Operating systems (vimia219)

Scheduling in Windows

Zoltan Micskei

http://mit.bme.hu/~micskeiz

Budapesti Miiszaki és Gazdasagtudomanyi Egyetem

Méréstechnika és Informaciés Rendszerek Tanszék

Copyright Notice

= These materials are part of the Windows Operating System
Internals Curriculum Development Kit, developed by David A.
Solomon and Mark E. Russinovich with Andreas Polze

= Microsoft has licensed these materials from David Solomon Expert
Seminars, Inc. for distribution to academic organizations solely for
use in academic environments (and not for commercial use)

= http://www.academicresourcecenter.net/curriculum/pfv.aspx?1D=6191

= © 2000-2005 David A. Solomon and Mark Russinovich

This slide show uses materials from the Windows Operating System Internals
Curriculum Development Kit

Basic concepts

Process 1 1.n_ Thread
Running instance
of a program Unit of scheduling
Memory CPU
Address space Execution
Resources .

. nvironmen
Security token environment

--From the Windows Operating System Internals Curriculum Development Kit

“Although programs and processes appear similar on the surface, they are fundamentally
different. A program is a static sequence of instructions, whereas a process is a container for
a set of resources used when executing the instance of the program. At the highest level of
abstraction, a Windows process comprises the following:

e A private virtual address space, which is a set of virtual memory addresses that the process
can use

¢ An executable program, which defines initial code and data and is mapped into the
process’s virtual address space

¢ A list of open handles to various system resources, such as semaphores, communication
ports, and files, that are accessible to all threads in the process

¢ A security context called an access token that identifies the user, security groups, and
privileges associated with the process

¢ A unique identifier called a process ID (internally called a client ID)

¢ At least one thread of execution”

“A thread is the entity within a process that Windows schedules for execution. Without it, the
process’s program can’t run. Although threads have their own execution context, every
thread within a process shares the process’s virtual address space (in addition to the rest of
the resources belonging to the process), meaning that all the threads in a process can write
to and read from each other’s memory. Threads cannot accidentally reference the address
space of another process, however, unless the other process makes available part of its
private address space as a shared memory section (called a file mapping object in the
Windows API) or unless one process has the right to open another process to use cross-
process memory functions such as ReadProcessMemory and WriteProcessMemory.”

Principles of Windows scheduling

Preemptive scheduler (both kernel and user!)

32 priority levels
o (One of the) Thread with the highest priority runs
o Round robin between threads with same priority

Threads run for a fixed time (quantum)

No central scheduler,
schedulingis driven by events

Priority of threads can change runtime

Scheduling

preempt

preemption,
quartum end

valurtary

switch
Terminate (4)

Ready A thread in the ready state is waiting to execute. When looking for a thread to
execute, the dispatcher considers only the pool of threads in the ready state.

* Standby A thread in the standby state has been selected to run next on a particular
processor. When the correct conditions exist, the dispatcher performs a context switch to
this thread. Only one thread can be in the standby state for each processor on the system.
Note that a thread can be preempted out of the standby state before it ever executes (if, for
example, a higher priority thread becomes runnable before the standby thread begins
execution).

* Running Once the dispatcher performs a context switch to a thread, the thread enters the
running state and executes. The thread's execution continues until its quantum ends (and
another thread at the same priority is ready to run), it is preempted by a higher priority
thread, it terminates, it yields execution, or it voluntarily enters the wait state.

* Waiting A thread can enter the wait state in several ways: a thread can voluntarily wait for
an object to synchronize its execution, the operating system can wait on the thread's behalf
(such as to resolve a paging 1/0), or an environment subsystem can direct the thread to
suspend itself. When the thread's wait ends, depending on the priority, the thread either
begins running immediately or is moved back to the ready state.

* Transition A thread enters the transition state if it is ready for execution but its kernel stack
is paged out of memory. Once its kernel stack is brought back into memory, the thread enters
the ready state.

* Terminated When a thread finishes executing, it enters the terminated state. Once the
thread is terminated, the executive thread block (the data structure in nonpaged pool that
describes the thread) might or might not be deallocated. (The object manager sets policy
regarding when to delete the object.)

