG .. Z UZ T R UR

he =

The sensitivities for P are

op g
C T s UL-UZ-UZ
_op
“Z = 9Uu, T UZ_UZ_UY
oP 22
CR =

oUn UZ—UZ—UR

The error of the power measurement with k& = 2 extension factor, by the
assumption of uniform distribution is

2 2 2
2 o () v (%) v () s

The sensitivities of the absolute error of the measurement of cos ¢ are:

0 cos Ug
qa = = ’
oUq UzUgr
_ Odcosp  Up—-UE-Uj;
= Tou, T 2wum
_ Qdcosp Uz —UEZ—Ug
= ToUx T 204Uz

The measurement error of cosp with £k = 2 extension factor, by the as-
sumption of uniform distribution is

he )’ hz\° he )’
Acosp =2,| g% (%) + ¢ (%) + ¢ (%) = 0.03053.

c) The sign of ¢ is not specified in the measurement, thus the type of the
load cannot be determined.
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7.10.
a) The absolute value and phase of the impedance are

U U2—U2-U?

1Z| = U—;RN = 97.50 ©, ¢ = arccos—~ T 106 = 88.25°.

b) The error of |Z] can be estimated based on the quantization errors:

AlZl ARy AU, AUy 11 B
_ — 0.01% 4 —— — 3.87-10~* ~ 0.04%.
Zl " Ry U, Un o053 s %

c¢) Since the expression of cos ¢ contains differences, the method will be very
sensitive to the errors of the voltage measurement whenever cosp ~ 0
(i.e., » &~ 90°). Since this case occurs in the problem, the phase will be
inaccurate, thus, the amplitude measurement will be more precise.

a) The solution is similar to that of problem 7.1. The condition of balance is:

Z:v o Z2

Z3 - Z4’
R, + jwL, .
To T WY Ry (Gy + jwCy).

Rs

After making the real and imaginary parts equal, the elements of the im-
pedance are obtained as

_ RyRy
=

Rx =1 Q, Lx = R2R304 =5 mH.

b) The quality factor is

Q wL,I? _2nfL,

_ % _ 5.
Q=% R,I2 R,

c) The easiest way to take the loss factor of C} into account is to model C,
with a parallel RC' circuit, where an R, resistance is connected in parallel
with Cy4. The loss factor for this circuit is

_B_Uz/Rp_ 1
n Q - U2w04 - prCZl'

D

From this, the parallel resistor is

1

R,=—— =1 M{Q.
P D427Tf04
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7.12.

b)

7.13.

CHAPTER 7. IMPEDANCE AND POWER MEASUREMENT

This R, resistor is connected in parallel with Cy and R,. When the bridge
is balanced, we read R4, however, its real value is the parallel connection
of the resistors, that is,

Ry = Ry x R, = 9901 Q.

Thus, the real resistance of the series model is

R >~ 1.01 Q
Thus, the error is
AR, R —R,
== = 1%.
R, R, %

The condition of balance is

Zn Zy

Z,  Zy
jWCN(Rz + 1/ijx) = (ij'4 —+ G4)R3.

The elements of the measured impedance are

CyRs Cn
—1009 Q. C, = — 110.0 nF.
Cy ’ G.Rs .

R, =

The loss factor is

2
During insulation test the insulator is placed between the plates of a ca-
pacitor. The better the insulation, the higher voltage is tolerated without
strikeover. During measurement the equivalent RC' model is measured on
higher and higher voltage. If the system is linear the value of the elements
R, and C, are voltage independent, but approaching the breakdown or
strikeover voltage the loss factor starts to increase. This is the so-called
elbow voltage. Based on the value of the elbow voltage the breakdown
voltage can be estimated without damaging the device.

The model of a capacitor mounted in a metal box can be seen below:

Q
[
I
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where C' is the measured capacitor, while C; ; and C 5 are the stray capacitances.

a)

b)

c)

The series connection of the stray capacitances (Cs; = Cso = C5 =
100 pF) is connected in parallel with the measured capacitor. The total
capacitance is

Cs
(Je—(J+7,

so the error of the measurement, when measuring the capacitance between
nodes 1" and 2’ is
c+0Cy/2-C C
h = L — 25— 95%.
C 2C
To cancel the error caused by the stray capacitors 3 wire measurement

can be used. The output G’ of the instrument has to be connected to the
metal box (node '3’ of the model).

