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Preface

Identification is a powerful technique for building accurate models of complex systems from
noisy data. It consists of three basic steps, which are interrelated: (1) the design of an experi-
ment; (2) the construction of a model, black box or from physical laws; and (3) the estimation
of the model parameters from the measurements. The art of modeling lies in proper use of the
skills and specialized knowledge of experts in the field of study, who decide what approxima-
tions can be made, suggest how to manipuiate the system, reveal the important aspects, and
so on. Consequently, modeling should preferably be executed by these experts themselves.
Naturally, they require relevant tools for extracting information of interest. However, most
experts will not be familiar with identification theory and will struggle in each new situation
with the same difficulties while developing their own identification techniques, losing time
over problems already solved in the literature of identification.

This book presents a thorough description of methods to model linear dynamic time-
invariant systems by their transfer function. The relations between the transfer function and
the physical parameters of the system are very dependent upon the specific problem. Because
transfer function models are generally valid, we have restricted the scope of the book to
these alone, so as to develop and study general purpose identification techniques. This
should not be unnecessarily restricting for readers who are more interested in the physical
parameters of a system: the transfer function still contains all the information that is available
in the measurements, and it can be considered to be an intermediate model between the
measurements and the physical parameters. Also, the transfer function model is very
suitable for those readers looking for a black box description of the input-output relations
of a system. And, of course, the model is directly applicable to predict the output of the
system.

In this book, we use mainly frequency domain representations of the data. In combina-
tion with periodic excitations, this opens many possibilities to identify continuous-time
(Laplace-domain) or discrete-time (z-domain) models, if necessary extended with an arbi-
trary and unknown delay. Although we strongly advocate using periodic excitations, we also
extend the methods and models to deal with arbitrary excitations. The “classical” time-
domain identification methods that are specifically directed toward these signals are briefly
covered and encapsulated in the identification framework that we offer to the reader.

iii
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Preface

This book provides answers to questions at different levels, such as: What is identifica-
tion and why do I need it? How to measure the frequency response function of a linear dy-
namic system? How to identify a dynamic system? All these are very basic questions, directly
focused on the interests of the practitioner. Especially for these readers, we have added guide-
lines to many chapters for the user, giving explicit and clear advice on what are good choices
in order to attain a sound solution. Another important part of the material is intended for read-
ers who want to study identification techniques at a more profound level. Questions on how
to analyze and prove the properties of an identification scheme are addressed in this part. This
study is not restricted to the identification of linear dynamic systems; it is valid for a very
wide class of weighted, nonlinear least squares estimators. As such, this book provides a
great deal of information for readers who want to set up their own identification scheme to
solve their specific problem.

The structure of the book can be split into four parts: (1) collection of raw data or non-
parametric identification; (2) parametric identification; (3) comparison with existing frame-
works, guidelines, and illustrations; (4) profound development of theoretical tools.

In the first part, after the introductory chapter on identification, we discuss the collec-
tion of the raw data: How to measure a frequency response function of a system. What is the
impact of nonlinear distortions? How to recognize, qualify, and quantify nonlinear distor-
tions. How to select the excitation signals in order to get the best measurements. This non-
parametric approach to identification is discussed in detail in Chapters 2, 3, and 4.

In the second part, we focus on the identification of parametric models. Signal and
system models are presented, using a frequency and a time domain representation. The
equivalence and impact of leakage effects and initial conditions are shown. Nonparametric
and parametric noise models are introduced. The estimation of the parameters in these mod-
els is studied in detail. Weighted (nonlinear) least squares methods, maximum likelihood, and
subspace methods are discussed and analyzed. First, we assume that the disturbing noise
model is known; next, the methods are extended to the more realistic situation of unknown
noise models that have to be extracted from the data, together with the system model. Special
attention is paid to the numerical conditioning of the sets of equations to be solved. Taking
some precautions, very high order systems, with 100 poles and zeros or even more, can be
identified. Finally, validation tools to verify the quality of the models are explained. The
presence of unmodeled dynamics or nonlinear distortions is detected, and simple rules to
guide even the inexperienced user to a good solution are given. This material is presented in
Chapters 5t0 9.

The third part begins with an extensive comparison of what is classically called time
and frequency domain identification. It is shown that, basically, both approaches are equivalent,
but some questions are more naturally answered in one domain instead of the other. The most
important question is periodic excitations versus nonperiodic or arbitrary excitations. Next,
we provide the practitioner with detailed guidelines to help avoid pitfalls from the very begin-
ning of the process (collecting the raw data), over the selection of appropriate identification
methods until the model validation. Finally, we illustrate many of the developed ideas in a
wide variety of examples from different fields. This part covers Chapters 10, 11, and 12.

The last part of the book is intended for readers who want to acquire a thorough under-
standing of the material or those who want to develop their own identification scheme. Not
only do we give an introduction to the stochastic concepts we use, but we also show, in a
structured approach, how to prove the properties of an estimator. This avoids the need for
each freshman in this field to find out, time and again, the basic steps to solve such a problem.
Starting from this background, a general but detailed framework is set up to analyze the prop-
erties of nonlinear least squares estimators with deterministic and stochastic weighting.



Preface XXV

For the special and quite important class of semilinear models, it is possible to make this
analysis in much more detail. This material is covered in Chapters 13 to 18.

It is possible to extract a number of undergraduate courses from this book. In most of
the chapters that can be used in these courses, we added exercises that introduce the students
to the typical problems that appear when applying the methods to solve practical problems.

A first, quite general undergraduate course subject is the measurement of frequency re-
sponse functions of dynamic systems, as discussed in Chapters 2 to 4.

A second possibility is a first introduction to the identification of linear dynamic sys-
tems. Such an undergraduate course should include Chapter 1 and some selected parts of
Chapters 5, 6, 7, 8, and 9.

A last course, at the graduate level, is an advanced course on identification based on the
methods that are explained in Chapters 15, 16, 17, and 18. This gives an excellent introduc-
tion for students who want to develop their own algorithms.

A complete MATLAB® toolbox, which includes the techniques developed in this book,
is available. It can be used with a graphical user interface, avoiding most problems and nasty
questions for the inexperienced user. At the basic level, this toolbox produces almost autono-
mously a good model. At the intermediate or advanced level, the user obtains access to some
of the parameters in order to optimize the operation of the toolbox to solve dedicated model-
ing problem. Finally, for those who want to use it as a research tool, there is also a command
level that gives full access to all the parameters that can be set to optimize and influence the
behavior of the algorithms. More information on this package can be obtained by sending an
E-mail to one of the authors: rik.pintelon@vub.ac.be or johan.schoukens@vub.ac.be

Rik Pintelon
Department of Electrical Engineering

Vrije Universiteit Brussel
BELGIUM

Johan Schoukens

Department of Electrical Engineering
Vrije Universiteit Brussel

BELGIUM
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An Introduction
to Identification

Abstract: In this chapter a brief, intuitive introduction to the identification theory is given. By
means of a simple example the reader is made aware of a number of pitfalls associated with a
model built from noisy measurements. Starting from this example, the advantages of an iden-
tification approach for measuring and modeling are shown, and finally a family of estimators
is introduced. A comprehensive introduction to identification can be found, among others, in
Beck and Arnold (1977), Goodwin and Payne (1977), Norton (1986), Sorenson (1980), and
also in Kendall and Stuart (1979). Basic concepts of statistics such as the expected value, the
covariance matrix, and probability density functions are assumed to be known.

1.1 WHAT IS IDENTIFICATION?

From the beginning of our lives, as we grew up, we interacted with our environment. Intu-
itively, we learned to control our actions by predicting their effect. These predictions are
based on an inborn model fitted to reality, using our past experiences. Starting from very sim-
ple actions (if I push a ball, it rolls), we soon became very able to deal with much more com-
plicated challenges (walking, running, biking, playing Ping-Pong). Finally, this process
culminates in the design of very complicated systems such as radios, airplanes, and mobile
phones to satisfy our needs. We even build models just to get a better understanding of our
observations of the universe: what does the life cycle of the sun look like? Can we predict the
weather of this afternoon, tomorrow, next week, next month? From all these examples it is
seen that we never deal with the whole of nature at once: we always focus on the aspects we
are interested in and do not try to describe all of reality using one coherent model. The job is
split up, and efforts are concentrated on just one part of reality at a time. This part is called
the system, the rest of nature being referred to as the environment of the system. Interactions
between the system and its environment are described by input and output ports. For a very
long time in the history of mankind the models were qualitative, and even today we describe
most real-life situations using this “simple” approach: for example, a ball will roll downhill;
temperature will rise if the heating has been switched on; it seems it will rain because the sky
looks very dark. In the last centuries this qualitative approach was complemented with quan-
titative models based on advanced mathematics, and until the last decade this seemed to be
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2 Chapter 1 B An Introduction to Identification

the most successful approach in many fields of science. Most physical laws are quantitative
models describing some part of our impression of reality. However, it also became clear, very
soon, that it can be very difficult to match a mathematical model to the available observations
and experiences. Consequently, qualitative logical methods typified by fuzzy modeling be-
came more popular, once more. In this book we deal with the mathematical, quantitative
modeling approach. Fitting these models to our observations creates new problems. We look
at the world through “dirty” glasses: when we measure a length, the weight of a mass, the
current or voltage, and so on we always make errors because the instruments we use are not
perfect. Also, the models are imperfect; reality is far more complex than the rules we apply.
Many systems are not deterministic. They also show a stochastic behavior that makes it im-
possible to predict exactly their output. Noise in a radio receiver, Brownian motion of small
particles, variation of the wind speed in a thunderstorm are all illustrations of this nature.
Usually we split the model into a deterministic part and a stochastic part. The deterministic
aspects are captured by the mathematical system model, while the stochastic behavior is
modeled as a noise distortion. The aim of identification theory is to provide a systematic ap-
proach to fit the mathematical model, as well as possible, to the deterministic part, eliminat-
ing the noise distortions as much as possible.

Later in this book the meaning of terms such as “system” and “goodness of fit” will be
precisely described. Before formalizing the discussion we want to motivate the reader by an-
alyzing a very simple example, illustrating many of the aspects and problems that appear in
identification theory.

1.2 IDENTIFICATION: A SIMPLE EXAMPLE
1.2.1 Estimation of the Value of a Resistor

Two groups of students had to measure a resistance. Their measurement setup is shown
in Figure 1-1. They passed a constant but unknown current through the resistor. The voltage

i(k)

u(k) Figure 1-1. Measurement of a resistor.

u, across the resistor and the current i, through it were measured using a voltmeter and an
ampere meter. The input impedance of the voltmeter is very large compared with the un-
known resistor so that all the measured current is assumed to pass through the resistor. A set
of voltage and current measurements, respectively, u(k), i(k) with £k = 1,2, ..., N is made.
The measurement results of each group are shown in Figure 1-2. Because the measurements
were very noisy, the groups decided to average their results. Following a lengthy discussion,
three estimators for the resistance were proposed:

Rt = 32X, (-
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RLS(N) = Twn
OIRGE
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N NZk:lu(k)

Rev(N) = T —
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F T uick)

(1-2)

(1-3)

The index N indicates that the estimate is based on N observations. Note that the three esti-
mators result in the same estimate on noiseless data. Both groups processed their measure-
ments, and their results are given in Figure 1-3. From this figure a number of interesting

observations can be made:

s All estimators have large variations for small values of N and seem to converge to
an asymptotic value for large values of N, except Rsa(N) of group A. This corre-
sponds to the intuitively expected behavior: if a large number of data points are pro-
cessed we should be able to eliminate the noise influence by the averaging effect.

s The asymptotic values of the estimators depend on the kind of averaging technique
that is used. This shows that there is a serious problem: at least two out of the three
methods converge to a wrong value. It is not even certain that any one of the estima-
tors is doing well. This is quite catastrophic: even an infinite amount of measure-

ments does not guarantee that the exact value is found.

m The Rsa(N) of group A behaves very strangely. Instead of converging to a fixed
value, it jumps irregularly up and down before convergence is reached.
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Figure 1-2. Measurement results u(k), i(k) for groups A and B. The plotted value R(k) is
obtained by direct division of the voltage by the current: R(k) = u(k)/i(k).
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Group A Group B

Figure 1-3. Estimated resistance values R(V) for both groups as a function of the
number of processed data N; full dotted line: Rs., dotted line: Ry, full
line: Rey.

These observations prove very clearly that a good theory is needed to explain and understand
the behavior of candidate estimators. This will allow us to make a sound selection out of
many possibilities and to indicate in advance, before running expensive experiments, whether
the selected method is prone to serious shortcomings.

In order to get a better understanding of their results, the students repeated their experi-
ments many times and looked to the histogram of R(N) for N = 10, 100, and 1000. Nor-
malizing these histograms gives an estimate of the pdf (probability density function) of R(N)
as shown in Figure 1-4. Again, the students could learn a lot from these figures:

m For small values of N the estimates are widely scattered. As the number of pro-
cessed measurements increases, the pdf becomes more concentrated.

s The estimates R s(N) are less scattered than Rev(N), while for Rsa(N) the odd be-
havior in the results of group A appears again. The distribution of this estimate does
not contract for growing values of N for group A, while it does for group B.

m Again it is clearly visible that the distributions are concentrated around different val-
ues.

At this point in the exercise, the students still could not decide which estimator is the best.
Moreover, there seems to be a serious problem with the measurements of group A because
Rsa(N) behaves very oddly. First they decided to focus on the scattering of the different esti-
mators, trying to get more insight into the dependence on N. In order to quantify the scatter-
ing of the estimates, their standard deviation is calculated and plotted as a function of N in
Figure 1-5.

m The standard deviation of R(N) decreases monotonically with N except for the
pathological case, Rsa(N), of group A. Moreover, it can be concluded by compar-
ing with the broken line that the standard deviation is proportional to 1//N. Thisis
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Figure 1-4. Observed pdf of R(N) for both groups, from left to right N = 10, 100, and
1000; full dotted line: Rsu(N), dotted line: Ris(N), full line: Ry (N).
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Figure 1-5. Standard deviation of R(N) for the different estimators and comparison with
14/N; full dotted line: Ro.(N); dotted line: R(N), full line: R (V),
dashed line 1/4/N.
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in agreement with the rule of thumb which states that the uncertainty on an averaged
quantity obtained from independent measurements decreases as 1/4/N.

m The uncertainty in this experiment depends on the estimator. Moreover, the propor-
tionality to 1/4/N is obtained only for sufficiently large values of N for Ris(N) and
Rev(NV).

Because both groups of students used the same programs to process their measurements, they
concluded that the strange behavior of Rsa(N) in group A should be due to a difference in the
raw data. For that reason they took a closer look at the time records given in Figure 1-2. Here
it can be seen that the measurements of group A are a bit more scattered than those of group
B. Moreover, group A measured some negative values for the current while group B did not.
In order to get a better understanding, they made a histogram of the raw current data as shown
in Figure 1-6.

500+ 500+

Number of realizations
Number of realizations
[\*]

[#)]

@

-1 0 1 2 3

i i

Group A Group B

Figure 1-6. Histogram of the current measurements.

These histograms clarify the strange behavior of Rss of group A. The noise on the
measurements of group A looks completely different from that of group B. Because of the
noise on the current measurements, there is a significant risk of getting current values that are
very close to zero for group A, whereas this is not so for group B. These small current mea-
surements blow up the estimate R(k) = wu(k)/i(k) for some k, so that the running average
Rsa cannot converge, or more precisely, the expected value &{u(k)/i(k)} does not exist.
This will be discussed in more detail later in this chapter. This example shows very clearly
that there is a strong need for methods that can generate and select between different estima-
tors. Before setting up a general framework, the resistance problem is further elaborated.

It is also remarkable to note that although the noise on the measurements is completely
differently distributed, the distribution of the estimated resistance values R;s and Rgv seems
to be the same in Figure 1-4 for both groups.
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1.2.2 Simplified Analysis of the Estimators

With the knowledge obtained from the previous series of experiments, the students
eliminated RSA, but they were still not able to decide whether Ris or Rgy was the best. More
advanced analysis techniques are needed to solve this problem. As the estimates are based on
a combination of a finite number of noisy measurements, there are bound to be stochastic
variables. Therefore, an analysis of the stochastic behavior is needed to select between both
estimators. This is done by calculating the limiting values and making series expansions of
the estimators. In order to keep the example simple, we will use some of the limit concepts
quite loosely. Precise definitions are postponed to Section 14.6. Three observed problems are
analyzed in the following:

» Why do the asymptotic values depend on the estimator?
m Can we explain the behavior of the variance?
m Why does the Rsa estimator behave strangely for group A?

To do this it is necessary to specify the stochastic framework: how are the measurements dis-
turbed with the noise (multiplicative, additive), and how is the noise distributed? For simplic-
ity, we assume that the current and voltage measurements are disturbed by additive zero
mean, independently and identically distributed noise, formally formulated as:

ith) = ig+nk)  utk) = ug+n, k) (1-4)

where i, and u, are the exact but unknown values of the current and the voltage, n,(k) and
n,(k), are the noise on the measurements.

Assumption 1.1 (disturbing noise): n,(k) and n,(k) are mutually independent, zero
mean, independent and identically distributed (iid) random variables with a symmetric distri-
bution and with variance o2 and ¢?.

1.2.2.1 Asymptotic Value of the Estimators. In this section the limiting value of the
estimates for N — o is calculated. The calculations are based on the observation that the
sample mean of iid random variables x(k), k = 1, ..., N converges to its expected value
(see Section 14.9), &{x}

N
,&{nmﬁz:mlx(k) = 8{x} (1-5)
Moreover, if x(k) and y(k) obey Assumption 1.1, then
.1
lim =3 xK)yk) = 0 (1-6)

Because we are dealing here with stochastic variables, the meaning of this statement should
be defined more precisely, but in this section we will just use this formal notation and make
the calculations straightforwardly (see Chapter 14.6 for a formal definition).
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The first estimator we analyze is Rs(N). Taking the limit of (1-2) gives

N
) w(ic)
lim R.s(N) = lim 2#11__1_
N oo N> _ lZ(k)
N k= (1-7)
Igiinwzk _, (o + n,(R)) (g + ni(k))

im Y7 G+ mK))’

Or, after dividing the numerator and denominator by N,

lim [u010+ Nzk 1 (k).,_’o . (k)+NZ u(k)ni(k):l

Zlozk 1 z(k)]

Because n; and n, are zero mean iid, it follows from (1-5) and (1-6) that

lim Ris(N) =
N . 2 N 2
lim [10+1—\7 E k=ln,-(k)+

N« oo

N

N N
.1 .1 .1
Al]linmﬁ En,,(k) =0, "l’lin“ﬁkg'l nfk) = 0, and [3121“1—\7’(; nonk) = 0

However, the sum of the squared current noise distributions does not converge to zero but
converges to a constant value different from zero

. Iow
i 2. i) -
so that the asymptotic value becomes:

Uiy 1

ig+0?  l+0i/i} (1-8)

[31m Ris(NV)y =

This simple analysis gives a lot of insight into the behavior of the Ris(N) estimator. Asymp-
totically, this estimator underestimates the value of the resistance due to quadratic noise con-
tributions in the denominator. Although the noise disappears in the averaging process of the
numerator, it contributes systematically in the denominator. This results in a systematic error
(called bias) that depends on the signal-to-noise ratio (SNR) of the current measurements:
iy/ O

The analysis of the second estimator Rev(N) is completely similar. Using (1-3), we get

lim Ek_L(k)
N oo
PR

lim sz _ (g + ()

N oo

lim &3 (o + n(8)

N = oo

lim Rev(N)
N oo

(1-9)
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or

up + lim = 2 nk)
NN =% _ g, (1-10)

i+ gi_@”ﬁzkz (k) fo

Iym REV(N )=

so that we can conclude now that Rev(V) converges to the true value and should be preferred
over Ris(N). These conclusions are also confirmed by the students’ results in Figure 1-3,
where it is seen that the asymptotic value of Rys(N) is much smaller than that of Rev(N).

1.2.2.2 Strange Behavior of the “Simple Approach.” Finally, we have to analyze
Rsa(N) in order to understand its strange behavior. Can’t we repeat the previous analysis
here? Consider

N u(k) Uy + n(k) LK)
Rsat = k=07(k)y NZ" 0y + k) (-1D)

A major difference from the previous estimators is the order of summing and dividing: here
the measurements are first divided and then summed together, whereas for the other estima-
tors we first summed the measurements together before making the division. In other words,
for Ris(N) and Rev(N) we first applied an averaging process (summing over the measure-
ments) before making the division. This makes an important difference.

1+n,k)/ u

T+nk)/ iy (1-12)

RsaV) = luOZk 0

In order to process Rsa(N) along the same lines as the other estimators, we should get rid of
the division, for example, by making a Taylor series expansion:

1

1+x 2[ 0( ~1)ix! for x| < 1 (1-13)

with x = n,(k)/i,. Because the terms n?'*'(k) and nl(k)nKk) disappear in the averaging
process (the pdfs are symmetric), the limiting value becomes

}iinNRSA(N) = Ro(l + I%Zle(ni(k)/io)z + %Zfﬂ(ni(k)/io)“ + ) (1-14)

with |n,(k)/ i, < 1. If we neglect all terms of order 4 or more, the final result becomes

lim Rsa(N) = Ry(1 +062/i3) (1-15)

if [nik)/io <1, Vk.
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From this analysis we can draw two important conclusions:

m The asymptotic value exists only if the following condition on the measurements is
met: the series expansion must exist otherwise Eq. (1-15) is NOT valid. The measure-
ments of group A violate the condition that is given in (1-14), while those of group B
obey it (see Figure 1-6). A more detailed analysis shows that this condition is too
rigorous. In practice it is enough that the expected value &{Rsa(N)} exists (see
Chapter 15). Because this value depends on the pdf of the noise, a more detailed
analysis of the measurement noise would be required. For some noise distributions
the expected value exists even if the Taylor expansion does not!

m If the asymptotic value exists, Eq. (1-15) shows that it will be too large. This is also
seen in the results of group B in Figure 1-3. We know already that Rev(N) converges
to the exact value, and Rsa(N) is clearly significantly larger.

1.2.2.3 Variance Analysis. 1In order to get a better understanding of the sensitivity of
the different estimators to the measurement noise, the students made a variance analysis us-
ing first-order Taylor series approximations.

Again they began with the Ris(N). Starting from Eq. (1-7) and neglecting all second-
order contributions such as n,(k)n k) or n}(k), itis found that

RisVy = Ro(l + 1%72:]: (n (k) uo— ni(k)/io)) = Ry+ AR (1-16)
The approximated variance var(Ris(N)) is (using Assumption 1.1)

R RZ 2 2
var(Rus(V)) = BL(AR)?} = ﬁ(;ig + %) 1-17)

with &{ } the expected value. Note that during the calculation of the variance, the shift of the
mean value of Ris(N) is not considered because it is a second-order contribution.
For the other two estimators, exactly the same results are found:

2 rmd 2
var(Rev(N)) = var(Rsa(V)) = %"(%2‘ +%’) (1-18)

The result var(Rsa(N)) is valid only if the expected values exist.
Again, a number of interesting conclusions can be drawn from this result

n The standard deviation is proportional to 14/N as was found before in Figure 1-5.

m Although it is possible to reduce the variance by averaging over repeated measure-
ments, this is no excuse for sloppy experiments because the uncertainty is inversely
proportional to the SNR of the measurements. Increasing the SNR requires many
more measurements in order to get the same final uncertainty on the estimates.

m The variances of the three estimators should be the same. This seems to conflict with
the results of Figure 1-5. However, the theoretical expressions are based on first-
order approximations. If the SNR drops to values that are too small, the second-
order moments are no longer negligible. In order to check this, the students set up a
simulation and tuned the noise parameters so that they got the same behavior as they
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Figure 1-7. Evolution of the standard deviation and the rms error on the estimated
resistance value as a function of the standard deviation of the noise
(6, = ¢,). : Ro(N), oot Ri(N), +++ theoretical value o, .

had observed in their measurements. These values were: i, = 1A, uy, = 1V,
o; = 1A, 6, = 1V. The noise of group A is normally distributed and uniformly
distributed for group B. Next they varied the standard deviations and plotted the re-
sults in Figure 1-7 for Rev(N) and Ry s(N). Here it is clear that for higher SNR the
uncertainties coincide, whereas they differ significantly for the lower SNR. To give
closed form mathematical expressions for this behavior, it is not enough any more to
specify the first- and second-order moments of the noise (mean, variance); the higher
order moments or the pdf of the noise is also required (see Section 14.15).

m Although Ris(N) has a smaller variance than Rev(N) for low SNR, its total root
mean square (rms) error (difference with respect to the true value) is significantly
larger because of its systematic error. The following is quite a typical observation:
many estimators reduce the stochastic error at the cost of systematic errors. For the
Ry the rms error is completely due to the variability of the estimator because the
rms error coincides completely with the theoretical curve of the standard deviation.

1.2.3 Interpretation of the Estimators:
A Cost Function—-Based Approach

The previous section showed that there is not just one single estimator for each prob-
lem. Moreover, the properties of the estimators can vary quite a lot. This raises two questions:
how can we generate good estimators and how can we evaluate their properties? The answers
are given in this and the following sections. In order to recognize good estimators it is neces-
sary to specify what a good estimator is. This is done in the next section. First we will deal
with the question of how estimators are generated. Again, there exist different approaches. A
first group of methods starts from a deterministic approach. A typical example is the observa-
tion that the noiseless data should obey some model equations. The system parameters are
then extracted by intelligent manipulation of these equations, usually inspired by numerical
or algebraic techniques. Next, the same procedure is used on noisy data, The major disadvan-
tage of this approach is that it does not guarantee at all that the resulting estimator has good
noise behavior. The estimates can be extremely sensitive to disturbing noise. The alternative
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is to embed the problem in a stochastic framework. A typical question to be answered is:
where does the disturbing noise sneak into my problem and how does it behave? To answer
this question, it is necessary to make a careful analysis of the measurement setup. Next, the
best parameters are selected using statistical considerations. In most cases these methods lead
to a cost function interpretation and the estimates are found as the arguments that minimize
the cost function. The estimates of the previous section can be found as the minimizers of the
following cost functions:

Rsa(N): Consider the successive resistance estimates R(k) = u(k)/i(k). The overall
estimate after N measurements is then the argument minimizing the following cost
function:

Roa(N) = arg minViu (R, N) with Vs®, N) = 30 (RO-R?  (1-19)

This is the most simple approach (“SA” stands for simple approach) of the estimation
problem. As seen before, it has very poor properties.

Ris(N): A second possibility is to minimize the equation errors in the model equation
u(k) - Ri(k) = e(k, R) in least squares (LS) sense. For noiseless measurements
e(k, Ry) = 0, with R, the true resistance value,

Ris(N) = arg minV5(R, N) with Vis(R, N) = SV ek, R) (1-20)

Rev(N): The basic idea of the last approach is to express that the current as well as the
voltage measurements are disturbed by noise. This is called the errors-in-variables
(EV) approach. The idea is to estimate the exact current and voltage (i,, u, ), parame-
terized as (i, u, ) keeping in mind the model equation u, = Ri,.

Rev(N) = arg minVey(R, iy, u,, N) subjectto u, = Ri,
Riyu, (1-21)
VEV(R7 ip7 up9 N) = 22/= 1 (u(k) - up)2 + 22’= 1 (l(k) - ip)2

This wide variety of possible solutions and motivations illustrates very well the need for a
more systematic approach. In this book we put the emphasis on a stochastic embedding ap-
proach, selecting a cost function on the basis of a noise analysis of the general measurement
setup that is used.

All the cost functions that we presented are of the “least squares” type. Again there ex-
ist many other possibilities, for example, the sum of the absolute values. There are two rea-
sons for choosing a quadratic cost: first, it is easier to minimize than other functions, and sec-
ond, we will show that normally distributed disturbing noise leads to a quadratic criterion.
This does not imply that it is the best choice from all points of view. If it is known that some
outliers in the measurements can appear (due to exceptionally large errors, a temporary sen-
sor failure, a transmission error, etc.), it can be better to select a least absolute values cost
function (sum of the absolute values) because these outliers are strongly emphasized in a
least squares concept (Huber, 1981; Van den Bos, 1985). Sometimes a mixed criterion is
used; for example, the small errors are quadratically weighted while the large errors only ap-
pear linear in the cost to reduce the impact of outliers (Ljung, 1995).
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1.3 DESCRIPTION OF THE STOCHASTIC BEHAVIOR
OF ESTIMATORS

Because the estimates are obtained as a function of a finite number of noisy measurements,
they are stochastic variables as well. Their pdf is needed in order to characterize them com-
pletely. However, in practice it is usually very hard to derive it, so that the behavior of the es-
timates is described by a few numbers only, such as their mean value (as a description of the
location) and the covariance matrix (to describe the dispersion). Both aspects are discussed in
the following. A detailed discussion is given in Chapter 14.

1.3.1 Location Properties:
Unbiased and Consistent Estimates

The choice for the mean value is not obvious at all from a theoretical point of view.
Other location parameters such as the median or the mode (Stuart and Ord, 1987) could be
used too, but the latter are much more difficult to analyze in most cases. As it can be shown
that many estimates are asymptotically normally distributed under weak conditions, this
choice is not so important because in the normal case, these location parameters coincide. It
seems very natural to require that the mean value equals the true value, but it turns out to be
impractical. What are the true parameters of a system? We can speak about true parameters
only if an exact model exists. It is clear that this is a purely imaginary situation because in
practice we always stumble on model errors so that only excitation-dependent approxima-
tions can be made. For theoretical reasons it still makes sense to consider the concept of “true
parameters,” but it is clear at this point that we have to generalize to more realistic situations.
One possible generalization is to consider the estimator evaluated in the noiseless situation as
the “best” approximation. These parameters are then used as a reference value to compare the
results obtained from noisy measurements. The goal is then to remove the influence of the
disturbing noise so that the estimator converges to this reference value.

. Definition 1.2 (Unbiasedness): An estimator 0 of the parameters 6, is unbiased if
&{0} = 6,, for all true parameters 6, . Otherwise it is a biased estimator.

If the expected value equals the true value only for an infinite number of measurements,
then the estimator is called asymptotically unbiased. In practice, it turns out that (asymptotic)
unbiasedness is a hard requirement to deal with.

Example 1.3 (Unbiased and Biased Estimators): At the end of their experiments the
students wanted to estimate the value of the voltage over the resistor. Starting from the mea-

surements (1-4), they first carry out a noise analysis of their measurements by calculating the
sample mean value and the sample variance:

A 1 N n 1 N .
u(N) = ]-\721( - u(k) and G,%(N) = ]_V -1 (u(k) — u(N))Z (1_22)
Applying the previous definition, it is readily seen that

B} = £ Blud)} = L30 uo = g (1-23)
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because the noise is zero mean, so that their voltage estimate is unbiased. The same can be
done for the variance estimate:

N-1

B8N =

o2 (1-24)

This estimator shows a systematic error of 62/N and is thus biased. However, as N — oo the
bias disappears, and following the definitions it is asymptotically unbiased. It is clear that a

better estimate would be ]Tll—_12:— . (u(k) — i(N))?, which is the expression that is found in

the handbooks on statistics. O

For many estimators, it is very difficult or even impossible to find the expected value
analytically. Sometimes it does not even exist as was the case for Rsa(NV) of group A. More-
over, unbiased estimators can still have a bad distribution; for example, the pdf of the estima-
tor is symmetrically distributed around its mean value, with a minimum at the mean value.
Consequently, a more handy tool (e.g., consistency) is needed.

Definition 1.4 (Consistency): An estimator &N) of the parameters 8, is weakly con-
sistent if it converges in probability to 6, : pllm &(N) = 6, and strongly consistent if it con-
verges with probability one (almost surely) to 90 as.l lim N) = 6,.

The precise explanation of these probability limits is given in Section 14.6. Loosely ex-
plained, it means that the pdf of &N) contracts around the true value 6, or
hm Prob( ’ N) - 60[ >6>0) = 0. The major advantage of the consistency concept is
purcly mathematical: it is much easier to prove consistency than unbiasedness using probabi-
listic theories starting from the cost function interpretation. A general outline on how to prove
consistency is given in Section 15.3. Another nice property of the plim is that it can be inter-
changed with a continuous function: plim f(a) = f(plim(a)) if both limits exist (see Section
14.8). In fact, it was this property that we applied during the calculations of the limit values of
Ris and Rgv , for example,

L Z;j_  u(k) plim%’zy:  u(k)
plimRev(N) = phm Yo- =

. No>e 1 o
! NZI( , i) plimﬁzkill(k) o

1]
&

(1-25)

Consequently, Rev(N) is a weakly consistent estimator. Calculating the expected value is
much more involved in this case due to the division. Therefore, consistency is a better suited
concept than (asymptotic) unbiasedness to study it.

1.3.2 Dispersion Properties: Efficient Estimators

In this book the covariance matrix is used to measure the dispersion of an estimator,
that is, to ascertain how much the actual estimator is scattered around its limiting value.
Again this choice, among other possibilities (for example, percentiles), is highly motivated
from a mathematical point of view. Within the stochastic framework used, it will be quite
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easy to calculate the covariance matrix whereas it is much more involved to obtain the other
measures. For normal distributions, all dispersion measures are obtainable from the covari-
ance matrix so that for most estimators this choice is not too restrictive because their distribu-
tion converges to a normal one.

As users, we are highly interested in estimators with minimal errors. However, because
we can collect only a finite number of noisy measurements, it is clear that there are limits on
the accuracy and precision we can reach. This is precisely quantified in the Cramér-Rao
inequality. This inequality provides a lower bound on the covariance matrix of a(n) (un)bi-
ased estimator starting from the likelihood function. First we introduce the likelihood func-
tion; next we present the Cramér-Rao lower bound.

Consider the measurements z € R¥ obtained from a system described by a hypotheti-
cal, exact model that is parameterized in 8. These measurements are disturbed by noise and
are, hence, stochastic variables that are characterized by a probability density function f(z|8,)
that depends on the exact model parameters 6, with J;e o J(2|60)dz = 1. Next we can in-
terpret this relation conversely, namely, how likely is it that a specific set of measurements
z = z,, are generated by a system with parameters 67 In other words, we now consider a
given set of measurements and view the model parameters as the free variables:

L(z,|0) = f(z=2,|0) (1-26)

with @ the free variables. L(z,,|0) is called the likelihood function. In many calculations the
log likelihood function /(z|8) = In(L(z|6)) is used. In (1-26) we used z,, to indicate explic-
itly that we use the numerical values of the measurements that were obtained from the exper-
iments. From here on, we just use z as a symbol because it will be clear from the context
what interpretation should be given to z. The reader should be aware that L(z|6) is not a
probability density function with respect to & because IBL(zl 0)d8+# 1. Notice the subtle dif-
ference in terminology; that is, probability is replaced by likeliness.

The Cramér-Rao lower bound gives a lower limit on the covariance matrix of parame-
ters. Under quite general conditions, this limit is universal and independent of the selected es-
timator: no estimator that violates this bound can be found. It is given by (see Section 14.12)

_ oby\' ob,
CR(6) = (I"6+a_e) Fi 1(90)(1n6+a—9)

Fi(6y) = 8{(81%0))7(81%6')0))} - _g{azé(;le)}

The derivatives are calculated in @ = 6,, and b, = {0} -6, is the bias on the estimator.
Note that for biased estimators (db,/9d6=0) the lower bound (1-27) can be be zero:
CR(6,) = 0 (see Example 14.20 on page 458). For unbiased estimators (1-27) reduces to
CR(8y) = Fi-Y(6y).

Fi(0) is called the Fisher information matrix: it is a measure of the information in an
experiment: the larger the matrix, the more information there is. In (1-27) it is assumed that
the first and second derivatives of the log likelihood function exist with respect to 6.

(1-27)

Example 1.5 (Influence of the Number of Parameters on the Cramér-Rao Lower
Bound): A group of students wanted to determine the flow of tap water by measuring the
height h(#) of the water in a measuring jug as a function of time ¢. However, their work was
not precise and in the end they were not sure about the exact starting time of their experiment.
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They included it in the model as an additional parameter: Ay(f) = a(f—ty,,) = at+b, and
6 = [a, b]T. Assume that the noise n,(k) on the height measurements is iid zero mean nor-
mally distributed N(0,62%), and the noise on the time instances is negligible
h(k) = at, + b + n,(k); then the following stochastic model can be used:

Prob(h(k), t,) = Prob(h(k) — (at, + b)) = Prob(n,(k))

where Prob(h(k), t,) is the probability of making the measurements h(k) at ¢,. The likeli-
hood function for the set of measurements & = {(h(1), t,), ..., (A(N), ty)} is

1 - LN hy - ar, - )2
Lika, b) = oo e (1-28)
and the log likelihood function becomes
ihla,b) = - 2Lk b)? 129
(hla, b) = - Flog(2n0 )—Eizkﬂ( (k) -at, - b) (1-29)

The Fisher information matrix and the Cramér-Rao lower bound are found using (1-27):

Fi(a, b) = Glz[ij /ﬂ — CR(a, b) = Fi-¥(a,b) = }—\7“26_2_—“2){1# _'ﬂ (1-30)
- s

with i = ]%2::’: R and s? = 1%7221:1“%‘ These expressions are very informative. First of

all, we can note that the attainable uncertainty is proportional to the standard deviation of the
noise. This means that inaccurate measurements result in poor estimates, or identification is

no excuse for sloppy measurements. The uncertainty decreases as /N, which can be used as
a rule of thumb whenever independent measurements are processed. Finally, it can also be
noted that the uncertainty depends on the actual time instances used in the experiment. In
other words, by making a proper design of the experiment, it is possible to influence the un-
certainty on the estimates. This idea will be exploited fully in Chapter 4. Another question we
can answer now is what price is paid to include the additional model parameter b to account
for the unknown starting time. By comparing Fi-'(a, b)) with Fi-(a) (assuming that b is
known), it is found that

2, —_ 02 02 i 2,
ci(a, b) = Imzﬁs_z = 6(a) (1-31)

where G2(a, b) is the lower bound on the variance of a if both parameters are estimated, else
GXa) is the lower bound if only a is estimated. This shows that adding additional
parameters to a model increases the minimum attainable uncertainty on it. Of course, these
parameters may be needed to remove systematic errors so that a balance between stochastic
errors and systematic errors is achieved. This is further elaborated in Chapter 9. O
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The Cramér-Rao lower bound is a conservative estimate of the smallest possible covari-
ance matrix that is not always attainable (the values may be too small). Tighter bounds exist
(Abel, 1993) but these are more involved to calculate. Consequently, the Cramér-Rao bound
is the criterion most used to verify the efficiency of an estimator.

Definition 1.6 (Efficiency): An unbiased estimator is called efficient if its covariance
matrix is smaller than that of any other unbiased estimator.

An unbiased estimator that reaches the Cramér-Rao lower bound is also an efficient es-
timator. For biased estimators, a generalized expression should be used (see Section 14.12).

1.4 BASIC STEPS IN THE IDENTIFICATION PROCESS

Each identification session consists of a series of basic steps. Some of them may be hidden or
selected without the user being aware of his choice. Clearly, this can result in poor or subop-
timal results. In each session the following actions should be taken:

s Collect information about the system.
m Select a model structure to represent the system.

m Choose the model parameters to fit the model as well as possible to the measure-
ments: selection of a “goodness of fit” criterion.

= Validate the selected model.

Each of these points is discussed in more detail next.

1.4.1 Collect Information about the System

If we want to build a model for a system, we should get information about it. This can
be done by just watching the natural fluctuations (e.g., vibration analysis of a bridge that is
excited by normal traffic), but most often it is more efficient to set up dedicated experiments
that actively excite the system (e.g., controlled excitation of a mechanical structure using a
shaker). In the latter case, the user has to select an excitation that optimizes his own goal (for
example, minimum cost, minimum time, or minimum power consumption for a given mea-
surement accuracy) within the operator constraints (e.g., the excitation should remain below a
maximum allowable level). The quality of the final result can depend heavily on the choices
that are made. Later in this book we will spend a lot of time on the selection of the excitation
signals.

1.4.2 Select a Model Structure to Represent the System

A choice should be made within all the possible mathematical models that can be used
to represent the system. Again a wide variety of possibilities exist, such as

m Parametric versus nonparametric models
In a parametric model, the system is described using a limited number of character-
istic quantities called the parameters of the model, whereas in a nonparametric
model the system is characterized by measurements of a system function at a large
number of points. Examples of parametric models are the transfer function of a filter
described by its poles and zeros and the motion equations of a piston. An example of
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a nonparametric model is the description of a filter by its impulse response at a large
number of points.

Usually it is simpler to create a nonparametric model than a parametric one be-
cause the modeler needs less knowledge about the system itself in the former case.
However, physical insight and concentration of information are more substantial for
parametric models than for nonparametric ones. In this book we will concentrate on
transfer function models (parametric models), but the problem of frequency re-
sponse function measurements (nonparametric model) will also be elaborated.

= White box models versus black box models

In the construction of a model, physical laws whose availability and applicability de-
pend on the insight and skills of the experimenter can be used (Kirchhoff’s laws,
Newton’s laws, etc.). Specialized knowledge related to different scientific fields may
be brought into this phase of the identification process. The modeling of a loud-
speaker, for example, requires extensive understanding of mechanical, electrical, and
acoustical phenomena. The result may be a physical model, based on comprehensive
knowledge of the internal functioning of the system. Such a model is called a white
box model.

Another approach is to extract a black box model from the data. Instead of
making a detailed study and developing a model based upon physical insight and
knowledge, a mathematical model is proposed that allows sufficient description of
any observed input and output measurements. This reduces the modeling effort sig-
nificantly. For example, instead of modeling the loudspeaker using physical laws, an
input-output relation, taking the form of a high-order transfer function, could be pro-
posed.

The choice between the different methods depends on the aim of the study: the
white box approach is better for gaining insight into the working principles of a sys-
tem, but a black box model may be sufficient if the model will be used only for pre-
diction of the output.

Although, as a rule of thumb, it is advisable to include as much prior knowl-
edge as possible during the modeling process, it is not always easy to do it. If we
know, for example, that a system is stable, it is not simple to express this information
if the polynomial coefficients are used as parameters.

s Linear models versus nonlinear models

In real life, almost every system is nonlinear. Because the theory of nonlinear sys-
tems is very involved, these are mostly approximated by linear models, assuming
that in the operation region the behavior can be linearized. This kind of approxima-
tion makes it possible to use simple models without jeopardizing properties that are
of importance to the modeler. This choice depends strongly on the intended use of
the model. For example, a nonlinear model is needed to describe the distortion of an
amplifier, but a linear model will be sufficient to represent its transfer characteristics
if the linear behavior is dominant and is the only interest.

m Linear-in-the-parameters versus nonlinear-in-the-parameters
A model is called linear-in-the-parameters if there exists a linear relation between
these parameters and the error that is minimized. This does not imply that the system
itself is linear. For example, € = y — (a,u + a,u?) is linear in the parameters a, and
a, but describes a nonlinear system. On the other hand,

ao+a1j(!)

) = Y(j0) - g EoU (o)
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describes a linear system but the model is nonlinear in the b, and b, parameters.
Linearity in the parameters is a very important aspect of models because it has a
strong impact on the complexity of the estimators if a (weighted) least squares cost
function is used. In that case, the problem can be solved analytically for models that
are linear in the parameters so that an iterative optimization problem is avoided. This
is illustrated in Section 1.5.1.

1.4.3 Match the Selected Model Structure
to the Measurements

Once a model structure is chosen (e.g., a parametric transfer function model), it should
be matched as well as possible with the available information about the system. Mostly, this
is done by minimizing a criterion that measures a goodness of the fit. The choice of this crite-
rion is extremely important because it determines the stochastic properties of the final estima-
tor. As seen from the resistance example, many choices are possible and each of them can
lead to a different estimator with its own properties. Usually, the cost function defines a dis-
tance between the experimental data and the model. The cost function can be chosen on an ad
hoc basis using intuitive insight, but there also exists a more systematic approach based on
stochastic arguments as explained in Section 1.5. Simple tests on the cost function exist (nec-
essary conditions) to check even before deriving the estimator whether it can be consistent
(see Chapter 7, Section 7.5).

1.4.4 Validate the Selected Model

Finally, the validity of the selected model should be tested: does this model describe the
available data properly or are there still indications that some of the data are not well mod-
eled, indicating remaining model errors? In practice, the best model (= the smallest errors) is
not always preferred. Often a simpler model that describes the system within user-specified
error bounds is preferred. Tools will be provided that guide the user through this process by
separating the remaining errors into different classes, for example, unmodeled linear dynam-
ics and nonlinear distortions. From this information, further improvements of the model can
be proposed, if necessary.

During the validation tests it is always important to keep the application in mind. The
model should be tested under the same conditions as it will be used later. Extrapolation
should be avoided as much as possible. The application also determines what properties are
critical.

1.4.5 Conclusion

This brief overview of the identification process shows that it is a complex task with a
number of interacting choices. It is important to pay attention to all aspects of this procedure,
from the experiment design to the model validation, in order to get the best results. The reader
should be aware that besides this list of actions other aspects are also important. A short in-
spection of the measurement setup can reveal important shortcomings that can jeopardize a
lot of information. Good understanding of the intended applications helps to set up good ex-
periments, and is very important to make the proper simplifications during the model-build-
ing process. Many times, choices are made that are not based on complicated theories but are
dictated by the practical circumstances. In these cases a good theoretical understanding of the
applied methods will help the user to be aware of the sensitive aspects of his techniques. This
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will enable him to put all his effort on the most critical decisions. Moreover, he will become
aware of the weak points of the final model.

1.5 A STATISTICAL APPROACH
TO THE ESTIMATION PROBLEM

In the previous sections it was shown that an intuitive approach to a parameter estimation
problem can cause serious errors without even being noticed. To avoid severe mistakes, a the-
oretical framework is needed. Here a statistical development of the parameter estimation the-
ory is made. Four related estimators are studied: the least squares (LS) estimator, weighted
least squares (WLS) estimator, maximum likelihood (ML) estimator, and, finally, the Bayes
estimator. It should be clear that, as mentioned before, it is still possible to use other estima-
tors, such as the least absolute values. However, a comprehensive overview of all possible
techniques is beyond the scope of this book.

To use the Bayes estimator, the a priori probability density function (pdf) of the un-
known parameters and the pdf of the noise on the measurements are required. Although it
seems, at first, quite strange that the parameters have a pdf, we will illustrate in the next sec-
tion that we use this concept regularly in daily life. The ML estimator requires only knowl-
edge of the pdf of the noise on the measurements, and the WLS estimator can be applied op-
timally if the covariance matrix of the noise is known. Even if this information is lacking, the
LS method is usable. Each of these estimators will be explained in more detail and illustrated
in the following sections.

1.5.1 Least Squares Estimation

One of the simplest estimation techniques is the least squares estimator. In this case, the
match between the model and the measurements is quantified by a least squares cost function.
As this is an arbitrary choice, initially, it is clear that the result is not necessarily optimal. By
choosing other cost functions such as the sum of the least absolute values, it is possible to
find other estimators, with different properties, that perform better in specific situations.
Some of these are studied explicitly in the literature. In this book we concentrate on least
squares, a choice strongly motivated by numerical aspects: minimizing a least squares cost
function is usually less involved than the alternative cost functions. Later on, this choice will
also be shown to be motivated from the stochastic point of view. Normally distributed noise
leads, naturally, to least squares estimation. As seen in the resistance example, even within
the class of least squares estimators, there are different possibilities resulting in completely
different estimators. A full treatment of the problem is beyond the scope of this book, hence,
we focus only on the aspects that are of direct importance to our major goal.

Consider a multiple input, single output system modeled by yo(k) = g(uy(k), 6,) with
k the measurement index, y(k) € R, uy(k) € R'*"«, and 6, € R" the true parameter vector.
The aim is to estimate the parameters from noisy observations at the output of the system:
y(k) = yolk) + n (k). This is done by minimizing the sum of the squared errors
ek, 8) = y(k)— y(k, 8), with y(k, 6) the modeled output:

Bas(N) = arg minVy5(6, ), with Vies(8, N) = 3 €%k, 0) (1-32)

In general, the analytical solution of the nonlinear least squares problem (1-32) is not known,
so numerical methods must be used. A whole bunch of techniques are described in the litera-
ture (Fletcher, 1991), and many of them are available in mathematical packages that are com-
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mercially available. They vary from very simple techniques such as simplex methods that
require no derivatives at all, through gradient or steepest descent methods (based on first-
order derivatives), to Newton methods that make use of second-order derivatives. The optimal
choice strongly depends on the specific problem. However, the Gauss-Newton method is very
well suited to deal with the least squares minimization problem because it makes explicit use
of the structure of the cost function. The second derivatives of the cost function (the Hessian
matrix) are approximated in this method by the first-order derivatives of e(6). Define the Ja-
cobian matrix J(8) € R"*"6: J(8) = 9e(8)/98 and consider the Hessian matrix:

9%g(uk), 6)

PVusON) _ ;10 J(g)_%, " ek, oL (1-33)

06?

If the second term in Eq. (1-33) is small (for example, [le(8)||, is “small”) with respect to the
first one, then J7(8)J(0) will be a good approximation for the second-order derivatives of the
cost function. The numerical solution is then found by applying the following iterative pro-
CEss:

ivD = g0+ ABIHD with JT(OD)J(BD)AGD = — JT(BD)e(69) (1-34)

Equation (1-34) reveals two important advantages. First, only the gradient needs to be calcu-
lated, and not the Hessian, thus reducing the calculation time. Moreover, very often, the con-
dition number of the Hessian matrix is the square of that of the Jacobian. This leads us to the
second advantage: using, for example, singular value decomposition (SVD) or QR decompo-
sition techniques, Eq. (1-34) can be solved without forming the product J7(689)J(6?) so that
more complex problems can be solved, because the numerical errors are significantly reduced
(§ee Exercise 1.11). If (1-34) converges to the global minimum of (1-32), then
Bns(N) = 6,

Because there are no explicit expressions available for the estimator as a function of the
measurements, it is not straightforward to study its properties. For this reason, special theo-
ries are developed to analyze the properties of the estimator by analyzing the cost function.
These techniques are covered in detail in Section 17.4 . Under quite general assumptions on
the noise (for example, iid noise with finite second- and fourth-order moments), some regu-
larity conditions on the model g(uy(k), 8), and the excitation (choice of uy(k) ), consistency
of the least squares estimator is proved. Also, an approximate expression for the covariance
matrix Cov(By.s(N)) is available:

Cov(Buis(N)) = (JT(B)J(6)) ' IT(B)Cov(n,)J(O)(JT(O)T(6)) | (1-35)

0= B 5(N)

with Cov(n,) = & {n,n7} . Note that this approximation is still a stochastic variable because
it depends on Bnus(N) , while the exact expression should be in 6, . If the model is linear-in-
the-parameters, y, = K(u,)0,, and e(8) = y - K(u,)0), then (1-32) reduces to a linear least
squares cost function, and explicit expressions are available for the estimator (note that
K = —0e(6)/00 = -J(0) is parameter independent in this case). In order to keep the ex-
pressions compact, we do not include the arguments of K in the following.

s(N) = (KTK)'KTy (1-36)
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The covariance matrix still equals (1-35) with J (9LS(N })) replaced by —K, but now it is an ex-
act expression and no longer an approximation. Moreover, it is possible to prove that the esti-
mator is unbiased for zero mean noise:

8 (BN} = (KTK)'K"8{y) = (K'K)"'K"y, = (K'K)'K'K6, = 6,  (1-37)

This result is valid only if X is not disturbed by noise. If the inputs » are also disturbed by
noise, it is no longer possible to bring (K7K) ' KT outside the expectation. In this case, addi-
tional quadratic noise contributions appear in K"K so that B.s(N) underestimates the true
values. This was visible in the estimation of the resistance (K, = i(k), y(k) = u(k),
0 = R) where Eq. (1-8) shows the impact of the quadratic contributions of the input noise.

Example 1.7 (Weighing a Loaf of Bread): John is asked to estimate the weight of a
loaf of bread from N noisy measurements y(k) = 6+ n (k) with 6, the true but unknown
weight, y(k) the weight measurement, and n,(k) the measurement noise. From a prior analy-
sis, making repeated measurements, it turns out that n,(k) is zero mean iid with variance G2.
The model becomes y = K8+n, with K = (1, 1, ..., 1)7. Using (1-36), the estimate is

BV = (KTK) KTy = £ 5®) (1-38)
with variance

var(@us(N)) = (KTK)'K™(c3y)K(K'K)" = 63/N (1-39)

This example shows that it is much easier to get the solution when it is possible to formulate
the problem under the standard conditions. |

This short analysis shows that the least squares estimator is applicable to a very wide
range of problems. No prior information is required to use it, which explains its success.
However, its specific properties depend on the actual situation. General statements can be
made only if some noise characteristics are known. In that case it is also possible to improve
the quality of the estimates by using this knowledge in the estimator. If, for example, the co-
variance matrix of the noise is known, a weighted least squares can be used.

