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BANDITS
e Yy — payoff of arm k when chosen the tthtime, 1 < k < K
e For k fixed, Yy is an i.i.d. sequence
o uk =E[Yul
® p* = maxg jik
e For k # k', Yy and Yy are independent

Jbad = {K|ux < p*}, set of “bad” arms

0 Jyood = {K |1k = 11*}, set of “good” arms

° I;“ — choice of arm at time t by some allocation rule A
o Tid = Yoy T{a_k} (# of choosing k)

We shall drop A from /4, Tz when A is unambigous — /;, Ty
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REGRET

T}, + = # of pulls of arm / till time ¢
° YII,T/,,I =payoff in the t-step
Payoff/-Loss in n steps is

n
Ln(A) = ZH YiT.

Expected regret in n steps:

Rn(A) & ssz [Ln(A")] — E[Ln(A)].

e Goal: Minimize regret!

e Constraint: Distributions of the payoffs are unknown.
This is stochastic bandit.
There is non-stochastic: { Yy }+>1 is not i.i.d. random, but any
individual sequence, E [] is replaced by sup over them.
Variation of special case of prediction with expert advice.
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AN EQUIVALENT FORM OF THE REGRET

e Exercise #1: Expected payoff

K

E [La(A)] = > pkE [Tin] < npt*
k=1

Hint: Use Wald’s identity. T, is stopping time w.r.t. ...
e Exercise #2:
SUpE [Rp(A")] = nu*
Al

o Let Ay = p* — k. Hence:

K
Rn(A) = nu* — ZNKE [Tkn) = Z ARE [Tkn] -
k=1 KEJpad
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WALD’S IDENTITIES

Ar.v. T is a stopping time w.r.t. a sequence { Y;} of r.v.s, if for
each t, I;7<y depends only on Yi, ..., Y;.

LEMMA (WALD’S IDENTITIES — SPECIAL CASE)

Let{Y:} be an i.i.d. sequence of r.v.’s, T be a stopping time
w.rt. {Yi}, and E[T] < oo. IfE[]Y1|] < oo then

E [Z; Yt] —E[V4]E[T].

IfE[Y2] < oo then

E [(Z; Y, - TIE[Y1])2] — Var[Y4] E[T].
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WALD’S IDENTITIES — GENERAL

T is a stopping time w.r.t. a filtration { ¥}, if for each ¢,
{T < t} € Fi.
LEMMA (WALD’S IDENTITIES)

Let { i} be a filtration and { Y;} be Fi-adapted i.i.d. sequence
of r.v’s. Assume that Fi and o({Ys: s > t+1}) are
independent, T is a stopping time w.r.t. 7, and E[T] < co. If
E[]Y1]] < oo then

E [Z; Yt] _E[V4]E[T].

IfE [Y2] < oo then

E [(Z; Y- TIE[Y1])2] — Var[Vi] E[T].
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€-GREEDY POLICIES

o Notation:

e Assumption: 0 < Yj; < 1 (in the rest of the talk!)

Q Initialization: Choose all arms 1, ..., K once.

@ Attime t choose arm with the maximal payoff with
probability 1 — ¢;, otherwise an arm uniformly
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e Fix ¢; = e: regret still linear. Exercise #4: Give a lower
bound on the regret for 0 < e < 1
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PERFORMANCE — FIRST STEPS

e c-greedy choice:

P (lt = argmaxkvkt‘{vkt}1§k§;<) =1 €t.

e ¢; = 0: always choose maximum. Why is this bad?

Exercise #3: Give a lower bound on the regret for Bernoulli
bandits

e ¢; = 1 clearly not good

e Fix ¢; = e: regret still linear. Exercise #4: Give a lower
bound on the regret for 0 < e < 1

Exploration-exploitation tradeoff!
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LOGARITHMIC REGRET

In order to achieve logarithmic (cumulative) regret, the
probability of not selecting the best looking arm in step t should
be ~ 1/t, since Y7 1/t~ Inn!