* Initialized This state is used internally while a thread is being created.

Priority levels (kernel)

NOT hard/soft
real-time, just
priority is constant
16 “real-time”

Priority of the
thread can be
changed

15 dynamic

If nothing else to
run, counts spare
cycles

Priority levels (Windows API, GUI)

Name of priority levels Value of priority

31

Realtime

16

High 15
Above Normal

Normal
Below Normal
Idle 1

Windows API vs. kernel names

= Mapping:

Win32
thread
priorities

Time-critical
Highest
Above-normal
Normal
Below-normal

Lowest

Idle

Realtime

31
26
25
24
23
22
16

= Threads: 7 different relative priority

Win32 process priority levels

High
15
15
14
13
12
11
1

Above
Normal

s
12
11
10
)
8
1

Normal

Below
Normal

|/O priority
= Since Vista
= 5 different /O priority for requests, e.g.
o Critical: Dirty page writer

o Low: Desktop search indexer
= |/O bandwidth allocation

27 Process Monitor - Sysintemals: www.sysintemals.com [o) el
file Edrt Eyent Fiter Jools Qptions Help
HE ABE <A A)
Sequ. Process Name PID Operation Pan Rendt Detad
4531 § svchost exe 1076 CreateFie C\Program Files\Corrmon Flles\mcioso. . SUCCESS Access: Evecute/Traverse, Dapostion Open, Options: Syncheonous 10 Noedlet, Non-De.
462 ¥ svchost exe 1076 SetBasicirfomatio . C\Program Fles\Common Fles\micioso. SUCCESS CroationTime: V/a. LastAccess Teme: n/a. LastwinteT ime: /a. ChangeTime: n/a. FlaAitibu
49523 W svchost exe 1076 QuerptinbbuteT s C\Program Flles\Common Fler\mcioso SUCCESS Arbuter A Repaselag 00
49539 * svchostewe 1076 ResFle C \Program Fles\Common Fler\mcsoso SUCCESS Offeat 15270912 Length 241 654, 1/0 Flags Noncach
Showing 228,143 of 299,128 events (76%)

pJA\% (6B Windows 8 task manager

= ,Heat map” Task Manager ek

File Options View
Processes | Performance | App history | Startup | Users | Details | Services

* Redesign based = - : | s % os
on telemetry f—"

4

Notepad 0% 09MB OMB/s 0 Mbps
[] G p p g 1y Task Manager 0% 99MB OMB/s OMbps =
ro u I n @ vMware Tools tray application 0% 1,1 MB O MB/s 0 Mbps
- s ” £3 Windows PowerShell 973% 2,5MB 0,1 MB/s 0 Mbps
sFriendlyname”
=i COM Sulrngnu 0% 1,7MB 0OMB/s 0 Mbps
.' + Microsoft Distributed Transacti... 0% 08MB 0MB/s 0 Mbps
&% Microsoft Windows Search Filte... 0% 09MB 0OMB/s 0 Mbps
& Microsoft Windows Search Inde. 0% 34MB O MB/s 0 Mbps
& Microsoft Windows Search Prot... 0% 1,0 MB 0O MB/s 0 Mbps
®® Spooler SubSystem App 0% 24MB 0OMB/s 0 Mbps
®7 SQL Server VSS Writer - 64 Bit 0% 07MB 0OMB/s 0 Mbps
: VMware Tools Core Service 0,5% 64 MB OMB/s OMbps .