1.5.2 Weighted Least Squares Estimation

In Eq. (1-32) all measurements are equally weighted. In many problems it is desirable
to put more emphasis on one measurement with respect to the other. This can be done to
make the difference between measurements and model smaller in some regions, but it can
also be motivated by stochastic arguments. If the covariance matrix of the noise is known,
then it seems logical to suppress measurements with high uncertainty and to emphasize those
with low uncertainty. In practice, it is not always clear what weighting should be used. If it is,
for example, known that model errors are present, then the user may prefer to put in a dedi-
cated weighting in order to keep the model errors small in some specific operation regions in-
stead of using the weighting dictated by the covariance matrix.
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In general, the weighted nonlinear least squares estimate éWNLS(N ) is
@WNLS(N) = arg nzinVWNLS(e, N) with Vg 5(6, N) = eT(B)We(6) (1-40)

where W e RY*¥ is a symmetric positive definite weighting matrix (the asymmetric part
does not contribute to a quadratic form). The evaluation of this cost function requires O(N?)
operations, which are very time consuming. Consequently, (block) diagonal weighting matri-
ces are preferred in many problems, reducing the number of operations to O(N). All the re-
marks on the numerical aspects of the least squares estimator are also valid for the weighted
least squares. This can be understood easily by applying the following transformation:
&0) = Se(0) with STS = W so that Vyys(8, N) = €7(0)&(8), which is a least squares es-
timator in the transformed variables. This also leads to the following Gauss-Newton algo-
rithm to minimize the cost function

6¢+D = G0t AGU+D with JT(@)WI(BNABI+D = — JT(GD)YWe(8D) (1-41)
Equation (1-35) is generalized to (noticing that W7 = W)

Cov(Bunis(N)) = (JIOWI()) ' T(O)WC, WI(O)(J(O)WJ(6)) | . (1-42)

0= Bynis)

with C,,y = Cov(n,). By choosing W = C;y‘ , the expression simplifies to
Cov(Bunis(V)) = [J7(Bunis(N)) C; I GunsV)] ™ (1-43)

In Exercise 1.15 it is shown that among all possible positive definite choices for W, the best
one is W = C;! because this minimizes the covariance matrix. The results for models that
are linear-in-they-parameters are immediately found, analogous to the least squares estimator.
Also, in this case, the weighted least squares is unbiased under the same conditions as the
least squares estimator.

1.5.3 The Maximum Likelihood Estimator

Using the covariance matrix of the noise as the weighting matrix allows prior knowl-
edge about the noise on the measurements. However, a full stochastic characterization re-
quires the pdf of the noise distortions. If this knowledge is available, it may be possible to get
better results than those attained with a weighted least squares. Maximum likelihood estima-
tion offers a theoretical framework to incorporate the knowledge about the distribution in the
estimator. The pdf f ", of the noise also determines the conditional pdf f(y|8,) of the mea-
surements, given the hypothetical exact model, y, = G(uy, 6,), that describes the system and
the inputs that excite the system. Assuming, again, an additive noise model y = y, + n,,
with y, o, n, € R¥, the likelihood function becomes:

JO160, ue) = fr (v — Gluo, 6,)) (1-44)

The maximum likelihood procedure consists of two steps. First the numerical values y,, of
the actual measurements are plugged into expression (1-44) for the variables y, and next the
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model parameters 6, are considered as the free variables. This results in the so-called likeli-
hood function. The maximum likelihood estimate is then found as the maximizer of the like-
lihood function

BuL(N) = arg max f(y| 6, o) (1-45)

From now on, we will no longer explicitly indicate the numerical values y,, but just use the
symbol y for the measured values.

Example 1.8 (Weighing a Loaf of Bread—Continued): Consider Example 1.7
again, but assume that more information about the noise is available. This time John knows
that the distribution f, of n, is normal with zero mean and standard deviation &,. With this
information he can build an ML estimator:

=02

fo18) = e (1-46)

and the estimated weight becomes Owvi. = y. It is therefore not possible to give a better esti-
mate than the measured value itself. If John makes repeated independent measurements
y(1), ..., y(N), the likelihood function is

1 - e e 0067
y

GraT (1-47)

f&|0) =

The ML estimate is given by the minimizer of 2%52217 =, (¥(k) - 8)? ((2rc2)™? is parame-
ter independent) and becomes 4

BuV) = L34 0 (1-48)

This is nothing other than the sample mean of the measurements. It is again easy to check that
this estimate is unbiased. Note that in this case the ML estimator and the (weighted) least
squares estimator are the same. This is the case only for normally distributed errors. 0

. The unbiased behavior may not be generalized because the MLE can also be biased. For
example, the sample mean and sample variance are shown to be the ML estimates for the mean
and the variance of measurements that are identically independent and normally distributed:

A 1 A 1 A . . .
fo = Nzk’vz k), 6% = NZZ’ _, (y(k) = s )?. Although the first estimate is unbiased,

the second one can be shown to be prone to a bias of 62/N that asymptotically disappears in
N:8{6w.} = 6*(N-1)/N. This shows that there is a clear need to understand the prop-
erties of the ML estimator better. In the literature, a series of important properties is tabled as-
suming well-defined experimental conditions. Each time these conditions are met, the user
knows in advance, before passing through the complete development process, what the prop-
erties of the estimator would be. On the other hand, if the conditions are not met, nothing is
guaranteed anymore and a dedicated analysis is, again, required. In this introductionary
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chapter we just make a loose statement of the properties; a very precise description can be
found in the literature (Goodwin and Payne, 1977; Caines, 1988).

Properties of the ML Estimator

m Principle of invariance: if 9ML is an ML estimator of 8¢ R", then @g = g(@ML) is
an ML estimator of g(8) where g is a function, 6, € R" and n, < n,, with n, a fi-
nite number.

n Consistency: if Oy (N) is an ML estimator based on N iid random variables, with

ng independent of N, then Bwi(N) converges to 6, almost surely:
a}vsf)io{néML(N) = 6.
If n, depends on N, the property is no longer valid, and the consistency should be
checked again. See, for example, the errors-in-variables estimator in the previous
section where not only is the resistance value estimated, but also the currents
i(1), ..., i(N) and voltages u(1), ..., u(N) (Inthis case ny = N+1, e.g.,the N cur-
rent values and the unknown resistance value, and the voltage is calculated from the
estimated current and resistance value).

u Asymptotic normality: if Gy (N) is an ML estimator based on N iid random vari-
ables, with n, independent of N, then Au(N) converges in law to a normal random
variable.

The importance of this property is that it not only allows one to calculate uncertainty
bounds on the estimates but also guarantees that most of the probability mass gets
more and more unimodally concentrated around its limiting value.

m Asymptotic efficiency. if Ovu(N) is an ML estiAmator based on N iid random vari-
ables, with n, independent of N, then 6w.(N) is asymptotically efficient
(Cov(BuL(N)) reaches asymptotically the Cramér-Rao lower bound).

1.5.4 The Bayes Estimator

As described before, the Bayes estimator requires the most prior information before it
is applicable, namely the pdf of the noise on the measurements and the pdf of the unknown
parameters. The kernel of the Bayes estimator is the conditional pdf of the unknown parame-
ters 6 with respect to the measurements y: f(8|u, y). This pdf contains complete informa-
tion about the parameters 6, given a set of measurements y. This makes it possible for the
experimenter to determine the best estimate of 8 for the given situation. To select this best
value, it is necessary to lay down an objective criterion, for example, the minimization of a
risk function C(8)8,) that describes the cost of selecting the parameters 8 if 8, are the true
but unknown parameters. The estimated parameters & are found as the minimizers of the risk
function weighted with the probability f(8|u, y):

) = argmin [ C(8]60 (6|4, )0 (1-49)

0 fe &

For some specific choices of C(8|6,), the solution of expression (1-49) is well known; for
example, C(0]6,) = |@- 6| leads to the mean value, and C(6]6,) = |6— 6| results in the
median, which is less sensitive to outliers because these contribute less to the second criterion
than to the first (Eykhoff, 1974).
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Another objective criterion is to choose the estimate as
Bouyes(N) = arg max £(6|u, ) (1-50)

The first and second examples are “minimum risk” estimators, and the last is the Bayes esti-
mator. In practice, it is very difficult to select the best out of these. In the next section, we
study the Bayes estimator in more detail. To search for the maximizer of (1-50) the Bayes
rule is applied:

f(r|6, w) f(6)

1-
fO) (1-51)

f(Blu,y) =

In order to maximize the right-hand side of this equation it is sufficient to maximize its nu-
merator, because the denominator is independent of the parameters &, so that the solution is
given by looking for the maximum of f(y|8, 1) f(6). This simple analysis shows that a lot of
a priori information is required to use the Bayes estimator: f(y|6, u) (also appearing in the
ML estimator) and f(6). In many problems the parameter distribution f(8) is unavailable,
and this is one of the main reasons why the Bayes estimator is rarely used in practice (Norton,
1986).

Example 1.9 (Use of the Bayes Estimator in Daily Life): We commonly use some
important principles of the Bayes estimator without being aware of it. This is illustrated in
the following story: Joan was walking at night in Belgium and suddenly saw a large ani-
mal in the far distance. She decided that it was either a horse or an elephant
Prob(observationlelephant) = Prob(observationlhorse). However, the probability of seeing
an elephant in Belgium is much lower than that of sceing a horse:
Prob(elephant in Belgium) « Prob(horse in Belgium) so that from the Bayes principle Joan
concludes she was seeing a horse. If she was on safari in Kenya instead of Belgium, the
conclusion would be opposite, because Prob(elephant in Kenya) » Prob(horse in Kenya).

Joan continued her walk. When she came closer she saw that the animal had big feet, a
small tail, and also a long trunk so that she had to review her previous conclusion on the basis
of all this additional information: there was an elephant walking on the street. When she
passed the corner, she saw that a circus had arrived in town. a

From the previous example it is clear that in a Bayes estimator the prior knowledge of
the pdf of the estimated parameters is very important. It also illustrates that it balances our
prior knowledge with the measurement information. This is more quantitatively illustrated in
the next example.

Example 1.10 (Weighing a Loaf of Bread—Continued): Consider again Example
1.8 but assume this time that the baker told John that the bread normally weighs about
w = 800 g. However, the weight can vary around this mean value as a result of humidity, the
temperature of the oven, and so on, in a normal way with a standard deviation &,,. With all
this information, John knows enough to build a Bayes estimator. Using normal distributions
and noticing that f(y|6) = f,(n,) = f,(y— 6), the Bayes estimator is found by maximizing



Section 1.5 B A Statistical Approach to the Estimation Problem 27

_-8? _B-w?
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J2no? J2m02

fO10)f0) =

and the estimated weight becomes

y/ 02+ w/G}

O = /77 1/0:

(1-53)

In this result, two parts can be distinguished: y, the information derived from the measure-
ment, and w, the a priori information from the baker. If the quality of the prior information is
high compared with that of the measurements (6, « G,), the estimate is determined mainly
by the prior information. If the quality of the prior information is very low compared with the
measurements (0,, » 6, ), the estimate is determined mainly by the information from the mea-
surements.

After making several independent measurements y(1), ..., y(N) the Bayes estimator
becomes

N
" Zk= yky/ 6l +w/06}
ayes = 1-54
OprecN) N/c62+1/062 (1-54)

The previous conclusions remain valid. However, when the number of measurements
increases, the first term dominates the second one such that the impact of the prior
information is reduced (Sorenson, 1980). Finally, when N becomes infinite, the estimate is
completely determined by the measurements. O

Conclusion. From these examples it is seen that a Bayes estimator combines prior
knowledge of the parameters with information from measurements. When the number of
measurements is increased, the measurement information becomes more important and the
influence of the prior information decreases. If there is no information about the distribution
of the parameters, the Bayes estimator reduces to the ML estimator. If the noise is normally
distributed, the ML estimator reduces to the weighted least squares. If the noise is white, the
weighted least squares boils down to the least squares estimator.

1.5.5 Instrumental Variables

In this section we will discuss a final parameter estimation method that is very suitable
when both the input and the output are disturbed by noise. Although it does not belong di-
rectly to the previous family of estimators, we include it in this chapter for use later, to inter-
pret one of the proposed identification schemes. In the resistance estimation examples, it was
shown that the least squares method RLS(N) is biased because of the quadratic noise contri-
butions appearing in the denominator:

1 .
7 2t -1 UK . .
N with lim Ris(V) =

R = =7 N Rotvoi7
N2k=1’(k)

(1-55)
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This systematic error can be removed by replacing i(k) in the numerator and denominator by
i(k — 1) so that the new estimate becomes:

1 .

X ﬁﬂ”:  u(kyitk — 1)

RvN) = 5 (1-56)
NZQL  ik)itk— 1)

Making the same analysis as in Section 1.2.2.1, it is seen that all quadratic noise contributions
are eliminated by this choice, so that

gim Rwv(N) = R, (1-57)

The idea used to generate (1-56) can be generalized as follows. Consider the linear-in-the-
parameters model structure y, = K(u,)8, in Section 1.5.1, and replace K7 in Eq. (1-36) by
GT7, to get

Bv(N) = (GTKw))'G™y (1-58)

The choice of G, a matrix of the same size as K(x), will be defined later. 8v(N) is the in-
strtumental variables estimate. Consistency is proved by considering the plim for N —
(Norton, 1986). For simplicity, we assume all the plim exists, namely

plim By = plim {(GTK (1)) Gy}
= (plim { G"K(uy + n,)})'( plim{GTy,+ G"n,})
= (plim {GTK(uy + n,)/N})" (plim { G™K(u0)/ N} 6, + phim {GTn,/N})

plim {G'K(uy+n,)/N} = plim {G"K(up)/N} and plim {G'n,/N} =0 (1-59)

then

plimBv(N) = 6, (1-60)

N>

Equation (1-59) defines the necessary conditions for G to get a consistent estimate. Loosely
stated, G should not be correlated with the noise on K(u, + n,) and the output noise n,. The
variables used for building the entries of G are called the instrumental variables.

If the covariance for C,,y = o?%l,, then an approximate expression for the covariance
matrix of the estimates is (Norton, 1986):

Cov(B(N)) = 62Rzx RooRk with Rgx = GTK(u)/N and Rgg = GTG/N  (1-61)

This reveals another condition on the choice of the instrumental variables G: although they
should be “uncorrelated” with the noise on the output observation n,, they should be corre-
lated maximally with K, otherwise R, tends to zero and Cov(8v(N)) would become very
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large. In the case of the resistance estimate, the instrumental variables are the shifted input.
Because we used a constant current, no problem arises. In practice, this technique can be gen-
eralized to varying inputs under the condition that the power spectrum of the noise is much
wider than the power spectrum of the input. In the following Exercises the instrumental vari-
ables method is applied to the resistance example.

11,

1.2

13.

14.

1.5,

1.6.

17

«

1.8.

1.9.

1.6 EXERCISES

Set up a simulation to measure the value of the resistance using
i(k) = io+ n(k) utk) = uo+ nk) (1-62)

Use for n; and n, zero mean iid noise with standard deviation ¢; and &,. Consider
uniformly and normally distributed noise and use i, = 1 A, u, = 1V, 6; = 0.5(1) A,
and 6, = 0.5(1) V. Plot R(k) = u(k)/i(k) for k = 1, ..., 100.

Apply the estimators Ris, REV, R, from Eqs. (1-1) to (1-3) to the results of the simulator
in Exercise 1.1 and plot the results as a number of the processed measurements N.
Measure the histogram for the three estimators of Exercise 1.2 for N = 10, 100, 1000
and plot the approximated pdf.

Use the simulator of Exercise 1.1 to estimate the variance of the three estimators of Exer-
cise 1.2 as a function of N and plot the results on a log-log scale. Check the 14N rule of
thumb. Vary N between 1 and 10,000.

Derive the variance expressions var(Ris(NV)), var(Rev(V)), var(Rsa(N)) under Assump-
tion 1.1 using linear approximations as illustrated in Egs. (1-16) and (1-17).

Use the simulator of Exercise 1.1 to estimate the variance of the three estimators of Exer-
cise 1.2 for N = 100 as a function of the SNR of the current and the voltage measure-
ments. Compare the results with the theoretical level (see Egs. 1-17 and 1-18) and discuss
the results.

Derive the estimators Ris(N), Rev(N), and Rg,(N) by minimizing the cost functions
(1-20), (1-21), and (1-22).

Reformulate the cost functions (1-20), (1-21), and (1-22) for the case that the current is
varying from measurement to measurement (the current is no longer a DC source), and
derive the new expressions of the estimators.

Consider a signal
Yolk) = sin(2nfkT, + @) (1-63)
and its measurement
yk) = yolk) + k) for k = 1, ..., 1024 (1-64)

where n,(k) is iid normally distributed noise with zero mean and variance 7. Calculate
the Cramér-Rao for the estimates (f, ¢). What is the best choice for T, if we want to
estimate the frequency with minimum variance?

1.10. Consider a polynomial model:

k) = X5 apu) (1-65)
that is identified from a set of measurements wk) = yok) +nk), with
u(k) = [-N:N]/N and n(k) zero mean iid distributed noise with variance 2. Set up
the least squares estimator for this problem, and observe the condition number for
growing values of P (put N = 1000 ). What is the maximum order that can be reliably
identified?
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Consider the least squares solution Bs(N) = (JTJ)'JTy of the overdetermined set
J@ = y (as they appear in Eq. 1-36). Show that this solution can be calculated using the
SVD method of Section 13.5 on matrix algebra without forming the product J’J as
Bs(N) = J*y, with J* = VEUT.

1.12. Apply the method of Exercise 1.11 to the polynomial problem of Exercise 1.10, and find

1.13.

the maximum order that can be identified reliably.

The polynomial identification problem is an ill-posed problem because of the poor numer-
ical conditioning of the normal equations. Using the SVD method, it is already possible to
solve higher order problems, but even then the numerical conditioning decreases fast. A
much better solution is to change the model representation and to use orthogonal polyno-
mials 7 ,(x) such that

yo#) = X0 k) = 31,7 (ulk) (1-66)
where T, (u) = ) 7_ a,u* is a polynomial of degree p . The coefficients a,, are sets.t.

f _ T (k)T (u(k)) = 3,,. Note that the actual form of T ,(u) (the choice of a,)
depends on the set of input values u(k) that appears in the problem. Reformulate the
polynomial identification problem using the orthogonal basis and discuss the condition
number of the new estimator.

Remarks:

1.14.

1.15.

1.16.

1.17.

1.18.

For the given set of input values, the orthogonal polynomials T ,(u) are given by the
following recurrence relation (Ralston and Rabinowitz, 1984):

1 = 2raw-Bor,
&:Tj+l(u) - ajTj(u) aj_lT]_l(u)
B, = FIRN+1)° - j?] o = 2N

’ 442-1) TNy

(1-67)

with To(w) = 1 and T_y(u) = O for j = 0,1, ....

When using orthogonal polynomials the reader should take care not to use the explicit
polynomial expressions, but only the values of the orthogonal polynomials. Otherwise the
numerical stability is not guaranteed. As a result, it is also not possible to calculate the
coefficients a, of the original solution; only the value of the solution can be calculated
(see Ralston and Rabinowitz, 1984).

Prove expression (1-42) for the covariance matrix of a weighted least squares for models
that are linear-in-the-parameters.

Show that the covariance matrix of the weighted least squares estimator becomes minimal
for W = C,' (hint: use the Schwarz inequality B"B2(B"A)(ATA)'(ATB), see
Eykhoff, 1974, p. 525, and put C;l=C'C, B=CJ,and A = CTWJ).

Consider the linear-in-the-parameters model y, = K(u)8, and calculate the variance of
the modeled output $ = K(u,)8 starting from the covariance matrix C, given in (1-43).

Show that the variance on the output of the polynomial model in Exercise 1.10 is indepen-
dent of the model representation y,(k) = Z: _18,u7(k) or yok) = Z: 1 5T (k).
Check this by a simulation using the estimators of Exercises 1.10 and 1.13 for a polyno-
mial of degree 5 (so that the numerical conditioning of the problem remains acceptable

for the direct estimation).

Consider the system y, = au. Construct the least squares and the weighted least squares
estimator for a starting from the measurements y(k) = au(k)+n, (k) with
&{n(k)} = 0 and o7 (k) = u(k). Compare the bias and the variance of both estimators
for u(k) = 1,2, ..., 10. Verify your results by means of a simulation.



Section 1.6 M Exercises 31

1.19, Construct Ryy(N) for the resistance example of Section 1.2.1 using Eq. (1-58). Use the
time-shifted current as an instrumental variable. Study the behavior of the estimator
(mean value and variance) as a function of the shift by means of a simulation.

1.20. Study the behavior of Rw(N) (mean value and variance) of the previous exercise for the

situation where iy(k) is generated as low-pass filtered noise (bandwidth of the filter at
fs/50) as a function of the applied delay by means of a simulation.



Measurements
of Frequency
Response Functions

Abstract: Frequency response function (FRF) measurements are an interesting intermediate
step in the identification process. The complexity of the modeling problem is visualized be-
fore starting the parametric modeling; the quality of the measurements is assessed in an early
phase. In this chapter a number of basic and advanced FRF measurement methods are dis-
cussed. An analysis of the bias and efficiency of the FRF measurements is made, and their de-
pendence on the experimental conditions and on the excitation signal is analyzed. Simple and
more advanced averaging techniques are proposed to improve the quality of the FRF mea-
surement. Guidelines given at the critical steps of the FRF measurement process enable the
less experienced user to start modeling from good raw data.

2.1 INTRODUCTION

Consider the linear dynamic system G(j®) between the input u(f) and the output y(f) as
shown in Figure 2-1. The aim of this book is to build a parametric model for this system,
identifying, for example, a transfer function G(j®, 6). Such a model is called a parametric
because it employs a finite-dimensional parameter vector. Parametric modeling requires a se-
ries of user decisions (e.g., selection of the order of numerator and denominator of G(s)),
thus it is strongly advised to get a good initial idea about the system under test. Step or im-
pulse response measurements provide this information. Also, frequency response function
(FRF) measurements are very valuable. An FRF consists of transfer function measurements
G(jw,) at a discrete set frequencies ®,, k = 1, ..., F. All these models are called nonpara-
metric because the information is not condensed into a small set of parameters. In this chapter
we focus, exclusively, on FRF measurements. A series of basic questions is addressed:

m How are the bias and efficiency of the FRF measurements influenced by the experi-
mental conditions?

How should the excitation signal be chosen?

Can we improve the quality of the FRF using averaging methods?

Can we quantify the quality of the FRF measurements?

System Identification: A Frequency Domain Approach. Rik Pintelon and Johan Schoukens
Copyright O 2001 Institute of Electrical and Electronics Engineers. ISBN: 0-780-36000-1 3
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m What is the impact of nonlinear distortions on the measured FRF and how can we
detect their existence?

u(t) 3
I 0]
G(jo)

Figure 2-1. Block diagram of the system.

All these aspects are discussed here or in the next chapter for the last question. Starting from
a straightforward solution, the more advanced techniques are introduced step by step, show-
ing each time what additional problems are addressed by these more advanced techniques. As
FRF measurement techniques rely heavily on the transformation of sampled signals from the
time to the frequency domain, we will spend some time on the most important aspects of the
discrete Fourier transform.

2.2 AN INTRODUCTION TO THE DISCRETE
FOURIER TRANSFORM '

In most situations, real-life systems are naturally continuous in time. However, most signal
processing is now done on digital computers that operate on discrete-time signals. In practice
the continuous-time signals are discretized (sampled) and quantized (digitized) so that the
signal can finally be stored in the memory of a digital computer. Next, the spectrum of these
signals is needed in order to calculate the FRF of the system. This is done using the discrete
Fourier transform (DFT), usually calculated with the fast Fourier transform (FFT) algorithm.
Each of these steps creates errors, and it is important for a user to understand their behavior to
minimize the impact of the errors on his results. In this section only a brief introduction is
given. For an extended overview, the reader is referred to Brigham’s (1974) book. First we
discuss, briefly, the sampling process, next we show how to “measure” the Fourier spectrum
of a signal, and finally we focus on the spectral properties of periodic excitations and how to
exploit them to minimize the measurement errors.

2.2.1 The Sampling Process
The continuous-time signal is sampled at an equidistant time grid and is represented by
the equivalent discrete-time sequence uq(n) = u(nT). In the time domain, the sampling

process can be formulated as a multiplication with a periodically repeated Dirac impulse
(Brigham, 1974):

ug(t) = u(t)STs(t) with 87 (1) = 2:= _O(t-nTy 2-1)

Note that in this framework the discrete-time signal u4(n) is formally represented by a con-
tinuous-time signal uy(f) that carries all its power at the discrete-time instances nT,. Define
the spectrum of the discrete-time signal as

U™y = 2:= N ug(n)e /2T (2-2)
Then the following relation exists:

Uy = Ugj2nf) = F{a 0} = [7 ige>Vids (2-3)
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The spectrum U d(ej T4 is linked to U(jo) by noticing that a multiplication in the time do-
main, u(t)6T (t), corresponds to the convolution of the spectra in the frequency domain,
U(JZRf)*(fSSf (), with f3,(f) the spectrum of &7(#), and 8, (f) a periodically re-
peated Dirac 1mpu1se with penod fo=1/T,

8(f) = 2”8 ~kf) 2-4)

Using (2-4), we get

ULV = UGRA*(£,8,(N) = =307 UG2R(f ~kf,) 2-5)
s Ts

k = —c0

The convolution of the spectra is illustrated in Figure 2-2. It shows that the sampling process
results in a repeated spectrum in the frequency domain with period f. If the bandwidth fy
of the sampled signal is larger than half the sampling frequency, the shifted spectra overlap
and information is lost. Therefore, it is important to restrict the bandwidth below half the
sampling frequency fg < f./2 in order to avoid errors. This error is called the aliasing error
and the condition on the sample frequency is known as Shannon’s sampling theorem. In prac-
tice, it is often necessary to put antialias filters to eliminate the high-frequency spectral con-
tent of the signal.

2.2.2 The Discrete Fourier Transform (DFT-FFT)
Three basic steps have to be taken to measure the spectrum of a continuous-time signal:

s Discretization in time: sample the continuous-time signal at an equidistant time grid.

s Restrict the length of the data record: our computers can deal with only a finite num-
ber of data. Thus, the length of the record is restricted to N samples, excluding the
rest. This is called windowing.

m Discretization in frequency: the finite length discrete-time signal still has a continu-
ous frequency spectrum. The value of this spectrum will be calculated only at an
equidistant set of frequencies.

The impact of all these steps is illustrated in more detail in the following, in a simple exam-
ple. The continuous-time signal u(f) = cos2mf,t, with f, = 55 Hz is sampled at
fs = 64 Hz during 1 second. From these measurements we will calculate the discrete
Fourier transform step by step.

l:‘a’i_;'ln_,f': I b t.rr

0 fg b

A Ui2mf)
0 fg fefp /s f

Figure 2-2. Impact of the time domain discretization (sampling) on the spectrum.
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Continuous-time signal Discrete-time signal
2 2 P Ca e

%0 0 1
1 -1
2 2 1
1 1 2 -1 g 1 2
Time (s) Time (s)
Spectrum
-10 -5 0 5 10
Frequency (Hz)

Figure 2-3. The time signal before and after sampling together with the spectrum in the
frequency band {-10 Hz, 10 Hz].

2.2.2.1 Discretization in Time. The sampling process has already been discussed in
the previous section. Figure 2-3 shows the signal together with its spectrum before and after
sampling. In order to keep enough detail in the figures shown, a zoom is made in the fre-
quency band [-10 Hz, 10 Hz]. The periodic repetitions of the spectrum of the discrete-time
sequence are not shown. Note that if no aliasing appears, the spectra of the continuous-time
and the discrete-time signal are equal to each other within a scale factor.

Mathematical operation:

time domain: gty = Y7 u@®d(—nT))

. (2-6)
frequency domain: Uge”™Ty = TN UG2R(f -kf))

k = —co

2.2.2.2 Windowing. The sampled signal still has an infinite length (]-oo, o[ ). Be-
cause the computer can process only a finite number of samples, we have to restrict the mea-
surement length. We consider only samples that appear in the measurement window:

w(t) =1if0<¢r<T and w() = 0 elsewhere 2-7)

This rectangular window, together with its spectrtum (the phase is omitted), is shown in
Figure 2-4. This window is called a rectangular window and its major characteristic is its
width 7. Its spectrum W(;j2xf) is a sinc-like signal, see Eq. (2-8), with zero crossings at the
multiples of 1/7. In this example 7 = 1 s. This window is multiplied with the sampled
signal to obtain a new signal that is different from zero in only a finite number of samples.

The spectra have to be convoluted in the frequency domain. Remembering that a con-
volution with a Dirac impulse is nothing other than a shift of the origin to the position of the
impulse, the result of Figure 2-5 is found. The broken lines in the spectra indicate the position
of the original frequency components. As can be seen, the restriction of the signal to a finite
interval in the time domain smears the power in the frequency domain over the neighboring
frequencies. This phenomenon is called leakage.
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0 , )
-1 [ 1 2 -10 -5 0 5 10
Time (s) Frequency (Hz)

Figure 2-4. Rectangular window and its spectrum (the phase is omitted).

Windowed signal Spectral convolution

2 -10 -5 0
Time (s} Frequency (Hz)

Spectrum of windowed signal

0
Frequency {Hz)

Figure 2-5. Spectrum of the sampled signal after applying a rectangular window.

Mathematical description:

time domain: w(uy(t)

; (2-8)
frequency domain; W(2nf)* U y(e’ mfTy)

with W(jw) = Te 7T 2sinc(wT/2) and sinc(x) = sin(x)/x.

2.2.2.3 Discretization in Frequency. As can be seen in Figure 2-5, the spectrum of
the sampled and windowed signal is still a continuous frequency signal. Because the spec-
trum can be calculated in only a finite number of frequencies, the frequencies considered
should also be restricted to a discrete grid. An equidistant grid with spacing 1/T is selected.
Hence, the spectrum is calculated only at the frequencies f;, = k/T Hz. This can be consid-
ered as frequency sampling or discretization in frequency. The resulting sampled spectrum
shown in Figure 2-6 is quite disappointing. Although the shape of the original spectrum
(Figure 2-3) can still be recognized, it seems that all detailed information about it has defi-
nitely been lost. The basic reason for this problem is that the original frequency (5.5 Hz) does
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-10 -5 0 5 10
Frequency (Hz) Figure 2-6. DFT result.

not correspond to one of the sampled frequencies in the DFT (multiples of 1/7 = 1 Hz).
This can also be seen in the time domain representation of the DFT result. Sampling in the
frequency domain at multiples of 1/7 is described as a multiplication with a Dirac train (see
Section 2.2.1) so that in the time domain a convolution should be made with a Dirac train
T3,(¢). This results in a periodic repetition with period T of the sampled and windowed sig-
nal as shown in Figure 2-7. However, T is not a multiple of the signal period, resulting in a
discontinuity that appears at the borders of the window as seen in Figure 2-7 (T = 1 sin this
case).

ir CE F Y E Y Y higure 27, Interpretation of the DFT result in
Time (s) the time domain.
Mathematical description:
time domain: (w(®uy())*(Td(1))
frequency domain:  (W(2R)* U2 79)8, ,1(f) 9

From (2-9) it follows that the relationship between the time domain samples u,(n) = u(nT)
(amplitudes of the Dirac impulses of the time domain signal in (2-9)) and the frequency domain
samples Uppp(k) (amplitudes of the Dirac impulses of the spectrum in (2-9)), is given by

Uprrk) = YN - ou(nT Je-2mk/N k= 0,1, ...,N -1 (2-10)

Equation (2-10) is called the discrete Fourier transform (DFT) of the samples u(nT,),
n=01..,N-1.

If an integer number of periods is measured, the DFT will give an exact copy of the dis-
crete spectrum of the periodic signal. This is illustrated in Figure 2-8 showing the spectra af-
ter windowing and after discretization for u(f) = cos2nfut, f, = 5Hz, T = 1s. This
time no leakage is observed. The basic reason for this remarkable difference is that the con-
tinuous-time spectrum equals zero at the frequencies where the spectrum is sampled because
the window length is an exact multiple of the period length. Also, the time domain interpreta-
tion in Figure 2-9 illustrates the result: this time the periodic repetition coincides with the pe-
riod of the signal (no discontinuities appear at the multiples of 7°).
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10 -5 0 5 10 -10 5 0 5 10
Frequency (Hz) Frequency (Hz)

Figure 2-8. DFT spectrum for a periodic signal when an integer number of periods is
measured.

At a glance, this seems to be a theoretical result without practical value. The probability
of getting an exact match between the signal and the window length is in general, indeed,
zero. However, in many FRF measurements, the user masters the generator and the acquisi-
tion. In these experimental setups both systems are driven by mother clocks that are synchro-
nized with each other. It is therefore possible for the user to create this ideal match, which
eliminates the leakage effect completely. We strongly advise realization of such a setup
whenever possible. If for some reason it is impossible to get synchronized measurements,
there exist other less attractive alternatives based on windows other than the rectangular win-
dow. An extended discussion of the window properties can be found in Harris (1978). In Sec-
tion 2.2.3 we will briefly touch on this topic.

2.2.2.4 The DFT Expressions. For the samples u(nT,), n =0,2,...,N-1, the
DFT relations between the time and frequency domain sequences are

—_— —3 1 _ . n
Uper®) = 3N unTye ™V and  unT) = A Upn®) G2/ N

(see (2-10)). In this book the scaling factor 1/N is symmetrically distributed over both trans-
forms using 14/N, and the notation U prr(k) will be replaced by U(k) in order not to over-
load the equations. This gives

1 - _j 1 _ > rkn
Uty = =3 ZouaT)e Y and iy = =3 UG e

The straightforward evaluation of Eq. (2-11) requires O(N?2) operations. However, if N is a
power of two, a very efficient implementation known as the FFT (fast Fourier transform) is
available: it calculates the transforms in O(Nlog,N) operations (Brigham, 1974). f N is not

Figure 2-9. Interpretation of the DFT result in
the time domain when an integer number of
periods is measured. Time (s)
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a power of two, there still exist fast implementations such as the chirp-z transform (Rabiner
and Gold, 1975). The FFT algorithm is available in many numerical packages.

2.2.3 DFT Properties of Periodic Signals

2.2.3.1 Integer Number of Periods Measured. Consider the periodic signal u(f) =

3 cos(2nkfor + ¢,) in Figure 2-10. Using the same sample frequency, this signal is

k =

0.1+

u()
o
R ——

——

Figure 2-10. Example of a periodic excitation

0.1 consisting of the sum of 15 sines with equal
T4 0 1 2 amplitude and frequencies kf,, &k =
Time (s) 1,2, ..,15.

measured over 1 period and over 10 periods. For both data records the DFT is calculated and
the first 150 lines of the DFT spectrum are plotted in Figure 2-11. In both cases an exact re-
covery of the signal spectrum is made because each time an integer number of periods is
measured. However, by measuring 10 times longer (10N data points), the spectral resolution
is increased from 1/7T = f /N to 1/(10T) = f,/(10N). Whereas in the former time the
spectral lines appear at harmonics £ = 1,2, ..., 15, they are placed in the latter time at
k = 10,20, ..., 150. The gaps between these spectral lines can be used later on to extract
noise information because the noise is nonperiodic and excites all spectral lines.

2.2.3.2 No Integer Number of Periods Measured. From Section 2.2.2 it is known
that leakage errors appear if no integer number of periods is measured. A sound solution for
this problem is to change the setup and measure an integer number. If this is impossible we
can try to minimize the impact of the leakage on the measurement. A classical technique is to
apply a window other than the rectangular one. A concise review of windows and their prop-
erties is given by Harris (1978). Here, we present only one of the possibilities: the Hanning or
cosine window

w(t) = 1 -cos2rt/T) if 0<¢t< T and w(t) = 0 clsewhere (2-12)
0 04
-20 -20
-40 -40
-60 -60
-80 ; . -80
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
DFT line DFT iine

Figure 2-11. DFT spectrum (amplitude in dB) of a periodic signal with 15 components.
On the left 1 period in the window, on the right 10 periods in the window.
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Figure 2-12. Comparison of the rectangular window with the Hanning window in the
time domain (left) and the frequency domain (right, amplitude spectrum in
dB).

The aim of all the alternative windows is to taper the signal at the beginning and at the end of
the window in order to decrease the discontinuities of the periodically reconstructed signal
because they are the basic source of the leakage errors. In Figure 2-12 the rectangular (2-7)
window and the Hanning (2-12) window are shown. By applying such an alternative window,
we do not eliminate the leakage effect but only reshape its impact. Windowing in the time do-
main is equivalent to a convolution with its spectrum in the frequency domain. The spectrum
of the Hanning window decreases much faster than that of a rectangular window, keeping the
leakage effect more localized. On the other hand, the main lobe of the Hanning window (first
lobe around zero) is two times wider than that of the rectangular window; hence, for compo-
nents that are close to each other (less than four DFT bins) the interference will increase. This
is a typical effect of these windows: they minimize the far leakage effects (far from the posi-
tion of the original frequency) at a cost of a loss in resolution. The choice of the window also
affects the noise sensitivity, the maximum error on the amplitude of the spectral components,
etc. We refer the interested reader to Harris (1978) for more information.

To illustrate the effect of the window on the spectrum, we considered 10.5 periods of
the periodic signal and calculated the DFT, first with a rectangular window and second with
the Hanning window (Figure 2-13). The scparation between the components becomes much
more visible for the Hanning than for the rectangular window. The interference is reduced
from —30 dB (3%) to less than —60 dB (0.1%).

Conclusion. The best solution is to measure an integer number of periods. If this is
impossible, the leakage interference between the different spectral components can be re-
duced by measuring enough periods and using, for example, a Hanning window. For M mea-
sured periods, the leakage errors are an O(M~1) effect for the rectangular window and an

60 80 100 120 140
DFT line DFT line

80
0 20 4 6

o
o]
o

Figure 2-13. Impact of the rectangular (left) and Hanning window (right) on the spectrum
for 10.5 measured periods.
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O(M~?%) for the Hanning window. Notice that if at least three or more integer periods are
measured, the Hanning window also allows perfect recovery of the original spectral lines.
This is a very specific property of the Hanning window that is due to the fact that its zeros co-
incide with those of the rectangular window except for the main lobe (Figure 2-12). We will
make use of this fact in the case study of the CD player (Section 12.2) to eliminate a nonsyn-
chronous periodic disturbance that is about 30 dB above the signal level.

2.2.4 DFT of Burst Signals

The study of the DFT properties showed that no leakage errors occur if periodic signals
are analyzed and an integer number of periods is measured. There is an important exception

to this general rule: using a DFT, it is possible to sample the continuous spectrum of a burst
signal.

Definition 2.1 (Burst Signal): u(r) is a burst signal if u(r) = 0 Vre [0, Tg].

Remark. A time-limited signal cannot be band limited (|U(j2rf)| = 0 if |f] > fz);
thus the time discretization of such a signal always creates aliasing errors. In practice, most
burst signals are low-pass filtered signals, which minimize these aliasing effects if a reason-
able design is made. In Figure 2-14 an example of such a signal is given. This is an exponen-

0.1

0 t

\Va .

-0.1-
-0.5 0 0.5 1
Time (s) Figure 2-14. Burst signal.

tially damped signal that is not exactly zero at the end of the window. So also the “burst” con-
dition is not exactly met, but again the errors are negligible for a good design.

In Section 2.2.2 it was shown that the DFT eventually makes a periodic reconstruction
of the original sequence. Because this sequence is zero outside the window (7 > Ty ) this re-
construction does not create discontinuities at the borders and hence the calculated spectrum
is a perfect copy of the original one at the DFT lines. This is illustrated in Figure 2-15, where

0., 0-

-

Frequency (Hz) Frequency (Hz)

=204

Amplitude (dB
. A
?
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€N
[~
1

&
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Figure 2-15. DFT spectrum of a burst signal. Left: window length 1 s (64 points); right:
window length 2 s (128 points). The dotted line is the original continuous
spectrum.
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the DFT spectrum of the burst signal in Figure 2-14 is shown. In the first case the window
length was 1 s, resulting in a frequency resolution of 1 Hz, and in the second case the win-
dow length was 2 s (this can be done by zero appending: N zeros are appended to extend the
record length to 2N ), resulting in a frequency resolution of 0.5 Hz.

2.2.5 Conclusion

It is possible to calculate the spectra of sampled signals using the DFT (FFT), but two
errors can occur. The first one is the aliasing error: the power at higher frequencies is mir-
rored at the lower frequencies. To avoid this, the sampling frequency should be set high
enough (f, >2fy). The second error is leakage: the spectrum of the signal is smeared out
due to the finite length of the measurements. In two special, but in practice very important,
situations it can be completely avoided. For example, the spectrum of periodic signals mea-
sured over an integer number of periods is perfectly calculated by the DFT. It is an exact copy
of the spectrum of the continuous-time signals, at least up to half the sample frequency for
band-limited signals. We strongly advise the readers to get as close as possible to this ideal
situation whenever they have enough freedom during the experiment design. If it is not possi-
ble to realize the previous conditions, errors will appear, but it is still possible to reshape
these errors to minimize their effect on the results.

2.3 SPECTRAL REPRESENTATIONS
OF PERIODIC SIGNALS

In this book we will use three different spectral representations of a periodic signal: the
Fourier series, the Fourier transform, and the discrete Fourier transform. Because these all de-
scribe the same signal, it is clear that there are close connections between them. Consider a
periodic signal, described by its Fourier series representation:

we) = X, |Adcos(kant + ZA) = X Lo (A/2)e/! (2-13)
with A, = |A e/“A.
» The Fourier coefficient at line £ is then
U, = A/2 (2-14)
m The Fourier transform is F{u()} = U(jo) = [~ u(t)e~/™dr, with
UG®) = Xy - g oA/ 2)8(F ~kfo) (2-15)
The Dirac impulses account for the convergence problems of the Fourier integral on

periodic signals.

m The discrete Fourier transform of one period (f, = 1/T, = Nfy) of
u4(n) = w(nT,) is given by

Uk = JLNZN; LugmyemaN = [NA/2 (2-16)
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The difference in notation between the Fourier transform U(j®), the discrete Fourier
transform U(k), and the Fourier coefficient U, is indicated by the argument (j®, k, or sub-
script k).

2.4 ANALYSIS OF FRF MEASUREMENTS USING
PERIODIC EXCITATIONS

In this section we study the principal techniques to measure the FRF of a linear system. Dur-
ing the first part of this analysis we assume that the plant is periodically excited and that an
integer number of periods of the steady-state response is measured. The aim of the study is to
understand the impact of the disturbing noise on the measured transfer function. Next, we
will also consider the use of arbitrary excitations.

2.4.1 Measurement Setup

The typical measurement setup for an FRF measurement is given in Figure 2-16. The
generator signal (e.g., a ZOH-reconstructed signal) is applied to the plant (e.g., a mechanical
system) using an actuator (e.g., an electromechanical shaker). The input u,(f) and output

ng(t) np(t)
y1(0

r(n)

|Eenerator }ﬁl Actuator

Ya A(t)
m.()
u(kT,) YkT)
Utk) Yk

Figure 2-16. Principal measurement setup and notations for periodic signals.

¥,(f) (e.g., the applied force and resulting acceleration) are passed through the antialias filter
before sampling, resulting in u,,(¢) and y,,(¢). For simplicity we assume that the antialias-
ing filters are perfect, leading to the following assumption:

Assumption 2.2 (Band-Limited Measurements): u,,(¢), ysa(?) are band-limited
copies of u(f), y,(f) obeying the Shannon theorem: e.g., Uj, (jo) = U,(jo) for
|0l < @,/2, and U, (jo) = 0 for |0 = @ /2.

These time domain signals are finally transformed to the frequency domain using the
discrete Fourier transform (DFT), implemented as an FFT (fast Fourier transform). In this
section we assume that an integer number of periods is measured so that no leakage errors ap-
pear. The FRF at frequency f, is eventually given by

G(joy) = Y(k)/U(k) (2-17)
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with f, = k/T, and T = NT, the length of the measured record. This process is disturbed
at different points with noise as shown in Figure 2-16. Generator noise n(#) distorts the ac-
tual, applied excitation; m,(f) models the measurement noise (e.g., amplifier noise, quantiza-
tion noise) on the measured input; m,(¢) stands for the output measurement noise; and the
process noise (generated by the plant itself) is given by n,(#). Notice that although the gener-
ator noise ny(f) acts as a proper excitation signal, it is considered in the periodic setup as a
noise source because it is a nonperiodic signal. Later in the chapter the consequences of this
decision will be analyzed in detail. After the DFT we find, at frequency f,, that

Y(k) = Yo(k) + Ny(k)

(2-18)
Uk) = Uyk) + Ny(k)
where Ny (k) and Ny(k) are the contributions of the noise to the measured Fourier coeffi-
cients. The impact of the DFT on the noise is intensively studied. Under very mild conditions
on the time domain noise, it is shown that (see Section 14.16) these noise contributions are
circular complex normally distributed. For our purpose the most important properties of such
a distribution are repeated in the following assumption:

Assumption 2.3 (Disturbing Noise): The input N (k) and output N,(k) errors
satisfy

S{Nyk)} =0, 8{Ni()} =0, I=1,2, ..
B{Nyk)|?} = og(k), S{|Ny(b)|*} = o}k (2-19)
SE{Ny(WNy(k)} = ofy(k) = 6y (k), S{Ny N K} =0

fork =1,2,..,F.

At a glance it can be surprising that a squared variable has a zero mean (&{x%} = 0),
but the reader should keep in mind that we deal here with complex variables (see also Exer-
cise 14.8). Using these properties, it is easy to carry out a simplified calculation of
S{G(jmy)} and o}(k) = var(G(jw))).

2.4.2 Error Analysis

In this section we calculate the bias (systematic error) and the variability (variance) of
the measured FRF. In order to address the essential aspects carefully, the analysis is simpli-
fied significantly using a Taylor series, assumed to converge. At the end of the section more
precise results are included.

Consider the measured FRF G(jw,):

Y (k) + Ny(k) 1+ Ny (k)/ Y (k)

CU% = gmaN,® = SN TIN,®7T,®

(2-20)

The Taylor series expansion of G(jw,) is

Ny(k))(l Ny () (Nu(k)

2
Yo N T T® U0<k)) ) +higher orderterms - (2-21)

G(joy) = Go(jmk)(l +
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In order to calculate the mean value and the variance of G(j®,) it is necessary to make an as-
sumption on the relation between the noise N(k), Ny(k) and the undisturbed signals
Uk), Y o(k):

Assumption 2.4 (Disturbing Noise—Continued): The disturbing noise N (k),
N (k) is independent of the undisturbed signals U(k), Y (k).

In many cases this is not a difficult assumption. However, in some applications such as
measurements in feedback, this assumption is not met if arbitrary excitations are used, lead-
ing to systematic errors.

2.4.2.1 Bias Error on the FRF. Under Assumptions 2.3 and 2.4 it follows directly
from (2-21) that & {G(jw)} = Gy(jw,). This result can be extended easily to the higher
order terms of the Taylor expansion. It shows that if the Taylor series converges, the expected
value equals the exact value. However, it is well known that the Taylor series of 1/(1 + x)
converges only if |x| <1, or in this case |N,(k)/Uyk)| <1. For normally distributed noise
this condition is always violated by a fraction of the realizations. For high SNR
(oy(k) <|Uyk)| ) the previous result will be a very good approximation, but for low SNR a
significant bias pops up. If U(k) is fixed and the noise is normally distributed, an exact cal-
culation of the expected value can be obtained without using the Taylor series approximation
(Guillaume et al., 1992b). For uncorrelated input-output noise (Gy;(k}) = 0) the relative bias
b(k) is

E{G(jay)}

b = =5 o

—1 = - exp(-|Uy(®)| 2/ 63 (k)) (2-22)

This shows that, even for a moderate SNR, small bias errors exist, for example, for an SNR of
6 dB (|Uyk)|/Gy(k) = 2), |b(k)| = 0.018, but the reader should be aware that significant
outliers on G(j®,) can appear. For an SNR of 10 dB, |b(k) = 5107

If the input noise and output noise are linearly correlated, as in the case of feedback, a
more complicated expression is found (see Appendix 7.G):

Uo(k)/cu(k)) 02

b(k) = — exp(-|Ug(k)>/ 6%}<’<>>(1 —POT D70,

with p(k) = 63,(k)/(0,(k)o,(k)). Also in this case the maximal relative bias (2-23) is
quite small. It is smaller than 1x107* if the worst case input and output signal-to-noise ratios
|Uok)| 6 (k), |Y (k)| /Gy (k) are larger than 10 dB.

This good behavior is due to the use of periodic excitations. If Uy(k) is also a stochas-
tic variable, as is the case for random excitations, the analysis is much more involved. It turns
out that in this case the FRF methods are much more sensitive to the noise, leading rapidly to
large systematic errors. This discussion is postponed to Section 2.6 but, just as an illustration,
it can be mentioned that the bias errors in this case grow to more than 20% for an SNR of
6 dB.

2.4.2.2 Variance Analysis of the FRF. Under Assumption 2.4 and restricting the
Taylor expansion in (2-21) to the first-order terms,
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Ny(k) Ny(k)

G(](l)k) = Go(jwk)(l + Y—O(E - m

) = Gy(jo,) + N k)

Nyk) Nyk) 2-24)
= ; R U
NelB = Gl ‘”k)(Yg(k) Uo(k))
and because & { Ng(k)} = O the variance is given by
o#(k) ok oy (k)
k) = B{|NGK)|2} = |Gliop)|? — Y 2Re(——— 2-25
30 = BN} = [Goljwy) ('Yo(k)lﬁon(k)P e Yo(k)UO(k)>) (2-25)

The variance is inversely proportional to the square of the SNR of the measurements. This re-
sult facilitates the excitation design and answers the question of how the power spectrum of
the excitation signal should be chosen to cause a small uncertainty.

Remark. In the previous calculations, an approximate expression for the variance is
obtained. A detailed analysis (Broersen, 1995) shows, however, that the variance of G(j®,)
does not exist because of the presence of outliers that appear when the denominator comes
very close to zero. This risk disappears for improving SNR. The variance (2-25) can then be
interpreted as that of the limiting distribution. Guillaume et al. (1992b) showed that the prob-
lem can be removed by eliminating the measurements with a “too small” denominator so that
no outliers appear anymore.

For the special case that the generator noise dominates (m,(t) = 0, myr) = 0 and
ny(#) = 0), the following relations exist: n(f) = go®*n, (), with gy(t) the plant impulse
response, so that

o} (k) = |Gyjop[203(k) and  ©2y(k) = (N ONK)} = Gy(jo)odKk)

The approximations are due to the leakage effect that appears when random signals are
Fourier transformed with the DFT. Substituting these results into (2-25) gives 6Z(k) =0,
which implies that the generator noise does not contribute to the uncertainty on the FRF mea-
surements. It also does not contribute to better knowledge of the system because the n,(r)
contributions disappear in the periodic averaging process. This means that some information
is lost because n,(#) can also be considered as an excitation signal.

A number of possibilities are available to reduce the variance 6Z(k). The most simple
solution is to inject more power into the system, increasing |U(k)| and |¥, o(k)|. In Chapter 4
methods are proposed to maximize this power, while the peak value of the excitations re-
mains below a user-specified level, so that nonlinear operation of the plant is avoided. A sec-
ond possibility is to measure the FRF frequency by frequency, making stepped sine measure-
ments that concentrate all power at one frequency at a time, so that the SNR is maximized.
The disadvantage of this method is that it can become extremely slow because at each fre-
quency point sufficient waiting time should be added until all transients due to the frequency
change have disappeared. The alternative is to use well-designed broadband excitations in
combination with good averaging methods. This solution depends, again, strongly on the pe-
riodic or random nature of the excitation signal, leading to completely different methods.
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2.5 REDUCING FRF MEASUREMENT ERRORS
FOR PERIODIC EXCITATIONS

In this section it is shown how to reduce the bias and the variance of FRF measurements us-
ing well-designed averaging techniques. Because the solutions strongly depend on the peri-
odic or random behavior of the excitation, the discussion is split into two parts. In the first
part we deal with periodic signals because they lead to the best solutions, while the algo-
rithms are very simple. In the next section random excitations are considered because they
are still very popular, even if they lead to inferior results compared with periodic excitations.

All the FRF averaging techniques start from M input-output data blocks ul/l(),
yi, 1 =1,2,...,M. To study the stochastic behavior of theses averaging methods we
need an assumption concerning the way the data blocks ul/i(s), ylUl(r), I = 1,2,...,M are
collected.

Assumption 2.5 (Measurement Data Blocks): The M input-output data blocks
ulllny, yUp), 1 = 1,2,..., M stem either (i) from M independent (possibly repeated) ex-
periments where the disturbing noise n[)(s), nl/)(#) has finite Pth order moments and is in-
dependent over / or (ii) from a single experiment where the disturbing noise n,(t), n,(f) can
be written as filtered white noise with finite Pth order moments.

Intuitively, Assumption 2.5(ii) boils down to saying that the correlation length of the
noise should be much smaller than the total measurement time.

