4. mérés

Elektronikus mérleg vizsgálata

4.1 Bevezetés

A kereskedelmi forgalomban lévő elektronikus mérlegek nem mindegyikének működik ilyen elven, ez csak egy lehetséges megoldás. A mérésben szereplő mechanika abban is eltér a szokásostól, hogy az acéltömeg jelentősen meghajlik; a gyakorlatban általában sokkal kisebb elmozdulások következnek be.

A mérésben szereplő DSP-modul egy vasúti mérőrendszer számára készült. A mérőrendszer célja vasúti kocsik súlyának mozgás közbeni mérése. A nyúlásmező belyegek a vasúti sínen helyezkednek el, és a sín kismértékű behajlását méri a rendszer.

4.2 Elméleti összefoglaló

4.2.1 Nyúlásmező ellenállások

A fenti címen alkalmazható érzékelők ismertetése meghaladja egy mérési útmutató kereteit, itt csak a legfontosabb összefüggésekre térünk ki.

Mérési elv

Egy fém vagy félvezető anyagból készült vonalszerű vezető ellenállása felírható a következő alakban:

\[R = \frac{l(1 + \varepsilon_x)}{A(1 + \varepsilon_y + \varepsilon_z)} \rho_0 [1 + \Pi_{11} \sigma_x + \Pi_{12} (\sigma_y + \sigma_z)] \] (4.1)

ahol \(l \) a vezető hossza, \(A \) a felülete, \(\rho_0 \) a fajlagos ellenállása, \(\varepsilon_x \) jelöli a vezetés irányába eső relatív megnyúlást, \(\varepsilon_y \) és \(\varepsilon_z \) az erre merőleges irányokba eső relatív megnyúlást. A fenti képletben a tört fejezi ki a vezető megnyúlása és keresztmetszetváltozása következtében létrejött
4.1. ábra. Egyirányú nyúlásmérő bélyeg

ellenállásváltozást; a szögetes zárójelben lévő kifejezés pedig a fajlagos ellenállás változását. Ez utóbbi az ún. piezorezisztív hatás. \(\sigma_x \) jelölı a vezetés irányába eső mechanikai feszültséget, \(\sigma_y \) és \(\sigma_z \) pedig az erre merőleges két irányba eső mechanikai feszültségkomponenst. \(\Pi_{11} \) és \(\Pi_{12} \) az anyagjellemző piezorezisztív állandók.

Fémen esetében a piezorezisztív hatás általában elhanyagolható, vagy csak igen nagy nyomásnál (1000 bar körül) kitett vezetők esetében használható ki. Félezetők esetében ezek az állandók 2-3 nagyságrenddel magasabbak lehetnek, a szennyezés típusától és mértékétől függően. A félezető ellenállások esetében (ha nem csak \(x \) irányú áram van) a csúszatőfeszültségből is számazik ellenállásváltozás.

Végereedményen az adott ellenállás relatív megváltozása és a mérendő relatív nyúlás között az alkalmazási tartományban lineáris kapcsolat van:

\[
\frac{\Delta R}{R} = k \varepsilon_x = k \frac{\Delta l}{l} \tag{4.2}
\]

ahol \(k \) az ún. gage factor. Ez fémen esetében 2...4,5, félezetőknél néhány száz lehet. Ez utóbbi nagyobb érzékenység viszont nagyobb szórást és hőmérsékletfüggést mutat.

Nyúlásmérő bélyegek

A nyúlásmérő ellenállások kialakítása igen változatos. Léteznek nagyobb sorozatban vekonyréteg nyúlásmérő ellenállások, kisebb sorozatban vastagréteg ellenállások. Ezek általában valamilyen szenzor belsejében takállhatók meg, és főként gyártók alkalmazzák. A felhasználó számára leginkább hozzáférhető nyúlásmérő ellenállások az ún. nyúlásmérő bélyegek. Ezekben a vekony huzal vagy fémfólia meanderszerűen egy jó szigetelő, rugalmas műanyag fóliára van felragasztva, illetve felvive, a 4.1. ábrának megfelelően. Az ábrán látható bélyeg a nyíl irányának megfelelő nyúlást érzel, a nyíl irányába eső vékonyabb ellenállás-elemek segítségével. Az ellenállás anyaga valamilyen fém ellenállásanyag, pl. konstantán, az ellenállás névleges értéke 100...1000 ohm.

