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3Prefa
eThis booklet is based on the Hungarian textbook �Méréste
hnika példatár villa-mosmérnököknek � published in 2006. Here only those items are presented whi
hare frequently used in the Measurement Te
hnology 
lasses.The �rst part of the booklet 
ontains the problems, while the se
ond partpresents the solutions. Many of the solutions are mu
h more detailed than theoriginal Hungarian version to help understanding. The di�
ulty level of theproblems in
rease in ea
h 
hapter, therefore it is advised to solve them in a
onse
utive order.The Authors intend to draw the attention of the Reader that pra
ti
ing usingonly this booklet 
annot substitute the 
areful learning and understanding ofthe theoreti
al basi
s of measurement te
hnology.
Budapest, June 2014 László Sujbert
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Chapter 1Basi
 problems1.1.1
t

v

vmax

T/2 TA model 
ar is tested on a straight road. The 
ar �rst a

elerates to vmax velo
ity,then stops. Sin
e the 
ar was designed by engineers, its velo
ity looks like asemi
ir
le, as 
an be seen in the �gure above. What is the total distan
e takenby the 
ar if vmax = 40 km/h, and the elapsed time is T = 30 s?1.2. Determine the SI unit of the below quantities and fun
tions assuming thatthe unit of the original signal is volt (V) as a fun
tion of the time (s). (Notethat some of the below quantities may not exist for a spe
i�
 signal. SI: SystèmeInternational; International system of units)a) signal power;b) Fourier-transform;
) 
orrelation;d) power density spe
trum;e) energy density spe
trum;f) e�e
tive value;g) RMS-value;h) varian
e;1J. B. Csernyak, R. M. Rose, �A minszki 
sirke és további 99 elgondolkodtató feladat azorosz matematikai és �zikai hagyományokból�, in Hungarian8



9i) mean square value;j) expe
ted value;k) standard deviation.1.3. A system is ex
ited with voltage, the output is 
urrent. What is the SI unitof the impulse response of the system?1.4. Determine the 
omplex Fourier-series of the x(t) = A cos(2πft+ϕ) signal!1.5.Determine the 
omplex Fourier-series of the x(t) = A1 cos(2πfat)+A2 cos(5πfat)signal! What is the time period of this signal?1.6. Is the following signal periodi
?
x(t) = A1A2 sin(2πf1t) sin(2πf2t), f2 = 1.6f1.If yes, what is the period time?
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Chapter 2Error 
al
ulation I.2.1. Velo
ity is measured by the measurement of time and displa
ement. Themeasured value of the displa
ement is x = 2000 m ± 0.5%, and the measuredtime is t = 2000 s±0.1%. What is the worst 
ase error of the estimated velo
ity?2.2. 100 resistors of 1 kΩ nominal value and 1% toleran
e (relative random error)are 
onne
ted in series. What is the relative error of the resulting resistan
ehaving 100 kΩ nominal value, using the (a) worst 
ase and (b) probabilisti
summation of error 
omponents?2.3.
R1

R2

Ube

UkiThe �gure displays a voltage divider made up of two resistors. The values of theresistors are R1 = 49 kΩ and R2 = 1 kΩ. The toleran
e of both resistors is 100ppm.a) What is the nominal value of the voltage division ratio?b) What is the worst 
ase relative error of the voltage divider?
) Shall we 
onsider the error of the divider as a systemati
 or random error,if (1) we have a 
ompany whi
h produ
es voltage dividers; (2) we havebought one voltage divider for our laboratory for measurement purposes?2.4. A 1111 ohm resistan
e is 
omposed by 
onne
ting a 1000, a 100, a 10 and a1 ohm resistor in series. The toleran
es (random relative errors) of the resistorsare 0.01%, 0.1%, 1% and 10%, respe
tively. What is the toleran
e of the 1111ohm resistan
e, using the probabilisti
 summation of error 
omponents?2.5. We 
onstru
t a 900 ohm resistan
e using a 1 kΩ, a 10 kΩ, a 100 kΩ and a11



12 CHAPTER 2. ERROR CALCULATION I.
1 MΩ resistor, whi
h are 
onne
ted in parallel. The toleran
es (random relativeerrors) of the resistors are 0.01%, 0.1%, 1% and 10%, respe
tively. What is theworst 
ase error of the 900 ohm resistor?2.6.We are measuring the �ow of water through a weir. The liquid �ows througha V-shaped opening. The expression of the volume velo
ity is the following:

Q =
4

15

√

2g
d

l
s5/2,where d is the width of the weir, l is the height, s is the level of the liquid fromthe bottom of the weir, and g is the a

eleration due to gravity. What is themost probable value of the measurement error, if the relative errors of d and lare 1%, and the relative error of s is 3%?2.7. Our task is to measure small distan
es in a me
hani
al system. For thispurpose metal sheets are �xed on the elements we want to measure. This resultsin a 
apa
itor whi
h 
an be used as a part of an RC os
illator. Then the distan
eis 
al
ulated from the frequen
y of this os
illator. The required formulas are:

C = εA/d, f = 1/(2πRC); ε = 8.85 · 10−12 F/m, A = 50 
m2, R = 10 kΩ.The error sour
es are the un
ertainty in the frequen
y measurement and theun
ertainty of the resistor value (1% relative error for ea
h), the other errorsour
es are negle
ted.a) What is the worst 
ase relative error of the distan
e measurement?b) During the test of the equipment it turns out that the 
apa
itan
e of thewires of the 
apa
itor 
annot be negle
ted, whi
h is 
onne
ted in parallelwith the 
apa
itor. What is the error of the measurement if the 
apa
itan
eof the wires is Cp = 45 pF, and the nominal value of the distan
e is
d = 1 mm?2.8. The velo
ity of a liquid in a pipe is measured with ultrasound. We pla
etwo a
ousti
 trans
eivers at the opposite sides of the pipe. The line 
onne
tingthem has an α angle with the 
ross-se
tion of the pipe. The travel time of thesound di�ers in the two dire
tions due to the �ow, and the velo
ity of the liquid
an be 
al
ulated using the following formula:

v =
l

2 sin α

[

1

t1
− 1

t2

]

,where l is the distan
e between the trans
eivers, t1 and t2 are the propagationtimes. In our 
ase l = 0.5 m, and the nominal velo
ity of the �ow is v = 5 m/s,the propagation speed of the sound in the liquid is c = 1500 m/s, and α = 30◦.a) Determine the required a

ura
y (relative error) of the propagation timemeasurements if the allowed maximal error of the velo
ity measurement is5%!



13b) What is the relative error of the velo
ity measurement if the propagationtime measurements have hsyst = 1% systemati
 and hrandom = 50 ppmrandom error?2.9. We are measuring the height of a building based on the air pressure di�er-en
e between the ground �oor and the top of the building. The height 
an be
al
ulated using the so-
alled barometri
 formula:
p(l) = p0e

−
ρ0gl

p0 ,where p is the pressure, p0 = 105 Pa is the pressure at sea-level, ρ0 = 1.29 kg/m3is the sea-level air density, g = 9.81 m/s2 is the a

eleration due to gravity, l isthe height above sea-level.a) Cal
ulate the height of the building if the pressure at the ground �oor is
p1 = 99 kPa, and the pressure at the top of the building is p2 = 98 kPa !b) The measurements are 
arried out in two ways. First we do a measurementin parallel with two di�erent instruments at the top and the ground �oor ofthe building, then we use only one instrument for pressure measurement,�rst at the ground �oor and then at the top. What is the relative error ofthe height measurement if the maximum o�set error of the instruments is
poff = 200 Pa, and the maximum s
aling error of the reading is ε = 0.1%.For a given barometer, the o�set and s
aling errors 
an be 
onsidered
onstant (
an be 
onsidered as systemati
 errors), but the errors 
an bedi�erent a
ross the two barometers.
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Chapter 3Error 
al
ulation II.3.1. ξ is a uniformly distributed random variable in the interval [−1, 1]. Drawits probability density fun
tion, determine its expe
ted value and standard de-viation!3.2. A measured quantity 
an be modeled with a random variable. The proba-bility density fun
tion has a 
onstant value in the [1, 2] and in the [3, 4] intervals,otherwise it is 0. Determine the expe
ted value and standard deviation of therandom variable! Determine the width of the interval in whi
h the measurements
an be found with 90% probability! What are the bounds of this interval?3.3. x is a normally distributed random variable and its value is between 1 and2 with 99.7% probability. Estimate the standard deviation of x!3.4. Smurf village wants to be member of the Smurf Union. For this purposethey have to standardize their main export item, the 
anned blueberries. Sin
eHandy 
onstru
ted a blueberry 
ounter devi
e, every 
an 
ontains exa
tly 120blueberries. The weight of one blueberry is within 4.5 g and 5.5 g with uniformdistribution. Determine the 98% 
on�den
e interval for the weight of one 
an!3.5. We are generating normally distributed samples with 
omputer. A soft-ware generates uniformly distributed random variables in the [0, 1] interval. Anormally distributed sample is 
reated by summing 48 uniformly distributedsamples. Spe
ify the required further operations to transform this variable sothat it has standard normal distribution!3.6. We are measuring a 
onstant value whi
h is disturbed by independentGaussian noise with zero mean. The following six measurements were made:13.6720 9.4190 21.3489 9.7298 14.6773 18.5959.Determine the 90% 
on�den
e interval for the 
onstant value!3.7. The lengths of 3 tables are measured. The results are 100±1 
m, 135±1 
mand 65 ± 0.5 
m. The measurements are unbiased, normally distributed with a95.5% 
on�den
e level. What is the maximal total length of the 3 tables witha 99.7% 
on�den
e level if they are pla
ed one after the other? In other words,15



16 CHAPTER 3. ERROR CALCULATION II.what is the spa
e where the three tables �t with 99.7% probability?3.8. Velo
ity is measured by the measurement of time and displa
ement. Themeasured value for the displa
ement is x = 2000 m ± 0.5%, and for the time itis t = 2000 s ± 0.1%. The distribution of the measurement errors is Gaussian,the 
on�den
e level is 90%. Determine the extended un
ertainty of the velo
ity,if the extension fa
tor is k = 2 !3.9. The value of a resistor is obtained by the measurement of its voltage and
urrent. Two di�erent instruments are used in the measurement. Determine theresistan
e and its standard un
ertainty if the measured voltage is 1 V, its stan-dard deviation is 0.01 V, the measured 
urrent is 1 mA and its standard deviationis 10 µA!3.10. We are generating standard normally distributed samples. A software isused for this purpose whi
h returns the values a or −a with 50-50% 
han
e, and
a = 2. A normally distributed sample is 
reated by generating N = 256 sam-ples and summing them. Give the required operations to transform this randomvariable so that it has standard normal distribution!3.11. The weight of a spe
i�
 
oin is measured. The standard deviation of theweight of various items from the same type of 
oin is assumed to be negligible
ompared to the pre
ision of the weight-measurement. The systemati
 error ofthe measurements is zero, the random error is normally distributed with zeromean. The measurements are done using N = 20 laboratory s
ales of the sametype. The estimate of the weight of the 
oin is 
al
ulated as the average of the20 measurements. Determine the 99% 
on�den
e interval for the weight of the
oin in the following two 
ases:a) the same 
oin is measured with ea
h instrument, the mean of the measure-ments is m1 = 3 g and the estimated standard deviation is s1 = 0.02 g,b) a pa
k of K = 40 
oins is measured with ea
h instrument, the mean ofthe measurements is mK = 120 g and the estimated standard deviation is

sK = 0.02 g!3.12. The pre
ision of 
lo
ks is tested in a 
lo
k fa
tory. The daily systemati
error of the 
lo
ks is assumed to be a 
onstant value. The 
lo
ks also have adaily random error whi
h is a normally distributed variable. The 
lo
k undertest was set to 12.00.00 at noon, then in the next days at noon the displayedtime was re
orded and they have obtained12.00.09 12.00.18 12.00.32 12.00.41 12.00.51 12.01.03 [h,min,se
℄.Determine the 95% 
on�den
e interval for the daily systemati
 error of the 
lo
k!3.13. We would like to determine the average height of the students studyingmeasurement te
hnology. The �rst measurements are
N1 = 10; x̄ = 178 
m; s = 5.2 
m,



17where N1 is the number of measurements, x̄ is the average of the measurements,and s is the empiri
al standard deviation.a) Give the 
on�den
e interval for the average height of the students with
p = 90%!b) How this 
on�den
e interval would 
hange if the above mean and standarddeviation values were 
al
ulated using N2 = 326 measurements?3.14. We measure 
urrent using a digital voltmeter and a normal resistor. The
urrent is determined as the ratio of the voltage and the resistan
e. The valueof the resistor is R = 100.123 ± 0.046 Ω at T0 = 20 ◦C temperature. The mea-surement is done at T = 26 ◦C and the temperature 
oe�
ient of the resistan
eis α = 2 · 10−5 1/◦C. The voltage was measured �ve times and the results are138.75 mV 138.78 mV 138.72 mV 138.69 mV 138.74 mV.a) Determine the estimate and the type-A standard un
ertainty of the volt-age!b) Determine the type-B standard un
ertainty of the voltage if the rangeof the voltmeter is 200 mV and the error of the measurement is h =
0.02% o.v.+0.005% o.r, where �o.v.� stands for �of value� and �o.r.� standsfor �of range�. The error 
omponents in
lude the quantization error as well.
) Determine the best estimate of the voltage and resistan
e, and their stan-dard un
ertainties!d) Determine the value of the measured 
urrent and its standard un
ertaintywith k = 2 extension fa
tor! The number of digits in the result shouldrepresent the a

ura
y of the result!e) Estimate the probability of the 
on�den
e interval to whi
h the aboveresult 
orresponds!f) The error h of the voltmeter was assumed to be a random error. Whydo we 
onsider this error to be random and how 
ould this be shownexperimentally?
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Chapter 4Measurement of voltage and
urrent4.1. A noisy sinewave is measured. Determine the RMS value of the sine wave ifthe measured RMS value (sine + noise) is Um = 6.1 V, and the signal-to-noiseratio is SNR = 14.7 dB!4.2. Determine the expe
ted value (DC 
omponent), RMS value and fundamen-tal frequen
y of the following signals:a) x(t) = A2 sin2(2πf0t);b) x(t) = 1 · sin(3πf0t) − 0.9 · sin(3πf0t);
) x(t) = 12 sin(2πf0t) + 12 sin(6πf0t);d) x(t) = 12| cos(2πf0t)|;e) z(t) =
√

2ej2πf0t!4.3. We are measuring a voltage having a nominal value of U = 160 V, butunfortunately the range of our voltmeters is limited to 100 V. Therefore, twomoving-
oil galvanometers of the same type are 
onne
ted in series. Determinethe worst 
ase error of the measurement if the a

ura
y 
lass of ea
h instrumentis 1 (that is, ho.r. = 1%)!4.4. A digital voltmeter displays 0.0245 V in 2 V range. Estimate the error ofthe measurement if the data sheet or user's manual is not available!4.5. The �rst �ve harmoni
 
omponents of a periodi
 signal were measured. TheRMS values of the 
omponents in dBV (0 dB 
orresponds to 1 V) are:
0 −12 −24 −36 −48 [dB℄.a) Determine the RMS value of ea
h 
omponent in volts!b) Determine the RMS value of the periodi
 signal!19



20 CHAPTER 4. MEASUREMENT OF VOLTAGE AND CURRENT
) Determine the total harmoni
 distortion (THD)!4.6. A non-symmetri
 square wave is generated. One period of the signal is
T = 10 ms long, within one period its value is Up = 5 V for T1 = 4 ms and 0 Vfor T2 = 6 ms.a) Determine the mean value, RMS value, 
rest fa
tor and form fa
tor of thesignal!b) The voltage is measured with an AC-
oupled peak meter. What is thedisplayed value?4.7. We measure a 1 V square wave with an absolute mean meter, a peak meterand a true RMS meter. What do these three voltmeters display?4.8. We are measuring the input resistan
e of a 
ir
uit. The maximum allowedinput voltage of the 
ir
uit is 100 mV. First a voltage generator is 
onne
ted tothe input and both the 
urrent and voltage are measured with two multimetersof the same kind.a) Determine the input resistan
e and the relative error of the measurement ifthe measured voltage is U1 = 87.65 mV in 200 mV range and the measured
urrent is I1 = 01.72 µA in 200 µA range. The error of both measurementis 0.05% of value and 0.002% of range.The above measurement is not a

urate enough, so a potentiometer is 
onne
tedin series between the generator and the input. The value of the potentiometeris 
hanged until the measured signal is U2 = U1/2 whi
h means that the valueof the input resistan
e equals with the resistan
e of the potentiometer.b) Determine the relative error of the measurement of the input resistan
e ifthe voltage is measured with the same instrument and the toleran
e of thepotentiometer is 0.1% !4.9. We are measuring a non-symmetri
 square wave having the period time
T = 500 µs. The signal is 3 V for τ = 100 µs, while for the rest of the period itis 0 V.a) Determine the �rst 10 
omponents of the Fourier series!b) We measure this signal with a true RMS meter. What does the voltmetermeasure and display?
) What does the true RMS meter display if the signal is �ltered with a

fc = 5 kHz lowpass �lter? (The �lter 
an be 
onsidered ideal, all 
ompo-nents below fc get through without any 
hange, while it reje
ts everythingabove.)