2.5.1 Basic Principles

In this section we assume again explicitly that the excitation signal u(¢) is periodic
with period T, such that the sampled signal u(nT) = uy((n+ N,)T,). Notice that this also
imposes a constraint on the sampling period because the signal period should be a multiple of
the sampling period T = N, T. For notational simplicity, we drop the sampling period T
in the argument of the signals; for example, x(nT,) is denoted as x(n). When periodic exci-
tations are applied, it is possible to collect M successive periods (with length N, ) and to av-
erage the measurements in the time domain over these repeated periods, exemplified by the
output measurement (Figure 2-17):

$(m) = A—}Z,M;o‘ Yn+INy) = ;llzfilym(n) with yi(n) = y(n + (I-1)N,)  (2-26)

and the DFT is ¥(k) = DFT(5(n)). The FRF estimate is

GmL(ioy) = % (2-27)

Gwy is the maximum likelihood solution for Gaussian disturbances if the repeated measure-
ments ul7], yl'l can be considered to be independent over I. It is clear that due to the averag-
ing process, the noise is reduced as 14/M under Assumptions 2.4 and 2.5 (P = 2), so that,
asymptotically,

u(t)

WL

[]]( ) [2]( ) [I](t)

/] ) u t u

! Figure 2-17. Processing periodic excitations.
p
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R aMs.limlA/(k) Y (k)
aslimGy(jo,) = M=2=_ W)
S AmOUO) = i - To® ~ U (2-28)

M=o

GuL(joy) = Gyjmy) + Op(M-12)

in the absence of other systematic error sources typified by instrumentation errors (proof: see
Appendix 2.A). Moreover, under Assumption 2.4 and Assumption 2.5 (i, P = 2 +¢€) or (ii,
P = o), the FRF estimate Gy ( j) (2-27) is asymptotically normally distributed (see Ap-
pendix 2.A). Many dynamic signal analyzers offer this averaging option; for example,
M = 128 averages are made over N, = 2048 points. Because this improves the results at a
very low computational cost, it is strongly advised to make full use of this option. In practice,
M is determined by the maximum measurement time 7 and the minimum required fre-
quency resolution f: M = T f,.

Although the computational effort is minimized by first averaging the measurements in
the time domain before calculating the DFTs, it also makes sense to calculate the spectrum of
each individual subrecord and perform the averaging in the frequency domain. In the latter
case it is also possible to estimate the noise (co-)variance. Because the DFT is a linear opera-
tor, the order of the operations does not influence the result. Consider the DFTs of the sub-
records

Ut(k) = DFTu!(n)), YUl(k) = DFT(yUi(n)) (2-29)
and calculate the sample mean

k)

. 1 5 1
Uy = MZKIU[”(k), Y(k) = 11_421 YU(k), with GpL(jo,) = 5 (2-30)
and the sample (co-)variances
83 = s X U1 - DM, 630 = 7 0t 1Y) - (0
(2-31)

Shu) = 7 3 (YR - 1) (UIR) - D®)

These are unbiased estimates of the true (co-)variances. Under Assumptions 2.4 and 2.5
(i, P = 2), the asymptotic variance of Gm(jmk) (2-27) is given by (2-25) (see Appen-
dix 2.A). Using (2-31), it can be approximated as

(oy(k)/IY(k)P +&%(k) /| Uk)|? - 2Re6 3y (k) / (XG0 UR))))  (2-32)

The additional division by M is due to the averaging effect that reduces the noise variance by
a factor M if the noise can be considered to be uncorrelated from one subrecord to the other.
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2.5.2 Processing Repeated Measurements

Many instruments do not have enough memory to store long data records. Instead they
make repeated synchronized (start each time at the same point in the period) measurements of
the periodic signal by using a good trigger. In practice, a slight variation appears from mea-
surement to measurement, resulting in time jitter. Consider, for simplicity, noiseless measure-
ments. Then

ull(nT) = uy(nT -l (2-33)

with Tl the variation with respect to the perfect starting point of the measurement. The ex-
pected value becomes

pTY) =8 (T} = [ unT, -1)f (Wt (2-34)
with (1) the probability density function of the jitter, and its spectrum is
M (e/°T) = Uye!*T)F (j) (2-35)

with F (jo) = F{f(T)} the characteristic function of f.(7). This shows that the jitter acts
as a linear filter on the data (Souders et al., 1990). It creates no systematic errors if the jitter is
the same for the input and the output error. However, the uncertainty on the FRF measure-
ment increases, especially at the higher frequencies because F (jw) has a low-pass behavior.
For example, for normally distributed jitter N (0, a2T2),

F(jo) = e (PWTH/2 _ —w(w/0,)22n2 (2-36)

For jitter with a standard deviation of one sample, a loss of 11 dB appears at /4 and 43 dB
at f,/2. This clearly shows that it is extremely important to pay sufficient attention to the
quality of the triggering if full band measurements are made.

2.5.3 Improved Averaging Methods
for Nonsynchronized Measurements

Sometimes it is impossible to get a proper trigger signal that guarantees good synchro-
nization of the measurements. A prime possibility to solve this problem is to perform a
postsynchronization, estimating each time the delay with respect to the reference record (for
example, the first one) and adding a corresponding phase shift e/@™" to the measurements.
An alternative is to calculate the FRF of each individual measurement (the division
Y(k)/U(k) eliminates the varying delay). As explained in Section 2.4.2.1, this can create bias
errors if the simple arithmetic mean is used to average the individual FRF measurements. In
Guillaume et al. (1992b) nonlinear averaging methods have been developed that are more ro-
bust on this aspect, without increasing the variance significantly. The most robust method
turned out to be
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exp(A-liZﬁ l Re(l"g (_);%]J%?SD

Sord i TR 1 —
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The split between amplitude and phase is made to avoid the phase wrapping problems of the
complex logarithm. For circular complex normally distributed errors it is shown under As-
sumptions 2.4 and 2.5(i) that the relative amplitude error |Gy, (jwp)|/|Go(jop)| -1 con-
verges for M — e to

o {0 o 1)

with Ei(.) the exponential integral functions (Gradshteyn and Ryzhik, 1980). This result is
also valid for correlated input-output noise (still assuming that Uy(k) is independent of the
disturbing noise). This results in very small bias errors, even for poor SNR, as given in
Figure 2-18. A comparison with other classical methods that were originally developed for
random excitations is given in Section 2.6.
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-40 ]
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Figure 2-18. Maximum relative bias of 120 F———— ————
|GHM( jm‘)| for a given worst case SNR (on input 0 5 10
or output). SNR (dB)

Remarks

(i) The relative amplitude error (2-38) is also valid in the presence of correlated noise
because the log operator in (2-37) separates both noise sources.

(ii) The phase estimate is unbiased if the noise is uncorrelated Gy (k) = 0.

2.5.4 Coherence

A measure often used to quantify the quality of the obtained FRF is the coherence
Y¥®) defined as

lsyu(jm)|2

N L5 d B 2-39
Syy(J®)Syy(jw) (239

YA w) =
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It measures how much of the output power is coherent (linearly related) with the input power
(Bendat and Piersol, 1980; Cadzow and Solomon, 1987). It is shown to be captured between
Oand 1:

0<y(w)<1 (2-40)
If y(w) is smaller than 1 it indicates the presence of

a Extrancous noise in the measurements

m Leakage errors of the DFT

s A nonlinear distortion (only for random excitations)
s Other inputs besides u(#) contributing to the output

For periodic signals Eq. (2-39) becomes
[1 + G3uk) |?

1 M 7701 2 _—_—
Ly yugypt (k)'
’AYZ((Dk) _ | M&~i=1 _ Y O(k) Uk) @2-41)

(2 o) G2 Jrwe) (14 .%L)(l ¥ :33211'32)

where the exact (co-)variances are replaced by sample (co-)variances. Notice that
Y(®,) = 1 when there is only generator noise and the leakage errors are neglected. Some-
times coherence is used to detect nonlinear distortions although its value is unity for periodic
excitations in the absence of noise (63(k) = 0, 63(k) = 0 and 63,(k) = 0), independent
of the presence of nonlinearities (McCormack et al., 1994b). Hence, better alternatives, given
in Chapter 3, are sought for the detection of nonlinear distortions.

The variance on the measured FRF can be estimated directly from the coherence by

1—y%(wy)

&2 = 1G(i 2 -~
Gglk) l (Jmk)l V(®p)

(2-42)

This follows directly from substitution of Eq. (2-41) into (2-42), assuming that
8p6ik) 8pK) N 83k 83,00
[UaPIYo®]?  [Ugo]?  [¥ob]? Y00 To(®)

This estimate will be very useful in the case of random excitations, where it is impossible to
estimate 6% (k), 63(k), and 63,(k) directly from the data.

«].

2.6 FRF MEASUREMENTS USING RANDOM EXCITATIONS

In this section we focus on methods that are also applicable to random excitations. The major
difference compared with periodic excitations is the variation of the excitation from one real-
ization (subrecord) to the other. This requires other methods to get acceptable results. A com-
prehensive overview of dedicated FRF measurement techniques for random signals is given
in the book of Bendat and Piersol (1980). In this section we give a brief introduction and an
alternative to improve the classical methods.
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2.6.1 Basic Principles

Consider a linear system driven with random excitations, so that uy(¢) is no longer pe-
riodic. Under these conditions the analysis of the previous section is no longer valid. For ex-
ample, it is no longer possible to consider a fixed value Uy(k) in the Taylor expansion as was
done in Section 2.5. A more detailed analysis is needed because the excitation signal varies
from one realization to the other. These aspects will be tackled first and dedicated solutions to
deal with random excitations are proposed in Section 2.6.2. Also, leakage errors appear (see
Section 2.2.2). In general, the spectrum of random signals does not even exist (Bendat and
Piersol, 1980; Papoulis, 1981) so that again a detailed analysis is required to understand ex-
actly what is going on.

2.6.2 Reducing the Noise Influence

When measuring the FRF using random excitations, the same approach could be made
as for periodic data. The full record is again split into M subrecords with input and output
DFT spectra UUl(k), YU(k) for block I. Eventually, the FRF for block [ is then
YUl(k)/ Ulk). Broersen (1995) showed that this direct calculation has an infinite variance.
From Eq. (2-20) it is also seen that bias errors are created because
E{1/(1+ Ny(k)/Uyk))} = 1. This bias is mainly induced by the nonlinear behavior of the
division. The bias will be small only if |N v(k)/ Ug(k)| « 1. Tt is, therefore, necessary to re-
duce the noise by averaging before making the division. However, because S{UU(k)} = 0,
it is clear that this cannot be done straightforwardly. The reason for this problem is that the
vector UV)(k) has a random phase, uniformly distributed between [0, 2x[ so that its aver-
aged value is zero (see Figure 2-19). A possibility to avoid this problem is to eliminate the

v YUk
Tmag Imag

—_—
Real Real

Figure 2-19. Successive realizations of UY(k) and Y''(k) .

phase of UUI(k) by multiplying it with its complex conjugate, to get vectors with a fixed
phase as shown in Figure 2-20. It is also possible to average before making the division:

2;‘1 YUK Tk

G(jm,) =
T TS (gl

(2-43)

Readers who are familiar with this field will observe that this expression is nothing other than
the discrete implementation of the Wiener-Hopf equation (see Bendat and Piersol, 1980, Eq.
(4.7), and Eykhoff, 1974, Eq. (8.10)), relating the cross-power with the autopower spectrum:
Syp(jo) = G(jw)S,,(jw). The asymptotic properties can be obtained easily by splitting
the measurements into the undisturbed parts Uy(k), Y, (k) (neglecting the leakage effects)
and the distortions N, (k), Ny(k). Under Assumptions 2.4 and 2.5 (P = 4) the systematic
errors and the variability can be calculated.
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2.6.2.1 Systematic Errors. Under Assumptions 2.4 and 2.5 (P =4), the estimate
(2-43) converges to

1 om
as. hm]l_l - YU Tk _ E{ Yk Ugk)} +o}y(k)

aslimG(jo,) = M2
Mo ‘ as. hm—zl |UUk)|2 E{|Uyk)|?} + oK)

(2-44)

at the rate O, (M~/ 2) (see Appendix 2.A). Moreover, under Assumption 2.4 and Assumption
2.5, P = 4 +¢)or (ii, P = o), the FRF estimate G( jo;) (2-43) is asymptotically nor-
mally distributed (see Appendix 2.A). Neglecting the leakage effects, (2-44) becomes

1 + 63y (k)/8{ Yo(k)Uglk) }
1+ 63 (k) /8 {|Uyk)|?)

aslimG(wy) = Gy(jm,) (2-45)
Moo

Notice that for random signals & { |U(k)|?} cannot be replaced by |U,(k)|? because U (k)
varies from one realization to the other. Equation (2-45) shows that there is a systematic error
that did not appear in the previous approach. This is the price to be paid for using random in-
stead of periodic excitations. If the input signal can be measured free of noise, 6,(k) = 0,
the bias disappears. The method (2-43) is sometimes called the H, method. If the SNR at the
output is much higher than that at the input, then it is better to use the following alternative:

\ 3 Y U)2
G(j = — 2-46
(joy) 2;,,: 1 U[’](k)?[’](k) ( )

which is called the H, method. The H, method (2-46) under the same noise assumptions has
the same asymptotic (M —» e ) properties as the H; method (2-43). Neglecting the leakage
effects, the asymptotic value of (2-46) is

1+ 03(k)/8 {|Y (k)]
1+ 63y (k)/8 [ Uk Y o(k))

aslimG(jo,) = Gy(jo,) (2-47)
M=

For uncorrelated noise, 6,,(k) = 0, (2-45) and (2-47) reduce to, respectively,
|Goimp)/|1 + 0 (k) /E{|Ug®)|?}| and |Gy(jwy)||1 + o3 (k)/E {|Y(k)|2}]

Hence,
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a.s.limGHl(i(ok)\ <|Gyimy)| < la.s.limGHz(jwk) (2-48)
M— 00 Mo

where GHI( j®,) and (A}HZ( Jj,) are given by, respectively, (2-43) and (2-46). This result can-
not be generalized to the case of correlated noise.

2.6.2.2 Variance. An approximate expression for the variance of G(jw,) (valid for
the H,; and H,) is found by considering only the linear noise contributions to (2-43):

1()

with

M M

Y, MUK + YN k) ¥ N0 TS + U ONG
Nk = =L . Ny = =1

M Y TR® 7 T8

Next, the variance of (2-49) is obtained assuming that the M data blocks (subrecords)
are independent, Assumption 2.5(1), and by taking the expected value
E{|Gy(ja) (N (k) ~ Ny(k))|?} with respect to the noise and not to the random excitation sig-
nal. This means that we calculate the variance that would be obtained if the experiment was re-
peated with the same noise realizations for the excitation signal. Neglecting the leakage errors,

riw Tl Wwie XL i)
G VNI T CS N O 0

Go(joy) =

we find

2 2 2
02k = [Goljolt| It B 90O e O 41 (55

IO A7 LC D BRI

I=1 I=1 =1

If the number of blocks M — <= and we assume that the random excitation is stationary, the
variance becomes

. : o3(k) op(k) otu(k)
a.slimMo2(k) = |Gy(j® 2( LA — —2Re - )) 2-51
M- 60 = [Golioy) Sy,r U0 Sy u oy 5 ¥,U @) @D
so that for M sufficiently large, the following approximate expression can be used:
Gojop)|? 2k ok
o3 (k) ~ (G2 ( OO, G5 e THu® ) (2-52)
M Sy,r, G Sy u o) Sy,u,U®)

This expression is similar to (2-32) and shows that the uncertainty ©,(k) decreases as
O(M-Y2), However, for small M,

Stho, oo = A%Z?iJU!B”(/OI2 (2-53)
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Figure 2-21. Realized power spectrum S{P(j®,) for a white noise sequence
(M = 1,4, 16). Note that for a periodic signal a flat line at 0 dB would be
found.

which can be significantly different from § UoUO( jw,); thus Eq. (2-50) should be used. At
some frequencies large drops in the realized power spectrum can appear, jeopardizing the
FRF measurement completely. Therefore, it is strongly advised to average over a number of
blocks to avoid these dips. In Figure 2-21 the realized power spectrum S{}), (je,), after pro-
cessing M blocks of a white noise excitation, is shown in dB (S,, in dB is given by
101log,,S,, ). It is clearly seen that, compared with the limit value S{,“:Z,o(jwk) (a constant
value of 0 dB) for M — o, a significant loss can occur. The normalized power spectrum
2M S, (j)/ Sy y (jo) is x* distributed, having 2M degrees of freedom because it con-
sists of the sum of 2M squared, independent, zero mean, normally distributed variables with
equal variance (the real and imaginary part). In Table 2-1 the 95% uncertainty regions of the
amplitude spectrum are described by their upper and lower bounds. The ratio of the lower
bound to the rms value is also tabulated to illustrate the loss in SNR of the weakest compo-
nents because of the stochastic nature of the excitations.

TABLE 2-1 Study of the Stochastic Behavior of the Averaged Spectrum

of a Random Signal
N Ratio 95% Upper/95% Lower Bound (dB) Ratio 1/95% Lower Bound (dB)
1 2 13
2 14 1.5
4 9 4.7
8 6.2 30
16 43 2.1
32 3.1 1.4
64 2.1 1.0
128 1.5 0.7
256 1.1 0.5

In Figure 2-22 the loss in the SNR for random signals when compared with a determin-
istic signal with flat amplitude spectrum is shown as a function of the number of processed
blocks M. It shows that for small M the SNR increases very rapidly because dips in the av-
eraged input power spectrum disappear. It also shows that four experiments are needed to
guarantee that 95% of the measurement points have an SNR corresponding to that of a well-
designed, deterministic excitation after only one period (SNR normalized at 0 dB). This is
one of the reasons why we strongly advocate the use of periodic excitations.

The coherence y*(®,), as given in Eq. (2-39), can be used again to give an overall im-
pression of the quality of the measurement. In practice, the variance on the FRF is estimated
from the coherence using Eq. (2-42).
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2.6.3 Leakage Errors

In the previous section we assumed that it was possible to pass, easily, from a continu-
ous-time signal u(?) to its Fourier transform U(jw). In practice, the DFT of random signals
suffers from leakage errors (see Section 2.2.2). So even for undisturbed signals (n, = 0,
ny?) = 0, and ny(#) = 0 in Figure 2-16) the FRF measurement is incorrect, that is,
Go(jwy) # Yo(k)/ Uy(k), where Uy(k), Y (k) denote the DFT of u,, y,. Ljung (1999) shows
for discrete-time systems that the error on the FRF disappears as O(N~-1/2). This result can
also be extended to FRF measurements of continuous-time systems. This is formulated pre-
cisely in the following theorem.

Theorem 2.6 (Leakage Errors on FRF Measurements of Continuous-Time
Systems): Consider the signals y(r) and u(r) obeying Assumption 2.2 and related by the
strictly stable system G(jw) = F{g(H)} (¥(#) = g@®) =u(t)). Let

Uk) = _(I)u(nTs)e‘ﬂ"k"/N, Yk) =

R A -t —j2mkn/N .
o Loy s
be the DFT spectra of the sampled signals u(nT,) and y(nTy). If u(nTy) is uniformly
bounded, filtered white noise, then

Y(k) = G(joUk) + Ry(k) (2-55)

with Ry(k) = O(N-1/2) uniformly over the frequency k.
Proof. See Appendix 2.B. O

Remarks

(i) The DFT for random signals is defined with a scaling factor 1/JN so that the
DTF spectrum behaves as O(NY).

(ii) If the excitation signal is a periodic signal and the number of data points is in-
creased by repeating this signal (so that no additional frequencies are excited), the
previous result can be formulated more strongly as ]R N(k)] <ON-Y.

(iii) This theorem shows that the leakage error decreases with an increasing number of
data, but it does not guarantee that the errors are small for finite N.
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Figure 2-23. Illustration of the leakage effect.
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Example 2.7 (Leakage Errors on FRF Measurement): To illustrate the impact of
the leakage effect, a simulation is made on a second-order discrete-time system with a narrow
resonance peak of 30 dB. The system is driven with white normally distributed noise, without
disturbing noise. The record is splitinto M = 100 subrecords of length 256 data points each.
Next, the FRF is estimated using (2-43) and the results are shown in Figure 2-23 for a rectan-
gular window and a Hanning window (Section 2.2.3). The errors can become very large, es-
pecially around the resonance frequency, where fast variations of the FRF occur. Replacing
the rectangular window with a Hanning window reduces the errors significantly at most fre-
quencies, but the problem at the resonance persists. Note also that these results are obtained
after 100 averages. So the systematic errors dominate in these results, which shows that leak-
age not only increases random errors but also creates a bias. These errors are proportional to
the second derivative d*G,(j®)/dw? (Bendat and Piersol, 1980). In Figure 2-24 the coher-
ence calculated with Eq. (2-41) is shown. Although it is poor everywhere for the rectangular
window, it is quite good for the Hanning window except around the resonance frequency. [

Conclusion: Leakage can jeopardize the quality of the FRF measurements significantly.
Averaging reduces the random appearance, resulting in smoother measurements, but cannot
eliminate the systematic errors. Using other windows makes it possible to reshape the leakage
errors, but they remain large in the frequency bands with fast variations of the FRE. Often
these bands carry most information (e.g., the resonance frequency). To avoid leakage, the best
solution is use of periodic excitations and measurements of an integer number of periods. An
alternative method is given in Section 2.6.4 which also gives more insight into the nature of
leakage errors on FRF measurements. A last possibility is to use burst random excitations as
explained in Section 2.2.4.
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2.6.4 Improved FRF Measurements for Random
Excitations

In the previous section it was illustrated that FRF measurement with random excitations are
prone to increased systematic and stochastic errors. Using periodic excitations and measuring
an integer number of periods eliminates the leakage errors completely. In this case also the
bias errors are reduced significantly as shown in Eq. (2-28). Hence, periodic excitations
should be used to measure the FRF whenever possible. Sometimes it is impossible, for tech-
nical or psychological reasons, to apply periodic excitations and we have to stick to noise ex-
citations, causing the measurements of the input and output spectrum to be distorted by the
leakage effect. Because the FRF is measured as the division of these spectra, it seems obvious
that this result also suffers from leakage. However, a correct measurement of the input-output
spectrum is a sufficient but not a necessary condition to get good FRF measurements. If the
linear relation between the input and output signals is maintained, it should be possible to ex-
tract the exact FRF measurements. A detailed analysis shows that the underlying error mech-
anism is actually a transient phenomenon (see Chapter 5, Section 5.3.2). This is illustrated in
Figure 2-25. The measurements in subrecord [/] depend not only on the input signal ul/)(r)
but also on the tail of the response to xl/~11(¢), while the tail of the response to ul’Xs) is
added to the next subrecord [/ + 1]. If the system and the excitation are known, it is possible
to calculate these tails and to compensate for their presence or absence. The basic idea of this
method is to approximate the output of the system using an intermediate parametric transfer
function model. Next, the FRF between the residuals (the difference between the modeled
and the measured output) and the input is calculated using the classical methods (for exam-
ple, using Eq. 2-43) and the final FRF estimate is obtained as the sum of the transfer function
of the parametric model and the FRF of the residuals. This is explained subsequently in more
detail.

Consider a discrete-time system Gd(e‘j T with impulse response g(nT,), approximat-
ing G(jw) in the frequency band [0, ®_], with @, <mf . Calculate an approximate output

u(t)
¥®

u(t)
o)

u(t)
W)

u(t)
¥

Figure 2-25. Interpretation of the leakage error
as a transient effect.
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y(nT) = gnT)*u(nT) (2-56)
and consider the residuals
e(nT) = y(nT,)~$(nT,) (2-57)
The new FRF estimate is then given as
GGoy) = Gy(e™Ts) + 8gu(jwy)/Syuioy) (2-58)

This algorithm allows us to shift the leakage problem to the choice of a good discrete-time
approximate system g(nT ) in the frequency band of interest. A simple model g(nT,) in
(2-56) is generated using an FIR filter with impulse response given by the inverse DFT
(IDFT) of the FRF G(jw,) obtained in (2-43):

g(nT) = IDFT(G(jo,) (2-59)

1t is shown that the method provides better estimates of G(jw,) without increasing the noise
sensitivity under the condition that the subrecords are long enough to capture the impulse re-
sponse (e.g., 5 to 10 times the dominating time constant) (Schoukens et al., 1998c). By select-
ing the optimal length of the FIR filter g(nT,), the systematic errors (the FIR filter is too
short) are balanced with the noise sensitivity (the FIR filter is too long). The algorithm is im-
plemented in a dedicated routine, omitting all these choices and questions for the user. The
practical implementation details of the method are given in Schoukens et al. (1998c).

As an illustration, the experimental results for a bandpass filter are presented. First, the
filter is excited with a periodic excitation signal; next a binary random excitation is applied.
Both signals have a peak value of 0.2 V and excite the full band (up to half the sampling fre-
quency). The signals are generated and measured with a sampling frequency of 4.8828 kHz.
M = 9 periods (1024 points/period) of the periodic signal and M = 9 blocks of the ran-
dom signals (1024 points/block) are processed. The measurements were carried out with a
VXI measurement setup (generator HP E1445A, acquisition HP1430A). All measurements
were alias proof. The results in Figure 2-26 show a significant reduction of the leakage errors.
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Figure 2-26. Experimental verification of the improved FRF measurements on a
bandpass filter. Left: full band, ___ reference value from periodic data,
....... standard deviation on the reference value, + complex error of the
classical method with Hanning window, m complex error for the new
method; right: zoom on the passband, reference value, + classical
method with Hanning window, m  new method.
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2.7 FRF MEASUREMENTS OF MULTIPLE INPUT, MULTIPLE
OUTPUT SYSTEMS

The results that are presented in this chapter are also valid for multiple input, multiple output
(MIMO) systems. Excitation signals that are suitable for single input, single output (SISO)
systems also form a good basis to start MIMO measurements. However, additional precau-
tions have to be taken because the FRF of a MIMO system is described by a matrix at each
frequency:

G(joy) € C™*" (2-60)

with n, and 7, the numbers of inputs and outputs of the system. At least n, different excita-
tions are needed to extract G from the data. This can be done by cutting a random excitation
record in n, subrecords or by applying n, different (combinations of) periodic excitations.
The relation between the input and output is

Y(k) = G(jo )Uk) (2-61)

with U(k) € C™*™, Y(k) € C™*"™, and the entry X, ,(k) corresponds to the p th input-
output signal and the ¢th subrecord or periodic excitation. The estimate is then obtained
from

G(joy) = YU (k) (2-62)

It is clear that this puts a strong condition on the excitation design: the matrix U(k) should be
regular, otherwise G(jw,) is not identifiable for the given experiment. Also, the uncertainty
on G(i(nk) depends strongly on U(k), and a careful design is necessary in order to avoid de-
terioration of the results. In case of two inputs (n, = 2) it is shown that an optimal choice
(maximizing det(U(k)) ) using periodic excitations is given by:

Uk = ﬁ 11} Uk (2-63)

with U(k) the DFT spectrum of one excitation signal (Guillaume et al., 1996b). This means
that in the first experiment, both inputs are excited with the same periodic excitation, while in
the second experiment the sign of the second input is changed. This strategy can be generalized
to more inputs. Sometimes the number of experiments is even higher than the number of in-
puts. In that case U-1(k) is replaced by the Moore-Penrose pseudoinverse U*(k), and although
the previous strategy still results in good designs, the optimality cannot be shown anymore.

2.8 GUIDELINES FOR FRF MEASUREMENTS

The aim of this section is to condense the information from the previous section to a short list
of guidelines. Following these guidelines does not always guarantee good measurements but
at least ensures avoidance of a number of common mistakes.
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2.8.1 Guideline 1: Use Periodic Excitations

We strongly advocate periodic excitations instead of random excitations because the
former lead to consistent estimates, even in feedback (see Section 2.5.1), and allow estimation
simultaneously with the (co-)variances of the noise. The following are recommended in order
of importance: (i) measure multiple periods in one record; (ii) select a good synchronization;
(iii) collect a number of single measurements. We dvise using random excitations only if
there are strong contraindications against periodic excitations (which the authors are not aware
of). The design of periodic and random excitations is discussed in detail in Chapter 4.

2.8.2 Guideline 2: Select the Best FRF Estimator

2.8.2.1 Periodic Excitations. Use Gy (jo,) if multiple periods are measured or if
repeated measurements with good synchronization are made (Section 2.5.2); otherwise, in
case of poor or no synchronization, select GH]og(j(Dk) (2-37), Gm(jmk) (2-43), or G Jjoy)
(2-46) depending on the SNR of the measurements using Figure 2-27. Use a rectangular win-
dow in the DFT.

Remark. If it is impossible to measure an integer number of periods precisely (even
after selecting a smaller number of samples), a Hanning window can be used to reduce the er-
rors from O(N-!) to O(N-2) at the excited frequency lines (see Section 2.2.3) if at least four
periods are captured.

2.8.2.2 Random Excitations. Select a Hanning window (Section 2.2.3) in the DFT
to reduce the leakage errors. Use Gm(jwk) (2-43) if the input SNR is best and GHz(j&)k)
(2-46) if the output SNR output is best to estimate the FRF. Keep in mind that the mea-
surements are biased if both input and output are prone to noise distortions. If the im-
pulse response of the system is not longer than the window length, improved results can
be obtained using the transient compensating method in Section 2.6.4.

2.8.3 Guideline 3: Pretreatment of Data

Before processing the data, we strongly advise effecting a visual inspection for anoma-
lies such as (periodic) spikes, outliers, overload, drift, and offset. Some of these problems can
also be detected automatically. A slow drift can be removed by use of polynomial regression
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(McCormack et al., 1994a; Peirlinckx et al., 1996). Outliers can be detected using the peri-
odic nature of the excitation by observing the variations from one period to the next. A sound
solution is to perform a new experiment. If this is not possible, a simple alternative is to re-
place the erroneous data by the equivalent value of the neighboring periods.

2.9 CONCLUSION

FRF measurements give a great deal of information about the device or plant under test. Very
often the FRF is easily accessible and it is strongly advised to take this intermediate step in
the identification process. It provides not only much qualitative information about the com-
plexity of the problem but also quantitative information about the plant and the measurement
quality. This can be used to set up a measurement-driven weighting function for the identifi-
cation step and also gives very valuable information for the model validation. The user has
significant influence on the measurement quality by generating a good excitation and select-
ing the proper algorithms to process the raw measurement data. For these reasons, we
strongly encourage the reader to take the time to understand the basic principles of FRF mea-
surements. Good nonparametric measurements will simplify the task of building parametric
models significantly.

2.10 EXERCISES

Remark. 1In these exercises (and also in the next chapters) we will use the Matlab®
notation. Matlab® is a high-performance language for technical computing developed by
Mathworks Inc. More information can be found at http://www.mathworks.com/

255
21. Caleulate the signal wy() = Y, Ajsin@ufoliTy+). +=0,..,N=1 with

fo=1,T,=1/ 1'024, and ¢, independently and uniformly distributed in, [0, 27 .
Calculate  Ug(k) = DFT(uy()) using the Matlab FFT instruction for
N = 1024, 1500, 4096,5000 and plot the amplitude spectrum in dB
Ugp(k) = 20log o|Uy(k)|- Use for the first time a rectangular window and for the second
time a Hanning window, and discuss your results. (What is the impact of leakage? What
happens if a Hanning window is applied on a record consisting of an integer number of
periods?)

Note that this routine also works for N # 2" but that it becomes significant more slowly.

2.2. In this exercise it is shown how a very fast calculation of a periodic signal is achieved,
starting from its spectrum.
Define U = ZEROS(1024, 1) %; this is a 10241 vector with all entries zero.
Set U(2:256) = exp(jrand(255, 1)).
u = 2*REAL(FFT(U))
Compare the computational effort of this approach with that of Exercise 2.1 Give an ex-
planation of the algorithm.

Remark: In Matlab U(1) contains the DC component and U(k) the Fourier coefficient of
the harmonic (k- 1)f,. The underscore . indicates that we refer to a spectrum in the
Matlab notation: (k) = Uk + 1).

2.3. Calculate one period of u,(¢#) with random phased components (with unit amplitude) at
the frequencies If,, ! = 1,2,...,255, f, = 10 Hz putting Np = 512 points in one
period. Use the method of Exercise 2.2
What is the sample period T that is needed to generate this signal?

Set up the signals Uy, € RN containing ! successive periods using the REPMAT

instruction for / = 1,2,4 and study the relation between the fundamental frequency,

N P’ and the line number of the spectral components of the repeated signal.
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2.4. Define the discrete-time system Go(z‘l): [b,a] = CHEBY1(2, 10, 0.5) (this is a second-
order system with resonance frequency at 0.25f ).
Plot the amplitude of the transfer function of this system in dB (use the function FREQZ).
Consider the signals u, . of Exercise 2.3 and calculate the responses Yo, (1) = go(t)*“o,(’)
using the filter operation Yo, = FILTER(b, a, uO) of Matlab.
Estimate the FRF of the system at the excited frequency lines as
Gl(z, hy = Y, 1(kr)/ Uy z(kr)' The indices k, should be properly chosen to select only the
lines where the system is excited. Compare the measured FRF with the exact one and dis-
cuss the result. What is the origin of the errors?

2.5. Repeat the previous exercise for / = 2 but eliminate the first period in u,, y,, before
calculating the DFT spectra. Explain why the errors disappeared.

2.6. Generate an iid random signal with zero mean uy(t), ¢ = 1, ...,512M. Normalize the
mms value of this signal to 1. Calculate y, = go()*uy(5) (Exerc1se 2.4) and estimate
Gm (2-43) for M = 1, 4, 16, 64. Discuss the results. Repeat the exercise but this time
eliminate the transient effects using the technique of Exercise 2.5.

2.7. Generate an iid random signal with zero mean u(t), ¢ = 1, ..., 512M. Normalize the
rms value of this signal to 1. Calculate y(r) = go(t)*uo(t) +n (t) (Exermse 2.4) with
ny(t) iid normally distributed noise with zero mean and o, =0 1 Estimate GH1 (2-43)
for M = 1,4, 16, 64. Discuss the results.

2.8. Generate an iid random signal with zero mean u(¢), ¢ = 1, ...,512M. Normalize the
rms value of this signal to 1. Calculate y, = go(f)*uy(r) (Exercise 2.4). Generate
u®) = ug(® +n,(), and y(1) = yy(H+n (t), with n,(8), n (t) iid normally distributed
noise with zero mean and o, = 0.5, 0' = 0.1. Estlmate GHI( joy) (2-43) for
M = 1,4, 16, 64. Discuss the results. Can you suggest a better method?

2.9. Estimate the variance of G ( Jj®) (2-43) for the setup of Exercise 2.7 using the coher-
ence ’yz((x)k). Put M = 16. Repeat the simulation 50 times and calculate Gé(k) from the
repeated estimates. Compare both results.

2,10. Consider the signal Uy, of Exercise 2.4 and calculate the output for the input
u(t) = uolé(t) +n (t) where n g(t) is zero mean iid generator noise with 6, = 0.1. Cal-
culate the system output ¥(t) = g(H)*u(r) and skip the first period to avond transients.
Calculate the FRF GML( Jj®,) (2-27) and estimate the variance of the FRF for this setup
using the coherence. Explain why the impact of generator noise on the variance is so
small.

2.11 APPENDIXES

Appendix 2.A Asymptotic Behavior of Averaging
Techniques

The proofs of the asymptotic (M — o) properties of the averaging techniques (2-27),
(2-43), and (2-46) follow the lines of Sections 14.13 (general theory) and 14.15 (application
on the measurement of a resistance). To understand these proofs fully we advise reading Sec-
tions 14.13 and 14.15 first.

We will prove the results for the ML estimator (2-27); the proofs for the H; (2-43) and
H, (2-46) methods follow exactly the same lines. The only difference is that the H, and H,
methods require the existence of the fourth-order moments of the disturbing noise instead of
the second-order moments for the ML method (2-27). This is due to the squaring operation of
the noise in (2-43) and (2-46). We split the proof in two parts: (i) the data blocks (subrecords)
are independent, Assumption 2.5(i), and (ii) the data blocks are correlated, Assumption
2.5(ii).
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2.A.1 Independent Data Blocks. 1In (2-27) sums of the form
1
S /M = 33,0 NUGK) (2-64)

occur with NU(k) the DFT of a[l(r) or n”l(t) t=0,1,...,N,— 1. Under Assumption
2.5(1, P = 2) the noise NU(k), [ = 1, 2 M, is 1ndcpendent over | and has finite
second-order moments. Hence, S(M)/M converges with probability one (w.p. 1) at the rate
OP(M'“ 2) to its expected value (see Section 14.9, version 2 of the law of large numbers).
The expected value of S(M) is zero because

8{NU(k)} = N- 1/22 ' pine=2mk/Ny = 0 for k£0

where ull = &{ nlll(r)}. Using the results of Sections 14.13.1 and 14.13.2 it follows di-
rectly that the estimate GML(jmk) (2-27) converges w.p. 1 (almost surely) at the rate
OP(M—”Z) to Gy(jm,).

Under Assumption 2.5(i, P = 2 +¢), the noise NUI(k) is independent over ! and has
finite moments of order 2 +¢&. Hence, S(M)4A/M is asymptotically normally distributed
(see Section 14.10, version 2 of the central limit theorem). Using the results of Section
14.13 4 it follows directly that Gy( J®,) is asymptotically normally distributed and that its
variance is asymptotically given by

ozk) =

|Goi®p)|? o3k) o) 63,(k)
- 2Re(———
M (|Yo(k)|2+ |Ugk)|? e(Yo(k)Uo(k)) )

where 67,(k), 6}(k), and 63,(k) are the noise (co-)variances of one data block (subrecord).

2.A.2 Correlated Data Blocks. The proof follows the same lines of the previous sec-
tion. The only difference is that other versions of the strong law of large numbers and the cen-
tral limit theorem are used. The sum (2-64) can be written as

S(M)/M = DFT(s(M)/M) where s(M)/M = A'IJZK () (2-65)

with nll)(#) = n,() or n(z). Under Assumption 2.5(ii, P) the disturbing noise n(f) in
(2-65) can be written as filtered white noise e(f) with finite moments of order P, so that n(7)
is mixing over ¢ of order P (see Example 14.6). Hence, the subrecord nll(f) = n(r + IN,) is
mixing over [ of order P. We conclude that under Assumption 2.5(ii, P = 2), the sum
s(M)/M converges w.p. 1 at the rate O (M- 172y to its expected value (see Section 14.9, ver-
sion 3 of the law of large numbers), and that under Assumption 2.5(ii, P = ), s(M)/A/—
is asymptotically normally distributed (see Section 14.10, version 3 of the central limit theo-
rem). This is also valid for S(M)/M, with & { S(M)} = 0, because the number of elements
N, in the DFT sum does not increase with M. Using the results of Sections 14.13.1, 14.13.2
and 14.13.4 it follows directly that the estimate GML(J(Dk) (2-27) converges w.p. 1 (almost
surely) at the rate O,(M~'/2) to G(j,) and that Gwm(jo,) is asymptotically normally dis-
tributed.
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Appendix 2.B Proof of Theorem 2.6 (On Decaying
Leakage Errors)

Proof.  For notational simplicity, we omit the subscript O to indicate the undisturbed
variables. We have by definition y(f) = ﬁ’; g(T)u(t ~ T)dt so that

Y = [2, T e

= [2( Lu(tT - ) Tedu

J—Z
= [o@e™ J_z

with 0, = 2k f,/N. Define I such that T = [T +¢ with 0 <e < T and change variable
t—-l—1t

Lu(tT, - T)e 0T~ Vg

Y(k) = J.;'g(t)e‘f"’ﬂ 1 ZN 1-! u(eT, £)e 00T gq

Calculating the difference Y(k) — G(jwp) U(k), using G(jo,) = fo g(v)e ™ dr, gives
Y(k) - GUopUK) = J;’fg(r)e"’“’“( J—Z,- y u(rTs—e)e‘f'“’k"Ts‘”—U(k))dr (2-66)

The absolute value of (2-66) can be bounded above by

|Y() - G UM < [ 15t %szv;j,"u(ﬂ: —£)e T _ e de
<N-2(C, [ Tlg@ldt + G, gl dk) @67
< C,N-172

where the second inequality in (2-67) is due to Lemma 2.8 (see below) and with C,
independent of k. U

Lemma 2.8 For a strictly stable system excited by uniformly bounded (Ju(z)| < C, for
any r) filtered white noise we have

N-1 —Iu(th _ E)e'jm*('T‘_e) —Uk)

P

SN-12(Ct+ Cy) (2-68)

with C; and C, constants independent of £, €, [, and N.
Proof. Using 2N=_11 b= Zt‘l_ g7 f’ 01 —Zi\’:_;[_ ;» the left-hand side of
(2-68) is bounded above by

-1
— ¥ utT - e)e %779

t=-l

Y u(tT,-€)e™ T8 _y(p)| <

”*/— t=-l

— Y u(tT,-e)e /™0 _Uk) + |—

vl (2-69)

S u(tT,-e)e/ 07" e
t=N-1
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The sum of the first and third terms of the right-hand side of (2-69) is bounded by
i N-1

— Y u(tT —e)e o T79) <
t=N-{

2iC, _1C,

2-70
*memwm ¢

2 u(tT, - €)e 7T =8 4

t-—I

where the last inequality stems from | = (1~¢€)/T, with C; = 2C,/T,. So it remains to
be shown that the second term of (2-69) can be bounded as

] J_z Ju(tT - g)e T T ) _ U(k)' O(N-172), (2-71)
. _ N-1 —jo T, .
with U(k) = f\’z’=° u(tT e /™. Consider
1 onN-1 —jo,0T,—) 1 ~oN-1 —ja T
Ek) = —2 u(tT, —e)e /s ——Z u(tTHe™ s 2-72)
[N<k=0 [Nt =0
Then

2 —J -5
BUERI?Y = £30 7 o Ru(t = )T Je =90

(2-73)
- —R (X L Rul(1 = )T —g)e =0T ei0n)
or (change variables r~s = n and ¢t = m)
E(|E®)?} = 2%V ! (1-|n|/N)R, (nT)e 7o Ts
2o - ” e (2-74)

-2 Re( ~|n|/N)R, (nT, - £)e™ 1" Ts g0

k- (N 1)

Because u(f) can be modeled as uniformly bounded filtered white noise, we have
> WRLT £8) SO Y) and Y~__ Inl|R,, (T te) = ONO)  (2-75)

for 0<e<T,. Using 2

__(N T e Zn__w 2:=N and (2-75), (2-74)
can be bounded above as

SLIE®)I?}<2| ¥ R, (nTye/™"Ts—Re( 3 R, (nT,—e)e/ ™" Tse/%)

n=-co n=-oo

+ O(N-1) - O(e )

(2-76)

Because the excitation signal u(f) is band limited, its power spectrum
Syu(jo) = F{R, (1)} is zero for |®| 2 ®,/2, and, hence, the Fourier transform of the dis-
crete-time sequence R, (nT, —€) becomes

3= R T —e)e’*s = F{R, (t-8)} = Sy (jw)ei®t for || < w,/2

n = —oo

reducing (2-76) to & { |[E(k)[2} < O(N-Y).



Frequency Response
Function Measurements
in the Presence

of Nonlinear Distortions

Abstract: In this book we deal with the measurement and identification of linear dynamic
systems. However, in reality the linearity assumption is only approximately valid. Many sys-
tems that are assumed to be linear are disturbed by nonlinear distortions. The aim of this
chapter is not to show how nonlinear systems should be modeled because this problem is be-
yond the scope of this book. The goal is to provide the reader with an insight into the impact
of nonlinear distortions on FRF measurements. We will also look for tools to detect, qualify,
and quantify the presence of nonlinear distortions. Finally, it will be shown how we can still
use the linear framework under these conditions.

3.1 INTRODUCTION

The aim of this chapter is not to model nonlinear systems because this problem is beyond the
scope of this book. The goal is to provide the reader with insight into the behavior of nonlin-
ear distortions and their impact on frequency response function (FRF) measurements. This al-
lows not only a better understanding of the error mechanism but also knowledge that can be
used during the design of the experiment in order to get the best results under the imposed op-
erational conditions. To do so, the user should clearly specify the goal of his measurements.
In order to formalize this discussion, we use the general structure given in Figure 3-1. The
measured output y(f) consists of a linear y; (t) and a nonlinear yy; (#) contribution. For sim-
plicity we assume that the linear contribution dominates the nonlinear one for sufficiently
small inputs:

(yNL)rms
s = 0 (yL)rms

=0 3-1)

Under this assumption we have two basic options: (i) The goal of the measurement is to get
the FRF of the underlying linear system, minimizing the impact of the NLS on the measure-
ments. If (3-1) is not valid, the theory that is developed in this chapter is still applicable, but it

System Identification: A Frequency Domain Approach. Rik Pintelon and Johan Schoukens
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NLS
u(t
® LS j.giy(t) Figure 3-1. General setup of the nonlinear

distortion.

is no longer possible to define an underlying linear system. (ii) Try to find the best linear ap-
proximation to the global system, including the NLS. The first option is the best choice if
some underlying linear physical model exists and the user wants to identify it as well as pos-
sible. The second choice is preferred if the model will be used to describe the relation be-
tween input and output using a linear model. Then, the nonlinearity will be linearized around
the operation point of the test. Both choices will be discussed in this chapter.

The chapter is structured along the following lines: a simple introduction to the behav-
ior of nonlinear systems is given; the class of nonlinear distortions that is covered by this
work is defined; detection techniques for nonlinear distortions are developed; and finally it is
shown how the underlying linear system or the best linear approximation can be optimally
measured.

3.2 INTUITIVE UNDERSTANDING OF THE BEHAVIOR

OF NONLINEAR SYSTEMS

Consider the static nonlinear system y = wu+u?+u® excited with a sine wave
u(t) = Asin2nfyt. The response of this system is split into its linear, quadratic, and cubic
contributions. The corresponding amplitude spectra are given in Figure 3-2. It shows that
nonlinear systems create additional harmonics. On the one hand this allows the detection of
nonlinear contributions, but it also shows that the FRF measurements are disturbed. The cu-
bic subsystem also puts power at the original frequency f, that cannot be separated from the
linear contributions using only a single sine measurement. More advanced methods that are
beyond the scope of this book are needed to solve this problem (e.g., Bendat, 1998). In gen-
eral, for a multiharmonic periodic signal, the frequencies of quadratic terms are found by
looking for all combinations f; + f; over the positive and negative frequencies of the signal.
For the cubic terms triple sums f; + f ;j + fi should be considered, and in general n frequen-
cies should be combined for a nonlinearity of degree n. This shows that for periodic signals
having only odd frequency components (at fg, 3 fo, 5f¢, ...), the even nonlinearities do not
disturb the FRF measurements (the sum of two odd frequencies is always even) but it is im-
possible to avoid disturbances from the odd nonlinearities (e.g., fo+ fo— fo = fo)-

Input Output
1\ T /]\ Linear
-fo fo f
¢\ T /]\ 1\ I 1\ Quadratic
-fo fo f -2fq 2fy f
Cubic
A 1\ /I\ Ay Figure 3-2. Impact of linear, quadratic, and

-3fe ~fo fo 3fof cubic systems on the spectrum of a sine.
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These results can be generalized using Volterra systems. A concise introduction to this
technique is given in the book of Schetzen (1980). The basic idea is to extend the linear
model to a nonlinear one using multidimensional convolutions, for example,

YO = 7 gi@u -1+ |7 |7 gy(t;, Tult -1 )u(t - 1,)dt,dty + - (3-2)
For static nonlinear systems this relation simplifies to a Taylor expansion:

y(&) = gu(®) + gru(t) + - (3-3)

The autocorrelation R, (7) no longer depends on the second-order moments of # only but
also on the higher order ones. Consequently, the nonlinear distortions of the FRF measure-
ment also depend on the amplitude distribution of the excitation, for example, normally, uni-
formly, or binary distributed excitations. If the aim is to get the best linear approximation, it is
important to use the same kind of excitations (power spectrum and amplitude distribution) as
will be applied later on to the system, otherwise the linear approximation can become invalid.

For periodic excitations with N harmonics at frequencies kf,./N, k = 1,..., N, re-
lation (3-2) simplifies to a sum over all possible frequency combinations adding to the output
Fourier coefficient Y, at frequency kf, . /N (Chua and Ng, 1979):

Y, =Y _ YR (3-4)

with Y2 the contribution of degree o

N
Y/? = 2 ng’k]’kz"“’kotflUklUkZ.”Uka-]ULk
Ky ky kg =-N (3-5)
-1
Ly = k=371

and U, the input Fourier coefficient at frequency #f ../ N (see Section 2.3 for the relation-
ship between the Fourier coefficient and the DFT spectrum of a periodic signal).
GY k. ky .. k,_, is the symmetrized frequency domain representation of the Volterra kernel of
degree 0. (Schetzen, 1980) so that the order of the frequencies L, ki, k, ..., kK, _; has no im-
portance

e i ~j2mf ok Lk
& bk, = [m"‘[mg“(tl’ oy T ot kT g gt (3-6)

The convergence of this sum is later guaranteed in Definition 3.5.

3.3 A FORMAL FRAMEWORK TO DESCRIBE
NONLINEAR DISTORTIONS

Describing nonlinear systems is a tedious job because it is necessary to guarantee conver-
gence of the Volterra series (3-4). Moreover, the limiting value also depends on the amplitude
distribution of the excitation. A normally distributed excitation can result in a different limit-
ing value than a uniform distribution, even if the power spectra of both excitation signals are
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the same. For these reasons it is necessary to state, precisely, the validity of these theories.
This depends on the class of excitation signals and the class of nonlinear distortions that will
be considered.

3.3.1 Class of Excitation Signals

As mentioned before, FRF measurements in the presence of nonlinear distortions de-
pend on the class of excitation signals. We focus on random multisines. These are periodic
random excitations with a user-defined amplitude spectrum. When an integer number of peri-
ods is measured, the amplitude spectrum is perfectly realized, which is not the case for a ran-
dom excitation (see also Chapter 4 on excitation signals). All the results can be generalized
easily to (periodic) random signals (random amplitude and random phase), at a price of tak-
ing an additional expectation with respect to the amplitudes in the expressions as is com-
mented on after Theorem 3.7. This generalizes the results to the wider class of normally dis-
tributed random excitations. However, from the experimental point of view, we have a strong
preference to use periodic excitations with well-controlled amplitude spectra as explained in
the previous chapter.

Definition 3.1 (Random Multisine): A signal u(¢) is a random multisine if
u@) = 0 UpeltM bt/ 3-7)

with U, = U = |U|e’®, fu the maximum frequency of the excitation signal, N € N
the number of frequency components, and the phases ¢, a realization of an independent dis-
tributed random process on [0, 27t[ such that & { e/%}=0.

Remarks

(i) A possible choice for ¢, could be to select it as a uniformly distributed noise se-
quence, but other choices will also do. For example, ¢, can also be chosen to
have a discrete distribution.

(ii) If the amplitude spectrum |U;| is random, then (3-7) equals periodic noise.

(iii) For simplicity U, is set to zero, considering the DC component as the operating
point of the system. Also the output bias of the nonlinear system depends nonlin-
early on the input. Consequently, linear models cannot describe the variations of
the output bias as a function of the input. The DC information of the input and the
output will not be used during the linear identification process.

(iv) It is strongly advised to use FFT techniques to calculate multisine signals, other-
wise the computation time becomes very long (see Exercises 2.1 and 2.2).

We will study the asymptotic behavior of the nonlinear distortions for multisines with a grow-
ing number of harmonics. In order to keep excitations with a finite power for N — o, the
signals are scaled with 1/J/N. This leads finally to the class of normalized random multi-
sines E,, and the class of periodic noise excitations P, that we will use in this study.

Definition 3.2 (Normalized Random Multisine): The class of normalized random
multisines E ,, is given by the set of random multisines u,(f) (3-7) having a normalized ampli-
tude spectrum: |U,| = l:](k fma/ N)/ N, The deterministic amplitudes Uk f s/ N) € R
are uniformly bounded, U(f) < M;, where the function U(f) has a finite number of disconti-
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nuities on the interval [0, f,,,,]. The phases ¢, are the realization of an independent (over &)
random process satisfying E{e’%} = 0. The DC component of the u,(t) is set to zero,
U, = 0, and the frequency f,,,, is independent of N.

Definition 3.3 (Normalized Periodic Noise): The class of normalized periodic noise
excitations P, is given by the set of random multisines u,(f) (3-7) having a normalized ran-
dom amplitude spectrum: |U,| = U(kf 40/ N)/ JN. The amplitudes U(kf .,/ N) & R* and
the phases ¢, are the realization of independent (jointly, and over k ) random processes satis-
fying the following conditions: Ok f max” V) has uniformly bounded moments of any order
B{U* )} <M, the function &{ U*(f)} has a finite number of discontinuities on the in-
terval [0, f,..], and E{ e ?%} = 0. The DC component of the up(t) is set to zero, Uy = 0,
and the frequency f,,,, is independent of N.

Remark. 1In the sequel of this book reference will be made to U, for [k > N. In these
cases we define U, = 0 for [k| > N.

In the sequel of the book, a more general signal will be used. Because it is closely re-
lated to the concept of normalized multisines, we prefer to define it here. The ideas developed
in this chapter can even be applied to this class of excitation signals, if some of the assump-
tions are modified (e.g., the convergence assumption in Definition 3.5). However, the reader
should be aware that the limiting value of the measured FRF can depend on the specific sig-
nal in this generalized case.

Definition 3.4 (Normalized Periodic Signals): The class of normalized periodic sig-
nals is given by the set of periodic signals u,(f) (3-7) that have a normalized amplitude or
power spectrum. For signals with a deterministic amplitude spectrum, we have |U, W =
O(N-1/2). For signals with a random amplitude spectrum, the expected value & {|U,J?} is
normalized: &{|U;|2} = O(1/N). For deterministic signals the peak value (m?xlu(t)l <
C < e for any ¢, including ¢ = o) should be bounded.