Különöző, speciális módon deformálódó szerkezetek mérésére különféle kialakítási bélyegek készülnek. A 4.2. ábrán látható bélyegek az előzőnel összetettebb feladatot látnak el. Az a) ábrán látható bélyeg kétirányú nyúlást érzel, míg a b) ábrán látható elrendezés adott terhelés hatására egymáshoz képest merőleges, de a szerkezeti elemhez képest 45°-os szögben történő megnyúlást érzel. Léteznek sokkal összetettebb bélyegek is, pl. torziós igénybevétel mérésére.

Nyúlásmérő bélyegek alkalmazása

Általában nem egyetlen bélyeget használnak, szem előtt tartva, hogy az ellenállásokat hidakapcsolásban fogják alkalmazni. Így bizonyos ellenállásokat úgy helyeznek fel, hogy a szerkezeti elem igénybevételére esetén megnyúlnak, mások összehúzódnak. Az ellenállások elhelyezésére
4.2. ábra. Többirányú belyegek 90°-ban eltérő megnyúlások érzékelésére: (a) kétirányú nyūlás érzékelésére, (b) szerkezeti anyag egyes részeinek különböző irányú megnyúlásának érzékelésére

4.3. ábra. Nyúlásmérő belyegek felhelyezése: (a) konzolos tartó, (b) vasúti sín esetében. A sötétre jelölt ellenállások összenyomódnak, a világosak megnyúlnak.

példát láthatunk a 4.3. ábrán. Az a) ábrán látható elrendezés egy lehajló lemezre helyezett ellenállásokat mutat. A nyil irányában történő hajlítás esetén a felső ellenállások megnyúlnak, míg az alsók összenyomódnak. A b) ábra egy vasúti sín mutat oldalnézetben (felül a símen gördülő kerék egy darabja látható). A kerék a sín kismértékben benyomja, ennek hatására a súszához képest 45°-ban elhelyezett ellenállások közül a felsők összenyomódnak, az alsók megnyúlnak.

A nyúlásmérő belyegeket fel kell ragasztani a kiválasztott szerkezeti elemre. A ragasztóanyag megválasztása nagyon fontos, mert a túl merev, vagy öregedést mutató ragasztóanyag összetőredzik és nem viszi át a nyúlást a belyegre, míg a túl elasztikus anyag huzamosabb terhelés esetén deformálódik, és a belyeg az eredetinél kisebb nyúlást érzékel.

A belyeg kiválasztásánál arra is ügyelni kell, hogy milyen anyagra fogják a belyeget ragasztani. Az alkalmazás során ugyanis változik a hőmérséklet, amelynek következtében mind a belyeg, mind pedig a szerkezeti elem méretei változnak, a hőtágulási együttthatónak megfelelően. Ha a belyeg és a hordozó különbözőképpen tágul, az annak következtében létrejövő nyúlást is érzékelni a belyeg. Hőkezeléssel elérhető, hogy a működési tartamánban a belyeg és a szerkezeti elem lineáris hőtágulási együttthatója egyenlő legyen, így ez az effektus nem okoz hibát. Az ilyen belyeget önhőkompensált belyegnek nevezzük.