Chapter 5Measurement 
ir
uits5.1. Two thermistors are used in a bridge 
ir
uit with 5 V DC voltage supply.The value of the two 
onventional resistors is 100 Ω. The resistan
e of ea
hthermistor is 100 Ω at 20 ◦C temperature. Plot the wiring diagram! Determinethe output voltage of the bridge if the resistan
e of the thermistors in
rease by
∆R = 1 Ω due to the temperature 
hange! Determine the output voltage andthe systemati
 measurement error if ea
h thermistor is 
onne
ted to the bridgeby wires both having 1 Ω resistan
e!5.2. The division ratio of a 
ompensated voltage divider is 1:10. The resistan
e ofthe lower 
omponent is 100 kΩ, and a 100 pF 
apa
itor is 
onne
ted in parallel.Determine the resistan
e and 
apa
itan
e of the upper part of the divider!5.3. The two inputs of a balan
ed analog multiplier are two sine waves with10 V peak value, with the same phase and same frequen
y. The transfer fa
torof the multiplier is k = 0.1 1/V (uout(t) = k uin,1(t) uin,2(t)). Determine the meanvalue, absolute mean value and RMS value of the output signal of the multiplier!5.4. Two thermistors are used to measure the temperature with a measurementbridge.a) How should we 
onstru
t the bridge if the interval to be measured is

0 . . . 50 ◦C and the resistan
e of the thermistors is 100 Ω at 25 ◦C temper-ature?b) Determine the supply 
urrent if the voltage measured a
ross the thermis-tors should be 1 V at 25 ◦C!
) Determine the output voltage at 40 ◦C if the temperature 
oe�
ient of thethermistor is α = 200 ppm/◦C?d) Determine the required voltage gain of the output ampli�er stage if thetemperature interval to be measured should 
orrespond to an output volt-age interval of ±10 V! 21



22 CHAPTER 5. MEASUREMENT CIRCUITS5.5. The e�e
t of a for
e on an iron 
onsole is measured using two strain gaugeresistors. One of the strain gauges elongates (its resistan
e in
reases), whilethe other 
ompresses (its resistan
e de
reases). The strain gauges are used ina measurement bridge whi
h has two other ordinary resistors. The bridge hasvoltage supply.a) Determine how the resistors should be pla
ed in the bridge if the outputvoltage has to be a linear fun
tion of the resistan
e 
hange!b) If the me
hani
al system is unloaded (no stress), the output voltage of thebridge is 0 V. Determine the output voltage if the ex
itation is US = 10 V,the nominal value of the resistors is R = 400 Ω, and the relative 
hange inthe strain gauge resistan
es is 0.2%!
) Determine the worst 
ase measurement error if the toleran
e of ea
h straingauge is 0.2%, and the toleran
e of the 
onventional resistors is 0.5%!5.6. The input signals of a balan
ed multiplier are two sine waves of the samefrequen
y and 10 V peak value. The phase of the se
ond sine wave is shiftedby 90◦ 
ompared to the �rst signal. The transfer fa
tor of the multiplier is
k = 0.1 1/V (uout(t) = k uin,1(t) uin,2(t)). Determine the mean value, absolutemean value and RMS value of the signal at the output of the multiplier!5.7. The two inputs of a balan
ed multiplier are two sine waves. The �rst sinewave has a peak value of 10 V and a frequen
y of 50 Hz, while the se
ond onehas a peak value of 1 V and a frequen
y of 100 Hz. The transfer fa
tor of themultiplier is k = 0.1 1/V (uout(t) = k uin,1(t) uin,2(t)). Determine the mean valueand RMS value of the output of the multiplier!5.8. An inverting ampli�er is built whi
h has a pres
ribed nominal gain of A0 =
−5. We are using R1 = 1 kΩ and R2 = 5.1 kΩ resistors.a) Plot the wiring diagram and determine the systemati
 error of the gain!To redu
e the systemati
 error, R2 is 
onne
ted in parallel with R3 = 270 kΩ.b) Determine the new systemati
 error of the gain!
R1 and R2 are resistors having 0.1% a

ura
y, while R3 is a resistor of 5%toleran
e.
) Determine the relative error of the gain using worst 
ase summation of theerror 
omponents!5.9. A noninverting ampli�er with a gain of A0 = 10 is designed. We are using
R1 = 1 kΩ and R2 = 9.1 kΩ resistors.a) Plot the wiring diagram and determine the systemati
 error of the gain!
R2 is substituted with the serial 
onne
tion of R3 = 6.8 kΩ and R4 = 2.2 kΩ toredu
e the systemati
 error.



23b) Determine the new systemati
 error of the gain!All resistors have a toleran
e of 0.1%.
) Determine the relative error of the gain using worst 
ase summation!5.10. A di�erential ampli�er with a pres
ribed symmetri
 gain of As,0 = 100is designed. The available parts are the following: an operational ampli�er andresistors with values R1 = 1.5 kΩ, R2 = 2.8 kΩ, and R3 = 150 kΩ, R4 = 280 kΩ.a) Plot the wiring diagram and indi
ate the resistors 
learly!b) Determine the 
ommon-mode reje
tion ratio in dB using worst 
ase sum-mation, if the toleran
e of ea
h resistor is 0.2%!5.11. A symmetri
 triangular wave of 1 V peak value and 50 Hz frequen
y ismeasured with a moving 
oil voltmeter. This is done by 
onne
ting the output ofan a
tive one-way re
ti�er to the voltmeter. All the resistors used in the 
ir
uitare of R = 1 kΩ and have 1% toleran
e. The opening voltage of the diode is
Ud = 0.6 V, the full-s
ale range of the voltmeter is 1 V and its a

ura
y 
lass is0.5 (that is, ho.r. = 0.5%). The operational ampli�er is assumed to be ideal.a) Plot the wiring diagram and the waveform at the input of the voltmeter!b) Determine the voltage displayed by the voltmeter!
) Determine the relative error of the measurement using standard summa-tion of the error 
omponents and k = 2 extension fa
tor! Assume a uniformdistribution of the errors of the resistors and the voltmeter.5.12. An instrumentation ampli�er is 
onstru
ted. Besides the 3 operationalampli�ers, 4 resistors of 25 kΩ, 2 of 5 kΩ and 1 pie
e of 5.55 kΩ are available.a) Plot the wiring diagram and pla
e the resistors to obtain a symmetri
 gainof 50!b) Determine the relative systemati
 error of the symmetri
 gain!
) Determine the minimal value (worst 
ase) of the 
ommon mode reje
tionratio if the toleran
e of ea
h resistor is 0.02%!
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Chapter 6Time and frequen
y measurement6.1. Determine the value of the highest frequen
y whi
h 
an be measured usinga digital frequen
y meter if the measuring time is 10 ms and the largest numberthat 
an be represented by the 
ounter is 105 !6.2. Phase-shift is measured based on the Lissajous-plot. The os
illos
ope dis-plays an ellipse whi
h has a verti
al envelope of a = 3 
m and a verti
al se
tionof b = 2.9, the reading un
ertainty is h = 2%.a) Determine the phase-shift if the major axis of the ellipse is (1) in the 1stand 3rd; (2) in the 2nd and 4th quarter!b) Determine the absolute error of the phase measurement!6.3. The frequen
y of a signal of a noiseless sine-wave generator is measuredusing a 
ounter. The nominal frequen
y is fx = 100 kHz and the 
lo
k 
y
letime of the 
ounter is f0 = 10 MHz.a) Determine the relative error of the measurement of the time period if onlyone period of the signal is measured!b) The measurement error 
an be de
reased by measuring more periods ofthe signal (average time period measurement). How many periods have tobe averaged to de
rease the relative error under 10−4?
) If we want to de
rease the relative error even more, the signal 
an notbe assumed noiseless. In this 
ase, measurements have to be averaged.Determine the number of measurements to be averaged to de
rease therelative error until 10−5!d) How many measurements have to be averaged to de
rease the relativeerror to the value of 10−4 if we 
an only measure single periods, as inquestion a)? Determine the distribution of the averaged and non-averagedmeasurement results!6.4. The frequen
y of a periodi
 signal of 1325 Hz nominal value is measuredusing a 
ounter-based period time meter. The measurement time is tm = 0.125



26 CHAPTER 6. TIME AND FREQUENCY MEASUREMENTse
. Determine the relative error of the measurement if the 
lo
k frequen
y is 10MHz and the 
lo
k has no error!6.5. The 
lo
k 
y
le of a programmable frequen
y and period time meter is
f0 = 107 Hz with 10−6 relative error. A noiseless sine-wave of fx = 500 kHz ismeasured.a) Time period or frequen
y measurement should be used if the goal is thehighest measurement a

ura
y during a given amount of tm measurementtime?b) Determine the relative error of the measurement using worst 
ase summa-tion of the error 
omponents, if the measurement time is tm = 200 µs!
) Determine the error if the measurement time is t′m = 20 ms! What kind ofadditional errors should be 
onsidered in this 
ase?6.6. We are using a two-input 
ounter (A and B). The devi
e measures periodand frequen
y with a single input A, and time delay if both inputs are used.Even if the devi
e displays frequen
y, period time is measured internally, and anarithmeti
 unit 
al
ulates the frequen
y. The 
lo
k 
y
le of the 
ounter is f0 =
50 MHz with h = 3 · 10−5 toleran
e. A pure sine-wave of fx = 1.2 kHz nominalfrequen
y is measured whi
h is 
onne
ted to the input of a linear system and toinput A of the instrument. The phase shift at the output of the system is ϕ = 8◦whi
h should be measured as a

urately as possible. The output is 
onne
ted toinput B and time interval is measured. The phase shift is determined based onthe frequen
y and time delay measurements, the measurement time is tm = 0.1in both 
ases.a) Determine the relative error of the frequen
y measurement!b) Determine the absolute error of the measured phase shift if the measure-ment of time delay is started by the rising edge of the signal at input Aand stopped by the rising edge of the signal at input B! During the mea-surement time the time delay is measured in ea
h period of the signal andthese values are averaged by the arithmeti
 unit.
) What do you think, 
an the pre
ision of the measurement of phase shiftbe in
reased by triggering the time interval measurement with the fallingedge of the signal on input A instead of the rising edge?



Chapter 7Impedan
e and powermeasurement7.1.
NGx

Ug

R3 R4
C4

R2Lx

The so-
alled Hay-bridge in the above �gure measures the equivalent parallel
ir
uit model (Lx, Gx) of an indu
tan
e. The adjustable 
omponents are R4and C4, while R2 = R3 = 1 kΩ.a) Determine the 
ondition of balan
e and the values of Lx and Gx if R4 =
100 Ω and C4 = 100 nF at ω = 1000 1/s!b) At ω′ = 2000 1/s the bridge is balan
ed for R′

4 = 25 Ω and C ′

4 = 100 nF. Isthe parallel RL 
ir
uit a good model of the indu
tan
e? If not, determinea more realisti
 model!7.2.We measure the equivalent series RL 
ir
uit of an impedan
e. Determine thequality fa
tor (Q), loss fa
tor (tgδ) and dissipation fa
tor (D) of the impedan
e!Determine the parallel RL, series RC and parallel RC equivalent 
ir
uits!7.3. Plot the wiring diagram for 
onne
ting a resistor to an instrument whi
hsupports four-wire resistan
e measurement! Determine the voltage on ea
h mea-suring lead! The resistor under test is Rx = 1 Ω and the resistan
e of ea
hmeasuring lead is Rs = 100 mΩ (this 
ontains the resistan
e of the plug as well),and the measuring 
urrent is I = 100 mA!27



28 CHAPTER 7. IMPEDANCE AND POWER MEASUREMENT7.4.We measure an R = 10 Ω resistor with four-wire measurement. The measur-ing frequen
y is 100 Hz, the resistan
e of ea
h measuring lead is 0.1 Ω. Determinethe worst-
ase measurement error of the resistan
e measurement if the toleran
eof the 
urrent- and voltage measurement is 0.5%! The ammeter and voltmeter
an be 
onsidered ideal (Rv = ∞ and Ra = 0).7.5. We measure an R = 10 Ω resistor with three-wire measurement. The mea-suring frequen
y is 100 Hz, the resistan
e of ea
h measuring lead is 0.1 Ω. De-termine the worst-
ase measurement error of the resistan
e measurement if thetoleran
e of the 
urrent- and voltage measurement is 0.5%! The ammeter andvoltmeter 
an be 
onsidered ideal (Rv = ∞ and Ra = 0).7.6.We measure an R = 10 Ω resistor with �ve-wire measurement. The measur-ing frequen
y is 100 Hz, the resistan
e of ea
h measuring lead is 0.1 Ω. Determinethe worst-
ase measurement error of the resistan
e measurement if the toleran
eof the 
urrent- and voltage measurement is 0.5%! The ammeter and voltmeter
an be 
onsidered ideal (Rv = ∞ and Ra = 0).7.7. We are 
onstru
ting a model of a magneti
-
ore indu
tan
e. First we mea-sure the equivalent series 
ir
uit with an impedan
e meter at 50 Hz frequen
yand we obtain Re = 0.5395 Ω and Le = 20 mH. Next, the DC resistan
e ofthe 
oil is measured with an ohmmeter, and we read Rs = 0.5 Ω. Determinean appropriate three parameter model for the magneti
-
ore indu
tan
e whi
hrepresents the indu
tan
e, the 
ore losses, and the winding (or 
opper) losses!7.8. We measure an Rx = 100 Ω resistor of a 
ir
uit using a three-wireimpedan
e meter. Both ends of the resistor are 
onne
ted to the ground with
Rg = 1 kΩ resistors. The voltmeter is ideal, (i.e., Rv = ∞), but the inputresistan
e of the ammeter is RA = 1 Ω.a) Cal
ulate the relative error of the measurement of Rx!b) Determine the error 
aused solely by the Rg resistors, despite the three-wire measurement!7.9. We measure power with the 3-voltmeter method. The supply voltage is
UG = 10 V and the value of the referen
e resistor is RR = 100 Ω. The voltagedrops on the referen
e resistor and on the impedan
e under test are both UN =
UZ = 5.8 V.a) Determine the dissipated a
tive power and the value of cos ϕ!b) Determine the relative error of the measurement using k = 2 extensionfa
tor if the a

ura
y 
lass of all voltmeters is 0.5 (ho.r. = 0.5%) and themeasurement range is Umax = 10 V. The errors are uniformly distributedand the error of the referen
e resistor 
an be negle
ted!
) Determine whether the load is indu
tive or 
apa
itive!



297.10. We measure impedan
e with the 3-voltmeter method. The supply voltageis Ug = 10.000 V, the value of the referen
e resistor is RR = 100 Ω, and thevoltage drops on the referen
e resistor and the impedan
e under test are UN =
07.053 V and Ux = 06.877 V, respe
tively.a) Determine the absolute value and phase of the impedan
e!b) The un
ertainty of the voltmeter is unknown, but its display is digital.In 20 V range the voltmeters display exa
tly the same numbers as givenabove, that is, Ug = 10.000 V, UN = 07.053 V, and Ux = 06.877 V. Theun
ertainty of the referen
e resistan
e is 0.01%. Determine the worst 
aserelative error of the absolute value of the impedan
e based on the availableinformation!
) Determine whether the absolute value or the phase of the impedan
e 
anbe measured more pre
isely!7.11.

N R4

Ug

R3
C4

R2Rx Lx

The so-
alled Maxwell�Wien bridge in the above �gure measures the equivalentseries model (Lx, Rx) of an indu
tan
e. The adjustable elements of the bridgeare R4 and C4, and R2 = R3 = 100 Ω.a) Determine the 
ondition of balan
e and the value of Lx and Rx, if at
f = 159.1 Hz frequen
y R4 = 10 kΩ and C4 = 500 nF!b) Determine the quality fa
tor of the indu
tan
e!
) Determine the measurement error of Rx if the loss fa
tor of C4 is D4 =
0.002 at the measuring frequen
y of f = 159.1 Hz!



30 CHAPTER 7. IMPEDANCE AND POWER MEASUREMENT7.12.
Ug

R4

C4

R3

CNCxRx N
The so-
alled S
hering bridge in the above �gure measures the equivalent seriesmodel (Cx, Rx) of a 
apa
itor. The adjustable elements are R3 and C4, and
R4 = 10 kΩ, CN = 10 nF.a) Determine the 
ondition of balan
e and the value of Cx and Rx, if at

ω = 1000 1/s R3 = 909 Ω and C4 = 1.11 nF!b) Determine the loss fa
tor of the 
apa
itor! (tgδ)!
) How 
an this bridge be used to perform an insulation test?7.13. We measure the 
apa
itan
e of a 
apa
itor mounted in a metal box. Thenominal value of the 
apa
itor is 2 nF.a) Between ea
h wire of the 
apa
itor and the metal box there is a 100 pFstray 
apa
itan
e. Determine the relative error of the measurement due tothe stray 
apa
itan
es, when the two wire measurement method is used!b) What kind of measurement layout should be used if we wish to 
an
el theabove error?
) How 
ould we measure the value of the stray 
apa
itan
es?



Chapter 8AD- and DA-
onverters8.1. The referen
e voltage of a b = 12 bit ADC is Ur = 1 V with hr = ±0.05%error. We measure a DC voltage with nominal value Ux = 0.15 V by the ADC.Determine the relative and absolute errors of the measurement in the worst 
ase!8.2. In Switzerland alternate voltage of 16 2/3 Hz is used for heavy rail tra
tion.One of the instruments of an ele
tri
 lo
omotive 
ontains a dual-slope ADC. Howshould we 
hoose the integration time so that the error 
aused by the tra
tion
urrent is eliminated? Do we need to 
hange the integration time if we want touse the instrument in Hungary, where the network frequen
y is 50 Hz?8.3. A dual slope ADC 
onverts voltage in the [0, 1] V range. The referen
evoltage is Ur = 1 V.a) Determine the maximum allowed relative error of the referen
e voltage ifthe ADC has 20 bits resolution! The error of time measurement 
an benegle
ted.b) Determine the integration time if the e�e
t of sinusoidal disturban
es withfrequen
ies 50 Hz and 60 Hz should be suppressed!
) Determine the maximum allowed error of the time measurement to a
hieveif the error of the integration time 
an be negle
ted!8.4. A dual-slope ADC has a referen
e voltage Ur = 2 V with hr = ±80 ppmtoleran
e. Inside the 
onverter the time is measured by a f0 = 20 MHz 
rystalos
illator. The error of the os
illator is negligible. The 
onverter �rst integratesthe input signal for T = 20 ms, whi
h is an integer multiple of the 
lo
k 
y-
le provided by the 
rystal os
illator. Then the referen
e voltage is integratedand the time is measured by 
ounting the full periods of the 
lo
k 
y
le. Themeasured voltage is then 
al
ulated by an arithmeti
 unit.a) Determine the resolution of the ADC in bits!b) Determine the a

ura
y (useful number of bits) of the 
onverter!31
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Chapter 1Basi
 problems1.1. The distan
e taken by the 
ar is the time-integral of the velo
ity fun
tion
v(t), written as

s =
∫ T

0
k f(t)dt,where k is the 
oe�
ient whi
h syn
hronizes the dimensions. Considering that

f(t) is a semi
ir
le, we 
an write
f
(

T

2

)

=
T

2
.A

ording to the �gure

k f
(

T

2

)

= vmax,therefore
k =

2vmax

T
.Be
ause f(t) is a semi
ir
le, the taken distan
e is

s =
k

2

T 2

4
π =

vmaxTπ

4
= 261.8 m.1.2. Although the below expressions are given for ergodi
 signals, the validityof the units is general. Note that in terms of dimensions, integration meansmultipli
ation with the integration variable.a)

P = lim
T→∞

1

T

∫ T

0
x2(t)dt ⇒ [P ] = 1 V2;b)

X(f) =
∫

∞

−∞

x(t)e−j2πftdt ⇒ [X(f)] = 1 Vs = 1 V/Hz;34
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)
R(τ) = lim

T→∞

1

T

∫ T

0
x(t)x(t + τ)dt ⇒ [R(τ)] = 1 V2;d)

S(f) = F{R(τ)} ⇒ [S(f)] = 1 V2s = 1 V2/Hz;e)
E(f) = |X(f)|2 ⇒ [E(f)] = 1 V2s2 = 1 V2s/Hz;f)

Xeff =
√

P ⇒ [Xeff ] = 1 V;g)
XRMS =

√
P ⇒ [XRMS] = 1 V;h)

σ2 = E{(x − µ)2} = E{x2} − µ2 = P − µ2 ⇒ [σ2] = 1 V2;i)
Ψ = E{x2} = P ⇒ [Ψ] = 1 V2;j)

µ = lim
T→∞

1

T

∫ T

0
x(t)dt ⇒ [µ] = 1 V;k) based on the solution of h):

[σ] = 1 V.1.3. The time domain expression of the output is
y(t) =

∫

∞

−∞

h(τ)x(t − τ)dτ.Then we write the above expression in terms of the units of the variables:
[y] = [h][x][t].Whi
h means that the unit of the impulse response is

[h] =
[y]

[x][t]
= 1

A

Vs
= 1 SHz = 1

S

s
.