There are three possibilities to measure the value of the stray capacitances.

1. We may use the results of the 2 and 3 wire measurements and compute
Cs=2(C. - C)

However, now we have to subtract two numbers that has almost the
same value since C is very small in comparison with C| so the dif-
ference may have the same magnitude as that of the measurement
error.

2. Using the 3 wire measurement the stray capacitors can be measured,
as well. For example, measuring the capacitance between nodes 1’
and '3" and connecting ‘G’ to node 2" (s ; is measured. This is more
advantageous than the previous method, but in this case the current
of C' is canceled in the measurement which is much higher than the
current of CY, so the resistance of the wires may cause errors. Using
five-wire measurement provides more accurate results.

3. The problem of “high C', low C,” can be solved by shorting the wires
of C' (node ’1” and ’2’) and measuring the capacitance between this
point and node ’3’. In this arrangement already the 2 wire measure-
ment gives good results. However, the method has the following dis-
advantages: 1. only the value of the parallel connection of the stray
capacitances can be measured and the exact value of C,; and Cj,
cannot be determined. 2. The measurement might be very sensitive
to the the capacitance between the bounding box and the ground,
depending on the grounding of the instrument and the stray capaci-
tances to the ground.
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Chapter 8

AD- and DA-converters

8.1. The first question to answer is how the bits at the output of the ADC
represent the converted analog voltage. In other words, if the ADC is used as
a voltmeter, how can the measured voltage be determined based on the digital
output value. Since the converter splits the range from 0 to U, to 2° steps, the
measured voltage U, can be expressed as the ratio of the output value k£ of the
ADC and its greatest possible digital output 2°:

k
The error of U, is given, 2° is constant, and k has quantization error, since it
can only be an integer. Assuming the worst case scenario, that is, the ADC is
not rounding to the nearest integer, but rounds always upwards or downwards,

we have

Ak = £1.

(Note that for rounding characteristics, Ak = £0.5.)
By rearranging Eq. (8.1) we get
U.
ke 20 =614.
Uy
After differentiating Eq. (8.1) and using worst case summation, we obtain the
expression for the absolute error as

k

ﬁAUr

AU, = ‘ U

2

U, AU,
b r

where ¢ = U, /2" is the quantization step. If h, = 0, the error of the conversion
depends only on the quantization step ¢, independently from the input voltage
U,.

The relative error is thus

AU, AU, Ak q
= — =h, + — =0.21%.
U, U, + k + U, &
Note that the relative error is the smallest when U, is maximal (U, = U,), that
is, when we use the full range of the converter.

95
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8.2. The dual-slope ADC converter eliminates the effects of sinusoidal noises
if the integration time is an integer multiple of the period time of the noise.
If there are various periodic disturbances that should be suppressed, then the
integration time should be the smallest common multiple of the period times.
The integration time that should be used Switzerland is

1
Ty = k— = k- 60 ms,
fi

where £ is an integer. In Hungary a proper value is

1
Ty =1— =1-20 ms,
f2
where [ is again an integer. Since for T} = T, we have | = 3k, whenever k is
an integer, [ is integer as well. That is, the integration time we have chosen for
Switzerland is perfectly fine in Hungary as well.

8.3. The dual-slope ADC computes the U, input voltage in the following way:

T
UJ: = _era 8.2
- (52)
where U, is the absolute value of the reference voltage, 7' is the integration time,

and T, is the backward integration time.

a) Since we require b = 20 bits accuracy, the error of the conversion AU,
cannot, be greater then the quantization step:

AU, <q= %
Since only U, has an error, we have
oU, T,
AU, = U, AU, = TAUT’
and thus we need
%AUT <4q,
from which - U
AU, < qi = QEa

which has to be fulfilled for the full range of U, input voltages. We have
the most strict requirement for the error AU, when the right side of the
equation is the smallest, that is, when U, = U, and T,, = T, thus

U AU 1
207 U, T2

AU, <q=
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b)

Based on the solution of problem 8.2, the integration time is the smallest
common multiple of the period of times. We can also consider the problem
such that the converter has to eliminate the effects of a signal composed of
two sinusoids with frequencies f; = 50 Hz and f, = 60 Hz. This means that
we have to find the time period of this composite signal. The fundamental
frequency is the largest common divider of the frequency components,
which is f, = 10 Hz in this case (see the solution of 1.6). The corresponding
period time is 7, = 1/f, = 100 ms. The integration time should be an
integer multiple of the period time:

T = kT, = k-100 ms,
where k is an integer.

