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Stable distributions

Definition
The distribution P is said to stable (or faithfull), if there exists a DAG called
perfect map exactly representing its (in)dependencies (i.e.
(X ⊥⊥ Y|Z)G ⇔ (X ⊥⊥ Y|Z)P ∀ X, Y, Z ⊆ V ). The distribution P is stable w.r.t. a
DAG G, if G perfectly represents its (in)dependencies.

Numerically encoded independencies cannot be represented structurally, i.e.
by d-separation, thus cannot be learned with standard BN representation.

1. Consider p(X, Y, Z) with binary X, Z and ternary Y. The conditionals
p(Y|X) and p(Z|Y) can be selected such that p(z|x) = p(z|¬x). That is
(X 6⊥⊥ Y) and (Y 6⊥⊥ Z), but (X ⊥⊥ Z), demonstrating that the "naturally”
expected transitivity of dependency can be destroyed numerically.

2. Consider P(X, Y, Z) with binary variables, where p(x) = p(y) = 0.5 and
p(Z|X, Y) = 1(Z = XOR(X, Y)). That is (X ⊥⊥ Z) and (Y ⊥⊥ Z), but
({X, Y} 6⊥⊥ Z), demonstrating that pairwise independence does not imply
total independence.
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The Causal Markov Condition

Definition
A DAG G is called a causal structure over variables V, if each node represents
a variable and edges denote direct influences. A causal model is a causal
structure extended with local models p(Xi|pa(Xi,G)) for each node describing
the dependency of variable Xi on its parents pa(Xi,G). As the conditionals are
frequently from a parametric family, they are parameterized by θi, and θ
denotes the overall parameterezation, so a causal model is pair (G,θ.

Definition
A causal structure G and distribution P satisfies the Causal Markov Condition,
if P obeys the local Markov condition w.r.t. G.

Note: Reichenbach’s ”common cause principle", i.e. hidden variables are
allowed, only variables that influences two or more variables in V are
necessary for causal sufficiency.
(The causal Markov condition implies sufficiency and stability implies
necessity of G).
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Constraint-based BN learning: IC
The Inductive Causation algorithm (assuming a stable distribution P):

1. Skeleton: Construct an undirected graph (skeleton), such that variables
X, Y ∈ V are connected with an edge iff ∀S(X ⊥⊥ Y|S)P, where
S ⊆ V \ {X, Y} .

2. v-structures: Orient X → Z← Y iff X, Y are nonadjacent, Z is a common
neighbour and ¬∃S that (X ⊥⊥ Y|S)P, where S ⊆ V \ {X, Y} and Z ∈ S.

3. propagation: Orient undirected edges without creating new v-structures
and directed cycle.

Theorem
The following four rules are necessary and sufficient.

R1 if (a 6−c) ∧ (a→ b) ∧ (b− c), then b→ c

R2 if (a→ c→ b) ∧ (a− b), then a→ b

R3 if (a− b) ∧ (a− c→ b) ∧ (a− d→ b) ∧ (c 6−d), then a→ b

R4 if (a− b) ∧ (a− c→ d) ∧ (c→ d→ b) ∧ (c 6−b) ∧ (a− d), then a→ b
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The complexity of BN learning

The NP-hardness of finding a Bayesian network for the observations (as
minimal representation of the observed independencies, which is I-map).

Theorem
Let V be a set of variables with joint distribution p(V). Assume that an oracle is
available that reveals in O(1) time whether an independence statement holds in
p. Let 0 < k ≤ |V| and s = 1

2 n(n− 1)− 1
2 k(k− 1). Then, the problem of

deciding whether or not there is a (non-minimal) Bayesian network that
represents p with less or equal to s edges by consulting the oracle is NP-complete.

The NP-hardness of finding a best scoring Bayesian network (i.e. the
NP-hardness of optimization over DAGs).