4.2.2 Nyúlásmérő ellenállások elektronikus áramkörei

Hídkapcsolások

A nyúlásmérő ellenállások változása üzemeterő terhelés hatására néhány tízod százalék, így az ellenállás változás közvetlen mérése jóval nagyobb pontosságot igényel, mint amilyen pontosan a
megnyúlást ismerni szeretnénk (v.ö. méréstechnika: különbségi mérés). Jóval kedvezőbb, ha az ellenállásokat hídba kapcsoljuk, és a híd kimeneti feszültségét mérjük. Ekkor terheletlen esetben elvileg – a kimeneti feszültség zérus, egyébként a megjelenő feszültség a megnyúlással arányos.

1. Ha csak egyetlen ellenállás nő, a többi változhat, a nyúlásmérő ellenállás bármelyik lehet,
2. Ha két ellenállás nő, akkor azok lehetnek R_1 és R_4 vagy R_2 és R_3,
3. Ha egy ellenállás nő, egy pedig csökken, akkor azok lehetnek R_1 és R_2 vagy R_3 és R_4,
4. Ha két ellenállás nő, kettő pedig csökken, akkor az "átlósan szemben" lévő ellenállásoknak kell azonos módon változni, pl. R_1 és R_4 nő, R_2 és R_3 csökken.

A híd kimeneti feszültségének abszolút értéke:

1. $|u_{ki}| = U_T \frac{h_R}{4 + 2h_R} \approx \frac{U_T}{4} h_R$,

2. $|u_{ki}| = U_T \frac{(h_R)^2 + 2h_R}{4 + 4kh_R + (h_R)^2} \approx \frac{U_T}{2} h_R$,

3. $|u_{ki}| = \frac{U_T}{2} h_R$,

4. $|u_{ki}| = U_T h_R$.

ahol $h_R = \Delta R / R$, R az ellenállás névleges értéke. Látható, hogy a híd annál érzékenyebben, minél több aktív elem van a hídban. Az első két esetben a kimeneti feszültség az ellenállásváltozás nemlineáris függvénye. Áramgenerátoros táplálás esetén a 2. esetben lineárisára tehető a híd. Az 1. esetben műveleti erősítő alkalmazásával tehető a híd lineárisára.

Elvileg a híd kimeneti feszültsége terheletlen esetben zérus. A megnyúlás nagyságrendjébe esik azonban az ellenállások pontatlansága, illetve egyes esetekben a hőmérsékletfülönbség, hőmérsékletváltozás okozta hiba. A hőmérsékleti hiba felléphet azért, mert a híd egyes elemei nincsenek a használt során azonos hőmérsékleten, vagy a híd nem aktív (közönséges) ellenállásainak más a hőfoktényezője, mint a nyúlásmérő ellenállásoknak.
Meghajtó és működési előírások

A híd kimenete igen érzékeny a nyúlásnéző ellenállás megváltoztására, a kimeneti feszültséggel azonban több probléma is van, ezek:

1. a kimeneti feszültség igen alacsony szintű (típusként néhány mV),
2. a híd kimenet egyik pontja sem azonos a táplálás egyik pontjával sem,
3. a kimeneti feszültség a megnyúlással azonos nagyságrendben függ az ellenállások toleranciától és a hőmérsékleti hibától.

Mivel igen kicsiny feszültségeket kell feldolgozni, az erősítő áramkörök ofszthibáját kiküszöbölendő a hidakat rendszerint nem egyenfeszültséggel, illetve egyenárammal gerjesztik, hanem váltakozó, rendszerint szinuszos gerjesztést alkalmaznak. A frekvencia típusként néhány kHz, a hálózati zavarok elkerülése érdekében. Az így kialakított hidakat vivőfrekvenciás hidaknak is nevezik.

