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BANDITS

Ykt – payoff of arm k when chosen the t th time, 1 ≤ k ≤ K
For k fixed, Ykt is an i.i.d. sequence
µk = E [Ykt ]

µ∗ = maxk µk

For k 6= k ′, Ykt and Yk ′t ′ are independent
Jbad = {k |µk < µ∗}, set of “bad” arms
Jgood = {k |µk = µ∗}, set of “good” arms
IAt – choice of arm at time t by some allocation rule A
TAkt =

∑t
s=1 I{IAs =k} (# of choosing k )

We shall drop A from IAt , TAkt when A is unambigous→ It , Tkt
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REGRET

TIt ,t = # of pulls of arm It till time t
YIt ,TIt ,t

=payoff in the t-step
Payoff/-Loss in n steps is

Ln(A) =
∑n

t=1
YIt ,TIt ,t

Expected regret in n steps:

Rn(A)
def
= sup
A′

E
[
Ln(A′)

]
− E [Ln(A)] .

Goal: Minimize regret!
Constraint: Distributions of the payoffs are unknown.

This is stochastic bandit.
There is non-stochastic: {Ykt}t≥1 is not i.i.d. random, but any
individual sequence, E [] is replaced by sup over them.
Variation of special case of prediction with expert advice.
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AN EQUIVALENT FORM OF THE REGRET

Exercise #1: Expected payoff

E [Ln(A)] =
K∑

k=1

µkE [Tkn] ≤ nµ∗

Hint: Use Wald’s identity. Tkn is stopping time w.r.t. . . .
Exercise #2:

sup
A′

E
[
Rn(A′)

]
= nµ∗

Let ∆k = µ∗ − µk . Hence:

Rn(A) = nµ∗ −
K∑

k=1

µkE [Tkn] =
∑

k∈Jbad

∆kE [Tkn] .
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WALD’S IDENTITIES

A r.v. T is a stopping time w.r.t. a sequence {Yt} of r.v.’s, if for
each t , I{T≤t} depends only on Y1, . . . ,Yt .

LEMMA (WALD’S IDENTITIES — SPECIAL CASE)

Let {Yt} be an i.i.d. sequence of r.v.’s, T be a stopping time
w.r.t. {Yt}, and E [T ] <∞. If E [|Y1|] <∞ then

E
[∑T

t=1
Yt

]
= E [Y1]E [T ] .

If E
[
Y 2

1
]
<∞ then

E
[

(
∑T

t=1
Yt − TE [Y1])2

]
= Var [Y1] E [T ] .
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WALD’S IDENTITIES — GENERAL

T is a stopping time w.r.t. a filtration {Ft}, if for each t ,
{T ≤ t} ∈ Ft .

LEMMA (WALD’S IDENTITIES)

Let {Ft} be a filtration and {Yt} be Ft -adapted i.i.d. sequence
of r.v.’s. Assume that Ft and σ({Ys : s ≥ t + 1}) are
independent, T is a stopping time w.r.t. Ft , and E [T ] <∞. If
E [|Y1|] <∞ then

E
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ε-GREEDY POLICIES

Notation:

Y kt =
1
t

t∑
t ′=1

Ykt ′

Assumption: 0 ≤ Ykt ≤ 1 (in the rest of the talk!)

ε-GREEDY

1 Initialization: Choose all arms 1, . . . ,K once.
2 At time t choose arm with the maximal payoff with

probability 1− εt , otherwise an arm uniformly
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PERFORMANCE – FIRST STEPS

ε-greedy choice:

P
(

It = argmaxkY kt

∣∣∣{Y kt}1≤k≤K

)
= 1− εt .

εt = 0: always choose maximum. Why is this bad?
Exercise #3: Give a lower bound on the regret for Bernoulli
bandits
εt = 1 clearly not good
Fix εt = ε: regret still linear. Exercise #4: Give a lower
bound on the regret for 0 < ε < 1

Exploration-exploitation tradeoff!
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LOGARITHMIC REGRET

IDEA!
In order to achieve logarithmic (cumulative) regret, the
probability of not selecting the best looking arm in step t should
be ≈ 1/t , since

∑n
t=1 1/t ≈ ln n!

