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INTRO: DECISION, SUPERVISED (PASSIVE) LEARNING

DECISION PROBLEM, ERROR PROBABILITY

Decide for not (yet) observable Y based on an observable
X
X , Y r.v.’s, with domains X (e.g. ⊆ Rd ) and Y = {0,1}
labels, resp., and with joint distr. ν
g : X → Y decision function or classifier is used to decide
from X to Y
Goodness of g(X ) decision is measured by 0-1 cost: 1, if
g(X ) differs from true Y , else 0⇒
Performance of g is measured by its error probability
(global risk): R(g) def

= P (Y 6= g(X ))

g’s minimizing R(g): optimal
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HYPOTHESIS, DECISION DOMAIN

DEFINITIONS

For i = 0,1: {Y = i}: i th hypothesis. Y a posteriori distribution
is given by ηi(x)

def
= P (Y = i |X = x) a posteriori probabilities.

Preimages of 0 and 1 by g form a partition of X , its classes
Di = {x ∈ X : g(x) = i} are the decision domains.

Note: 1− η0(x) = η1(x) = E [Y |X = x ] def
= η(x) (regression or a

posteriori probability function).
If X ∼ µ, ν may be given, e.g., by (µ, η). ∀C0,C1 ⊆ X

P ((X ,Y ) ∈ C0 × {0} ∪ C1 × {1}) =
∫

C0

(1− η)dµ+

∫
C1

η dµ.

(D0,D1)⇔ g, since I{g(x)=j} = I{x∈Dj} (IA: indicator func. of A).
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LOCAL RISK

r(g, x) def
= P (Y 6= g(X )|X = x): local risk function

E [r(g,X )] = R(g) and

r(g, x) = I{g(x)=1}η0(x) + I{g(x)=0}η1(x)
= 1− I{x∈D0}η0(x)− I{x∈D1}η1(x).

Minimized by g which puts ∀x into Dj with the greater ηj(x).
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BAYES DECISION

Let {D∗j } be s.t. ∀x
x ∈ D∗j ⇔ (ηj(x) > η1−j(x) v. j = 0, η0(x) = η1(x))

g∗ picks the more likely j given X .

x ∈ D∗j ⇒ ηj(x) = max(η0(x), η1(x)).

DEFINITION

Bayes decision (maximum a posteriori decision): g∗ corresp. to
(D∗0,D

∗
1) above, i.e. g∗(x) = 1⇔ x ∈ D∗1 ⇔ η(x) > 1/2.

THEOREM

The Bayes decision minimizes r(g, x) ∀x, and so optimal. The
minimum is r(g∗, x) = min(η0(x), η1(x)).

(optimal) global risk of g∗: Bayes risk/Bayes error

R∗ def
= R(g∗) = E [min(η0(X ), η1(X ))] = E [min(η(X ),1− η(X ))] .
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OTHER FORMULAS FOR BAYES RISK

R∗ = inf
g:X→{0,1}

P (g(X ) 6= Y ) =
1
2
− 1

2
E [|2η(X )− 1|] .

If X has density f :

R∗ =
∫

min(η(x),1−η(x))f (x)dx =

∫
min ((1− p)f0(x),pf1(x))dx ,

where p = P (Y = 1), 1− p are the class probabilities, fi is the
class-conditional density of X given Y = i . If f0 and f1 are
nonoverlapping, i.e.,

∫
f0f1 = 0⇒ R∗ = 0.

If p = 1/2

R∗ =
1
2

∫
min (f0(x), f1(x))dx =

1
2
− 1

4

∫
|f1(x)− f0(x)|dx ,

i.e. is related to the L1 distance between f0,f1.
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APPROXIMATION OF BAYES DECISION

η is typically unknown.
Assume that ηi can be estimated by some η̃i : X → [0,1].
Bayes decision: (η0, η1)⇒ g∗.
Analogy: (η̃0, η̃1)⇒ g̃ defines a plug-in decision:

g̃(x) = j ⇒ η̃j(x) = max(η̃0(x), η̃1(x))

(if η̃0(x) = η̃1(x), choose arbitrarily, e.g., 0.)
Expectation: η̃i ’s are good estimates⇒ g̃’s error ≈ g∗’s
error (always ≥). Diff. of their risks ≤ estimation errors of
η̃i ’s
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APPROXIMATION OF BAYES DECISION 2

THEOREM

For i = 0,1 let η̃i : X → [0,1] be estimate of ηi and g̃ be the
plug-in decision function defined by (η̃0, η̃1). Then

r(g̃, x)− r(g∗, x) ≤ I{g̃(x) 6=g∗(x)}
∑

i∈{0,1}
|η̃i(x)− ηi(x)|

and R(g̃)− R∗ ≤

E
[
I{g̃(X)6=g∗(X)}

∑
i∈{0,1}

|η̃i(x)− ηi(x)|
]
≤ E

[ ∑
i∈{0,1}

|η̃i(X )− ηi(X )|
]
.

If 1− η̃0 = η̃1
def
= η̃ then r(g̃, x)− r(g∗, x) =

I{g̃(x) 6=g∗(x)}|1− 2η(x)| ≤ 2I{g̃(x)6=g∗(x)}|η̃(x)− η(x)| and

R(g̃)−R∗ = E
[
I{g̃(X) 6=g∗(X)}|1−2η(x)|

]
≤ 2E

[
|η̃(X )−η(X )|

]
.