Again we have to fulfill

U,
But now only T, has an error, so we have
oU, U,
AU, = —AT, = —AT,
UZ‘ aTx x T xZs
and thus we need I
— AT, <
T q,
from which T 0T
AT, < g— = ——,
U, T 2,
and so

AT, T1 U, 1
<

T, — T,2" U,2"
which again has to be fulfilled for the full range of U, input voltages.
Similarly to a), we have the most strict requirement for the error when

U, = U, and thus
AT, < 1 ~ 1 ppm.
T, — 2b
It is not surprising that we have obtained the same condition for the error
of T, as for U,, since they are in a similar place in Eq. (8.2), that is, both

are at first power.

If both errors can occur, then the sum of the two errors must be smaller
then the quantization step. This way we obtain the condition

1
gﬁzlppm.

‘AUT

‘ AT,
U,

T
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8.4. The expression of the measured voltage is

U, =U, (8.3)

where T is the integration time, and 7T} is the backward integration time.

a)

b)

If T, is measured by counting the clock cycles, the value of the counter is
the following:
N = & = fOTa:a
to

where t; is the clock cycle, and fj is the clock frequency. To resolution of
the converter is determined by the number of intervals the [0, U,| interval
is divided. The value of the counter for the maximal input voltage U, = U,
is

T
Nmax =, = fOTa
to

because in this case the integration times 7" and 7T} equal to each other.
The number of bits is thus

b = [logy(Nmax)] = [logy(foT)] = 18.
where [.] denotes the integer part operator.

To express the accuracy of the converter, we perform the error analysis of
Eq. (8.3):

ou, ou, ou,
ou, oT, aT
where the last term is zero, since we are counting an integer period of the
clock when integrating the input voltage. Thus,

AU, = AU, | + AT, AT

?

+ ‘

T, U. 1
Al — | 2% Zr -
U, ThTUT + 7|

since the error of the backward integration time comes from the fact that
we are counting integer periods, and thus the time measurement can have
the maximal error of one clock period

1
AT, = 4ty = +—

fo
The error AU, is maximal when T, = T, thus, in the worst case we obtain
U, 1
AU, = h,U, + ——.
T fo

The idea of determining the accuracy (or, effective number of bits b.) is
similar to problem 8.3: the error of the converter AU, should be smaller
then the effective quantization step ¢, = U, /2%. That is,

U. 1 U,

AU, = hU, + —— < ==,
+ T fo 2be
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1
By 4 < 270
T'fo

which is fulfilled for b, = 13.

Note that while the resolution of the converter was b = 18 bits (we read
an 18 bit number at the output), the accuracy is only b, = 13 bits. This
means that when using the converter as a voltmeter, the last five bits at
the output of the converter are practically useless, since the number they
represent is smaller than the error of the converter.
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Notations and tables

Notations

In our calculations we often use approximations. We use the notation ~ if we are
using a more rough approximation, e.g., 93 ~ 100. In contrast, if we are approxi-
mating a value with a negligible error, we use the notation =, e.g., 99.999 = 100.

The solutions are normally given with 4 digits, while the errors are given
with 2-3 digits. This accuracy, especially for the case of the errors, is usually
unnecessary, and it is only given to allow a more precise comparison of your own
calculations and the solutions.

In all problems we are using the notations used in the specific area, even if
this means that the same letter is used for different quantities in two problems.
For example, T is used both for temperature and period time. However, within
one problem the notations are unambiguous.
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Table for standard normal distribution!