3.3.2 Selection of a Model Structure
for the Nonlinear System

In this section we set up a mathematical description for the nonlinear distortions. Al-
though we are not interested, at all, in extracting these models from the measurement, a for-
mal description is needed in order to characterize and quantify the impact of the nonlinear
distortions. One of the most general descriptions for nonlinear systems is the Volterra models
(3-2) splitting the relation between input and output in different contributions of increasing
degree of nonlinearity (Schetzen, 1980).

Convergence aspects are a central issue when dealing with these models. Uniform con-
vergence requires that there exists an upper bound on the output error (= system output ~
model output) amplitude that is independent of the input and decreases to zero if the number
of terms ng, in ZZL Y& goes to infinity. It can be shown only for a very restricted set of
systems, e.g., the underlying nonlinear function is analytic for all considered inputs. The class
of allowable systems is considerably extended if the uniform convergence is replaced by
mean square convergence. In that case it is no longer necessary that the output converges
everywhere in the domain of interest. Only the power (or root mean square value) of the error
signal should converge to zero for a specified class of excitations. Thus, at a discrete set of iso-
lated points the model does not necessarily converge (similar to the convergence of a Fourier
series to a discontinuous function). Under mean square convergence relays, quantizers and
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other discontinuous nonlinear systems can be included in the model set. The reader should be
aware that this set of systems is not complete; for example, bifurcations can still not be mod-
eled within this concept. These ideas are very similar to the idea of Wiener series as explained
by Schetzen (1980). Because the FRF measurements can be considered as the minimizers of
a weighted least squares cost function, it is clear that the input-output relationship of the non-
linear distortions is approximated in least square sense. This motivates the following assump-
tion:

Definition 3.5 (Class of Nonlinear Systems): S is the set of nonlinear systems such
that for random multisines uy € E, (see Definition 3.2) or periodic noise uy € Py (see
Definition 3.3)

2:= MgMF<Ci<oo (3-8)

with M. = max Ing, Ky Ky oo ka-ll and where Mg is defined in Definition 3.2 or Definition
33

Under condition (3-8) there exists a uniformly bounded Volterra series whose output
converges in mean square sense to the output of the nonlinear distortion for uy € Ey. The
FRF measurement G(jw,) at frequency f, for nonlinear systems belonging to the set S ex-
cited with uy € Ey or uy € Py is the sum of the nonlinear contributions of degree «,
G*jw,) (see Eq. (3-5)):

. Y -3 -
Gy = 7 = Yo 6oy
k
(3-9)
. Y]? S UklUkz"'Uku-luLk
G(jwy) = 7. - k kZ ) NGz;,k,,kz, kg T,
1Ry =

3.4 STUDY OF THE PROPERTIES OF FRF MEASUREMENTS

IN THE PRESENCE OF NONLINEAR DISTORTIONS

In this section, profound insight is given into the impact of the nonlinear distortions on the
FRF measurements for normalized random multisine excitations. It is shown in Appendix
3.A that the contributions to the FRF can be partitioned into two sets, the first one consisting
of contributions that do not depend on the random phases of the excitation and the second one
containing the contributions that depend on the random phases:

(i) Systematic contributions G,z(j®,) : There exists a related linear dynamic system
Gg(jo,) to which the expected value of the FRF estimate converges under weak
conditions. It differs from the underlying linear system Gg(jw,) by the systematic
contributions Gp(j®,) of the nonlinear distortions. We will show that for the class
of normally distributed signals (including random multisines and noise excita-
tions) the related linear dynamic system (RLDS) is the best linear approximation
to the nonlinear system. The contributions of Gg(j®,) do not depend upon the
random phases of the input.
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(ii) Stochastic contributions G4(jw,): Even for a very large number of frequencies
and in the absence of disturbing noise, the FRF measurement is not smooth as a
function of the frequency. It is scattered around its expected value, and these devi-
ations do not converge to zero. They are called the stochastic nonlinear distor-
tions. The contributions to G¢(jw,) depend on the random phases of the input.

These concepts are formalized below. For a system belonging to the set S and a normalized
random multisine excitation uy € Ey (or normalized periodic noise uy € Py), the mea-
sured FRF consists of three parts:

Gjoy) = GRljop) + G(joy) + N (k) (3-10)

with Gz(j®,) the RLDS, G((j®,) the stochastic nonlinear contributions, and Nj(k) the er-
rors due to the output noise.

The related linear dynamic system Gg(j®,) consists of two parts:
Gr(joy,) = G(jo,) + Gx(jw,) (3-11)

with Gy(jw,) the underlying linear system and Gg(j®,) the bias or systematic errors
due to the nonlinear distortions.

G4(jw,) is called a stochastic contribution because it behaves as uncorrelated (over the
frequencies) noise, although the reader should be aware that it is not a random signal
once the excitation signal is fixed. Because of this noisy behavior, the presence of non-
linear distortions is often not recognized.

N (k) describes the impact of the disturbing noise on the FRF measurement. For sim-
plicity we assume that the input measurements are noise free (dominating output noise)
resulting in a noise distortion N ;(k) having the following properties:

Assumption 3.6 (Measurement Noise): The noise N (k) on the FRF measurement
has the following properties.

(i) 6{NsB)} =0
(i) 8{NgkINc(D} = 0%(k)8;, and 8 { [Ns(jw)|*} = o4(k)
(i) E{ND|Ng®)2} = 0 for k, [%0

0 k2l
(iv) E{(|Nsk)|? -0k (ND|?-0EI)} = { -

O(N% k=1

The different contributions to the FRF are studied in more detail in the following for two sit-
uations. In the first case we look for the average value if the experiment is repeated for a con-
stant number of harmonics in the excitation. The second case deals with the asymptotic be-
havior if the number of harmonics N — oo,
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3.4.1 Study of the Expected Value of the FRF
for a Constant Number of Harmonics

What happens if the FRF measurement is averaged for different realizations of a nor-
malized random multisine excitation, keeping its amplitude spectrum constant? Or more for-
mally: what is the expected value & { G(jw,)} for N fixed? Thereto the mathematical expec-
tation & { G*(jw,)} is calculated with respect to the phases. This means that the measured
frequency response function of the system is averaged over different realizations of the ran-
dom multisine excitation, keeping the frequency grid and the amplitude of the Fourier coeffi-
cients U, of the excitation signal u(f) constant.

Theorem 3.7 (Response Nonlinear System): For a system belonging to the system
set S (see Definition 3.5), excited with independent realizations of a normalized random
multisine uy € By (see Definition 3.2) or normalized periodic noise uy e P, (see
Definition 3.3), we have:

1. The expected value of G(jw,) is given by

E{G(joy} = Gelioy = Gojop) + Gg(jay) (3-12)
with
‘ := ) G- 1(jwy) for uniform continuous phase distributions
GBU mk) = oo . -
o2 G3*-1(jw,) + O(N-1) otherwise

G3*-l(jo) = 8{G** (joy}.
2. The expected value of G*(jw,) is given by

N
g{ G2~ l(j(!)k)} = Cqy EGI%,‘{;.,I%..., ‘Sa—lvsa-lgaml’{|U~71l2""U"a-1|2}
Sp e S =1
+ 0N (3-13)
£l G2 0 for uniform continuous phase distributions
{G*%(joy} = 0, (N-31?) otherwise
with ¢, = 20-1Q2a-1)!t, Y= O,(NF) = OWP), and where 8y {.} de-

notes the expected value with respect to the random amplitudes of the periodic
noise.

Proof. See Appendix 3.A. 0
Remarks
(i) Note that from (3-13) it follows that & { G2%~1(jw,)} = O(N®) because in the

sum N%-! terms of O(1/N®~1) are added together(]UsJ = O(N-Y'2); see Def-
initions 3.2 and 3.3).
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(ii) The related linear dynamic system depends on the number of frequencies N that
are used in the random multisine (periodic noise). Therefore, it would be better
to denote it as G, y. However, later on it will be shown that the limit for N — o
exists:h}im Gy n(j®) = Gg(jw). For that reason we preferred not to overload

oo

the notation, leaving out the dependence on N.

(iii) Instead of G§(j®,) being considered as the expected value (see (3-12)), it can be
interpreted as that part of the transfer function contribution of degree o that is in-
dependent of the random phase of the random multisine excitation. All the com-
ponents that still depend on the random phase have a zero mean value because
&{ei?} = 0 and as such do not contribute to the bias term. Consequently,
Gg(jo,) is independent of the random phases of the excitation; in the contribut-
ing terms the random phases of the excitation cancel each other, resulting in a sys-
tematic contribution of the nonlinear distortion to the FRF. G¢(j®,) depends on
the random phases of the excitation so that it is a random component, modeling
the stochastic contribution of the nonlinear distortion of degree o, to the FRF.

(iv) A typical example of a discrete phase distribution is @ € {0, =}. For discrete
phase distributions, the even degree terms also have a bias contribution that disap-
pears as an O(N-1).

An important conclusion of this section is that only the odd terms G2%-!(jw,) contribute to
the related linear dynamic system,; it does (asymptotically) not depend on the even nonlinear
distortions. This result will be used later on to formulate optimized measurement strategies.
The theorem also gives a possibility to measure Gg(jw,). It can be obtained by averaging
over a sufficient number of experiments with different realizations of the random multisine so
that the stochastic nonlinear contributions are averaged to zero.

3.4.2 Asymptotic Behavior of the FRF if the Number
of Harmonics Tends to Infinity

From the previous section we know that besides the disturbing noise N (%), the mea-
sured FRF consists of two remaining components: a deterministic one Gg(jw,) and a sto-
chastic one G(jw,). A first possibility to measure G4(j®w,) is to average over a large num-
ber of experiments so that the contribution G¢(jw,) is averaged to zero for a fixed number of
frequency components N in the random multisine (periodic noise). Because in each realiza-
tion we should calculate and load each time a new random multisine (periodic noise se-
quence) in the generator memory and wait until the transients in the measured signals disap-
pear, it is tempting to stick to one experiment, but using a very dense (N — o) multisine
(periodic noise). One might hope that the resulting measurement of the FRF would become
smooth because the stochastic nonlinear contributions would average to zero. It turns out that
this is not the case. Neither of the contributions (Gg(jo,) and Gg(j®,)) decreases if the
number of frequencies N of the excitation increases; the FRF does not become smooth for
N — 0. Also the bias contribution G4(jw,) does not decrease when N increases because it
is an O(N9). This is formalized in the next theorem.

Theorem 3.8 (Asymptotic Behavior of the Systematic and Stochastic Nonlin-
earities): Consider a system belonging to the system set S, excited with a random multi-
sine uy € Ey (see Definition 3.2) or periodic noise u, € P, (see Definition 3.3). The
systematic Gpg(jw,) and stochastic G(j®,) contributions to the transfer function
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G(jo,) = Gpjwy) + Gg(jw,), with G(jw) = Gy(jo,) + Gx(jo,), do not decrease to
zeroas N — oo Gg(jw,) is an O(N) and Gy(jw,) isan O  (N9).

Proof.  See remarks in Section 3.4.1 on Gz(jw,) and Appendix 3.B on G¢(jw,). 0O

The stochastic behavior of Gg(jw,) can be further characterized, showing that its
second-order properties are completely similar to those of the noise N (k). This explains
why it is difficult to distinguish between noise and nonlinear distortions. It is also the reason
why nonlinear distortions are often not recognized.

Theorem 3.9 (Properties of Stochastic Nonlinearities): For a system belonging to
the system set S, excited with a random multisine u, € E,, (see Definition 3.2) or periodic
noise uy € Py (see Definition 3.3), the following properties are valid:

(i) 8{Gs(jop} =0
(i) 6{Gjo)Gs(jw)) = OW-Y) if k1 and 8{|Gs(jmp)|2} =62 (k) = ONO)
(i) &{Gs(jm)|Ggliop[?} = OWN-1) for k#1

ON-! k#l
(iv) B{(|Gsjwy)|>- 0% ()(Gsim)|2- 63 D)} ={ (N1 #

O(N9) k=1

Proof. See Appendix 3.B. O

Remark. These observations are in agreement with the classical result showing that
the output of a nonlinear system can be split into two parts (Bendat, 1998; Forssell and Ljung,
2000b): a first part that is linearly related to the input (in our case leading to Gg(j®,)) and a
second part that is uncorrelated with the input (leading to G¢(jw,)). Theorem 3.9 tells more
about the second and higher order properties of the uncorrelated part.

In the previous theorem, the moments of the nonlinear contributions up to the fourth or-
der were studied. In general, it is even possible to tell more about these nonlinear distortions.
In the next theorem, it is shown that they are mixing (see also Section 14.4). Loosely speak-
ing, this means that the dependence of the nonlinear contributions decreases fast enough to
zero if the frequency distance between the contributions increases.

Theorem 3.10 (Mixing Property of Stochastic Nonlinearities): The nonlinear
contributions for a system belonging to the system set S, excited with a random multisine
uy € By (see Definition 3.2) or periodic noise uy € P, (see Definition 3.3), are mixing of
order infinity.

Proof. See Appendix 3.C. O

Theorem 3.11 (Distribution of Stochastic Nonlinearities): For a system belonging to
the system set S, excited with a random multisine uy € E, (see Definition 3.2) or periodic
noise uy € Py (see Definition 3.3), the stochastic nonlinearities are circular complex
normally distributed.

Proof. See Appendix 3.E. O
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3.4.3 Further Comments on the Related Linear
Dynamic System

In this section a physical interpretation is given for the related linear dynamic system
Gg(jo). First, it will be shown that normally distributed random excitations and random
multisines result in the same related linear dynamic system if both excitations are generated
from the same power spectrum {7 2( f) (see Definition 3.2 for the normalized random multi-
sine). Next, it will be shown that Gg(j®) corresponds to the best linear approximation, in
least squares sense, of the nonlinear system; finally it will be shown that asymptotically
Gg(jw) is smooth.

3.4.3.1 Connecting the Random Multisine to Normally Distributed Noise. If the
system is excited with Gaussian noise, the limit value of the estimated FRF (after averaging
over an infinite number of blocks and neglecting leakage effects, see Chapter 2) is given by

Gj®) = Syy(j0)/Syy(i®) (3-14)

Splitting Y(j®) into its contribution of degree o results in Y(jo) = Y- _ Y*(jo) and
shows that the nonlinear contribution of degree o to Gg(j®) should be calculated as:
GX Jj0) = S¥,(jo)/ Sy, (jo). To interpret S¢,(jw) higher order spectra can be used (Ben-
dat and Piersol, 1980; Bendat, 1998; Billings, 1980; Brillinger, 1981; Mendel, 1991; Nikias
and Mendel, 1993; Nikias and Petropulu, 1993). Because these higher order spectra depend
not only on the power spectrum of the excitation noise but also on their higher order mo-
ments, it is clear that the value of G%(jw) also depends on its pdf. In the case of zero mean
normally distributed noise, the higher order spectra can be calculated easily and the contribu-
tion of degree « is given by

G2 i) = “ [CG2o-1 i®)... j
GO = cof [ GFRLs, ot SuvTOD--Suu(OuVdf vdfes o

G*(jw) = 0

with ¢, = 2%-1(20.— 1)!! (see Appendix 3.G). This result allows us a better understanding
of the RLDS as it was obtained for the random multisine: Eq. (3-15) is similar to (3-13). Inte-
grals have to be considered over the continuous power spectrum of the noise instead of sums
over discrete spectral components of the periodic signal. In Section 3.4.3.3 a formal state-
ment is given on the asymptotic (N — o) equivalence of Gg(jw) for the three considered
classes of excitations: random multisines, periodic noise, and normally distributed noise.

3.4.3.2 Interpretation of the Related Linear Dynamic System as the Best Linear
. Approximation. When a nonlinear system is approximated using a linear system, it is im-
portant to be sure that the best approximation is made. This is actually the case for Gg(j®).
This follows directly from the fact that Eq. (3-14) is shown to give the best linear approxima-
tion in least square sense (Eykhoff, 1974; Bendat and Piersol, 1980). The estimated impulse
response (and the corresponding FRF) minimizes the mean square value of eft) =
¥(t) — g(t)*u(?) over the measurement interval. For periodic excitations, (3-14) boils down to
G(jwy) = Syy(jo)/Syy(jo,) = Y./ U,, which is exactly the starting expression used in
(3-9). So the related linear dynamic system is also the best linear approximation for the class
of random multisine excitations. The reader should be aware that this approximation is a
function of the power spectrum of the excitation.
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3.4.3.3 Asymptotic Equivalences. The following theorem states that the asymptotic
best linear approximation Gg(jw) is the same for random phase multisines (Definition 3.2),
periodic noise (Definition 3.3), and Gaussian noise with the same (power) spectra. Hence,
Gr(jw) can be used to predict the response of the nonlinear system to any signal belonging
to these three classes. Note, however, that the prediction error is bounded below by the sto-
chastic nonlinear contributions y () = I\IIlm ¥ n(t) (the notation y 5 is used here to indi-
cate explicitly the dependence on the pumber of components). If this error is too large for a
particular application, then the only way to improve the prediction quality is to model also the
nonlinear behavior of the system.

The advantage of using random phase multisines over periodic noise to measure
Gp(jw) is that additional averages over the random amplitudes are avoided. The advantage
of using periodic noise over Gaussian noise to measure Gg(jw) is that the leakage errors are
avoided.

Assuming that FRF measurements with M different excitations signals are made, the
asymptotic best linear approximation Gg(jo,) can be estimated as

Grjo) = YV _ Yimk)/ UmI(k) (3-16)
for random phase multisines (see Eq. 3-14) and as

PN P S O G -
r(j®p) = TG (3-17)

for periodic and Gaussian noise, where Ulml(k) and YIm}(k) are the input and output DFT
spectra of the mth FRF measurement.

Theorem 3.12 (Asymptotic Best Linear Approximation): Consider the following
three classes of excitation signals: (i) random phase multisines (see Definition 3.2) with
U =S, Uf](f) (1i) periodic noise (see Definition 3.3) with E{ U 2(f)} S¢e(f), and (iii)
Gaussian noise with power spectrum Sy,(j®) =S ,(f)/ frnax for Ifl < fmx and zero
elsewhere. For these three classes of excitation signals, the best linear approximations
G y(j®) (H,-FRF measurement) of a nonlinear system belonging to the class S (see
Definition 3.5) converge (measurement time and N — o) at the rate O(N-1) to the same
limit value Gg(jw). If the joint second-order derivatives of the odd degree kernels
G _fl’fl wfunfay @ =1L2, 0,0, wrt. f,fy,...,fy ), are bounded for
Lfo fm L€ [0 fmu] then GR(](D) is given by

GRj®) = G(jw) + Gp(j®) = Gy(jo) + Y. _, CHjo)

C(x max max (3-18)
Cla = ———-— ...Jo G%af ~-~v‘fu_1S00(f1)".sfjf/(fa'l)dfl-"dfa—l

Sax 0
with ¢, = 2¢-1(20t - 1)!!.

Proof. See Appendix 3.H. a
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From Theorem 3.12 it follows that the asymptotic best linear approximation Gg(jw) de-
pends only on the second-order moments S, ,(f) of the input spectrum. Note also that (3-15),
with S,y (j©) = Sp(f)/ finax for |fl < fmax and zero elsewhere, reduces to C{ in (3-18).

3.4.3.4 Smoothness. Additional assumptions are required to guarantee the smooth-
ness of Gg(jw). This restricts further the class of allowable nonlinear systems.

Assumption 3.13: For any we [0, ®,,], the odd degree Volterra kernels
G}f‘f—pl_fp infy O 1,2, ..., are continuous functions of ® with continuous Pth order

derivative w.r.t. M.

For example, systems consisting of the cascade and parallel connection of linear sys-
tems and multipliers result in rational Volterra kernels for which Assumption 3.13 is satisfied
(Schetzen, 1980).

Assumption 3.14: The series Y 2_, C{{(jo), with Cf* defined in (3-18), and its de-
rivatives of order 1, 2, ..., P w.r.t. ® converge (Q — o ) uniformly in @ € {0, ®_,,] to their
limit sum.

Note that Assumptions 3.13 and 3.14 do not exclude the possible nonuniform (point
wise or mean square) convergence of the output of the Volterra series model y,(f) to y(1).

Theorem 3.15 (Smoothness Best Linear Approximation): Under the conditions of
Theorem 3.12 and Assumptions 3.13 and 3.14, the asymptotic best linear approximation
G(jw) is a continuous function of € [0, ®_,, ] with continuous P th order derivative.

Proof. See Appendix 3.1. O

From this theorem it follows that Gg(j®) and its higher order derivatives w.r.t. ® are
continuous functions of ®. This explains why Gg(s) can be approximated very well by a ra-
tional function of s of sufficiently high order.

3.4.3.5 Special Case: Wiener-Hammerstein Systems. In the case of a Wiener-
Hammerstein system, consisting of a linear system with transfer function R(jw), followed
by a static nonlinearity, v(t) = 2:= Oaku"(t), with g, € R, and a second linear system
S(jo) (see Figure 3-3), the previous expressions can be simplified further. The Volterra ker-
nel of degree . at frequency k is (Schetzen, 1980)

Gl = G201 SUBR( ). RGO, )
(3-19)
G &, =0
Linear system Static nonlinear Linear system
— R (J (D) system S(j (1)) I
GRljw) + R(j®)S(jw)

Figure 3-3. Nonlinear Wiener-Hammerstein system and its related linear dynamic.
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with ®, = ?= L O B =2a-1orf = 20, and a,,_; a constant independent of the

frequencies and the input signal. Using Theorems 3.7 and 3.12, we find

Golj®y) = a,R(jo)S(joy)
GE* 1oy = 8341 DLR(®YS(0y) + Oy(NT

_ ca max max
|
G3*(joy) = 0

(3-20)

RUf D2 | R o D2 g f DS g f e DS 1A o 1

with ¢, = 2%-1(20—1)!!, R(f) = R(jw), and z:= . O4(N-1) = O(N-1). Hence, the
asymptotic (N — oo ) related linear dynamic system is given by

Gr(j®) = C(U, R)RGo)S(jm) (3-21)

with C(U,R) = 2: - 1%20-1 Dy Asaresult, for Wiener-Hammerstein systems, the asymp-
totic best linear approximation Gg(j®) equals the underlying linear system within a real fre-
quency-independent scale factor C(U, R) that depends on the excitation signal and the system
R(jw). Similar results were also reported (Billings and Fakhour, 1982; Nikias and Petropulu,

1993) for special classes of excitation signals such as white zero mean Gaussian noise.

Remark. Sometimes the structure in Figure 3-3 is called the “general model” (e.g.,
Billings and Fakhour, 1982).

3.4.4 Further Comments on the Stochastic
Nonlinear Contributions

Also for the stochastic nonlinear contributions, the smoothness and the equivalence re-
sults can be obtained. Using (3-9) and (3-10) with N (k) = 0 (no disturbing noise), the rela-
tion between the input and output Fourier coefficients at frequency f, = kf,,/N can be
written as

Y, = Grljo)Ui + Y (3-22)

with Y5, = Gg(jo,) U, the stochastic nonlinear contributions observed at the output of the
system. Because U, = O(N-'/2) (see Definitions 3.2 and 3.3) and |G(j®,)| = O(N9) (see
Theorem 3.9) it follows that Y, = O(N-1/2). The following theorem studies the asymptotic
(N — oo behavior of the variance of J/NY, for random phase multisines, periodic noise,
and Gaussian noise excitations.

Theorem 3.16 (Asymptotic Variance of Stochastic Nonlinear Contributions):
Consider the following three classes of excitation signals: (i) random phase multisines (see
Definition 3.2) with 0% H= Sy i/(f)’ (ii) periodic noise (see Definition 3.3) with
E{U*H}=S oo’ and (iii) Gaussian noise with  power  spectrum
Syv(G® =Sp55(f)/ Frmax for |fl < frma and zero elsewhere. For these three classes of
excitation signals, the variances var(JNY sk, n) Of the stochastic nonlinear distortions
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N Y v of a nonlinear system belonging to the class S (see Definition 3.5) converge
(measurement time and N — o) at the rate O(N-1) to the same limit value GZ(f).

Note: We denoted explicitly the dependence of the results on the number of frequencies
N by adding a subscript N.

Proof. See Appendix 3.J. O

The asymptotic variance (N, M — <o) of the FRF estimate GR(j(Dk) (3-16) and (3-17)
due to the stochastic nonlinear distortions is given by

o2
M-%% with 63(f) = lim var(/N¥ g ) (3-23)
(see Egs. (2-25) and (2-52) with 6} =0, o3, =0, |Y|¥/|Gy? = Syy and
Sy,r,”|Go|* = Syp). From Theorem 3.16 it follows that the variance (3-23) of the FRF
measurement (3-16) and (3-17) depends only on the second-order moments § ool f) of the
input spectrum. Hence, it is the same for random phase multisines, periodic noise, and Gaus-
sian noise excitations.

It can also easily be shown that 62(f) in Theorem 3.16 is a smooth function of the fre-
quency f (continuous and continuous high order derivatives). This motivates why Y, v
(var(Yg, 5)) can be modeled very well as a discrete-time, filtered white noise sequence
H(zgY)E(k) (62|H(zg")|?), where H(z™") is a rational function in z-!.

3.4.5 Extension to Discrete-Time Modeling

The results of Sections 3.4.1 to 3.4.4 were obtained for continuous-time systems. In
this section we will show that these can be extended to discrete-time models. Some precau-
tions should be taken because for the discrete-time domain, the frequency axis is finite:
® € [-m, ). In the nonlinear operations, higher frequencies can be created (e.g., k®), but
these are folded back to the previous interval by the modulo operation: ®¢ 4.4 =
[(®+ 1) mod 2] — &, so that new frequency combinations appear that were not present in
the previous sections. We show subsequently that the folding operation does not change the
nature of these components (systematic or stochastic contributions). To do so, we consider
the unfolded frequency @, as it results from the frequency combinations in the nonlinear sys-
tem. In the next theorem we show that for a nonlinear system, excited by a band-limited ran-
dom multisine excitation (U(jw) = 0 for |®| > ®,,,), its output components at frequencies
l®| > ®,,, can only be stochastic contributions. This means that they cannot be combined
with any component of the random multisine excitation to result in a phase-independent com-
bination.

Remark. To formalize this result in a theorem, we have to consider discrete-time ran-
dom multisines. These are obtained directly from Definition 3.2 by replacing ¢ by the dis-
crete-time variable k, with k = 0,2, ..., N - 1. The frequencies of a discrete-time random
multisine are restricted to the grid 2n/N in order to get periodic discrete-time signals (see
Oppenheim et al., 1997: not all frequencies result in a periodic signal in the discrete-time do-
main!).

Theorem 3.17 (Stochastic Behavior of the Out-of-Band Components): For a
(discrete-time) system belonging to the system set S (see Definition 3.5), excited with
independent realizations of a (discrete-time) normalized random multisine uy € E, (see
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Definition 3.2 and the previous note) or (discrete-time) normalized periodic noise uy € Py
(see Definition 3.3 and the previous note), with maximum angular frequency ®
(0, = 2rnf,), wehave for ®;, = Lw,, |L| > ,:

max = lmaxml

8{rgelV} = 0 (3-24)

Proof. See Appendix 3.K. O

Note that this theorem is valid for continuous-time and discrete-time systems (using
®). A direct result of this theorem is that all results of the previous sections can also be ap-
plied to discrete-time systems. Because none of the “out-of-band” components can create
systematic contributions, the folding process does not change the nature of the output contri-
butions of a nonlinear system, and, hence, the previous proofs remain valid.

3.4.6 Experimental lllustration

A nonlinear mechanical resonating system (mass, viscous damping, nonlinear spring)
is simulated with an electrical circuit. The displacement y(r) (output) is related to the force
u(?) (input) by the following nonlinear, second-order differential equation:

d2y(n) Ayt
mﬁ +d—zt— + k@)Y = u® (3-25)

The nonlinear spring is described by a static but position-dependent stiffness
k(y) = a+by? (3-26)

For small excitations, the spring becomes almost linear so that the underlying linear system
consists of a second-order resonance system. A series of experimental results on this system
are shown. First, the nonlinear behavior will be illustrated using stepped sine measurements.
Next, the split of the transfer function into the underlying linear system G,(j®,), the related
linear dynamic system Gg(j®;) , the stochastic nonlinear distortions G(j®,), and the noise
contributions N (k) are shown.

3.4.6.1 Visualization of the Nonlinearity Using Stepped Sine Measurements. To
visualize the nonlinear behavior of the system, a stepped sine measurement is made
(Figure 3-4). The frequency of the sine is first stepped upward until the maximum frequency
is reached and then stepped down again. At each frequency a measurement is made over an
integer number of periods. During the experiment we took care to have a continuous excita-
tion signal; no discontinuities appeared at the frequency-changing instants. The nonlinear be-
havior of the system is clearly visible. The measured transfer function depends, strongly, on
the amplitude of the sine excitation. Moreover, the measurements also show that the actual
output of the system depends on the past inputs: the up-path differs from the down-path for
large excitations. Such behavior cannot be described using Volterra-based descriptions. Nev-
ertheless, we will still apply the previously developed theory to this system. This can be done
because the bifurcation appears only for large excitations, injecting a lot of power close to the
resonance frequency of the system. If we use normalized random multisines, only a fraction
of the power is injected in this band so that the bifurcation problem does not disturb the mea-
surements anymore.
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Figure 3-4. Stepped sine measurement at
different amplitudes (rms values given). An up
and down sweep is made. For the 13.5 mV
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3.4.6.2 Measurement of the Related Linear Dynamic System. In a second step,
the underlying linear system is measured using a normalized random multisine
(fi=QRk+1)fy, k=0,1,...,1340 and f,=0.0745 Hz) with a small amplitude (rms
value of 34.2 mV). The standard deviation GNG(k) is calculated from 10 consecutive periods.
The results are shown in Figure 3-5.
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Figure 3-5. Measurement of the underlying 604 i ; — .
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The impact of the nonlinearity is made visible by increasing the excitation level of the
normalized random multisine to an rms value of 127 mV. The measurement was repeated for
10 different realizations of the excitation signal so that GGs(k) could also be measured. The
measurement results are shown in Figure 3-6. On the left side, the related linear dynamic sys-
tem is compared with the underlying linear system. A number of observations can be made:
the resonance frequency is shifted to the right, the peak value is decreased, and the measure-
ment became more noisy.
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Figure 3-6. Comparison of the measured related linear dynamic system Gg(j®,)
obtained from 10 realizations and the underlying linear system Go(j®,) .
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The shift to the right of the resonance frequency is due to the nonlinear behavior of the
hardening spring. For larger excursions, the average stiffness increases and so also does the
resonance frequency. Note that if the G,(j®;) measurement were not available, there would
be no indication at all that this system is strongly nonlinear. This shows, clearly, why we need
dedicated tools to detect the presence of nonlinear distortions. The difference between
GR(jo,) and Gy(jw,) is due to the systematic contributions Gg(jw,).

The increased noise level can be understood only from the previous, explained theory;
they are due to the stochastic contributions G¢(j®,). Changing the excitation level did not
change the disturbing noise, but G4(j®,) became much larger. This is visualized on the left
side of the figure. The standard deviation G (k) is obtained by measuring the FRF from 10
realizations of the normalized random multisine. For the small excitation level, it is com-
pletely dominated by the measurement noise Gy (k), whereas for the large excitation,
GGS(k) dominates. This is also illustrated in Figure 3-7, where the evolution of the measured

Amplitude (dB)

Figure 3-7. Evolution of the related linear
dynamic system for growing excitation levels:

0 50 100 150 200 rms values of 34 mV, 54 mV, 127 mV, 253 mV,
Frequency (Hz) and 507 mV.

FRF is shown as a function of the excitation level. As can be seen, the stochastic contribu-
tions grow with the level while the measurement conditions (and, hence, the disturbing noise)
remain the same. Again, it is very difficult to understand this result without the previously
gained insight into the behavior of nonlinear systems. This also suggests a first test to detect
the presence of nonlinear distortions. The standard deviation calculated from a set of consec-
utive periods (without changing the excitation signal) should be the same as that calculated
from repeated measurements, using different realizations of the excitation signal.

3.5 DETECTION OF NONLINEAR DISTORTIONS

The ideal FRF-measurement method should provide the measured FRF, and at the same time
the presence of nonlinear distortions should be detected, qualified (even or odd distortions), and
quantified (the level of the distortions). Because the prime interest in these measurements is the
FRE, it is unacceptable that most of the time would be spent on the detection of the nonlinear
distortion at the cost of a reduced quality of the FRF measurement. This excludes most existing
methods that require a series of dedicated measurements to make the nonlinearity test. In gen-
eral, it is impossible to realize this ideal; however, when specially selected periodic excitations
are applied, we can come close to it. This will be shown in the next section. Finally, in Section
3.5.3 some background information on the classical detection methods is given.

3.5.1 Detection of Nonlinear Distortions Using
Periodic Excitations

The sine test is the simplest test characterizing, directly, the nonlinear behavior by veri-
fying the generation of higher harmonics. However, this approach has a number of serious
drawbacks. It is not only very slow (see Chapter 2), but as shown in the example of Section
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3.4.6 it also does not measure the best linear approximation, except for very small excita-
tions. This is due to the fact that it is not a random multisine excitation. This leads to the first
conclusion that the excitation signals are restricted to broadband random multisines. The pos-
sibility to detect nonlinear distortions with these signals will be embedded by a careful selec-
tion of their amplitude spectrum, only a selected set of harmonics will be excited. This idea
has already been suggested by Evans et al. (1994) and McCormack et al. (1994b). The odd-
odd multisines that excite the system at the frequencies (4k+1)fy k = 0,1,...,F, are
such a possibility. The linear system generates only an output at the excitation lines while the
nonlinear distortions also hit the nonexcited harmonics. This allows their detection and char-
acterization. From Section 3.2 it follows that:

At lines 4k + 1: the outputs consist of the linear contribution + odd nonlinear distor-
tions.

Atlines 4k + 2: only the even nonlinear distortions appear.
At lines 4k + 3: only odd nonlinear distortions appear.

So it is possible to detect and separate the even and the odd nonlinearities. The level of the
distortions is indicated by the level at the detection lines. This can be extrapolated, with some
care, to the measurement lines, although significant differences can still occur, especially
when the low harmonics are filtered before arriving at the nonlinearity (e.g., a high-pass or
bandpass input behavior of the system). For this reason, the results should be used as an indi-
cation and not as an absolute measure. In practice, it gives an underestimate because the level
at the detection lines is usually below that at the measurement lines.

The test can be made more robust against these problems by using a modified multisine
with components at kf,, & = 1,3,9,11,17,19, ... (Vanhoenacker and Schoukens, 1999).
In this case the even nonlinearities are detected at the even lines and the odd nonlinearities at
the nonexcited, odd lines.

In many applications, the nonlinear distortions are of the same magnitude as the noise
distortions. Consequently, it is necessary to separate them from the noise. This is again possi-
ble by exploiting the periodic nature of the signals. For each realization of the excitation sig-
nal, M periods are measured. Then a first, elegant method to distinguish between noise and
distortions is to measure the “harmonic” coherence (McCormack et al., 1994b) at the non-
excited frequencies:

Yip = S YR/ Y (3-27)

This measure converges for M — oo to |Y(k)|2/(|Y o(k)|2 + 63(k)), where Y (k) is the DFT
spectrum at a nonexcited frequency. If the nonlinear distortions are large compared with the
noise, |¥,(k)| » 6y(k), it will be close to 1, while a small value indicates that the nonlinear
contributions are below the noise level |Y y(k)| « oy(k).

A second possibility is to calculate the sample variance over each block of M periods
(for a single realization of the excitation) and to compare, directly, the measured distortion
levels with the noise levels. The advantage of this approach is that a full characterization of
the second-order moments of the noise is available at the end of the measurement.

In practice, some additional problems can occur during this test. The nonlinear interac-
tion between generator and plant can also generate unwanted excitations at the detection fre-
quencies, and it is no longer clear what part of the output should be assigned to the linear be-
havior and what part is due to the nonlinear distortions. In that case a first-order correction
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can compensate the output: f’(k) = Y(k)——é( jo, )U(k). The FRF estimate é( jw,) is
obtained by linear interpolation of the FRF measurements at the excited frequencies
(Vanhoenacker and Schoukens, 1999).

Conclusion. At the end of this simple experiment, the user gets a broadband measure-
ment of the FRF, a detection, qualification, and rough quantification of the nonlinear distor-
tions together with a noise analysis. The price to be paid is the loss in resolution, caused by
the nonexcited lines.

3.5.2 lllustration on the Electrical Simulator

The experimental test setup of Section 3.4.6 is used again. This time the system is ex-
cited with an odd-odd random multisine, exciting the system at (4k-1)f,,
k=12,..,128 and f,=0.596 Hz, with an rms value of 62.7 mV. In a first step, the stan-
dard deviation of the disturbing noise is extracted from a single input realization, measured
during 10 periods. Next, 15 realizations of the random excitation are generated and each time
the output is measured during one period, after waiting until the transients are negligible. The
mean square average of the amplitude spectrum over these 15 realizations is shown in
Figure 3-8. These results show that in one experiment it is possible to measure the FRF, the
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Figure 3-8. Detection of nonlinear distortions at
the output of the nonlinear circuit using an odd-
odd multisine. x: linear + odd nonlinear
6 5‘0 160 15')0 260 25‘30 3(')0 3}:',0 contributions; +: even nonlinear contributions;
Frequency (Hz) * : odd nonlinear contributions, __ ¢, .

noise level, and the nonlinear distortions. In this case it is clear that the latter are the dominat-
ing error mechanism acting on the setup; the odd nonlinear distortions are 20 dB larger than
the noise. This is very valuable information for the rest of the modeling process.

Remark. In practice it is not necessary to consider different realizations of the excita-
tion. One experiment would do. However, later on in the experiment, we also wanted to mea-
sure the variance of the stochastic nonlinear contributions (see Figure 3-10) requiring more
than one realization.

3.5.3 A Short Overview of Other Methods to Detect
Nonlinear Distortions

The literature describes a series of other methods, different from that presented before.
Here, we will touch only on a few of them; an extended list of references is available in Natke
et al. (1988). Also Haber (1985) gives a brief review of nonlinearity tests. The simplest
method is to scale the input u(f) — ou(t) and verify if the output also scales with o, after
taking care for the offsets. In practice, this method is less appealing. Two separate measure-
ments are needed, and in many applications it is not simple to impose a scaled input due to
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the nonlinear load of the generator with the input impedance of the tested system. This prob-
lem is not disposed only in the special case where a discrete-time model is built between a
signal in a computer memory and the output of the physical system (see Chapter 10). In this
special situation the user has full control over the excitation signal. Moreover, the small non-
linearities have to be detected by taking the difference between two large, measured signals,
making the method extremely sensitive to all possible measurement errors due to this indirect
nature. Another popular test is to check the coherence. As pointed out before, this method
does not allow separation of noise disturbances from nonlinearity problems and it fails com-
pletely for periodic excitations. Extending the test to higher order spectra by probing directly
for higher order correlations that are typical for nonlinear systems may eliminate these draw-
backs, but these methods are very time consuming, especially for random excitations. Also,
Hilbert transform tests have been proposed (Tomlinson, 1987). Actually, these methods do
not, directly, detect the nonlinear behavior itself. The authors check for a noncausality in the
impulse response of the linear approximation (FRF) that might be induced by the nonlinear
behavior, although there is no guarantee at all that there is a one-to-one relation between both
effects. The method imposes significant constraints (e.g., only working on lowly damped sys-
tems) and a series of correction terms should be added because an FRF measurement can be
made only in a restricted frequency band. For these reasons, we do not discuss these methods
in detail and refer the reader to the available literature.

3.6 MINIMIZING THE IMPACT OF NONLINEAR DISTORTIONS
ON FRF MEASUREMENTS

For clarity of the presentation, we first give a set of general guidelines so that the reader may keep
a maximum overview over the problem. Next, we will go into a more detailed discussion and mo-
tivation of these guidelines, some of which are also illustrated in experiments or simulations.

3.6.1 Guidelines

In the previous sections it is shown that (see (3-10) and (3-11))

G(jwy) = Ge(joy) + Gs(jop) + N (k)

(3-28)
Grljoy) = Gy(joy) + G(joy)

Depending upon the goal of the measurement, it is possible to select dedicated excitations.
The signals needed to measure Gy(jw,), as well as possible, are different from those that
should be used in order to get the best measurement of Gg(jw,). In each case, it is necessary
to minimize the impact of the distortions Gg(jm,) and N (k). In this section both problems
are studied. To clarify the presentation, we give, first, the general overview and, next, a more
detailed discussion and motivation.

3.6.1.1 Goal: Measurement of the True Underlying Linear System

m First choice: odd-odd random multisine with the amplitude kept as small as possible
Advantage: This facilitates measurement of the FRF, together with its standard devi-
ation GNG(k) due to the disturbing noise. Also the presence of nonlinear distortions
is detected, qualified, and quantified. The impact of the nonlinear distortion on the
uncertainty o (k) is minimized.

Disadvantage: A loss in frequency resolution with a factor 4.
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n Second choice: odd random multisine with minimized crest factor
Advantage: This facilitates measurement of the FRF with its standard deviation
O'NG(k) due to the disturbing noise. The impact of the nonlinear distortion on the un-
certainty G (k) is minimized (the same quality as in the first choice and the loss in
frequency resolution is reduced to a factor 2).
Disadvantage: It is no longer possible to detect the presence of odd nonlinearities.

» Third choice: binary excitation, preferably with an odd spectrum
Advantage: The impact of the distortions is minimized.
Disadvantage: Almost impossible to detect the presence of nonlinear distortions.

3.6.1.2 Goal: Measurement of the Best Linear Approximation. Advice: Use test
signals with the same power spectrum and the same amplitude distribution as those that will
be applied later on to the system.

m First choice: use different realizations of an odd-odd (or odd) random multisine and
average the FRF over these experiments.
Besides the advantages and disadvantages discussed under point 3.6.1.1, the major
advantage is that the stochastic contributions G4(jw,) are reduced in the averaging
process. The major disadvantage is the increased measurement time because of the
need for different realizations.

» Second choice: use one realization of a very dense odd-odd (or odd) random multisine.
Advantage: Only one experiment is needed. It is still possible to smooth the FRF over
small frequency bands.

3.6.2 Discussions and lllustrations
In this section the previous guidelines are commented on, motivated, and illustrated.

3.6.2.1 Goal: Measurement of the True Underlying Linear System. In this case, we
try to measure the underlying linear system in such a way that all nonlinear influences should
be minimized. From (3-2), it is clearly seen that the nonlinear contributions grow with the
higher order moments. Therefore, the amplitude should be as small as possible. Minimizing
the crest factor still maximizes the SNR of the measurements. Using an odd or odd-odd mul-
tisine, the even stochastic disturbances (G¢(jw,)) are completely eliminated. This results in
the first and second advice. It is still possible to reduce the nonlinear impact by choosing sig-
nals with an amplitude distribution (# power spectrum) that reduces the higher order mo-
ments in Eq. (3-2) for a fixed second-order moment (= total power in the signal). Binary
distributions have the lowest ratio & { (1/c,)**} = 1. This is the basis for the third advice.
However, the reader should be aware that with a binary excitation it becomes very difficult to
get any information about the nonlinear distortions, making it difficult to detect their pres-
ence. For the extreme situation of a static nonlinear system it becomes impossible to detect
the nonlinearity. For this reason, it is strongly advised to select this solution only after making
a preliminary nonlinearity test.

Example 3.18 (Static Nonlinear System): In order to visualize the impact of the crest
factor and the power spectrum (consecutive, odd, and odd-odd multisines) on the nonlinear
distortion, a simulation was made. The FRF of a static, nonlinear system y = u +u2/2.8 +
u3/15 (Gy(jw) = 1) is measured using three different excitation signals with a flat
power spectrum: a random noise excitation (zero mean normally distributed), an odd (50 fre-
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quencies), and a consecutive (100 frequencies: kf,, k = 1,2, ..., 100 ) multisine excitation,
each with an rms value of 1. For one third of the random multisines, the crest factor was ac-
tively pushed down using a crest factor minimizing algorithm (see Chapter 4) to cover the in-
terval [1.4, 2.4]. The power spectrum of all the signals was band-limited with f .. = 0.1f..
The error

,%,Ziv: |GG - Go(joy) (3-29)

with Gy(jo) = 1 and f, an excited frequency, is plotted as a function of the crest factor for
1000 realizations in Figure 3-9. This figure clearly shows that an odd multisine is signifi-
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cantly better than the consecutive one or the normally distributed noise excitation. The odd-
odd multisine has a similar behavior. The errors of the full multisine are also significantly
smaller than those of the random excitation. This is due to a similar effect as explained in
Chapter 2, where it was shown that at some frequencies the FRF measurements are extremely
sensitive to distortions due to the dips that appear in the realized input power spectrum.

Also, a binary signal is created by applying the sign function on the random excitation.
The impact of this operation on the power spectrum was studied by Schoukens et al. (1995).
For a static nonlinearity, all the realizations result in exactly the same FRF with a very small
error. If the nonlinearity is preceded by a dynamic part, the binary behavior will be partly lost
and the results will be smeared. O

3.6.2.2 Goal: Measurement of the Best Linear Approximation Using Averaging. If
the model is to be used to describe the input-output behavior of the system using a linear sys-
tern, the related linear dynamic system Gg(j®,) should be measured. From Eq. (3-2) it is
seen that it depends on the higher order moments and, so, also on the amplitude distribution
of the signal. As a consequence, crest factor minimization is not allowed because this pushes
the multisine to a binary behavior (see Chapter 4) and affects the measured Gg(jw;). The
measurement of Gx(j®,) is disturbed by two stochastic errors: N(k) and Gy(j®,). Both
can be reduced by averaging over different realizations of the excitation. For random excita-
tions, the H; method (2-43) is recommended, while for the periodic excitations the direct
method (2-27) may be used. Again, the periodic excitations are preferred over the random ex-
citations for exactly the same reasons as before: a lower uncertainty for a smaller number of
averages.
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The impact of the excitation signal on the uncertainty of the related linear dynamic sys-
tem measurement is, again, illustrated on the nonlinear system. As explained before, in this
case the stochastic nonlinear distortions dominate the disturbing noise. In Figure 3-10 the
variability of Gg(jw,) is shown for the different, recommended excitation signals. Just as a
reference, the disturbing noise level obtained from 10 repeated periods is also shown. On the
left side there was no preload of the system, hence, the odd nonlinearity dominates, while on
the right side a preload was added resulting in significant even nonlinear contributions. It can
be observed that while the consecutive and the odd multisines result in about the same vari-
ability if there are no large even distortions (left side), the consecutive multisine has a much
larger uncertainty when even distortions exist (right side). Note also that, in all cases, random
noise excitations result in worst results and offer no additional advantages compared with
random multisines.
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Figure 3-10. Impact of the excitation signal on the uncertainty of the RLDS. Left, no
preload (odd nonlinearity), and right, preload (even and odd nonlinearity).
Uncertainties on the mean value 30 measurements (noise, full, odd) and 15
measurements for the odd-odd.

Finally, the dependence of the measured G(jw,) on the nature of the excitation signal
is also illustrated. The result obtained for a random multisine (as advised) is compared with
that of a swept sine-like signal (a Schroeder multisine in this case, see Chapter 4). The mea-
surement results are shown in Figure 3-11. Whereas the random multisine still results in an
FRF measurement that is very similar to the small-signal results, the Schroeder multisine
strongly deviates from it. Without prior knowledge, no second-order system is recognized
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Figure 3-11. Impact of the phase of the multisine on the measured FRF (rms value of 54
mV). Random: odd random multisine with 1342 components. Schroeder:
odd multisine with Schroeder phase. This signal acts like a swept sine.
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anymore. This illustrates, again, that in the presence of nonlinear distortions, the choice of the
excitation signal is crucial. A random multisine combines the advantages of random excita-
tions and periodic excitations, resulting in fast measurements of Gy(j®,), the best linear ap-
proximation.

3.6.2.3 Goal: Measurement of the Best Linear Approximation without Averaging.
In this case, it is still possible to recover Gg(j®,) using a very dense frequency grid (and
hence, again, a long experiment) combined with a random multisine. If the density is very
high compared with the variations of Gg(j®,) over ®,, alocal smoothing can be used to re-
duce the stochastic contributions G(jw,) so that improved estimates of Gg(jw,) are ob-
tained at a sparser frequency grid. This technique is completely similar to the empirical
transfer function estimate (ETFE) smoothing technique (Ljung, 1999) because G¢(jw,) be-
haves as noise.

3.7 CONCLUSION

FRF measurements give a great deal of information about the device or plant under test. Very
often it is easily accessible and it is strongly advised to take this intermediate step in the iden-
tification process. It provides a lot of qualitative information about the complexity of the
problem, as well as quantitative information about the plant and the measurement quality.
This can be used to set up a measurement-driven weighting function for the identification
step and also provides very valuable information for the model validation. The user has a
large impact on the measurement quality by generating a good excitation and selecting the
proper algorithms to process the raw measurement data. For these reasons, we strongly en-
courage the reader to take the time to understand the basic principles of FRF measurements.
Good, nonparametric measurements will significantly simplify the task of building paramet-
ric models.

3.8 EXERCISES

3.1. Generate a random multisine u(k) (see Exercise 2.2), with N_ points in one period, that
excites the frequency lines, 4k+ 1 for k = 1, ..., ﬁx(Np/ 12) with equal power. Nor-
malize the rms value of u(z) to 1. Calculate

Yol®) = o) +0.1ud() + 0.01ui(r) (3-30)

Calculate the output spectrum and discuss it. Observe the spectral behavior inside and
outside the excited frequency band. Does the behavior depend on the value of N p‘.7

3.2. Repeat the previous exercise for u, . = 10 and u,; = 100. Discuss the behavior of
the even and odd spectral lines.

3.3, Measure the FRF for u__, = 1, 10, 100. Consider, for each situation, 100 realizations of
the random multisine. Study the mean value and the standard deviation of the FRF. Ex-
tract Gp(jwy), G(jwy), O'és(k) and discuss your results.

3.4. Repeat Exercise 3.3 but, this time, use a random multisine that excites all spectral lines
between 1 and FIX(N p/ 12). Compare both results and explain the different behavior.

3.5. Repeat Exercise 3.3 but use a zero mean random noise excitation that has approximately
the same power spectrum as the excitation in Exercise 3.4.
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3.6. Construct a discrete-time Wiener-Hammerstein system y, = WH(u,) (see Figure 3-3)
with static nonlinearity: 7 = x + 0.1x2 + 0.01x3. Measure G g(j®;) (make a motivated
choice for the power spectrum of the excitation signal) for upyg = 1, 10, 100. Scale the
gain of the first system so that the power of the contribution of degree 3 generates 1% of
the linear output power for the first input amplitude. Discuss the results.

3.7. Consider the Wiener-Hammerstein system of Exercise 3.6 and add white, zero mean dis-
turbing noise to the output.

Yo = WHug) and y() = yo(t) +ny(0) (3-31)

Measure Gg(jm,) again (consider 100 realizations) and calculate G,zvg(k) and G(Z;S(k).
Use repeated periods to separate the measurement noise ny(t) from the nonlinear
distortions.

3.9 APPENDIXES

Appendix 3.A: Bias and Stochastic Contributions
of the Nonlinear Distortions

In this appendix we assume a deterministic amplitude and a uniform continuous phase
distribution. The random amplitude, the discrete phase, and the nonuniform continuous phase
distributions are commented on in Appendix 3.F.

In order not to overload the notations, the following simplifications are made in this ap-
pendix: G(jw,), Gr(jo,), and Gy(jw,) are denoted as G(k), Gg(k), and G(k), respec-
tively.

Consider the contribution of degree o to the FRF:

ol U U,..U,_ U
Gu(k) = 2 ng’kp ky, o kg e U fos 1y
kiy oo ky_1=-N k
S U llU...lU. ||U (3-32)
= znglokhkz’ "’ka_lfl le kzl.--\ ka—l” Lk'ejcp(kl,kz, kg, LY

Ko onko1 =N |UA

with k= L+ Y07 ki Oky s by) = 30 @+ 0L + 0= @ = LU, and
9 = LG ¢ &, ..k, - Define the disjoint sets

Kpe = {(k, kpy oos kg 1) | @Ky, K, - s kg3, Ly) is independent of ¢ }
Kse = {(ky, kg oos ko) | 9Cky, K, ., kg1, L) depends on ¢ }

with ¢ = {@,, ..., @y }. The set K, corresponds to the situation where all frequencies, but
one (equal to k), can be grouped in pairs (—/, [) so that their phases cancel. This results by
definition in contributions to G$(k), while this is not the case for the set Kg; (the phases
cannot cancel) so that, by definition, these contribute to G¥(k). Equation (3-32) becomes

G(k) = G§(K) + G§(k)

G¥k) = Z ng,kl,kz, ...,ka_,UklUkz"'Uka_lULk/Uk
KeKg (3-33)

Gg(k) = 2 G?‘kv kiky kg Ukl Ukz"' Uku—l ULlr/ Uk
Ke K
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with K = (k;,k, ..., k,_1), and where y x, and I x, denote the sum over all
combinations belonglng to the sets K, and K,, respectlvely

In the second part of this appendix, we prove Eq. (3-13). From the definition of K, it
follows that the only contributions different from zero are those with o odd. For that reason
we focus from now on to G3%~ (k). The factor ¢, in (3-13) is due to the fact that each of the
terms in this sum appears multiple times in the original expression (3-33) or (3-9) where the
frequency indices run from —N to N. The number of appearances when starting the sums at
zero will be different, and ¢, compensated for that. The number of contributions to the sum
(3-33) for a given frequency combination € Ky, depends on the fact that some of the
paired frequencies are equal to each other or not. If some of the paired frequencies are equal
to each other or equal to k, there remain less degrees of freedom (because not all paired fre-
quency values can be freely chosen), and, hence, they contribute to the final result only as an
O, N-?), p=1 (see also the following Appendices) with 2:= 2Om(N -P) = O(N-P) (the
Voiterra series converges). Hence, we can focus completely on the situation where all paired
frequencies are different from each other and from k. Each such frequency combination ap-
pears (20— 1)! times in (3-33) for G*~ !(k), keeping in mind the symmetrical Volterra ker-
nels. In (3-13) each contributing combmatlon appears only (o.—1)! times. Hence, a correc-
tion term

% = 2% \2a- 1) (3-34)

is needed.

