VAPNIK-CHERVONENKIS THEORY IN PATTERN RECOGNITION

András Antos

BMGE, MIT, Intelligent Data Analysis, Apr 12, 2018 Based on: [Devroye et al., 1996], PDSS, IDA jegyzet

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

OUTLINE

INTRO: DECISION, SUPERVISED (PASSIVE) LEARNING

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Bayes decision
- Approximation of Bayes decision
- Sample based classification
- No rate Slow rate of convergence
- Resticted class Empirical risk minimization

OUTLINE

INTRO: DECISION, SUPERVISED (PASSIVE) LEARNING

- Bayes decision
- Approximation of Bayes decision
- Sample based classification
- No rate Slow rate of convergence
- Resticted class Empirical risk minimization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Decide for not (yet) observable Y based on an observable X
- *X*, *Y* r.v.'s, with domains \mathcal{X} (e.g. $\subseteq \mathbb{R}^d$) and $\mathcal{Y} = \{0, 1\}$ *labels*, resp., and with joint distr. ν
- $g : \mathcal{X} \to \mathcal{Y}$ decision function or classifier is used to decide from X to Y
- Goodness of g(X) decision is measured by 0-1 cost: 1, if g(X) differs from true Y, else 0 ⇒
- Performance of g is measured by its error probability (global risk): R(g) ^{def}
 ^P (Y ≠ g(X))
- g's minimizing R(g): optimal

- Decide for not (yet) observable Y based on an observable X
- X, Y r.v.'s, with domains \mathcal{X} (e.g. $\subseteq \mathbb{R}^d$) and $\mathcal{Y} = \{0, 1\}$ labels, resp., and with joint distr. ν
- $g : \mathcal{X} \to \mathcal{Y}$ decision function or classifier is used to decide from X to Y
- Goodness of g(X) decision is measured by 0-1 cost: 1, if g(X) differs from true Y, else 0 ⇒
- Performance of g is measured by its error probability (global risk): R(g) ^{def}
 ^P (Y ≠ g(X))
- *g*'s minimizing *R*(*g*): *optimal*

- Decide for not (yet) observable Y based on an observable X
- X, Y r.v.'s, with domains \mathcal{X} (e.g. $\subseteq \mathbb{R}^d$) and $\mathcal{Y} = \{0, 1\}$ *labels*, resp., and with joint distr. ν
- $g: \mathcal{X} \to \mathcal{Y}$ decision function or classifier is used to decide from X to Y
- Goodness of g(X) decision is measured by 0-1 cost: 1, if g(X) differs from true Y, else 0 ⇒
- Performance of g is measured by its error probability (global risk): $R(g) \stackrel{\text{def}}{=} \mathbb{P}(Y \neq g(X))$
- g's minimizing R(g): optimal

- Decide for not (yet) observable Y based on an observable X
- X, Y r.v.'s, with domains \mathcal{X} (e.g. $\subseteq \mathbb{R}^d$) and $\mathcal{Y} = \{0, 1\}$ *labels*, resp., and with joint distr. ν
- $g : \mathcal{X} \to \mathcal{Y}$ decision function or classifier is used to decide from X to Y
- Goodness of g(X) decision is measured by 0-1 cost: 1, if g(X) differs from true Y, else 0 ⇒
- Performance of g is measured by its error probability (global risk): $R(g) \stackrel{\text{def}}{=} \mathbb{P}(Y \neq g(X))$
- *g*'s minimizing *R*(*g*): *optimal*

- Decide for not (yet) observable Y based on an observable X
- X, Y r.v.'s, with domains \mathcal{X} (e.g. $\subseteq \mathbb{R}^d$) and $\mathcal{Y} = \{0, 1\}$ *labels*, resp., and with joint distr. ν
- $g : \mathcal{X} \to \mathcal{Y}$ decision function or classifier is used to decide from X to Y
- Goodness of g(X) decision is measured by 0-1 cost: 1, if g(X) differs from true Y, else 0 ⇒
- Performance of g is measured by its error probability (global risk): R(g) ^{def} = P(Y ≠ g(X))
- g's minimizing R(g): optimal

