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Overview

» Basic concepts of probability theory
> Joint distribution
- Conditional probability
- Bayes’ rule
> Chain rule
> Marginalization
- General inference
> Independence
Conditional independence
Contextual independence
Direct dependency
Independence mode
Logical properties
» Naive Bayesian networks
> Definition
> Inference
> Full Bayesian treatment
Specification
Inference

Learning
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Syntax

» Atomic event: A complete specification of the state of
the world about which the agent is uncertain

E.g., if the world consists of only two Boolean variables Cavity
and 7oothache, then there are 4 distinct atomic events:

Cavity = false nToothache = false
Cavity = false A Toothache = true
Cavity = true n Toothache = false
Cavity = true n Toothache = true

» Atomic events are mutually exclusive and exhaustive




Axioms of probability

» For any propositions A, 5
4
-0 <PA <1
- P(true) = 1 and P(false) = 0
- P(Av B) = P(A) + P(B) - P(A A B)

True




Syntax

» Basic element: random variable

» Similar to propositional logic: possible worlds defined by assignment of values to
random variables.

» Boolean random variables
» e.g., Cavity (do | have a cavity?)

» Discrete random variables
» e.g., Weatheris one of <sunny,rainy,cloudy,snow>
» Domain values must be exhaustive and mutually exclusive

» Elementary proposition constructed by assignment of a value to a
» random variable: e.qg., Weather = sunny, Cavity = false
»  (abbreviated as —cavity)

» Complex propositions formed from elementary propositions and standard logical
connectives e.q., Weather = sunny v Cavity = false




Joint (probability) distribution

4

v

Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief
prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weathern = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)

Joint probability distribution for a set of random variables gives the
probability of every atomic event on those random variables

P(Weather,Cavity) = a 4 x 2 matrix of values:

Weather = sunny rainy cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 10576 0.08  0.064 0.08




Conditional probability

Conditional or posterior probabilities

v v

e.g., P(cavity | toothache) = 0.8

i.e., given that toothacheis all | know

(Notation for conditional distributions:

P(Cavity | Toothache) = 2-element vector of 2-element vectors)

If we know more, e.qg., cavityis also given, then we have

P(cavity | toothache,cavity) = 1

New evidence may be irrelevant, allowing simplification, e.g.,

P(cavity /| toothache, sunny) = P(cavity | toothache) = 0.8 _ _
This kind of inference, sanctioned by domain knowledge, is crucial




Conditional probability

» Definition of conditional probability:
» P(a| b) =P@nab)/Pb)if P(b) >0

» Product rule gives an alternative formulation:
» P@Ab)=P@|b)Pb) =Pb|a)P@)

» A general version holds for whole distributions, e.g.,
v P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)
» (View as a set of 4 x 2 equations, not matrix mult.)




Bayes’ rule

An algebraic triviality

p(Y | X)p(X)  p(Y | X)p(X)

X1Y)= =
PRI =00 TS e X0p(x)

A scientific research paradigm

p(Model | Data) «c p(Data| Model) p(Model)

A practical method for inverting causal knowledge to diagnostic tool.

p(Cause| Effect) oc p(Effect| Cause) x p(Cause)




Chain rule

» Chain rule is derived by successive application of product
rule:
v PX, X)) = POX e X o) POX | X e X o)
= P(X;5ee s Xo0) POS | X X)) POX | X, X )

=TT P(XI | X], ,Xi_])




Marginalization

» ~Summing out/averaging out

» Start with the joint probability distribution:
4

toothache -1 toothache

catch | o catch) carch | — carch

cavire | 108 | .012 072 | .008
= caviry | 016 | .064 44 | 576

» For any proposition ¢, sum the atomic events
where it is true: P(¢) = 2., .y P(W)

>




Inference by enumeration

Start with the joint probability distribution:

v

toothache -1 toothache

catch | 0 carch) carch | — carch

.008
576
» Can also compute conditional probabilities:
4
P(—cavity | toothache) = P(=cavity A toothache)
P(toothache)
= 0.016+0.064

0.108 + 0.012 + 0.016 + 0.064

I
<
AN




Normalization

toothache - toothache

catch | o cartch catch | 1 carch

cavirv ||.108]| 1.012 072 | .008

— caviry ||.016] .064 44 | 576

» Denominator can be viewed as a normalization constant
4

P(Cawty/ toothache) = &, P(Cavity,toothache)

= «, [P(Cavity,toothache, catch) + P(Cavity,toothache,— catch)]
x, [<0.108,0.016> + <0. 012,0.064>]
X, <O.12,0.08> = <0.6,0.4>

General idea: compute distribution on query variable by fixing
evidence variables and summing over hidden variables




Inference by enumeration, contd.