Appendix 3.B: Study of the Moments of the Stochastic
Nonlinear Contributions

In this appendix we assume a deterministic amplitude and a uniform continuous phase
distribution. The random amplitude, the discrete phase, and the nonuniform continuous phase
distributions are commented on in Appendix 3.F.

In order not to overload the notations, the following simplifications are made in this ap-
pendix: G(jw,), Gr(jw,), and G4(jw,) are denoted as G(k), Gg(k), and G(k), respec-
tively.

In this appendix, the moments of the stochastic nonlinear contributions Gg(k) are calcu-
lated for nonlinear systems belonging to the set S (Definition 3.5), assuming a normalized ran-
dom multisine excitation (Definition 3.2). From (3-33) it follows that the stochastic nonlinear
contributions to the measurement, at frequency &, are given by multidimensional sums with
(ky, kg, ..o, kg 1) € K, for which it is not possible to partition all the frequencies, but one, in
pairs (-1, 1). As a consequence, these terms have a random phase such that & { /?}=0. It fol-
lows directly that &{ G¥(k)} = 0, and, hence, &{ Gy (k)} = &{ 2‘;’ _,G#k)} = 0. The
study of the higher order moments is much more complicated. The basic idea is first to prove
that

B G3k)GFky)... Gk} < ON-DMFTTI_ M _ My (3-35)

for arbitrary n, where p depends on the actual situation. Gg(k;) stands for the stochastic
nonlinear contribution of degree r; at frequency k;. Next, using (3-35) and Definition 3.5,
we find
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B { Gsk)Gglky...Gslk,)}| < 2: ., 2"" _,BUGH(K)Gy(ky)... Gtk Y|
SON-IMFIT_ 37 M My (3-36)

SON-9)MpCh
so that & { G((k)G(k,)...G¢(k,)} converges to zero, at least, as an O(N~P).

Lemma 3.19 (number of nonzero contributions): Consider a system belonging to
the set S, excited with a random multisine u#y € [Ey. Under Definitions 3.2 and 3.5, the
expected value & { Gg'(k,)G¢(k,)...Gy(k,)} is bounded by

(81 G k)G Gk )Y < ON-IMGTTr M M (3-37)

with v = int((n ~2m +1)/2) and where m is the number of pairs (k;, k,=-k;) that can be
formed in the set {k, k,, ..., k,,}.

Note: If the number of unpaired frequencies k; is odd, then v = 1, while v = 0 if it
is even.

Proof The basic idea is to count the number of nonzero contributions in
B{ Gg(k)G(ky)...Gg(k,)} as a function of N. Note that each of the terms in the product
Gg(k;) consists of a multiple sum over the frequencies; see Eq. (3-33). The terms in the prod-
uct Gg'(k;)Gg(k,)...Ggr(k,) that have a nonzero expected value are those where all phases of
the participating frequency components cancel each other. This means that we have to look
for frequency pairs (/, —I) having a zero phase contribution.

Consider the frequencies that contribute to Ggi(k), i = 1, .., n:

by (k) bk, D, Ky, (K)))

% 1(ky), Lytka), oo 1, (ko), 1, (K
2 (1, (k,), 1y(k,) ,-1(k2), 1, (k) (3.38)

—k, (L k), Lk, -on L, _ ik, L, (K))
with

Lk) = k=30 Lk), i =1, .n (3-39)

The frequency —k; (called denominator frequencies) comes from the denominator in (3-33),
where the minus sign accounts for the negative phase contribution of the denominator term;
k), 1k, ..., I (k) are the frequencies in the numerator of (3-33) (called numerator fre-
quencies) and their sum should be equal to k; in order to get a contribution at frequency k;.
The total number of numerator frequencies participating in the sums is F, = 2:'= . Ti- Equa-
tion (3-39) imposes n constraints, so that the total number of degrees of freedom at this mo-
ment is F, —n.

The only nonzero contributions to the expected value (3-35) are those where all fre-
quencies (numerator frequencies and unpaired denominator frequencies) can be grouped in
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pairs (-, ) such that their phase contributions are canceled. This pairing process will be im-
posed step by step (first on the denominator frequencies k;, next on the remaining numerator
frequencies /,(k;)), and the additional constraints on the free frequencies in (3-38) will be
checked.

3.B.1 Denominator Frequencies

(i) First pair the denominator frequencies (—k; = kj). Assume there are m such
pairs.

(ii) All remaining n — 2m unpaired denominator frequencies k; should be paired with
one of the numerator frequencies lj(kh), h=1..,nand j=1,..,r, Be-
cause the denominator frequencies have fixed values (no summing over %;), this
fixes n — 2m numerator frequencies.

(iii) Eventually, after pairing all denominator frequencies, the number of free frequen-
ciesis F,—n—(n—-2m) = F,-2n+2m. Note that the worst case situation ap-
pears when m is maximized because this leaves the maximum number of numer-
ator frequencies free.

3.B.2 Numerator Frequencies. Next the remaining numerator frequencies should be
paired. These can be partitioned in two groups: the free numerator frequencies
(F,-2n+2m) and the (n) dependent frequencies /, (k;). We impose pairs only on the free
frequencies, assuming that the dependent frequencies' are then automatically paired. This is
again the worst case situation (the largest number of free frequencies), since in the other case
additional constraints would be imposed. Note also that pairing is a worst case phase cancel-
ing process: grouping four or more frequencies together is a stronger restriction than making
pairs of two frequencies. Two situations will be considered: n is even or n odd.

(i) n is even (F, is even, otherwise there would always remain an unpaired fre-
quency and these terms have zero mean): all free frequencies can be paired, result-
ing in (F,—2n+ 2m)/2 pairs where the frequency can be freely chosen. So the
maximum number of zero phase terms in G§'(k,)Gg(k,)...G¥(k,) is an O(N*?)
with vy = (F,—2n +2m)/2. From Definitions 3.2 and 3.5 and (3-9), it follows
that each term in the sum of Gg(k) is an O(NY)M .My~ 1 with
v; = (1 -r;)/2, and, hence, the expected value is bounded by

(8 Gk )G (ky)... G CONIMPTT . MMy (3-40)

with v = —vo— 3" v, = (n-2m)/2 for n even.
(ii) n is odd (F, is odd, otherwise there would always remain an unpaired fre-
quency). In this case, not all the free numerator frequencies (¥, —2n +2m) can
be paired since they are odd in number. So (F,—2n +2m—1)/2 pairs of free
frequencies can be formed, and there remains one unpaired free frequency that
should be combined with one depended frequency. Again we can assume that the
other n — 1 (an even number) depended frequencies are then automatically paired
(worst case). So the question is whether the last pairing step (independent fre-
quency = - dependent frequency) creates a new constraint. To answer this ques-
tion, it is important to note that not all numerator frequencies, but one, in a row of
(3-38) can be paired to each other, because this would be a systematic contribu-
tion (see Appendix 3.A). As a consequence, the depended frequency l,i(k,-) (3-38)
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cannot be paired with another frequency in its own row. This would either impose
a new constraint in this row (put l,i(ki) = - p(ki) for a given p in (3-39)) or cre-
ate a systematic contribution. So the last pair (independent frequency, depended
frequency) should be formed over two different rows (connected to &;, k;, i # j).
Because the constraints (3-39) are active only row by row (they combined fre-
quencies of the same row), this creates an additional constraint, and, hence, the
frequency of the last pair is fixed by this constraint. So the number of free pairs is
an O(NY) with vy = (F,—2n+2m~-1)/2. Because each contribution in the
sum of Gk, is an O(N"9), with v, = (1-r;)/2, it is clear that the expected
value is bounded by

|8 (G5 k)G Gk, )| S ONIMTT] . M My (3-41)

with v = —vy-3"_ v, = (n-2m+1)/2 for n odd.

i =

The bound in the results, (3-40) and (3-41), can be written as Q(N-ntn-2m+1)/2)),
which proves the lemma. O

Theorem 3.20 (Moments Stochastic Nonlinear Contributions): Consider a system
belonging to the set S (see Definition 3.5), excited with a random multisine uy € E, (see
Definition 3.2). The expected value &{Ggk)Ggk,)...Gsk,)} is bounded by
}8{ Gs(k1)Gs(kz)---Gs(k,.)}| SONVIMpCY,with v = int((n-2m + 1)/2).

Proof. The proof follows directly from Lemma 3.19, by the fact that v is independent

of r,, i = 1,2, ..., n. Hence, Lemma 3.19 can be directly generalized to Theorem 3.20. O

i’

Theorem 3.21 (Properties Stochastic Nonlinear Contributions): Consider a system
belonging to the set S (Definition 3.5), excited with a random multisine uy € By (Definition
3.2). The stochastic nonlinear contributions Ggy(k) have the following properties:

B{Gyk)Gs)} = ON) for k=1

E{|G®)|?) = c3k) = OO

B Gyk)|G5D|?} = OWN-Y
E{(|Gs0|2 - o¥R)(|GD|? - 63(1)) = OW-Y) for k#1

E{ Gyk)Gsk + m)Gs(DGs(I + m)} = ON-?) for k=l -k#l+m~l#k+m,
m # 0 (all frequencies differ from each other)

6. B{|GyW)|*Glk +m)|} = OWO) for m#0

A

Proof. The proof consists of a straightforward application of Theorem 3.20. Note that
v is maximal if the number of paired numerator frequencies is maximized.

1. 8{Gyk)Gs()} = Gk)G(-D} = ON-Y) for k#1.
If k#I, then m=0 and, hence, v =int((n-2m+1)/2) =
int((2-0+1)/2) = 1.

2. 8{|Gsk)2} = B{GIGK)) = ON).
In this case m=1, n=2 and v =int((n-2m+1)/2) =
int((2-2+1)/2) = 0.
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3. 8{Gs(B)|Gs(D|?} = E{ Gs(k)G(DGs(-D} = ONT).
m=1,n=3andv = int((n-2m+1)/2) = int((3-2+1)/2) = 1.

4. B{(|Gs0)|? - o2))(|G5D|? - o¥D)} = ONT) for k1.

Here, some precautions have to be taken. In order to simplify the proof, the expected value is
rewritten as

E{(|Gsk)|2 - a3k (|Gs(D|? - 0D} = E{|Gs(R)|}Gs(D)?} - odkyod() (3-42)
We study the first term in (3-42)
8{|Gs0|GsD?) = 8 Gs)G(-H)G{DG5-D}

Here, two disjoint situations can be considered. In the first situation (A), all denominator fre-
quencies are paired (k,-k) and (/,-I) so that v = int((4-4+1)/2) = 0, while in the
second situation (B), at least one of the pairs (k, —k) or (I, -I) is not created in the pairing
process so that m< 1, and v = 1. The expected value can be split over these two types of
contributions.

E{|Gs(B?|GsD|2} = 81 |Gs(R)|2|GsD)|?}, +E{ |Gs(B)*|Go(D]? )5 (3-43)

(i) First, situation (A) is studied. Again two possibilities exist: 1) some pairs link the
k -lines to the [ -lines; 2) no such links appear.
First we deal with situation 1: From claims 2 and 3 in Appendix 3.E, it follows
that such combinations are an Q(N-1), so these terms do not act as the dominat-
ing contributions. Situation 2: Here the k -lines are not lined to the /-lines. Be-
cause the combinations no longer depend on the phase (sum of the phases is zero),
they are deterministic contributions and, hence,

S{|GsRP|GsD]*} o
= 8{|G50)|2}8{|G5(D[?) + ON-Y) = 3D + O™

(3-44)

Clearly (3-44) cancels the second term in (3-42).
(ii) In set (B), we have that v = 1, and, hence, it has again an O(N-!) contribution
to (3-42).
We conclude that (3-42) is an O(N-1).

5. The proofs of 5 and 6 are completely similar to any one of the previously studied
situations.

Appendix 3.C: Mixing Property of the Stochastic
Nonlinear Contributions

In this appendix we assume a deterministic amplitude and a uniform continuous phase
distribution. The random amplitude, the discrete phase, and the nonuniform continuous phase
distributions are commented on in Appendix 3.F.

In this appendix, the proof of Theorem 3.10 is given: Consider a system belonging to
the set S (Definition 3.5), excited with a random multisine u, € E, (Definition 3.2). The
(stochastic) nonlinear contributions Gg(k) are mixing of arbitrary order n.
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Proof. 'We prove the mixing property for the nonlinear contributions Gg(k) + G¢(k).
Because Gg(k) is deterministic, the mixing property of G4(k) follows immediately. We show
that G"'(k,)G™(k,)...G™(k,) are mixing, for an arbitrary n. The theorem follows then from
Definition 3.5 and the linearity property of mixing variables (Lemma 14.4).
G"i(k,)G™(ky)...G"(k,) is mixing if

N
max py leum(G™1(ky), Gk, ..., GT-\(k, _ ), Gk S, <00 (3-45)
N okyky ok, =N

for any N, infinity included, with ¢, independent of N. Using Lemma 14.4 and Definition
3.5, it turns out that it is sufficient to prove that

N N 81 T'n
max 2 z Cum(U,:ll H Uli(kl)’ teey U;nl H Uli(kn)) < Cn < oo (3'46)
n k... k,_=-N Ilk)=-N i=1 i=1

for any N, infinity included, with ¢, independent of N. In this expression Zzl(ki): N
stands for the sum over all numerator frequencies [;(ky), L,(k{), ..., l,](kl), Liky), ...,
1 (ky), ..., I, (k,) (see Appendix 3.B) appearing in G"(k)G"(k,)...G™(k,). To calculate
the cumulant we have to set up a table with all participating input Fourier coefficients (char-
acterized by their frequency) and consider next all indecomposable sets in this table (see Ap-
pendix 14.A). The table is given by (see also 3-38)

ko (k) LRy, e ], iRy, L (Ry)

—k Litky), Lky), s b, _ (ko) L, (K
2 (Ii(ky), Ly(ky) —1(k2)s 1 (k) (3.47)

n (k) Lk, oo 1, _ ik, 1, (k)
with

r,—-1 .
ki= Y, o k) =L (k) =0,i=1,..,n (3-48)

All frequencies but one (k,, ) appear as a summation index in (3-46). We will count again the
number of nonzero cumulants over the indecomposable partitions that appear in the sum. To
do so, we have to determine the maximum number of degrees of freedom, taking into account
all restrictions that will appear. The following constraints will be considered:

(i) The cum(U;,U,, ..., U,) is different from zero only if i1l = |jal = - = iy
and the terms are paired. Hence, only cumulants over sets with an even number of
elements can be different from zero. The sum of the frequencies in such a set is
zZero.

(i) All the row constraints (3-48) should be respected.
(iii) All frequencies are different from zero j, #0.
(iv) Only indecomposable partitions are considered.
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The constraint (3-48) can also be written as
AJ,=0 (3-49)

where J, is a vector containing all frequencies that participate in (3-47). The entries of A,
are 1, -1, or 0 depending on how the corresponding frequency in J,, contributes to the corre-
sponding row. Note that the “indecomposability” property is completely preserved in 4.

PARTITIONING.  Consider an indecomposable partition of (3-47) and select the parti-
tions that have nonzero cumulants. On each subset of such partition we can associate one fre-
quency (see condition 1 above). All these frequencies are put in the vector J,,, and we re-
place the set of equations (3-49) by

AT, =0 (3-50)

Some of the subsets will combine only frequencies belonging to one row. Because the sum
over all these frequencies in such a subset is zero (see condition 1 above), their entry in A is
zero. So only subsets that combine frequencies from different rows can have an entry in A
that is different from zero. If such a subset (over different rows) has zero entries in A, it can
be split in smaller subsets with nonzero entries (the partition remains indecomposable). This
is a worst case situation because a smaller number of frequencies are linked to each other,
and, hence, a larger number of free frequencies remains. For example,

L
S A N

With these replacements, the structure of A and A, is the same with respect to the indecom-
posable partitions: A is indecomposable < A, is indecomposable. So from now on we fo-
cus completely on A.

Note that the entries corresponding to a given frequency in J,, appear at most in one
column in A.

A can also have subsets with an odd number of entries (e.g., three). However, because
each subset covers an even number of frequencies, such a subset corresponds to a subset in
A, with an even number of entries, e.g.,

1 1
1| inA ¢ corresponds for example to | | in 4, (3-52)
-2 -1-1

Such a set can always be broken into

i (3-53)
~111-1

without changing the indecomposable structure. Again, this is a worst case situation. So, we
should consider only subsets with an even number of entries in A.
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INDECOMPOSABLE PARTITIONS. Only the indecomposable partitions are considered.
It is possible to select a submatrix in A, A4, that is indecomposable. After rearranging the
order of the columns, A can be writtenas A = [A; A ]

No Zero FREQUENCIES.  None of the frequencies in J,, (3-50) may be equal to zero.
So every row in A should contain at least two entries that are different from zero, otherwise
(3-50) forces at least one frequency to be zero. Hence, it is possible to form a matrix A by ex-
tending A, 4 with additional columns of A, such that each row of A contains at least two
NONZEro entries.

T¢S!

STRUCTURE OF A . We study the structure of A in more detail in Appendix 3.D,
where it is shown that A can always be rearranged (some columns might be shifted back to

Apq) 10 a matrix with 2 - [ 2kNy22n entries grouped in 2 Ny columns, and
rank(A) = 2 N2k 1 (NZk is the number of subsets in A with 2k elements). Because
rank(A) > rank(A) it follows that at most one frequency can be freely chosen.

NUMBER OF DEGREES OF FREEDOM.  J, contains at most F, +n -2 free frequencies,
with F, = 2" ,T;» because at least one frequency is palred with —k Each entry of A cor-

responds to at least one free frequency in (3-47), so zk= 12kN2k_2n frequencies of

(3-47) are used in A while at most one is free (see above). The maximum number of degrees
of freedom (worst case) appears when all remaining free frequencies (in A)

k
F,+n-2- Zk'"j"l 2kN,,<F,+n-2-2n are grouped in pairs. So the free number of fre-

quencies (including the free one of A)is given by

Fro<(F,-n—-2)/2+1<(F,—n)/2 (3-54)

Each of these frequencies can be freely chosen out of the 2N input frequencies. The number
of degrees of freedom is thus an O(NFe~"72),

MiIXING. Because U; = O(N-1/2), each cumulant in the sum (3-46) is an
O(N (n-F.)/2) Each cumulant in (3-46) is calculated as the sum over all indecomposable par-
titions of table (3-47), which reduces the number of free frequencies in the sums (3-46) to
(F,-n)/2 (see (3-54)). Hence, (3-46) is an O(NFa="/2)Q(N"-F/2) = O(NY), which
proves the theorem.

Appendix 3.D: Structure of the Indecomposable Sets

In this appendix we assume a deterministic amplitude and a uniform continuous phase
distribution. The random amplitude, the discrete phase, and the nonuniform continuous phase
distributions are commented on in Appendix 3.F.

The matrix A contains an indecomposable set extended with additional columns such
that each row contains at least two nonzero entries. These additional columns might create
additional links between the rows so that it might be possible to “break™ larger subsets to
smaller ones, the smallest ones corresponding to pairs, while the number of degrees of free-
dom is not decreased (so the worst case is maintained). The breaking process can be contin-
ued until all subsets are reduced to pairs, or the remaining subset is an “essential” set S, with
2k (k=2) entries in A that cannot be broken without losing the indecomposability of A.
This leads to the following definition.
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Definition 3.22: The subset S, with 2k (k 22 ) entries in A is an essential subset if it
is po§sible to define a partition on the entries of A, {S,, A1, ..., Ao}, where each of the sub-
sets A; is indecomposable and linked to only one element of S,.

Lemma 3.23: Consider a subset §; with 2k (k= 2) entries in A. Either it is possible
to brake it into two subsets §;, and S;,, without losing the indecomposability of A, or §; is
an essential subset.

Proof. The lemma follows directly from the definition. If S, is not an essential subset,
there is a partitioning in A, where at least one of the subsets is linked to two elements of S;.
Hence, S; can be broken into two parts, each containing one of these elements, without losing
the indecomposability of the partition. O

After repetitively applying Lemma 3.23, the matrix A is partitioned in pairs and essen-
tial subsets. Consider, for example, a situation with one essential subset:

_ (3-55)
x {A}

x {42}

L e B

with x a nonzero entry in A, and A; indecomposable sets consisting of pairs. Hence, their
structure can always be written as

x (3-56)

x x|

The entry y in the last column can appear at any of the rows but the last one. It is clear that the
rank of this square matrix is the number of columns —1 because the sum of all entries in one
column is zero. So only one frequency is free. This is the frequency that is linked to the essen-
tial set, so that no free frequency remains. This idea can be further extended to situations with
multiple essential sets or no essential set (where one of the pairs can be considered as a spe-
cial case of essential set). The conclusion is that the rank of A is the number of columns —1.

Note. During the breaking process, additional depended columns might appear. These
are shifted back from A to A

PG
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Lemma 3.24: The matrix A can be reduced using the breaking and column-removing
process to a matrix with rank(A) = Z - IN 2k—1, with N,; the number of sets with 2k

entries.

Appendix 3.E: Distribution of the Stochastic
Nonlinearities

In this appendix we assume a deterministic amplitude and a uniform continuous phase
distribution. The random amplitude, the discrete phase, and the nonuniform continuous phase
distributions are commented on in Appendix 3.F.

In this appendix, the proof of Theorem 3.11 is given: for a system belonging to the sys-
tem set S, excited with a random multisine u, € E,, the stochastic nonlinearities are circular
normally distributed. The frequency index k is sometimes omitted for notational simplicity.

The proof consists of the following steps.

m The Volterra series can be written as the sum of contributions up to degree M (G¢)
plus a rest term, Gy, which is an O(g).

w Each of the M terms is normally distributed, and their variances are an O(g"). Also
the variance of G¢ is an O(%), while the variance of the rest term is an O(e?). So,
Gg converges in distribution to G¥, which is a finite sum of circular normally dis-
tributed variables. So, also G{ is circular normally distributed.

(i) Gyk) = Gi(k) + Gz(k), with Gé. = O(e?), 05 = 0%, and € arbitrary
small.

Proof. Ggk) = Y. G§Kk), with 3~ M Mg < Cy <o (Definition 3.5). So,
Ve IMsLY. | MaMg<e = |Gyh)| = X0, GHb)| = 0@
The variance of Gg(k) can be bounded above by
ok = 8(GsGs)=Y, ., 81GHCe<Y. | BlGEes) (57
FromLemma3.19(n=2,m=1—v = 0), it follows that
B1GHGEY < ONOMPMG* M oM (3-58)

Combining (3-57) and (3-58) gives
our)
otk < 2 (Za MM )Ty MM )< 0 (3-59)

Similarly, it is shown that Gé+(k) = OeY).
(ii) All odd moments & { (G§(k))?#+1} = O(N-).
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Proof. Using Lemma 3.19, with n = 2p+ 1, m = p, it follows that v = 1, which
proves the statement.

(iii) Study of the even moments & { |G§(k)|?7}

We use again the notation of Appendix 3.C.In (3-47) weput k,; _;, =k (i = 1,..., p, and
k,; = —k, and define the set of equations

K = BJ,,with K = (k,~k, ...,k k)T (3-60)

From Appendix 3.C, we know that the worst case (maximum number of combinations) is
given if the denominator frequencies are paired with each other, because this leaves the larg-
est number of frequencies free. Hence, the numerator frequencies should be partitioned s.t.
the phases cancel each other. Just as in Appendix 3.C, the subsets can be each time restricted
to depend on only one frequency (otherwise they can be broken into smaller subsets without
changing their contribution). Next we prove a number of additional properties on the group-
ing process.

Claim 1: Partitions that contain subsets linking more than two rows in (3-50) give
only O(N-Y), v 21 contributions.

Proof. Consider the set of equations (3-50). Each row in B has more than one entry
different from zero, because otherwise it would be a systematic contribution instead of a sto-
chastic one (all frequencies, but one, are paired). So there is a submatrix B in B, after rear-
ranging the columns, that gontainz at least 4p entries. Using the definitions of Appendix 3.C,
the numbei of entries in B is Zk"‘:‘l 2kN,, 24p, and the number of columns (set frequen-
cies) is zk"le N,;, where, for the same reason as explained in (3-52), only subsets with an
even number of entries are considered. So after pairing, the total number of independent fre-
quencies is

k
(F,~2p), - (2;:1 2/<1\72k)2
2

- F,-2p o
T Ny = - SY (k- 1Ny,  (3-61)

with ( ), the total number of independent frequencies after imposing the row constraints
(3-39), ( ), the number of entries used in B, and ( ); the number of set frequencies in B.
Each of these combinations is an O(N?P~F<2) If 3 k> 1N,, # 0, then the second part in
(3-61) is negative, and consequently the claim is proved.

Conclusion. Only pairs should be considered.

Claim 2: Partitions, using pairs as subsets, that link more than two rows (k,~k) in
(3-50) give only O(N-Y), v =1 contributions.

Proof.  For such a partition, keeping in mind that each row should contain at least two
entries different from zero, B should contain at least the following submatrix B:
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k 0x0x0
-k xx0x0 (3-62)
k x0x0x
-k 00x0x

where x = *1. It is clear that B, consisting of ¢ columns, has rank 3 and uses 24 entries.
Assuming that the row conditions for the corresponding lines are automatically met, we get
that the number of free frequencies in B is g~ 3. The remaining 2p — 4 row conditions
should still be met, so that there are 2p — 4 dependent variables. Hence, the number of free
pairs is

(F,-(2p-4)-29)/2+q-3 = (F,-2p)/2-1 (3-63)

Because U; = O(N-1/2), each term in the sums of & { |Gs°‘(k)|21’} is an O(N"Fa=""2) The
number of free summation variables in & { |G#(k)|?7} is given by (3-63). Hence,

81{|GHk)|??} = ONT==2P2"hoFa="%) = O(N-Y)
since n = 2p.

Claim 3: Partitions that link pairs of rows (k, 1), 1#-k in (3-50) give only O(N7Y),
v 21 contributions.

Proof.  For such a partition, keeping in mind that each row should contain at least two
entries different from zero, B should contain at least the following submatrix B

ki1l or kil -1 or similar (3-64)
{i-1-1 ll-11

Because the rank of B is 1, and the rank of the augmented matrix

{k 1"2} (3-65)
l

is 2, this set has no solution. Hence, at least an additional link with another row is needed to
increase the rank of B to 2. Claim 3 then follows from the previous Claim 2.
Note that pairing (k, k) is a special case of this claim.

Claim 4: Partitions that contain rows that are not linked to another row do not exist.

Proof. Because each row corresponds to a stochastic contribution, it is clear that not
all the frequencies in one row can be paired within this row.

From Claims 1 to 4, it follows that the only contributions of O(N%) to &{ |G(k)|*}
are those where the partitions link all the rows per two with the denominator frequencies of
the form (k, k). &{ |G§‘(k)|2P} is given, within an O(N-1), by the sum of all these contri-
butions
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8{|Ggw)|?r} = Y B{GHWGH-N)}..8{GHIOGH-H)}  (3-66)

all distinct combinations of pairs

In this expression “all distinct combinations of pairs” indicates all permutations that can be
formed over the rows (3-60) such that distinct products of pairs (k, —k) are formed. For ex-
ample, if we have four rows (1,2,3,4) with frequencies %, -k, k, ~k, we should consider
(1,2)(3,4); (1,4)(2,3). The combination (1,3)(2,4) forms pairs (%, k) and does not
contribute. From Picinbono (1993, p. 112, Eq. (4.95)) it follows that this corresponds to the
moments of a circular, normal distribution. As convergence in the moments implies conver-
gence in distribution (see Lemma 14.11), it follows that GZ(k) is normally distributed, which
proves the theorem.

Appendix 3.F: Extension to Random Amplitudes
and Nonuniform Phases

Because the random amplitude has uniformly bounded moments of any order and is in-
dependently distributed of the phase, we can calculate the expected value w.r.t. the phase, in-
dependently of the amplitude distribution. Hence, all previous proofs in Appendix 3.A to 3.E
remain valid for random amplitudes.

The basic reason that a discrete phase or nonuniform continuous distribution needs spe-
cial attention is that &{ U, U,} can be different from zero, e.g., ¢, € {0, n}. However, a
careful check shows that all previous proofs in Appendix 3.A to 3.E remain valid if (7, !) is
also considered as a paired frequency. Notice that for such a pair the sum of the frequencies is
no longer zero (no major impact on the proofs). A second difference is the fact that such a
pair is represented by one element in the A and B matrices, but notice that there are still two
frequencies linked to this single element. The ¢, € {0, } distribution is a worst case. Dis-
crete distributions with more elements link more frequencies to generate a nonzero expected
value.

The major difference is the expected value & { G*}. Additional O(N-1) terms appear,
also for the even nonlinearities.

A typical odd degree bias contribution for a discrete phase distribution ¢ € {0, 7}
would be -k sty oulyl,my,—my, ...,m, —m, k. Itis important to notice that
Y. L = 0 in order to meet the frequency constraint and, hence, an additional fre-
quency constraint becomes active. Using arguments similar to those in the previous ap-
pendices, the sum of all these contributions is an O(N-!).

An example of an even degree systematic for a nonuniform phase contribution is
—k I, 1, 1, 1y, Ly, k with 31 + 21,. Note that in this case at least three frequen-

cies are linked in one “pair” so that an O(N~3/2) results.

Appendix 3.G: Response of a Nonlinear System
to a Gaussian Excitation

For noise excitations, the FRF is measured using the H;, method (2-43), and its limit
value is given by

_S{r oG} _ Syl
S{UGo)U(w)) Sypjo)

GGw) (3-67)
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The cross-spectrum Sy (j®) is the Fourier transform of the cross-correlation R, (T) be-
tween the input and the output and depends on higher order spectra. In the case of zero mean
normal distributed noise, these higher order spectra can easily be calculated. Consider the
contribution of degree o:

YH) = [: ‘[: 8o(Tgs wvos T Dt — Tp) oottt — T _ 1)AT...d T
Ry, (To) = &{y*(Dult - T9)} (3-68)

= K:...f:gu(xl, ) B Lt = TYu(t = T,).ult = 1)}ty ...dT,

For zero mean jointly normally distributed noise, the higher order moments are given by
{Schetzen, 1980, p. 218):

0 if M is odd

Eluuyuy} = {Zné’{uiuj} if M is even (3-69)

The Zr stands for the summation over all distinct ways of partitioning the M random vari-

ables into products of averages of pairs. It is shown that there are (M - 1)}!! such combina-

tion for M even (Schetzen, 1980) and zero if M is odd. Hence, Ryzau('co) = 0 and

Syzo.U(jm) _ F{RyZau(TO)} _

Syp(j®) Syu(jo)

From here on, it is assumed that & is odd so that an even number of input terms appear.
Using Eq. (3-69), the expected value in Eq. (3-68) becomes

G3*(jw) =

8 { u(t — Tu(t = T1)...u(t — To) }=EMR,,(T;,— T) (3-70)

Using the relationship between the autocorrelation and the power spectrum of the input,
R @ = [ Syyioe’df (3-71)

Eq. (3-68) can be rewritten as

RyZu— ‘u(TO) =

I e (3-72)
[ 2201t o Taa DERS @)/ Dty s df .

In order to calculate this expression, the contribution of one term of £xt is analyzed in detail
for the partition (Tg, T;), (T2, T3)s w0 (Tog_ 2 Tog-1):

o
J’:;..J‘:oo gza_ 1(1:1, seey Tzu_ 1) H Suu(j(’)r)e]mr(TZr72_Tzrfl)d’tl...dTZa_ ldfl "'df(l

r=1
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Define

20— =
Gfg'fpfzr v~ fwfa T

o
= * —joT H j@,(T5,_2~1
J’:ﬁ...[m g2(1—1(11’ seey Tzu_l)e T e" ’( 2r-2 2"1)d’tl...d‘52a_l
r=2

Because G%g:flz’ Fuoutfon fo 15 @ symmetrical kemel, it does not depend on the order of its ar-
guments. So, all possible terms in the partitioning give the same result, thus Eq. (3-72) be-

comes
R a1 (Tp) =
(20— U”E,e JZO G fo it ﬁ Syui®,)Syy(j@)e’* ™df ...df G719
r=2
Note that the power spectrum of R pu 1 (To) is given by
Syra-1gG®) = [ Ry, ()7, (3-74)

Applying (3-74) to (3-73) results in
Sylu—lu(jw) =
Sy Q@a- D[ o GBGL e g Syi))-Suy(0dS sdf 4

Dividing Sy:a-1,/(j®) by Sy, (jw) gives G3*~1(jw):

Sy2|x— 1U(jm)
Syu(Jo)

Qo-DN[" . 633 p  Suv(0)-Syy(i0df ... df o

G3*-(jo) =

= (2(1— 1)”211—1.’:;.“‘(; G%’a_};fz’ m,_fwquUU(jmz)...Suu(jma)dfz...dfa

where in the last step the double-sided spectra are replaced by single sided spectra.
Appendix 3.H: Proof of Theorem 3.12

Note: In this appendix, we denote explicitly the dependence of the results on the num-
ber of frequencies N by adding a subscript N.
We elaborate the first term in the right-hand side of (3-13):

N

Ca Z Gl%,Df-E,,lk,,,..,-k,,_l,ku_,‘g{ |Uk,|2""Uk
kppoonky =1

-1

i (3-75)

Splitting the sums in (3-75) as ), and using

= Zan k; different T Znotal] k; different
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8{|Uk1}2...|Uka_l‘2} = _18{|Uk|2} for all k;’s different (3-76)

makes it possible to rewrite Eq. (3-75) as

2o 2
G _kl [T Y S l— 1 lUk|

C
0t(all k; different
3-77)

200
+ 2 G —k1 ki ..ok
not all &; different

UL |0, )

(x[otl

Addmg and subtracting Y
|Ukl = Suu(fk)/N

notall £, different 1 the first summation of (3-77) gives, using

Ciy +C8y (3-78)
where
N
ce. = o G2u-1 U‘—ls
v =gea 2 %y bk L L2 1 Sp6 i)
kpy kg =1
Coy = ¢4y 2 G2 —kl,k -ka,l,ka,lAu-l (3-79)

not all k; dlfferent

STV, [P -T2 U

Because Sy, (f;) and IGz £k ky ooy ~ky_ 1. ky_,| ar€ uniformly bounded (see Definitions 3.2 to
|2 = O(N-Y) (see Definitions 3.2 and 3. 3), and the sum an Al & differen;  COTAINS
at most .- 2 independent k;’s, we find '

Civl <5 ©_ONO-2) = ON-Y)  (3-80)

L ONe-!) = O(N9) and |C§ \<

Collecting (3-12), (3-13), (3-78), and (3-80), we get

oo

o= 2

G s = Yo _, Cy + O(N-) (3-81)

G, Nsp =
Because Sy ;(f) is by assumption the same for the three classes of excitation signals, it fol-
lows from (3 79) and (3-81) that for these three classes Gy y(s,) converges (N — o) at the
rate O(N-1) to the same limit value Gy(s,). Under some additional assumptions on the odd
degree kernels it is possible to calculate an explicit expression for Gg(s,).
Because the joint second-order derivatives of

= 200-1
Gk &y, k vk keoy Gfk,—fkl,fkl,..',—fkuf i

1
WLt fr, fip - S,

mann sum

o1

and f, are bounded for fkl’ sz, ...,fku_l,fke [0, frax], the Rie-

-1
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N
c 1
C?N = Naa_l 2 Gk —k k kg1 kg H:x_lsuy(fk (3'82)
kppoonkg (=1
where f — fi | = fn/N, convergesto C{
fmﬂx fmax
Cf = b tip s, Soolf0)-Spglfadfy.df g

max

at the rate O(N—2) (Ralston and Rabinowitz, 1984; midpoint rule (4.10-10)). Together with
(3-81) it shows that im G y(j®) = Gg(jw), with Gg(jo) defined in (3-18).
N oo ’

Appendix 3.I: Proof of Theorem 3.15

The sum of a uniformly convergent series of continuous functions is continuous (see

Kaplan, 1993, Theorem 31). Hence, under Assumptions 3.13 and 3.14, the sum

Gy(jo) = Z:= , C¥(j®), and its derivatives of order 1, 2, ..., P w.r.t. @, are continuous
functions of w € [0, ®,,, ]

Appendix 3.J: Proof of Theorem 3.16

Note: In this appendix, we denote explicitly the dependence of the results on the num-
ber of frequencies N by adding a subscript N.

From (3-9), (3-10), and (3-22), it follows that the stochastic nonlinear contributions
Y, n are given by

"/NYSk,N= - "/NY.gk,N

a=2
N (3-83)
/\/—NYSkN = '\/J_V z le kuUkl"'Uk
kpyoonky  ==N
with constraints
k=2_l_1 ,,2 PPy k20, and k; 20 fori = 1, ..., (3-84)

and where G, = G}‘ i, with f, = k;f ./ N. The variance of JJTIYSk ~ €quals
var(JNYg ) = N Y, (Y& x¥hn} = Y CyP (3-85)
(l,ﬁ=2 a,B=2

with

N
— = = (3-86)
CgP=N Y  GE WGP 18U U T,...Uy)
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Because U, = N-120(f)e’® with f, = kf,../N, 8{e/%} = 0 and ¢, independent of
U(fy), it follows that

iU, ..U U,..U 20 Y% 0 =3 o (3-87)

Taking into account the constraints (3-84), the phase condition in (3-87) can be met only if
the frequencies are paired as (mj,—m;) with m;e {ky, ..., ko, —1}, ..., —lﬁ} and where not
all m; should be different. The maximum number of terms in the sums (3-86) is obtained by
maximizing the number of independent m;’s (number of independent pairs). Because
U k' = Syy(fr)/N and the maximum number of independent pairs equals y =
(a+PB)y/2-1, (3- 86) can be written as

N
CiP = N7 2 (ZGI?,ku(_;Pl --.,lﬁ)sgg(fml)'"SUU(fmy) +ON) (3-88)

m,=-N kil

my, ...

where the sum Zk I extends over the choices of m; € ke, kg =1y, ooy —-lﬁ} resulting
in y independent patrs (mj,-m;), and where the second term stems from the nonzero contri-
butions in (3-86) containing at most Y~ 1 independent m;’s. Note that the first term in
(3-88) is an O(N®) and that it is the same for random phase multisines, periodic noise, and
Gaussian noise with the same (power) spectra S o 0()‘). Collecting (3-85) and (3-88) gives

var(J/NY g, ») = 63 y(k) + O(N-1) (3-89)

where 63 y(k) = O(N®) is the same for the three classes of excitation signals. Taking the
limit N — co of (3-89) proves the theorem with 6%(f) = lim % 4(k).
N-oew '

Appendix 3.K: Proof of Theorem 3.8

Consider the contributions to Y&, |LI >1 . (see Eq. 3-5). These are of the form

max

G iky ok, UnUponUp Up withky = L=k, (3-90)

To get systematic contributions, ¢ should be odd because even nonlinearities cannot create
systematic contributions.

Assume that 3 [ s.t. the phase of U_(U, U, ..U, U, ) is zero (these combinations
create the systematic contributions). We will check whether such combinations can exist.

The only possibility to get zero phase is that U_; is paired with one of the components
U In that case there exists a k; s.t. the phase U_ U %, 1s zero. After rearranging the order of
the components, we can put Uy in the last place. Also the components that pair are put to-
gether, and eventually the contributions can be written as

U,U,.-U, (U U_)..(U U, YU, U) (3-91)
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with U " the unpaired components. Now there are two possibilities:

(i) There are no unpaired components left, } = 0. In that case, the combination in
(3-90) contributes to the frequency L = [ = k, which is by definition in the ex-
citation band (k,, is an excitation frequency). This violates that |L| > 1, .

(ii) There are unpaired components ([ = 0). In that case not all frequencies in (3-90)
are paired, and, hence, the phase is not zero. So, also this situation cannot result in
systematic contributions.

This proves the theorem. g



Design of
Excitation Signals

Abstract: Good experiments are the best guarantee to build good models. The selection of
good excitation signals is an important step in the design of the experiment. In this chapter we
explain how to get such signals. In the first part, three classes of excitations are considered:

General purpose signals that can be applied without any optimization. The only param-
eters to be selected are the bandwidth of the excitation signal and the frequency resolu-
tion of the measurement.

Optimized test signals: these facilitate excitation of the system with a user-specified
power spectrum, for example, a semilogarithmic distributed spectrum.

Dedicated test signals: these are signals with optimized characteristics for special situa-
tions; for example, the signal and its derivative do not exceed a user-specified peak
value.

The second part of this chapter deals briefly with the design of optimal power spectra so that
the available power is used at the frequencies where it contributes most to the knowledge of
the system.

4.1 INTRODUCTION

In most system-analysis applications, the dynamic behavior of the system is derived from
measurements of the input and output signals. In some situations the input signal is imposed
by the environment and it is impossible to excite the device under test with an arbitrarily
chosen input (for example, in biological systems, where the choice of excitation is very
limited). In other situations, only binary signals may be applicable. However, in a wide vari-
ety of cases, the only restriction on input signals is that of a limitation in the permitted
amplitude range.

A very common method used in transfer function measurements, until the end of the
1960s, was that of the combination of a slowly swept sine with a tracking filter. Since the de-
velopment of advanced digital signal processing algorithms, and especially since the efficient

System Identification: A Frequency Domain Approach. Rik Pintelon and Johan Schoukens 115
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implementation of the discrete Fourier transform (DFT) with the fast Fourier transform
(FFT), it became possible to use more complex input signals. Instead of exciting the unknown
system frequency by frequency, sophisticated waveforms with a broadband spectrum are gen-
erated, enabling collection of all the required spectral information from a single measure-
ment. This can result in a considerable reduction of the measurement time but also in an un-
desired loss of accuracy if no precautions are taken. We will analyze the trade-off between
accuracy and measurement time, but before starting we must choose between a nonparamet-
ric and a parametric modeling approach. In the nonparametric representation the system is
characterized by measurements of the frequency response at a large number of frequencies,
whereas in a parametric model the system is described by a mathematical transfer function
model with a limited number of parameters. It is precisely these parameters that have to be
estimated in the parametric modeling approach. The optimum spectrum of the excitation in
the parametric case will be different from that in the nonparametric case: this is principally
because the parametric model combines the information available from all frequencies in
only a few parameters. In a direct nonparametric frequency response measurement, there is
no relation between the measurements at the various frequencies and the excitation should be
designed to achieve a predefined accuracy in the frequency bands of interest: for example,
maximizing the absolute or relative accuracy of the measurements. In a parametric approach,
the energy will be concentrated at the frequencies where it contributes most to the knowledge
about the model parameters.

To design an optimized excitation signal, it is necessary to specify the final goal. For
the nonparametric case, we will look for signals that maximize the minimum accuracy ob-
tained in a fixed measurement time for a specified maximum peak value of the excitation:

min(xknagcé(k)) with m?xlu(t)l Su,. @-1)
€

where F is the set of frequencies at which the frequency response is measured. In the para-
metric case, the determinant of the information matrix will be maximized, as discussed later.

In this text we first focus our attention on the design of excitation signals for non-
parametric measurements. The parametric modeling approach will be studied in the second
part.

4.2 GENERAL REMARKS ON EXCITATION SIGNALS
FOR NONPARAMETRIC FREQUENCY
RESPONSE MEASUREMENTS

In this part the nonparametric frequency response function (FRF) measurement problem is
studied. It should be clear to the reader that signals that provide good FRF measurements are
also very well suited for use in a parametric identification step, which gives this section more
general value.

Before starting a detailed comparison of some candidate excitation signals, we first in-
troduce two quality measures for excitation signals. In general, these measures depend on the
actual measured FRF and on the properties of the disturbing noise (e.g., its power spectrum).
However, in order to simplify the discussion, we assume that we deal with flat systems (the
amplitude of the FRF is a constant) in the presence of white noise. If necessary, we will indi-
cate how the conclusions should be modified to the general situation of arbitrary systems with
colored noise distortions.
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4.2.1 Quantifying the Quality of an Excitation Signal

In Chapter 2 it was shown that the uncertainty on the FRF at w, after M averages is

1 2 2 2 2
o340 = G2 (20 + 80 2 V) 42

+ i
M \Sy (0 Sy0,® G)

The uncertainty is inversely proportional to the total power of the excitation signal and also to
the shape of its power spectrum. In order to have a constant variance c2(k) at all frequencies,
the power distribution should be proportional to the impact of the disturbing noise. This leads
to the definition of two characteristics for excitation signals: the crest factor and the time
factor.

Definition 4.1 (Crest Factor): The crest factor Cr(u) of a signal u(f) is given by the
ratio of the peak value u,, of the signal to its rms value ugyg, in the frequency band of
interest

" max |u(t)|
Cr(u) = peak _ _f< 6,71
uRMSe uRMSJPi/PT
with T the measurement time, ugy the rms value of the signal, P the total power of the
signal, and P; the power in the frequency band of interest.

with ugyg = %,Euz(t)dt

The crest factor gives an idea of the compactness of the signal. Signals with an impul-
sive behavior (having a large crest factor) inject much less power into the system than signals
having the same peak value and a small crest factor. The effective rms value ugy. is used to
express that only the power in the frequency band of interest contributes to the knowledge of
the system.

The time factor of an excitation signal also accounts for the power distribution of the
signal over the frequencies. If this is unequally distributed with respect to the noise, some
FRF points will be poorly measured. We will require that the worst measurements still reach
a minimum quality. For the sake of general conclusions, we make the following simplifying
assumptions: |Gy(j@y)|?, o}(k), 6}(k), o},(k) are constant. Expression (4-1) reduces to

1

M|U()2 “3)

og(k) ~

and the number of averages to reach a specified variance is proportional to M ~ 1/|U(k)|2.
The total measurement time 7" is proportional to the required number of averages M. Also
notice that Cr2(u) = ul, /ukys. and ugys, = 2FURyse With F the number of frequen-

cies in the frequency band of interest and, Ugys. = ZL [|U®|*/F). Then

1 Ugwmse Cri(u)
~max —— ~ max ~ max (4-4)
K UmIE e [UBIPUkse & [UK)2Ueak
Ul%MSe F
and the required measurement time per frequency line for a specified peak value u,,, be-

comes proportional to
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Crz(u) UlleSe

= g

4-5)

The proportionality factor is fixed by normalizing Tf(u) =1 for a sine wave. Thus, the time
factor indicates the required measurement time per frequency point that is needed to guaran-
tee a minimum SNR on the FRF measurement, and this is compared with a stepped sine exci-
tation.

Definition 4.2 (Time Factor): The time factor Tf(u) of a signal u(f) is given by
Tf(w) = Igla% 0.5Criu)Udys. /| U(K)|?
€

This result can be generalized for situations with frequency-dependent noise levels and vary-
ing transfer functions. However, it is still impossible to make general comparisons on the ex-
citation signals. The ability of the excitation signals to deal with these situations depends on
their flexibility to impose a user-specified power spectrum.

4.2.2 Stepped Sine versus Broadband Excitations

In this chapter we use the time factor of the sine as a reference to qualify the broadband
excitations. However, the reader should be aware that this quality measure deals only with the
SNR properties of the signal. In practice, other aspects also influence the total measurement
time. To make this clear, the measurement time of a stepped sine experiment (consisting of a
series of single sine measurements at the desired frequencies) is compared with the measure-
ment time with a broadband excitation having the same time factor. Two extreme situations
are considered, assuming a very good SNR the first time and a very poor SNR the second
time. Finally, the intermediate situation is analyzed.

4.2.2.1 Very Good SNR. For the stepped sine, the measurement time is determined
by two elements. At least one period of the sine should be measured and, after each frequency
step, a waiting time T (k) should be included, allowing the transients (of the plant and the
measurement system) to disappear. For highly damped systems, these transients are short, but
they are very long for lightly damped systems, as they appear, for example, in many mechan-
ical applications. For simplicity, we assume that T, (k) is a frequency-independent constant.
Under these conditions, the total measurement time is T = 2]’: 1/ fe+FT, for the
stepped sine and T, = 1/Af + T, for the broadband measurement, where Af is the fre-
quency resolution (one period of the broadband measurement equals 1/Af). If f, = kf,
and Af = f,, these expressions become

1

T, =+ 1/k+FT,~—(058+WnF)+FT, and T, = —+T
fo<tk=1 fo

This shows that a significant gain in measurement time is obtained using the broadband exci-
tation.

4.2.2.2 Very Poor SNR. When the SNR is poor, the measurement time needed to get
an acceptable uncertainty is much larger than the waiting time 7T, and it is proportional to
max1/|U(k)|2 (f we assume for simplicity a constant noise level on the measurements). A
broadband signal distributes the power over F frequencies, while a stepped sine measurement
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keeps all power focused on one line at each partial measurement: U (k)2 = F|Uy (k)|
Hence, to get the same SNR, the measurement time at one frequency will be F times smaller
for the single sine measurement compared with the broadband excitation measurement. How-
ever, for a single sine measurement, F measurements should be made, one after another, while
all information is captured at once for the broadband measurement, so that, eventuaily, the total
measurement time is the same.

4.2.2.3 Intermediate Situation: Balancing the Transient Errors versus the Noise
Errors. In general, the user faces a tricky situation with measurements of medium quality
(for example, an SNR of 40 dB). In that case, (4-6) gives a rough rule of thumb for estimating
the required waiting time so that the equivalent output noise errors equal the transient errors
(Schoukens et al., 2000):

Syy(Jo)
o3 k) + G%](k)[G(Qk)l 2 _2Re(63,(k)G(Q))

= i b 2) wi 2 = -
T, = 5in(;zSNR?) with SNR (4-6)

with t the dominating time constant of the system in the considered frequency band, T the
length of the time record, and SNR expressed as the ratio of the output power to the
equivalent output noise. For example, for T = 10s, T = 15, and an SNR of 40 dB
(SNR = 100), the waiting time becomes at least 3 s after each frequency change.

Conclusion. The total measurement time required for step sine measurements will al-
ways be larger than that of broadband measurements, provided that we can design the latter
excitations with a time factor close to 1. As the damping of a system decreases (time con-
stants increase), the SNR where the stepped sine becomes competitive increases. For most
practical situations, the broadband measurement results in a significantly reduced measure-
ment time. For this reason, we focus completely on broadband excitations.

4.3 STUDY OF BROADBAND EXCITATION SIGNALS

The excitation signals are split into three classes: general purpose signals (no optimization in-
volved), optimized test signals (passing through a fully automatic optimization procedure),
and, finally, advanced test signals that have some very dedicated properties to deal with spe-
cific situations, for example, optimizing not only the signal but also its first and second deriv-
ative (such as displacement, velocity, and acceleration).

4.3.1 General Purpose Signals

In this section we study and compare the properties of some general purpose excitation
signals. This means that no special optimization is performed to deal with specific situations.
These signals should be able to excite the system with an almost flat power spectrum in a
user-specified frequency band. From the previous section, we know already that an optimum
signal should have a low crest and time factor. Besides these two conditions, it is also impor-
tant that no leakage appears during the analysis of the measurements, as explained in Section
2.2.3. Therefore, we are strongly in favor of periodic excitations. Leakage errors cannot be
avoided if aperiodic signals are used, and it will be necessary to average over a large number
of measurements, even if a nonuniform time window is used. This considerably increases the
measurement time required for a specified accuracy. Bursts, or time-limited signals, are ex-
ceptions to this rule: the continuous spectra of these signals are correctly sampled with the
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DFT if the amplitude spectrum is sufficiently band limited for the aliasing effect to be ne-
glected (see Section 2.2.4). Six general purpose signals are considered: swept sine, also
called periodic chirp; multisine excitation; maximum length binary sequences; white noise;
burst white noise; and pulse testing. At the end of this section, the signals are compared with
each other in an example.

4.3.1.1 Swept Sine

Definition 4.3 (Swept Sine): A swept sine (also called periodic chirp) is a sine sweep
test, where the frequency is swept up and/or down in one measurement period, and this is re-
peated in such a way that a periodic signal is created (Brown et al., 1977).

u(t) = Asin((at + b)r) 0<t<T, 4-7

with T, the period, a = T(k,—k,)fe, b = 21k, fa, fo = 1/Tg, ky>k, € N, and k, f,,
k, fo the lowest and the highest frequency, respectively.