THEOREM ( REGRET BOUND
[AUER ET AL., 2002])

Let Amin = Minjey,, Aj. Let e; = min(1
n>5K/Anin then

; A2 t) time dependent. If

A2 . n

min

P (I & Jgood) = O ( > and Rn(AJ) < O(z-)nn.
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e Two sources of error:
@ Randomization (fine, by design!)
© Not picking an optimal arm when we wanted to; assuming
single optimal arm with index k*, with /; = argmax; Y:

P(l £ k*) = P(V,,J > VM) _
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PROOF

e Two sources of error:
@ Randomization (fine, by design!)
© Not picking an optimal arm when we wanted to; assuming
single optimal arm with index k*, with /; = argmax; Y:

P(l £ k*) = P(V,,J > VM) _

e We need to compare the probability that one average is
larger than another one

e How to do this? Solution: Law of large numbers: Averages
are close to their expected values: Yy ~ px < p* ~ Yy ¢

e But how close?? =- Concentration inequalities!
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Mild assumptions on X! (no parametric forms)
e Markov: X > 0thenP(X > ¢€) <E[X] /e
e Now, for any ¢ : R™ — R strictly increasing,

P(X > ¢) =P(¢(X) > d(e)) < E[o(X)] /o(e).

e Chebyshev: Choose ¢(¢) = ¢?! Let X be such that
Var [X] < co. Then using for | X —E[X]|:

Var [X]
e

PX-E[X]| =€) <
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SOME INEQUALITIES

Mild assumptions on X! (no parametric forms)
e Markov: X > 0thenP(X > ¢€) <E[X] /e
e Now, for any ¢ : R™ — R strictly increasing,

P(X > ¢) =P(¢(X) > d(e)) < E[o(X)] /o(e).

e Chebyshev: Choose ¢(¢) = ¢?! Let X be such that
Var [X] < co. Then using for | X —E[X]|:

Var [X]
e

PX-E[X]| =€) <

How tight is Chebyshev’s inequality?? |
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CHEBYSHEV’S INEQUALITY FOR AVERAGE

P (Vo -E[M]| > ¢) < VN

v

INTUITION: CENTRAL LIMIT THEOREM
n /— n
P <f (Ya-E[vi]) 2 fe)
g g

o <ﬁ€> ~ o1/ O oni/(20)
o Vne

P(Vn—E[m > e)

exponential = much sharper could be!

N,




SHARPENING THE BOUNDS

e For ¢ > 0 strictly increasing:

P(X =€) =P(¢(X) = ¢(c)) < E[(X)] /o(e)-

o 5 = = E DAl
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SHARPENING THE BOUNDS

e For ¢ > 0 strictly increasing:

P(X =€) =P(¢(X) = ¢(e)) < E[o(X)] /o(e)-

e Higher moments: ¢(¢) = €9, q > 2:
P(X-E[X]| 2 ) SE[IX—E[X]|] /e“.

— improvement! (though requires E[| X — E [X]|9] < o)
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SHARPENING THE BOUNDS

e For ¢ > 0 strictly increasing:

P(X =€) =P(¢(X) = ¢(e)) < E[o(X)] /o(e)-

e Higher moments: ¢(¢) = €9, q > 2:
P(X-E[X]| 2 ) SE[IX—E[X]|] /e“.