THEOREM (INSTANTANEOUS REGRET BOUND

[AUER ET AL., 2002])

Let ∆min = minj∈Jbad ∆j . Let εt = min(1, 5K
∆2

mint ) time dependent. If

n ≥ 5K/∆min then

P
(
In 6∈ Jgood

)
= O

(
1

∆2
minn

)
and Rn(Aε) ≤ O

(
1

∆2
min

)
ln n.
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PROOF

Two sources of error:
1 Randomization (fine, by design!)
2 Not picking an optimal arm when we wanted to; assuming

single optimal arm with index k∗, with It = argmaxiY it :

P (It 6= k∗) = P
(

Y It ,t > Y k∗,t

)
= . . .

We need to compare the probability that one average is
larger than another one
How to do this? Solution: Law of large numbers: Averages
are close to their expected values: Y k ,t ≈ µk < µ∗ ≈ Y k∗,t

But how close?? ⇒ Concentration inequalities!
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SOME INEQUALITIES

Mild assumptions on X ! (no parametric forms)
Markov: X ≥ 0 then P (X ≥ ε) ≤ E [X ] /ε

Now, for any φ : R+ → R+ strictly increasing,

P (X ≥ ε) = P (φ(X ) ≥ φ(ε)) ≤ E [φ(X )] /φ(ε).

Chebyshev: Choose φ(ε) = ε2! Let X be such that
Var [X ] <∞. Then using for |X − E [X ] |:

P (|X − E [X ] | ≥ ε) ≤ Var [X ]

ε2
.

How tight is Chebyshev’s inequality??
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CHEBYSHEV’S INEQUALITY FOR AVERAGE

P
(
|Y n − E [Y1] | ≥ ε

)
≤ Var [Y1]

nε2

INTUITION: CENTRAL LIMIT THEOREM

P
(

Y n − E [Y1] ≥ ε
)

= P
(√

n
σ

(
Y n − E [Y1]

)
≥
√

n
σ
ε

)
→ 1− Φ

(√
n
σ
ε

)
≈ e−nε2/(2σ2) σ√

nε
≈ e−nε2/(2σ2).

exponential⇒ much sharper could be!
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SHARPENING THE BOUNDS

For φ ≥ 0 strictly increasing:

P (X ≥ ε) = P (φ(X ) ≥ φ(ε)) ≤ E [φ(X )] /φ(ε).

Higher moments: φ(ε) = εq, q ≥ 2:

P (|X − E [X ] | ≥ ε) ≤ E
[
|X − E [X ] |q

]
/εq.

– improvement! (though requires E [|X − E [X ] |q] <∞)
Exponential φ?



INTRODUCTION REGRET ε-GREEDY POLICIES HOEFFDING’S INEQUALITY ALGORITHM UCB1 ANALYSIS OF THE REGRET OF UCB1 EXTENSIONS BIBLIOGRAPHY

SHARPENING THE BOUNDS

For φ ≥ 0 strictly increasing:

P (X ≥ ε) = P (φ(X ) ≥ φ(ε)) ≤ E [φ(X )] /φ(ε).

Higher moments: φ(ε) = εq, q ≥ 2:

P (|X − E [X ] | ≥ ε) ≤ E
[
|X − E [X ] |q

]
/εq.

– improvement! (though requires E [|X − E [X ] |q] <∞)
Exponential φ?



INTRODUCTION REGRET ε-GREEDY POLICIES HOEFFDING’S INEQUALITY ALGORITHM UCB1 ANALYSIS OF THE REGRET OF UCB1 EXTENSIONS BIBLIOGRAPHY

SHARPENING THE BOUNDS

For φ ≥ 0 strictly increasing:

P (X ≥ ε) = P (φ(X ) ≥ φ(ε)) ≤ E [φ(X )] /φ(ε).

Higher moments: φ(ε) = εq, q ≥ 2:

P (|X − E [X ] | ≥ ε) ≤ E
[
|X − E [X ] |q

]
/εq.

– improvement! (though requires E [|X − E [X ] |q] <∞)
Exponential φ?