Properties

w Periodic signal with period T, = 1/f;, — no leakage.
m Frequency resolution 1/T,.

m Most of the power is equally distributed in the user-selected frequency band
[k, kylfo with k, >k, € N.

n Crest factor typically 1.45, time factor typically between 1.5 and 4.

DiscussioN. A swept sine has a low crest factor (comparable to the crest factor of a
sine wave) but the amplitude spectrum is not actually flat (see Figure 4-5 on page 125). This
introduces frequency components with a lower SNR, resulting in a longer measurement time
for a given accuracy. Although a swept sine can create band spectra, it is not possible to gen-
erate a signal with an arbitrary amplitude spectrum. A second drawback is that not only are
the frequency lines of interest excited, but also a number of other spectral lines appear. This is
unimportant with linear systems, but it can be very disturbing in systems with nonlinear be-
havior.

4.3.1.2 Schroeder Multisine

Definition 4.4 (Schroeder Multisine): A Schroeder multisine is a sum of harmoni-
cally related sine waves

ut) = Y5 _ Acos(2nft + @)
with Schroeder phases ¢, = —k(k—1)t/F and f, = [, f, with [, e N.

Properties

w Periodic signal with period T, = 1/f, — no leakage.

= Frequency resolution 1/T,.



Section 4.3 W Study of Broadband Excitation Signals 121

m All the power at the user-selected frequencies that can be chosen without restriction
on the discrete grid k f,.

m Crest factor typically 1.7, time factor typically 1.5.

DiscussioN.  For the general purpose signal we selected a flat amplitude spectrum
A, = A for the harmonic components of the multisine. However, in general, the user can
make an arbitrary choice.

For simplicity, we also used the Schroeder phases (Schroeder, 1970). Although these
are not optimal, they give good results for flat amplitude spectra of multisines where a suc-
cessive set of frequencies is excited. Smaller crest factors can be found by optimizing the
phases by using a numerical optimization routine. Dedicated methods are discussed in the
next section on optimized test signals, reducing the crest factor from, typically, 1.7 to about
14.

Remark. 1t is strongly advised to use FFT techniques to calculate multisine signals,
otherwise the computation time becomes very long (see Exercises 2.1 and 2.2).

4.3.1.3 Pseudorandom Binary Sequence

Definition 4.5 (Pseudorandom Binary Sequence): A pseudorandom binary sequence
(PRBS) is a deterministic, periodic sequence of length N that switches between one level
(e.g., +1) to another level (e.g., —1). The switches can occur only on a discrete time grid at
multiples of the clock period T, (k,T., k;€ N) and are chosen such that the autocorrelation
is as given in Figure 4-1 (Godfrey, 1993a, 1993b).

AR,

— * —_ —_- — ——— T = el
T r, Tk NT,

Figure 4-1. Autocorrelation function of a PRBS of length N, switching between +1.

Properties

s Periodic signal withperiod T = NT, — no leakage.
s Frequency resolution 1/7.

s Most of the power below 0.4f, = 0.4/T, (see Figure 4-3). Optimal choice of the
clock frequency f, = 2.5 f .. With £ . the maximum frequency of interest.

m Crest factor is 1 if all power is considered, time factor typically 1.5.

Discussion. The PRBS has a spectrum whose components decrease in inverse pro-
portion to the frequency. The amplitude A(k) of the Fourier coefficient U, of a PRBS is

given by
AO = £ and A = a“NN‘“ LGnckn/Ny fork = 1,2, ..,N=1  (4-8)
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with sinc(x) = sin(x)/x, 2a the peak-to-peak amplitude of the sequence, and f, =
k(f./N).

It is not possible to find a binary sequence for every arbitrary length N. However, there
are a number of possibilities to generate these sequences, hence, there is still much freedom
in choosing N.

A first possibility is to use quadratic residue code methods (Godfrey, 1993b). This
method generates a PRBS with length N = 4k—1 where N should also be a prime
number (e.g., N = 3,7, 11, 19, 23,31, ...). The signals can be generated by the fol-
lowing Matlab™ code:

x =—ones(N, 1); x(mod([L:N]A2, M)+ D =1;x(1) =1

These sequences can easily be generated, nowadays, using arbitrary waveform genera-
tors.

Second possibility: For a long time (in the 1960s and 1970s), it was technically not pos-
sible to generate the previous sequences and for that reason other PRBS signals such as
the maximum length binary sequences (MLBS) were preferred. These can be generated
with the setup shown in Figure 4-2 (Godfrey, 1969, 1980, 1993b; Eykhoff, 1974;
Norton, 1986). From all possible binary sequences that can be generated with a fixed
register length, the MLBS has the longest period and the shortest correlation length.
This means that the spectrum is as flat as possible. The feedback choice determines
whether a sequence with the maximum period

= (2R-1)T. (4-9)

is generated. Here, R is the register length and T, is the clock period.

Because the length ¥ (in clock cycles) does not equal 2* samples, it is not possible to apply
a straightforward FFT analysis. Instead, the chirp-z transform can be used, which permits ef-
ficient calculation of the DFT for an arbitrary number of data points (Rabiner and Gold,
1975; Oppenheim and Schafer, 1975). Most numerical packages can calculate the DFT for
arbitrary lengths.

In Figure 4-3, details of the first lobe of the amplitude spectrum are given for an MLLBS
generated with lengths N = 15,31, and 63. The amplitude of the individual components
decreases with increasing length. The crest factor varies as a function of the spectral
band(0 < f < f_.,) in use, decreasing to 1 as the bandwidth increases to infinity. However,
the time factor has a different behavior, as seen in Figure 4-3(b): it decreases for low frequen-
cies but increases to infinity if f,, approaches f,, as the amplitudes decrease to zero at this
frequency. The time factor is less than 1.5 if the upper limit of the frequency band is taken be-
tween 0.2 and 0.6 of the PRBS generator clock frequency. The optimal value of the upper fre-

=T 1 ¢
II Output

Figure 4-2. Generation of a maximum length
binary signal with a shift register (can be
initialized with an arbitrary nonzero code).
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Figure 4-3. (a) Part of the amplitude spectrum and (b) the time factor of an MLBS as
function of the bandwidth used (0 — f,..), lengths N = 15, 31, and 63.

quency limit is around 0.4 f, resulting in a time factor of 1.1 corresponding to a clock fre-
quency f,. equal to 2.5 times the maximum frequency of interest.

4.3.1.4 Random Noise

Definition 4.6 (Random Noise): Random noise is a noise sequence whose power
spectrum can be influenced by digital filters (Brown et al., 1977; Van Brussel, 1975).

Properties

m Random excitation — leakage problems.

s Equivalent frequency resolution 1/7.

s Shaping of the power spectrum using a digital filter.
m Crest factor, typically 2-3, and time factor 4.5.

DiscussioN. In practice, the extreme values of the random signal are clipped (for ex-
ample, outside the 2 sigma interval) to avoid excessive peak values. The major disadvantages of
random excitations are the leakage problems and the drops in the amplitude spectrum if only
one realization is processed. In Section 2.6.2, we explain how to deal with these problems.

To maximize the power injected into the system, it is advantageous to use binary noise.
This is done by retaining only the sign of the original noise signal (Schoukens et al., 1995). In
order to maintain the binary nature, all prefiltering should be done before the sign operation.
Because the sign operation is a nonlinear operation, it distorts the power spectrum. Conse-
quently, it is impossible to keep full control over the power spectrum and the crest factor at
the same time. This is illustrated in Figure 4-4. A white noise sequence is filtered, and then
only the sign is retained so that a binary sequence is generated. The actual, realized spectrum

Periodogram binary noise

o

B P, .

g 1 Mﬁ‘“"’*ﬁwn
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E

< Desired power spectrum
Figure 4-4. Comparison of the spectrum of a -40 — 1
filtered noise sequence before and after the sign 0 0.25 0.5

function. ﬂfs
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is compared with the desired power spectrum. As can be seen, the power spectrum is only
partly under control. Most of the power is injected in the frequency band of interest, but there
is still a large fraction generated outside this band.

4.3.1.5 Random Burst

Definition 4.7 (Random Burst): A random burst is a noise sequence that is imposed
on the system during the first part of the measurement sequence, and a zero input is applied
for the rest of the measurement period (Herlufsen, 1984).

u(t) = w(nr(t)

1 0<i<T,
w(t) =
0 T,€t<T

with r(#) arandom variable and w(¢) a window function.

Properties

w Random excitation, no leakage if the system response becomes negligible before the
end of the measurement window (7°).

m Equivalent frequency resolution 1/7.
= Shaping of the power spectrum using a digital filter.
m Crest factor, typically, 3(T/7T,)!/2, minimum time factor > 4.57/T.

Discussion.  The crest factor of a random burst sequence is equal to that of the ran-
dom sequence multiplied by ,/T/T,. For systems with low damping factors, the relative
width 7, /T of the burst must be very small, resulting in a high crest factor. The biggest ad-
vantage of using a random burst is that there are no leakage errors (a uniform window should
be used to calculate the DFT). The power spectrum of a random burst is a random variable, as
it is for a periodic noise sequence, and so the same restrictions are valid as those mentioned
for periodic noise.

4.3.1.6 Pulse-Impact Testing

Definition 4.8 (Pulse): The impulse response is measured directly in the time domain
by exciting the plant with a short pulse (Halvorsen and Brown, 1977). For example, for a sin-

gle pulse,
A 0<t<T,
u(t) =

0 T, <t<T
with 7', the pulse width and T the measurement period.

Properties

m Deterministic excitation, no leakage if the system response becomes negligible be-
fore the end of the measurement window (77).

Equivalent frequency resolution 1/T.

Shaping of the power spectrum by modifying the pulse shape.
Optimal choice T = 1/(2.5f 0x )-

Minimum crest factor ,/T/T,, minimum time factor is 7/T;.
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DiscussioN.  The autocorrelation of the impulse response is the same as that of the
MLBS, so their amplitude spectra are the same. To get the same input energy, the amplitude
must be increased by a factor of ,/7/T,. The minimum time factor is reached for the same
upper frequency limit as for the MLBS. More sophisticated impulse generation techniques
are given by Halvorsen and Brown (1977), but the general characteristics remain the same. In
mechanical testing, the impulse (or hammer) excitation is still popular because it can be ap-
plied very simply: no shakers or other expensive equipment are needed to create the input.

4.3.1.7 Example: Comparison of the General Purpose Excitations. In order to get
a better understanding of the behavior of the general purpose signals, they are compared with
each other in this section. The aim is to excite a frequency band between 1 and 42 Hz, using
signals with a length of 256 samples and a sampling frequency of 256 Hz. The resulting sig-
nals and their amplitude spectrum are shown in Figure 4-5.
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Figure 4-5. Comparison of the general purpose excitation signals in the time (left
column) and frequency (right column) domains.
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For the MLBS, a clock frequency of 128 Hz was used in order to get better coverage of
the frequency band (N =127). The peak value of every signal was scaled to one. The random
excitations consist of filtered Gaussian noise (Butterworth filter of order 7 with a cutoff fre-
quency of 42 Hz). The figure is very informative. The multisine is the only signal that exclu-
sively excites the frequency band of interest. All the other signals also excite outside this
band. The first three signals inject considerably more power into the system than the noise ex-
citations. After normalization, the power in the frequency band of interest is 1 for the MLBS,
0.81 for the periodic chirp, 0.60 for the multisine, and 0.08 and 0.05 for the random and burst
random signals, respectively. The worst measurements will appear at the lines with the small-
est amplitude spectrum. This was 0.009 and 0.004 for the random and burst random, 0.55 for
the chirp, 1.037 for the multisine, and 1.18 for the MLBS. The amplitude of the chirp droops
only at a few border lines of the frequency band of interest; it is slightly above the multisine
on most other lines. From this we can conclude that the chirp, multisine, and MLBS have
about the same quality and the selection should be based on personal preference, technical
possibilities, and second rank arguments that are important for specific situations (e.g., no
power outside the band). The random excitations have inferior properties compared with the
first three deterministic excitations. They are prone to leakage and inject significantly less
power into the system, resulting in a poor SNR.

4.3.2 Optimized Test Signais

Whereas in the previous section we considered signals that could be applied directly,
we consider in this section excitation signals where an iterative algorithm is needed to opti-
mize their design. Because of the continuously increasing computer power, this is not a real
drawback. The design time runs from a few seconds for simple signals to a few minutes for
complex signals with a few hundred frequency components.

Two classes of signals are considered. First the design of multisine excitations with
minimized crest factor is discussed, then optimized binary sequences are designed.

4.3.2.1 Optimized Multisines. These are classical multisines where the user chooses
the excited frequencies on the equidistant frequency grid kf, and also selects the desired
amplitude spectrum. This is the signal preferred by the authors because it gives maximal flex-
ibility combined with a minimum measurement time and a maximum quality of the measure-
ments. Moreover, by making a dedicated selection of the components of the excitation signal,
it is even possible to detect, qualify, and quantify the presence of nonlinear distortions (see
Chapter 3).

Properties
m Periodic signal with period T, = 1/f, — no leakage.

s Frequency resolution 1/7,.

m All the power at the user-selected frequencies that can be freely chosen on the dis-
crete grid kf,.

= The amplitude of the harmonic components can be freely chosen and is exactly real-
ized, no out-of-band power appears.

m Crest factor from 1.4 to 2, depending on the complexity of the amplitude spectrum.

Discussion. Instead of using explicit phase relations for the multisine, a numerical
search method is used to select optimal phases that minimize the crest factor. In the literature,
many crest factor minimization methods have been presented. In the explicit expressions, the
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Schroeder phases are given, allowing a direct calculation of the phases. For multisines with a
sparse spectrum, where the frequency lines are few and far apart, or for multisines with an
amplitude spectrum that is not flat, the Schroeder phases give no better results than those ob-
tained with a random phase selection, uniformly distributed in [0,2x[. In these situations,
more sophisticated methods are needed and no explicit formulas are available. Two algo-
rithms are proposed. The first one is a clipping procedure that cuts the largest peaks of the
signal. The second one is based on the successive minimization of a series of [, ,(¢) norms
w.r.t. for increasing p

1
R O e (R (@10)

u(t, ¢) = 2£=1Akcos(2nfkt+¢k)

with ¢7 = [¢,0,...¢F] the phases of the multisine u(t), T the period of the multisine, and
p = 2,4,8,16,.... Compared with the first one, it gives smaller crest factors but needs a
larger memory, especially for multisines with a large number of components. With increasing
computing power, the last method becomes more and more attractive. Both algorithms are
discussed in Appendix 4.A.

Note: Both algorithms can be generalized easily to generate a signal with a power spec-
trum S, (jo) + S, (jo), with S, (jw) the desired power spectrum and S,,(j®) additional
power that is added by the algorithm at other frequencies such that the crest factor of the sig-
nal decreases further (e.g., by adding additional harmonics to a sine wave, a block-like signal
results, pushing the crest factor well below J2) (Guillaume et al., 1991). This is called snow-
ing. During the calculation of the crest factor, the additional power is not considered when
calculating upyg.-

Example 4.9 (Flat (Snow) Multisine): The signal of the previous section is also opti-
mized with the /, » algorithm, resulting in a crest factor of 1.42 (compared with 1.67 for the
Schroeder multisine). It is shown in Figure 4-6(a). Next, snowing was allowed on the lines
43-255, pushing down the crest factor to 1.19. This made it possible to get 40% more power
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Figure 4-6. Example of the general purpose multisine after optimizing phases. (a) With-
out snow, (b) with snow: ... (reference signal without snow as in a), ___ with
SNOW.
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in the frequency band of interest, compared with the original signal, which had no snow.
Compared with the PRBS, 19% more power is injected in the frequency band of interest.
About 5% of the totally available power is “wasted” at the snow lines. O

Example 4.10 (Quasi-Logarithmic Excitation): The advantage of the iterative algo-
rithms becomes most obvious when dealing with more complex power spectra. In this exam-
ple, a quasi-logarithmic multisine is generated, depositing the power at an almost logarithmic
frequency grid (N, = 4096, [ = 04N, fi.1/f;=1.05). Each time the frequen-
cies are shifted to the nearest harmonic line. After optimization, the crest factor is 2.0
(Schroeder phases: 3.3) so that almost three times more power can be injected for the same
peak value of the excitation. In this example the crest factor is reduced using the successive
minimization algorithm (4-10). The alternative is to use the clipping algorithm (Van der
Ouderaa and Renneboog, 1988), but the first algorithm gives better results in a shorter time,
at a cost of needing a larger memory. The signal is shown in Figure 4-7. O

4.3.2.2 Discrete Interval Binary Sequence (DIBS). The second class of optimized
excitation signals are the discrete interval binary sequences. These are periodic binary se-
quences, where the sign can change only at an equidistant discrete set of points in time (Van
den Bos, 1974; Paehlike and Rake, 1979; Van den Bos and Krol, 1979). The amplitude spec-
trum of the sequence can be optimized by choosing a good switching sequence so that the en-
ergy is concentrated within the frequency band of interest.

Properties

m Periodic signal with arbitrary period length T, = 1/f, — no leakage.
a Frequency resolution 1/7T,,.

a The power is concentrated at the user- selected frequencies that can be freely chosen
on the discrete grid & f, but the other frequencies are also excited.

m The amplitude of the harmonic components can be freely chosen but is only approx-
imately realized.

m The crest factor depends on the complexity of the signal but is usually rather small.

DiscussioN. The generation of a DIBS is based on an iterative algorithm proposed
by Van den Bos and Krol (1979). The procedure is begun a number of times from different
starting values, and the best signal is retained. With a DIBS, it is possible to concentrate the
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Figure 4-7. Example of a quasi-logarithmic multisine on an equidistant frequency grid.
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energy in a discrete set of spectral lines. The crest factor is greater than one because not all of
the power is concentrated at the frequencies of interest; but even then, most of the energy can
be confined to the frequency band required, which is not possible with the MLBS. Pachlike
and Rake (1979) have presented an iterative scheme for putting more of the energy into the
weakest spectral lines, thus improving the SNR and decreasing the time factor. Compared
with the PRBS, the DIBS can be generated for any sequence length with an arbitrary power
spectrum.

Example 4.11 (Low-Pass Spectrum): The general purpose signal of the previous sec-
tion was also recalculated using this method and is compared with the results of the MLBS in
Figure 4-8. The crest factor of the DIBS signal is 1.36, compared with 1.5 for the MLBS. [

Amplitude (dB)
Amplitude (dB)

T N i 1 0 T T T L 1
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Frequency (Hz) Frequency (Hz)
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Figure 4-8. Comparison of the spectrum of a DIBS (f. = 256 Hz, N = 256) and an
PRBS (N = 103, f. = 103 Hz) to gencrate a flat spectrum in a band 142
Hz. (a) Global view, (b) zoom on the frequency band of interest, — DIBS,
- PRBS.

Example 4.12 (Bandpass Spectrum): Figure 4-9 illustrates the possibility of creating
a bandpass spectrum using a DIBS (crest factor 1.29). Note that this is not possible at all with
an MLBS. O

4.3.3 Advanced Test Signals

In this section we discuss some excitation signals with very specialized properties, for
example, signals where the crest factor of the first or second derivative is also minimized.
These should be used only in critical conditions, where the special shape of the excitation
gives a significant advantage. Even for these signals, the additional design time is quite re-
stricted (from a few seconds to a few minutes), but their proper design and application re-
quires a good user’s insight into the properties of these signals and their application.

4.3.3.1 Crest Factor Minimization of Linearly Related Multiple Multisines. In
some problems, it is not sufficient to keep the crest factor of the excitation low; the system
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Figure 4-9. Spectrum of a DIBS (f. = 256 Hz, E 401 : : S
N = 256) designed to generate a flat spectrum 0 20 40 60 80 100
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output should also have a small crest factor. In other applications the signal and its first or
second derivative should be small. For example, in mechanical systems the acceleration
should be restricted in order to avoid excessive forces, while excessive displacements are
avoided to keep the stroke of the shaker small and to maintain a linear behavior of the system.
Again, it would be useful if the crest factor of both signals is minimized at the same time.

The I,, crest factor minimization algorithm of the previous section makes it possible to
optimize multiple multisines linked by linear systems, e.g., Y(j®) = G(jo)U(jw). Crite-
rion (4-10) is generalized to

w(t,9) Y6 O _ (L m(wr(8) , Y 8)) )
Upms ~ YRMS |2p (Too( uglis ¥ Y&kis ) tj

u(t, 9) = ZL L ACOSQTf t + §p)
Yt 9) = FF_ AGHQY|cosnfyt + b, + LGo(Qp)

(4-11)

with ¢T = [¢,0,...97], Q, = jo, for continuous-time systems and Q, = e7": for
discrete-time systems. In Guillaume et al. (1991), it is shown that the minimum of (4-11),
with respect to ¢, for p growing to infinity results in two multisines with equal and mini-
mum crest factors. Sometimes, it is more advantageous to minimize the scaled peak values of
both multisines, allowing optimal use of the full scale of the measurement equipment. This is
done by minimizing

utr, ¢), 19 @12)

2p

with § a scaling factor. When S is chosen as the ratio of the rms values, signals with equal
crest factors are obtained. Clearly, when S is chosen too large (or too small), the problem re-
duces to the minimization of fu(z, 9),, or lly(z, §) .

Example 4.13 (Crest Factor Minimization of Linearly Related Multisines): A
multisine u(f) with F = 512 consecutive components is designed to have minimum crest,
together with its second derivative d2u(t)/dt?. Table 4-1 gives the crest factors that are ob-
tained using I, and the resulting output signals d?u(r)/dt* are shown in Figure 4-10. As
can be seen, the crest factor is reduced to 60% of its original value. In the case of a mechani-
cal system this allows a significant reduction of the forces and, hence, the dimensions and the
cost of the shaker used to generate the signals. O

TABLE 4-1 Crest Factor Minimization of u(t) and d*u(t)/d¢

Crest Factor Ihput Crest Factor Output
Input min. (4-10) 1.39 2.85
Input/output min. (4-11) 1.61 1.63

4.3.3.2 Multilevel Excitation Signals. The DIBS (see Section 4.3.2) is a binary se-
quence that excites two levels only. In some applications, ternary signals can be used (e.g.,
levels -1, 0, 1), allowing greater flexibility during the design. In general, this leads to the fol-
lowing results:
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Figure 4-10. The second order derivative of a multisine with minimum crest factor (a)
and input-output optimized crest factor (b).

The total power of the signal decreases: since the signal is set equal to zero at some
points (instead of —1 or 1), it is clear that less power is available in the design.

The out-of-band power is reduced: the greater flexibility due to the additional level
gives better control over the power spectrum. This makes it possible to reduce the out-
of-band power.

The lowest in-band level is about the same: although less power is generated, the lowest
amplitude at a frequency line of interest remains almost the same. This guarantees that
the minimum uncertainty of the measurement will be the same for binary and three-
level signals. However, by using the ternary signal, less power is wasted.

The design of multilevel signals is extensively discussed by McCormack et al. (1995) and
Barker and Zhuang (1997).

4.3.3.3 Harmonic Suppression. In Section 3.5.1 it was shown that periodic signals
with an odd (spectral lines 2k + 1 present) or odd-odd (spectral lines 4k + 1 present) spec-
trum make it possible to eliminate the even nonlinearities and detect the presence of odd non-
linearities. Such signals can easily be obtained from multisines where the amplitudes of the
corresponding lines are put to zero. It is also possible to create such signals from binary se-
quences. The inversely repeated sequence [u(f), —u(#)] has no even components in its spec-
trum. Using multilevel designs (Barker and Zhuang, 1997), it is also possible to suppress the
second and third harmonics of a set of specified primes. Finally, it is also possible to design
sparse harmonic multisines which facilitate a direct probing of the second and third degree
Volterra kernels (Evans, 1998; Boyd et al., 1983) with a minimum interference.

4.4 OPTIMIZATION OF EXCITATION SIGNALS
FOR PARAMETRIC MEASUREMENTS

4.4.1 Introduction

Here, the parametric measurement problem is studied. We will concentrate on the pa-
rameters @ of the mathematical model G(£2;, 8), with , = jo, for continuous-time sys-
tems and Q, = e /7 for discrete-time systems, which describes the measured transfer
function Gy(€2,). To fit the model G(L,, 6) on the measurements G(£2;), a cost function
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V(0, Z), with Z a vector containing the measured input-output DFT spectra, which is an in-
dication of the quality of the fit, is minimized. As explained in Chapter 1, a simple and very
popular choice for V(0, Z) is the least squares cost function in which the squared differences
between the model and the measurements are summed together. Another possibility is to em-
bed the choice of the cost function in a statistical framework, as done for the maximum likeli-
hood (ML) estimator, resulting in a weighted least squares estimator if the disturbing noise is
normally distributed (Chapter 1). The quality of the estimates strongly depends on the excita-
tion signals applied during the experiment. As in the nonparametric case, the excitation signal
will be optimized in two steps, the first being the selection of an optimized power spectrum
followed by a crest factor minimization of the involved signals in the second step.

To optimize the input spectrum, we need a scalar criterion that is sensitive to the accu-
racy of all the parameters of the system. The determinant of the covariance matrix, which is
equal to the volume of the uncertainty ellipsoid, is such a criterion.

A range of criteria, other than the determinant, can be found in the literature, optimiza-
tion of the trace being the most popular. For the sake of brevity, we limit ourselves in this text
to examining the minimization of the determinant of the covariance matrix. For more infor-
mation on other criteria, the reader is referred to other publications (Federov, 1972; Goodwin
and Payne, 1977; Zarrop, 1979; Walter and Pronzato, 1997).

For computational simplicity, the covariance matrix is approximated by the
Cramér-Rao lower bound (inverse information matrix) because the latter is easier to calculate
(Chapter 1). General expressions of the information matrix can be obtained (without specify-
ing an estimator) and the problem of minimizing the determinant of the covariance matrix is
replaced by maximizing the determinant of the information matrix. This approximation is
valid if the covariance matrix of the actual estimator approximates the Cramér-Rao lower
bound sufficiently close for the considered experiments.

4.4.2 Optimization of the Power Spectrum of a Signal

4.4.2.1 Preliminary Aspects. The information matrix is the kernel of optimizing al-
gorithms. It is a real symmetric and semipositive definite nyX ngy matrix, where n, is the
number of unknown model parameters. Each optimal design in the frequency domain can be
reduced to a design consisting of a discrete set of ng(ng+1)/2+1 frequencies (Federov,
1972; Goodwin and Payne, 1977), which corresponds to the number of free parameters in a
symmetric ngX 1, matrix + 1. The minimum number of frequencies required to avoid a non-
singular information matrix is int(ng/2) (with int(x) the integer part of x). When using
classical optimizing algorithms, the computer time needed to search for an extreme value de-
pends strongly on the number of frequencies. From a modeling point of view, however, the
minimum number is undesirable, because if an estimate of n, parameters is made using
int(ng/2) frequencies, there is no possibility of detecting model errors. A second drawback
of working with the minimum number of frequencies is that it is more difficult to compress
the signals in the time domain.

Most algorithms presented in the literature searched for optimal designs with the mini-
mum number of frequencies. We present a method for designing optimal power spectra based
on a discrete frequency grid: this is not in itself a restriction because we look for periodic sig-
nals that have discrete spectra. This will lead to a significant reduction of the computation
time. The method can be applied in the Laplace domain (continuous-time systems) as well as
in the z-domain (discrete-time systems). In order to stress this equivalence, we use Q as the
frequency variable in the following interchangeable manner: Q = jo (Laplace), or
Q = ¢7*Ts (z-domain). The following function is used in the optimization algorithm.
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Definition 4.14 (Dispersion Function): The dispersion function v(y, ;) for a given
input power spectrum

1(Q) = (UMDPR.JUFE), with ¥ U2 = p (4-13)
is
v(y, ) = trace([Fi(x)]11 fi(Q)) 4-14)

with Fi(y) the information matrix resulting from the design (), fi(£2,) the information
matrix corresponding to a single frequency input with a normalized power spectrum
|U(k)|? = g, and Q, the frequency.

The dispersion function has the following properties:

a The dispersion function can be related to the input and output noise on the measure-

ments (Schoukens and Pintelon, 1991) as
20%(Q, O) p
v Q) = — —— —— (4-15)
6% (k)|G()[? + 6§ (k) - 2Re(0},(k)G(L,))

with 6Z(Q,, 6) the uncertainty on the transfer function using the Cramér-Rao lower

bound as covariance matrix for the model parameters. The dispersion can be inter-

preted as the ratio of the variance of the system frequency response, calculated with

the estimated parameters, to the noise power of the measurements referred to the
output of the system at the frequency Q, .

a The dispersion function is a normalized quantity:

R _

S v Q)= (4-16)

(Goodwin and Payne, 1977).

a The maximum of the dispersion function v(¥, £;) over the frequency grid is larger
than or equal to the number of parameters n, (Goodwin and Payne, 1977).

These three properties will be used in the algorithm for designing an optimized excitation signal.

4.4.2.2 An Efficient Algorithm for Maximizing the Information Matrix. Although
the optimal input may be found analyticaily for simple situations, in general, no closed form
solution can be found. Therefore, an iterative design is required. Most algorithms carry out a
search in the continuous frequency space to find the frequency with the maximum dispersion
and then add extra energy at this frequency. The resulting spectrum is normalized, and the
procedure is repeated until the variations are negligible. More sophisticated algorithms com-
bine this procedure with a mechanism that removes components from the spectrum (Federov,
1972; Zarrop, 1979). The search for a maximum is very time consuming, and the final spec-
trum is difficult to generate because the optimal frequencies are not harmonically related. For
these reasons, it is better to reduce the frequency space to a discrete set of frequencies in the
analysis; the implications of this restriction for the attainable accuracy are studied in more de-
tail by Van den Eijnde and Schoukens (1991), and it turns out that there is no significant loss
in attainable accuracy if the discrete set of frequencies is sufficiently dense.
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In general, any discrete set of frequencies can be used, but if only periodic signals are
retained, it is obvious that the selected frequencies should be harmonically related. For the
initial design, the simplest first choice is that of equally spaced spectral lines within the fre-
quency band of interest, with the total fixed input power uniformly distributed over the F fre-
quencies in this set. The resulting spectrum constitutes the initial design %, . The response
dispersion function v(y,, Q;) is computed for every spectral line €, in the set, and the
available power is redistributed over all spectral lines proportionally to the corresponding val-
ues of the dispersion function. The optimal input is found by repeating this procedure; the it-
eration can be stopped when the variation of the determinant of the information matrix is
small. This method was described in the late 1970s (see Walter and Pronzato, 1997, pp. 305-
306, and the references therein). If we express this approach in mathematical terms, we end
up with an algorithm with the following consecutive steps:

Algorithm 4.15 (Optimization Power Spectrum)

1. Initiation:
Select a set F of F frequencies €2, ...,Qp within the frequency band of interest:
F = {Q, ...,Q}. Distribute the input power equally over these F frequencies.
This constitutes the initial design .

2. Tteration:
2a. Set i = i+1 and compute the response dispersion function v(y;, €,) for

k=1 .,F.

2b. Compose a new design in the following way:

2c. If max(v(y, Q) —ng) <& with & sufficiently small and Q, € F, then the
optimum design is found; otherwise go to step 2a.

Proof. See Van den Eijnde and Schoukens (1991) and Delbaen (1990). O

It has been shown (Walter and Pronzato, 1997; Delbaen, 1990) that each run of this al-
gorithm yields a superior input design and that consecutive designs converge monotonously
to a design with the optimum dispersion function and, hence, the minimum determinant of
the Cramér-Rao bound.

4.4.2.3 Importance of Crest Factor Minimization. In a second step, after the selec-
tion of the power spectrum, the crest factor of the corresponding multisine(s) should be mini-
mized. To compare different excitations, it is necessary to scale the determinant of the
Cramér-Rao lower bound and the dispersion function with the optimized crest factor so that
all signals are compared for the same peak value.

det(CR104(0)) = det(CR(6))Cr*"e(u) (4-18)

4.4.2.4 Practical Implementation. It is obvious that the calculation of the optimum
amplitude spectrum is possible only if enough knowledge of the system is available. In most
situations, a two-step procedure is required, restricting the applicability of these methods sig-
nificantly. In the first step, the unknown parameters are estimated using a multisine with a flat
amplitude spectrum; in the second step, these estimated values are used to optimize the am-
plitude spectrum. The covariance matrix of the estimated, unknown model parameters should
be close enough to the Cramér-Rao lower bound.
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4.4.2.5 Example: An Experimental Verification. The power spectrum optimization
for a parametric measurement is illustrated in the following example:

b,s? + bys + byst
Ag+ayS+ ... + ags®

Go(s) = 4-19)

The coefficients are given in Table 4-2 and the corresponding amplitude characteristic is
given in Figure 4-11. The system is excited with a multisine at the frequencies f, = kf,
with k£ =25, 26,..., 100 and f, = 50/2048 MHz. The rms value of the multisine is set equal
to 1/.,/2. Two multisines are considered, the first one having a flat amplitude spectrum and
the second one being optimized on the basis of the procedure described before. The evolution
of the power spectrum optimization process is given in Figure 4-12. The optimization is
stopped before the final convergence is reached (after three iterations) to avoid signals with a
sparse spectrum. These are very difficult to compress and have a large crest factor. From
(4-18) it is seen that this would jeopardize the accuracy gain that is obtained with the design
of an optimal spectrum. In this exampie the determinant of the corresponding Cramér-Rao
lower bound was reduced with a factor 43 after three iterations.

TABLE 4-2 Coefficients of the Transfer Function of the Sixth-Order
Continuous-Time Bandpass Filter

b, b, b,
8.973e-10  5.5155e-12  3.2010e-17
a, a, a, a, a, as as
1 2.5017e-4 3.5869¢-7 5.5550e-11 3.36031e-14 2.5351e-18 1.0131e-21

The crest factors or peak values of the multisine at the input and output are minimized using
the /,,, algorithm (4-12) and the results are given in Table 4-3. Three situations are considered:

s Minimization of the crest factor of the input signal
s Simultaneous minimization of the crest factors of the input and output

= Simultaneous minimization of the peak values of the input and output

For our purpose, the last possibility is the most interesting because it will determine the set-
tings of the full scale of the measurement instruments. In Table 4-3, it is seen that the peak
values of the multisine, with the optimized power spectrum, are equal to those of the multi-

1%
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I~

o
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Figure 4-11. Amplitude transfer characteristic 0 200 400 600 800 1000
of the studied system. Frequency (Hz)
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sine with flat power spectrum (optimization c). So the settings of the measurement instru-
ments can remain the same for both excitations, and, consequently, the noise on both
measurements will be equal. However, the uncertainty on the estimated parameters will be
smaller in the second case because the determinant det(¥i(6)) is much smaller than in the
first case, resulting in a smaller uncertainty on the calculated transfer characteristics.

TABLE 4-3 Minimization of the Crest Factor(s) or Peak Values of Two
Multisines, Related by the Linear System (4-19)

Input Onutput
Crest Factor Peak Value Crest Factor Peak Value

Flat input power spectrum

a 1.459 1.031 2.749 1.418

b 1.667 1.170 1.667 0.862

¢ 1.509 1.067 2.065 1.067
Optimized input power spectrum

c 1.459 1.031 1.860 1.200

b 1.582 1.118 1.582 1.026

c 1.508 1.066 1.643 1.066

a: minimization of the crest factor of the input
b: simultaneous minimization of the crest factors of the input and output
c: simultaneous minimization of the peak values of the input and output
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From experimental tests, it turned out that these signals can be generated in practice;
small disturbances at the amplitudes or the phases in the generator (and reconstruction filter)
do not result in an excessive growth of the crest factor. In Figure 4-13(b) measurements of the
calculated multisines are given. They were generated with a 12-bit arbitrary waveform gen-
erator with 2048 points in one period (sampling frequency 20 kHz). The generator was fol-
lowed by a reconstruction filter (a Cauer filter with a cutoff frequency of 2 kHz). No phase or
amplitude compensation was made for the distortion introduced by the reconstruction filter.
If this amplitude/phase distortion becomes disturbing, it is always possible to give a precom-
pensation to the amplitudes/phases of the multisine. The measurements were made with an
8-bit digitizer (full scale + 1 V) at 512 points with a sampling frequency of 5 kHz.

104 % 0.002- %
Flat
5 0.0014
Optimized
0 L T T 0 T T L 1
0 250 500 750 1000 0 250 500 750 1000
Frequency (Hz) Frequency (Hz)

(@ (b)

Figure 4-13. Comparison of the model uncertainty with the flat and the optimized power
spectrum, (a) theoretical (scaled) results, (b) experimental results.

Figure 4-13(a) compares the uncertainty 6,(£2;, 8) on the estimated transfer function
model in case a multisine with a flat and an optimized amplitude spectrum is used. These re-
sults were experimentally verified using the setup described before. Sixty measurements were
made to measure the standard deviation of the FRF measurement. The results are shown in
Figure 4-13(b). It is obvious that this result is relevant only if the model errors of the paramet-
ric model in the identification step are smaller than the identification uncertainty due to the
noise.

4.5 APPENDIX

Appendix 4.A Minimizing the Crest Factor
of a Multisine

4.A.1 Clipping Algorithm. In Van der Ouderaa et al. (1988a, 1988b) an iterative
method has been developed to optimize the phases. The method is very close to an algorithm
presented by Van den Bos (1987). The basic idea behind this method is a clipping procedure,
which is illustrated in Figure 4-14. For a given amplitude spectrum, a time signal with a min-
imum peak value has to be found. The iteration procedure is started from the specified ampli-
tude spectrum, and arbitrary phases are taken as starting values. Using the inverse Fourier
transform, the signal is calculated at a set of discrete equidistant times. A new time signal is
then generated by clipping off all the values larger than a given maximum, and the new mod-
ified spectrum and phases are calculated using the FFT. These new phases are retained as a
first approximation to the solution, but the modified amplitude spectrum is rejected in favor
of the original one. This procedure is repeated until no further significant reduction of the
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Amplitude spectrum
starting values of the phases

Combine amplitude Reset amplitude spectrum
and phases to its original value
Inverse DFT DFT

Exit from the loop when the

crest factor does Clip time signal Figure 4-14, Minimization of the crest factor of

not decrease any longer a multisine: clipping algorithm.

crest factor is obtained. During the iteration process, the clipping level is changed from a low
value in the beginning (e.g., 0.7 u, ) to almost no clipping (e.g., 0.999 u_,.) at the end of
the process, for strongly compressed signals. In general, the algorithm needs a few hundred
iterations to obtain useful signals (for example, a flat multisine with a crest factor of 1.5), but
in order to obtain near-optimal crest factors (of 1.4) a few hundred thousand iteration steps
are more likely to be required. This algorithm is called the clipping algorithm.

4.A.2 Infinity Norm Algorithm. In Guillaume et al. (1991) an algorithm has been
developed based on the minimization of the /,, norm

1

hy(@ = lutt, s, = (-f; 7o foree o)at 7 w0

u(t,§) = Yo _ | ACos@Rf,t+6,)

with T, the period of the multisine and p = 2, 4, 8, 16, .... Itis shown that the /, »(#) norm
is equal to
1

L, (9) = (NEN u2p(1T, ¢))27’ i N22pfoTo+1 4-21)

with f max
in one period. Condition N =22pf
may appear on the DC component.
The I,, norm is minimized with respect to the phases using a Marquardt algorithm for
values of p that are gradually increased during the iteration process. This defines a descent al-
gorithm that converges to a local minimum. From our experiences, it turned out that the
results of this algorithm were better than those obtained with the previous method. In prac-
tice, conditions (4-21) may be violated as long as a sufficiently large number of points is con-
sidered (e.g., N2 16f_,. T, + 1), leading to a significant reduction of the calculation time.

the maximum frequency occurring in the multisine and N the number of samples

maxlg+ 1 in (4-21) expresses that no alias contribution



Models of Linear
Time-Invariant Systems

Abstract: This chapter presents the nonparametric and parametric system (signal) and noise
models used throughout this book. The models are described in the frequency domain
and cover linear time-invariant discrete-time systems (z -domain), continuous-time systems
(s -domain), diffusion phenomena (Js-domain), commensurate microwave systems
(tanh(Tys)), and damped (complex) exponentials. The classical transfer function models
describing the relationship between the DFT spectra of the input and output signals are
valid for periodic and time-limited signals only. These models are extended to arbitrary
excitations for discrete-time and continuous-time systems. Extended transfer function mod-
els are also derived in case samples are missing at the input and/or output signals. The
identifiability issues of the different models are discussed and generalizations to the mul-
tivariable case are given. The basic concepts of linear system theory are assumed to
be known. Textbooks on the topic are by Oppenheim et al. (1997), Kailath (1980), and
Kwakemaak and Sivan (1991).

5.1 INTRODUCTION

Although most real-life processes are nonlinear and time variant, they can often be approxi-
mated very well by linear time-invariant systems. Linear time-invariant continuous-time sys-
tems are described by differential equations (finite dimensional or lumped systems) or partial
differential equations (infinite dimensional or distributed systems) with constant coefficients.
The transfer function between the input u(r) and the output y(£) of the process is calculated
assuming that the initial conditions are zero.

Example 5.1 (Lumped Continuous-Time System): Consider the LC resonator of
Figure 5-1.

The input of the system is the voltage source u(f) and the output is the voltage y(1)
across the capacitor. Both are related by a second-order differential equation,

d?y()
LC% +¥@) = u® -1

System Identification: A Frequency Domain Approach. Rik Pintelon and Johan Schoukens
Copyright O 2001 Institute of Electrical and Electronics Engineers. ISBN: 0-780-36000-1 139
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L
u(z) T ) )
I Figure 5-1, LC series resonator.

Taking the Laplace transform of (5-1) assuming that the initial conditions are zero (y(0) = 0
and y'(0) = 0) gives the transfer function

Y(s) _ 1

G = 5 = T3 LCs

(5-2)

Note that G(s) has one complex conjugate pole pair s = £j/J/LC on the imaginary axis. []

Example 5.2 (Distributed Continuous-Time System): Consider the clamped beam
of Figure 5-2.

—]% vix, 1)
J
. B ulr)
7
4’» I Figure 5-2. Longitudinal vibrations of a
x = 0 r = 1 clamped beam.

The input of the system is the force per unit area u(f) and the output is the longitudinal dis-
placement y(x, ). Both are related by a second-order partial differential equation,

P51 _ EPyx
o7 T p ox

(5-3)

with boundary conditions y(0,#) = 0 and Jy(x, 1)/ 8x|x ., = W®O/E. E, p are, respec-
tively, the elasticity modulus and the density of the beam. The transfer function between the
force per unit area u(f) and the longitudinal displacement at the end of the beam y(J, ) is cal-
culated, assuming zero initial conditions y(x, 0) = 0, dy(x, £}/ 8t[t= o = 0. We find

_ Y(,s) _ ltanh(ts) )
9 =T TE 1 (5-4)

with T = J/pl2/E. Note that G(s) has an infinite number of complex conjugate pole pairs
s = 22k + 1)2% J» ke N on the imaginary axis (see Exercise 5.1). According to the

Mittag-Leffler theorem (Henrici, 1974), (5-4) can be expanded in an infinite series of partial
fractions (see Exercise 5.2)

I < 2
Ego(tsy +(m(2k + 1)/2)2

G@s) = (5-5)
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Because the active frequency range of |2/((Ts)?+ (R(2k +1)/2)?)|,_ ;o is limited, it
follows from (5-5) that, within a given frequency band, (5-4) can be approximated very well
by a rational transfer function of finite order in s. O

The conclusions of Example 5.2 are valid for most physical infinite-dimensional pro-
cesses: their irrational transfer functions have an infinite (countable) number of poles (those
at infinity included) and can be approximated well in a limited frequency band by a rational
form of finite order in 5. The advantage of using a rational approximation is that the form of
the model is robust w.r.t. (small) changes in the geometry and/or the boundary conditions.
This is not the case for the irrational transfer function models, because they must be recalcu-
lated for each particular geometry and boundary condition. The disadvantage of the rational
approximation is that the model contains too many parameters; for example, the irrational
transfer function (5-4) has two independent parameters while a rational approximation of or-
der two uses five independent parameters.

The irrational transfer functions of systems where diffusion phenomena such as mass
or heat transfer are important are very often a function of Js. For such systems it might be a
good idea to use a rational approximation in As instead of s. Examples of such systems are
electrochemical processes where the charge transport, controlled by diffusion, is modeled by
an impedance (Warburg impedance) that is proportional to s (Wang, 1987).

The irrational transfer functions of lossless commensurate microwave devices are a ratio-
nal function of the Richards variable S = tanh(tys) (Rizzi, 1988). For real (lossy) microwave
devices it might be a good idea to use rational approximations in tanh(tys) instead of s.

When a lumped continuous-time system is excited by a piecewise constant signal, then
there exists a discrete-time model that, exactly, describes the input-output behavior of system
at the sampling instances (see Example 5.3). This result is used in control applications where
the input of the system (plant) is the piecewise constant output of a digital controller.

Example 5.3 (Discrete-Time System): Consider a lumped continuous-time system
(see Figure 5-3) excited by a piecewise constant excitation signal

Uy (f) = 2:: o W(rzoh(t —rTy) (5-6)

with zoh(f) = 1 for r€ [0, T,) and zoh(r) = O elsewhere. The Laplace transform of the
output y(#) equals

1o = La-rnua)| . (57)

with U(z) the Z -transform of the samples u(k) . Applying the residue formula

Z{Y(s)} = Z Res( o Y(s) (5-8)
poles Y(s) I—e€e®
Uzoh(r)  o—— G(s) ——  ¥(®

Figure 5-3. Lumped continuous-time system
excited by a piecewise constant signal.
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(Selby, 1973) to (5-7), we find the Z -transform of the sampled output y(kT )
Y(z) = (1-z7HUR)Z{G(s)/s} (5-9
It follows that there exists a discrete-time model with transfer function
Grou(z™) = Y(@)/U(R) = (1-zV)Z{G(s)/s} (5-10)

that exactly describes the input-output behavior of the continuous-time model at the sampling
times ¢ = kT,. Result (5-10) can be generalized to the cascade of two systems (see
Figure 5-4). However, in this case the discrete-time model relating the sampled input u(#) to
the sampled output y(f) of the plant G(s)

Y()/R(Z) _ Z{L(s)G(s)/s}

Gy(z™") = Y(2)/U(r) = UR)/RZ) ~  Z{L(s)/s}

(5-11)

depends on the characteristics of the preceding system L(s) (see Exercise 5.4). O

The results of Example 5.3 can be generalized to a certain class of nonlinear continu-
ous-time systems. If a continuous-time Volterra system is excited by a piecewise constant sig-
nal, then there exists a discrete-time Volterra model that, exactly, describes the input-output
behavior of the system at the sampling instances (see Example 5.4).

Example 5.4 (Nonlinear Discrete-Time System): The output y(#) of a time-invariant
continuous-time Volterra system can be written as

YO = Yo VoD

(5-12)
Ya® = [T fo - [o 8aTis T oos TIU(E = T = Ty) ..Ut ~ T)dT N, AT,

with u(r) the input, y,(f) the nonlinear contribution of degree o, and g,(%, ..., T,) the mul-
tidimensional impulse response of degree o (Schetzen, 1980). Note that y(#) is written as a
multidimensional convolution of g, (T, ..., T,) with the input. The contribution of degree o
in (5-12) can always be written as

nT, n, T,

Yy = Y [ | 8y Tul— 1)t - T)dTy dt, (5-13)
Ay nlg =l - 1T, (n,—-1T,

Evaluating (5-13) at ¢ = kT for piecewise constant inputs u,, () (5-6), taking into account
that u, (kT - 1) = u(k—n) forte ((n-1)T,nT,], gives

u(t)
ra® — L® G(s) |— Y() Figure 5-4. Cascade of continuous-time
systems excited by a piecewise constant signal.
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YKT) = Yo YalkTY)
= (5-14)
YAET,) = z LozohMis oy -y BIU(k —n)ulk — ny)..ou(k —ny)

nyLny, Ry =1
where g.,..(n1, 1y, ..., 1) is defined as

”lTs "(sz

Bowohis - on) = [ o gyt o T, (5-15)
(n -1T,  (ne-1DT,

Equation (5-14) is a shift-invariant discrete-time Volterra model (Brillinger, 1981) that ex-
actly describes the input-output behavior of the time-invariant continuous-time Volterra sys-
tem (5-12) at the sampling times ¢ = kT',.

Note that the Z -transform of the linear contribution in (5-14),

w0 . T,
(kT = n1=181mh(”1)"(k""1) with g,.4(n)) = J’:’;l_l)rsgl(ﬁ)d"l
is exactly (5-9) and (5-10). [

We conclude from Examples 5.1 to 5.3 that rational transfer function models of some
generalized frequency variable are appropriate for describing a broad class of (in)finite-
dimensional linear time-invariant systems. The stable and minimum phase regions of the
poles and zeros in the s-, z- and Afs -domains are shown in Figure 5-5 (proof: see Appendix
5.A). In what follows, we discuss several possible parameterizations of transfer function
models and establish the relationship with the discrete Fourier transforms (DFTs) of the input
and output signals.

Im Im Im
/".

s -domain z-domain ~ |7 A5 -domain
= - x =S
‘ ke \U R ’ =

Figure 5-5. Gray area: stable and minimum phase regions of, respectively, the poles and
zeros. s-domain: Re(s)<0, z-domain: |zl<1, and /s-domain:

Re(J/5)| < [Im(J/5).

For lumped continuous-time and discrete-time systems the transfer function models,
and their relationship with the input-output DFT spectra, are obtained by taking, respectively,
the Laplace transform of the following differential equation:

Yo @y = Y0 butme) (5-16)

and the Z -transform of the following difference equation:

S janyt=n) = X0 b, u(t—m) (5-17)
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If the system is proper, n, = n,, then (5-16) and (5-17) can be written under their state space
representation form as, respectively,

dx(t) _
5 = Ax(t) + Bu(r) (5-18)

¥y(©) = Cx(t) + Du(r)
and

x(t+1) = Ax(t) + Bu(t) (5-19)
y(f) = Cx(t) + Du(t)

where x(f)e R™ is the state vector (Kailath, 1980). The parameters A € R"*",
Be R%*! Ce R'*", and De R of the state space equations (5-18) and (5-19) can eas-
ily be related to the a, and b,, coefficients of Egs. (5-16) and (5-17) (see Exercise 5.6).

5.2 PLANT MODELS

The parametric model that will be used mostly throughout this book is a rational form

ny,

B, 60 _ Dueobr

AQ, 0 T a,Qr

G(Q, 0) = (5-20)

where Q = s for lumped continuous-time systems, Q = z71 for discrete-time systems,
Q = /s for diffusion phenomena, Q = tanh(tgs) for commensurate microwave devices,
and with 8 € R"¢ the vector of the plant model parameters

BT = [aoal...anabobl...bnb] (5'21)

The reason for this is that it is very easy to get good starting values for (5-20) (see Chapter 7).
For lumped continuous-time and discrete-time systems, (5-20) is obtained by taking the
Laplace and Z-transform of (5-17) and (5-16) respectively, assuming that the initial condi-
tions are zero. For large order systems (typically n,, n, > 30) parameterization (5-20) be-
comes numerically unstable (leads to ill-conditioned normal equations, see Chapter 7), thus
requiring other representations to be used.

In modal analysis (Ewins, 1991) and nuclear magnetic resonance modeling (see Sec-
tion 5.4) a partial fraction expansion of (5-20) is often used. Assuming that G(€2, 8) has sim-
ple poles, it has the form (Henrici, 1974)

p Lr q Sr
G, 0 = Y Q_A+ZQ_G (5-22)
r=a? Tor=tl ’

for strictly proper (n, < n,) continuous-time models (€2 = s, Js or tanh(gs)) and
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4 er—l q S z—l
Gz, =Y ot D 1_’0 = (5-23)
- ind ’ r=1 §

for proper (n, <n,) discrete-time models with b, = 0 (see Exercise 5.5). In both cases we
have L_, = L, l = A, and S,, 0,€ R with 2p +g = n, so that

6" = [0;...0,Re(A)Im(4,)...Re(A)Im(A,)S, ... S ,Re(LYIm(L,) ... Re(L )Im(L,)] (5-24)

Because parameterizations (5-22) and (5-23) are numerically more stable than (5-20) (except
in the case of poles of multiplicity larger than one), one could think of using these models to
identify high-order systems (typically n,, n, > 30). In practice, these representations are not
really helpful because the starting values, generated by using parameterization (5-20), are of
insufficient quality for higher order systems resulting in poor transfer function estimates
(5-22) and (5-23) (one gets stuck in a local minimum). The disadvantage of parameterizations
(5-22) and (5-23) is that they do not allow the choice of the order n,, of the numerator poly-
nomial of G(Q, 8). The advantage is that they can deal very easily with constraints on the
residues and the poles (see Section 5.4).

An alternative solution for high-order systems is to factorize transfer function (5-20) in
its poles and zeros. Assuming that G(€2, 8) has simple poles and zeros, we get

Hr—l C)
Hr—l(Q A')

However, this representation suffers from the same problems as (5-22) and (5-23): (i) starting
values should be generated via (5-20), and (ii) it leads to ill-conditioned normal equations if
the true plant model contains multiple poles and/or zeros. Note that the latter is not the case
for parameterization (5-20).