- Decide for not (yet) observable Y based on an observable X
- X, Y r.v.'s, with domains \mathcal{X} (e.g. $\subseteq \mathbb{R}^d$) and $\mathcal{Y} = \{0, 1\}$ *labels*, resp., and with joint distr. ν
- $g : \mathcal{X} \to \mathcal{Y}$ decision function or classifier is used to decide from X to Y
- Goodness of g(X) decision is measured by 0-1 cost: 1, if g(X) differs from true Y, else 0 ⇒
- Performance of g is measured by its error probability (global risk): R(g) ^{def} = ℙ(Y ≠ g(X))
- g's minimizing R(g): optimal

HYPOTHESIS, DECISION DOMAIN

DEFINITIONS

For i = 0,1: {Y = i}: *ith hypothesis. Y* a posteriori distribution is given by $\eta_i(x) \stackrel{\text{def}}{=} \mathbb{P}(Y = i | X = x)$ a posteriori probabilities. Preimages of 0 and 1 by *g* form a partition of \mathcal{X} , its classes $D_i = \{x \in \mathcal{X} : g(x) = i\}$ are the *decision domains*.

Note: $1 - \eta_0(x) = \eta_1(x) = \mathbb{E}[Y|X = x] \stackrel{\text{def}}{=} \eta(x)$ (regression or a posteriori probability function).

If $X \sim \mu$, ν may be given, e.g., by (μ, η) . $\forall C_0, C_1 \subseteq \mathcal{X}$

$$\mathbb{P}\left((X,Y)\in C_0\times\{0\}\cup C_1\times\{1\}\right)=\int_{C_0}(1-\eta)d\mu+\int_{C_1}\eta\,d\mu.$$

 $(D_0, D_1) \Leftrightarrow g$, since $\mathbb{I}_{\{g(x)=j\}} = \mathbb{I}_{\{x \in D_j\}}$ (\mathbb{I}_A : indicator func. of A).

LOCAL RISK

$$r(g, x) \stackrel{\text{def}}{=} \mathbb{P} \left(Y \neq g(X) | X = x \right)$$
: local risk function $\mathbb{E} \left[r(g, X) \right] = R(g)$ and

$$\begin{aligned} r(g,x) &= & \mathbb{I}_{\{g(x)=1\}}\eta_0(x) + \mathbb{I}_{\{g(x)=0\}}\eta_1(x) \\ &= & 1 - \mathbb{I}_{\{x\in D_0\}}\eta_0(x) - \mathbb{I}_{\{x\in D_1\}}\eta_1(x). \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Minimized by *g* which puts $\forall x$ into D_i with the greater $\eta_i(x)$.

OUTLINE

INTRO: DECISION, SUPERVISED (PASSIVE) LEARNING

Bayes decision

- Approximation of Bayes decision
- Sample based classification
- No rate Slow rate of convergence
- Resticted class Empirical risk minimization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Let $\{D_j^*\}$ be s.t. $\forall x$ $x \in D_j^* \Leftrightarrow (\eta_j(x) > \eta_{1-j}(x) \text{ v. } j = 0, \eta_0(x) = \eta_1(x))$

 g^* picks the more likely *j* given *X*.

 $x \in D_j^* \Rightarrow \eta_j(x) = \max(\eta_0(x), \eta_1(x)).$

Definition

Bayes decision (maximum a posteriori decision): g^* corresp. to (D_0^*, D_1^*) above, i.e. $g^*(x) = 1 \Leftrightarrow x \in D_1^* \Leftrightarrow \eta(x) > 1/2$.

Fheorem

The Bayes decision minimizes $r(g, x) \forall x$, and so optimal. The minimum is $r(g^*, x) = \min(\eta_0(x), \eta_1(x))$.

(optimal) global risk of g^* : Bayes risk/Bayes error $R^* \stackrel{\text{def}}{=} R(g^*) = \mathbb{E}\left[\min(\eta_0(X), \eta_1(X))\right] = \mathbb{E}\left[\min(\eta(X), 1 - \eta(X))\right]_{\mathbb{E}}$

• Let $\{D_j^*\}$ be s.t. $\forall x$ $x \in D_j^* \Leftrightarrow (\eta_j(x) > \eta_{1-j}(x) \text{ v. } j = 0, \eta_0(x) = \eta_1(x))$ g^* picks the more likely j given X. $x \in D_i^* \Rightarrow \eta_j(x) = \max(\eta_0(x), \eta_1(x)).$

Definition

Bayes decision (maximum a posteriori decision): g^* corresp. to (D_0^*, D_1^*) above, i.e. $g^*(x) = 1 \Leftrightarrow x \in D_1^* \Leftrightarrow \eta(x) > 1/2$.

