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Can we represent exactly (in)dependencies by a BN?

Can we interpret/learn
- edges as causal relations
- with no hidden variables?
- in the presence of hidden variables?
- local models as autonomous mechanisms?

Can we infer the effect of interventions?
Can we quantify the consequences of interventions?




Bayesian networks: interpretations

3. Concise representation of joint

distributions
P(M,0O,D,S,T) =

PIM)P(O|M)P(D|O,M)P(S|D)P(T|S,M)

P N
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M {IPl(X11Y1|21)
2. Graph|cal representation of
(in)dependencies

4. Decision network



Motivation: from observational inference...

» In a Bayesian network, any query can be
answered corresponding to passive
observations: p(Q=q|E=e).

- What is the (conditional) probability of Q=g given
that £=e.

- Note that Q can preceed temporally E.

» Specification: p(X), p(Y|X)
» Joint distribution: p(X,Y)
» Inferences: p(X), p(Y), p(Y|X), p(X]Y)
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Motivation: to interventional inference...

Perfect intervention: do(X=x) as set X to x.
What is the relation of p(Q=q|E=e) and p(Q=qg|do(E=e))?

v Vv

» Specification: p(X), p(Y|X)
» Joint distribution: p(X,Y)
» Inferences:
» P(Y|X=x)=p(Y|do(X=x))
» P(X[Y=y)#p(X|do(Y=y))

What is a formal knowledge representation of a causal model?
What is the formal inference method?

v Vv
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Motivation: and to counterfactual inference

Imagery observations and interventions:

- We observed X=x, but imagine that x’ would have been observed: denoted as X’=x’.
- We set X=x, but imagine that x’ would have been set: denoted as do(X’=x’).

What is the relation of

> Observational p(Q=qg|E=e, X=x’)

> Interventional p(Q=q|E=e, do(X=x"))

- Counterfactual p(Q’=q’|Q=q, E=e, do(X=x), do(X’=x"))

v

v

» O: What is the probability that the patient recovers if he takes the drug x’.
I:What is the probability that the patient recovers if we prescribe* the drug x’.

» C: Given that the patient did not recovered for the drug x, what would have
been the probability that patient recovers if we had prescribed* the drug x’,
instead of x.

v

» *: Assume that the patient is fully compliant.
**7 expected to neither he will.

v
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Challenges in a complex domain

The domain is defined by the joint distribution
P(X;,..., X,|Structure,parameters)

. ?
1. Representatlon of parameteres I |
,Ssmall number of parameters” quantitave
2. Representation of independencies " passive
,what is relevant for diagnosis” qualitative (OPservational)

-

3. Representation of causal relations .
cuve
,what is the effect of a treatment” (interventional,

Representation of possible worlds Imagery

(counterfactual)




Decision theory
probability theory+utility theory

» Decision situation:
- Actions a.
> Qutcomes 0.
> Probabilities of outcomes ptoj |ai)
- Utilities/losses of

outcomes U (Oj |ai)
- QALY, micromort EU(a)= > U(o.|a 0.|a
- Maximum Expected Utility (@) ZJ (0; 12)p(0; |3)
Principle (MEU) *
- Best action is the one with a” = arg maXi EU (ai)

maximum expected utility

Actions g Outcomes Probabilities  Utilities, costs Expected utilities
(which experiment) (e.g. dataset)

P(ojla) U(0), C(a) } EU(a) = Y P(o/a)U(o)




Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situ-
ations with uncertain prizes

Lottery L = [p. A; (1 —p), B I—p

Notation:

A>B A preferred to B
A~ B indifference between A and B
AX B B not preferred to A



Rational preferences

|dea: preferences of a rational agent must obey constraints.
Rational preferences =

behavior describable as maximization of expected utility

Constraints:

Orderability
(A=B)V(B>=A)Vv (A~ D)
Transitivity
(A=B)AN(B>C) = (A>C)
Continuity
A-B»~C = dp [pA; 1—p,C|~ B
Substitutability
A~B = [pA; 1—p,C|~|p,B;1—p,C]|
Monotonicity
A-B = (p>q & |p.A; 1 —p, B 2 lq,A; 1 —q,B])
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An irrational preference

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced
to give away all its money

If B = (', then an agent who has _4

(" would pay (say) 1 cent to get BB ) .