INTRODUCTION REGRET ε-GREEDY POLICIES HOEFFDING’S INEQUALITY ALGORITHM UCB1 ANALYSIS OF THE REGRET OF UCB1 EXTENSIONS BIBLIOGRAPHY

SHARPENING THE BOUNDS/2

Chernoff’s method: φ(x) = esx , s > 0;

P (X ≥ t) ≤ E
[
esX
]

e−st

and optimize for s!
Apply to nY n = Sn =

∑n
t=1 Yt :

P (Sn − E [Sn] ≥ t) ≤ e−stE
[
es(Sn−nE[Y1])

]
= e−st Πn

t=1E
[
es(Yt−E[Y1])

]

Hoeffding: E [X ] = 0, a ≤ X ≤ b then E
[
esX ] ≤ es2(b−a)2/8
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THEOREM (HOEFFDING’S INEQUALITY)

For Yi ∈ [0,1] i.i.d., µ = E [Y1], Y n =
∑n

t=1 Yt/n,

P
(

Y n ≥ µ+ ε
)
≤ e−2nε2

P
(

Y n ≤ µ− ε
)
≤ e−2nε2

USEFUL VARIATIONS

Let the error probability be δ: ⇒ e−2nε2 = δ, n = n(ε, δ) =?
(sample complexity), ε = ε(n, δ) =?

n =
ln(1/δ)

2ε2
, ε =

√
ln(1/δ)

2n
.

So with probability ≥ 1− δ

Y n − µ <
√

ln(1/δ)

2n
universal: holds for any n and δ!
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UPPER CONFIDENCE BOUNDS: IDEA

We want to pull arms both with high Y kt and/or with high
uncertainty. Idea: Let’s aggregate (add) Y kt and its uncertainty!
I.e., bias the estimates directly by the uncertainties, then do
greedy (without εt )!
UCB1

1 Initialization: Use all arms once
2 Step t > K : Use arm with highest index

Y kt + ct ,Tkt .

ct ,Tkt = uncertainity of Y kt

OPTIMISM IN THE FACE OF UNCERTAINTY

Estimate payoffs in an optimistic way (taking into account
uncertainty), choose the arm with the best biased estimate.

How to select ct ,Tkt ?
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Y kt + ct ,Tkt .

ct ,Tkt = uncertainity of Y kt

OPTIMISM IN THE FACE OF UNCERTAINTY

Estimate payoffs in an optimistic way (taking into account
uncertainty), choose the arm with the best biased estimate.

How to select ct ,Tkt ?
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HOW TO SELECT ct ,Tkt ?

Central limit theorem:
√

Tkt (Y kt − µk ) ∼ N0,σk , so w. high
prob. Y kt − µk ∈ [−2σk/

√
Tkt ,2σk/

√
Tkt ]

Hoeffding (for Y ∈ [0,1]): w. probability ≥ 1− 2δ,
Y kt − µk ∈ [−

√
ln(1/δ)/2Tkt ,

√
ln(1/δ)/2Tkt ]

Confidence Bounds — measures the uncertainty of Y kt

Let it match the confidence radius: ct ,Tkt ∼
√

ln(1/δ)/Tkt

Y kt + ct ,Tkt = Upper Confidence Bound
Note: Fixed ct ,T for fixed T are not enough for infinite
exploration (sticks to wrong arm with probability> 0 if the first
samples for the optimal arm are bad). We need limt→∞ ct ,T →∞
for T fixed, i.e., δ = δt → 0 as t →∞!
δt ∼ t−p → 0, Hoeffding: Let ct ,Tkt ∼

√
p ln t/Tkt ;

satisfies limt→∞ ct,T →∞ and
the total probability of any confidence intervals failing is
small for p > 2: K

∑n
t=K +1 t−p ≤ K

∫∞
K t−pdt = 1

(p−1)K p−2 .
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UCB1 REGRET THEOREM

[Agrawal, 1995] Asymptotic results: large-deviation theory
[Auer et al., 2002] Avoid asymptotics, use Hoeffding’s ineq.

THEOREM (UCB1 REGRET)

Let 0 ≤ Yit ≤ 1. Then the regret of UCB1 when used with

ct ,T =
√

p ln t
2T and p > 2 satisfies

Rn(AUCB1) ≤ 2p
(∑

i∈Jbad

1
∆i

)
ln n +

(
3 +

2
p − 2

) K∑
i=1

∆i .