36 CHAPTER 1. BASIC PROBLEMS1.4. The 
omplex trigonometri
 expression of the signal is
x(t) = A cos(2πft + ϕ) =

A

2

(

ej(2πft+ϕ) + e−j(2πft+ϕ)
)

=

=
A

2
ejϕej2πft +

A

2
e−jϕe−j2πft.The general form of the 
omplex Fourier series is

x(t) =
∞
∑

−∞

Cne
j2πf0tn,where f0 is the fundamental frequen
y of the signal (the time period is T = 1/f0).Sin
e we have only one frequen
y 
omponent in x(t) = A cos(2πft + ϕ), thatwill be the fundamental, that is, f0 = f .We have to set Cn so that the 
omplex Fourier series equals the expressionof x(t). We see that we need two 
omplex exponentails, meaning that only the

C1 and C−1 values will be nonzero, sin
e f0 = f :
Cn =











A/2 ejϕ, if n = 1
A/2 e−jϕ, if n = −1
0 otherwise

.1.5. The fundamental frequen
y is the largest 
ommon divider of the frequen
iesof the 
omponents. The 
omponents have the frequen
y of fa and 2.5fa. (Wehave to divide the angular frequen
ies given in the 
osine fun
tions by 2π toobtain the frequen
ies, that is 2πfa/(2π) and 5πfa/(2π).) Their largest 
ommondivider is f0 = 0.5fa, and the time period is T = 1/f0 = 2/fa.By 
omputing the 
omplex form of x(t) using Euler's formula similarly tothe problem 1.5 (here ϕ = 0), we obtain
x(t) =

A1

2
ej2πfat +

A1

2
e−j2πfat +

A2

2
ej5πfat +

A2

2
ej5πfat.whi
h we again make equal to the general form of the 
omplex Fourier series

x(t) =
∞
∑

−∞

Cne
j2πf0tn.The 
omponent with frequen
y fa is the se
ond harmoni
 (n = 2) of the Fourierseries sin
e fa = 2f0, and the 
omponent having the frequen
y 2.5fa is �fth(n = 5), sin
e 2.5fa = 5f0. Thus, the 
oe�
ients of the 
omplex Fourier seriesare:

Cn =











A1/2, if n = 2,−2
A2/2, if n = 5,−5
0 otherwise

.



1. BASIC PROBLEMS 371.6. By using trigonometri
 identities we get
x(t) =

A1A2

2
{cos[2π(f2 − f1)t] − cos[2π(f2 + f1)t]} ,Therefore the frequen
ies of the two 
omponents are fa = 0.6f1 and fb = 2.6f1.The fundamental frequen
y is the largest 
ommon divider of the frequen
y 
om-ponents of the signal, whi
h is f0 = 0.2f1 in this 
ase. The period time is

T = 1/f0 = 5/f1.Sin
e we were able to �nd the fundamental frequen
y, the signal is periodi
.This is always the 
ase if the frequen
ies have a rational ratio. On the otherhand, for example, a signal having the 
omponents with frequen
ies f1 and πf1is not periodi
.
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Chapter 2Error 
al
ulation I.2.1.
x = 2000 m ± 5% = (2000 ± 10) m = x̂ ± ∆x → x̂ = 2000 m, ∆x = 10 m,

t = 2000 s ± 0.1% = (2000 ± 2) s = t̂ ± ∆t → t̂ = 2000 s, ∆t = 2 s.The estimate of the velo
ity is
v̂ =

x̂

t̂
= 1

m

s
,and the worst 
ase error is

∆v ∼=
∣

∣

∣

∣

∣

∂v

∂x
∆x

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∂v

∂t
∆t

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

1

t̂
∆x

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

− x̂

t̂2
∆t

∣

∣

∣

∣

∣

= 6 · 10−3 m

s
. (2.1)So the result for the velo
ity 
an be written as

v = (1 ± 6 · 10−3)
m

s
= 1

m

s
± 0.6%.The relative value of the error 
an be 
al
ulated dire
tly by dividing (1) with

v̂ = x̂/hatt:
∆v

v̂
∼=
∣

∣

∣

∣

∆x

x̂

∣

∣

∣

∣

+

∣

∣

∣

∣

−∆t

t̂

∣

∣

∣

∣

= (0.5 + 0.1)% = 0.6%.Remark. From this point the approximation signal ∼= will be repla
ed with theequal sign. In addition, the hat sign ˆwill be left behind also. These signs will beused only in the 
ase when the indistinguishability of the a
tual and estimatedvalues would be 
onfusing.2.2. The nominal value and error of ea
h resistan
e is:
Ri = Rnom = 1 kΩ, ∆Ri = ±hRi = ±∆Rnom = ±hRnom = ±10 Ω,where h is the toleran
e (relative error) of the resistors. The total resistan
e is

Re =
100
∑

i=1

Ri = 100Rnom = 100 kΩ.We 
an solve the problem in two ways: we 
an either sum the absolute errors andthen 
onvert to relative error (I), or we 
an sum the relative error 
omponentsdire
tly (II). 39



40 CHAPTER 2. ERROR CALCULATION I.I. The 
hange of the total resistan
e for the 
hange in the ith resistor's valueis
∆Re|i =

∂Re

∂Ri

∆Ri = ∆Ri.The total error for 
ase (a) is
∆Re =

100
∑

i=1

|∆Re|i = 100∆Rnom,
∆Re

Re

=
100∆Rnom

100Rnom

=
∆Rnom

Rnom

= h = 1%.The total error for 
ase (b) is
∆Re =

√

√

√

√

100
∑

i=1

(∆Re)
2
i =

√

100∆R2
nom = 10∆Rnom,

∆Re

Re

=
10∆Rnom

100Rnom

= 0.1
∆Rnom

Rnom

= 0.1h = 0.1%.II. The relative 
hange of the total resistan
e 
aused by the relative 
hangeof the ith resistor's value is
∆Re

Re

∣

∣

∣

∣

i

=
∂Re

∂Ri

Ri

Re

∆Ri

Ri
=

Ri

Re
h =

Rnom

100Rnom
h =

1

100
h.The total error for 
ase (a) is

∆Re

Re
=

100
∑

i=1

∣

∣

∣

∣

∆Re

Re

∣

∣

∣

∣

i

= h = 1%.The total error for 
ase (b) is:
∆Re

Re

=

√

√

√

√

100
∑

i=1

(

∆Re

Re

)2

i

=
√

100 · 10−4h2 = 0.1h = 0.1%.The two ways (I) and (II) lead to the same result as expe
ted.2.3.a) The voltage division ratio is
a =

R2

R1 + R2
=

1

50
= 0.02.b) The error 
an be determined by �rst di�erentiating the expression aboveto obtain the sensitivities

cR1
=

∂a

∂R1
=

−R2

(R1 + R2)2
, cR2

=
∂a

∂R2
=

R1

(R1 + R2)2
.



2. ERROR CALCULATION I. 41The error 
omponents of the division ratio a 
oming from the errors of R1and R2 are
∆a

a

∣

∣

∣

∣

R1

=
cR1

R1

a

∆R1

R1
=

−R2

(R1 + R2)2

R1 + R2

R2
R1

∆R1

R1
=

−R1

R1 + R2

∆R1

R1
,and

∆a

a

∣

∣

∣

∣

R2

=
cR2

R2

a

∆R2

R2
=

R1

(R1 + R2)2

R1 + R2

R2
R2

∆R2

R2
=

R1

R1 + R2

∆R2

R2
.Sin
e the worst 
ase error has to be 
omputed, the above 
omponents aresummed with absolute value:

∆a

a
=

∣

∣

∣

∣

∣

∆a

a

∣

∣

∣

∣

R1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∆a

a

∣

∣

∣

∣

R2

∣

∣

∣

∣

∣

=
R1

R1 + R2

(

∆R1

R1
+

∆R2

R2

)

= 196 ppm.
) 1) For the manufa
turer of the voltage divider, this is a random error.The toleran
e means that the error in ea
h voltage divider may haveany value within known bounds. So the error of the ratio will berandom and it is within the bounds [−196 ppm, 196 ppm ] 
al
ulatedabove using the worst 
ase summation.2) For the user this is a systemati
 error. Our divider is made of resis-tan
es with �xed values, so the deviation from the nominal value ofthe ratio is always the same and 
an be taken into a

ount duringmeasurements (that is, the voltage divider 
an be 
alibrated).2.4. The solution is exa
tly the same as that of problem 2.3, where we had100 resistors instead of 4. Here we solve the problem using absolute errors. Theabsolute errors of the resistors are
∆Ri = hiRiwhi
h are 0.1 ohm for all the resistors. The net resistan
e is

Re = R1 + R2 + R3 + R4.The sensitivities are
ci =

∂Re

∂Ri

= 1,thus, the total absolute error of Re with probabilisti
 summation is
∆Re =

√

∆R2
1 + ∆R2

2 + ∆R2
3 + ∆R2

4 = 0.2 Ω,whi
h is then 
onverted to relative error:
∆Re

Re
= 0.018%.



42 CHAPTER 2. ERROR CALCULATION I.2.5. The ina

ura
y in the value of the total resistan
e 
an be tra
ed ba
k tothe errors in ea
h value of the used resistors, and in addition, a systemati
 error,sin
e the total resistan
e of the parallel 
onne
tion is:
Re =

1
∑4

i=1
1
Ri

= 900.09 Ωinstead of the required Rnom = 900 Ω nominal value, so the realization has a
hsyst = 0.01%systemati
 error. The random error is 
omputed by �rst taking the derivative of

Re to obtain the sensitivities:
ci =

∂Re

∂Ri

= − 1
(

1
∑

4

j=1

1

Rj

)2

(

− 1

R2
i

)

=
R2

e

R2
iThe relative error 
omponents are

∆Re

Re

∣

∣

∣

∣

Ri

= ci
Ri

Re

∆Ri

Ri

=
Re

Ri

∆Ri

Riand thus the worst 
ase relative random error is
hrand =

4
∑

i=1

∣

∣

∣

∣

∣

∆Re

Re

∣

∣

∣

∣

Ri

∣

∣

∣

∣

∣

=
4
∑

i=1

∣

∣

∣

∣

Re

Ri

∆Ri

Ri

∣

∣

∣

∣

= 0.036%.To determine the worst 
ase total error, the random and systemati
 errors haveto be summed:
∆Re

Re
= htotal = hsyst ± hrand = 0.01% ± 0.036%.Note that sin
e we know the sign of the systemati
 error, this leads to an asym-metri
 error interval

htotal = [−0.026%, 0.046%].If we want to express the error with a single number, we 
hoose the bound withthe larger absolute value, that is
|htotal| ≤ 0.046%.2.6. First we rewrite the formula of the measured volume velo
ity as

Q =
4

15

√

2g
d

l
s5/2 = Kd1l−1s5/2.Sin
e this is a produ
t of variables at di�erent powers, the resulting relativeerrors 
an be simply 
omputed by s
aling the input errors with the 
orrespondingpowers:

∆Q

Q

∣

∣

∣

∣

∣

d

= 1
∆d

d
,
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∆Q

Q

∣

∣

∣

∣

∣

l

= −1
∆l

l
,

∆Q

Q

∣

∣

∣

∣

∣

s

=
5

2

∆s

s
.To determine the most probable value of the error, the 
omponents have to besummed quadrati
ally:

∆Q

Q
=

√

√

√

√

(

∆d

d

)2

+

(

∆l

l

)2

+
(

5

2

∆s

s

)2

= 7.63%.2.7. Using the given expressions we obtain
d =

εA

C
= 2πRfεA = Kf 1R1. (2.2)a) The worst 
ase error 
an be 
omputed simply noti
ing that Eq. (2.2) isthe produ
t of variables at the �rst power, thus we have

∆d

d
=

∣

∣

∣

∣

∣

∆f

f

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∆R

R

∣

∣

∣

∣

= 2%.b) The 
apa
itan
e Cp whi
h 
onne
ts in parallel with C is added to the valueof the 
apa
itor, thus, we meausre Cm = C +Cp. This 
auses a systemati
error, whi
h has a known value so it 
an be 
ompensated:
C = Cm − Cp =

1

2πfR
− Cp.A

ordingly, Eq. (2.2) 
hanges in the following way:

d =
εA

C
=

2πRfεA

1 − Cp2πRf
. (2.3)Sin
e the fun
tion has 
hanged, the e�e
ts of the frequen
y measurementerror and of the resistor un
ertainty have to be re
al
ulated. First thee�e
t of the frequen
y error is evaluated (the details of the derivation areomitted here):

∆d

d

∣

∣

∣

∣

∣

f

=
1

1 − Cp2πRf

∆f

f
.Using the above expression the a
tual value of the error 
an be deter-mined. However, the expression 
ontains an intermediate parameter (thefrequen
y) whi
h is the fun
tion of the variable we want to measure. Thevalue of f 
an be expressed from (2.3), so the expression of the error 
anbe simpli�ed as:

∆df

d
=

εA + Cpd

εA

∆f

f
=

C + Cp

C

∆f

f
, (2.4)



44 CHAPTER 2. ERROR CALCULATION I.It 
an be seen that when C is small 
ompared to Cp (d is large), the erroris mu
h larger than for 
ase a), where it was simply ∆f/f .Sin
e R in Eq. (2.3) is the same position as f , the derivations for R wouldresult in an expression having the same form as Eq. (2.4). As a result,
∆R/R has to be multiplied with the same parameter in the total error, sothe worst 
ase error is:

∆d

d
=

C + Cp

C

[

∆f

f
+

∆R

R

]

= 4.03%.2.8. The sensitivities are
c1 =

∂v

∂t1
=

l

2 sin α

(

− 1

t21

)

c2 =
∂v

∂t1
=

l

2 sin α

(

1

t22

)

,and thus the error 
omponents be
ome
∆v

v

∣

∣

∣

∣

t1

= c1
t1
v

∆t1
t1

= − t2
t2 − t1

∆t1
t1

∆v

v

∣

∣

∣

∣

t2

= c2
t2
v

∆t2
t2

=
t1

t2 − t1

∆t2
t2

.a) The error of the velo
ity measurement in the worst 
ase is
∆v

v
=
∣

∣

∣

∣

t2
t2 − t1

∆t1
t1

∣

∣

∣

∣

+
∣

∣

∣

∣

t1
t2 − t1

∆t2
t2

∣

∣

∣

∣

.Sin
e t1 ≈ t2, and we 
an assume that the two time measurements havethe same a

ura
y ∆t1/t1 = ∆t2/t2 = ∆t/t, we 
an write
∆v

v
= 2

∣

∣

∣

∣

t2
t2 − t1

∣

∣

∣

∣

∆t

t
. (2.5)By rearranging the original expression of v we obtain

t2 − t1
t2t1

=
v2 sinα

l
,where we substitute t1 ∼= l/c in the numerator:

t2 − t1
t2(l/c)

∼= v2 sinα

l
,giving

t2 − t1
t2

∼= v

c
2 sin α ∼= 1

300
.
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an get ba
k to the expression of velo
ity error Eq. (2.5):
∆v

v
= 2

∣

∣

∣

∣

t2
t2 − t1

∣

∣

∣

∣

∆t

t
= 600

∆t

t
.Solving this for ∆t/t gives

∆t

t
=

1

600

∆v

v
= 8.33 · 10−5.b) For the systemati
 error, the error 
omponents already 
omputed in b)have to be summed with sign (not by absolute value):

∆v

v

∣

∣

∣

∣

syst
= − t2

t2 − t1

∆t1
t1

∣

∣

∣

∣

syst

+
t1

t2 − t1

∆t2
t2

∣

∣

∣

∣

syst

=
t1 − t2
t2 − t1

hsyst = −hsyst = 1%.For the random error we have already developed the expression Eq. (2.5),now with a given hrand = 50 ppm error in time measurement we get
∆v

v

∣

∣

∣

∣

rand
= 2

∣

∣

∣

∣

t2
t2 − t1

∣

∣

∣

∣

hrand = 3%.The total error is the sum of the systemati
 and random error 
omponents:
∆v

v
=

∆v

v

∣

∣

∣

∣

syst
±
∣

∣

∣

∣

∆v

v

∣

∣

∣

∣

rand

∣

∣

∣

∣

= [−2%, 4%],whi
h is again an asymmetri
 error interval. To express the error with asingle number, we may write
∣