Any question about observable events in the domain can be answered by
the joint distribution.

Typically, we are interested in the posterior joint distribution of the query
variables Y  given specific values e for the evidence variables E

Let the hidden variablesbe H=X-Y -E

Then the required summation of joint entries is done by summing out the
hidden variables:

PY|E=¢e)=aP(Y,E=¢e) = «Z,P(Y,E=e,H = h)

» The terms in the summation are joint entries because Y, Eand H
together exhaust the set of random variables
» Obvious problems:
1. Worst-case time complexity O(@’) where d'is the largest arity
2. Space complexity O(d@”)to store the joint distribution
3. How to find the numbers for O@") entries?



Independence,
Conditional independence

1,(X;Y|Z) or (X1Y|Z), denotes that X is independent of Y
given Z defined as follows

for all x,y and z with P(z)>0: P(x;y|z)=P(x|z) P(y|z)

(Almost) alternatively, I(X;Y|2Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.
Other notations: Dp(X;Y|Z) =def=  1,(X;Y|Z)
Direct dependence: Dp(X;Y|V/{X,Y})




Context-specific independence

Contextual independence: I5(X;Y|Z=z) for not all z.

?’(D|Bleeding:strong)

irregular

Onsetzﬁaﬁy

P(D|B=a,0=e) P(D|B=w,R=r)

h.Wi|d/ h.wild/ mutated

P(Dla,l,h.w.) P(Dla,l,m) P(D|w,i,h.w.) P(D|w,i,m)

Decision tree: Each internal node represent a (univariate) test, the leafs contains
the condltlonal probabilities given the values along the path.

; graph If conditions are equivalent, then subtrees can be merged.
2Stageabsent,Onset=late) ~ (Bleeding=weak,Regularity=irreq)




The independence model of a
distribution

The independence map (model) M of a
distribution P is the set of the valid
independence triplets:

MP:{IP,] (X] ,Y'| |Z'|)!"'! IP,K(XK;YKlzK)}

If P(X,Y,Z) is a Markov chain, then O-O-@
Mp={D(X;Y), D(Y;2), 1(X;Z|Y)}
Normally/almost always: D(X;2)
Exceptionally: I(X;Z)




Measures of dependence

» Information theoretic based dependence
> Entropy: H(X)
- Conditional entropy: H(X]Y)
- Kullback-Leibler divergence (KL(p||q))
- Not distance (asymmetric, triangle inequality)
- Always positive
o Mutual information: MI(X;Y), MI(X;Y|Z)
- MICX;Y)=H(X)-H(X]Y)
- MICX;Y)=KL(p(X,Y) | [p(X)p(Y))
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The semi-graphoid axioms

1. Symmetry: The observational probabilistic conditional independence is symmetric.
IL(X,Y|Z)iff I,(Y; X|Z)
2. Decomposition: Any part of an irrelevant information is irrelevant.
IL(X;YUW|Z)= (XY |Z)and [,( X;W|Z)

3. Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant
information.

I X; Y UW|2)= [L,(X;Y|ZUuW)
4. Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant
information.
L(X;Y|Z)and [,(X;W|ZLUY) = L(X; YUW|Z)

Semi-graphoids (SG): Symmetry, Decomposition, Weak Union, Contraction (holds
in all probability distribution). SG is sound, but incomplete inference.




Graphoids

Intersection: Symmetric irrelevance implies joint irrelevance if there are

no dependencies.

L(X;Y|ZUW) and I,(X; W|ZUY) = L(X;Y UW|Z)

Graphoids: Semi-graphoids+Intersection
(holds only in strictly positive distribution)

Decomposition
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J.Pearl: Probabilistic Reasoning in intelligent systems, 1998
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Simple probabilistic models

» Total independence
» Naive Bayesian networks
» Hidden Markov Models
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Naive Bayesian network

Assumptions:

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.

Variables (nodes)
Flu: present/absent
FeverAbove38C: present/absent

Coughing: present/absent P(Flu=present)=0.001
P(Flu=absent)=1-P(Flu=present)

Model

P(Fever=present|Flu=present)=0.6 P(Coughing=present|Flu=present)=0.3
R(Coughing=absent|Flu=present)=1-0.7
P(Fever=present|Flu=absent)=0« P(Cotghing=present|Flu=absent)=0.02

P(Coughing=absent|Flu=absent)=1-0.02



Naive Bayesian network (NBN)
Decomposition of the joint:
P(Y,X4,..,X}) = P(Y)[liPCX,|Y, Xq,.,Xi1) //by the chain rule
= P(Y)['iP(X,|Y) I/l by the N-BN assumption
2n+1 parameteres!