Slightly better than [Auer et al., 2002]: tradeoff in p explicit
Coefficient

∑
i∈Jbad

1
∆i

is large, if many small ∆i > 0, i.e.,
hard to distinguish the best arms.
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HEURISTIC ANALYSIS

Recall: Rn(A) =
∑

i∈Jbad
∆iE [Tin], hence we bound E [Tin] for

bad i arms.

FACT 1
If confidence intervals do not fail and It = i then

µ∗ − µi = max
j
µj − µi ≤ 2ct ,Tit ,

hence ct ,Tit ≥ ∆i/2.
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PROOF BY FIGURE!

GOAL: ASSUMING It = i , PROVE ct ,Tit ≥ ∆i/2!

2ct,Ti(t)

Assume It = i

Xi,Ti(t)

Xj,Tj(t)

2ct,Tj(t)

µi

µj

(Actually, the conclusion holds even if we only have
µi ≥ Y i,Tit − ct ,Tit and µj ≤ Y j,Tjt + ct ,Tjt .)
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HEURISTIC ANALYSIS/2

By Fact 1, with high prob. if It = i then ct ,Tit ≥ ∆i/2, i.e.,

∆2
i

4
≤ c2

t ,Tit
∼ p ln t

2Tit
, hence Tit ≤∼

2p ln t
∆2

i
.

Thus, using t ≤ n, for a bad arm E [Tin] ≤∼ 2p ln n/∆2
i , and

Rn =
∑

i

∆iE [Tin] ≤∼
∑

i∈Jbad

1
∆i
·O(ln n).
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EXTENSIONS

UCT ≡ UCB applied to searching in Trees
[Kocsis and Szepesvári, 2006];

Improved trajectory-tree building in MDPs
searching in games
Go: used by Mogo*, Valkyria UCT* (was #1 on CGOS

9×9, had ELŐ points > 2000 for the first time!)

Budgeted learning: some costs instead of time steps
Best arm identification
UCB applied to MDPs:
[Auer and Ortner, 2007, Tewari and Bartlett, 2008,
Auer et al., 2009, Bartlett and Tewari, 2009]
Bandit problem is special case of MDP/RL with one state.
More states?
Continuous state spaces?
Continuous action spaces?
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9×9, had ELŐ points > 2000 for the first time!)

Budgeted learning: some costs instead of time steps
Best arm identification
UCB applied to MDPs:
[Auer and Ortner, 2007, Tewari and Bartlett, 2008,
Auer et al., 2009, Bartlett and Tewari, 2009]
Bandit problem is special case of MDP/RL with one state.
More states?
Continuous state spaces?
Continuous action spaces?



INTRODUCTION REGRET ε-GREEDY POLICIES HOEFFDING’S INEQUALITY ALGORITHM UCB1 ANALYSIS OF THE REGRET OF UCB1 EXTENSIONS BIBLIOGRAPHY

EXTENSIONS

UCT ≡ UCB applied to searching in Trees
[Kocsis and Szepesvári, 2006];

Improved trajectory-tree building in MDPs
searching in games
Go: used by Mogo*, Valkyria UCT* (was #1 on CGOS

9×9, had ELŐ points > 2000 for the first time!)

Budgeted learning: some costs instead of time steps
Best arm identification
UCB applied to MDPs:
[Auer and Ortner, 2007, Tewari and Bartlett, 2008,
Auer et al., 2009, Bartlett and Tewari, 2009]
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APPLICATION OF BANDIT MODELS

Gambling :-)
UCT
Adaptive routing for minimizing delays in networks (arm =
route, payoff = − delay)
Online ad serving (showing relevant ads; arm = ad type
shown, payoff = click)
Clinical trials investigating effects of experimental
treatments (arm = treatment, payoff = healing; legal, ethic
issues, interference)
Managing competing research projects in a large
organization (science found., pharmacy; arm = project
given resource, payoff = results (i.i.d.?))
Tuning parameter setting for a program given a deadline
Choosing a partner during limited number of dates
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