To handle high-order systems (typical n,, n,>30) the numerator and denominator
polynomials of the transfer function (5-20) are expanded in scalar or vector orthogonal poly-
nomials (see Section 13.11 and Exercise 1.13)

G, 60 =K

BQ, 6 _ Xreobt D
ACLO) 37 a,p Q)

G(Q, 6) = (5-25)

For scalar orthogonal polynomials we have n, = n,, n, = nb and p(Q), ¢,(L) are poly-
nomials of order r; for vector orthogonal polynomials b, = a,, n, = n, = n,+n,+1
and p(Q), ¢.(€) are polynomials of increasing order w1th Py, (Q), 4y, (€2) polynormals of
order n,, n,, respectively. These are chosen such that they maximize the numerical stability
of the modcl (minimize the condition number of the normal equations, see Chapter 7).

The state space representation form of a proper (n, < n,) transfer function (5-20) is

G(s, 0) = C(slna——A)‘lB +D (5-26)
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for lumped continuous-time systems and
G, 0) = 7'C, -z 'A)'B+D (5-27)

for discrete-time systems. Equations (5-26) and (5-27) are obtained by taking the Laplace and
Z -transform of (5-19) and (5-18) respectively, assuming that the initial conditions are zero.
In both cases we have A € R™*™, Be R"*! Ce R!*", and D e R, so that

0T = [vec?(A) BT C D] (5-28)

The disadvantages of the state space representation are that it does not exist for improper sys-
tems (7, >n,) and that it does not allow one to choose the order n, of the numerator polyno-
mial of G(s, ). The advantage is that it allows straightforward extension to multivariable
systems (see Section 5.6).

A time delay can be added to transfer function models (5-20), (5-22), (5-23), (5-25),
(5-26), and (5-27). For example, for continuous-time models (Q = s, Js or tanh(tgs))
(5-20) becomes

b Q7
GQ, 6) = e-wgg;’g = e-tsz; 0 (5-29)
’ Zr = OarQr
and for discrete-time models
6,6 = VB0 v, b (5-30)
’ AE 6) Z""- N ad

where 7€ R is an arbitrary time delay (not necessarily an integer multiple of the sampling
period T,). Then the vector of the model parameters 8 also contains the delay 1.

RELATION BETWEEN THE INPUT-OUTPUT
DFT SPECTRA

In this section we establish the relationship between the DFTs of the sampled input and out-
put signals of a linear dynamic system

Uk) = u(tT Vzit, Y (k) = y(tT )zz! with z, = e/2mk/N  (5.31)
A/_Z A/—Zt 0 k k

and the transfer function models G(£1, 8) of Section 5.2. We start with periodic excitation
signals, proceed with arbitrary signals, and finally handle the case where data samples are
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missing at the input and/or output signals. For the continuous-time systems (2 = s, Js or
tanh(Tgs)) we will assume that the excitation is band limited.

5.3.1 Models for Periodic Signals

Assume that we apply a periodic signal u(f) with harmonically related frequencies
hfy he HaN, and period T, = 1/ f, to the system and that we observe the steady-state
response during an integer number of periods NT, = MT, with M € N. If the excitation is
band limited (continuous-time systems) or piecewise constant (discrete-time systems), then
the ratio of the output to the input DFT spectra at the excited frequency lines k = Mh,
h e H, gives the true transfer function

Y(k) = G(Q yUk) (5-32)
where Q, = 5, z7l, .fs; or tanh(tgsy) with s, = j©, and z, = e/®Ts, and where
G(Q, 8) can take any parameterization of Section 5.2 (Brigham, 1974; Oppenheim et al.,
1997). For single sine excitations (5-32) is valid at arbitrary (not related to a DFT grid)
frequencies.

5.3.2 Models for Arbitrary Signals

5.3.2.1 Introduction. Spectral leakage occurs in the calculation of the DFT of non-
periodic signals and of periodic signals observed at a noninteger number of periods (see Sec-
tion 2.2.3 and Brigham, 1974). For these signals, relationship (5-32) is no longer valid and
should, therefore, be generalized. We will show that the DFT spectra Y(k), U(k) satisfy an
extended transfer function model that includes the beginning and end effects of the data
record (see Figure 2-25 on page 59). The relationship is exact, without any approximation for
discrete-time systems, and is approximately valid within some spectral alias errors for
lumped continuous-time systems.

5.3.2.2 The Extended Transfer Function Model. The DFT spectra Y(k), U(k) of
the observed samples y(#), u(f), t = 0, T, ..., (N -1)T, satisfy

A(sy, OY(k) = B(s,, OUK) + I(s;, B) + Alsy) (5-33)

A(zg!, OY (k) = B(z!, OUK) + I(z;, (5-34)

where the polynomial 1(Q, 6) = z:; 02T (Q = z71,s) with n; = max(n,, n,) -1 is in-
dependently parameterized of the plant model parameters (5-21) (proof: see Appendix 5.B).
The coefficients i, are a linear function of the difference between the initial and final condi-
tions of the system and, therefore, will be called the equivalent initial conditions. The term
A(sy) in (5-33) represents the residual alias error and is present even if the signals have been

low-pass filtered before sampling. Dividing (5-33), (5-34) by A(Q,, 0) gives the extended
transfer function models

Y(k) = G(s, OUK) + T(sy, O + &(sy) (5-35)

Y(k) = G@zi!, OUK) + T(z;', 6) (5-36)
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where G(Q, 8) and T(Q,6), with Q = s or z7l, can take any parameterization of
Section 5.2. T(€2, 8) is called the plant transient term.
For the rational form representation G(£2, 6) is as in (5-20) and

1Q,6)  2o-oir®
A(Q 9) 2 _OarQr

T, 0) = (5-37)

where iyi;...i, is added to @ (5-21), for the partial fraction expansion G(L, ) is as in

n;

(5-22), (5-23) and

T(s, 6) = 2 s—l,+ Z =0, (5-38)
LEGP r=1
P l i 5
T(z}, = 4 z 5-39
e e o)
rz0 -

where 5,...5 qRe(l DIm(,).. . Re( p)Im(l p) is added to 8 (5-24), for the orthogonal polynomi-
als G(Q, 8) is as in (5-25) and

S i Q)
Zr 0 rpr(Q)

T(Q, 0 = (5-40)

For scalar orthogonal polynomials n, = n,, n, = n,, n, = n;, and p(Q), q,.(Q), r, (L)
are polynomials of order r; for vector orthogonal polynomials a, = b, = i,
n,=n,=n=n,+n,+n+2 and p,(Q), q,Q), r(Q) are polynomials of increasing
order with p, (Q) n, €, r, (Q) polynomials of order #n,, n,, n; respectively. These are
chosen such that they maximize the numerical stability of the model (mmm'uze the condition
number of the normal equations, see Chapter 7). Finally, for the state space representation

G(L, 0) 1s as in (5-26), (5-27) and

T(s, 0) = C(sl, —A)'x, (5-41)
T, 0) = cd, - z1A)1x, (5-42)

where x; € R™ is added to 8 (5-28) (proof: see Appendix 5.C).

The convergence rate to zero of the transient term T(2,, 6) and the alias term &(s;) in
the extended transfer function models (5-35) and (5-36) is established in the following two
lemmas.

Lemma 5.5 (Convergence Rate T(£2;, 6)): For bounded excitations u(z) (bounded
excitations u(f) with finite left (n,— 1)th order derivative) applied to stable plants or
unstable plants captured within a stabilizing feedback loop, the transient term T(zj!, 6)
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(T(s;, 6)) tends to zero as O(N-1/2). For bounded random excitations T(z;!, 8) is an
0, (N12).

Proof. See Appendix 5.D. O
Lemma 5.6 (Convergence Rate &s;)): Consider band-limited periodic signals,

U(jw) = 0 for |o| > wg, and band-limited random signals, S,,(j®) = 0 for |®| > wg, with
W < ©,/2 . Assume furthermore that these signals have finite nonzero power

] +NT /2
2 — 0 -
NT, j E{xXH)}dt = ONY >0 (5-43)
—-NT /2

for any N, o included. The residual alias error &(s,) tends to zero as O(N~'/2) for band-
limited periodic excitations, and O, , (N-1/2) for band-limited random excitations with dif-
ferentiable power spectrum §,,(j®) (dS,, (jw)/dw< e for |®| < wg).

Proof. See Appendix 5.F. O

Using Lemmas 5.5 and 5.6, we can calculate how fast the extended transfer function models
(5-35) and (5-36) tend to the transfer function model (5-32) as N — oo,

Lemma 5.7 (Convergence Rate Extended Transfer Function Models): Under the
assumptions of Lemma 5.5, the convergence rates of discrete-time model (5-36) to (5-32) are
O(N-12) for normalized periodic signals (see Definition 3.4, F = O(N)), O(N™!) at the
excited DFT frequencies for periodic signals with a fixed number of frequencies
(F = O(NY%), and O, (N-1/2) for random excitations with differentiable power spectrum.
Under the assumptions of Lemmas 5.5 and 5.6, the convergence rates of continuous-time
model (5-35) to (5-32) are O(N-!/2) for normalized periodic signals (see Definition 3.4,
F = O(N)), O(N-1) at the excited DFT frequencies for periodic signals with a fixed
number of frequencies (F = ONY), and O N-V2) for random excitations with
differentiable power spectrum and O(N-1/2).

Proof. 1t follows directly from Lemmas 5.5 and 5.6 and the fact that the DFT
spectrum of band-limited signals with finite nonzero power is O(N®%) for random signals,
O(N%) for normalized periodic signals, and O(N'/2) at the excited DFT frequencies for
periodic signals with a fixed number of frequencies. O

5.3.2.3 Discussion. The extended transfer models (5-33) and (5-34) show that the
leakage errors on the input and output DFT spectra can be modeled by a polynomial and are,
in fact, an initial condition (transient) problem. This is illustrated in Figure 2-25 on page 59.
The difference from time domain identification is that the equivalent initial conditions take
into account the beginning as well as the end effects of the finite data record. In the time do-
main the initial conditions remain the same as the number of data N increases, whereas in the
frequency domain they vary with N (not only due to the scaling factor N~1/2 but also due to
the varying final conditions of the experiment). Asymptotically (N — <), the extended
transfer function models (5-33) and (5-34) reduce to (5-32) (Lemma 5.7).

Lemma 5.7 shows that the classical transfer function model Y (k) = G(s;, O)U(k) con-
tains no asymptotic (N — ¢o) approximation errors in the complete frequency band from DC
to Nyquist for band-limited input signals with finite nonzero power.
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The transient term T'(€2, 6) is zero if the initial and final conditions of the experiment
are the same (see Appendix 5.B, Eqgs. (5-84) and (5-91)). This is the case for periodic signals
observed during an integer number of periods and for time-limited signals. For the band-
limited versions of these signals the alias term &(s,) is also zero.

From Lemmas 5.5 and 5.6 it follows that the transient term 7'(s;, 6) and the alias error
&(s,) tend to zero at the same rate. Hence, &(s;) cannot be neglected w.r.t. (s, 6), even for
“large” values of N. However, practice has shown that the alias error &(s,) can be approxi-
mated well by a polynomial (Pintelon and Schoukens, 1997b). Therefore, to reduce &s,) in
(5-35), the order of the polynomial I(s, 6) is increased: n; 2 max(n,, n,) — 1.

5.3.3 Models for Records with Missing Data

5.3.3.1 Introduction. Because of temporary sensor failure and/or data transmission
errors, it may happen that data samples are missing in the measured signals. The best thing to
do then is to throw away the data set and to repeat the experiment. This is not always possible
because, for example, the experiment is too expensive, or some of the data are collected in an
irregular way using laboratory analysis. Sometimes the output is sampled at a lower rate than
the input, which is a periodic missing output data problem (Goodwin and Adams, 1994; Al-
bertos et al., 1999). Treating the missing data as unknown parameters, a generalized version
of the extended transfer models (5-35) and (5-36) is constructed. It can handle missing input
and/or output data and does not assume any particular missing data pattern.

5.3.3.2 The Extended Transfer Function Model. For simplicity of notation we will
assume that M, consecutive input samples starting at = K, T and M, consecutive output
samples starting at ¢+ = K, 7, are missing. The sets M, and M, describing the time in-
stances of the missing input and output samples are then

M, = {K.K,+1,..., K, +M ~1} (5-44)

where x = u,y. Define x®(tT,), t = 0,1,...,N-1, as the data set where the missing
samples are replaced by zeros

0 M
(T = { P& M (5-45)

x(¢tTy) elsewhere

and X™(k) as the corresponding DFT spectrum (X = U,Y and x = u, y). The DFT spectra
Ymk), Um(k) of the observed samples (missing data sets) y™(z), u™(),
t=0,T, .., (N~-1)T, satisfy

A(s, OY®(k) = B(s,, OU™K) + I(s,, 6) +

Kk X (5-46)
Zk “B(Sk, G)IM(Z]?I, VI) - Zk «VA(Sk, H)Iy(zl;l’ W) + A(sk)

AGEL OY™(k) = B(zil, OU™K) + I(z;!, 6) +

i (5-47)
z “B@zil, Oz, w) -z A, Oz, v)
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where the polynomials ,(z-, y) = N‘l’ZZi‘i’;lx(Kx +8z", x = u,y, contain the miss-
ing data and  is the parameter vector of the missing samples

W = (K, T)..u((K, + M, - DT YK, T).. }(K, + M, - 1)T,)] (5-48)

(proof: see Appendix 5.G). Note that models (5-46), (5-47) are bilinear in the parameters 6,
y. Dividing (5-46), (5-47) by A(Q,, 6) gives the extended transfer function models

Y™(k) = Glsp, OUMKR) + Tisy, 0) + 27+ Glspp DL, W) - 0L (!, W) + s (5-49)

Y™k) = Gty UK + T(z5', 6) + 25Glgit, 1", ) - 701 (i W) (5-50)

where G(Q, 6) and T(£2, 6) can take any parameterization of Sections 5.2 and 5.3.2 and
where the alias error &(s;) has the same properties as in Section 5.3.2. The generalization of
(5-49) and (5-50) to the case where data are missing at more than one place is straightforward
(see Exercise 5.7).

5.4 MODELS FOR DAMPED (COMPLEX) EXPONENTIALS

In some applications an impulse excitation is applied to the system and only the free decay
response is observed, which consists of the sum of (complex) exponentially damped cosines.
For real strictly proper lumped continuous-time systems (@€ R"¢ in (5-37)) with simple
complex conjugate pole pairs, it has the form

Y@ = 2Y0 a,e " Doos(w,(t +T) + ¢,) (5-51)

with a, € R* the amplitude, d, € R* the decay, @, e R* the angular frequency, and
¢, € R the phase of the rth exponentially damped cosine. T is the (known) delay between
the beginning of the free decay experiment and the start of the observations. In modal analy-
sis (5-51) is parameterized in the resonant angular frequency @, = ~/d* + @* and the damp-
ing coefficient § = d/ ®,, while in circuit theory the resonant angular frequency @, and the
quality factor @ = 1/(2¢{) are used. For complex strictly proper lumped continuous-time
systems (8 € C"¢ in (5-37)) with simple complex poles the response is

) = zn" a,el¥el=drrioI+T) (5-52)

r=1

Examples of (5-51) and (5-52) are, respectively, impact testing in modal analysis (Ewins,
1991) and nuclear magnetic resonance (NMR) measurements (Kumaresan et al., 1990). In the
first application the mechanical structure is excited with an impulse, and the free decay re-
sponse of the structure, for example, the displacement or the acceleration, is measured at a
given location. In the second application the free decay responses of a magnetic field in two
orthogonal directions are combined into one complex signal.

The DFT spectrum Y(k) of the free decay response y(f) of a strictly proper lumped
continuous-time system or a proper discrete-time system with b, = 0 satisfies

Y(k) = T(z;!, ) (5-53)
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where T(z"1, 6) is the rational function (5-37) with n; = n, - 1 (proof: see Appendix 5.H).
T(z"L, ) can also be parametrized as in (5-39), (5-40), and (5-42). The parameters of the free
decay responses (5-51) and (5-52) can easily be related to the parameters of the partial frac-
tion expansion (5-39) with ¢ = 0 (A_ # A, and [_, # 1, for complex systems). In both cases
we have

IJN

arej¢r = ,—d,
AFTs(1 - AN)

+jm, = Tiln(a,) (5-54)

(proof: see Appendix 5.1).

In NMR measurements the response is typically of the form (5-52) where each term
corresponds to the response of a particular chemical substance in a (human) tissue. The am-
plitude a; is a measure of the concentration of the substance. Often it is known that a partic-
ular substance with known frequency f, is present in the tissue. Sometimes the chemical
structure of the substance imposes the ratio of some amplitudes. All this prior information re-
sults in parameter constraints that can easily be taken into account in the partial fraction ex-
pansion (5-39). This is not the case for the other parameterizations, which explains why rep-
resentation (5-39) is popular in NMR modeling. Parameterization (5-37) is appropriate for
obtaining starting values for (5-39).

5.5 IDENTIFIABILITY

Loosely speaking, a parametric model M(8, Z) is identifiable when the parameters 8 can be
estimated uniquely using the data Z. It requires that the data are informative enough to dis-
tinguish between different models (= condition on the experiment) and that different parame-
ter values give different models (= condition on the model structure). More formally, the
identifiability concept can be defined as follows.

Definition 5.8 (Identifiability): A model M(6, Z), with @ the model parameters and
Z the data, is identifiable at 8, if for any @ in a (possibly small) neighborhood of 6,
M(6,Z) = M(8,, Z) implies that @ = 6,.

Note that Definition 5.8 gives a definition of local identifiability. If the implication in
Definition 5.8 is valid for almost all 8 and 6, values, then one has global identifiability (see
Ljung, 1999 for a detailed discussion of this issue). In this section we give necessary condi-
tions for the identifiability of the transfer function models of Section 5.3. These conditions
can be split into constraints on the parameters € (identifiable parametrization) and con-
straints on the input signal (persistent excitation).

5.5.1 Models for Periodic Signals

The identifiability of transfer function model (5-32) depends on the particular parame-
terization of G(Q, ). The rational forms (5-20) and (5-25) are not identifiable because re-
placing 6 by A6, with Ae R, results in the same input-output description:
G(Q,L6) = G(L, 6). This parameter ambiguity is removed by constraining the model pa-
rameters, for example, 6;;; = 1 or &, = 1. For transfer functions with a time delay
(5-29) and (5-30), the parameter ambiguity is removed by constraining the numerator and de-
nominator coefficients, but not the delay. The partial fraction expansions (5-22) and (5-23)
contain no parameter ambiguities and, hence, are identifiable. Replacing (A, B, C, D) by
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(TAT-,TB,CT-!, D) in the state space representations (5-26) and (5-27) with
T € R"*", a regular matrix (det(T) # 0), leaves G(£2, 6) unchanged. This parameter am-
biguity is removed by imposing n? constraints on 8, which leads to the so-called identifiable
state space representations (Van Overbeek and Ljung, 1982). Besides possible constraints on
0, the identifiability of transfer function model (5-32) also puts conditions on the DFT spec-
trum U(k) of the input signal.

Theorem 5.9 (Identifiability Transfer Function Model (5-32)): Transfer function
model (5-32), parameterized as in (5-20) and (5-25) with, for example, constraint a, = 1, is
identifiable if and only if

1. The polynomials A(Q, 6) and B(£2, 6) have no common roots.

2. The input DFT spectrum (k) is different from zero for at least (n,+n, +1)/2
different DFT frequencies, where DC (k = 0) and Nyquist (N/2), each, counts
for 1/2.

Proof.  See Appendix 5.K. U

With appropriate additional assumptions on G(£2, 8), Theorem 5.9 also applies for the
other parameterizations. For example, the partial fraction expansions (5-22) and (5-23) as-
sume that G(£2, 6) has simple poles. The condition on U(k) is fulfilled, for example, if u(r)
consists of the sum of at least (n, + n, + 1)/2 sine waves. Note that for complex systems,
8e C", (n,+n,+ 1) frequencies are required.

5.5.2 Models for Arbitrary Signals

The identifiability of transfer function models (5-35) and (5-36) depends on the partic-
ular parameterization of G(£2, ) and T(L, 6). The partial fraction expansions (5-22),
(5-23) and (5-38), (5-39) are identifiable, while the same parameter ambiguities occur as in
the periodic case (see Section 5.5.1) for the rational forms (5-20), (5-25) and (5-37), (5-40)
(G, A0) = G(Q, 8), TQ,A6) = T(Q, 6)) and the state space representations (5-26),
(5-27) and (5-41), (5-42) (replacing (A, B, C, D) by (TAT-, TB, CT-, D) leaves G(Q, 0)
and 7(Q, 6) unchanged). Compared with the periodic case, the identifiability of transfer
function models (5-35) and (5-36) requires additional conditions on the DFT spectrum,
U(k), of the input signal. Necessary conditions for the identifiability of transfer function
models (5-35) and (5-36) are

1. The polynomials A(€2, 8), B(L2, 8), and I(£2, ) have no common roots.

2. The input DFT spectrum U(k) is different from zero for at least (n, +n; +2)/2
different DFT frequencies, where DC (k¥ = 0) and Nyquist (¥ /2 ), each, counts
for 1/2.

3. U(k) cannot be written as a rational form in €, of order n; over n, or less.
(Proof: See Appendix 5.L). O

Note that condition 1 does not exclude A(, 8) and B(Q, 6) for having common roots and/
or B(Q, 6) and (€2, 6) for having common roots (see Exercise 5.9). If condition 3 is not ful-
filled, then the terms G(,, U (k) and T(€2,, 6) are indistinguishable. This is, for example,
the case when the DFT spectrum U(k) is a constant (u(f) is an impulse (Dirac)).
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5.5.3 Models for Records with Missing Data

The identifiability of transfer function models (5-46) and (5-47) depends on the partic-
ular parameterization of G(€2, 6) and T(£2, 8), the missing data pattern, and the input DFT
spectrum U™(k). The same parameter constraints should be applied on 8 as in Section 5.5.2.
A similar analysis, as in Section 5.5.2, gives the following necessary conditions on U™(k)
and the missing data pattern:

1. The polynomials A(L2, 6), B(€2, 8), and I(€2, ) have no common roots.

2. The input DFT spectrum U™(k) is different from zero for at least (n, + n; + 2)/2
different DFT frequencies, where DC (k = 0) and Nyquist (N/2), each, counts
for 1/2.

3. Itis not possible to write U™(k) as a rational form in Q; of order n; over n, or
less.

4. For discrete-time systems, it is not possible to write U™(k) + z;K“I LzEL W) asa
rational form in z;! of order n; over n;, or less.

5. For discrete-time systems it is not possible to write z;%»=%.)f Y@L w/ LG v
as a rational form in zi! of order n, over n, or larger.

Condition 5 constrains the missing data pattern. For example, discrete-time systems are not
identifiable (the condition number of (5-47) is infinitely large) if the input and output samples
are missing at the same place, K, = K, and the number of consecutive missing samples is
larger than or equal to the system order, M, M, > max(n,, n,). The missing input and output
samples Y cannot be estimated and the plant model parameters 6 should be estimated from
the two sets of complete input-output data. Everything happens as if two experiments with
full data are available. Section 11.3.4.5 discusses this issue in more detail. Continuous-time
systems are still identifiable if K, = X, and M, = M, 2 max(n,, n,); however, the condi-
tion number of model (5-46) increases quickly with the number of consecutive missing sam-
ples. For too large an M, = M, (5-46) is no longer identifiable within a given finite
arithmetic precision (Pintelon and Schoukens, 1999b). The identifiability conditions can eas-
ily be extended to the case where data are missing at more than one place.

5.6 MULTIVARIABLE SYSTEMS

The n, outputs and the n, inputs of a multivariable system are related by an n, X n,, transfer
function matrix G(Q, 6) where each entry Gp; (Q,6), i=12,..,n, and

j=12,..,n, is arational function of Q (Q =y, A/_—v, tanh(tgs) or z-1, see Section
5.2). If no relationships exist between the coefficients of the different transfer functions
Gy;, /€2, 6), then the multivariable system is the parallel connection of separate multiple in-
put, single output (MISO) systems. Often, the transfer functions Gy; j](Q, 6) have the same
denominator, for example, in modal analysis (Ewins, 1991) and the two port description of
LC, LR, and RC circuits (Balabanian and Bickart, 1969). This leads to the common de-
nominator model

(5-55)

where A(Q, 8 = Z:";Oa,ﬂ’ is the common denominator polynomial and

B(Q,0) =Y " B, with B,e R™*™, apolynomial matrix.
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A natural generalization of the scalar transfer function (5-20) is the so-called matrix-
fraction descriptions (Kailath, 1980). Writing the transfer function matrix as a left matrix
fraction gives

G(Q, 6) = A"Y(Q, 6)B(Q, 6) (5-56)

where A(Q, 0) = ZZ‘LOA,Q’, with A e R™", and B(Q,6) = ZZ”:OB,Q’, with

B, e R™*™, are polynomial matrices. Writing the transfer function matrix as a right matrix
fraction gives

G(Q, 6) = B(Q, BHA1(Q, ) (5-57)

where A(Q, 6) and B(L2, 6) are, respectively, n, X n, and n,Xxn, polynomial matrices.

The partial fraction expansion of G(£2, 6) has the same form (5-22), (5-23) where each
residue matrix L,, S, € R™*™ may have a different rank. Sometimes the rank is known be-
forehand and this should be taken into account in the parameterization. For example, in
modal analysis the residue matrices have rank one (Heylen et al., 1997) and are written as
L, = vywI with v, e R™ and w, € R"« the modal vectors.

The state space representation has the same form (5-26), (5-27) with A € R" ",
Be R" ™, Ce R"™ ", and De R,

The relation to the input and output DFT spectra and the identifiability issues of the
multivariable parametric models are similar to the single input, single output case. For exam-
ple, the left matrix fraction description (5-56) is made identifiable with the parameter con-
straint A, = I, . Note that the common denominator (5-55) and the left matrix fraction
(5-56) dcsacriptioans allow straightforward generalization of the scalar relationships (5-33),
(5-34) between the numerator and denominator polynomials of the transfer function model
and the input and output DFT spectra. This is important for generating starting values (see
Chapter 7). Formula (5-33), (5-34) are then valid with A(Q, 6), B(Q, ) as defined in (5-55)
and (5-56) and 1(Q, 8) = 2’:”: OI,Q’, I.e R", a polynomial vector. This is not the case
for the right matrix fraction description (5-57), which can, however, be used if the identifica-
tion starts from the measured frequency response matrix G(£2;)

G(Q,) = B(Q,, A1, 6) = G(Q)AK,, O) = B(Q,, )
5.7 NOISE MODELS
5.7.1 Introduction
In practice, disturbing noise sources occur everywhere in the measurement setup (see

Figure 2-16). The DFT spectra U(k) and Y(k) of the observed input u(f) and output y(r)
signals are noisy replicas of the true (unknown) DFT spectra Uy(k) and Y (k)

Y(k) = Yo(k) + Ny(k)
(5-58)
Uk) = Ugk) + Ny(k)

where Ny(k) = DFT(n,(?) and N,(k) = DFT(n(?) are functions of the measurement
noise, the process noise, and possibly the generator noise (see Section 2.4). In order to put a
quality label (uncertainty bounds) on the measured frequency response function (see
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Chapter 2) and the estimated transfer function model (see Chapter 7), we need a model for
the disturbing errors N (k) and N (k).

5.7.2 Nonparametric Noise Model

As a nonparametric noise model, we will take the (co-)variances of the discrete Fourier
transform of the input and output errors

c(k) = var(Ny(k)), o3(k) = var(Ny(k)), ofy(k) = covar(Ny(k), N (k) (5-59)

at the DFT frequencies & of interest. It can be obtained via a noise analysis without excitation
signal (r(f) = O in Figure 2-16 on page 44) or via independent, repeated experiments with
the same excitation signal r(¢). The last approach is strongly recommended because it re-
duces the total measurement time (the frequency response function and the noise model are
measured at the same time) and because the noise model is measured at nominal operating
conditions. In practice, the independent, repeated experiments are obtained using periodic
signals (see Chapter 8).

5.7.3 Parametric Noise Model

In control applications the input is assumed to be known, n,(¢) = 0, and the distur-
bance n,(r) is modeled at the sampling instances as filtered white noise e(?)

n(t) = H(q, 6)e(®) (5-60)

with ¢ = z7! the backward shift operator, e(f) a stationary white noise sequence with zero
mean and variance 62, and

0 _ X0
D( -1 9) Z d 7

r=0"7

H(z1, 0) = (5-61)

The unknown parameters are ¢, ¢y, .. , dg,dy, ... d,l , and o. Model (5-60) contains
two parameter ambiguities: replacing Cps d and © by Ai'hyc,, A,d, and Ao, with
Ay, Ay 20, leaves (5-60) unchanged (e(t) is multlphed with the same factor as o). These pa-
rameter ambiguities are removed by adding two constraints on the numerator and denomina-
tor coefficients of (5-61). In most cases, the choice dy = ¢; = 1 is made (monic transfer
function).

Noise model (5-60) implicitly assumes that the white noise sequences e(z),
t=0,1,..., N-1 are the samples of a piecewise constant continuous-time random vari-
able. This is rarely the case in practice. Think, for example, of the thermal noise generated by
resistors (Pyati, 1992) or the flicker and generation-recombination noise generated by semi-
conductor devices (Lowen and Teich, 1990). However, by increasing the orders n, and n,; of
the polynomials in (5-61) the approximation errors in (5-60) can be made sufficiently small.
In general, (5-60) will be only approximately true and any physical interpretation of the re-
sults should be done with care.
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Taking the DFT of (5-60) gives
Nyk) = H(z;l, O)E(k) + Ty(zil, 6) (5-62)

where T (z"!, 6) is the noise transient term,

1 I P
J(Z ’0) —_ Zr=OJ’ (5-63)

-1 = =
Tyz™h, 6) D&Y, 0) End_ Jd,z

n; = max(n, ny)~1, and where the coefficients j, are a function of the initial and final
conditions of the noise process (proof: apply (5-36) to (5-60)). Because T (z"!, 6) decreases
to zero as O,(N-1/2) and H(z', 6)E(k) is an O, (N?) (see Section 14.16 ), (5-62) is usu-
ally approximated by Ny(k) = H(z"!, )E(k).

The parametric noise model (5-62) can be combined with any plant model of Section
5.3. For example, combining (5-35), (5-36), (5-58), and (5-62) with N (k) = 0 gives

Y(k) = G(s, OUK) + T(sp, 0) + H(zie', OER) + T(zie", 6) + &) (5-64)
Y(k) = Gz, OUK) + T(z;', 0) + H(zg!, O)E(k) + Ty(z;", 6) (5-65)
where ¢, ...,c,, d|, ..., d, and possibly jg, ..., jnj are added to the parameter vector 6.

Model (5- 65) represents the classical time domain model structures, for example ARX
(AutoRegressive with eXogenous input) for C(z"!, 8) = 1 and D(z, 6) = Az}, 6),

1 1
BGi, O iy s — 1 py s K9 (5-66)

ARX: =
Yo A(zi!, 6) A(zi!, ) Az, 6)

with K(z71, 6) = I(z7t, 6) + J(zg!, 6) and n, = max(n,, n,) - 1; ARMAX (AutoregRessive
Moving Average with eXogenous input) for D(z"1, §) = A(z7], 6),

_ _ (z CGz', 0) K(z!, 6)
ARMAX:  Y(k) = —_Uk) + E(k) + A6

e AG 0) (567

with K(z7!, 6) = I(z!, 6) + J(z;!, ) and n, = max(n, n, n)~1; ARMA (AutoRegres-
sive Moving Average) for G(z-1, 6) = 0 and 7T(z"1, 8) = 0,

C(z;', 6) J(z!, 6)
ARMA: Yk = k 5-68
(k) D, O)E( )+D(z,:‘, 9 (5-68)
OE (Output Error) for H(z™!, 6) = 1 and Ty(z7!, 6) = 0,
B(7=1 |
OE ¥y = 2GDp0, (Z"—’H) + E(k) (5-69)

A(z;, 6 Alzg
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and BJ (Box-Jenkins)

B(z;!, 6) I(zi', 6  C(zzl,

J(zil, 6)
1.0 Pt A6 6 T D, 9

BI: Y(k)y = m

E) + (5-70)

when the plant G(z!, 8) and the noise H(z"!, §) models have no common parameters
(Ljung, 1999). Note that model (5-64) can be seen as a hybrid Box-Jenkins model: it com-
bines a continuous-time plant model with a discrete-time noise model.

The plant transient 7(z;!, 6) and the noise transient 7 (zz!, 6) terms in (5-65) are not
always distinguishable (separately identifiable), for example,

1!, 0+ I, 0)
Az, 6)

Tz, )+ Tyiz !, 0 = (5-71)

for ARX and ARMAX models and only the sum i, + j, of the coefficients can be identified.
Therefore, we replaced I(z1, ) + J(z~1, ) by K(z71, 6) in (5-66) and (5-67). For Box-
Jenkins models we have

_ I, DG, 6) + AR, I, 6)

T 6+ T 6) AT, D, 6)

(5-72)

where T(z;!, 6) and Ty(z;!, 6) are distinguishable (i, and j, are identifiable) if A(z™!, 6)
and D(z"!, 8) have no common roots and if n,<n, and n.<n, (see Exercise 5.11). If
A(z"L, 6) and D(z7!, 6) have common roots then the parameterization should be adapted ac-
cordingly (see Exercise 5.12). Although the transient terms T ,(z"!, 6) and T(z"1, 6) are of-
ten neglected, they can be important, for example, in model validation tests (see Section
10.8.1).

5.8 NONLINEAR SYSTEMS
In this section the response of the nonlinear system y(#) = G[u(t)] (see Figure 5-6) is stud-

ied for random phase multisine (see Definition 3.2) and periodic noise (see Definition 3.3) ex-
citations u(t). These are periodic signals with a deterministic (random multisine) or random

u(®) ¥(®)
Nonlinear
_— plant GI.] >

Figure 5-6. Nonlinear system y(f) = G[u(8)].

(periodic noise) amplitude spectrum and a random phase spectrum. The class of nonlinear
distortions considered is restricted to the nonlinear systems that can be approximated arbi-
trarily well in least squares sense by a Volterra series on a given input domain (see Definition
3.5). It makes it possible to describe strongly nonlinear phenomena such as saturation (e.g.,
amplifiers) and discontinuities (e.g., relays, quantizers).

From Theorem 3.8 it follows that the input-output DFT spectra are related to the best
linear approximation Gg(s) by

Y(k) = GylspUR) + Y5(0) (5-73)



Section 5.9 B Exercises 159

where Y (k) = Gg(k)U(k) with G(k) the stochastic contributions to the transfer function.
The related linear dynamic system (best linear approximation) Gg(sy) = Go(s) + Gz(sy)
consists of two parts: the true underlying linear system Gy(s;) and the bias term Gp(sy),
which depends on the nonlinear distortions and the power spectrum of the input signal

Gylsp) = Y. _, Gg¥"~1(sp)

N
G%n - l(sk) = Nnn_ 1 z G/%,n—%lly kyy oo =k 1k ‘g{ l U(k1)| 2"' | U(kn - 1)l2} (5-74)
kiyoonk,_y1=1
+0, (N

with ¢, = 2"-1(2n-1)!!, 2:= ,O0,(N71) = ON-') and where &{.} denotes the ex-
pected value with respect to the random amplitudes of the periodic noise (see Theorem 3.7).
Multiplying (5-73) by 74U gives

Y(K)e /4UR = Ge(splUK)| + Y ((k)ei<V® (5-75)

Written in this form, it is obvious that the noise term Y g(k)e~/4V® is independent of the sig-
nal term Gg(sp|U(k)|. Because LY k)-ZLUk) = £Gg(k), it follows that
JNYs(k)e74U® has exactly the same stochastic properties as Gg(k) in Theorems 3.9, 3.10
and 3.11: it is mixing of order infinity and is asymptotically (N — ) circular complex nor-
mally distributed. Both observations motivate the block diagram of Figure 5-7.

Y4k

Uk) Y (k) ¥(k)

e Gi® @)

Figure 5-7. Input-output behavior of a nonlinear system excited by a random phase
multisine.

5.9 EXERCISES

5.1. Show that the transfer function between the force per unit area and the longitudinal dis-
placement of the clamped beam is given by (5-4). Calculate the poles of (5-4) (hint: values
of s such that cosh(ts) = 0).

§.2. Calculate the partial fraction expansion (5-5) of transfer function (5-4) (hint: note that

Ry 41

G(es) = 0 and calculate 2‘”
k=8 =541

with R, the residue of the pole s).

5.3. Consider the charging of a capacitor (see Figure 5-8). Show that the transfer function between

R
——0
u(®) T I ¥
Figure 5-8. Charging of a capacitor with a
voltage u(r).
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the piecewise constant voltage source w(f) and the sampled voltage y(s), ¢ = kT,
across the capacitor is given by

| — ¢~T+/(RO)

— (5-76)
71— ¢ T+ (RO)

Gron(@™) =

(hint: first show that G(s) = 1/(1 + RCs)).

5.4. Consider the cascade of two continuous-time systems shown in Figure 5-4 and show that
discrete-time model (5-11) describes the input-output behavior of the continuous-time
model exactly at the sampling times ¢ = kT (hint: apply (5-10) on the transfer functions

from r,; (#) to u(¢) and from 7, () to y(£)).

5.5. Show that the partial fraction expansion of a proper (n,<n;) discrete-time system
G(z7}, ) with by = 0 is given by (5-23) (hint: multiply the numerator and denominator
polynomial of G(z~!, 8) with 7"+ and calculate the partial fraction expansion in z).

5.6. Show that a state space representation of difference equation (5-17) is given by (5-19)

with
-a,/a, —-a,/a, ... —a /lay —a, /a
179y —427 9y n,-17 40 =4, 7 dg 1/a,
1 0 0 0 0
A= o 1 B = .
0 0
0 0 1 0

C = [bi-aibo/ag .. by =a,bo/80, ~a, ,1by/ag - ~a, by/ag and D = by/ag
(hint: eliminate the state vector in (5-19)).

57. Assume that M,; input samples are missing at time instants f = K, T,
i=12.. M and M ., output samples are missing at time instants

uli] y[J]
tr=K P J]Ts, j=12,. My[ i Show that the extended transfer function model for

discrete-tlme systems is given by

Y™(k) = Gz, OU™K) + T(z; !, 0) +

- uli —Ku, - M, ; K -
G(Zkl 9)2 0} “Iu[i](zkI’ W)_Zj i[zllzk ymly[j](zkl’ W)

where Ix[i](z‘l, Y = N‘llzzzlg_lx(l(x[i] + 0z, x = u,y (hint: follow the lines of

Appendix 5.G).

5.8. Show relation (5-54) for the real case (5-51) (hint: use cos(x) = (e/* + e~/%)/2 and fol-
low the lines of Appendix 5.I).

5.9. Show that gy in agy(f) + -5 dy (t) = agu(t) + —— du(t) is identifiable if and only if

y(0-) # u(0-). Note that y(¢) can never be made dlfferent from u(t) if y(0-) = u(0-).
Only internal action in the system can make y(0-) # u(0-).

5.10. Show that the functions f(Q,) = QfUKk), r = 0,1,...,n,, and k = 0,1, ..., N/2
are linearly independent if and only if U(k) # 0 for at least (n, + 1)/2 DFT frequencms
where DC and Nyquist each count for 1/2 (hint: study Z _0 B,f, (&) = 0 atthe DFT
frequencies where U(k) = 0).
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5.11. Consider model (5-65) where n,<n,, n <n,, A(z"!, 8 and D(z"!, 6) have no com-
mon roots, and G(z™!, 8), H(z™l, 6) have respective minimal orders n,, over n, and
n. over n;. Show that T (1, 8 and TH(z‘l, 0) are identifiable (hint: suppose that

A',8 and D' 8 arc given and write T(z', 0)+Ty(z', 6) as

S f G+ Y e Wit fe) = /AL 8, g gh) =

7"/ D(z;', 6); next show, following the lines of Appendix 5.1, that f,(zg]), g,(z!) are
independent functions).
5.12. Consider model (5-65) where n, <n,, n.<n;, A = AF, D = DF, A and D have no

common roots, and G, H have respective minimal orders n, over n, and n_ over n,.
Show that

G = i H = fc— and T+Ty = l(12+£+£),
AF DF F A D

where I, i and C are polynomials in z~! of respective orders n ¢ 1, n,—n I 1,
and n;—n - 1, is an identifiable parameterization.

5.10 APPENDIXES

Appendix 5.A: Stability and Minimum Phase Regions

To determine the stability regions of the poles we expand the rational form G(£2, 6) in
partial fractions. We find

L L
Gs,0) = 3 ——7, G, 0) = 3 —% and G5, 0 =Y

rs_

Lr

N

(5-77)

(see Egs. 5-22 and 5-23). Calculating the impulse responses of G(Q, 8) in (5-77) gives

g(t) = L{G(s, )} = Y L& (a)
g(n) = Z-Y{ Gz, )} = ZLrM”‘l), forn>0 (b) (5-78)
g0 = L'Y{G(Js, )} = Zle_n—t + A eMerfe(-A /D (c)

with L-1{ } the inverse Laplace transform, Z-1{ } the inverse Z-transform, and erfc( )
the complementary error function (Selby, 1973; Spiegel, 1965). It follows that the impulse
responses are asymptotically zero (poles are stable) if and only if Re(A,) <0 in the s -domain
(5-78a), [A,| < 1 in the z-domain (5-78b), and Re(A2) <0 or |Re(A,)| < |Im(A,)| in the s -
domain (5-78c). By definition, the minimum phase region of the zeros equals the stable
region of the poles. O
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Appendix 5.B: Relation between DFT Spectra and
Transfer Function for Arbitrary Signals

First, the result is proved for discrete-time systems, and next, for lumped continuous-
time systems. In both cases we assume that the input and output samples are known (no mea-
surement and no process noise) exactly for t = 0, 1, ..., N-1 and are unknown elsewhere.

5.B.1 Discrete-Time Systems. The discrete input and output samples satisfy differ-
ence equation (5-17) for any ¢. Taking the one-sided Z -transform of both sides of (5-17)
using

YT K -n)zt = 2(XE) + X))

oo

where X(z) = ek ad (X =U,Y and x = u,y) is the one-sided Z-transform of
x(#) and X,(z) = 2"= X1z, gives

Az DY(z) = BHUR) +1,(z) (5-79)

A@z™Y) and B(z™1) are, respectively, the denominator and numerator polynomials of the plant
transfer function (5-20) and I,(z™!) stands for the influence of the initial conditions of the ex-
periment (past samples of u(¢) and y(r))

L =YY" 3" bun-m=Y Y a,y-Hzin (5-80)

n

Model (5-79) cannot be evaluated on the unit circle because the input and output samples for
t > N are unknown. These samples must, hence, be eliminated. We solve, thereto, difference
equation (5-17)for r = N, N + 1, ..., o. Multiplying both sides of (5-17) with z~ and mak-
ing the summation over ¢t = N, N +1, ..., o using

3 3t -mzt = 7X@ + VX))

where X(z) = ¥~ x()z* and X,(x) = Y0_ x(N-0)z' (X = U,Y and x = u,y),
gives

A )Y (@) = Bz HU@) + 2N,z Y) (5-81)

I(z™1) stands for the influence of the final conditions (samples of u(f) and y(¢) at the end of
the experiment)

LEh = 30 X bV =02 =3 T a0z (5-82)
Subtracting (5-81) from (5-79) gives

A(Z—‘l)YN(Z) = B(Z_l) UN(Z) + I](Z—'l) - Z_le(z—l) (5-83)
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where X,(2) = X()-X(@) = ¥V x()z* (X = U,Y and x = u,y). Evaluation of
(5-83) on the unit circle at the DFT frequencies z;, = exp(j2nk/N), taking into account that
¥ =1, Y(z) = NV2Y(k) and Up(z,) = NV2U(k), finally gives

A(zp)Y(k) = B(zphUk) +1(z;!) (5-84)

where I(z71) = N-V2(1,(z7") - I,(z 1)) is a polynomial of order n; = max(n,, n,) - 1. The
polynomial f(z-!) can be parameterized independent of the numerator and denominator coef-
ficients of G(z™!) (5-20) because its coefficients i, depend, for a given plant model, linearly
on max(n,, n,) independent, initial conditions.

5.B.2 Lumped Continuous-Time Systems. The proof follows the same lines as in
the previous section. We assume that the excitation u(f) is band limited. The input and output
continuous-time signals satisfy differential equation (5-16). Taking the one-sided Laplace
transform of (5-16) gives

A(S)Y(s) = B(s)U(s) +1,(5) (5-85)

where U(s) and Y(s) are the one-sided Laplace transforms of #(f) and y(¢), respectively.
A(s), B(s) are, respectively, the numerator and denominator polynomials of the plant trans-
fer function (5-20) and 7,(s) represents the influence of the initial conditions (value and de-
rivatives of u(¢) and y(¢) at t = 0-)

1O = T B0 a0 - T Tk, (580

m =1
The integrals appearing in the model (5-85) cannot be evaluated because the input and output
signals are unknown for ¢t > NT . The differential equation (5-16) is, therefore, solved for

t 2 NT, using the one-sided Laplace transform. Multiplying both sides of (5-16) by e=* and
integrating from ¢ = NT_ to f = oo gives

A@)Y(s) = BU(s)+ eV oL (s) (5-87)

where 5((3) = J;T es'x()dt (X = U,Y and x = u,y). I,(s) stands for the influence of
the final conditions’ (value and derivatives of u(f) and y(f) at t = N T.-)

Is) = Y S ta,sm -y OWNT -3 Y7 b smor-luCNT,-)  (5-88)

n=1 r=0
Subtracting (5-87) from (5-85) gives
A(S)Y \(5) = BEYUp(s) + 1,(s) — e N Ly(s) (5-89)

where X,(s) = X(z)—f((z) = ONT’e‘”x(t)dt (X = U,Y and x = i, y). Evaluating (5-89)
along the jw -axis at the DFT frequencies s, = j2nf k/N using the relationship between
the DFT and the Fourier integral (Brigham, 1974)
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LT et = —= 3" X (s~ n ) (5-90)

Xk) =
® .

1 wn~-
f\/xt =

-NT.s

and taking into account that e « = 1, results in

A(spY(k) = B(spU(k) + I(s) + Alsy) (5-91)

I(s) = N-V2(1,(s) = I,(s))/T, is a polynomial of order max(n, n,)— 1, and A(s,) is the
residual spectral alias error

n=+o

7 i/ITJ 2 [B(s)Uy(sy —njo,) — A(s,) Y (s, — njw,)] (5-92)

n#0

A(s k) =

Note that the spectral alias error is due to the piecewise constant approximation of the Fourier
integrals Up(jo) and Yp(j®) by the discrete Fourier transforms U(k) and Y(k) (see
(5-90)): it is present even if the signals u(z) and y(f) passed through a low-pass filter before
sampling. For the same reason as in the previous section, the polynomial I(s) is parameter-
ized independent of the numerator and denominator coefficients of G(s) (5-20).

Appendix 5.C: Parameterizations of the Extended
Transfer Function Model

The partial fraction expansions (5-38) and (5-39) follow directly from the fact that
T(L, 8) has the same poles as G(£2, 8). The particular form (5-39) is obtained by rewriting
T(z}, 0) as z(z7'T(z'!, 6)), where the partial fraction expansion of z-17(z"!, 6) has the
form (5-23), because the orders of the numerator and the denominator of z-!17(z"1, 8) are
equal (see Exercise 5.5).

The state space equations of a proper (n,<n,) discrete-time system are given by
(5-19). Following the lines of Appendix 5.B, we solve (5-19) for t = 0,1, ..., and for
t = N,N+1,..., 0 using the one-sided Z-transform. Using the same notations as in Ap-
pendix 5.B, we find

Y@ = GzHU(R) + C(I,,a -z71A) 1x(0) (5-93)

Y@ = Gz Y@ +zNCU, -z ) x(N) (5-94)

where G(z™1) is given by (5-27). Subtracting (5-94) from (5-93) and evaluating the result at
the DFT frequencies z = z, gives (5-42) with x; = N-1/2(x(0) — x(N)).

The state space equations of a proper (n,<n,) lumped continuous-time system are
given by (5-18). Following the lines of Appendix 5.B, we solve (5-18) for ¢ € [0, e] and for
te [NT,, =] using the one-sided Laplace transform. Using the same notations as in Appen-
dix 5.B, we find

Y(s) = G(s)U(s) + C(sI "~ A)Y1x(0-) (5-95)
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¥Y(s) = G U(s) + e™*C(sl, - Ay x(NT,-) (5-96)

where G(s) is given by (5-26). Subtracting (5-96) from (5-95) and evaluating the result at the
DFT frequencies s = s, gives (5-41) with x; = N-1/2(x(0-) - x(NT-))/T,. a

Appendix 5.D: Convergence Rate of the Equivalent
Initial Conditions

We prove the result for a discrete-time system (£ = z-1). The proof for continuous-
time systems (L = s) follows the same lines. Using Egs. (5-80), (5-82), and (5-84) of Ap-
pendix 5.B, we find the following relationship between the coefficients of the polynomial

Iz, 6) = Zr’= o7 in the plant model (5-34) and the initial and final conditions of the
experiment:

Iz7, 0) = N'”{ S Y b Agu@®z -y ZanANy(t)z""J (5-97)

m=1r=1 n=1t=1

where Apx(t) = x(-t)-x(N-1) with x = u,y. It shows that the coefficients i,
r=20,1,..,n;, of I(z'l, 6) depend linearly on 2n, output and 2n, input samples (finite
number independent of N). A bounded input applied to a stable linear system results in a
bounded output; see Kailath (1980). The same is true for unstable plants captured in a
stabilizing feedback loop. Therefore, it follows from (5-97) that i, in (5-37) is an O(N-1/2).
For bounded random inputs we still have [i,{ <C/JN with probability one, so that
i, = 0,,(N-1"2). Because the residues of the poles of a rational function are proportional to
its numerator coefficients, the same conclusions hold for the residues /, and s, in (5-39).
Similar reasoning proves the results for x; in (5-42) (see Appendix 5.C for explicit
expressions of x;). ]

Appendix 5.E: Some Integral Expressions

5.E.1 Definite Integrals Involving sin(x)/x Functions. Using

cos(ax)sin(bx) = 0.5[sin((a + b)x) — sin((a — b)x)] (5-98)
D g < { e (5-99)
X -7 c<(0

—oo

and 0 <a< b we find

e cos(ax)sin(bx) , = sin((a + b)x) —sin((a~b)x) , 1 1y _ )
| = ——dx = | T dx = 5-(—5) =1 (5-100)

—o0 —oo

Note that (5-100) is zero if a > b. Because sin{ax)sin(bx)/(nx) is a uniformly bounded odd
function of x in [~eo, +o0], we have
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+oo

J- sin(ax)sin(®x) ,  _ (5-101)
nx

for any value of ¢ and b.

5.E.2 Convergence Rate of Integrals Involving sin(x)/x Functions. In this section
we study the convergence rate to zero of

+oo +oo -N -N
j fi(x)dx, j fox)dx, j f1(x)dx and j fo(x)dx (5-102)
N N —oo —c0

as N — oo, where

cos(ax)sin(bx) _ sin((a + b)x) — sin((a — b)x)
X - 2nx

f1(x) =
(5-103)

£00) = sin(ax)sin{bx) _ cos((a — b)x) —cos((a + b)x)

2 X 2nx
are uniformly bounded functions of x. Because f,(x) and f,(x) are, respectively, even and
odd functions of x, it follows from (5-102) and (5-103) that it is sufficient to analyze the con-
vergence rate of

[ e 4 (5-104)

X
N

with ¢ > 0. The basic idea is to write the integral (5-104) as an infinite sum of integrals over
one period 21t/ ¢ of the sin(cx) function

4o 2k,m/c soe 20k+ )N/

sin(ex) , sin(cx) sin(cx)
j ——dx = j —dx+ Yy j ——dx (5-105)
N N k=k; 2kn/c

with k; = int{Nc/(2m))+ 1 and int( ) the integer part of a number. Each integral in the in-
finite sum can be bounded above by

2k+1)n/c Qk+Dn/c Ak+ D)n/c

_[ sin(cx) dx = J sin{cx) dx + j sin(cx) dx
2kn/c * 2kn/c * 2k+)n/c *
@k+ /e | ) 2k+ Dn/c - (5-106)
sin(cx sin(cx
< w4 —_
< | Zmett | 2+ Dr/c™
2kn/c Qk+ m/c

because sin(cx) 20 for any x in [2kn/c, (2k+1)R/c] and sin(cx) <0 for any x in
[(2k + 1)m/c, 2(k + 1)1/ c]. Working out the integrals in (5-106) gives
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2(k+ 1)m/c

sin(cx) 1 1 1 )
J x drs Tk n(k+1) 1|:k(k+1) ©>-107)

2kn/c
Hence, the second term in the right-hand side of (5-105) can be bounded above by
4o 2k+Dn/c
sin(cx) dx C, o
2RV < =1 = 5-10
2 j x dx < 2 k(k+1) =G O™ ( 8

ky
k=k  2kn/c k,

with C; a constant independent of N. The second inequality is due to the Cauchy integral
test (Gradshteyn and Ryzhik, 1980). The first term in the right-hand side of (5-105) can be

bounded above by
e 2hym/c-N
i Cc—
[ Emen) gy < <2 _ o (5-109)
Jd x N cN

Collecting (5-108) and (5-109) proves that the integral (5-105) is an O(N-1).