∣

∣

∣

∆v

v

∣

∣

∣

∣

≤ 4%.2.9.a) The pressure at height l1 is
p1 = p(l1) = p0e

−
ρ0gl1

p0 ,whi
h leads to
p1

p0
= e

−
ρ0gl1

p0 ,

ln p1 − ln p0 = −ρ0gl1
p0

.Thus,
l1 =

p0

ρ0g
(ln p0 − ln p1)and similarly for l2

l2 =
p0

ρ0g
(ln p0 − ln p2)So the height of the building is

l = l2 − l1 =
p0

ρ0g
(ln p1 − ln p2) = 80.22 m.
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c1 =

∂l

∂p1
=

p0

ρ0g

1

p1

c2 =
∂l

∂p2

=
p0

ρ0g

(

− 1

p2

)

.The 
omponents of the error are thus
∆l

l

∣

∣

∣

∣

∣

p1

= c1
p1

l

∆p1

p1
=

1

ln p1 − ln p2

∆p1

p1

∆l

l

∣

∣

∣

∣

∣

p2

= c2
p2

l

∆p2

p2

= − 1

ln p1 − ln p2

∆p2

p2

.The error of the height measurement is:
∆l

l
=

1

ln p1 − ln p2

(

∆p1

p1
?
∆p2

p2

)

= c (e1 ? e2),where at the pla
e of the question mark the summation has to be donewith respe
t to the 
hosen method (e.g., worst 
ase or systemati
).To evaluate the error 
omponents �rst we study the 
ase when two inde-pendent instruments are used:
e1 =

poff,I

p1
+ εI, e2 =

poff,II

p2
+ εII.where poff,I and poff,II are the o�set errors, ε1 and ε2 are the s
aling errorsusing instrument I and II, respe
tively. Sin
e the errors are independent(we use two di�erent barometers), they have to be summed by the prob-abilisti
 or by the worst 
ase method. We 
hoose worst 
ase summationsin
e we have only a few (two) error 
omponents:

∆l

l
= c (|e1| + |e2|) ≈ 60%.On the other hand, if the same instrument is used in the two measurements:

e1 =
poff,I

p1

+ εI, e2 =
poff,I

p2

+ εI.Using index I refers to the use of the same instrument. The errors are notindependent sin
e we are using the same barometer. Thus, they have tobe summed with their signs:
∆l

l
= c |e1 − e2| = c

∣

∣

∣

∣

∣

poff,I

p1
+ εI −

poff,I

p2
− εI

∣

∣

∣

∣

∣

= 0.2%.The above results lead to the following 
onsequen
es:



2. ERROR CALCULATION I. 47� Sin
e the pressure di�eren
e is small, c has a large value, so even asmall error in the measurement of the pressure results in a high errorin the measurement of the height.� When using the same instrument, the s
aling errors εI 
an
el out
ompletely, sin
e the expression of the height 
ontains the ratio ofthe pressures. On the other hand, the o�set errors poff,I of the twomeasurements do not 
ompletely 
an
el to zero, but still the e�e
tof o�set is signi�
antly redu
ed. In summary, sin
e the measurementerrors are systemati
, it is a better 
hoi
e to use a single barometerfor both pressure measurements.Further remarks. The given error 
omponents 
orrespond to the spe
i�
a-tion of the instrument, whi
h are the same for every instrument of the sametype. Sin
e the value of the a
tual o�set error is not known (
an be anywherewithin the given spe
i�
ation), 
orre
tions 
an not be applied to the result of themeasurement. The a
tual s
aling error 
an also be anywhere within the giveninterval (e.g. ±0.1%), so this 
annot be 
orre
ted either.
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Chapter 3Error 
al
ulation II.3.1. The probability density fun
tion is the following:
x

0.5
−1 1

f(x)

The expe
ted value is
E{x} =

∫

∞

−∞

xf(x)dx =
∫ 1

−1
x 0.5 dx =

[

x2

4

]1

−1

= 0.The standard deviation 
an be 
al
ulated using Steiner's theorem as
σ2

x = E{x2} − E2{x} = E{x2},sin
e the expe
ted value is 0. The varian
e is
E{x2} =

∫

∞

−∞

x2f(x)dx =
∫ 1

−1
x2 0.5 dx =

[

x3

6

]1

−1

=
1

3
,so the standard deviation be
omes

σx =

√

1

3
= 0.5774.3.2. The probability density fun
tion is the following:

x

f(x)0.5
4321 49



50 CHAPTER 3. ERROR CALCULATION II.The expe
ted value 
an be read from the �gure, sin
e it is always the middle ofthe 
urve for symmetri
 distributions. It 
an also be 
al
ulated by the followingintegral:
E{x} =

∫

∞

−∞

xf(x)dx =
∫ 2

1
x 0.5 dx +

∫ 4

3
x 0.5 dx =

[

x2

4

]2

1

+

[

x2

4

]4

3

= 2.5.The standard deviation 
an be determined using Steiner's theorem as
σx =

√

E{x2} − E2{x} =
√

7.33 − 6.25 = 1.04,sin
e
E{x2} =

∫

∞

−∞

x2f(x)dx =
∫ 2

1
x2 0.5 dx +

∫ 4

3
x2 0.5 dx =

[

x3

6

]2

1

+

[

x3

6

]4

3

= 7.33.The interval in whi
h the measurements 
an be found with 90% probability 
anbe read from the �gure: it is an interval in whi
h the integral is 0.9. Any intervalhaving the width d = 2.8 is appropriate within the interval [1, 4]. Thus, thebounds of the interval are [1 + x, 3.8 + x], where 0 ≤ x ≤ 0.2.3.3. Sin
e the distribution is normal, the 99.7% 
on�den
e level 
orresponds to
±3σ. This means that

σ =
1

6
= 0.1667.3.4. The expe
ted value and standard deviation of one blueberry is

µ1 =
4.5 + 5.5

2
g = 5 g, σ1 =

5.5 − 4.5√
12

g =
1√
12

g.The standard deviation was determined by assuming uniform distribution. Theexpe
ted value, varian
e and standard deviation of the weight of N = 120 blue-berries are
µ120 = Nµ1 = 600 g

σ2
120 = Nσ2

1 = 120
1

12
g2 = 10 g2

σ120 =
√

Nσ1 = 3.162 g.Sin
e we need to give a 
on�den
e interval with p = 1 − b = 0.98 = 98%probability, then, assuming a symmetri
 interval, b/2 =1% is the probability thatthe random variable is higher than the upper bound µ120 +∆m, and b/2 =1% isthe probability that it is smaller than the lower bound µ120−∆m. Sin
e we weresumming 120 independent random variables with uniform distribution, we 
anassume that the sum has a normal distribution. Therefore we need the zb/2 = z0.01value of a standard normal distribution whi
h 
orresponds to 1% probability (the



3. ERROR CALCULATION II. 51area between zb/2 and +∞ is b/2 = 0.01). However, the normal distribution tablein the Appendix on page 103 lists probability values between 0 and zb/2, so wea
tually look for a probability value of 1/2 − b/2 = 0.5 − 0.01 = 0.49 in thetable. This value is
z0.01 = 2.33.Therefore the width of the symmetri
 
on�den
e interval is

∆m = σ120z0.01 = 7.3675 g.The 
on�den
e interval be
omes:
P [µ120 − ∆m < m < µ120 + ∆m] = 98%,

P [592.63 g < m < 607.37 g] = 98%,meaning that 98% of the 
ans have a weight between 592.63 g and 607.37 g,while only 1% are below, and 1% are above.3.5. The expe
ted value and varian
e of the random variable xi whi
h is uni-formly distributed in [0, a], a = 1:
µ1 =

a

2
= 0.5, σ2

1 =
a2

12
= 0.8333,where µ1 is the expe
ted value and σ1 is the standard deviation. Summing N =

48 independent samples:
µN = Nµ1 = 24, σ2

N = N
a2

12
=

48

12
= 4.Sin
e we are summing a large number of independent uniformly distributed ran-dom variables, we 
an assume that the resulting distribution is normal. However,it is not a standard normal distribution, sin
e its mean is not 0, and its standarddeviation is not 1. To obtain standard normal distribution, the above variablehas to be standardized. First, we subtra
t the expe
ted value µN and by this weshift the probability density fun
tion (PDF) to the origin. Then we divide by σNwhi
h s
ales the PDF to have a unity standard deviation. Thus, the followingoperations are required:First we sum the samples

xN =
N
∑

1

xiand then apply the operation
z =

xN − µN

σN
=

xN − 24

2to get a standard normally distributed variable.Remark I. The probability density fun
tion is a mathemati
al abstra
tion.In reality we have samples and the distribution of these samples 
onverges to



52 CHAPTER 3. ERROR CALCULATION II.the theoreti
al PDF. If we want to 
hange the distribution of a given set ofsamples, then we 
an only apply the transformation on the samples, and not onthe (only theoreti
ally existing) PDF. For example, if we want to shift the PDFof a variable to the left by 5, we have to subtra
t 5 from the random variable.Remark II. Sin
e the pseudo-random generator fun
tions (e.g., rand fun
tionin C) in 
omputers do indeed generate a uniformly distributed random number,this is a pra
ti
al way to go if you need a normally distributed variable.3.6. The measured data is a 
onstant value disturbed by a normally distributednoise with zero mean. This means that the 
onstant value is a
tually the expe
tedvalue of the measured data, and the best estimate for this 
onstant is the average.Therefore, we will 
onstru
t a 
on�den
e interval for the expe
ted value.The estimate of the expe
ted value and the empiri
al standard deviation 
anbe 
al
ulated by the following formulas:
µ̂ =

1

N

N
∑

i=1

xi = 14.5738, s =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − µ̂)2 = 4.7527.where µ̂ is the estimate of the expe
ted value, s is the empiri
al standard devi-ation, and N = 6 is the number of samples. The expe
ted value and standarddeviation of the average µ̂ is:
E{µ̂} = µ, σµ̂ =

s√
Nsin
e averaging de
reases the standard deviation by 1/

√
N . The standard devi-ation was estimated using the samples, therefore we have to use the Student-tdistribution to determine the 
on�den
e level.Sin
e we want to determine a symmetri
 interval with 1 − b = 90% proba-bility, we need the value tN−1,b/2 of the N − 1 = 5 degrees of freedom Student-tvariable whi
h the random variable 
an only ex
eed with b/2 probability (thearea between tN−1,b/2 and +∞ is b/2 = 0.05) From the table on page 104 weobtain:

t(5,0.05) = 2.015.So the width of the symmetri
 
on�den
e interval is
∆µ̂ = σµ̂t(5,0.05) =

s√
N

t(5,0.05) = 3.9096.and the 
on�den
e interval is
P

[

µ̂ − s√
N

t(5,0.05) < µ < µ̂ +
s√
N

t(5,0.05)

]

= 90%.After substitution:
P [10.6642 < µ < 18.4835] = 90%,meaning that the 
onstant value we are measuring is between 10.6642 and18.4835 with 90% probability.



3. ERROR CALCULATION II. 53Remark. If the question were for an interval within the noisy data are with90% probability, then we would have to 
onstru
t the 
on�den
e interval for thedata xi and not for the expe
ted value µ̂. In that 
ase we don't divide s with√
N and thus ∆x = st(5,0.05). So the 
on�den
e interval is:

P
[

µ̂ − s t(5,0.05) < µ < µ̂ + s t(5,0.05)

]

= 90%.After substitution we get
P [4.9971 < µ < 24.1505] = 90%,meaning that 90% of the randommeasured data are between 4.9971 and 24.1505.(We note that for N = 6 this is only true approximately, but for larger N theabove pro
edure 
an be used to give a 
on�den
e interval for the data xi withgood a

ura
y.)3.7. The 95.5% 
on�den
e level 
orresponds to a ±2σ interval, therefore

σ1 =
∆x1

2
= 0.5 cm, σ2 =

∆x2

2
= 0.5 cm, σ3 =

∆x3

2
= 0.25 cm.The expe
ted value and standard deviation of the total length of the three tablesare

µe = µ1 + µ2 + µ3 = 300 cm,

σ2
e = σ2

1 + σ2
2 + σ2

3 → σe = 0.75 cm.Sin
e the length of ea
h table is a normally distributed random variable, the totallength is also su
h a quantity. We have to determine the value that the totallength of the three tables does not ex
eed with 99.7% probability. This 
onditionlimits only the maximal length of the three tables, and not the minimum, thusa one-side probability interval should be 
omputed:
P
[

l < µe + σez(0.003)

]

= 99.7%.The table of the standard normal distribution on page 103 gives the values for thepositive side of the density fun
tion, thus, we are looking for 0.5−0.003 = 0.497,whi
h is:
z(0.003) ≈ 2.74.As a result, the total length of the three tables is less than

µe + σez(0.003) = 302 cmwith 99.7% probability.3.8. The errors have to be 
onverted to standard un
ertainties (standard devi-ations) by dividing with the extension fa
tor z 
orresponding to the 
on�den
e



54 CHAPTER 3. ERROR CALCULATION II.level. Sin
e the 
on�den
e level 1 − b is 90%, and the interval is symmetri
, weuse b/2 = 0.05. From the table, zb/2 = 1.64, and we obtain
u(x) = σx =

∆x

z0.05

= 6.1 m, u(t) = σt =
∆t

z0.05

= 1.22 s.The velo
ity and the sensitivities are
v =

x

t
, c1 =

∂v

∂x
=

1

t
, c2 =

∂v

∂t
= − x

t2
.The total standard un
ertainty be
omes

u(v) = σv =
√

(c1u(x))2 + (c2u(t))2 = 0.0031 m/s.Thus, ∆v = ku(v) = 0.0062 m/s. The velo
ity given in a standardized form is
v = 1.0000(62) m/s.3.9. The value of the standard un
ertainties equal to the standard deviations:

u(U) = σU , u(I) = σI .The formulas of the resistan
e and the sensitivities are
R =

U

I
, cU =

∂R

∂U
=

1

I
, cI =

∂R

∂I
= −U

I2
.So the value of the resistan
e and its standard un
ertainty are

R = 1 kΩ, u(R) = σR =
√

(cUu(U))2 + (cIu(I))2 = 0.0141 kΩ.3.10. The solution is similar to the problem of 3.5. The expe
ted value of thegiven dis
rete distribution is obtained by summing the out
omes weighted bythe probabilities:
µ1 = aP{a} + −aP{−a} = 2 · 0.5 − 2 · 0.5 = 0,and the varian
e is

σ2
1 = E{(x − µ1)

2} = (a − µ1)
2P{a} + (−a − µ1)

2P{−a} = a2 = 4,and thus the standard deviation is σ1 = 2. We sum N independent samples toget xN , for whi
h we have
µN = 0, σ2

N = Nσ2
1 = 1024.



3. ERROR CALCULATION II. 55Thus, the sum xN has zero mean, but the standard deviation is not unity, but
σN = 32. Therefore, the sum has to be divided by the standard deviation

z =
xN

σN
=

xN

32to get standard normal distribution.3.11. Student-t distribution has to be used sin
e no a priori knowledge wasavailable about the expe
ted value and standard deviation, but it had to beestimated from the measured data.a) The 
on�den
e interval has to determined for the average of the mea-surements, sin
e we want an estimate for the nominal value of the 
oin.Therefore, the estimated standard deviation s1 has to be divided by thesquare root of the number of samples. The 
on�den
e interval be
omes
P

[

m1 −
s1√
N

t(N−1,b/2) < m < m1 +
s1√
N

t(N−1,b/2)

]

= 1 − b,That is
P [2.9872 g < m < 3.0128 g] = 99%.b) For the se
ond 
ase, let's �rst write the 
on�den
e interval for the pa
k of

K = 40 
oins:
P

[

mK − sK√
N

t(N−1,b/2) < K m < mK +
sK√
N

t(N−1,b/2)

]

= 1 − b.This 
an be transformed into the 
on�den
e interval of one 
oin by dividingall the sides of the inequality by K:
P

[

mK

K
− sK

K
√

N
t(N−1,b/2) < m <

mK

K
+

sK

K
√

N
t(N−1,b/2)

]

= 1 − b,After substitution, we obtain
P [2.99968 g < m < 3.00032 g] = 99%.Remark. We see that averaging de
reases the standard deviation as a fa
tor

1/
√

N , while measuring K 
oins in the same time by a fa
tor of 1/K. Thisdi�eren
e 
an be explained be
ause in the averaging 
ase we take N separatemeasurements with independent errors, and thus the total error (standard devi-ation) be
omes √N times larger when summing N measurements, whi
h is thendivided by N to give the average, and √
N/N = 1/

√
N . On the other hand,when we measure K 
oins together, only one measurement is made with a singleerror, but this is still divided by K to get the mass of one 
oin.A similar pra
ti
al problem would be how to measure the weight of an A4paper: here again it is better to measure a pa
kage of 500 sheets together anddivide by 500, instead of measuring 500 sheets separately and averaging, not to



56 CHAPTER 3. ERROR CALCULATION II.mention that it takes mu
h less time.3.12. The error of ea
h day 
an be 
al
ulated as the di�eren
e between the timesdisplayed by the 
lo
ks at noon on 
onse
utive days:9 9 14 9 10 12 [se
℄Sin
e we are interested in the 
onstant 
omponent of the total error (the sys-temati
 error), we need to estimate the expe
ted value of the daily error. Theestimates of the expe
ted value and the standard deviation are
µ̂ =

1

N

N
∑

i=1

xi = 10.5 s, s =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − µ̂)2 = 2.0736 s.We have estimated the standard deviation, therefore we use a Student distribu-tion in the 
on�den
e interval:
P

[

µ̂ − s√
N

t(N−1,b/2) < µ < µ̂ +
s√
N

t(N−1,b/2)

]

= 1 − b.

P

[

µ̂ − s√
6
t(5,0.025) < µ < µ̂ +

s√
6
t(5,0.025)

]

= 95%.where t(5,0.025) = 2.571. That is
P [8.3235 s < µ < 12.6765 s] = 95%.3.13.a) Sin
e we are measuring students, we have to use the Student distribution.

⌣̈. Seriously, the real reason why we use the Student distribution be
ausewe have estimated the standard deviation. The 
on�den
e interval is
P

[

µ̂ − s√
N1

t(N1−1,b/2) < µ < µ̂ +
s√
N1

t(N1−1,b/2)

]

= 1 − b,

P

[

µ̂ − s√
9
t(9,0.05) < µ < µ̂ +

s√
9
t(9,0.05)

]

= 90%.After substitution, we get
P [174.99 cm < µ < 181.01 cm] = 90%.b) Here we utilize the fa
t that for large N Student distribution 
onverges tonormal distribution:

t(325,0.05)
∼= z(0.05) = 1.64.Thus, the 
on�den
e interval be
omes

P

[

µ̂ − s√
N2

z(0.05) < µ < µ̂ +
s√
N2

z(0.05)

]

= 90%,whi
h is
P [177.53 cm < µ < 178.47 cm] = 90%.