— improvement! (though requires E[| X — E [X] |9] < o)
e Exponential ¢?
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SHARPENING THE BOUNDS/2

e Chernoff’s method: ¢(x) = %%, s > 0;
P(X>1t)<E {esx} e~ st

and optimize for s!
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SHARPENING THE BOUNDS/2

e Chernoff’s method: ¢(x) = %%, s > 0;
P(X>1t)<E {esx} e~ st

and optimize for s!
o ApplytonY, =S, =31, Y&

P(Sp—E[S)]>t) < e R [eswn—nwn]

_ e—stn?:1E[es(Yt—E[Y1])}

o Hoeffding: E[X] =0, a < X < bthen E [¢5X] < e*(b-a)°/8
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THEOREM (HOEFFDING’S INEQUALITY)

ForY; € [0,1] iid., u=E[Y4], Yn= Y14 Yi/n,
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Cn(1/8)  [In(1/9)
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So with probability > 1 —§

— In(1/0)
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universal: holds for any n and ¢!
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UPPER CONFIDENCE BOUNDS: IDEA

We want to pull arms both with high Y and/or with high
uncertainty. Idea: Let’s aggregate (add) Y and its uncertainty!
l.e., bias the estimates directly by the uncertainties, then do
greedy (without €;)!
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How to select ¢; 7,,?
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UPPER CONFIDENCE BOUNDS: IDEA

We want to pull arms both with high Y and/or with high
uncertainty. Idea: Let’s aggregate (add) Y and its uncertainty!
l.e., bias the estimates directly by the uncertainties, then do
greedy (without €;)!
UCBI1

@ Initialization: Use all arms once

@ Step t > K: Use arm with highest index

Ykt + Ct 1

Ct 7, = uncertainity of Yy,

OPTIMISM IN THE FACE OF UNCERTAINTY

Estimate payoffs in an optimistic way (taking into account
uncertainty), choose the arm with the best biased estimate.

How to select ¢; 1,,?
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o Central limit theorem: \/Tt(Yit — 1tk) ~ No.o,» SO W. high
prob. Y — ik € [=20k/\/ Tkt 20k /\/ Tkt

e Hoeffding (for Y € [0, 1]): w. probability > 1 — 24,
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Note: Fixed ¢; 7 for fixed T are not enough for infinite
exploration (sticks to wrong arm with probability> 0 if the first
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for T fixed, i.e., 6 = 0y — 0as t — ool

o 0t ~ 7P — 0, Hoeffding: Let ¢; 7, ~ /pInt/ T;

o satisfies lim;_, o ¢;,7 — oo and

o the total probability of any confidence intervals fa|I|ng is
small for p > 2: K3 { o  tP <K [ S t7P dt_m
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UCB1 REGRET THEOREM

[Agrawal, 1995] Asymptotic results: large-deviation theory
[Auer et al., 2002] Avoid asymptotics, use Hoeffding’s ineq.

THEOREM (UCB1 REGRET)
Let0 < Yy < 1. Then the regret of UCB1 when used with
plnt

CtT = and p > 2 satisfies

1 2
Rn(Auce1) < 2p (Z:erdd A, > Inn+ (3 + ,0—2) ZAI-

e Slightly better than [Auer et al., 2002]: tradeoff in p explicit

o Coefficient 3 ;. « islarge, if many small A; >0, i.e.,
hard to dlstlngwsh the best arms.
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HEURISTIC ANALYSIS

Recall: Ap(A) =3 i, AE[Tin], hence we bound E [T;] for
bad i arms.

FAcCT 1
If confidence intervals do not fail and /; = i then

W= = TTERS ) = <2¢7,

hence ¢; 1, > Aj/2.
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PROOF BY FIGURE!

GOAL: ASSUMING , PROVE !

Assume [y =i

26, 13(0)

i

(Actually, the conclusion holds even if we only have
piz Yir, = and py < Yjg + G ;)
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HEURISTIC ANALYSIS/2

e By Fact 1, with high prob. if /; = i then ¢; 7, > A;/2, i.e.,

2

- Int 2pint
i <2 o PInt T <~ )
7 < crr, 2T, hence it < Aiz

Thus, using t < n, for a bad arm E [T;,] <~ 2pInn/A2, and

i€Jdbad

Rn=> ARE[Tjp <~ ) % -O(In n).
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e UCT = UCB applied to searching in Trees
[Kocsis and Szepesvari, 2006];

o Improved trajectory-tree building in MDPs
e searching in games
Go: used by Mogo*, Valkyria_.UCT* (was #1 on CGOS
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e Best arm identification

e UCB applied to MDPs:
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e Bandit problem is special case of MDP/RL with one state.
More states?