Theorem
Let V be a set of variables, DN is a complete data set, S(G,DN) is a score function
and a real value c. Then, the problem of deciding whether or not there exist a
Bayesian network structure G0 defined over the variables V, where each node in
G0 has at most 1 < k parents, such that p ≤ S(G0,DN) is NP-complete.
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Learning tree Bayesian networks: goal

Approximate the target distribution P with a tree-dependent distribution Pt

using the Kullback-Leibler divergence (relative/cross-entropy measure).

Definition
For two discrete probability distributions P and Q with probabilities pi and qi

the Kullback-Leibler divergence is

DKL(P‖Q) = KL(P‖Q) =
∑

i

pi log(pi/qi) (1)

Lemma
The KL divergence is nonnegative:

−KL(P||Q) =
∑

i

pi log(qi/pi) ≤
∑

i

pi((qi/pi)− 1) = 0 (2)

using log(x) ≤ x − 1. It is 0, iff P and Q are identical.
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Entropy, mutual information, KL divergence
⇒The KL divergence is not symmetric and it does not satisfy the triangle
inequality, thus it is not a distance.
⇒The KL divergence dominates the L1 distance, L1(P,Q) =

∑
i |pi − qi|, and

the L2 distance, L2(P,Q) = (
∑

i(pi − qi)
2)1/2.

⇒The mutual information of X and Y with P(X, Y) can be written as

I(X, Y) =
∑
x,y

P(x, y)[log
P(x, y)

P(x)P(y)
= KL(P(X, Y)||P(X)P(Y)), (3)

which is 0, iff X and Y are independent.
⇒The joint entropy of X and Y with P(X, Y) can be written as

H(X, Y) = H(X|Y) + I(X, Y) + H(Y|X), (4)

where H(Y|X) is the conditional entropy defined as

H(Y|X) =
∑

x

P(x)H(Y|X = x) =
∑

x

P(x)
∑

y

P(y) log P(y). (5)
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Learning tree Bayesian networks: parameter learning

If Q is a distribution defined by a tree Bayesian network t in learning P, then

KL(P‖Q) = −
∑

x

P(x)
n∑

i=1

log Q(xi|xj(i)) +
∑

x

P(x) log P(x)

= −
n∑

i=1

∑
xi,xj(i)

P(xi, xj(i)) log Q(xi|xj(i))− H(X)

= −
n∑

i=1

∑
xj(i)

P(xj(i))
∑

xi

P(xi|xj(i)) log Q(xi|xj(i))− H(X)

which is maximal if Q(xi|xj(i)) = P(xi|xj(i)) for all xj(i).

PGMs Department of Measurement and Information Systems



Overview Assmptions

Basics

Learning tree Bayesian networks: structure learning

Using the optimal parametrization in a tree Bayesian network t in learning P,
we have

KL(P‖Q) = −
n∑

i=1

∑
xi,xj(i)

P(xi, xj(i))[log
P(xi, xj(i))

P(xi)P(xj(i))
+ log P(xi)]− H(X)

= −
n∑

i=1

I(Xi, Xj(i)) +

n∑
i=1

∑
xi

P(xi) log P(xi)− H(X)

which is maximized (optimal) if the tree t is a maximum weight spanning tree
with weights I(Xi, Xj(i)) (mutual information).

Corollary
If the P target distribution is tree-based (tree-dependent), then the projected
distribution in an optimal tree will be identical.

PGMs Department of Measurement and Information Systems



Overview Assmptions

Basics

Learning tree Bayesian networks: pseudocode

Either using data or a prior knowledge base:

1. Compute P(xi, xj) for all pairs of values.

2. Compute I(Xi, Xj) for all pairs of variables.

3. Select largest branch and add it to the tree unless create a loop,
otherwise discard it.

4. Repeat until n− 1 edges (or I() drops below a threshold⇒ forest....)

Chow&Liu (1968): Maximum Weight Spanning Tree (MWST) learning,
Pearl(1988).
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The ML learning: Optimality of relative frequencies

Theorem
Relative frequency is a ML estimator in multinomial sampling. Assume
i = 1, . . . K outcomes assuming multinomial sampling with parameters θ = {θi}
and observed occurrencies n = {ni} (N =

∑
i ni). Then

log
p(n|θ̂)
p(n|θ) = log

∏
i(θ̂i)

ni∏
i(θi)ni

=
∑

i

ni log
θ̂i

θi
= N

∑
i

θ̂i log
θ̂i

θi
> 0.

where the last quantity is the KL divergence, which is always positive.
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The ML learning I.