3. ERROR CALCULATION II. 573.14. The estimate of the 
urrent is
Î =

Û

R̂
.The sensitivities are

cU =
∂I

∂U
=

1

R
,

cR =
∂I

∂R
= − U

R2
.a) To determine the type-A standard un
ertainty of the voltage U �rst itsstandard deviation is estimated as

Û =
1

5

5
∑

i=1

Ui = 138.736 mV, s =

√

√

√

√

1

4

5
∑

i=1

(Ui − Û)
2

= 33.616 µV.Sin
e we obtain the estimate of the voltage by averaging N = 5 measure-ments, the standard un
ertainty is
u(U)A =

s√
5

= 15.033 µV.b) To determine the type-B standard un
ertainty, �rst the spe
i�
ation ofthe manufa
turer has to be studied. The quantization error is a part of thetype-B un
ertainty, so we don't have to 
onsider it separately. Thereforewe have
∆Um = Ûho.v. + ho.r.Umax.We assume that the error is uniformly distributed. Therefore, the type-Bstandard un
ertainty 
an be 
al
ulated using the expression of the stan-dard deviation of a uniformly distributed random variable:

u(U)B =
∆Um√

3
= 21.793 µV.
) The best estimate of the voltage is the average Û = 138.736 mV. Thetotal un
ertainty of U is the quadrati
 sum of the type-A and type-Bun
ertainties:

u(U) =
√

u2(U)A + u2(U)B = 26.475 µV.To determine the a
tual value of the resistan
e a temperature 
orre
tionsis needed. Its expe
ted value and best estimate after the 
orre
tion usingthe temperature-
oe�
ient is:
R̂ = R0[1 + α(T − T0)] = 100.131 Ω,



58 CHAPTER 3. ERROR CALCULATION II.where R0 is the resistan
e at T0 = 20 ◦C, R and T are the a
tual resistan
eand temperature, respe
tively. (Note that this 
orre
tion will not be usedwhen 
omputing the un
ertainty sin
e it is the �error of the error�.)Only the type-B un
ertainty 
an be 
al
ulated for the normal resistan
e.By assuming uniformly distributed measurement error we get
u(R) = u(R)B =

∆R√
3

= 0.0266 Ωwhere ∆R = 0.046 Ω is the random error of the resistan
e.d) The estimate of the 
urrent and its standard un
ertainty is
Î =

Û

R̂
= 1.38554 mA, u(I) =

√

c2
Uu2(U) + c2

Ru2(R) = 4.5323 · 10−4 mA.The 
urrent given with its extended un
ertainty with k = 2 is
I = 1.38554(91) mA.e) The extended un
ertainty with k = 2 above represents a 95% 
on�den
einterval, under the assumption of normal distribution. The un
ertaintyhas three sour
es in this problem: the two type-B un
ertainties were de-termined assuming uniform distribution, the distribution of the type-Aun
ertainty of the voltage measurement is unknown, but it 
an be as-sumed as Gaussian. If more random variables are added, their probabilitydensity fun
tions have to be 
onvolved. The 
onvolution of the above dis-tributions is only approximately normal. In pra
ti
e, the sum of 10-12uniformly distributed random variables with a similar standard deviation
an be assumed to be Gaussian.f) The error of the voltmeter is a 
onstant whi
h does not 
hange during theshort time of the measurement. This error takes value inside the intervalspe
i�ed by the manufa
turer. This interval was determined based on theparts of the instrument and observations during the testing. While theerror is not random itself (it is 
onstant), it is still treated as a randomvariable sin
e we don't know where the a
tual error lies within the intervalspe
i�ed by the manufa
turer. The randomness of the error 
an only beproven by taking measurements with more instruments of the same kind.



Chapter 4Measurement of voltage and
urrent4.1. The de�nition of the signal-to-noise ratio is
SNR = 10 lg

Psignal

Pnoise
.So the ratio of the signal power and noise power is:

a =
U2

x

U2
n

= 10SNR/10 ∼= 29.51.sin
e Psignal = U2
x and Pnoise = U2

n. The RMS value of the measured signal Um isthe quadrati
 sum of the RMS values of the signal and noise 
omponents:
U2

m = U2
x + U2

n = U2
x +

U2
x

a
,so the expression for the noiseless signal Ux be
omes

Ux =

√

√

√

√

U2
m

1 + 1/a
= 6 V.4.2. The expe
ted value is the mean value of the signal, thus, it is the same asthe DC 
omponent. The RMS value 
an be 
al
ulated from the RMS value ofthe di�erent frequen
y 
omponents with quadrati
 summation.The DC 
omponent has zero frequen
y and its RMS value equals the DCvalue. The RMS value of a sine wave is its peak value s
aled by 1/

√
2. The fun-damental frequen
y of the signal is the largest 
ommon divider of all frequen
y
omponents (see also problems 1.5 and 1.6).a)

x(t) = A2 sin2(2πf0t) = A2/2(1 − cos(4πf0t)).59



60 CHAPTER 4. MEASUREMENT OF VOLTAGE AND CURRENTSo:
x0 = A2/2, xRMS =

√

√

√

√

(

A2

2

)2

+

(

1√
2

A2

2

)2

=
√

3/8A2, fx = 2f0.b)
x(t) = 1 · sin(3πf0t) − 0.9 · sin(3πf0t) = 0.1 sin(3πf0t)

x0 = 0, xRMS =
0.1√

2
= 0.0707, fx = 1.5f0.(The frequen
y is obtained by dividing the angular frequen
y 3πf0 by 2π.)
)

x0 = 0, xRMS =

√

√

√

√

(

12√
2

)2

+

(

12√
2

)2

= 12, fx = f0.d) Sin
e for real signals |x(t)|2 = x2(t), the absolute value sign does notin�uen
e the RMS value, therefore it is the same as for a normal sine wave(1/√2 times the peak value). Moreover, the mean value equals the absolutemean of a normal sine wave (2/π times the peak value).Sin
e now the half-periods are equal be
ause of the absolute sign, the timeperiod of x(t) is the half of the original sine wave. Thus, the frequen
y isthe double.
x0 = xabs =

2

π
12 = 7.6394, xRMS =

12√
2

= 8.485, fx = 2f0.e)
x0 = 0, xRMS =

√
2 = 1.414, fx = f0,sin
e for 
omplex signals, the the absolute value is used to 
al
ulate theRMS value (we integrate |z(t)|2), and |z(t)| =

√
2.4.3.

U1 = U2 =
U

2
= 80 V, ∆U1 = ∆U2 = ho.r.Umax.The worst 
ase error is

∆U = ∆U1 + ∆U2 = 2ho.r.Umax = 2 V.The relative error is
∆U

U
=

2 V

160 V
= 1.25%.



4. MEASUREMENT OF VOLTAGE AND CURRENT 614.4. Without any data about the errors of the instrument only the quantizationerror 
an be 
omputed. Thus, we assume that the a

ura
y of the instrument
orresponds to the a

ura
y of the display.
h ≈ hq =

0.0001 V

0.0245 V
=

1

245
≈ 0.4%.4.5.a) The voltage of the 
omponents 
an be 
omputed as

U [V] = 10Ui [dB]/20 = [1.000 0.2512 0.0631 0.0158 0.0040] V.b) The RMS value is
U =

√

√

√

√

5
∑

i=1

U2
i [V] = 1.033 V.
) The THD is

k =

√

∑5
i=2 U2

i [V]

U
=

√

U2 − U2
1 [V]

U
= 25.12%.Note that dividing by the voltage of fundamental U1 instead of the totalRMS value U is also a

eptable and it gives almost the same result sin
e

U1 ≈ U .4.6.a) The mean value of the signal is
U0 =

1

T

∫ T

0
x(t)dt =

1

T

∫ T1

0
Updt =

T1

T
Up = 2 V.The RMS value is

U =

√

1

T

∫ T

0
x(t)2dt =

√

1

T

∫ T1

0
U2

p dt =

√

T1

T
Up = 3.162 V.The 
rest fa
tor kp and form fa
tor kf are

kp =
Up

U
=

√

T

T1

= 1.581,

kf =
U

Uabs

=
U

U0

=

√

T1

T

T

T1

=

√

T

T1

= 1.581,be
ause the signal is never negative, the absolute mean value equals to themean value Uabs = U0.



62 CHAPTER 4. MEASUREMENT OF VOLTAGE AND CURRENTb) The AC 
oupled measurement eliminates the DC 
omponent of the signal.This means that during the T1 part of the period the value of the signalis Up − U0, while in the T2 part its value is −U0. The instrument maymeasure the positive or the negative peak of the signal, depending onits implementation. The displayed value is 1/
√

2 times of the measuredpeak, sin
e that is the 
orre
tion fa
tor for the sine wave. If the voltmetermeasures the positive peak, we see
Udisp,1 =

1√
2
[Up − U0] =

3V√
2

= 2.121 V,while if it measures the negative peak we read
Udisp,2 =

1√
2
U0 =

2V√
2

= 1.414 V.4.7. For the square wave:
Uabs = Up = URMS = 1 V.The displayed voltages for the absolute mean meter (U1), the peak meter (U2)and the true RMS meter (U3) are the measured values multiplied by the 
orre
-tion fa
tor of the instrument:

U1 = kfUabs =
π

2
√

2
Uabs = 1.111 V,

U2 =
Up

kp
=

Up√
2

= 0.7071 V,

U3 = URMS = 1 V.where kf is the form fa
tor and kp is the 
rest fa
tor of the sine wave.4.8. The expression of the input resistan
e is:
Rin =

U1

I1
.a) The error of the voltage and 
urrent measurement 
an be expressed as:

∆U1

U1
= ho.v. + ho.r.

Umax

U1
+

1

NU1

= 0.066%, (4.1)
∆I1

I1

= ho.v. + ho.r.
Imax

I1

+
1

NI

= 0.864%,where ho.v. and ho.r. are the relative errors of value and of range, respe
-tively, and 1/NU1
and 1/NI are the quantization errors for the voltage and
urrent measurement (NU1

= 8765 and NI = 172). The total error usingprobabilisti
 summation be
omes:
∆Rin

Rin
=

√

√

√

√

(

∆U1

U1

)2

+
(

∆I1

I1

)2

= 0.87%.



4. MEASUREMENT OF VOLTAGE AND CURRENT 63b) The expression of the input resistan
e is
Rin =

U2

U1 − U2
Rs,where U2 is the voltage at the input after the 
onne
tion of the poten-tiometer, and Rs is the value of the resistan
e of the potentiometer. If

U2 = U1/2, then Rin = Rs.Next, we 
al
ulate the error of Rin. The sensitivities are
cU1

=
∂Rin

∂U1
= − RsU2

(U1 − U2)2
,

cU2
=

∂Rin

∂U2
=

RsU1

(U1 − U2)2
,

cRs
=

∂Rin

∂R
=

U2

U1 − U2
,and thus the relative error 
omponents be
ome

∆Rin

Rin

∣

∣

∣

∣

U1

= cU1

U1

Rin

∆U1

U1

= − RsU2

(U1 − U2)2
U1

U1 − U2

RsU2

∆U1

U1

= − U1

U1 − U2

∆U1

U1

,

∆Rin

Rin

∣

∣

∣

∣

U2

= cU2

U2

Rin

∆U2

U2
=

RsU1

(U1 − U2)2
U2

U1 − U2

RsU2

∆U2

U2
=

U1

U1 − U2

∆U2

U2
,

∆Rin

Rin

∣

∣

∣

∣

Rs

= cRs

Rs

Rin

∆Rs

Rs
=

U2

U1 − U2
Rs

U1 − U2

RsU2

∆Rs

Rs
=

∆Rs

Rs
,so the error using probabilisti
 summation is

∆Rin

Rin

=

√

√

√

√

(

∆Rs

Rs

)2

+ 4
(

∆U1

U1

)2

+ 4
(

∆U2

U2

)2

= 0.145%,where ∆U2/U2 = 0.0819% 
an be 
al
ulated similarly to (4.1).In the above 
al
ulations we have assumed that the error 
omponents areindependent. Sin
e the measurements are done with the same voltmeter,this might not be a
tually true. If the errors are not independent, and thus,summed with sign, they 
an
el be
ause their opposite sign. Let's study theindependen
e of the various error 
omponents separately!1. The �of value� error. This is the gain error of the instrument whi
hhas the same value in the two 
ases so the summation with sign (asfor systemati
 errors) should be used, and thus, these errors 
an
elea
h other. The 
ondition for this is to use the instrument in the samerange for both measurements. If the instrument was used in di�erentranges for the two measurements, this 
ould not have been done!2. The �of range� error. This 
an have more 
omponents: o�set error,linearity error, and ele
tri
al noise. In the last two 
ases the errors areindependent. Sin
e there is no information about the proportion ofthe 
omponents, it is safer to assume that these errors do not 
an
elea
h other.



64 CHAPTER 4. MEASUREMENT OF VOLTAGE AND CURRENT3. The quantization error. The exa
t value of this error depends onthe method of quantization (rounding, trun
ation). The quantizationerrors are not 
ompletely independent sin
e U2 was set based on thevalue of U1. However, they don't 
an
el out 
ompletely. Sin
e it isbetter pra
ti
e to overestimate the error than to underestimate it, wewill take them into a

ount in the �nal error 
al
ulation.This means that we get a better estimate for the error if the �of value�errors are eliminated from the 
al
ulations, and only the �of range� andquantization errors are used:
∆U ′

1

U1
= ho.r.

Umax

U1
+

1

NU1

= 0.016%,

∆U ′

2

U2
= ho.r.

Umax

U2
+

1

NU2

= 0.032%,Thus, a more a

urate estimate of the error is
∆R′

in

Rin
=

√

√

√

√

(

∆Rs

Rs

)2

+ 4

(

∆U ′

1

U1

)2

+ 4

(

∆U ′

2

U2

)2

= 0.106%,4.9. The Fourier series 
an be written in many ways, here we will show various
ases. The square wave given in the problem has no starting phase, thus, we
an shift it with respe
t to time. In general, if we are analyzing a signal in thefrequen
y domain, the absolute phases of the 
omponents are not important,only their relative phase (phase di�eren
es). The phase is more important whenanalyzing more signals in parallel, e.g., in transfer fun
tion measurement, wherethe phase di�eren
e of the output and the input gives the phase shift of thetransfer fun
tion. In our 
ase, shifting the positive impulse of the signal into theorigin t = 0, we get an even fun
tion, displayed below:
t

U

τ
TIn the �gure T is the period time, while τ is the length of the impulse.a) The real Fourier series is de�ned as follows:

u(t) ∼= U0 +
∞
∑

k=1

UA
k cos kωt +

∞
∑

k=1

UB
k sin kωt, ω =

2π

T
,



4. MEASUREMENT OF VOLTAGE AND CURRENT 65where U0 is the mean value of the signal, 
omputed as
U0 =

1

T

∫ T

0
Updt =

τ

T
= 0.6 V,where Up is the peak voltage of the signal. Sin
e the signal is representedby an even fun
tion, it has only 
osine 
omponents, thus, UB

k ≡ 0. The
oe�
ients for the 
osine 
an be 
omputed by the integral
UA

k =
2

T

∫ T

0
cos(kωt)u(t)dt =

2

T

∫ τ/2

0
cos(kωt)Updt+

2

T

∫ T

T−τ/2
cos(kωt)Updt =

=
4Up

T

∫ τ/2

0
cos kωtdt =

2Up

kπ
sin

(

kπ
τ

T

)

,where we have substituted ω = 2π/T . Thus, we obtain
UA

k = [1.1226 0.9082 0.6055 0.2806 0.0

−0.1871 − 0.2595 − 0.2270 − 0.1247 0.0] V.Note that the 5th and 10th harmoni
s have zero amplitude, sin
e the duty
y
le of the square wave is 1/5. This is be
ause for a square wave with aduty 
y
le 1/k we are integrating a whole (or integer) period of sines and
osines with frequen
y kω, and the integral of an integer period is zero.This property is independent of the starting phase.If 
onsider our signal so that the rising edge of the impulse is at t = 0, theFourier 
oe�
ients be
ome
UA

k =
2

T

∫ T

0
cos(kωt)u(t)dt =

2Up

T

∫ τ

0
cos(kωt)dt =

Up

kπ

[

− sin
(

2kπ
t

T

)]τ

0
,

UB
k =

2

T

∫ T

0
sin(kωt)u(t)dt =

2Up

T

∫ τ

0
sin(kωt)dt =

Up

kπ

[

cos
(

2kπ
t

T

)]τ

0
.By performing the 
al
ulations, we obtain

UA
k = [0.9082 0.2806 − 0.1871 − 0.2270 0.0

0.1514 0.0802 − 0.0702 − 0.1009 0.0] V,

UB
k = [0.6598 0.8637 0.5758 0.1650 0.0

0.1100 0.2468 0.2159 0.0733 0.0] V.where again the 5th and 10th 
omponents are missing.The 
omplex Fourier series approximates the signal in the following way:
u(t) ∼=

+∞
∑

k=−∞

UC
k ejkωt.Note that the index k runs from −∞ to +∞, and k = 0 
orresponds tothe DC 
omponent. In general, we obtain Ck as

Ck =
1

T

∫ T

0
e−jωktu(t)dt.



66 CHAPTER 4. MEASUREMENT OF VOLTAGE AND CURRENTHowever, sin
e we have already 
omputed the real Fourier series, it iseasier to 
onvert the real 
oe�
ients to 
omplex ones. For the even 
asedisplayed in the �gure, only the 
osine 
omponents are nonzero, and they
an be 
onverted by the Euler formula as
UA

k cos(kωt) =
UA

k

2
ejωkt +

UA
k

2
e−jωkt .Thus,

UC
k = UC

−k =
Uk

2
, k = 1, 2, . . . ,and

UC
0 = U0.The 
oe�
ients for positive and negative frequen
ies equal only be
auseof the even symmetry. In general, UC

−k is the 
omplex 
onjugate of UC
k forreal signals.b) The RMS value 
an be 
omputed a

ording to the de�nition (root-mean-square integral). The true RMS meter displays the 
orre
t RMS value:

Udisp,RMS = URMS =

√

1

T

∫ T

0
u(t)2dt = Up

√

τ

T
= 1.3416 V.
) The lowpass �lter lets through the 
omponents below fc = 5 kHz. Sin
e

f = 1/T = 2 kHz, thus, only the DC 
omponent, and the �rst and these
ond harmoni
s have to be summed:
Um =

√

U2
0 +

(

U1

2

)2

+
(

U2

2

)2

= 1.1843 V.