Theorem

The Bayes decision minimizes $r(g, x) \forall x$, and so optimal. The minimum is $r(g^*, x) = \min(\eta_0(x), \eta_1(x))$.

(optimal) global risk of g^* : Bayes risk/Bayes error $R^* \stackrel{\text{def}}{=} R(g^*) = \mathbb{E}\left[\min(\eta_0(X), \eta_1(X))\right] = \mathbb{E}\left[\min(\eta(X), 1 - \eta(X))\right].$

• Let $\{D_j^*\}$ be s.t. $\forall x$ $x \in D_j^* \Leftrightarrow (\eta_j(x) > \eta_{1-j}(x) \text{ v. } j = 0, \eta_0(x) = \eta_1(x))$ g^* picks the more likely j given X.

$$x \in D_j^* \Rightarrow \eta_j(x) = \max(\eta_0(x), \eta_1(x)).$$

DEFINITION

Bayes decision (maximum a posteriori decision): g^* corresp. to (D_0^*, D_1^*) above, i.e. $g^*(x) = 1 \Leftrightarrow x \in D_1^* \Leftrightarrow \eta(x) > 1/2$.

THEOREM

The Bayes decision minimizes $r(g, x) \forall x$, and so optimal. The minimum is $r(g^*, x) = \min(\eta_0(x), \eta_1(x))$.

(optimal) global risk of g*: Bayes risk/Bayes error

 $R^* \stackrel{\text{def}}{=} R(g^*) = \mathbb{E}\left[\min(\eta_0(X), \eta_1(X))\right] = \mathbb{E}\left[\min(\eta(X), 1 - \eta(X))\right].$

• Let $\{D_j^*\}$ be s.t. $\forall x$ $x \in D_j^* \Leftrightarrow (\eta_j(x) > \eta_{1-j}(x) \text{ v. } j = 0, \eta_0(x) = \eta_1(x))$ g^* picks the more likely j given X.

$$x \in D_j^* \Rightarrow \eta_j(x) = \max(\eta_0(x), \eta_1(x)).$$

DEFINITION

Bayes decision (maximum a posteriori decision): g^* corresp. to (D_0^*, D_1^*) above, i.e. $g^*(x) = 1 \Leftrightarrow x \in D_1^* \Leftrightarrow \eta(x) > 1/2$.

Theorem

The Bayes decision minimizes $r(g, x) \forall x$, and so optimal. The minimum is $r(g^*, x) = \min(\eta_0(x), \eta_1(x))$.

(optimal) global risk of g^* : Bayes risk/Bayes error $R^* \stackrel{\text{def}}{=} R(g^*) = \mathbb{E}\left[\min(\eta_0(X), \eta_1(X))\right] = \mathbb{E}\left[\min(\eta(X), 1 - \eta(X))\right].$

• Let $\{D_j^*\}$ be s.t. $\forall x$ $x \in D_j^* \Leftrightarrow (\eta_j(x) > \eta_{1-j}(x) \text{ v. } j = 0, \eta_0(x) = \eta_1(x))$ g^* picks the more likely j given X.

$$x \in D_j^* \Rightarrow \eta_j(x) = \max(\eta_0(x), \eta_1(x)).$$

DEFINITION

Bayes decision (maximum a posteriori decision): g^* corresp. to (D_0^*, D_1^*) above, i.e. $g^*(x) = 1 \Leftrightarrow x \in D_1^* \Leftrightarrow \eta(x) > 1/2$.

Theorem

The Bayes decision minimizes $r(g, x) \forall x$, and so optimal. The minimum is $r(g^*, x) = \min(\eta_0(x), \eta_1(x))$.