If A > B, then an agent who has

B would pay (say) 1 cent to get A f (!
§ ._

If C' = A, then an agent who has N—
A would pay (say) 1 cent to get (' e
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Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):

Given preferences satisfying the constraints
there exists a real-valued function U such that

U(A)>UB) & AXB
U([p1,S1; -+ 5 Py Sn)) = 22 piU(S))

MEU principle:

Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe

A.l.  5/25/2018
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Utilities
Utilities map states to real numbers. Which numbers?
Standard approach to assessment of human utilities:
compare a given state A to a standard lottery L, that has
“best possible prize” .+ with probability p

“‘worst possible catastrophe” u, with probability (1 — p)
adjust lottery probability p until A ~ L,

continue as before

pay $30 ~ L

0.000001 instant death
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Utility scales

Normalized utilities: ©v+ = 1.0, u; = 0.0

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALY's: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. +ve linear transformation
Ulx) =kU(xz)+ ks where ky >0

With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes




Money

Money does not behave as a utility function. Given a lottery L with
expected monetary value £\ V' (L),
usually U(L) < U(EMV (L)), i.e., people are risk-averse.

Utility curve: for what probability p am | indifferent between a prize
r and a lottery [p, $M; (1 — p). $0] for large N7

Typical empirical data, extrapolated with risk-prone behavior:
+U

A o
o

+$
T T L
-150,000 800,000




Decision networks (DNs)

Add action nodes and utility nodes to belief networks
to enable rational decision making

Airport Site

Litigation

Algorithm:
For each value of action node
compute expected value of utility node given action, evidence
Return MEU action




Sensitivity of the inference

P(Pathology=malignant|E=e)
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Value of (perfect) Information

Current evidence F, current best action o
Possible action outcomes 5;, potential new evidence [,

EU(a|FE) = 111(&11}{2,- U(S;) P(S;|E,a)

Suppose we knew £, = ¢, then we would choose ., , s.t.

I S < T e
EU (_(1(‘]A.|E. E;=ej) = max 2; U(S;) P(Si|E, a, Ej= ej)
L is a random variable whose value is currently unknown
= must compute expected gain over all possible values:

VPIg(E;) = (I, P(E;=e;s|E)EU(ac,|E, E;j=e;x)) — EU(a|E

A.l.  5/25/2018 18



Properties of VPI

Nonnegative—in expectation, not post hoc
Vi & VPIg(L;) >0
Nonadditive—consider, e.g., obtaining £; twice
VPIg(L;, Ey) # VPIg(L;) +V Plg(Ey)
Order-independent
VPIg(Ej, by) =V PIg(Ej) +V Plg g (k) =V Plg(Ly) + V PlE g (E))

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal

— evidence-gathering becomes a sequential decision problem




Extensions

» Bayesian learning
> Predictive inference
- Parametric inference

» Value of further information

» Sequential decisions
- Optimal stopping (secretary problem)
> Multiarmed bandit problem
- Markov decision problem, reinforcement learning
> ....learning a causal model and losses

U(e)




Principles of causality

v vV v

strong association,
X precedes temporally Y,

Blausible explanation without alternative explanations
ased on confounding,

necessity (generally: if cause is removed, effect is
decreased or actually: y would not have been occurred
with that much probability if x had not been present),

sufficiency (generally: if exposure to cause is increased,
effect is increased or actually: y would have been occurred
with larger probability if x had been present).

Autonomous, transportable mechanism.

The probabilistic definition of causation formalizes many,
but for example not the counterfactual aspects.

A.l.  5/25/2018 21



Conditional independence -of)

1,(X;Y|Z) or (X1LY|Z), denotes that X is independent
of Y given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with
P(z)>0.

(Almost) alternatively, 1,(X;Y|2Z) iff
P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: D,(X;Y|Z) =def= 4 Ix(X;Y|Z)
Contextual independence: for not all z.




The independence model of a
distribution

The independence map (model) M of a
distribution P is the set of the valid
independence triplets:

MP:{IP,] (X] ,Y'| |Z'|)!"'! IP,K(XK;YKlzK)}

If P(X,Y,Z) is a Markov chain, then O-O-@
Mp={D(X;Y), D(Y;2), 1(X;Z|Y)}
Normally/almost always: D(X;2)
Exceptionally: I(X;Z)




The independence map of a N-BN

 »

If P(Y,X,Z) Is a naive Bayesian network, then
Mp={D(X;Y), D(Y;2), I(X;Z]Y)}
Normally/almost always: D(X;Z)
Exceptionally: I(X;Z)




Parametrically encoded intransitivity of
dependencies

» In the first order Markov chain below, despite the dependency of X-Y
and Y-Z, X and Z can be independent (assuming non-binary Y).