[z [ 000 | 001 | 002 | 003 | 004 | 005 | 006 | 007 | 0.08 | 0.09 |

0.0 || 0.0000 | 0.0040 | 0.0080 | 0.0120 | 0.0160 | 0.0199 | 0.0239 | 0.0279 | 0.0319 | 0.0359
0.1 || 0.0398 | 0.0438 | 0.0478 | 0.0517 | 0.0557 | 0.0596 | 0.0636 | 0.0675 | 0.0714 | 0.0753
0.2 || 0.0793 | 0.0832 | 0.0871 | 0.0910 | 0.0948 | 0.0987 | 0.1026 | 0.1064 | 0.1103 | 0.1141
0.3 || 0.1179 | 0.1217 | 0.1255 | 0.1293 | 0.1331 | 0.1368 | 0.1406 | 0.1443 | 0.1480 | 0.1517
0.4 || 0.1554 | 0.1591 | 0.1628 | 0.1664 | 0.1700 | 0.1736 | 0.1772 | 0.1808 | 0.1844 | 0.1879
0.5 || 0.1915 | 0.1950 | 0.1985 | 0.2019 | 0.2054 | 0.2088 | 0.2123 | 0.2157 | 0.2190 | 0.2224
0.6 || 0.2257 | 0.2291 | 0.2324 | 0.2357 | 0.2389 | 0.2422 | 0.2454 | 0.2486 | 0.2517 | 0.2549
0.7 || 0.2580 | 0.2611 | 0.2642 | 0.2673 | 0.2704 | 0.2734 | 0.2764 | 0.2794 | 0.2823 | 0.2852
0.8 || 0.2881 | 0.2910 | 0.2939 | 0.2967 | 0.2995 | 0.3023 | 0.3051 | 0.3078 | 0.3106 | 0.3133
0.9 || 0.3159 | 0.3186 | 0.3212 | 0.3238 | 0.3264 | 0.3289 | 0.3315 | 0.3340 | 0.3365 | 0.3389
1.0 || 0.3413 | 0.3438 | 0.3461 | 0.3485 | 0.3508 | 0.3531 | 0.3554 | 0.3577 | 0.3599 | 0.3621
1.1 || 0.3643 | 0.3665 | 0.3686 | 0.3708 | 0.3729 | 0.3749 | 0.3770 | 0.3790 | 0.3810 | 0.3830
1.2 || 0.3849 | 0.3869 | 0.3888 | 0.3907 | 0.3925 | 0.3944 | 0.3962 | 0.3980 | 0.3997 | 0.4015
1.3 || 0.4032 | 0.4049 | 0.4066 | 0.4082 | 0.4099 | 0.4115 | 0.4131 | 0.4147 | 0.4162 | 0.4177
1.4 || 0.4192 | 0.4207 | 0.4222 | 0.4236 | 0.4251 | 0.4265 | 0.4279 | 0.4292 | 0.4306 | 0.4319
1.5 | 0.4332 | 0.4345 | 0.4357 | 0.4370 | 0.4382 | 0.4394 | 0.4406 | 0.4418 | 0.4429 | 0.4441
1.6 || 0.4452 | 0.4463 | 0.4474 | 0.4484 | 0.4495 | 0.4505 | 0.4515 | 0.4525 | 0.4535 | 0.4545
1.7 || 0.4554 | 0.4564 | 0.4573 | 0.4582 | 0.4591 | 0.4599 | 0.4608 | 0.4616 | 0.4625 | 0.4633
1.8 || 0.4641 | 0.4649 | 0.4656 | 0.4664 | 0.4671 | 0.4678 | 0.4686 | 0.4693 | 0.4699 | 0.4706
1.9 ] 04713 | 0.4719 | 0.4726 | 0.4732 | 0.4738 | 0.4744 | 0.4750 | 0.4756 | 0.4761 | 0.4767
2.0 || 0.4772 | 0.4778 | 0.4783 | 0.4788 | 0.4793 | 0.4798 | 0.4803 | 0.4808 | 0.4812 | 0.4817
2.1 || 0.4821 | 0.4826 | 0.4830 | 0.4834 | 0.4838 | 0.4842 | 0.4846 | 0.4850 | 0.4854 | 0.4857
2.2 || 0.4861 | 0.4864 | 0.4868 | 0.4871 | 0.4875 | 0.4878 | 0.4881 | 0.4884 | 0.4887 | 0.4890
2.3 || 0.4893 | 0.4896 | 0.4898 | 0.4901 | 0.4904 | 0.4906 | 0.4909 | 0.4911 | 0.4913 | 0.4916
2.4 || 0.4918 | 0.4920 | 0.4922 | 0.4925 | 0.4927 | 0.4929 | 0.4931 | 0.4932 | 0.4934 | 0.4936
2.5 || 0.4938 | 0.4940 | 0.4941 | 0.4943 | 0.4945 | 0.4946 | 0.4948 | 0.4949 | 0.4951 | 0.4952
2.6 || 0.4953 | 0.4955 | 0.4956 | 0.4957 | 0.4959 | 0.4960 | 0.4961 | 0.4962 | 0.4963 | 0.4964
2.7 1| 0.4965 | 0.4966 | 0.4967 | 0.4968 | 0.4969 | 0.4970 | 0.4971 | 0.4972 | 0.4973 | 0.4974
2.8 || 0.4974 | 0.4975 | 0.4976 | 0.4977 | 0.4977 | 0.4978 | 0.4979 | 0.4979 | 0.4980 | 0.4981
2.9 || 0.4981 | 0.4982 | 0.4982 | 0.4983 | 0.4984 | 0.4984 | 0.4985 | 0.4985 | 0.4986 | 0.4986
3.0 || 0.4987 | 0.4987 | 0.4987 | 0.4988 | 0.4988 | 0.4989 | 0.4989 | 0.4989 | 0.4990 | 0.4990