(optimal) global risk of g^* : Bayes risk/Bayes error $R^* \stackrel{\text{def}}{=} R(g^*) = \mathbb{E} \left[\min(\eta_0(X), \eta_1(X)) \right] = \mathbb{E} \left[\min(\eta(X), 1 - \eta(X)) \right].$

OTHER FORMULAS FOR BAYES RISK

$$R^* = \inf_{g:\mathcal{X}\to\{0,1\}} \mathbb{P}(g(X)\neq Y) = \frac{1}{2} - \frac{1}{2}\mathbb{E}[|2\eta(X)-1|].$$

If X has density f:

$$R^* = \int \min(\eta(x), 1 - \eta(x)) f(x) dx = \int \min((1 - p) f_0(x), p f_1(x)) dx,$$

where $p = \mathbb{P}(Y = 1)$, 1 - p are the *class probabilities*, f_i is the class-conditional density of X given Y = i. If f_0 and f_1 are nonoverlapping, i.e., $\int f_0 f_1 = 0 \Rightarrow R^* = 0$. If p = 1/2

$$R^* = \frac{1}{2} \int \min(f_0(x), f_1(x)) \, dx = \frac{1}{2} - \frac{1}{4} \int |f_1(x) - f_0(x)| \, dx,$$

i.e. is related to the L_1 distance between f_0, f_1 .

OUTLINE

INTRO: DECISION, SUPERVISED (PASSIVE) LEARNING Bayes decision

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Approximation of Bayes decision
- Sample based classification
- No rate Slow rate of convergence
- Resticted class Empirical risk minimization

• η is typically unknown.

- Assume that η_i can be estimated by some $\tilde{\eta}_i : \mathcal{X} \to [0, 1]$.
- Bayes decision: $(\eta_0, \eta_1) \Rightarrow g^*$. Analogy: $(\tilde{\eta}_0, \tilde{\eta}_1) \Rightarrow \tilde{g}$ defines a *plug-in decision*:

$$\tilde{g}(x) = j \Rightarrow \tilde{\eta}_j(x) = \max(\tilde{\eta}_0(x), \tilde{\eta}_1(x))$$

(if $\tilde{\eta}_0(x) = \tilde{\eta}_1(x)$, choose arbitrarily, e.g., 0.)

• Expectation: $\tilde{\eta}_i$'s are good estimates $\Rightarrow \tilde{g}$'s error $\approx g^*$'s error (always \geq). Diff. of their risks \leq estimation errors of $\tilde{\eta}_i$'s

- η is typically unknown.
- Assume that η_i can be estimated by some $\tilde{\eta}_i : \mathcal{X} \to [0, 1]$.

 Bayes decision: (η₀, η₁) ⇒ g^{*}. Analogy: (η̃₀, η̃₁) ⇒ g̃ defines a *plug-in decision*:

$$\tilde{g}(x) = j \Rightarrow \tilde{\eta}_j(x) = \max(\tilde{\eta}_0(x), \tilde{\eta}_1(x))$$

(if $\tilde{\eta}_0(x) = \tilde{\eta}_1(x)$, choose arbitrarily, e.g., 0.)

• Expectation: $\tilde{\eta}_i$'s are good estimates $\Rightarrow \tilde{g}$'s error $\approx g^*$'s error (always \geq). Diff. of their risks \leq estimation errors of $\tilde{\eta}_i$'s

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- η is typically unknown.
- Assume that η_i can be estimated by some $\tilde{\eta}_i : \mathcal{X} \to [0, 1]$.
- Bayes decision: (η₀, η₁) ⇒ g*.
 Analogy: (η̃₀, η̃₁) ⇒ g̃ defines a *plug-in decision*:

$$ilde{g}(x) = j \Rightarrow ilde{\eta}_j(x) = \max(ilde{\eta}_0(x), ilde{\eta}_1(x))$$

(if $\tilde{\eta}_0(x) = \tilde{\eta}_1(x)$, choose arbitrarily, e.g., 0.)

Expectation: η̃_i's are good estimates ⇒ g̃'s error ≈ g*'s error (always ≥). Diff. of their risks ≤ estimation errors of η̃_i's

- η is typically unknown.
- Assume that η_i can be estimated by some $\tilde{\eta}_i : \mathcal{X} \to [0, 1]$.
- Bayes decision: (η₀, η₁) ⇒ g*.
 Analogy: (η̃₀, η̃₁) ⇒ g̃ defines a *plug-in decision*:

$$ilde{g}(x) = j \Rightarrow ilde{\eta}_j(x) = \max(ilde{\eta}_0(x), ilde{\eta}_1(x))$$

(if $\tilde{\eta}_0(x) = \tilde{\eta}_1(x)$, choose arbitrarily, e.g., 0.)