000

.



Parametrically encoded pairwise in
dependencies

» Pairwise independence does not imply
multivariate independence!

.



Bayesian networks: the three facets

3. Concise representation of joint

distributions
P(M,0O,D,S,T) =

P(M)P(O|M)P(D|O,

S|D)P(T|S.M)

1. Causal model

P:{IP,l(Xl;Yllz%;' .}

2. Graphical representation of
(in)dependencies



Inferring independencies from
structure: d-separation

1c(X;Y|Z) denotes that X is d-separated
(directed separated) from Y by Z in directed

graph G. .
o | O—1O0+O+0+0
o | OO0+ 1010
o | O—0 R OO

O O




d-separation and the global
Markov condition

Definition 7 A distribution F(X1,. .., X,) obeys the global Markov condition w.r.t. DAG G, if
VX, Y,ZCU (X LY|Z),; = (X LY|Z)p, (9)

where (X 1l Y|Z).; denotes that X andY are d-separated by Z, that is if every path p
between a node in X and a node in Y is blocked by Z as follows

1. either path p contains a node n. in Z with non-converging arrows (i.e. — n — or
— n —+),

2. or path p contains a node n. not in Z with converging arrows (i.e. — n +) and none of
its descendants of n is in Z.




Representation of independencies

D-separation provides a sound and complete, computationally efficient algorithm to read off
an (in)dependency model consisting the independencies that are valid in all distributions
Markov relative to G, thatisv¥ X, Y, Z CV

(X UL Y|Z); & (X LY|Z)p in all P Markov relative to G). (10)

For certain distributions exact representation is not possible by Bayesian networks, e.g.:
1. Intransitive Markov chain: X=>Y=>Z

2. Pure multivariate cause: {X,Z}=2>Y
3. Diamond structure:

P(X,Y,Z,V) with M={D(X;Z), D(X;Y), D(V;X), D(V;2),
[(V;YI{X,Z}), ICX;Z[{V,Y)).. }.




Markov blanket (and boundary)

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

A.l.  5/25/2018
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A Bayesian network definition

A directed acyclic graph (DAG) G is a Bayesian network of distribution P(U) iff P(U)
obeys the global Markov condition with respect to G and G is minimal (i.e. no edges
can be omitted without violating this property).

A.l.  5/25/2018
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A practical definition

Definition 9 A Bayesian network model M of domain with variables U consisis of a
structure G and parameters 8. The structure & is a DAG such that each node represents a
variable and local probabilistic models p(X;|pa(X;)) are attached to each node w.r.t. the
structure &, that is they describe the stochastic dependency of variable X; on its parents
pa(X;). As the conditionals are frequently from a certain parametric family, the conditional
for X; is parameterized by 8;, and 8 denotes the overall parameterezation of the model.




Markov conditions

Definition 4 A distribution P(X1, ..., X)) IS Markov relative to DAG G or factorizes w.r.t G, if
P(Xy,..., X,) = || P(X:i|Pa(X;)), (6)
i=1

where FPa(X;) denotes the parents of X; inG.

Definition 5 A distribution P( X1, ..., X,,) obeys the ordersd Markov condition w.r.t. DAG G,
if

Vi=1,...,n: ( Xy L {Xr)y - Xnp—n) H/ FPa(Xzy)|Pa(Xr ) e, (7)
where w () is some ancestral ordering w.r.t. G (i.e. compatible with arrows in G).

Definition 6 A distribution P(X1,..., X, ) obeys the local (or parental) Markov condition w.r.t.
DAG G, if

Yi=1,...,n:(X; 1 Nondescendants(X;)|Pa(X;))s, (8)

where Nondescendants(X; ) denotes the nondescendants of X; in G.




Bayesian network definitions

Theorem 1 Let F(U) a probability distribution and G a DAG, then the conditions above
(repeated below) are equivalent:

F F is Markov relative G or F factorizes w.r.t =,
O F obeys the ordered Markov condition w.r.t. &,
L F obeys the local Markov condition w.r.t. &,

G F obeys the global Markov condition w.r.t. G.