Using the optimal parameter selection of θ∗ijk = Nijk/Nij+ in structure G, where
Nijk are the occurrences of value xk and parental configuration qj for variable
Xi and its parental set Pa(Xi) (Nij+ is the appropriate sum), we get for the
likelihood of structure G,

ML(G;DN) = p(DN|G,θ∗) =
N∏

l=1

n∏
i=1

p(x(l)
i |pa(l)

i ) (6)

=
n∏

i=1

qi∏
j=1

ri∏
k=1

Nijk

Nij+

Nijk

(7)

by taking logarithm, rearranging and expanding with N

log(ML(G;DN)) = N
n∑

i=1

qi∑
j=1

Nij+

N

ri∑
k=1

Nijk

Nij+
log(Nijk/Nij+) (8)
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The ML Learning II

Using conditional entropy H(Y|X) =
∑

x p(x)
∑

y p(y|x) log(p(y|x)), the chain
rule H(X, Y) = H(Y|X) + H(X) and the definition of mutual information
I(Y; X) = H(Y)− H(Y|X) , it can be rewritten as

log(ML(G;DN)) = −N
n∑

i=1

H(Xi|Pa(Xi,G)) (9)

= N
n∑

i=1

I(Xi; Pa(Xi,G))− N
n∑

i=1

H(Xi) (10)

(11)

This shows that the maximization of the ML score is equivalent with finding a
BN parameterized with the observed frequencies that has minimum entropy
or that we are finding a BN parameterized with the observed frequencies that
has maximum mutual information between its children and their parents (10,
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Complexity regularization

Because of the monotonicity of mutual information — if Pa(Xi) ⊂ Pa(Xi)
′, then

I(Xi; Pa(Xi)) ≤ I(Xi; Pa′(Xi)) — so the complete network maximizes the
maximum likelihood score. However score functions such as the MDL-score
derived from the minimum description length (MDL) principle or the Bayesian
information criterion (BIC)-score derived with a non-informative Bayesian
approach contains various complexity penalty terms. We shall use only the
BIC-score defined as follows

BIC(G;DN) = log(ML(G;DN))− 1/2dim(G) log(N) (12)

where dim(G) denotes the number of free parameters.
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Score equivalence

Definition
A score function S(G;DN) is called score equivalent, if for each pair of
observationally equivalent Bayesian network structure G1,G2 the scores are
equal S(G1;DN) = S(G2;DN) for all DN.

Theorem
The BIC(G;DN) scoring metric is score equivalent.

The score equivalence of the BIC score is the direct consequence of the result
that the number of free parameters (that is the term dim(G)) are equal in
observationally equivalent Bayesian networks.
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Asymptotic consistency

Theorem
Let V be a set of variables. Let the prior distribution p(G) over Bayesian network
structures be positive. Let p(V) be a positive and stable distribution and G0 is a
corresponding perfect map (i.e. a Bayesian network representing exactly all the
independencies in p(V), see Def. ??). Now, let DN is an i.i.d. data set generated
from p(V). Then, for any network structure G over V that is not a perfect map of
p(V) we have that

lim
N→∞

BDe(G0;DN)− BDe(G;DN) = −∞ and also (13)

lim
N→∞

BICe(G0;DN)− BICe(G;DN) = −∞ (14)
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Rate of convergence

Furthermore, a rate of convergence result is also derived and a corresponding
sample complexity N(ε, δ) to select an appropriate sample size for a given
accuracy between the target distribution p0 and the distribution pBN

represented by the learned Bayesian network with a given confidence

p(DN : KL(p0|pBN) > ε) < δ (15)
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Thank you for your attention!

Questions?
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