Expectation: η̃_i's are good estimates ⇒ g̃'s error ≈ g*'s error (always ≥). Diff. of their risks ≤ estimation errors of η̃_i's

THEOREM

For i = 0, 1 let $\tilde{\eta}_i : \mathcal{X} \to [0, 1]$ be estimate of η_i and \tilde{g} be the plug-in decision function defined by $(\tilde{\eta}_0, \tilde{\eta}_1)$. Then

$$r(ilde{g},x)-r(g^*,x) \leq \mathbb{I}_{\{ ilde{g}(x)
eq g^*(x)\}} \sum_{i\in\{0,1\}} \lvert ilde{\eta}_i(x)-\eta_i(x)
vert$$

and $R(\tilde{g}) - R^* \leq \mathbb{E}\Big[\mathbb{I}_{\{\tilde{g}(X)\neq g^*(X)\}} \sum_{i\in\{0,1\}} |\tilde{\eta}_i(X) - \eta_i(X)|\Big] \leq \mathbb{E}\Big[\sum_{i\in\{0,1\}} |\tilde{\eta}_i(X) - \eta_i(X)|\Big].$

• If $1 - \tilde{\eta}_0 = \tilde{\eta}_1 \stackrel{\text{def}}{=} \tilde{\eta}$ then $r(\tilde{g}, x) - r(g^*, x) =$ $\mathbb{I}_{\{\tilde{g}(x) \neq g^*(x)\}} |1 - 2\eta(x)| \le 2\mathbb{I}_{\{\tilde{g}(x) \neq g^*(x)\}} |\tilde{\eta}(x) - \eta(x)|$ and $R(\tilde{g}) - R^* = \mathbb{E} \left[\mathbb{I}_{\{\tilde{g}(x) \neq g^*(x)\}} |1 - 2\eta(x)| \right] \le 2\mathbb{E} \left[|\tilde{\eta}(X) - \eta(X)| \right].$

• Good η estimate \Rightarrow good decision function

THEOREM

For i = 0, 1 let $\tilde{\eta}_i : \mathcal{X} \to [0, 1]$ be estimate of η_i and \tilde{g} be the plug-in decision function defined by $(\tilde{\eta}_0, \tilde{\eta}_1)$. Then

$$r(ilde{g},x)-r(g^*,x) \leq \mathbb{I}_{\{ ilde{g}(x)
eq g^*(x)\}} \sum_{i\in\{0,1\}} \lvert ilde{\eta}_i(x)-\eta_i(x)
vert$$

and $R(\tilde{g}) - R^* \leq \mathbb{E}\Big[\mathbb{I}_{\{\tilde{g}(X) \neq g^*(X)\}} \sum_{i \in \{0,1\}} |\tilde{\eta}_i(X) - \eta_i(X)|\Big] \leq \mathbb{E}\Big[\sum_{i \in \{0,1\}} |\tilde{\eta}_i(X) - \eta_i(X)|\Big].$

• If
$$1 - \tilde{\eta}_0 = \tilde{\eta}_1 \stackrel{\text{def}}{=} \tilde{\eta}$$
 then $r(\tilde{g}, x) - r(g^*, x) = \mathbb{I}_{\{\tilde{g}(x) \neq g^*(x)\}} |1 - 2\eta(x)| \le 2\mathbb{I}_{\{\tilde{g}(x) \neq g^*(x)\}} |\tilde{\eta}(x) - \eta(x)|$ and $R(\tilde{g}) - R^* = \mathbb{E} \Big[\mathbb{I}_{\{\tilde{g}(X) \neq g^*(X)\}} |1 - 2\eta(x)| \Big] \le 2\mathbb{E} \Big[|\tilde{\eta}(X) - \eta(X)| \Big].$

• Good η estimate \Rightarrow good decision function

THEOREM

For i = 0, 1 let $\tilde{\eta}_i : \mathcal{X} \to [0, 1]$ be estimate of η_i and \tilde{g} be the plug-in decision function defined by $(\tilde{\eta}_0, \tilde{\eta}_1)$. Then

$$r(ilde{g},x)-r(g^*,x) \leq \mathbb{I}_{\{ ilde{g}(x)
eq g^*(x)\}} \sum_{i\in\{0,1\}} \lvert ilde{\eta}_i(x)-\eta_i(x)
vert$$

and $R(\tilde{g}) - R^* \leq \mathbb{E}\Big[\mathbb{I}_{\{\tilde{g}(X) \neq g^*(X)\}} \sum_{i \in \{0,1\}} |\tilde{\eta}_i(X) - \eta_i(X)|\Big] \leq \mathbb{E}\Big[\sum_{i \in \{0,1\}} |\tilde{\eta}_i(X) - \eta_i(X)|\Big].$