A 2. pontban említett probléma miatt a hídat meghajtó áramkört és a kimeneti feszültséget erősítő áramkört gondosan kell tervezni. Ha a gerjesztést földeljük, a kimeneten lévő mérőerőssítőre nagyon nagy közösgel jut, amit el kell kerülni, ezért a gerjesztés általában szimmetrikus, de a toleranciáit miatt így is van közös komponense, így a mérőerőssítőnek jó közösgélelőnyomással kell rendelkeznie. A lineáritás érdekében fontos, hogy az erősítő ne terhelje a hídat. Mérőerőssítő céljaira az ismert műszererősítő típusok alkalmazhatók. Gyakori megoldás, hogy a hídat a gerjesztés vagy a kimenet oldalán transzformátor segítségével kevésbéstjük az áramkör többi részéről.

A 3. pontban említett hibák azt eredményezik, hogy terhetlen belévegek esetén sem nulla a kimeneti feszültség. A probléma technológiai szintű megoldása, hőkompenszáló ellenállások elhelyezése a bélégen. További lehetőség, hogy a nyílást nem mérő ellenállásokat is nyúlásmérő ellenállások alkojók, hiszen ezek toleranciája hasonlóan kicsi, hőmérsékletügyésget pedig az aktív belévegeknél megegyező.

Egy másik megközelítésben reálításként fogadjuk el azt, hogy a híd kimeneti feszültsége sohasem zérus, de terhetlen esetben zérusnak kell lennie. Ezért egy összegző áramkörrel a terhetlen esetben méhétől megegyező nagyságú, de ellentétes fázisú kompenzáció jelet adunk a kimenethez, amelyet a mérés során nem változtattuk. Így tulajdonképpen mérés előtt ki-eigenlitjük a hídat. A feladat nehézsége abban áll, hogy vivőfrekvenciás hídkapcsolás esetében az elvileg olmos híd kimeneti feszültsége fázistolást is szenved, tehát a kompenzáció jelnek nem csak az amplitúdóját, hanem a fázisát is állítaniuk kell.

Az erősített jel sok zajt és zavarjelet tartalmaz. A zaj jórészt szélessávú és fehér, a zavarjel jellegzetesen a hálózati zavarjel, de a környező berendezésekből impulzusszerű zavarjelek is kerülnek a mérőhálózatba. Ezek a hatások megfelelő árnyékolással csökkenthetők, de nem szüntethetők meg teljesen. A zaj és a zavarjelek további elnyomására a gerjesztési frekvencia körüli keskenysávú szűrő alkalmazása a megoldás.

4.2.3 Kimeneti jel digitálisfeldolgozása

Az előző pontban leírt módon előfeldolgozott jel alkalmas arra, hogy a feszültségét megmérjük, és ebből a mechanikailag érdekes információt meghatározzuk. Nagyon egyszerű megoldás lehet a lényegében tiszta szimulás jel effektív értékenek megmérése egy digitális voltmérővel. Ezzel a méréssel azonban csak a feszültség határozható meg, az érdekes mechanikai információ (pl. a mérlegén mért tömeg) nem.

Korszerű méréselemezekben trivialis megoldás az analóg jel A/D-átalakítása, és a szükséges mérési és átszámítási műveletek mikroprocesszoros végrehajtása. Ebben az esetben lehetőség van a nemlineáris karakterisztika linearizálására is, esetleg a hőmérsékletügyésget figyelembevételére.
4.5. ábra. A híd kimenő jelén szűrése és a burkoló meghatározása

A szinuszos jel valamely jellemzője (amplitúdó, effektív érték, stb.) sokféle módszerrel meghatározható.

Az előző pontban említett műveletek közül a szűrés szintén megoldható digitálisan, sőt, az analógval szelektívebb szűrő valósítható meg. A gerjesztő jel és a kompenzáló jel előállítható digitális szintézíssel és D/A-alátakítással. Ezzel a módszerrel a kompenzáló jel fázisának változtatása nem nehéz feladat.