Description: P[0 < z < z] = p, that is, the standard normally distributed
random variable z is between 0 and x with probability p. The x value is given as
a sum of the first row and first column of the table. For example, 0 < z < 1.96
has p = 0.475 probability (row 1.9 and column 0.06).

IStatSoft, Inc. (2006). Electronic Statistics Textbook. Tulsa, OK: StatSoft. URL:
http://wuw.statsoft.com/textbook/stathome.html. With the permission of StatSoft, Inc.
2300 East 14th Street, Tulsa, OK 74104, USA.
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Table for Student-t distribution?

APPENDIX

p
n || 04 [ 025 0.1 [ 0.05 [ 0.025 | 0.01 | 0.005 | 0.0005
1 [[0.325 | 1.000 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 636.619
2 [ 0.289 | 0.816 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 31.599
3 || 0.277 | 0.765 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 12.924
4 || 0271 | 0.741 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 8.610
5 || 0.267 | 0.727 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 6.869
6 || 0265 | 0.718 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.959
7 | 0.263 | 0.711 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 5.408
8 [ 0.262 | 0.706 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 5.041
9 || 0.261 | 0.703 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.781
10 || 0.260 | 0.700 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.587
11 [ 0.260 | 0.697 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.437
12 | 0.259 | 0.695 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 4.318
13 | 0.259 | 0.694 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 4.221
14 | 0.258 | 0.692 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 4.141
15 || 0.258 | 0.691 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 4.073
16 | 0.258 | 0.690 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 4.015
17 || 0.257 | 0.689 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.965
18 || 0.257 | 0.688 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.922
19 || 0.257 | 0.688 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.883
20 || 0.257 | 0.687 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.850
21 [ 0.257 | 0.686 | 1.323 | 1.721 | 2.080 | 2518 | 2.831 | 3.819
22 | 0.256 | 0.686 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.792
23 || 0.256 | 0.685 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.768
24 | 0.256 | 0.685 | 1.318 | 1.711 | 2.064 | 2492 | 2.797 | 3.745
25 || 0.256 | 0.684 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.725
26 || 0.256 | 0.684 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.707
27 || 0.256 | 0.684 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.690
28 || 0.256 | 0.683 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.674
29 || 0.256 | 0.683 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.659
30 || 0.256 | 0.683 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.646
oo || 0.253 [ 0.674 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.291

Description: P[t, > x| = p, that is, the n degrees-of-freedom ¢, random vari-
able is larger or equal than x with probability p. The first row of the table gives
the p values, and below the table lists the x values for different n. For example,
for a sample having n = 20 degrees-of-freedom, ¢, > 1.325 with a probability

p=0.1.

2StatSoft, Inc. (2006). Electronic Statistics Textbook. Tulsa, OK: StatSoft. URL:
http://wuw.statsoft.com/textbook/stathome.html. With the permission of StatSoft, Inc.
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