Diagnostic inference:

P(Y [Xig,--+Xik) = P[P Y) 1 P15+ Xik)

If Y is binary, then the odds

P(Y=1[Xi1,, Xy / P(Y=0]Xiz,...%5) = P(Y=1)/P(Y=0) [T, P(x;,|Y=1) / P(x;;,|Y=0)

p(Flu = present | Fever=absent, Coughing = present)
o« p(Flu = present) p(Fever=absent | Flu = present) p(Coughing = present| Flu = present)




The Bayesian framework

1. Specify a joint distribution p(x., 6) over the observable quantity = and parameter 6
having equal status by specifying p(#) the prior distribution or prior, the p(x|0) is the
sampling distribution that also defines the likelihood and the likelihood function £(6; )
(the discrete model parameter is denoted with M;.).

2. Perform a prior predictive inference

p(a) = [ palOp(O)d0 or plx) = 37 p(My)  plalMy) @
k

or a posterior predictive inference after observing the data set D as

p(a1D) = [ p(al®)p(6]D)db or p(z|D) = 3 p(al MMy D) @
k

3. Perform a parametric inference by the Bayes rule

) pl6le) = 2 o< palO)n(®) or pMA[) = Pl MuP(Mi) @
IDA:2.1,2.2,2.3
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Full Bayesian naive-BN

» Structure prior: p(G)
- Specify priors for edges in G
> Penalize deviation from a prior structure G,

» Parameter prior: p(®|G)

- 0 denotes the complete parametrization for G

- Specify p(®|G) independently for each variable?

- Specify p(®|G) using a ,convenient” (~conjugate) prior?
» Inference

> Tractable?

A.l.  February 8, 2018
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The Beta distribution

3. Definition. A family F of prior distributions p(0) is said to be conjugate for a class of
sampling distributions p(x|0), if the posteriors p(6|x) also belongs to F.

1. Example. Assume that = denotes the sum of 1s of n independent and identically
distributed (i.i.d.) Bernoulli trials, that is we assume a binomial sampling distribution. If the
prior is specified using a Beta distribution, the posterior remains a Beta distribution with

updated parameters.
p(z|0) = Bin(z|n,0) = (”) 6= (1 — g)n—= (13)
P
IMNa+ 3
p(0) = Beta(a,B) = c0* (1 — 0P~ where ¢ = % (14)
6 |6
p(0lr) = w — 91T (1 — )P~ — Beta(a+z,8+n — z)

p(x)

In general a conjugate prior is updated to posterior using only an appropriate statistics of the
observations to update its parametrization. It shows that the parameters frequently has an
Intuitive interpretation based on observations, that is in the prior specification the parameters
corresponds to real or virtual past observations.

A.l.  February 8, 2018 26



The Dirichlet distribution

3. Example. Assume that the observed sequence D,, = {X;;i =1, 2..., n} contains
I.i.d. multinomial samples with L discrete values. The prior is a Dirichlet prior with

hyperparameters o« = aq,....ap and o, =5, a;.

I'(a,)
H?; ')

p(0) = Di(ax) = CH 0% 1 where ¢ = (42)

A.l.  February 8, 2018
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Parameter independence

For a Bayesian network structure G, the global parameter independence
assumption means that

P(0lG) = [ [ p(6ilG). (1)
i=1

where 6; denotes the parameters corresponding to the conditional p(X;|Pa(X;))
in G. The local parameter independence assumption means that

di

p(6:]G) = | [ p(651G). (2)

j=1

where ¢; denotes the number of parental configurations (pa(X;)) for X; in G
and 6;j denotes the parameters corresponding to the conditional p(X;|pa(X;);)
in some fixed ordering of the pa(X;) configurations. The parameter
independence assumption means global and local parameter independence.

A.l.  February 8, 2018
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Full Bayesian inference with N-BNs

» Integration over parameters?
> Analytical solution!

» Bayesian model averaging over exponential
number of structures?
> Analytical solution!

» Existence of equivalent ,super’-parametrization!!

o DISCUSSION&PROOQOFS: later
o PDSS:9.2.5
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Summary

» Basic concepts of probability theory
> On the use of probabilities: PDSS:2.1
- The Bayesian framework: PDSS:2.2
o LATER: Indepence models: PDSS:2.3
https://www.mit.bme.hu/system/files/oktatas/targy
ak /9383 /Antal_Valoszinusegqi.pdf
» Naive Bayesian networks
- Definition, Inference (PDSS:2.5.1)
o Full Bayesian treatment: LATER
- =|DA:9.2.5 (~9.2)

https://www.mit.bme.hu/system/files/oktatas/tarqy
ak/9383 /Antal_IDA.pdf
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