A jel mérésének egy lehetséges és a mérésben szereplő DSP-modulban alkalmazott módját szemlélteti a 4.5. ábra. Az eljárás egyszerre valósítja meg a bejövő szinuszos jel burkolójának (pillanatnyi amplitudójának) mérését, illetve a sávszűrését. A felső ágon lévő sávszűró a jel Hilbert-transzformáltját határozza meg. A Hilbert-transzformáció egy lineáris szűrés, amely minden frekvenciakomponensre nézve 90°-os fáziseltolást valósít meg:

\[H(f) = -j \text{ sign}(f) \] (4.7)

Ez a szűrő alkalmazás hálózatot igényel, ezért ebben a formában nem valósítható meg. Nagyon jól megközelíthető azonban az előírt karakterisztika egy adott sávban, így ha az amplitúdóra sávszűró előírást teszünk, az adott sávba eső jelkre jó Hilbert-transzformátort valósíthatunk meg, egyben a zajszűrését is elvégezzük. Az alsó ágon közöséges sávszűró található. Ha mindkét szűrőt ugyanakkora fokszámú lineáris fázisú FIR-szűróvel realizáljuk, a két ágon azonos lesz a jelkésleltetés, így szűrés után is időben összetartozó mintákat kapunk.

A jel burkolója az analitikus jel amplitudójára. Az analitikus jel definíció szerint:

\[a(t) = x(t) + j \mathcal{H}[x(t)] \] (4.8)

ahol \(\mathcal{H} \) jelöli a Hilbert-transzformációt, \(x(t) \) a bemenőjel. Ennek amplitútóját az ábra szerint négyzetre emeléssel, összegzéssel és gyökvonással kapjuk meg. Szemléletesen két, egymáshoz képest 90°-kal eltolt szinuszjel jelenik meg a két ágon, és ezek négyzetösszege az amplitúdó négyzetét adja.

4.3 Mérési összeállítás

A mérési összeállítás mérésespecifikus elemei egy falemezre vannak felszerelve. Ezek: a mechanikus mérleg a nyúlásmerő belyegekkel, a transzformátor, a DSP-modul, valamint a villamos és elektronikus csatlakozók.

4.3.1 A mérleg mechanikája

A mérleg vázlata a 4.6. ábrán látható. Az ábra felső részén a teljes mechnika látható oldalnézetben, alul a két acéllemez felülnézetben. A mérleg egyes elemei egy függőleges csavarhoz
4.6. ábra. Az elektronikus mérleg mechanikája és a nyúlásmerő ellenállások elhelyezkedése

vannak rögzítve, az ábra bal oldalán. Ahül egy acéllemez helyezkedik el, ezen vannak az R_1 és R_2 nyúlásmerő ellenállások. Az acéllemezt a serpenyő egy jól definiált pontban terheli. Felül egy kar takálható, amely a kis körökkel jelölt helyeken tengelyezve van, így ha a lemez a serpenyő alatt lehajlik, a kar azzal közel párhuzamosan mozgul el, így a serpenyő mozgása függőleges lesz. A kar serpenyővel ellentétes oldalán egy síly van, amelyet a karon mozgatva a mérleg kiegysúlyozható. A mérleggel maximálisan kb. 100 g síly mérhető.

4.3.2 A nyúlásmerő bélyegek elhelyezkedése

Az R_1 és R_2 nyúlásmerő ellenállások az alsó, az R_3 és R_4 nyúlásmerő ellenállások a felső acéllemezen vannak. Ezek az ellenállások alkotják a hidat, a 4.4. ábra szerint. Az R_3 és R_4 nyúlásmerő ellenállások nem aktívak, szereplők csak az, hogy az aktív bélyegekkel azonos módon viselkedjenek hőmérsékletváltozás esetén.

A méregen Vishay BLH SR-4 típusú, FAE-12-12SX jelű bélyegek találhatók. Ezek ellenállási anyaga konstantán, a műanyag hordozó políimid. A terheletlen bélyeg ellenállása $120 \pm 0.2 \ \Omega$. A bélyeg geometriája a 4.1. ábrának megfelelő.

