


This slide show uses materials from the Windows Operating System Internals 
Curriculum Development Kit



--From the Windows Operating System Internals Curriculum Development Kit

“Although programs and processes appear similar on the surface, they are fundamentally 
different. A program is a static sequence of instructions, whereas a process is a container for 
a set of resources used when executing the instance of the program. At the highest level of 
abstraction, a Windows process comprises the following:
• A private virtual address space, which is a set of virtual memory addresses that the process 
can use
• An executable program, which defines initial code and data and is mapped into the 
process’s virtual address space
• A list of open handles to various system resources, such as semaphores, communication 
ports, and files, that are accessible to all threads in the process
• A security context called an access token that identifies the user, security groups, and 
privileges associated with the process
• A unique identifier called a process ID (internally called a client ID)
• At least one thread of execution”

“A thread is the entity within a process that Windows schedules for execution. Without it, the 
process’s program can’t run. Although threads have their own execution context, every 
thread within a process shares the process’s virtual address space (in addition to the rest of 
the resources belonging to the process), meaning that all the threads in a process can write 
to and read from each other’s memory. Threads cannot accidentally reference the address 
space of another process, however, unless the other process makes available part of its 
private address space as a shared memory section (called a file mapping object in the 
Windows API) or unless one process has the right to open another process to use cross-
process memory functions such as ReadProcessMemory and WriteProcessMemory.”



4



Ready A thread in the ready state is waiting to execute. When looking for a thread to 
execute, the dispatcher considers only the pool of threads in the ready state. 
• Standby A thread in the standby state has been selected to run next on a particular 
processor. When the correct conditions exist, the dispatcher performs a context switch to 
this thread. Only one thread can be in the standby state for each processor on the system. 
Note that a thread can be preempted out of the standby state before it ever executes (if, for 
example, a higher priority thread becomes runnable before the standby thread begins 
execution). 
• Running Once the dispatcher performs a context switch to a thread, the thread enters the 
running state and executes. The thread's execution continues until its quantum ends (and 
another thread at the same priority is ready to run), it is preempted by a higher priority 
thread, it terminates, it yields execution, or it voluntarily enters the wait state. 
•Waiting A thread can enter the wait state in several ways: a thread can voluntarily wait for 
an object to synchronize its execution, the operating system can wait on the thread's behalf 
(such as to resolve a paging I/O), or an environment subsystem can direct the thread to 
suspend itself. When the thread's wait ends, depending on the priority, the thread either 
begins running immediately or is moved back to the ready state. 
• Transition A thread enters the transition state if it is ready for execution but its kernel stack 
is paged out of memory. Once its kernel stack is brought back into memory, the thread enters 
the ready state. 
• Terminated When a thread finishes executing, it enters the terminated state. Once the 
thread is terminated, the executive thread block (the data structure in nonpaged pool that 
describes the thread) might or might not be deallocated. (The object manager sets policy 
regarding when to delete the object.) 
• Initialized This state is used internally while a thread is being created. 



6



7



8



9



See> MSDN Building Windows 8 Blog, „The Windows 8 Task Manager”, October 13, 
2011. URL: http://blogs.msdn.com/b/b8/archive/2011/10/13/the-windows-8-task-
manager.aspx

10



11



From Windows Internals curriculum:
“The dispatcher ready queues (KiDispatcherReadyListHead) contain the threads that 
are in the ready state, waiting to be scheduled for execution. There is one queue for 
each of the 32 priority levels. To speed up the selection of which thread to run or 
preempt, Windows maintains a 32-bit bit mask called the ready summary 
(KiReadySummary). Each bit set indicates one or more threads in the ready queue for 
that priority level. (Bit 0 represents priority 0, and so on.)”



13

See> Windows Vista Cycle-Based Scheduling
(http://technet.microsoft.com/en-
us/magazine/2007.02.vistakernel.aspx?pr=blog).

The length of the clock interval varies according to the hardware platform. The 
frequency of the clock interrupts is up to the HAL, not the kernel. For 
example, the clock interval for most x86 uniprocessors is about 10 
milliseconds and for most x86 and x64 multiprocessors it is about 15 
milliseconds.



-- From Windows Internals Curriculum
“On Windows Vista, threads run by default for 2 clock intervals; on Windows Server 
systems, by default, a thread runs for 12 clock intervals. The rationale for the longer 
default value on server systems is to minimize context switching. By having a longer 
quantum, server applications that wake up as the result of a client request have a 
better chance of completing the request and going back into a wait state before their 
quantum ends. 

Threads in the foreground process run with a quantum of 6 clock ticks, whereas 
threads in other processes have the default workstation quantum of 2 clock ticks. In 
this way, when you switch away from a CPU-intensive process, the new foreground 
process will get proportionally more of the CPU, because when its threads run they 
will have a longer turn that background threads (again, assuming the thread priorities 
are the same in both the foreground and background processes). “

Short or Long, Variable or Fixed: 
HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation
Leírás: http://www.microsoft.com/mspress/books/sampchap/4354c.aspx





16



17



18



19



20



•Five types:
I/O completion
Wait completion on events or semaphores
When threads in the foreground process complete a wait
When GUI threads wake up for windows input
For CPU starvation avoidance

•Quantum decremented by 1 when you come out of a wait
So that threads that get boosted after I/O completion won't 
keep running and never experiencing quantum end
Prevents I/O bound threads from getting unfair preference 
over CPU bound threads



22



23



24



25

Affinity is a bit mask where each bit corresponds to a CPU 
number

•Hard Affinity specifies where a thread is permitted to run
•Defaults to all CPUs

•Thread affinity mask must be subset of process affinity mask, 
which in turn must be a subset of the active processor mask

Functions to change: SetThreadAffinityMask, 
SetProcessAffinityMask, SetInformationJobObject



26



27