A) Fewer details

See> MSDN Building Windows 8 Blog, ,The Windows 8 Task Manager”, October 13,
2011. URL: http://blogs.msdn.com/b/b8/archive/2011/10/13/the-windows-8-task-
manager.aspx

BI3\Y/[68 Changing priority

= Task manager

e Task Manager
File Options View
Processes | Peformance | App history | Startup | Users| Detais | Services
Name 5 Username CPU Memory (p. Status
& SearchFiterHost exe SYSTEM 0 834K Running
- Searchindexer exe SYSTEM © 326K Running
4 SearchProtocolHost exe SYSTEM 0 106K Running
" services.exe SYSTEM [2808K Running
"7 smas.ene SYSTEM [260K Running
o spoolsv.exe SYSTEM o 92K Running
" sqhar End task 00 992K Running
#3 svehe Rl st [) 1963K Running
*isvchd 0
T svche Set pronty » Reattime

svehe Set affinity High
svche
" Tsvehe Analyze wart chan
"lavche Debug
» Jevehe tushzat
FIche Create dump file
" sveche 00
Wl Openfilelocation ©
#iSye Search online o
=Syster Properties 0
= Jtaskhy Goto service(s) L)

™]

—— SYSTEM o 270X Runsina

A Fewer details

svchost.exe:748 Properties =101 x|

Image | Performance | Performance Graph | Services
Theeads | Tcpfip | Secuty | Envionment | Strings

svchost, exe+0x20bf

umpnpmgr . dil+0x174f
796 ntdll.dii TppWorker Thread
800 ntdll.dil TppWorker Thread
3728 RPCRT4.dll ThreadStartRoutine

| | »
Thread ID: 764 Stack Module
Start Time: 10:15:03 2008.02.22,
State: Wak:UserRequest | Base Priority: 8
Kernel Time: 0:00:00.000 Dynamic Priority: 10
User Time: 0:00:00.000 1O Priority: Normal
Context Switches: 51 Memory Priority: S

11

Dispatcher ready queues

t{ Thread 1 |—{ Thread 2 | t Thread 3 |— Thread 4|
3 A 3

Ready queues

31

0

Ready summary

From Windows Internals curriculum:

“The dispatcher ready queues (KiDispatcherReadyListHead) contain the threads that
are in the ready state, waiting to be scheduled for execution. There is one queue for
each of the 32 priority levels. To speed up the selection of which thread to run or
preempt, Windows maintains a 32-bit bit mask called the ready summary
(KiReadySummary). Each bit set indicates one or more threads in the ready queue for
that priority level. (Bit O represents priority 0, and so on.)”

= Quantum: time slice for Round Robin

Measured in clock interval (clock tick)
o 1 clock tick =~ 10-15 ms (before Windows 8)
o 1 clokc tick = 0.5-15.6 ms (after Windos 8)

Storing quantum: “3 * number of clock tick ”
o Easy to subtract fractions

At each tick quantum of the running thread
decreases by 3 (~ before Vista)

See> Windows Vista Cycle-Based Scheduling
(http://technet.microsoft.com/en-
us/magazine/2007.02.vistakernel.aspx?pr=blog).

The length of the clock interval varies according to the hardware platform. The
frequency of the clock interrupts is up to the HAL, not the kernel. For
example, the clock interval for most x86 uniprocessors is about 10
milliseconds and for most x86 and x64 multiprocessors it is about 15
milliseconds.

13

Length of the quantum

= Client (XP, Vista, Win 7, Win 8): Performance Options 5|
® 2-6 clock tick Visual Effects | Advanced | Data Execution Prevention
= foreground process longer Processor schedulng
Choose how to allocate processor resources.
= Server
Adjust for best performance of:
® |Longer quantums ® Brograns Badkground services
® Equal quantum for
everyone

Adjust for Background
programs services

-- From Windows Internals Curriculum

“On Windows Vista, threads run by default for 2 clock intervals; on Windows Server
systems, by default, a thread runs for 12 clock intervals. The rationale for the longer
default value on server systems is to minimize context switching. By having a longer
guantum, server applications that wake up as the result of a client request have a
better chance of completing the request and going back into a wait state before their
guantum ends.