Chapter 5Measurement 
ir
uits5.1. As an introdu
tion to the problem, we provide a summary for the basi
bridge 
ir
uits. The 
ir
uit 
an be seen in the following �gure.
R2

R3 R4
US

R1

Uout

The output voltage of the bridge is the voltage di�eren
e between the two voltagedividers:
Uout = US

R2

R1 + R2
− US

R4

R3 + R4
.All the various 
ases 
an be 
omputed based on this basi
 equation.Generally the resistan
es of the 
ir
uit has the same nominal value, wherethe �xed resistors are R, and the sensors are R+∆R = (1+hR)R or R−∆R =

(1 − hR)R. The behavior of the bridge depends on the number sensors andon their positions. The type of ex
itation (voltage or 
urrent) also a�e
ts thebehavior. The most important four 
ases are the following:1. One resistan
e in
reases, the value of the other resistors do not 
hange:the position of the sensor is arbitrary. Here we 
hoose R2 = (1 + hR)R.The absolute value of the output voltage is
|Uout| = US

(

(1 + hR)R

R + (1 + hR)R
− R

R + R

)

= US
hR

4 + 2hR

∼= UT

4
hR;2. Two resistors 
hange in the same dire
tion, these should be R1 and R4 or

R2 and R3. Here we 
hoose R2 = R3 = (1 + hR)R. The absolute value ofthe output voltage is
|Uout| = US

(

(1 + hR)R

R + (1 + hR)R
− R

(1 + hR)R + R

)

= US
hR

hR + 2
∼= US

2
hR;67



68 CHAPTER 5. MEASUREMENT CIRCUITS3. If the value of one resistor in
reases, another one de
reases then they shouldbe R1 and R2 or R3 and R4 to obtain linear behavior. Here we 
hoose
R2 = (1 + hR)R and R1 = (1 − hR)R. The absolute value of the outputvoltage is

|Uout| = US

(

(1 + hR)R

(1 − hR)R + (1 + hR)R
− R

R + R

)

=
US

2
hR;4. If the value of two resistor in
reases and the value of the other two resistorsde
reases, then the value of the diagonally opposing resistors should 
hangein the same dire
tion, for example, we 
an 
hoose R2 = R3 = (1 + hR)Rand R1 = R4 = (1 − hR)R. The absolute value of the output voltage is

|Uout| = US

(

(1 + hR)R

(1 − hR)R + (1 + hR)R
− (1 − hR)R

(1 + hR)R + (1 − hR)R

)

= UShR.where hR = ∆R/R, R is the nominal value of the resistan
es. In the �rst two
ases the output voltage is a nonlinear fun
tion of the input (the linear approx-imations are given with the ∼= sign). When a 
urrent supply is used, the outputbe
omes linear for the se
ond 
ase as well. The output 
an be 
al
ulated as
|Uout| =

IS

2
(R2 − R4) =

IS

2
((1 + hR)R − R) =

ISR

2
hR,where IS is the supply 
urrent.Problem 5.1 
orresponds to the se
ond 
ase with voltage supply. Sin
e ∆R =

1 Ω and hR = 0.01:
|Uout| = US

hR

hR + 2
= 24.9 mV.If the thermistors are 
onne
ted with 2 × 1 Ω wires to the bridge, the relative
hange of the resistan
es is h′

R = 0.03, so we get
|U ′

out| = US
h′

R

h′

R + 2
= 73.9 mV.The systemati
 error is that part of the output voltage whi
h 
orresponds to thevoltage drop on the wires. Its value is

hr =
U ′

out − Uout

Uout
= 1.97 = 197%.We see that the wire resistan
e leads to an una

eptable error. Note, however,that be
ause this is a systemati
 error, it 
an be measured and 
ompensated.Another solution to the problem is to 
onne
t the ordinary resistors with wireshaving the same 2 × 1 Ω resistan
e, so that the errors 
an
el.



5. MEASUREMENT CIRCUITS 695.2. The resistan
e and 
apa
itan
e of the upper and lower parts of the dividerare R1, C1, and R2, C2, respe
tively. The value R2 = 100 kΩ is given, and in the
ompensated 
ase the division ratio is
a =

R2

R1 + R2
= 0.1.Thus, the resistan
e of the upper part of the divider is

R1 = 900 kΩ.In the 
ompensated 
ase the time 
onstants equal to ea
h other:
R1C1 = R2C2.Therefore, the 
apa
itor 
onne
ted in parallel with the upper resistor should be

C2 =
R2C2

R1
=

100

9
pF ≈ 11.1 pF.5.3. The time fun
tion of the voltage appearing on the output of the multiplieris:

uout(t) = kU2
in,p sin2 ωt = k

U2
in,p

2
(1 − cos 2ωt) = 5(1 − cos 2ωt) V.The mean value, absolute mean and RMS value 
an be determined based onproblem 4.2:

U0 = 5 V,

Uabs = 5 V,

URMS =
√

52 + 52/2 V = 6.124 V.5.4.a) The 
ir
uit 
orresponds to the se
ond 
ase in problem 5.1. The value ofthe 
onventional resistors is R = 100 Ω, so that the output voltage at
25 ◦C is zero. We are using a 
urrent supply be
ause that leads to a linearbehavior.b) The 
urrent supply equals to the sum of the 
urrents of the two bran
hesof the bridge:

IS = 2
Ut

R
= 20 mA,where Ut = 1 V is the voltage measured a
ross the thermistor.
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)
∆R = Rα∆T = 0.3 Ω, hR =

∆R

R
= 0.003.So the output voltage is

|Uout| =
IS

2
((1 + hR)R − R) =

ISR

2
hR = 3 mV.d) The output voltage is linear fun
tion of the 
hange of the value of theresistor, and

Uout = ±5 mV, if T = 0 ◦C or T = 50 ◦C.So we need an ampli�
ation of
AU =

10 V

5 mV
= 2000.5.5.a) The 
ir
uit 
orresponds to the third 
ase in problem 5.1. The value of theordinary resistors is R = 400 Ω, the output voltage is zero.b)

|Uout| = US

(

(1 + hR)R

(1 − hR)R + (1 + hR)R
− R

R + R

)

=
US

2
hR = 10 mV.
) The problem 
an be solved with the usual steps of error propagation 
om-putation (sensitivities, et
.). However, a simpler way is to 
onsider whatsigns the resistan
e errors should have to give the largest output voltageerror (worst 
ase). This is similar to the problem of ordering the resistivesensors in a bridge so that the output voltage is maximal. This happenswhen the voltages at output points of the bridge 
hange in the opposite di-re
tion. This is similar to the fourth 
ase in problem 5.2, but the 
hangesof the resistan
es have di�erent values. Thus, the output voltage of thebridge is

|∆U | = US

(

(1 + h1)R

(1 − h1)R + (1 + h1)R
− (1 − h2)R

(1 + h2)R + (1 − h2)R

)

=

=
US

2
(h1 + h2) = 35 mV,where h1 = 0.2% and h2 = 0.5% are the relative 
hanges of the strain gaugeresistors and the 
onventional resistors, respe
tively. Thus, the error of themeasurement is

h =
|∆U |
|Uout|

= 350%.



5. MEASUREMENT CIRCUITS 715.6. By using trigonometri
 formulas we get
uout(t) = kUin,p sin(ωt)Uin,p cos(ωt) = k

U2
in,p

2
cos(2ωt) = 5 sin(2ωt) V.And thus

U0 = 0 V,

Uabs =
10

π
V = 3.183 V,

URMS =
5√
2

V = 3.536 V.5.7. The relative phases of the signals are not given, but a
tually this does notmatter for our 
ase. Let's assume that they are the same. By using trigonometri
formulas we obtain
uout(t) = kUp,1 sin(ω1t)Up,2 sin(ω2t) = k

Up,1Up,2

2
[cos((ω1−ω2)t)−sin((ω1+ω2)t)] =

= 0.5 cos((ω1 − ω2)t) − 0.5 cos((ω1 + ω2)t) V.As a result,
U0 = 0 V,

URMS =

√

√

√

√

(

0.5√
2

)2

+

(

0.5√
2

)2

V = 0.5 V.5.8.a) The wiring diagram is the following:
R1

R2

Uout

Uin

The systemati
 error of the gain is
A = −R2

R1
= −5.1, hs =

A − A0

A0
= +2%.



72 CHAPTER 5. MEASUREMENT CIRCUITSb) The new value of the feedba
k resistan
e is
R′

2 = R2 × R3 =
R2R3

R2 + R3

= 5.005 kΩ.The new values of the gain and the systemati
 error are
A′ = −R′

2

R1
= −5.0055, h′

s =
A′ − A0

A0
= +0.11%.
) The total error is the sum of the systemati
 error and the random error ofthe gain:

∆A

A
= h′

s ± |hr|,where the random error is
hr =

∣

∣

∣

∣

∆R1

R1

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∆R′

2

R′

2

∣

∣

∣

∣

∣

,sin
e A′ = −R′1
2R

−1
1 is the produ
t of variables.The error of R1 is given, while the error of R′

2 has to be 
al
ulated fromthe errors of R2 and R3 whi
h are 
onne
ted in parallel. For the detailedsolution with sensitivity 
al
ulation, see problem 2.5, from whi
h we obtain
∣

∣

∣

∣

∣

∆R′

2

R′

2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

R′

2

R2

∆R2

R2

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

R′

2

R3

∆R3

R3

∣

∣

∣

∣

∣And thus the total worst 
ase error is
∆A

A
= h′

s±
(
∣

∣

∣

∣

∆R1

R1

∣

∣

∣

∣

+

∣

∣

∣

∣

R3

R2 + R3

∆R2

R2

∣

∣

∣

∣

+

∣

∣

∣

∣

R2

R2 + R3

∆R3

R3

∣

∣

∣

∣

)

= 0.11%±0.29%,whi
h is an asymmetri
 error interval between −0.18% and 0.4%. If wewant to des
ribe the total error with a symmetri
 interval, thus, with asingle number, then we 
hoose the bound with the larger absolute value,that is, 0.4%.5.9.a) The wiring diagram is the following:
Uout

Uin

R1
R2The systemati
 error of the gain is

A = 1 +
R2

R1
= 10.1, hr =

A − A0

A0
= +1%.



5. MEASUREMENT CIRCUITS 73b) The value of the feedba
k resistors using R3 and R4 is
R′

2 = R3 + R4 = 9 kΩ.The new values of the gain and the systemati
 error are
A′ =

R1 + R3 + R4

R1
= 10, h′

r =
A′ − A0

A0
= 0.
) The worst 
ase error 
oming from the random errors 
an be determinedusing the usual error 
al
ulation. The sensitivities are

cR1
=

∂A′

∂R1
= −R3 + R4

R2
1

,

cR3
=

∂A′

∂R3
=

1

R1
,

cR4
=

∂A′

∂R4
= − 1

R1
.The absolute error of A′ is therefore

∆A′ =

∣

∣

∣

∣

∣

∆R1
R3 + R4

R2
1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∆R3

R1

∣

∣

∣

∣

+

∣

∣

∣

∣

∆R4

R1

∣

∣

∣

∣

.The relative error is
∆A′

A′
=

∣

∣

∣

∣

∣

∆R1
R3 + R4

R1(R1 + R3 + R4)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∆R3

R1 + R3 + R4

∣

∣

∣

∣

+

∣

∣

∣

∣

∆R4

R1 + R3 + R4

∣

∣

∣

∣

= 0.27%.5.10.a) The wiring diagram is the following:
R1

R2

R3

R4

Uin
Uout

The solution is �ne even if the R1 −R3 and R2 −R4 pairs are ex
hanged.b) By using the notations of the �gure, the 
ommon gain is the following:
Ac =

R1R4 − R2R3

R1(R2 + R4)
.



74 CHAPTER 5. MEASUREMENT CIRCUITSThe a
tual value of a single resistan
e is
Ri = Ri,n(1 ± h),where h is the maximum value of the relative deviation. Substituting thisinto the expression of Ac, and 
hoosing the signs in± so that Ac is maximal(sin
e this is the worst 
ase), we get

Ac
∼= R1R4(1 + h)2 − R2R3(1 − h)2

R1(R2 + R4)
=

R4

R2 + R4
4h.Note that the dependen
y of the denominator on the error was negle
tedand we utilized the fa
t that R1R4

∼= R2R3. The 
ommon-mode reje
tionratio is
E =

|As|
|Ac|

=
R3

R1

R2 + R4

R44h
= 12625 ∼= 82 dB.The solution remains the same even if the ex
hanged resistor sets are used.5.11.a) The wiring diagram and the measured waveform 
an be seen below:

uout(t)

Up

tT

R

Uin

R

R

Uout

b) First the absolute mean of the signal has to be determined, whi
h is thehalf of the absolute mean value in the 
ase of a triangular wave
Uabs =

Up

4
= 0.25 V.The displayed value is

Uout = 0.25 V.
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) The measured voltage is
Um = −R2

R1
A

Up

4
,where A is a gain fa
tor 
oming from the error of the voltmeter, determinedby its a

ura
y 
lass ho.r.. The value of the latter is:

∆A

A
= ho.r.

Umax

Uout
= 2%.We see that in the total measurement error the relative error of the tworesistors R1 and R2 and the error 
aused by the voltmeter have a weightof 1 sin
e they are either at power 1 or −1 in the expression of Um. There-fore, the total measurement error assuming uniform distribution for all
omponents and using k = 2 extension fa
tor is

∆Um

Um

= 2

√

√

√

√2

(

∆R

R

1√
3

)2

+

(

∆A

A

1√
3

)2

= 2.83%.5.12.a) The s
hemati
s 
an be seen below.
Uki

Ube

R1 R2

R3 R4

R5

R6

R7

The values of the resistors are
R1 = R3 = 5 kΩ, R2 = R4 = R5 = R6 = 25 kΩ, R7 = 5.55 kΩ.b) The symmetri
 gain is

As = −R2

R1

(

1 +
2R5

R7

)

= −50.045,so the systemati
 error is
hr =

As − As,0

As,0
= 0.09%.
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) For 
omputing the 
ommon-mode reje
tion ratio, �rst we 
ompute the
ommon-mode gain of the se
ond stage (di�erential ampli�er), whi
h is
Ac,2 =

R1R4 − R2R3

R1(R3 + R4)
. (5.1)Here R1 = R3 = R, R2 = R4 = 5R, based on their nominal values. Thea
tual values of the resistors are

R1 = R(1 ± h), R2 = 5R(1 ± h), R3 = R(1 ± h), R4 = 5R(1 ± h),where h is the maximal deviation from the nominal value. This 
an besubstituted to (5.1), and for the worst 
ase we obtain
Ac,2

∼= 5R2(1 + h)2 − 5R2(1 − h)2

6R2
=

5R2(4h)

6R2
=

10

3
h.Sin
e the 
ommon-mode gain of the �rst stage is Ac,1 = 1, we have Ac =

Ac,2. The 
ommon-mode reje
tion ratio is thus
E =

As

Ac
= 0.3As

1

h
= 75000 = 97.5 dB.



Chapter 6Time and frequen
y measurement6.1. The gate time is tm = 10 ms, and during this time the 
ounter 
an measuremaximum Nmax = 105 periods of the input signal. This 
orresponds to thefrequen
y
fx,max =

Nmax

tm
= 107 Hz = 10 MHz.6.2.a) First a base angle is 
omputed:

ϕ0 = arcsin
b

a
= 1.312 = 75.16◦, (6.1)From this, the phase shit 
an be expressed as

ϕ =

{

±ϕ0 , if the major axis is in the 1st and the 3rd quarter
π ± ϕ0 , if the major axis is in the 2nd and the 4th quarter .b) The error 
omponents 
an be obtained from equation (6.1) by the usualrules of error 
al
ulation:

∆ϕ0|b =
r√

1 − r2

∆b

b
,

∆ϕ0|a = − r√
1 − r2

∆a

a
,where r = b/a.The reading errors are generally independent random variables with arbi-trary sign. When using worst 
ase error summation, the total error be
omes

∆ϕ0 =
r√

1 − r2

[

∆a

a
+

∆b

b

]

= 0.1510 ≈ 8.65◦.The above error 
al
ulation 
an be used until r < 1. If r ≈ 1, the resultsare going to be wrong be
ause |ϕ0| ≤ π/2, but this error interval might77



78 CHAPTER 6. TIME AND FREQUENCY MEASUREMENTenable an angle higher than π/2. Furthermore as r ≈ 1 the errors are notindependent. The error interval has to be limited in this 
ase: |ϕ0| ≤ π/2.Remark. The above expression results in an absolute error based on relativeerrors, and the multipli
ation fa
tor is a value without unit (radian). Carehad to be taken that the �nal result is not given in per
ents, but in radians.6.3.a) Sin
e we do not have any information about the error of the 
lo
k, weassume that ∆f0/f0 = 0. Therefore, the only error that o

urs is due tothe rounding when 
ounting the periods of the input signal (quantizationerror), whi
h is ∆N = ±1 in absolute terms, and ∆N/N = ±1/N whenrelative errors are 
omputed.When one period is measured, the 
ounter has the value of
N1 =

Tx

T0
=

f0

fx
,where Tx = 1/fx is the time period of the input signal and T0 = 1/f0 isthe 
lo
k period. Thus, the measurement error is

h1 =
1

N1
=

fx

f0
= 1%.b) When measuring n periods, the 
ounter has n times higher value:

Nn =
nTx

T0

= n
f0

fx

= nN1,thus, the error de
reases n-times 
ompared to h1:
h2 =

1

Nn
=

1

nN1
=

h1

n
.In the problem h2 is given, so we have to rearrange the above expressionto obtain

n =
h1

h2
= 100.
) Further redu
tion of the error needs statisti
al averaging, meaning thatseparate measurements are taken, their results are re
orded and the num-bers are arithmeti
ally averaged. Arithmeti
 averaging of k data is de-
reasing the standard deviation by a fa
tor of √k. Thus, when averaging kmeasurements of the above type with error h2, we get the following error:

h3 =
h2√
k
.Sin
e h3 is given, we obtain k as

k =
h2

2

h2
3

= 100.