e Continuous state spaces?
e Continuous action spaces?



o Gambling :-)

>

Q>



e Gambling :-)
"] UCT

Q>



INTRODUCTION REGRET €-GREEDY POLICIES HOEFFDING’S INEQUALITY ALGORITHM UCB1 ANALYSIS OF THE REGRET OF [

APPLICATION OF BANDIT MODELS

e Gambling :-)
e UCT

e Adaptive routing for minimizing delays in networks (arm =
route, payoff = — delay)



INTRODUCTION REGRET €-GREEDY POLICIES HOEFFDING’S INEQUALITY ALGORITHM UCB1 ANALYSIS OF THE REGRET OF [

APPLICATION OF BANDIT MODELS

e Gambling :-)

e UCT

e Adaptive routing for minimizing delays in networks (arm =
route, payoff = — delay)

e Online ad serving (showing relevant ads; arm = ad type
shown, payoff = click)



INTRODUCTION REGRET €-GREEDY POLICIES HOEFFDING’S INEQUALITY ALGORITHM UCB1 ANALYSIS OF THE REGRET OF [

APPLICATION OF BANDIT MODELS

e Gambling :-)

e UCT

e Adaptive routing for minimizing delays in networks (arm =
route, payoff = — delay)

e Online ad serving (showing relevant ads; arm = ad type
shown, payoff = click)

e Clinical trials investigating effects of experimental
treatments (arm = treatment, payoff = healing; legal, ethic
issues, interference)



INTRODUCTION REGRET €-GREEDY POLICIES HOEFFDING’S INEQUALITY ALGORITHM UCB1 ANALYSIS OF THE REGRET OF [

APPLICATION OF BANDIT MODELS

e Gambling :-)
e UCT

e Adaptive routing for minimizing delays in networks (arm =
route, payoff = — delay)

e Online ad serving (showing relevant ads; arm = ad type
shown, payoff = click)

e Clinical trials investigating effects of experimental
treatments (arm = treatment, payoff = healing; legal, ethic
issues, interference)

e Managing competing research projects in a large

organization (science found., pharmacy; arm = project
given resource, payoff = results (i.i.d.?))



INTRODUCTION REGRET €-GREEDY POLICIES HOEFFDING’S INEQUALITY ALGORITHM UCB1 ANALYSIS OF THE REGRET OF [

APPLICATION OF BANDIT MODELS

e Gambling :-)

e UCT

e Adaptive routing for minimizing delays in networks (arm =
route, payoff = — delay)

e Online ad serving (showing relevant ads; arm = ad type
shown, payoff = click)

e Clinical trials investigating effects of experimental
treatments (arm = treatment, payoff = healing; legal, ethic
issues, interference)

e Managing competing research projects in a large
organization (science found., pharmacy; arm = project
given resource, payoff = results (i.i.d.?))

e Tuning parameter setting for a program given a deadline



INTRODUCTION REGRET €-GREEDY POLICIES HOEFFDING’S INEQUALITY ALGORITHM UCB1 ANALYSIS OF THE REGRET OF [

APPLICATION OF BANDIT MODELS

e Gambling :-)

e UCT

e Adaptive routing for minimizing delays in networks (arm =
route, payoff = — delay)

e Online ad serving (showing relevant ads; arm = ad type
shown, payoff = click)

e Clinical trials investigating effects of experimental
treatments (arm = treatment, payoff = healing; legal, ethic
issues, interference)

e Managing competing research projects in a large
organization (science found., pharmacy; arm = project
given resource, payoff = results (i.i.d.?))

e Tuning parameter setting for a program given a deadline

e Choosing a partner during limited number of dates
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