Threads in the foreground process run with a quantum of 6 clock ticks, whereas
threads in other processes have the default workstation quantum of 2 clock ticks. In
this way, when you switch away from a CPU-intensive process, the new foreground
process will get proportionally more of the CPU, because when its threads run they
will have a longer turn that background threads (again, assuming the thread priorities
are the same in both the foreground and background processes). “

Short or Long, Variable or Fixed:
HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation
Leiras: http://www.microsoft.com/mspress/books/sampchap/4354c.aspx

pIA\V/[0N Length of the quantum

= Clockres.exe utility
o Length of Clock tick
= Adjust quantum length

= Perfmon
= Windows Performance Analyzer

o Timeline by Process, Thread view

= Windows scheduling (basics)

= Windows 8: Windows Store applications

= Windows scheduling (advanced)

16

Windows 8: new application model

= Design goals:
o Low powers and resource-consumption
o Easier deployment and upgrade
o Separated applications (security, reliability)
O ...
= Solution:
o New API: WinRT
o App store: Windows Store

o New application lifecycle

17

Windows Store application lifecycle

Use changes to other app.

If saved state exists, can
be restore; otherwise start
from scratch

OS suspends the process (5 sec).
App can change its state.

Activated
g4 Running

A

NotRunning

Resuming

Terminating No CPU time
OS can terminate app

Source: http://msdn.microsoft.com/en-us/library/windows/apps/hh464925.aspx

18

pJ3\Y/[6B Windows Store applications

= Windows Store

* Changing between Windows Store apps

" Process Explorer: Suspended state

19

= Windows scheduling (basics)

= Windows 8: Windows Store applications

= Windows scheduling (advanced)

20

Adjusting prority

Give a change for those, who waited a long time!

Decrease priority
gradually back to

After wait is over,
give a priority
boost

Boost upon -
Priority wait complete
Preempt

(before quantum end)

base priority

Round-robin at
base priority

Base

priority Run Wait Run Run

Time

*Five types:
I/O completion
Wait completion on events or semaphores
When threads in the foreground process complete a wait
When GUI threads wake up for windows input
For CPU starvation avoidance

*Quantum decremented by 1 when you come out of a wait
So that threads that get boosted after I/O completion won't
keep running and never experiencing quantum end
Prevents I/O bound threads from getting unfair preference
over CPU bound threads

Preventing starvation

= OS checks runnable threads (every 1 sec)

* |f a thread has not been executed since 300 sec
o change priority to 15 (max in dynamic),
oincrease quantum,
o for 1 quantum.

22

Symmetric Multiprocessing (SMP)

= All CPU is equal

o Shared address space
o Interrupts can be served by an CPU

* Implementation limit (length of a bit vector):
o 32 CPUs on 32 bit systems
o 64 CPUs on 64 bit systems

= Change in Windows 7 / Server 2008 R2

o Groups of logical processors
o Supporting 4 * 64 CPU Cache

CPUs

o NUMA support ! E

23

Multiprocessor scheduling

= Threads canrun on any CPU by default, but
o OS tries to keep on CPU, where it run (“soft affinity”)
o Can be set to use only selected CPUs (“hard affinity”)

= No “master processor”

= Dispatcher queues:

o Before Windows Server 2003 : one global queue

o Windows Server 2003: per CPU queues

24

Hard Affinity

[Processor ity x|

The Processor Affinity setting controls which CPUS the process wil
be allowed to exeaute on.

3 windows Task Manager 1 =10l x|

User Name
LOCAL SERVICE
SYSTEM
micskeiz
SYSTEM

bz e e e fb i e
e e ke e e ke s s
B2 e e e e e

Hscss82882888(2

888888

=

Processes: 3 [CPU Usage: 49% [Commit Charge: 240M] 4947M

61 2152 30221

0002356

Affinity is a bit mask where each bit corresponds to a CPU

number

*Hard Affinity specifies where a thread is permitted to run
*Defaults to all CPUs

*Thread affinity mask must be subset of process affinity mask,
which in turn must be a subset of the active processor mask

Functions to change: SetThreadAffinityMask,
SetProcessAffinityMask, SetInformationJobObject

25

Windows 7 changes

Core Parking (server)

o Use fewer processor cores

o Not used cores going to standby

Time coalescing

o Timers with same periodicity are merged

Dynamic Fair Share Scheduling (DFSS)

o for Remote Desktop

o Every session gets a share

o If share is exhausted, thread cannot run

= Eliminating global locks in scheduler

26

= Process €= Thread

= Scheduling:
oPriority levels

oRound robin / quantum

27