4.3.3 A DSP-modul

A DSP-modul teljes egészében képes a hídkapcsolást kiszolgálni. Előállított kb. 6 kHz frekvenciájú színusjelet, amely a hídat gerjeszt, fogadja a híd kimenetét, amelyen elvégzi a korábban ismertetett kompenzációt és erősítést. A modul PC-hez RS-485 buszon keresztül csatlakozik. A modul a PC-s kezelő felületről vezérelhető, a legfontosabb funkciók: nullázás, egyszeri és folyamatos mérés. A kezelő felület alkalmas a híd kimeneti feszültsége burkolójának on-line megjelenítésére, valamint a mérleg kalibrálására is. A mérési adatok egyszeri mérés üzemmódban file-ba menthetők. Az adatok további fejlesztéséért a MATLAB környezet javasolt.

4.3.4 Villamos és elektronikus csatlakozási lehetőségek

A mérési összeállítás csatlakozási lehetőségeit a 4.7. ábra foglalja össze. Az a) ábrán láthatók a híd és a modul be-, illetve kimeneti. A híd kapcsolódási lehetőségei az ábra alapján nyilvánvalók. A bemenetre és a kimenetre is lehet földelt generátorral, illetve erősítővel kapcsolódni,
4.7. ábra. Csatlakozási lehetőségek. (a) A híd és a DSP-modul be- és kinemenei, (b) a DSP-modul tápbemenete és az RS-485 csatlakozó

![Diagram](image)

4.8. ábra. A műszerek kapcsolása külső gerjesztés és erősítés esetén

mivel a transzformátor galvanikus leválasztást valósít meg. A híd maximálisan 2 V effektív értékű szimuszjellel gerjeszthető.

A DSP-modul be- és kinemenei nem földelhetők. Mérés esetén az egy sorban lévő csatlakozókat kell összekötni, azaz a modul kimenetét a híd bemenetével, illetve a híd kinetét a modul bemenetével. A DSP-modul 24 V tápfeszültséget igényel, amelyet a b) ábrának megfelelően lehet csatlakoztatni. Ugyanítt csatlakoztatható az RS485-kártya is.

4.4 Mérési feladatok

1. Adjon a híd bemenetére 6 kHz frekvenciájú, 2 V effektív értékű szimuszjelet, a kimenetet vezesse mérőerősítőre, illetve sávszűrőre a 4.8. ábra szerint! Oszilloszkóp segítségével vizsgálja meg, milyen jelszintek és jelalakok mérhetők az egyes egységek kinemetén! Milyen zavarjelek terhelik a mérendő jelet?

2. Csatlakoztasson multimétert a szűrő kimenetére, és az állítható súlyok segítségével minimalizálja a feszültséget (feltehetően csak igen kis állításra van szükség)! Mi a maradó feszültség oka?

3. Különböző ismert súlyok segítségével vegye fel a mérleg statikus karakterisztikáját! (A mérleggel maximálisan kb. 100 g súly mérhető.) Határozza meg a közelítő lineáris összefüggést a súly és a feszültség között! Mekkora a lineáritási és az ofszethiba?

4. $k = 2$ feltételezésével határozza meg, adott súly esetén mekkora a lemez relatív megnyúlása!
5. Csatlakoztassa a DSP-modult a hídhoz! A nullázás funkciót kiválasztva kompenzálja a terheletlen hídat!

6. Folyamatos mérés üzemmódban oldja meg újra a 3. feladatot! A mérés során ügyeljen arra, hogy a lengések megszűnése után olvassa le a szükséges értékeket!

7. Az illesztett egyenes meredekségét beírva tesztelje az elektronikus mérleget! Mérje meg egy adott test (pl. pénzérme) tömegét!

8. Egyszeri mérés üzemmódban gyűjtsön adatot egy adott súly mérlegre rakását követően! Mekkora a beállási idő, a végérték 1%-ára vonatkoztatva?