Definition 8 A directed acyclic graph (DAG) G is a Bayesian network of distribution F (L) iff
the variables are represented with nodes in G and (G, FP) satisfies any of the conditions

F. O, L,G& such that G is minimal (i.e. no edge(s) can be omitted without violating a
condition F', O, L, G).




Observational equivalence of
causal models

Observationally equivalent causal models:

® e ® e
Y | /'»’»,;/f “g Ot f Y, \‘ /'»',;/f ““ Ot f Y, \‘ /'»',;/f ““ Ot f ) /'»',;/w“ Ot f
<1 < ;L,‘; =l - ;L,‘; =l - ;L,‘; =1 - @,‘;
= = = = d-separation

Independence model:
P(Xye X))

MP:{IP,l(Xl;Yllzl)" ey IP,K(XK;YKlzK)}

Different causal models can have the same independence map!

Typically causal models cannot be identified from passive observations, they are
observationally equivalent.




Association vs. Causation: Markov
chain

Causal models:

Markov chain

P(Xy,...)
Mp={I(Xi+1:Xi.1|X))}
Jfirst order Markov propertv”




The building block of causality:
v-structure (arrow of time)

P(X),p(Z]X),p(Y|2)

@@
P(X),p(Z[X,Y),p(Y)
P(X|2).p(2]Y).p(Y) “transitive” M # ,intransitive” M
@ @ @ .o @
P(X[2),p(2),p(Y|2)
m JVv-structure”
Mp={D(X;Z), D(Z;Y), D(X,Y), I(X;Y|2)} Mp={D(X;Z), D(Y;2), I(X;Y), D(X;Y|Z) }

Often (confounding): present knowledge renders (otherwise dependent) future

states conditionally independent.

ver(?): present knowledge renders (otherwise independent) future states
Rally dependent.




Observational equivalence:
total independence

,Causal” model: @
-
C
-
'” ‘ ,
)
One-to-one relation
Dependency map:
P(Xye X))

Mp={lp1(X1;X),...}

.



Observational equivalence:
full dependence

One-to-many relation
Dependency map:

P(X{,.s X))

Mp={Dp 1(X1;X5)....}




Observational equivalence of
causal models

Definition 11 Two DAGs G, (G5 are observationally equivalent , if they imply the same set of
independence relations (i.e. (X 1L Y|Z),,) < (X 1L Y|Z),,)

The implied equivalence classes may contain n! humber of DAGs (e.g. all the full networks
representing no independencies) or just 1.

Theorem 2 Two DAGs 1, G2 are observationally equivalent , iff they have the same skeleton
(i.e. the same edges without directions) and the same set of v-structures (i.e. two converging
arrows without an arrow between their tails).

Definition 12 The essential graph representing observationally equivalent DAGs is a partially
oriented DAG (FPDAG), that represents the identically oriented edges called compelled edges
of the observationally equivalent DAGSs (i.e. in the equivalence class), such a way that in the
common skeleton only the compelled edges are directed (the others are undirected
representing inconclusiveness).




A limits of learnability: compelled edges

(“can we interpret edges as causal relations?”=»compelled edges)




Interventional inference in causal
Bayesian networks

» (Passive, observational) inference
> P(Query|Observations)

» Interventionist inference
- P(Query|Observations, Interventions)

» Counterfactual inference
- P(Query| Observations, Counterfactual conditionals)




Interventions and graph surgery

If G is a causal model, then compute p(Y|do(X=x)) by
1. deleting the incoming edges to X
2. setting X=X
3. performing standard Bayesian network inference.

@ -

-




Association vs. Causation

Causal models:
X causes Y Y causes X 2 I

There is a common cause Causal effect of Y on X
(pure confounding) Is confounded by many
factors

From passive observations:
P(X,Y)

Me=DxY)} @— @D

X andY are associated”

Reichenbach's Common Cause Principle:

a correlation between events Xand Yindicates either that X causes Y, or that YV
causes X, or that Xand Y have a common cause.




Local Causal Discovery

“can we interpret edges as causal relations in the presence of hidden variables?”

» Can we learn causal relations from observational data in presence of
confounders???

Increaded propensity

ad susceptibility

= Automated, tabula rasa causal inference from (passive) observation is
possible, i.e. hidden, confounding variables can be excluded




Summary

Can we represent exactly (in)dependencies by a BN?
» almost always

Can we interpret
- edges as causal relations
with no hidden variables?

compelled edges as a filter
in the presence of hidden variables?

Sometimes, e.g. confounding can be excluded in certain cases
in local models as autonomous mechanisms?
- apriori knowledge, e.g. Causal Markov Assumption
Can we infer the effect of interventions in a causal model?
» Graph surgery with standard inference in BNs

Suggested reading
> J. Pearl: Causal inference in statistics, 2009