• If $1 - \tilde{\eta}_0 = \tilde{\eta}_1 \stackrel{\text{def}}{=} \tilde{\eta}$ then $r(\tilde{g}, x) - r(g^*, x) = \mathbb{I}_{\{\tilde{g}(x) \neq g^*(x)\}} |1 - 2\eta(x)| \le 2\mathbb{I}_{\{\tilde{g}(x) \neq g^*(x)\}} |\tilde{\eta}(x) - \eta(x)|$ and $R(\tilde{g}) - R^* = \mathbb{E} \Big[\mathbb{I}_{\{\tilde{g}(x) \neq g^*(x)\}} |1 - 2\eta(x)| \Big] \le 2\mathbb{E} \Big[|\tilde{\eta}(X) - \eta(X)| \Big].$

• Good η estimate \Rightarrow good decision function

If *X* has a density, f_0 , f_1 are estimated by densities \tilde{f}_0 , \tilde{f}_1 , and *p*, 1 - p are estimated by \tilde{p}_1 , \tilde{p}_0 , respectively, then for the plug-in decision function

$$g(x) = \left\{egin{array}{cc} 1 & ext{if } ilde{p}_1 ilde{f}_1(x) > ilde{p}_0 ilde{f}_0(x) \ 0 & ext{otherwise}, \end{array}
ight.$$

$$\begin{aligned} R(g) &- R^* \\ &\leq \int_{\mathcal{X}} |(1-p)f_0(x) - \tilde{p}_0\tilde{f}_0(x)| dx + \int_{\mathcal{X}} |pf_1(x) - \tilde{p}_1\tilde{f}_1(x)| dx. \end{aligned}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

OUTLINE

INTRO: DECISION, SUPERVISED (PASSIVE) LEARNING

- Bayes decision
- Approximation of Bayes decision

Sample based classification

- No rate Slow rate of convergence
- Resticted class Empirical risk minimization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

SAMPLE BASED CLASSIFICATION

 η is unknown. **Assumption**: we have i.i.d. *data* (*sample*, *observations*) $D_n = ((X_1, Y_1), \dots, (X_n, Y_n)) \sim \nu$ from experiment or experts (strong, but can be extended for slightly dependent data).

An approximating classifier g_n is constructed based on D_n (Y is guessed by $g_n(X; D_n)$). So $g_n : \mathcal{X} \times {\mathcal{X} \times {0,1}}^n \longrightarrow {0,1}$. \Rightarrow *Classification*, *Pattern Recognition*, or *(Supervised) Learning (with a teacher)*

Performance of g_n is measured by conditional error prob.

 $R_n \stackrel{\text{def}}{=} R(g_n) = \mathbb{P}(g_n(X; D_n) \neq Y | D_n))$, it depends on the data \Rightarrow random variable! But bounded: $R_n \in [0, 1]$

A sequence $\{g_n, n \ge 1\}$ is a *(discrimination) rule*.

CONSISTENT RULES

When is $\{g_n\}$ good?

DEFINITION

 $\{g_n\}$ is (weakly) consistent if $R_n \to R^*$ in probability (equivalently, $\lim_{n\to\infty} \mathbb{E}[R_n] = R^*$), and strongly consistent if $R_n \to R^*$ a.s., i.e. $\mathbb{P}(R_n \to R^*) = 1$. If a rule is (weekly/strongly) consistent for all ν on $\mathcal{X} \times \{0, 1\}$, then it is universally (weekly/strongly) consistent.