6. TIME AND FREQUENCY MEASUREMENT 79d) The previous expression 
an be used, but sin
e now we use data fromsingle-period measurements, the initial error is h1, the required resultingerror is h4 = 10−4, so
m =

h2
1

h2
4

= 10000.The quantization error has uniform distribution. Due to the averaging ofmany independent random variables, the result will be normally distrib-uted.6.4. This 
orresponds to 
onstant gate time measurement, where the measure-ment is done for full periods of the input signal. Therefore, in pra
ti
e the a
tualgate time tg 
an be longer than the required measurement time sin
e we waitfor the last period of the signal after tm has passed. However, we negle
t thissmall time di�eren
e when 
omputing the measurement error, assuming tg ∼= tm.Sin
e in this problem the 
lo
k has no error, only quantization error 
an o

ur.In time period measurement, we are 
ounting the 
lo
k 
y
les during the gatetime tg, thus, the 
ounter has the value of
N = tgf0

∼= tmf0 = 106.The relative error is therefore
∆fx

fx
=

∆Tx

Tx
=

1

N
∼= 1

tmf0
= 10−6.6.5.a) The worst 
ase error of the frequen
y measurement is

∆fx

fx

=
∆f0

f0

+
1

Nfor both 
ases. The only di�eren
e is due to the quantization error 1/N ,and that method will be more a

urate whi
h results in a larger number
N in the 
ounter. When we are measuring frequen
y, we 
ount the inputsignal fx for tm time, giving

Nf = tmfxas a 
ounter value.When measuring time period, we use 
onstant gate time measurement tomaximally utilize the available measurement time tm. In this 
ase we 
ountthe 
lo
k 
y
les f0 for the gate time tg ∼= tm:
Nt = tgf0

∼= tmf0.Sin
e for our 
ase f0 > fx, we obtain Nt > Nf , thus, the quantization errorwill be smaller for the time period measurement. In general, whenever the
lo
k frequen
y is higher than the frequen
y of the input signal, the timeperiod measurement is more a

urate (this is the 
ase for many pra
ti
alappli
ations, sin
e f0 is in the order of few MHz). On the 
ontrary, if
fx > f0, the frequen
y metering prin
iple should be used.



80 CHAPTER 6. TIME AND FREQUENCY MEASUREMENTb) The error with time period measurement is
h1 =

∆f0

f0

+
1

Nt

∼= ∆f0

f0

+
1

f0tm
= 5.01 · 10−4.
)

h2 =
∆f0

f0
+

1

N ′

t

∼= ∆f0

f0
+

1

f0t′m
= 6 · 10−6.The measurement error is very small in the se
ond 
ase. Therefore, theassumption of noiseless input is unrealisti
. Furthermore, as many as 10000periods of the signal �ts the measurement time so the frequen
y of thesignal may 
hange during the measurement, thus it 
annot be assumed
onstant. It might be that the frequen
y stability of the signal is lesspre
ise than the a
tual measurement.6.6.a) The error of the frequen
y measurement equals to the measurement errorof the time period,

∆fx

fx
= −∆Tx

Tx
,sin
e

fx =
1

Tx
.In general, the sign of the error does not matter, so we write

∆fx

fx

=
∆Tx

Tx

∼= ∆f0

f0

+
1

N
=

∆f0

f0

+
1

tmf0

= 3.02 · 10−5.b) The phase shift 
an be 
al
ulated using the following expression:
ϕ = 2π

τ

Tx
= 2πτfx, (6.2)where τ is the time delay between the two signals. So the absolute errorof the phase measurement is

∆ϕ = ϕ

[

∆(fx)
′

fx
+

∆τ ′

τ

]

.The explanation of the ∆(fx)
′ and ∆τ ′ notations are the following: The
lo
k 
y
le of the instrument 
auses the same relative error in the measure-ment of τ and Tx (assuming stable frequen
y), so this error is 
an
eled inequation (6.2). Nevertheless, there are other independent error sour
es inthe measurement of τ and Tx whi
h present in the above equation. Theseare denoted with 
ommas sin
e the value of these errors di�er from thetotal measurement error of τ and Tx.



6. TIME AND FREQUENCY MEASUREMENT 81During the measurement time the τ interval and Tx are both measured
n = [tmfx] ∼= tmfx times. However, the τ intervals are separated, so (as-suming that fx and f0 are not syn
hronized) n independent measurementsare available, and only √

n-fold de
rease o

urs in the error during theaveraging instead of the n-fold de
rease of the average time period mea-surement. So the error of the measurement of τ is:
∆τ ′

τ
=

1√
n

1

τf0
=

1√
tmfx

1

τf0
.and for the frequen
y, it is:

∆f ′

x

fx

∼= 1

tmf0
.Thus, the total error of the phase measurement is

∆ϕ = ϕ

[

1

tmf0
+

1√
tmfx

1

τf0

]

= 1.379 · 10−5 rad = 7.903 · 10−4 ◦.
) Stopping the time-delay measurement with the falling edge of the outputsignal means that we are measuring a larger time delay and larger phasedi�eren
e, so at �rst glan
e we would assume that this de
reases the error.This indeed de
reases the relative error sin
e we are dividing by a larger
ϕ value, but the question was about the absolute error ∆ϕ, whi
h leads toa di�erent result.The absolute error of the phase measurement by denoting the measuredtime delay as t and using equation (6.2) is

∆ϕ = 2πtfx

[

1

tmf0

+
1√
tmfx

1

tf0

]

.The measurement error of the time delay is independent from t, and the ab-solute error 
oming from the frequen
y measurement depends on t. Thus,larger t values 
orrespond to larger error, and so this se
ond method a
-tually de
reases the pre
ision of the phase measurement.
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Chapter 7Impedan
e and powermeasurement7.1. The bridge is balan
ed when the voltages are the same at the two inputsof the voltmeter:
Z1

Z1 + Z2
Ug =

Z3

Z3 + Z4
Ug. (7.1)This leads to the 
ondition of balan
e

Z1

Z2
=

Z3

Z4
,or, equivalently,

Z1

Z3
=

Z2

Z4
. (7.2)Note that it is worthy to solve su
h problems by starting from Eq. (7.2) insteadof Eq. (7.1). Substituting the imdepan
e values into Eq. (7.1) would lead tomu
h more tedious 
al
ulations 
ompared to the relatively simple derivationsbelow.a) In our 
ase, Z1 = Zx = 1/(Gx + 1/jωGx), Z2 = R2, Z3 = R3, and Z4 =

R4 + 1/jωC4. By substituting these into the balan
e 
ondition Eq. (7.2)we obtain
1

R3(Gx + 1/jωLx)
=

R2

R4 + 1/jωC4

.Sin
e the above equation is 
omplex, both the real and imaginary partsmust equal. After �ipping the fra
tions the equations for the real andimaginary parts be
ome
R3Gx =

R4

R2

R3

jωLx
=

1

jωC4R2Thus, the elements of the measured impedan
e are
Gx =

R4

R2R3
= 100 µS, (Rx = 10 kΩ), Lx = C4R2R3 = 100 mH.83



84 CHAPTER 7. IMPEDANCE AND POWER MEASUREMENTb) In the 
ase of ω′ = 2000 1/s the elements of the impedan
e are the follow-ing:
G′

x =
R′

4

R2R3
= 25 µS, L′

x = C ′

4R2R3 = 100 mH.Two-parameter impedan
e models 
an be parallel or series RL or RCelements, thus, 4 di�erent equivalent 
ir
uits exist. The simplest way tosee whether the model is a

eptable is to 
he
k the sign of the rea
tiveelement: a negative 
apa
itan
e means that an indu
tive model shouldbe used instead, and a negative indu
tan
e shows that a 
apa
itive modelshould be used. In addition, a good model should be valid at a wide range offrequen
ies meaning that the parameters of the model should be frequen
yindependent. In our problem Lx = L′

x > 0, thus, we need an indu
tivemodel indeed. However, G′

x = Gx/4 means that the parameters of themodel are di�erent at the two measurement frequen
ies. Therefore, wemay try to 
onvert the parallel RL model to a series RL model and 
he
khow the new parameters depend on frequen
y. The series RL model Zs
an be related to the parallel one Yx as
1

Yx
= Zx,

1

Gx + 1/jωLx
= Rs + jωLs.The left hand side 
ontains j in the denominator, so we multiply with the
omplex 
onjugate:

Gx − 1/jωLx

(Gx − 1/jωLx)(Gx + 1/jωLx)
=

Gx

G2
x + 1/ω2L2

x

− 1/jωLx

G2
x + 1/ω2L2

xThen, equating the �rst term with Rs and the se
ond term with jωLs weobtain
Rs =

ω2GxL
2
x

1 + ω2G2
xL

2
x

= 0.9999 Ω,

Ls =
Lx

1 + ω2G2
xL

2
x

= 99.99 mH.For the higher measurement frequen
y ω′ we get
R′

s =
ω′2G′

xL
′2
x

1 + ω′2G′2
x L′2

x

= 0.99975 Ω,

L′

s =
L′

x

1 + ω′2G′2
x L′2

x

= 99.975 mH.Sin
e Rs
∼= R′

s and Ls
∼= L′

s
∼= Lx, the series RL model is better than theparallel one.



7. IMPEDANCE AND POWER MEASUREMENT 857.2. The quality fa
tor Qf is the ratio of the rea
tive and a
tive power on theimpedan
e. For a series RL or RC model, we assume that the 
urrent I is knownand thus we 
an write
Qf =

Q

P
=

I2ωLs

I2Rs
=

ωLs

Rs
,where Ls and Rs are the elements of the series RL model. Note that in thegeneral 
ase, the following expression is also true:

Qf =
Im{Z}
Re{Z} =

Im{Y }
Re{Y } ,where Re{Z} and Im{Z} are the real and imaginary parts of Z. A good qualityindu
tan
e or 
apa
itor have small dissipation, thus, small P 
ompared to Q,meaning that Qf is large.The loss fa
tor tgδ equals to the dissipation ratio D, and it is the re
ipro
alof Qf :

D = tgδ =
P

Q
=

1

Qf
=

Rs

ωLs
.We 
ompute the values of the equivalent 
ir
uits su
h that at the measurementfrequen
y the real and imaginary parts of the two models should be equal. Theimpedan
e and admittan
e of the series RL 
ir
uit are

ZL,s = Rs + jωLs,

YL,s =
1

Rs + jωLs
=

Rs − jωLs

R2
s + ω2L2

s

=
1

Rs

1 − jωLs/Rs

1 + ω2L2
s/R

2
s

=
1

Rs

1 − jQf

1 + Q2
f

. (7.3)First we 
ompute the parameters of the parallel RL model. For parallelmodels, it is more straightforward to work with admittan
e instead of impedan
e.Thus, the admittan
e of the parallel RL model is
YL,p =

1

Rp

+
1

jωLp

,and now the task is to make the real and imaginary parts equal to the real andimaginary parts of Eq. (7.3):
1

Rp
=

Rs

R2
s + ω2L2

s

,

1

jωLp

= − jωLs

R2
s + ω2L2

s

.After rearrangement, we obtain the parameters of the parallel RL model as
Rp = Rs

(

1 + ω2 L2
s

R2
s

)

= Rs(1 + Q2
f ),

Lp = Ls
1 + ω2L2

s/R
2
s

ω2L2
s/R

2
s

= Ls

1 + Q2
f

Q2
f

= Ls(1 + D2).



86 CHAPTER 7. IMPEDANCE AND POWER MEASUREMENTIn the 
ase of low loss fa
tor (high quality fa
tor) Lp ≈ Ls.Next, we 
ompute the parameters of the series RC model. For series models,working with impedan
es leads to simpler equations. Thus, we write
ZL,s = Rs + jωLs = ZC,s = RC,s +

1

jωCs
.Now we make the real and imaginary parts of ZL,s equal to the impedan
eformulation of Eq. (7.3) and we obtain

RC,s = Rs,

Cs = − 1

ω2Ls
.Note that the 
apa
itan
e is negative.For the parallel RC 
ir
uit we utilize the fa
t that we have already 
om-puted a parallel RL model, thus, we make the real and imaginary parts of theadmittan
e for these two models equal:

YL,p =
1

Rp

+
1

jωLp

= YC,p =
1

RC,p

+ jωCp.Then we obtain
RC,p = Rp = Rs

(

1 + ω2 L2
s

R2
s

)

= Rs(1 + Q2
f ),

Cp = − 1

ωL2
p

= − Ls

R2
s + ω2L2

s

.The 
apa
itan
e is negative again. In the 
ase of low loss fa
tor (high qualityfa
tor) Cp ≈ Cs.7.3. The wiring diagram is the following:
V

Rx

Rs

I

Rs

Ux Rv

U1 U2 U4U3

Rs Rs

With the notations of the �gure we have
U1 = U4 = IRs = 10 mV,

U2 = U3 =
Ux

Rv
Rs =

IRx

Rv
Rs = 100 nV.



7. IMPEDANCE AND POWER MEASUREMENT 87The voltage drop on the measured resistan
e is Ux = 100 mV. When using thetwo-wire measurement, the voltmeter measures Um = U1 + Ux + U2 = 120 mV,leading to a 20% measurement error. For four-wire measurement, Um = U2 +
Ux + U3 = 100.0001 mV, showing that the error due to the voltage drop on thewires is pra
ti
ally eliminated.



88 CHAPTER 7. IMPEDANCE AND POWER MEASUREMENT7.4. The resistan
e of the measuring leads does not a�e
t the result in the 
ase offour-wire measurement. The e�e
t of stray 
apa
itan
es 
an be negle
ted sin
ethe frequen
y is quite low. Thus, the error depends only on the errors of thevoltage and 
urrent measurement:
∆R

R
=

∆U

U
+

∆I

I
= 1%.7.5. The measuring leads 
ause systemati
 error, sin
e the three-wire te
hniquedoes not 
an
el the error due to wire resistan
e. The signs of the systemati
 andrandom errors is the same in the worst 
ase, thus the total error is

∆R

R
= hr +

∆U

U
+

∆I

I
=

2Rs

R
+

∆U

U
+

∆I

I
= 3%.7.6. In theory, the �ve-wire measurement 
an
els the errors both 
oming fromthe stray impedan
es and wire resistan
e. At 10 kHz frequen
y this is true alsoin the pra
ti
e. So the measurement error 
omes only from the ina

ura
y ofvoltage and 
urrent measurements:

∆R

R
=

∆U

U
+

∆I

I
= 1%.7.7. The three parameter model of the magneti
-
ore 
oil 
an be seen in thefollowing �gure:

L

Rv

Rswhere Rs and Rv represent the 
opper and 
ore losses, respe
tively, and L is theindu
tan
e. At DC, Rv is shunted by L, thus, the DC ohmmeter measurementgives the value of Rs dire
tly:
Rs = 0.5 Ω.The impedan
e of the three parameter model is

Z3 = Rs +
jωLRv

jωL + Rv
= Rs +

jωLRv(Rv − jωL)

ω2L2 + R2
v

=

=

(

Rs +
ω2L2Rv

ω2L2 + R2
v

)

+ jω

(

LR2
v

ω2L2 + R2
v

)

,where the expression in the �rst parenthesis equals to Re and the one in these
ond parenthesis equals to Le sin
e the impedan
e of the series RL model is
Ze = Re + jωLe.



7. IMPEDANCE AND POWER MEASUREMENT 89After some maths, the parameters 
an be expressed as
Rv = R′

h

r2 + ω2

r2
= 999.5 Ω,

L =
rRv

ω2
= 20.00 mH;where

r =
R′

e

Le
; R′

e = Re − Rs.7.8. The impedan
e meter measures the voltage between the �high� node of Rxand the ground, and the 
urrent �owing from the �low� node of Rx to the ground.These are Um and Im, respe
tively. The resistor Rx is estimated by the ratio ofthem:
R̂x =

Um

Im
. (7.4)We �rst 
ompute Ix, that is the 
urrent of Rx, assuming Um ex
itation voltageto the measurement 
ir
uit:

Ix =
Um

Rx + RA × Rg
.However, the ammeter measures less 
urrent, as a small portion of the 
urrent�ows to the ground through Rg. Therefore the measured 
urrent is

Im = Ix
Rg

RA + Rg
=

Um

Rx + RA × Rg
· Rg

RA + Rg
.Substituting this into Eq. (7.4), after some math we get

R̂x = Rx

(

RA + Rg

Rg
+

RA

Rx

)

.a) Thus the relative error of the measurement is
∆Rx

Rx
=

R̂x − Rx

Rx
=

RA + Rg

Rg
+

RA

Rx
− 1 =

RA

Rg
+

RA

Rx
= 1.1%.b) The above expression shows that the non-ideal ammeter is responsible forthe systemati
 error of the measurement of Rx. Nevertheless, only the �rstitem depends on Rg, that is the error 
aused by the Rg resistors is thefollowing:

∆Rx

Rx

∣

∣

∣

∣

Rg

=
RA

Rg
= 0.1%.Note that this error does not depend on the value of Rx.



90 CHAPTER 7. IMPEDANCE AND POWER MEASUREMENT7.9.a) The a
tive power P and cos ϕ are
P =

U2
G − U2

Z − U2
R

2R
= 163.6 mW, cos ϕ =

U2
G − U2

Z − U2
R

2UZUR

= 0.4863.b) The relative errors of the voltage measurements 
an be expressed usingthe a

ura
y 
lass ho.r. = 0.5%:
hG =

Umax

UG
ho.r., hZ =

Umax

UZ
ho.r., hR =

Umax

UR
ho.r..The sensitivities for P are

cG =
∂P

∂UG
=

2U2
G

U2
G − U2

Z − U2
R

,

cZ =
∂P

∂UZ

=
2U2

Z

U2
G − U2

Z − U2
R

,

cR =
∂P

∂UR
=

2U2
R

U2
G − U2

Z − U2
R

.The error of the power measurement with k = 2 extension fa
tor, by theassumption of uniform distribution is
∆P

P
= 2

√

√

√

√c2
G

(

hG√
3

)2

+ c2
Z

(

hZ√
3

)2

+ c2
R

(

hR√
3

)2

= 4.56%.The sensitivities of the absolute error of the measurement of cos ϕ are:
qG =

∂ cos ϕ

∂UG
=

U2
G

UZUR
,

qZ =
∂ cos ϕ

∂UZ

=
U2

R − U2
G − U2

Z

2UZUR

,

qR =
∂ cos ϕ

∂UR

=
U2

Z − U2
G − U2

R

2UZUR

.The measurement error of cos ϕ with k = 2 extension fa
tor, by the as-sumption of uniform distribution is
∆ cos ϕ = 2

√

√

√

√q2
G

(

hG√
3

)2

+ q2
Z

(

hZ√
3

)2

+ q2
R

(

hR√
3

)2

= 0.03053.
) The sign of ϕ is not spe
i�ed in the measurement, thus the type of theload 
annot be determined.