Good η estimate⇒ good decision function
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APPROXIMATION OF BAYES DECISION 3

If X has a density, f0, f1 are estimated by densities f̃0, f̃1, and p,
1− p are estimated by p̃1, p̃0, respectively, then for the plug-in
decision function

g(x) =
{

1 if p̃1 f̃1(x) > p̃0 f̃0(x)
0 otherwise,

R(g)− R∗

≤
∫
X
|(1− p)f0(x)− p̃0 f̃0(x)|dx +

∫
X
|pf1(x)− p̃1 f̃1(x)|dx .
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SAMPLE BASED CLASSIFICATION

η is unknown. Assumption: we have i.i.d. data (sample,
observations) Dn = ((X1,Y1),. . . ,(Xn,Yn)) ∼ ν from experiment
or experts (strong, but can be extended for slightly dependent
data).
An approximating classifier gn is constructed based on Dn (Y is
guessed by gn(X ;Dn)). So gn : X × {X × {0,1}}n −→ {0,1}.
⇒ Classification, Pattern Recognition, or (Supervised) Learning
(with a teacher)
Performance of gn is measured by conditional error prob.
Rn

def
= R(gn) = P (gn(X ;Dn) 6= Y |Dn)), it depends on the data⇒

random variable! But bounded: Rn ∈ [0,1]
A sequence {gn,n ≥ 1} is a (discrimination) rule.
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CONSISTENT RULES

When is {gn} good?

DEFINITION

{gn} is (weakly) consistent if Rn → R∗ in probability
(equivalently, limn→∞ E [Rn] = R∗), and strongly consistent if
Rn → R∗ a.s., i.e. P (Rn → R∗) = 1. If a rule is
(weekly/strongly) consistent for all ν on X × {0,1}, then it is
universally (weekly/strongly) consistent.

Consistency assures that taking more samples suffices to
roughly reconstruct needed aspects of µ (actually, g∗).
1st universal consistency proof: Stone’77, k -NN rule (k(n)→∞
and k(n)/n→ 0). k -NN: gn(x) takes majority vote over Yi ’s in
the subset of k pairs from Dn for which Xi is nearest to x . Since
then many rules have been shown to be universally consistent.
For most well-behaved {gn} (e.g. k -NN), weak and strong
consistency are equivalent⇐ concentration inequalities
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HOEFFDING INEQUALITY

See lecture01_ucb.pdf Sec.4 p.15!
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NO RATE - SLOW RATE OF CONVERGENCE

How good can {gn} be? Convergence⇔ explicit inequality
Rn ≥ R∗. Desire: bounds on E [Rn]− R∗ and P (Rn − R∗ > ε)
Rate of convergence But! Such bound has to depend on ν. E.g:

THEOREM

∀ε > 0, n, and gn, ∃(X ,Y ) ∼ ν with R∗ = 0 s.t. E [Rn] ≥ 1/2− ε.

THEOREM

Let {an} be a real sequence with an → 0, 1/16 ≥ a1 ≥ a2 ≥
. . . > 0. ∀{gn}, ∃(X ,Y ) ∼ ν with R∗ = 0, s.t. ∀n E [Rn] ≥ an.

THEOREM

∀{gn},ε, lim infn→∞ supall ν with R∗<1/2−ε P (Rn − R∗ > ε) > 0.

Universal convergence rate guarantees do not exist. They must
involve certain subclasses of distributions of (X ,Y ).
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RESTICTED CLASS - EMPIRICAL RISK MINIMIZATION

Change the setting: limit the classifiers to class F such as, e.g.,
neural networks with k node in 1 hidden layes. Then picking gn

from F , Rm ≥ RF
def
= infg∈F R(g). Typically, RF > R∗.

How to find a good gn ∈ F? Pick a g∗n with minimal estimated
error, e.g. minimize empirical risk over F :

R̂n(g)
def
=

1
n

n∑
i=1

I{g(Xi ) 6=Yi}.

(Algorithmic complexity?! - not here)
R(g∗n)− RF ≥ 0, but expected to become small. Can we give
convergence rate on it for such classes? Yes! Distribution free
bounds, 1st by Vapnik & Chervonenkis, 1971.
R(g∗n)− R∗ = (R(g∗n)− RF ) + (RF − R∗) decomposition
estimation error + approximation error⇒ trade-off!
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FINITE CLASS

THEOREM

Let |F| <∞ and RF = 0. Then ∀n, ε > 0,

P (R(g∗n) > ε) ≤ |F|e−nε and E [R(g∗n)] ≤
log(e|F|)

n
.

PROOF. RF = 0⇒ ∃g ∈ F : R(g) = 0⇒ R̂n(g) = 0⇒
R̂n(g∗n) = 0 a.s.

P (R(g∗n) > ε) ≤ P
(
maxg∈F :R̂n(g)=0 R(g) > ε

)
= E

[
I{

maxg∈F :R̂n(g)=0 R(g)>ε
}] = E

[
max
g∈F

I{R̂n(g)=0}I{R(g)>ε}

]
≤

∑
g∈F :R(g)>ε

P
(

R̂n(g) = 0
)
≤ |F|(1− ε)n ≤ |F|e−nε

(P (6 ∃(Xi ,Yi)∈{(x , y) :g(x) 6= y}) < (1− ε)n if P (g(X ) 6= Y ) > ε)
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FINITE CLASS PROOF - CONT.

∀u > 0,

E [R(g∗n)] =

∫ ∞
0

P (R(g∗n) > ε)dε ≤ u +

∫ ∞
u

P (R(g∗n) > ε)dε

≤ u + |F|
∫ ∞

u
e−nεdε = u +

|F|
n

e−nu.

Set u = log |F|/n⇒ bound log(e|F|)/n.
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