Consistency assures that taking more samples suffices to roughly reconstruct needed aspects of μ (actually, g^*). 1st universal consistency proof: Stone'77, *k*-NN rule ($k(n) \rightarrow \infty$ and $k(n)/n \rightarrow 0$). *k*-NN: $g_n(x)$ takes majority vote over Y_i 's in the subset of *k* pairs from D_n for which X_i is nearest to *x*. Since then many rules have been shown to be universally consistent. For most well-behaved $\{g_n\}$ (e.g. *k*-NN), weak and strong consistency are equivalent \leftarrow concentration inequalities INTRO: DECISION, SUPERVISED (PASSIVE) LEARNING

HOEFFDING INEQUALITY

See lecture01_ucb.pdf Sec.4 p.15!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

OUTLINE

INTRO: DECISION, SUPERVISED (PASSIVE) LEARNING

- Bayes decision
- Approximation of Bayes decision
- Sample based classification

No rate - Slow rate of convergence

Resticted class - Empirical risk minimization

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

NO RATE - SLOW RATE OF CONVERGENCE

How good can $\{g_n\}$ be? Convergence \Leftrightarrow explicit inequality $R_n \ge R^*$. Desire: bounds on $\mathbb{E}[R_n] - R^*$ and $\mathbb{P}(R_n - R^* > \epsilon)$ Rate of convergence But! Such bound has to depend on ν . E.g:

THEOREM

$$\forall \epsilon > 0, n, and g_n, \exists (X, Y) \sim \nu \text{ with } R^* = 0 \text{ s.t. } \mathbb{E}[R_n] \geq 1/2 - \epsilon.$$

THEOREM

Let $\{a_n\}$ be a real sequence with $a_n \to 0$, $1/16 \ge a_1 \ge a_2 \ge \dots > 0$. $\forall \{g_n\}, \exists (X, Y) \sim \nu \text{ with } R^* = 0, \text{ s.t. } \forall n \mathbb{E}[R_n] \ge a_n$.

THEOREM

 $\forall \{g_n\}, \epsilon, \liminf_{n \to \infty} \sup_{all \nu \text{ with } R^* < 1/2 - \epsilon} \mathbb{P}(R_n - R^* > \epsilon) > 0.$

Universal convergence rate guarantees do not exist. They must involve certain subclasses of distributions of (X, Y).

NO RATE - SLOW RATE OF CONVERGENCE

How good can $\{g_n\}$ be? Convergence \Leftrightarrow explicit inequality $R_n \ge R^*$. Desire: bounds on $\mathbb{E}[R_n] - R^*$ and $\mathbb{P}(R_n - R^* > \epsilon)$ Rate of convergence But! Such bound has to depend on ν . E.g:

THEOREM

$$\forall \epsilon > 0, n, and g_n, \exists (X, Y) \sim \nu \text{ with } R^* = 0 \text{ s.t. } \mathbb{E}[R_n] \geq 1/2 - \epsilon.$$

Theorem

Let $\{a_n\}$ be a real sequence with $a_n \to 0$, $1/16 \ge a_1 \ge a_2 \ge \dots > 0$. $\forall \{g_n\}, \exists (X, Y) \sim \nu$ with $R^* = 0$, s.t. $\forall n \mathbb{E}[R_n] \ge a_n$.

THEOREM

 $\forall \{g_n\}, \epsilon, \liminf_{n \to \infty} \sup_{all \nu \text{ with } R^* < 1/2 - \epsilon} \mathbb{P}(R_n - R^* > \epsilon) > 0.$

Universal convergence rate guarantees do not exist. They must involve certain subclasses of distributions of (X, Y).

NO RATE - SLOW RATE OF CONVERGENCE

How good can $\{g_n\}$ be? Convergence \Leftrightarrow explicit inequality $R_n \ge R^*$. Desire: bounds on $\mathbb{E}[R_n] - R^*$ and $\mathbb{P}(R_n - R^* > \epsilon)$ Rate of convergence But! Such bound has to depend on ν . E.g:

THEOREM

$$\forall \epsilon > 0, n, and g_n, \exists (X, Y) \sim \nu \text{ with } R^* = 0 \text{ s.t. } \mathbb{E}[R_n] \geq 1/2 - \epsilon.$$

Theorem

Let
$$\{a_n\}$$
 be a real sequence with $a_n \to 0$, $1/16 \ge a_1 \ge a_2 \ge \dots > 0$. $\forall \{g_n\}, \exists (X, Y) \sim \nu$ with $R^* = 0$, s.t. $\forall n \mathbb{E}[R_n] \ge a_n$.

THEOREM

$$\forall \{g_n\}, \epsilon, \liminf_{n \to \infty} \sup_{all \nu \text{ with } R^* < 1/2 - \epsilon} \mathbb{P}(R_n - R^* > \epsilon) > 0.$$

Universal convergence rate guarantees do not exist. They must involve certain subclasses of distributions of (X, Y).