7. IMPEDANCE AND POWER MEASUREMENT 917.10.a) The absolute value and phase of the impedan
e are
|Z| =

Ux

UN
RN = 97.50 Ω, ϕ = arccos

U2
g − U2

x − U2
N

2UxUN
= 1.5406 = 88.25◦.b) The error of |Z| 
an be estimated based on the quantization errors:

∆|Z|
|Z| =

∆RN

RN
+

∆Ux

Ux
+

∆UN

UN
= 0.01%+

1

7053
+

1

6877
= 3.87·10−4 ≈ 0.04%.
) Sin
e the expression of cos ϕ 
ontains di�eren
es, the method will be verysensitive to the errors of the voltage measurement whenever cos ϕ ≈ 0(i.e., ϕ ≈ 90◦). Sin
e this 
ase o

urs in the problem, the phase will beina

urate, thus, the amplitude measurement will be more pre
ise.7.11.a) The solution is similar to that of problem 7.1. The 
ondition of balan
e is:

Zx

Z3
=

Z2

Z4
,

Rx + jωLx

R3
= R2(G4 + jωC4).After making the real and imaginary parts equal, the elements of the im-pedan
e are obtained as

Rx =
R2R3

R4
= 1 Ω, Lx = R2R3C4 = 5 mH.b) The quality fa
tor is

Qf =
Q

P
=

ωLxI
2

RxI2
=

2πfLx

Rx

= 5.
) The easiest way to take the loss fa
tor of C4 into a

ount is to model C4with a parallel RC 
ir
uit, where an Rp resistan
e is 
onne
ted in parallelwith C4. The loss fa
tor for this 
ir
uit is
D =

P

Q
=

U2/Rp

U2ωC4

=
1

ωRpC4

.From this, the parallel resistor is
Rp =

1

D42πfC4

= 1 MΩ.



92 CHAPTER 7. IMPEDANCE AND POWER MEASUREMENTThis Rp resistor is 
onne
ted in parallel with C4 and R4. When the bridgeis balan
ed, we read R4, however, its real value is the parallel 
onne
tionof the resistors, that is,
R′

4 = R4 × Rp
∼= 9901 Ω.Thus, the real resistan
e of the series model is

R′

x =
R2R3

R′

4

∼= 1.01 Ω.Thus, the error is
∆Rx

Rx
=

R′

x − Rx

Rx
= 1%.7.12.a) The 
ondition of balan
e is

ZN

Zx
=

Z4

Z3
,

jωCN(Rx + 1/jωCx) = (jωC4 + G4)R3.The elements of the measured impedan
e are
Rx =

C4R3

CN

= 100.9 Ω, Cx =
CN

G4R3

= 110.0 nF.b) The loss fa
tor is
tgδ =

P

Q
=

I2Rx

I2/ωCx
= ωRxCx = ωR4C4 = 0.011.
) During insulation test the insulator is pla
ed between the plates of a 
a-pa
itor. The better the insulation, the higher voltage is tolerated withoutstrikeover. During measurement the equivalent RC model is measured onhigher and higher voltage. If the system is linear the value of the elements

Rx and Cx are voltage independent, but approa
hing the breakdown orstrikeover voltage the loss fa
tor starts to in
rease. This is the so-
alledelbow voltage. Based on the value of the elbow voltage the breakdownvoltage 
an be estimated without damaging the devi
e.7.13. The model of a 
apa
itor mounted in a metal box 
an be seen below:
1

2

3

C

Cs,1

Cs,2



7. IMPEDANCE AND POWER MEASUREMENT 93where C is the measured 
apa
itor, while Cs,1 and Cs,2 are the stray 
apa
itan
es.a) The series 
onne
tion of the stray 
apa
itan
es (Cs,1 = Cs,2 = Cs =
100 pF) is 
onne
ted in parallel with the measured 
apa
itor. The total
apa
itan
e is

Ce = C +
Cs

2
,so the error of the measurement, when measuring the 
apa
itan
e betweennodes '1' and '2' is

h =
C + Cs/2 − C

C
=

Cs

2C
= 2.5%.b) To 
an
el the error 
aused by the stray 
apa
itors 3 wire measurement
an be used. The output 'G' of the instrument has to be 
onne
ted to themetal box (node '3' of the model).
) There are three possibilities to measure the value of the stray 
apa
itan
es.1. We may use the results of the 2 and 3 wire measurements and 
ompute

Cs = 2(Ce − C)However, now we have to subtra
t two numbers that has almost thesame value sin
e Cs is very small in 
omparison with C, so the dif-feren
e may have the same magnitude as that of the measurementerror.2. Using the 3 wire measurement the stray 
apa
itors 
an be measured,as well. For example, measuring the 
apa
itan
e between nodes '1'and '3' and 
onne
ting 'G' to node '2' Cs,1 is measured. This is moreadvantageous than the previous method, but in this 
ase the 
urrentof C is 
an
eled in the measurement whi
h is mu
h higher than the
urrent of Cs, so the resistan
e of the wires may 
ause errors. Using�ve-wire measurement provides more a

urate results.3. The problem of �high C, low Cs� 
an be solved by shorting the wiresof C (node '1' and '2') and measuring the 
apa
itan
e between thispoint and node '3'. In this arrangement already the 2 wire measure-ment gives good results. However, the method has the following dis-advantages: 1. only the value of the parallel 
onne
tion of the stray
apa
itan
es 
an be measured and the exa
t value of Cs,1 and Cs,2
annot be determined. 2. The measurement might be very sensitiveto the the 
apa
itan
e between the bounding box and the ground,depending on the grounding of the instrument and the stray 
apa
i-tan
es to the ground.
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Chapter 8AD- and DA-
onverters8.1. The �rst question to answer is how the bits at the output of the ADCrepresent the 
onverted analog voltage. In other words, if the ADC is used asa voltmeter, how 
an the measured voltage be determined based on the digitaloutput value. Sin
e the 
onverter splits the range from 0 to Ur to 2b steps, themeasured voltage Ux 
an be expressed as the ratio of the output value k of theADC and its greatest possible digital output 2b:
Ux =

k

2b
Ur. (8.1)The error of Ur is given, 2b is 
onstant, and k has quantization error, sin
e it
an only be an integer. Assuming the worst 
ase s
enario, that is, the ADC isnot rounding to the nearest integer, but rounds always upwards or downwards,we have

∆k = ±1.(Note that for rounding 
hara
teristi
s, ∆k = ±0.5.)By rearranging Eq. (8.1) we get
k ∼= Ux

Ur
2b = 614.After di�erentiating Eq. (8.1) and using worst 
ase summation, we obtain theexpression for the absolute error as

∆Ux =

∣

∣

∣

∣

∣

k

2b
∆Ur

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

Ur

2b
∆k

∣

∣

∣

∣

=

∣

∣

∣

∣

∆Ur

Ur
Ux

∣

∣

∣

∣

+

∣

∣

∣

∣

Ur

2b
· ±1

∣

∣

∣

∣

= hrUx + q = 0.32 mV,where q = Ur/2b is the quantization step. If hr = 0, the error of the 
onversiondepends only on the quantization step q, independently from the input voltage
Ux.The relative error is thus

∆Ux

Ux

=
∆Ur

Ur

+
∆k

k
= hr +

q

Ux

= 0.21%.Note that the relative error is the smallest when Ux is maximal (Ux = Ur), thatis, when we use the full range of the 
onverter.95



96 CHAPTER 8. AD- AND DA-CONVERTERS8.2. The dual-slope ADC 
onverter eliminates the e�e
ts of sinusoidal noisesif the integration time is an integer multiple of the period time of the noise.If there are various periodi
 disturban
es that should be suppressed, then theintegration time should be the smallest 
ommon multiple of the period times.The integration time that should be used Switzerland is
T1 = k

1

f1
= k · 60 ms,where k is an integer. In Hungary a proper value is

T2 = l
1

f2
= l · 20 ms,where l is again an integer. Sin
e for T1 = T2 we have l = 3k, whenever k isan integer, l is integer as well. That is, the integration time we have 
hosen forSwitzerland is perfe
tly �ne in Hungary as well.8.3. The dual-slope ADC 
omputes the Ux input voltage in the following way:

Ux =
Tx

T
Ur, (8.2)where Ur is the absolute value of the referen
e voltage, T is the integration time,and Tx is the ba
kward integration time.a) Sin
e we require b = 20 bits a

ura
y, the error of the 
onversion ∆Ux
annot be greater then the quantization step:

∆Ux ≤ q =
Ur

2b
.Sin
e only Ur has an error, we have

∆Ux =
∂Ux

∂Ur
∆Ur =

Tx

T
∆Ur,and thus we need

Tx

T
∆Ur ≤ q,from whi
h

∆Ur ≤ q
T

Tx
= q

Ur

Ux
,whi
h has to be ful�lled for the full range of Ux input voltages. We havethe most stri
t requirement for the error ∆Ur when the right side of theequation is the smallest, that is, when Ux = Ur and Tx = T , thus

∆Ur ≤ q =
Ur

2b
,

∆Ur

Ur
≤ 1

2b
≈ 1 ppm.



8. AD- AND DA-CONVERTERS 97b) Based on the solution of problem 8.2, the integration time is the smallest
ommon multiple of the period of times. We 
an also 
onsider the problemsu
h that the 
onverter has to eliminate the e�e
ts of a signal 
omposed oftwo sinusoids with frequen
ies f1 = 50 Hz and f2 = 60 Hz. This means thatwe have to �nd the time period of this 
omposite signal. The fundamentalfrequen
y is the largest 
ommon divider of the frequen
y 
omponents,whi
h is fp = 10 Hz in this 
ase (see the solution of 1.6). The 
orrespondingperiod time is Tp = 1/fp = 100 ms. The integration time should be aninteger multiple of the period time:
T = kTp = k · 100 ms,where k is an integer.
) Again we have to ful�ll

∆Ux ≤ q =
Ur

2b
.But now only Tx has an error, so we have

∆Ux =
∂Ux

∂Tx
∆Tx =

Ur

T
∆Tx,and thus we need

Ur

T
∆Tx ≤ q,from whi
h

∆Tx ≤ q
T

Ur
=

Ur

2b

T

Ur
,and so

∆Tx

Tx
≤ T

Tx

1

2b
=

Ur

Ux

1

2b
,whi
h again has to be ful�lled for the full range of Ux input voltages.Similarly to a), we have the most stri
t requirement for the error when

Ux = Ur and thus
∆Tx

Tx

≤ 1

2b
≈ 1 ppm.It is not surprising that we have obtained the same 
ondition for the errorof Tx as for Ur, sin
e they are in a similar pla
e in Eq. (8.2), that is, bothare at �rst power.If both errors 
an o

ur, then the sum of the two errors must be smallerthen the quantization step. This way we obtain the 
ondition

∣

∣

∣

∣

∆Ur

Ur

∣

∣

∣

∣

+
∣

∣

∣

∣

∆Tx

Tx

∣

∣

∣

∣

≤ 1

2b
≈ 1 ppm.



98 CHAPTER 8. AD- AND DA-CONVERTERS8.4. The expression of the measured voltage is
Um = Ur

Tx

T
, (8.3)where T is the integration time, and Tx is the ba
kward integration time.a) If Tx is measured by 
ounting the 
lo
k 
y
les, the value of the 
ounter isthe following:

N =
Tx

t0
= f0Tx,where t0 is the 
lo
k 
y
le, and f0 is the 
lo
k frequen
y. To resolution ofthe 
onverter is determined by the number of intervals the [0, Ur] intervalis divided. The value of the 
ounter for the maximal input voltage Ux = Uris

Nmax =
T

t0
= f0T,be
ause in this 
ase the integration times T and Tx equal to ea
h other.The number of bits is thus

b = [log2(Nmax)] = [log2(f0T )] = 18.where [.] denotes the integer part operator.b) To express the a

ura
y of the 
onverter, we perform the error analysis ofEq. (8.3):
∆Ux =

∣

∣

∣

∣

∣

∂Ux

∂Ur

∆Ur

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∂Ux

∂Tx

∆Tx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∂Ux

∂T
∆T

∣

∣

∣

∣

∣

,where the last term is zero, sin
e we are 
ounting an integer period of the
lo
k when integrating the input voltage. Thus,
∆Ux =

∣

∣

∣

∣

Tx

T
hrUr

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Ur

T

1

f0

∣

∣

∣

∣

∣

,sin
e the error of the ba
kward integration time 
omes from the fa
t thatwe are 
ounting integer periods, and thus the time measurement 
an havethe maximal error of one 
lo
k period
∆Tx = ±t0 = ± 1

f0

.The error ∆Ux is maximal when Tx = T , thus, in the worst 
ase we obtain
∆Ux = hrUr +

Ur

T

1

f0
.The idea of determining the a

ura
y (or, e�e
tive number of bits be) issimilar to problem 8.3: the error of the 
onverter ∆Ux should be smallerthen the e�e
tive quantization step qe = Ur/2be . That is,

∆Ux = hrUr +
Ur

T

1

f0

≤ Ur

2be
,
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hr +

1

Tf0
≤ 2−be ,whi
h is ful�lled for be = 13.Note that while the resolution of the 
onverter was b = 18 bits (we readan 18 bit number at the output), the a

ura
y is only be = 13 bits. Thismeans that when using the 
onverter as a voltmeter, the last �ve bits atthe output of the 
onverter are pra
ti
ally useless, sin
e the number theyrepresent is smaller than the error of the 
onverter.
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Notations and tables
NotationsIn our 
al
ulations we often use approximations. We use the notation ≈ if we areusing a more rough approximation, e.g., 93 ≈ 100. In 
ontrast, if we are approxi-mating a value with a negligible error, we use the notation ∼=, e.g., 99.999 ∼= 100.The solutions are normally given with 4 digits, while the errors are givenwith 2-3 digits. This a

ura
y, espe
ially for the 
ase of the errors, is usuallyunne
essary, and it is only given to allow a more pre
ise 
omparison of your own
al
ulations and the solutions.In all problems we are using the notations used in the spe
i�
 area, even ifthis means that the same letter is used for di�erent quantities in two problems.For example, T is used both for temperature and period time. However, withinone problem the notations are unambiguous.

102



NOTATIONS AND TABLES 103Table for standard normal distribution1
x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.090.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.03590.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.07530.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.11410.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.15170.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.18790.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.22240.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.25490.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.28520.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.31330.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.33891.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.36211.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.38301.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.40151.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.41771.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.43191.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.44411.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.45451.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.46331.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.47061.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.47672.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.48172.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.48572.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.48902.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.49162.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.49362.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.49522.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.49642.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.49742.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.49812.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.49863.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990Des
ription: P [0 ≤ z ≤ x] = p, that is, the standard normally distributedrandom variable z is between 0 and x with probability p. The x value is given asa sum of the �rst row and �rst 
olumn of the table. For example, 0 ≤ z ≤ 1.96has p = 0.475 probability (row 1.9 and 
olumn 0.06).
1StatSoft, In
. (2006). Ele
troni
 Statisti
s Textbook. Tulsa, OK: StatSoft. URL:http://www.statsoft.
om/textbook/stathome.html. With the permission of StatSoft, In
.2300 East 14th Street, Tulsa, OK 74104, USA.



104 APPENDIXTable for Student-t distribution2
p

n 0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.00051 0.325 1.000 3.078 6.314 12.706 31.821 63.657 636.6192 0.289 0.816 1.886 2.920 4.303 6.965 9.925 31.5993 0.277 0.765 1.638 2.353 3.182 4.541 5.841 12.9244 0.271 0.741 1.533 2.132 2.776 3.747 4.604 8.6105 0.267 0.727 1.476 2.015 2.571 3.365 4.032 6.8696 0.265 0.718 1.440 1.943 2.447 3.143 3.707 5.9597 0.263 0.711 1.415 1.895 2.365 2.998 3.499 5.4088 0.262 0.706 1.397 1.860 2.306 2.896 3.355 5.0419 0.261 0.703 1.383 1.833 2.262 2.821 3.250 4.78110 0.260 0.700 1.372 1.812 2.228 2.764 3.169 4.58711 0.260 0.697 1.363 1.796 2.201 2.718 3.106 4.43712 0.259 0.695 1.356 1.782 2.179 2.681 3.055 4.31813 0.259 0.694 1.350 1.771 2.160 2.650 3.012 4.22114 0.258 0.692 1.345 1.761 2.145 2.624 2.977 4.14115 0.258 0.691 1.341 1.753 2.131 2.602 2.947 4.07316 0.258 0.690 1.337 1.746 2.120 2.583 2.921 4.01517 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.96518 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.92219 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.88320 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.85021 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.81922 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.79223 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.76824 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.74525 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.72526 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.70727 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.69028 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.67429 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.65930 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.646
∞ 0.253 0.674 1.282 1.645 1.960 2.326 2.576 3.291Des
ription: P [tn ≥ x] = p, that is, the n degrees-of-freedom tn random vari-able is larger or equal than x with probability p. The �rst row of the table givesthe p values, and below the table lists the x values for di�erent n. For example,for a sample having n = 20 degrees-of-freedom, tn ≥ 1.325 with a probability

p = 0.1.
2StatSoft, In
. (2006). Ele
troni
 Statisti
s Textbook. Tulsa, OK: StatSoft. URL:http://www.statsoft.
om/textbook/stathome.html. With the permission of StatSoft, In
.2300 East 14th Street, Tulsa, OK 74104, USA.