OUTLINE

INTRO: DECISION, SUPERVISED (PASSIVE) LEARNING

- Bayes decision
- Approximation of Bayes decision
- Sample based classification
- No rate Slow rate of convergence
- Resticted class Empirical risk minimization

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

RESTICTED CLASS - EMPIRICAL RISK MINIMIZATION

Change the setting: limit the classifiers to class \mathcal{F} such as, e.g., neural networks with k node in 1 hidden layes. Then picking g_n from \mathcal{F} , $R_m \ge R_{\mathcal{F}} \stackrel{\text{def}}{=} \inf_{g \in \mathcal{F}} R(g)$. Typically, $R_{\mathcal{F}} > R^*$. How to find a good $g_n \in \mathcal{F}$? Pick a g_n^* with minimal estimated error, e.g. *minimize empirical risk* over \mathcal{F} :

$$\widehat{R}_n(g) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n I_{\{g(X_i) \neq Y_i\}}.$$

(Algorithmic complexity?! - not here) $R(g_n^*) - R_F \ge 0$, but expected to become small. Can we give convergence rate on it for such classes? Yes! Distribution free bounds, 1st by Vapnik & Chervonenkis, 1971. $R(g_n^*) - R^* = (R(g_n^*) - R_F) + (R_F - R^*)$ decomposition estimation error + approximation error \Rightarrow trade-off!

FINITE CLASS

THEOREM

Let
$$|\mathcal{F}| < \infty$$
 and $R_{\mathcal{F}} = 0$. Then $\forall n, \epsilon > 0$,

$$\mathbb{P}\left(R(g_n^*) > \epsilon\right) \le |\mathcal{F}|e^{-n\epsilon} \quad and \qquad \mathbb{E}\left[R(g_n^*)\right] \le \frac{\log(e|\mathcal{F}|)}{n}$$

PROOF.
$$R_{\mathcal{F}} = 0 \Rightarrow \exists g \in \mathcal{F}: R(g) = 0 \Rightarrow \widehat{R}_n(g) = 0 \Rightarrow \widehat{R}_n(g_n^*) = 0$$
 a.s.

$$\mathbb{P}\left(R(g_{n}^{*}) > \epsilon\right) \leq \mathbb{P}\left(\max_{g \in \mathcal{F}:\widehat{R}_{n}(g)=0} R(g) > \epsilon\right)$$

$$= \mathbb{E}\left[\mathbb{I}_{\left\{\max_{g \in \mathcal{F}:\widehat{R}_{n}(g)=0} R(g) > \epsilon\right\}}\right] = \mathbb{E}\left[\max_{g \in \mathcal{F}} \mathbb{I}_{\left\{\widehat{R}_{n}(g)=0\right\}} \mathbb{I}_{\left\{R(g) > \epsilon\right\}}\right]$$

$$\leq \sum_{g \in \mathcal{F}:R(g) > \epsilon} \mathbb{P}\left(\widehat{R}_{n}(g)=0\right) \leq |\mathcal{F}|(1-\epsilon)^{n} \leq |\mathcal{F}|e^{-n\epsilon}$$

 $(\mathbb{P}(\mathbb{A}(X_i, Y_i) \in \{(x, y) : g(x) \neq y\}) < (1 - \epsilon)^n \text{ if } \mathbb{P}(g(X) \neq Y) > \epsilon) \quad \text{ for } x \in \mathbb{P}(X_i, Y_i) < \epsilon$

FINITE CLASS PROOF - CONT.

 $\forall u > 0$,

$$\begin{split} \mathbb{E}\left[R(g_n^*)\right] &= \int_0^\infty \mathbb{P}\left(R(g_n^*) > \epsilon\right) d\epsilon \leq u + \int_u^\infty \mathbb{P}\left(R(g_n^*) > \epsilon\right) d\epsilon \\ &\leq u + |\mathcal{F}| \int_u^\infty e^{-n\epsilon} d\epsilon = u + \frac{|\mathcal{F}|}{n} e^{-nu}. \end{split}$$

Set $u = \log |\mathcal{F}|/n \Rightarrow \text{bound } \log(e|\mathcal{F}|)/n$.

REFERENCES I

Devroye, L., Györfi, L., and Lugosi, G. (1996). *A Probabilistic Theory of Pattern Recognition.* Applications of Mathematics: Stochastic Modelling and Applied Probability. Springer-Verlag New York.