Appendix 5.F: Convergence Rate of the Residual
Alias Errors

Because the output Fourier spectrum Y(jw) is related to the input Fourier spectrum
U(jw) by Y(jo) = G(jo)U(jw) with G(s) stable, the output signal has exactly the same
spectral properties as the input signal, for example, band-limited, discrete Fourier spectrum.
Similarly, because S, (jo) = |G(jw)|2S,,(j®) with G(s) stable, the output power spectrum
S,,(j®) has the same spectral properties as the input power spectrum S, (jo), for example,
band-limited, differentiable power spectrum. Therefore, to study &s,) = A(s,)/A(s,) (see
(5-92)) it is sufficient to study the spectral content of a band-limited signal x(f), observed
during a time NT . The errors in the DFT spectra giving the term &s,) are in fact, leakage
errors that can be interpreted as alias errors. Indeed, due to the multiplication of x(r) with a
rectangular window w(#), sharp transitions occur at the edges of xy(#) = x(f)wy(). These
sharp transitions have a high frequency content. For ease of notation, we will take the time or-
igin in the middle of the observation window wy(f): wp() = 1 for te [-N/2, N/2)T,
and zero elsewhere. First, we prove the result for normalized periodic signals (see Definition
3.4), and next, for random signals.

5.F.1 Periodic Signals. A normalized periodic signal has the form

x(1) = Zf =1§_1-’:—/sin(mkt+¢k) (5-110)

where A, >0 and where F increases with N, F = O(N) (see Definition 3.4). By assump-
tion, the signal x(#) is band limited so that max f, £ fy < f,/2. The outline of the proof is as
follows. First, we calculate the high frequency content x,(f) of the observed signal
xp() = wy(Dx(f). Next, the energy of x,(f) is compared with that of x,(t). Finally, via
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Parceval’s theorem, we draw conclusions concerning the Fourier spectra X,(jw) and
X (jo) of xy(r) and x,(f) respectively.

The high frequency content x,(f) is found by multiplying X,(j®) with a window
P(f) that excludes all frequencies in the band [-f,/2, f,/2], and by taking afterward the
inverse Fourier transform. We find

X, (j21f) = X\G2RN)P() = x,(6) = x(0)* (1) (5-111)

with p(f) the inverse Fourier transform of P(f) and * the convolution product. The window
P(f) can be written as P(f) = 1 - B(f), where B(f) = 1 for |f| < f,/2 and zero else-
where, so that

p() = &b —sin(w,t/2)/ (nt) (5-112)

with sin(w,t/2)/(rnt) the inverse Fourier transform of B(f). Using (5-112), we get the fol-
lowing expression for x (f):

X, (6) = xy(D) = xp(O)*(sin(,t/2)/ (%))
t+NT/2 sin(w,7/2) (5-113)
xy(0) - j x(t = T)———d7

t=NT,/2 nT

Putting (5-110) in (5-113) gives, using sin(a — b) = sin(a)cos(b) — cos(a)sin(b),

x, () = xp(t) — x1(D) + x5(2) (5-114)
with
Fa PNTS2 (0, 7)sin(w, 7/2)
COs Rihl
=Y Zsin@g+0) [ f(Ddr, FiD = k ——
k=1ﬁ t~NT /2 (5-115)
Foa, S sin(w, 7)sin(®,7/2)
nn=3 fvcos((x)kt+¢k) | f@dr, 5o = —
k=1 t-NT./2

We now study (5-114) for the four following cases: (i) te (-NT,/2,NT./2),
(i)t = -NT,/2 and t = NT /2, (iii) t > NT,/2, and (iv) t<-NT /2.
If te (-NT /2, NT,/2), then we can split up the integrals in (5-115) as

t+NT /2 +o0 t-NT./2 400
[ fiwdr= [ fepdi- | feode— [ f(wdr (5-116)
t-NT /2 —o0 —o0 t+NT /2
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for i = 1, 2. From Appendix 5.E it follows that

+o0

| fimde =1 [ fomdr =0 (5-117)

and that for N — e and ¢ fixed, or t = NT /2 with ot e (-1, 1),

{-NT /2 oo
j f{Ddt = O—=—p NT TR NJT/zf(r)dr- 0575 NT —)  (5-118)

The first integral in (5-117) is valid only if x(¢) (5-110) is band limited, ®, < ®,/2 for
k = 1,2, ..., F, while the second integral follows from the fact that f,(1) is an odd function
of 7. Collecting (5-114) to (5-118) gives, using x(z) = O(NO),

1

0 = 0GR/ 72

)+ O( ) fort = ONT./2 with ove (-1,1)  (5-119)

t— NT/2

Fort = -NT,/2 and NT /2 the integrals in (5-115) are finite for any N, o included. The
same is true for t = —NT /21 At and NT_/2 £ At, with At independent of N. Together
with x(f) = O(NY), it follows that

x(H) = ON®) fort = ~NT /2t At and NT,/2 + At (5-120)

with At independent of N.
I t>aNT,/2 with > 1, then we can split up the integrals in (5-115) as

t+NT /2 +oo +oo
| fiwar= | fdr- [ f(nar (5-121)
t-NT /2 t-NT /2 t+NT /2

where, according to Appendix 5.E,

| fivdr = 0(—-—N—T72> [ fiodr= 0(—TT—72> (5-122)
t-NT./2 t+NT /2

Collecting (5-114), (5-115), (5-121), and (5-122) gives, using x(f) = O(N?) and xp(r) = 0
fort>NT,/2,

B 1 1
%) = G577+ O w72

) for 1> aNT/2 with o> 1 (5-123)
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Following the same lines, we find for t <-NT,/2,

1 1 .
t—NTs/2) + 0(t+NTS/2) for t<—oNT /2 with o> 1 (5-124)

%) = O(
From (5-119), (5-120), (5-123), and (5-124) we conclude that x,(f) tends to zero everywhere
as O(N-1), except in a close, N -independent, neighborhood of z = —-N T./2 and
t = NT,/2 where it behaves as an O(N®). A graphical representation of x(r) is shown in
Figure 5-9. The ringing at the edges of the observation window are known as the Gibbs phe-
nomenon. Note that the difference x,(r) — x,(¢) is band limited.

O(N©) ONY O(ND)
O(N-Y) OWN-1Y)
anfl A Y ARLTIN
VVVVU UVV\' vvvv UVVV
~NT, /2 +NT,/2

Figure 5-9. Visualization of the high frequency content x,(f) of the observed signal
xn().

Using (5-119), (5-120), (5-123), and (5-124), we can calculate the energy of x,(f). We

find
+oo
| *Xwdt = o) (5-125)
From (5-110) it follows that
+oo +NT /2
[#wdr = | xXodt = o) (5-126)
o -NT/2

Applying Parceval’s theorem to (5-125) and (5-126), we get

[ xxwar = [|x,Gemp\Pdf = 2 [ |XG2nf)|2df = ONO) (5-127)
—oo —e0 /2
+f/2 +oo +oo
[ 1xxG2rndf = [ |Xy(G2RP\%df - [ |X (j2nf)2df
-f/2 —oo —o0
oo +eo (5-128)

= | x2(0dt - | xX(r)dt
I N J a

—o0 —00

= O(N)
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It follows that the ratio of the energy above Nyquist (|f| > f,/2) to the energy below
Nyquist (|f] < f,/2) of x,(r) is an O(N-1). By construction, the energy of the normalized
periodic signal x(f) is continuously spread over the F = O(N) frequencies f, (see Defini-
tion 3.4), so that the DFT spectrum X(k) of x,(2) is an O(N®). As the energy of the pulse-
like signal x,(#) is also continuously spread over the frequency, it follows directly that
s, = ON-12),

Note that formulas (5-125) to (5-128) are also valid for periodic signals with a fixed
number of frequencies ¥ = O(N?) and fixed amplitudes A,/ JN = O(N% in (5-110). The
difference with the normalized periodic signals is that the signal energy is concentrated at a
fixed number of frequencies f, . Hence, at the excited frequencies f,, X(k) is an O(N1/2),
while &(s,) is still an O(N-1/2). It shows that the relative convergence rate of &(s,;) is an
ON-1) at f.

5.F2 Random Signals. The autocorrelation function R,(7, 1) of the observed ran-
dom signal x,(7) is related to the autocorrelation R(7) of the complete signal x(f) by

Ry(1, D) = B{xpyOxy(t+ 17} = wy®wy(t + DR(D) (5-129)
Taking the Fourier transform of (5-129) w.r.t. 7 gives the power spectrum

Sy, ) = wy(O[SGaY* (W y(jw)e/o)]

= wy(®)] _ S(2rg)el =W y(j2n(f - 8))dg (5-130)

w017 SRR~ W (27~ g

with Wy(jo) = 20-1sin(wNT,/2) the spectrum of the window w (), and where the last
equality is due to the fact that x(¢) is band limited, S(jw) = 0 for f> f;. Because
S(j2rg)/(f —g) is finite for any f > f,/2 and |g| € fp, we can apply partial integration to
(5-130). We find for f > f,/2 O

Sy, ) = WN(t)[S(jZTEg)COS(NN T(f~- g))TfB

N f-8 nsz ~fs
fy (5-131)
wy(t) o cos(r(f - g)NT) 4 ¢ S(]'ZTCg)) d
v T,  dg\ f-g )¢

Clearly, the first term in the right-hand side of (5-131) is an O(N-!). Because S(j2ng) is dif-
ferentiable for |g| < fp and f—g#0 for any |f] > f,/2 and |g| < fg, the integral in
(5-131) is finite for any N, oo included. Hence, the second term in the right-hand side of
(5-131) is also an O(N-1), so that Sy(jo, ) = O(N-!) for f> f,/2. This establishes the
mean square convergence (see Chapter 14) of the signal energy above f /2 to zero (the
power spectrum is a second-order moment). As Sy(j®, 1) = O(N% for |f| < fy and the
DFT spectrum X(k) is an O(NY for stationary random signals, we have

sy = O, (N2,



172

Chapter 5 B Models of Linear Time-Invariant Systems

Appendix 5.G: Relation between DFT Spectra
and Transfer Function for Arbitrary
Signals with Missing Data

The DFT spectrum X(k) = DFT(x(?)) of the complete set (no missing data) can be
split into the contributions of the known and the unknown samples

X(k) = X™(k) + ;51 (zh) (5-132)

where X™(k) = DFT(x™(), I(z;!) = N-V ZZfi’glx(Kx+t)z", and x™(¢) is defined in
(5-45). Applying (5-132), with X = U,Y and x = u,y, to (5-33) and (5-34) gives (5-46)
and (5-47), respectively. O

Appendix 5.H: Free Decay Response
of a Finite-Dimensional System

For discrete-time systems, (5-53) follows directly from (5-34) with U(k) = 0. For
strictly proper lumped continuous-time systems we use (5-89) with Uy(s) = 0

_ Li(s) N7 Iy(8)
Yu(s) AG) -e A® (5-133)

and where the polynomials I,(s), 7,(s) have order n,~ 1. Taking the one-sided Z -trans-
form of (5-133) gives

Y@ = Ti@ D) -2 VTy(z ) (5-134)

with Yp(2) = Zfl;(]l y(tT )z~ and T, (z7"), T,(z!) rational forms in z-! of order (n, - 1)
over n,. The poles z, of T,(zY), Tyz!) are related to the roots s, of A(s) by the impulse
invariant transformation, z, = e’ ls, Evaluating (5-134) at the DFT frequencies
7, = e/2™/N with 7N = 1 gives (5-53), after division by J/N. a

Appendix 5.1: Relation between the Free Decay
Parameters and the Partial Fraction
Expansion

We will prove (5-54) for the complex case (5 52) Using ZN Yxt = (1-xM/(1-x)
and zJy = 1, the DFT transform Y(k) = N““22 -0 y(tT )zi' of y(t) (5-52) becomes

4 1-AN
a e )T z (5-135)

1 on,
fvzrﬂ r ro1-Azg

Y(k) =

where A, = ¢4 */%)T. Comparing (5-135) to (5-39) with ¢ = 0, A_,#A, and I_ #1,
gives (5-54). The proof of the real case follows the same lines (see Exercise 5.8). |
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Appendix 5.J: Some Properties of Polynomials

Lemma 5.10: Consider the polynomial P(£2),

PQ) = (X7 B ) (X0 o, @)+ (30 (30 b,7) (5-136)

with a,, b, fixed coefficients and ¢,, f, free parameters, and suppose that P(Q) = 0 must
be fulfilled for any €. All the parameters «, and J, are zero if and only if the polynomials
A(Q, 6) and B(L2, 6) have no common roots.

Proof. If the parameters o, and f3, are not all zero, then we can rewrite P(Q) = 0 as

BQ, 6 2eoB

= (5-137)
AQDH " yrlag

(if all @, are zeroin P(Q2) = O thenall 3, are zero and vice versa so that at least one ¢, and
one f, should be different from zero).

If the polynomials A(Q,6) and B(Q, 6 have no common roots, then
B(Q, 6)/A(Q, 6) has minimal order n, over n,. Equation (5-137) implies that B(Q, 6)/
A(Q, 6) can be written as a rational form of order n, over n,— 1, which is impossible.
Hence, P(2) = 0 can be true for any Q only if the parameters o,, B, are all zero.

If the polynomials A(Q, 8) and B(2, 6) have common roots, then the minimal order of
B(Q, 8)/A(L, ) is less than n, over n,, and (5-137) is fulfilled with , and B, not all
Zero. O

Lemma 5.11: Consider the polynomial P(£2) in (5-136) and suppose that P(2) = 0
for at least (n,+n,+1)/2 DFT frequencies Q, where DC (k = 0) and Nyquist
(k = N/2) each count for 1/2. The free parameters ¢,, fB, are zero if and only if the
polynomials A(€2, 6) and B(, 8) have no common roots.

Proof. The polynomial equation P(QQ) = 0 is fulfilled for any Q if and only if the
coefficients of all the powers of Q are zero. We will show that this is also true if P(2) = 0
for at least (n, + n, + 1)/2 DFT frequencies. Applying Lemma 5.10 proves the lemma.

Evaluating P(Q2) = 2:’; 0P, with n, =n,+n, at F DFT frequencies
kje {1,2,...,N/2-1}, j=1,2,...,F, gives

VI, Q- Q)p = 0 (5-138)

with pT = [pop;...p, ] and where the matrix V(Q, Q... Q)€ CF*0p+ D phas a
Vandermonde structure

1 Q QF ..QF

V(le’ Qk29 vy Qk,,-) = (5'139)
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The Vandermonde matrix (5-139) is of full rank if and only if the F DFT frequencies , are
all different (see Golub and Van Loan, 1996 and Exercise 13.6). Adding the F complex con-
jugate DFT frequencies to (5-138) gives

Vs o Qs Qs Q)P = 0 (5-140)

-k

where V(Q, ..., Q. Q, ..., Q2 ) € C*F*" D s of full rank (2, #Q_, ). Hence
from (5-140), it follows that p=20 if and only if F2(n,+1)/2. The same rcasomng holds
if DC (k = 0) and Nyquist (k = N/2) are added to the frequencies. However, since €,
Q,,, are real numbers, they increase the rank of V(le, e QkF, Q—k,’ e Q_kF) by one
instead of two as for each complex £,. ]

Appendix 5.K: Proof of the Identifiability of Transfer
Function Model (5-32) (Theorem 5.9)

Choosing a, = 1, transfer function model (5-32) can be written as

QEY®) = 3 b, f ) - Y0 a,8,/Q) (5-141)

withf A = QLU(k) and g,(Q) = Q[Y(k). The coefficients ay, ay, ..., a, _y, by, ...,
" in (5-141) are identifiable if and only if the functions f(Q), r =0,1,...,n, and
g,(Qk), r =0,1,...,n,—1 are linearly independent. This is the case if and only if

2’:: O'Bffr(gk) + z:l';_ol argr(gk) =0 (5-142)

k=01,..,N/2, implies that all parameters «,, B, are zero. Multiplying (5-142) by
A(Qy, ) and using Y(k) = G(2,, )U(k) gives P (QYUKk) =0, k=0,1,...,N/2,
with

P = (5 B o)+ (B S p) 6188

At the DFT frequencies where U(k) #0, P,(Q,)U(k) = 0 is equivalent to P,(Q,) = 0.
The free parameters &, and 8, in P,(2) = 0 are zero if and only if A(Q, 6) and B(Q, 6)
have no common roots and U(k) # 0 for at least (n, +n,+ 1)/2 different DFT frequencies
(proof: see Appendix 5.J). |

Appendix 5.L: Proof of the Identifiability of Transfer
Function Models (5-35) and (5-36)

Choosing a, = 1, transfer function models (5-33) and (5-34) can be written as

QY (k) = 2 NIRRT S ,g,(Qk) +Y0 oL + AQY (5-144)

with f(Qp) = QUKk), g,(Q,) = Q[Y(k) and with A(z;") = 0 and A(s,) given by
(5-92). A necessary condition for the identifiability of the coefficients a,, ..., Ay 15 bg, ...,
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by,s igs .- I, in(5-144)is that f,(€2;) and Q are linearly independent. If f(Q,) and Qf

are linearly dependent, then there exist coefficients f3,, ¥,, not all zero, such that

S BLQY+ 3 1,9 = 0 (5-145)

As the functions f(€,) and Q] are themselves linearly independent (see Exercise 5.10) not
all 8, and not all ¥, are zero. From (5-145) it follows, then, that

U = (X7 1,26/ (Z o B.%) (5-146)

k =0,1,..., N/2. We conclude that the functions f,(€2,) and Q] are linearly dependent if
and only if U(k) can be written as a rational form of order n; over n, or less, otherwise they
are linearly independent. If U(k) 0 for less than (n, + n;+2)/2 different DFT frequen-
cies, then U(k) can always be written as in the form (5-146) (a rational function of order n,;
over n, fits exactly (n, + n;+ 1)/2 arbitrary complex numbers).

Transfer function models (5-35) and (5-36) can be written as

Y(b) = G, OUKk) + T(Q,, 6) + 6(Qk) (5-147)
with &z;!) = 0 and
1 "a” ) )
&sy) = Tsfﬁn ;’_w[G(Sk, O U p(s;,—njo,) — Y y(s,—njo,)] (5-148)
nz0

(see (5-92)). If the polynomials A(Q, 8), B(, 8), and I(£2, 6) have common roots, then the
rational functions G(Q, 8) and T(Q, 8) can be simplified, leaving (5-147) unchanged.
Clearly, the roots that have been removed are not identifiable. O



An Intuitive Introduction
to Frequency
Domain Identification

Abstract: In the next two chapters a detailed study of frequency domain identification
schemes will be made. A wide class of methods is discussed and it will be shown how the
properties of the estimators are set by the choice of their cost function. Those readers who
just want to solve their modeling problem, without passing through all these underlying
theories, might still profit from a basic understanding of the methods they will use. For that
reason we decided to provide, in this chapter, an intuitive insight into the frequency domain
identification problem. First, a straightforward approach will be discussed, starting from
the measured FRF of the systems transfer function; next a more general formulation will be
made, based on the errors-in-variables concept, leading to a very robust identification
method. Finally, it is discussed, briefly, how the general method can be applied to specific
situations: no input noise present; the FRF is measured, and so on.

6.1 INTUITIVE APPROACH

The basic aim of this book is to measure and model the transfer function G(£2) of a plant,
starting from noisy input and output measurements (see Figure 6-1). An intuitive approach is
to extract, first, a measured FRF G(Q,), & = 1, ..., F of the systems’ transfer function at a
set of well-chosen frequencies (see Chapter 2 for a detailed discussion). Next, these measure-
ments are approximated by a parametric model G(£2,, 6) that explains the measurements as
much as possible. As explained in Chapter 1, the quality of the match between measurements
and model is measured by the cost function. The parameters are then tuned to minimize the
cost function so that a best match is obtained. There is no unique choice for the cost function,
and because each cost leads to an estimator, it is possible to find different estimators for the
same problem. An intuitive choice of the cost function is

|G(Qp) - G(Q,, 0))

oz(k) ©-D

1 F
VK82 = 3 |

The weighted least squares distance between the measurement and the model is minimized.
Measurements with a small uncertainty (c%(k) is small) are more important than those with
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N (0

Gy(Q)

My(k)

Y(k)

Figure 6-1. Frequency domain representation of the measurement process. Note that the
system can be captured in a feedback loop.

a large uncertainty (0%(k) is large). Although this method works amazingly well in many
cases, it suffers from a major drawback. It is not always that easy to get a good measurement
of G, due to the presence of the noise M (k) on the input. If the classical correlation meth-
ods (H; method) are used, a bias appears (see Chapter 2). The measured transfer function
converges for an increasing number of averages to:

1

. _ Syu(Qk)
lim G(Q,) = 1+ 8y, m, (8207 S ()

Moo Suu(Qk)

= Gy,

(6-2)

It is then easy to show that the parametric approximation will also be biased. When periodic
excitations are used, alternative methods based on the direct division of output and input
spectrum are available: G(Q2,) = Y(k)/ U(k). Although this method is less sensitive to the bias
problem (see Chapter 2) for sufficiently large SNR at the input (better than 6 dB), it can be
shown that in general its variance 6Z(k) does not exist. (Guillaume et al., 1996a; Broersen,
1995). Especially for a low SNR at the input, large spikes frequently appear in the estimate, thus
the variance estimate does not converge anymore. For larger SNRs the risk of encountering this
problem becomes negligible in practice. However, this puts the user in a situation where he has
to decide himself whether the method is applicable or not. For that reason a more robust alterna-
tive is formulated in the next section. Although it looks, at a glance, more complicated, it turns
out that the computational complexity is not higher than that of the intuitive approach if
periodic excitations are used. The major advantage for the less experienced user is that a check
is no longer needed to verify whether the operational conditions on the intuitive technique are
met or not. The algorithm can be automated fully and included in a general purpose package
for public usage by laymen in the identification domain.

6.2 THE ERRORS-IN-VARIABLES FORMULATION

The intuitive methods of the previous section run into problems due to the presence of a division
Y(k)/U(k) that is a highly nonlinear operator. The denominator can become almost zero (the
noise cancels the input) at some frequencies and this creates outliers. The errors-in-variables ap-
proach avoids a direct division of both measured spectra. Instead, the input and output spectra are
considered as unknown parameters, connected by the parametric transfer function model:

Y(k)
Uk)

Yo(k) + Ny(k)

(6-3)
Uyll) + N (k)
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with Yy(k) = G(&,, OUy(k) and where Ny(k) and N (k) include the generator noise, the
process noise, and the measurement noise. Because the exact Fourier coefficients Y (k) and
U(k) are unknown, they are replaced by the parameters ¥ (k) and U (k) which are estimated
by minimizing the distance between the measurements and the paramcters (Uk) - U (k)]

|Y(k)-Y, (k)| ), leading to a new constraint optimization problem. If the input and output mea-
surements are uncorrelated with each other, the following least squares cost function can be used:

F
1 |U(ky-U (k)l2 |Y(k) - ¥ (k)
Vi(62) = F, 2 o3(k) o} (k)
H -1 (6'4)
_1 i Y(k) - Y, (k) o¥k) O Y(k) - Y (k)
CFSUG-UMm) | 0 o \UR-Uyk
to be minimized under the constraints
Yp(k) = G(82, G)Up(k) k=12,..F (6-5)

In reality, the noise N (k) and N (k) is correlated (63, (k) #0), and the full weighted least
squares cost function should be considered:

-1
Yk - ¥ (k Yk - ¥ (k
VH6,2) = z ® -0V 0j) ofyn| (Y=Y, 0 o6
Fo\U®-U®) (o2, ojw| \UR)-Uk)

where 6,y(k) = o—yu(k). This cost function should be minimized with respect to the model pa-
rameters O and also to the Fourier coefficients U (k), Y,(k), k = 1,..., F. As F can be very
large, this appears to be a very hard task. However, this cost function can be simplified further. It is
possible to eliminate U (k), Y (k) explicitly from the problem, simplifying the cost function to:

|Y(k) - G(Q,;, OUK)|?

VA8,2Z) = _
6.2) | 63(k) + 64(K)|G(, 0)|2— 2Re(0},(K)G(Y, 6))

(6-7)

=

Some of the advantages and properties of this formulation are discussed below.

6.2.1.1 Robustness with Respect to Bad Measurements. Compared with (6-1), divi-
sion of the measured Fourier coefficients is no longer needed. The cost function does not de-
generate, even if the measured input equaled zero at some frequencies. The user should not
bother anymore with the selection of an appropriate method to measure the FRF.

6.2.1.2 Symmetric Formulation. By replacing in the cost function G(£,, 8) =
B(Q,, 6)/A(Q},, 6) and multiplying the numerator and denominator with ’A(Qk, 6|2, a com-
plete symmetric formulation is found. The input and output have exactly the same role in the
problem:

|AQy, 6)Y (k) - B(S,, OUK)|?
| OHK)| A, O)2 + 03 (K)| B2, 0)]2 - 2Re(03,(k) A2, B)B(S,, 6)

F
VH6,2) = ,—i-z ©6-8)
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6.2.1.3 Measuring the Noise Model. The cost function depends on the exact values
o7 (k), 63(k), and 63,(k). In practice, these should be obtained from measured data. Section
2.5.1 shows how the sample covariance matrix can easily be extracted from repeated mea-
surements and, later on, it will be shown that it is sufficient to use only four or six repetitions
to guarantee that the properties of the estimator are not lost. This means, again, that a fully
identifiability procedure can be set up. If the user can apply a periodic excitation, all other in-
formation can be extracted automatically without worrying about determining the noise
model. If interested, however, the user can use this information to evaluate the quality of the
experiments before starting the actual identification. For example, by examining the mea-
sured FRF together with its uncertainty, the complexity of the problem and the quality of the
measurements can be revealed.

6.2.1.4 Dealing with Exactly Known Inputs. In some applications (e.g., control
problems) a model that links the output of the process directly to the digital controller output
is built. In these cases the input signal is exactly known because it is stored in the memory of
a computer. The errors-in-variables approach is automatically adapted to this situation by put-
ting 6% (k) and 63,(k) equal to zero.

6.2.1.5 Starting from Measured FRF. Sometimes the user has only the measured
FRF available. In that case it is still possible to use the previous approach by putting
Y(k) = G(Q,), and 63(k) = c%(k), the input is set to U(k) = 1, with 6(k) = 0. The vari-
ance 62(k) can be obtained directly from the coherence as explained in Section 2.5 4.

6.2.1.6 Properties. The properties of the estimator are studied in detail in the next
chapter, and it is shown that under weak conditions the estimates converge (for an increasing
number of data points) to the parameters 6, that would be found in the noiseless case. The
uncertainty on the estimates approaches the smallest possible level for estimates without
systematic errors. The covariance matrix Cov( ?)) can be calculated at the end of the identi-
fication process. Starting from Cov(8), it is easy to generate uncertainty bounds on other
0-dependent quantities; for example, for the FRF of the transfer function we get that

G, e))c (g)(ac(g e)) 69)

var(G(Q2, 9)) = ( 39 30

(see Section 14.2). In practice the derivatives are evaluated in the estimated value 8. Also, the
uncertainty bounds on the poles and zeros (see Section 9.2.3) or on the residuals (difference
between measured and modeled FRF) (Section 9.2.2) can be obtained.

6.3 GENERATING STARTING VALUES

The cost function (6-8) is highly nonlinear in the parameters 6 because they appear in the nu-
merator and denominator. As a result, the minimization of the cost becomes quite difficult. It
is possible to solve the problem analytically only in extremely simple cases. In all other situ-
ations a numerical search procedure is needed. The convergence of these methods depends
strongly on the generation of good starting values for the model parameters 6. In general, it is
impossible to get this information from physical principles because the link between the coef-
ficients of the transfer function and the underlying physical systems is very nonlinear, espe-
cially for higher order systems. Moreover, often the user does not want to make the effort to
collect all the required knowledge because the goal of the experiment is to generate a black
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box model that describes the input-output behavior. For that reason we need self-starting al-
gorithms that generate the starting values from the measured data and not from unavailable
prior knowledge.

A possibility to make the optimization self-starting is to change the cost function in the
first step so that its global minimum can be calculated directly. There are a number of possi-
bilities to reach this goal. The simplest solution is just to remove the denominator in (6-8) so
that the problem becomes linear-in-the-parameters and the minimum is found by solving a
linear set of equations (see Section 7.8.2). The disadvantage of this straightforward approach
is that the solution becomes extremely noise sensitive. For that reason attempts were made to
make a parameter-independent reconstruction of the denominator of (6-8) using measure-
ment information only (Section 7.12.4). This results in significantly improved starting values.
A second possibility to generate starting values is to continue with the nonlinear cost function
but to modify it such that the global minimum can easily be found using advanced, but widely
available, numerical techniques such as singular value decomposition. This leads to the gen-
eralized, total least squares type of solutions (see Section 7.10.3) that minimize a cost func-
tion of the form

F
2 |AQp )Y (k) - BQ,, O)UK)|?
Vie(6,2) =— £l (6-10)

Y, 63(k)|A, O)|2 + 63 (k)| B(y, 6)|> - 2Re(0F, (k) A, O)B(Q, 6)
k=1

Although the efficiency of this method is lower than that of the original MLE, it provides
good candidate starting values. Again, it is possible to improve the quality by adding a non-
parametric frequency weighting as explained in the next chapter. A third possibility to get
starting values is to use subspace methods (see Section 7.14) that are based on state space
models. Compared with the previous algorithms, this method is less flexible because it is not
possible to choose the number of poles different from the numbered zeros; but despite this
disadvantage, good quality starting values are generated. A major advantage of subspace
methods is that they are very well suited to multiinput, multioutput (MIMO) problems.

As a general procedure, we advise the reader to combine these techniques by calculat-
ing two or three candidate starting values and to select, out of these, the solution that results
in the smallest MLE cost (6-8).

6.4 DIFFERENCES FROM AND SIMILARITIES
TO THE “CLASSICAL” TIME DOMAIN
IDENTIFICATION FRAMEWORK

Identification has a long tradition. Over the years, the attention shifted almost completely to
the use of discrete time models that were identified starting from arbitrary (no periodicity re-
quired) excitations. The major difference with the preceding approach is that a parametric
noise model is used (Ljung, 1999; see also Section 8.9). Ljung (1999) gives a frequency do-
main interpretation of the cost function that is minimized with these techniques. By neglect-
ing the leakage effects, the following equivalent frequency domain representation of the time
domain cost is found:

1 Nf |Y(k) - Gz, HUK)?
N |H(z', 0)?

k=0

V8, 2) = (6-11)
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where |H(z"!, )|2 is a parametric model for the power spectrum of the process noise. These
methods work well if the measurement noise (M (k), M y(k)) is negligible, otherwise the re-
sults will be prone to systematic errors. The major advantage of this approach is that no peri-
odic signals are needed. Its major disadvantage is the need to estimate an additional model
H(z7!, 6). A more detailed discussion is given in Section 8.9.

6.5 EXTENSIONS OF THE MODEL: DEALING WITH
UNKNOWN DELAYS AND TRANSIENTS

In the previous sections, the simplest model was used. The results can be generalized to sys-
tems with an unknown delay 1. To do so, the model is extended to G(£2, 6)e-* for continu-
ous time systems or to VT G(z71, §) for discrete-time systems (see Section 5.2). The
reader has to realize that the corresponding optimization problem is much more difficult to
solve because it is very sensitive to local minima. Consequently, a good starting value of the
delay is needed.

Another generalization is the extension of the model to include transients (before the
system reaches its steady-state behavior) or to cover, also, the situation with arbitrary (nonpe-
riodic) excitations. Again, this is simply solved by adding an additional rational term to the
model (Section 5.3.2):

G(Q, 6) + i((?z %)) (6-12)

Because the additional rational term has the same denominator, the complexity of the numer-
ical optimization process is almost not affected by this generalization. A similar extension
can be used to process experiments with missing data (Section 5.3.3).



Estimation with
Known Noise Model

Abstract: This chapter gives an overview of frequency domain identification methods for
single input, single output systems. Estimators such as the (weighted) linear least squares, the
weighted nonlinear least squares, the maximum likelihood, the (weighted) total least squares,
the instrumental variables, and the subspace algorithms are discussed in detail. The interrela-
tions between the different approaches are highlighted through a study of the (equivalent)
cost functions. Special attention is also paid to global minimizers that try to approximate the
maximum likelihood estimator. The properties of the different approaches are illustrated by
means of an “on-line” simulation example. The chapter ends with an overview of the proper-
ties of the estimators and a brief discussion of the particularities of estimating high-order sys-
tems, systems with time delay, systems in feedback, systems with missing data, multivariable
systems, and transfer function models with complex coefficients.

7.1 INTRODUCTION

In this chapter we handle the identification of the plant model assuming that the noise model
is known exactly. We give an overview of frequency domain identification methods for single
input, single output systems (Sections 7.8 to 7.15). Afterward, the particularities of high-
order systems (Section 7.16), systems with time delay (Section 7.17), systems in feedback
(Section 7.18), the missing data problem (Section 7.20), and multivariable systems
(Section 7.21) are discussed. A second-order system G(s, 8) = 1/(1 + 5+ s2) is used as an
“on-line” illustration through Sections 7.8 to 7.14. Figure 7-1 shows the true transfer function
and the simulated noisy frequency response data (see Appendix 7.A for more information
concerning the generation of the simulation data). Readers who want only a quick taste of the
basics of frequency domain estimation (and accept the claimed properties as they are) may
skip the last paragraph of Section 7.4 and Sections 7.5 to 7.7 but should still go through Sec-
tions 7.2 and 7.3 before tackling the description of the estimators (Sections 7.8 to 7.15).
Before starting with the overview, we discuss the type of data (experiments) we can
handle (Section 7.2), introduce some notations for the parametric plant models (Section 7.3),
and present the general form of the identification algorithms (Section 7.4). Section 7.5, quick
tools to analyze estimators, is intended for readers who are not interested in the technical
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Amplitude (dB)
Phase (°)

f (Hz)

Figure 7-1. Second-order example G(s, &) = 1/(1+s+5%): true transfer function
(solid line) and simulated noisy data (dots).

details of the proofs but still want to get some insight into the derivation of some basic prop-
erties. Combined with Section 7.7, which discusses the general asymptotic properties of esti-
mators minimizing a cost function that is quadratic-in-the-measurements, it will allow them
to easily verify and understand the properties of the different estimators described in Sections
7.8 to 7.14. Those who are interested in the technical details will find a comprehensive list of
the basic assumptions needed to prove the asymptotic properties of the estimators (Section
7.6). The proofs of the theorems are given in the Appendix and rely completely on the results
of Chapters 15, 16, and 17. The reader is referred to these chapters for more background in-
formation concerning the way properties are proved.

7.2 FREQUENCY DOMAIN DATA

The identification starts from measured input-output discrete Fourier transform (DFT) spec-
tra U(k), Y(k),

Y(k) = Yok) + Ny(k)

(7-1)
Utk) = Uylk) + N y(k)

with Uy(k), Y,(k) the true unknown values, or from a measured frequency response function
G(Qk)s

G(Q,) = Gy(Qp + Ngk) (7-2)

with G4(£2;) the true unknown value, at a set of F frequencies Q,, k¥ = 1,2, ..., F, which
may be a (sub)set of the DFT frequencies. Note that (7-2) is a special case of (7-1) with
Y(k) = G(,) and U(k) = 1. The 2F complex-valued vector Z contains the measured
input-output (DFT) spectra

ZT = [ZT(1)ZT2)...ZI(F)] with ZT(k) = [Y(R)UK)] (7-3)

where k = 1, 2, ..., F. Itis related to the true values by Z = Z,; + N,, where the disturbing
noise N, has zero mean and is independent of Z,.

The frequency domain data (7-1), (7-2) can be obtained via time domain or frequency
domain experiments. In a time domain experiment a broadband random or normalized peri-
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odic (see Definition 3.4) excitation is applied to the plant and N samples of the input and
output signals are measured (see Figure 7-2). For the periodic signals the steady-state re-
sponse is observed over an integer number of periods. These N input-output samples are
transformed to the frequency domain using the discrete Fourier transform. F<N/2 +1
DFT frequencies of the input and output DFT spectra are used for the identification. For arbi-
trary signals u,(f) the generator noise n,(f) is a part of the excitation, uy(f) = u(?) + n (1),
so that the frequency domain errors N (k) and N,(k) in (7-1) are related to the disturbing
noise sources in Figure 7-2 as

Ny(k) = DFT(m,(t) +n 1)

(7-4)
Ny(k) = DFT(m,(®))

For periodic signals the generator noise n,(¢) is a disturbing noise source, uy(f) = u,?),

which causes a correlation between the input and output errors. Indeed, the frequency domain

errors N (k) and N (k) in (7-1) are then related to the disturbing noise sources in Figure 7-2

as

Ny(k) = DFT(n,(0)*go() + n(t) + m (1))

(7-5)
Ny(k) = DFT(n (r) + m,(5)

with * the convolution operator and gq(¢) the impulse response of the plant. In a frequency
domain experiment, a single sine excitation is applied to the plant and the input-output spec-
tra of the steady-state response are measured at the excited frequency. This experiment is re-
peated at F different frequencies. For example, high-frequency network analyzers
(microwave measurements) and impedance analyzers follow this measurement procedure.
Also, most dynamic signal analyzers have such a measurement mode. The frequency domain
errors N, (k) and Ny(k) in (7-1) are related to the noise sources in Figure 7-3 as

Ny(k) = N (k)Gy(€2p) + My(k) + N p(k)

(7-6)
Ny(k) = N (k) + M (k)

with Gy(€2,) the plant transfer function.

n g(t) n p(t)

u ()
plant

u(t) )

Figure 7-2. Time domain experiment: a broadband excitation u/r) is applied to the
plant. The DFT spectra of N observed input-output samples are calculated.
F = O(N) DFT frequencies of the input-output DFT spectra are retained.
nf) is the generator noise, m,(f) and m/(f) are the input and output
measurement errors, and #n,(#) is the process noise.



186 Chapter 7 B Estimation with Known Noise Model

N (0 N, (k)

plant

M (k) M (k)

Utk) Y(k)

Figure 7-3. Frequency domain experiment: a single sine excitation w(f) =
Asin(2n f,z + ¢) is applied to the plant and the input-output spectra of the
steady-state response are measured at frequency f,. This experiment is
repeated at F different frequencies. N (k) is the generator noise, M (k) and
M (k) are the input and output measurement errors, and N (k) is the
process noise.

Due to the imperfections of the measurement devices, it is recommended not to use
measurements at DC and in the neighborhood of the Nyquist frequency. Indeed, acquisition
units mostly introduce DC offset errors and antialias protection is mostly guaranteed only up
to about 80% of the Nyquist frequency. The measurements can also be the result of a linear-
ization of a nonlinear system at an operating point. This will introduce DC values in the input
and output signals that are not compatible with the linear model and, hence, should be re-
moved.

An important question asked when (re)designing an experiment is: “What will happen
with the estimates (uncertainty, bias, ...) if one gathered, for example, four times more data?”
Ideally, we would like to answer this question for each finite value of F. Except for the
(weighted) linear least squares, this is possible only for “sufficiently large” values of F. To
analyze the stochastic properties of the estimators for F' “sufficiently large” we will make a
mental experiment where the number of frequencies F tends to infinity. For a frequency do-
main experiment this implies that the number of single sine measurements F tends to infin-
ity, while for a time domain experiment this implies that the number of measured time do-
main samples N tends to infinity. Note that we do not consider time domain experiments
(N — o) with periodic signals containing a fixed number (independent of N) of frequencies
F. Indeed, for such experiments the signal-to-noise ratio tends to infinity as N — oo at the
excited DFT frequencies (see Appendix 7.C), and, hence, all the estimators considered in this
chapter would be consistent in a trivial manner. For random and normalized multisine
(F = O(N), see Definition 3.2) excitations the signal-to-noise ratio per spectral line remains
an O(N?) (see Appendices 7.B and 7.C) so that consistency is a nontrivial issue.

7.3 PLANT MODEL

Unless mentioned otherwise, we will assume in this chapter that the parameterization of the
plant model is identifiable (see Definition 5.8). It implies that the parameter vector 8 con-
tains only the free parameters of the model, for example, all the numerator and denominator
coefficients of the rational form G(£2, 8) = B(Q, 6)/A(L2, 6) except a, = 1. Note, how-
ever, that from a numerical point of view it is often better to use the full overparameterized
form in combination with dedicated numerical methods. Chapter 18 discusses this issue in
detail.

For any parameterization of Sections 5.2 and 5.3 (rational form, partial fraction ex-
pansion, and state space representation) we can use the output error, which is the difference
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between the observed output Y(k) and the modeled output Y(S2,, 6). From transfer function
models (5-32), (5-35), and (5-36) we get

Y (€2, 6) = G(;, OUK) 7-7
for periodic signals (Q = z-!, 5, /s or tanh(Tgs)) and
Y(Q, 6) = Gy, OUK) + T, 6) (7-8)

for arbitrary excitations (Q = z-! or s).

For the rational forms, (5-20), (5-25), (5-37), and (5-40), it is convenient also to intro-
duce the equation error e(,, 8, Z(k)), which is the difference between the left- and right-
hand sides of transfer function models (5-32), (5-35), and (5-36) after multiplication by
A(Q,, 6). We get

e, 0, Z(k)) = A(Q, O)Y(k) - B(Q,, OUk) (7-9)
for periodic signals (Q = z71, s, Js or tanh(1gs)) and
e(€y, 6, Z(k)) = A(Qy, OY(k) - B2, OUk) - I(Qk, & (7-10)

for arbitrary excitations (Q = z-! or s). The equation error e(€,, 6, Z(k)) is not exactly
zero because the observations Y(k) and U(k) are disturbed by noise and 6 does not equal
the true value 6, (if it exists).

Note that (7-8) and (7-10) are valid only at a (sub)set of the DFT frequencies but (7-7)
and (7-9) are also valid at arbitrary (not related to a DFT grid) frequencies.

7.4 ESTIMATION ALGORITHMS

Most algorithms discussed in this chapter minimize (in each step) a “quadratic-like” cost
function V(6, Z)

V(8,2) = £4(6,2)8(0,Z) = Y _ |6 0, Z(K))[2 (7-11)

where &6, Z) € CF is some kind of measure of the difference between the measurements
and the model. The residual &8, Z) € CF is a (non)linear vector function of the model pa-
rameters 6 and the measurements Z. Note that £,,(6, Z) = €2, 6, Z(k)) depends only on
the measurements at frequency Q,.

A first important subclass of (7-11) consists of the cost functions V(8, Z), which are
quadratic-in-the-measurements Z. For these cost functions the residual &8, Z) is linear in Z
and can be written as

£(6,2) = e(6, Zg) + A6, Np) (7-12)

with A8, Nz) = A(Q,, 6, N(k)) and A(2,, 6,0) = 0. Hence, (7-11) becomes
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V(8,Z) = V(B, Zy) + v(6, N,) + 2Re(eH(8, Z)A(H, N )

(7-13)
w6, N,) = AH(6, N,)A(6,N,)
where v(6, N;) represents that part of the cost function depending on N, only.

A second important subclass of (7-11) consists of the cost functions V(6,Z) =
f(6, n(Z), Z), which depend on an initial guess 1(Z) of the model parameters,

V(6,2) = £(6,2)e(6,2) = 37 _ |e(, 6,12), Z(k))|? (7-14)

and which are quadratic-in-the-measurements Z when 1(Z) in (7-14) is replaced by a non-
random vector 17.

Often, a Newton-Gauss type of algorithm is used to find the minimizer &Z) of (7-11).
Rewriting (7-11) as V(6, Z) = €L(6, Z)&,.(6, Z), where ( ),. stacks the real and imaginary
parts on top of each other (see Section 13.8),

£.(6,Z) = [Re(e("’ Z))} (7-15)
Im(£(6, Z))

the ith iteration step of this algorithm is given by (see also Section 1.5.1)
JLBG-D, Z)J (80-D, H)A0D = —JL(8G-1), Z)g, (891, Z) (7-16)

with Ag®) = @) — -1 and J(6, Z) = 0&(6, Z)/38 the Jacobian of the vector &6, Z).
Using complex numbers, (7-16) can be written as

Re(JH(B(-D, Z)J(84-1), ZDABD = —Re(JH(OU-1, Z)g(6U-1), Z)) 7-17)

If the algorithm converges to the global minimum, then &Z) = 6. When identifying
continuous-time systems in the s - and A/s -domains, it is indispensable to scale the frequency
axis (and, hence, also the parameters) to guarantee the numerical stability of the normal equa-
tions (7-16). Without scaling, identification in the s - and /s -domains is often impossible
with the available computing precision, even for modest orders of the transfer function.
Although the scale factor that minimizes the condition number of J,(8¢~1), Z) is plant and
model dependent, a good compromise is to use the arithmetic mean of the maximum and

minimum angular frequencies in the frequency band of interest: ®.,. = (O, + Opin)/ 2.
For example, the term a,s™ becomes a,,®7,.(5/ Wy, )™ after scaling and a,02, is

estimated. The numerical stability can still be improved by solving the overdetermined set
of equations

J (86D, Z)A6) = —¢ (6(-D), Z) (7-18)

instead of (7-16), for example, using the singular value decomposition or a QR factorization
(see Section 13.13). The convergence region of the Newton-Gauss algorithm can be enlarged
by using a Levenberg-Marquardt version of (7-16) and (7-18) (see Fletcher, 1991 and Section
7.L.4 of Appendix 7.L).
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To study the asymptotic behavior of the identification algorithms, it is convenient to
scale the cost function with the number of frequencies, V(6 Z) = V(6,Z)/F,
vi(@, Ny = WO, Np)/F, and f(6, N(Z),Z) = f(6, (Z), Z)/F. The expected values of
the cost function Vg(6) = & { V(8,Z)} and its minimizer 9(20) play an important role in
the convergence analysis of the estimate &2). All the asymptotic properties (F — oo) of the
estimate Q(Z) will be formulated w.r.t. the minimizer 9(20) of the expected value of the cost
function. The conditions under which &Z) converges to &Z,) will be studied. This is a sto-
chastic convergence problem that mainly depends on the disturbing noise properties. When
model errors are present, &Z,) will vary as the number of frequencies F increases. We may
wonder then whether &(Z,) converges to some limit value 6, = lim &Z,) which is the

F—oeo
minimizer of the limit cost function V.(6) = lim Vg(6). This is a deterministic conver-
F

—> oo
gence problem that depends on the way data (frequencies) are added in the time or frequency
domain experiment. The notations introduced are summarized in Table 7-1.

TABLE 7-1 Overview of Notations Frequently Used: 7(Z) is an (Initial)
Estimate of the Model Parameters and 7. is its Limit Value

. VA6, 2), VA0 = &(VH6,D), V48) = limV(6)
Cost function £46, 02, 2) VKO = 8 fH{6, 1., 7))}
Minimizer &z bz) >

7.5 QUICKTOOLS TO ANALYZE ESTIMATORS

The minimum we can expect from a “sound” estimator is that in the noiseless case we get the
true answer (correctness property). In the noisy case we should get asymptotically (F — o)
the true answer (consistency property) and hopefully a “small” uncertainty (efficiency prop-
erty). We may also wonder whether the estimates depend on the particular parameter con-
straint chosen (g, = 1, or |6[3 = 1, or ...), how fast the estimates converge, and what
happens with the estimates if the true model does not belong to the considered model set. All
these questions are thoroughly studied in this chapter.

Some of the previously raised questions can easily be analyzed using the following
quick tools. The first step in the analysis consists of calculating the (equivalent) cost function
V(6, Z) of the identification method. Next we verify the following:

1. (Asymptotic) correctness: assuming that the true model belongs to the model
set, the identification algorithm is (asymptotically) correct if it produces the
true model for an (in)finite amount of noiseless (N, = 0) data. This is true if
Ve(6, Zy) ( Flim V§(6, Zy)) is minimal in the true model parameters ;. All the

—» oo

identification algorithms of this chapter are correct for transfer function models
(7-7) with Q = z71, s, Js, or tanh(Tgs) and (7-8) with Q = z-1, where
G(£2, 6) and T(£2, 6) can take any parameterization of Sections 5.2 and 5.3. They
are asymptotically correct for continuous-time models using arbitrary excitations,
model (7-8) with Q = .
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. Consistency: the (equivalent) cost function minimized by most identification

methods in this chapter is a quadratic function of the measurements Z. The ex-
pected value of such cost functions can be written as

V(@) =8E{Vp(0,2)) =8{ViH6,Z)}+E{ve(6, Ny} (7-19)

(see (7-13), Z, and N, are independent). A necessary condition for consistency
is that the limit of the expected value of the cost function V.(6) = lim V(0) is

minimal in 8, (Theorem 15.15). It follows from (7-19) that this congltlon is satis-
fiedif & { v (6, N,)} is a 8-independent constant. Hence, for correct methods we
have &Z,) = 6, while for asymptotically correct methods 6, = 6,. For cost
functions of the form (7-14), we replace 1(Z) by its limit value 7, before taking
the expected value of the cost function. The same analysis is then performed on

Ve(6) = E{ fr(6,n., 2)}.

. Convergence to the noiseless solution: if model errors exist, for example, because

of a wrong choice of the order of the numerator and/or denominator polynomials,
or because a true linear lumped model simply does not exist, then &Z) converges
to &Z,) # 6,. Under some conditions, the value &Z,) is independent of the
noise level of the measurements. To verify this, we replace Cy_ by v2C v, in the
cost function (7-19), with v a real number. If this transforms & { V6, Z)} into
fOHE({ VB Zy)} and if E{v(8,N;)} is a O-independent constant then
9(20), and, hence, also 8, = lim Q(ZO) (if it exists), is independent of the noise

level v. This is true for any v I;;diohence, also for v — 0, which defines, asymp-
totically, the noiseless solution. Note, however, that the noiseless solution Q(ZO)
defined in this way may still depend on the noise coloring and the noise covari-
ance matrix C N, for example, the ratio of the output variance 63(k) to the input
variance 67(k) (see Section 7.11). For cost functions of the form (7-14), the anal-
ysis is performed on V(6) = &{ f (6, 1, Z)} and the same conclusions hold if
N+, the limit value of n(Z), is independent of v,

. Dependence on the parameter constraint: from a numerical point of view it is also

handy that the estimate of the plant transfer function G(£2,, AZ)) is independent
of the particular parameter constraint chosen, for example, ; = 1, or b; = 1, or
813 = 1 ... Indeed, if we fix a zero coefficient to one, then the normal equations
(7-16) become ill conditioned. To avoid this problem, it is better to use the con-
straint |62 = 1 (see also Chapter 18). The estimated plant model G(Q, &Z)) is
independent of the parameter constraint chosen if, for any A=#0,
Ve(A8,Z) = VL(6,2), with 8 the full overparameterized form (proof: sec
Chapter 18).

. Numerical reliability of the normal equations: the Hessian of the expected value

of the cost function has full rank in the true parameter values:
rank(V;"(6,)) = dim(6) =number of free model parameters (' is the derivative
w.r.t. 8). If the Hessian is not of full rank, then the cost function cannot be ap-
proximated by a quadratic function in the neighborhood of the solution 8,. This
is problematic for most of the nonlinear minimization algorithms.

. Influence of the noise level and the model errors: to study the influence of small

measurement errors, we replace N; by Nz and Cy by '02CN and analyze
the expression for v — 0. Model errors are present if e(e(zo), Zo) # 0. To study
the influence of small model errors we replace e(G(ZO) Zy) by ue(@(ZO) Zy) and
analyze the expressions for u — 0.
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7.6 ASSUMPTIONS

In this section we give an overview of all the assumptions required to analyze the asymptotic
(F — o) behavior of the estimate &Z). They are grouped per property in increasing order
of complexity: stochastic convergence, stochastic convergence rate, systematic and stochastic
errors, consistency, asymptotic bias, asymptotic normality, and asymptotic efficiency. Hereby,
we make the distinction between a time and a frequency domain experiment because the sig-
nal and disturbing noise properties are easiest to describe in the respective domains. It allows
the reader to verify, easily, what kind of assumptions are required for a particular property
and experiment in each theorem of this chapter.

The cost function (7-11) and its higher order derivatives w.r.t. 8 may not exist for some
values of the model parameters §. To avoid the resulting technical difficulties in the proof of
the theorems, a regular set ®, of 8-values is constructed where V (6, Z) and its higher or-
der derivatives exist and are finite. By construction, we make this set closed and bounded
compact. The minimizer of (7-11) is then defined as

&Z) = arg minV (6, Z) (7-20)
fe Or

(for the maximum likelihood estimation of ARMAX models the compactness assumption of
the parameter space can be avoided, see Hannan and Deistler (1988)).

The properties of (7-20) will be studied using the results of Chapter 15 for Sections
7.8.2, 7.9, and 7.10; of Chapter 16 for Sections 7.8.3, 7.12, and 7.14; and of Chapter 17 for
Section 7.11. The reader is referred to these chapters for detailed background information
concerning the proof of the theorems. There she or he will also find answers to questions such
as “Why do we need a particular assumption and what is it used for?” and “What is the main
philosophy behind the proof of a particular property?” Other basic questions such as “Which
statistical tools are available?” and “How should they be used?” are tackled in Chapter 14.

7.6.1 Stochastic Convergence

To show the convergence (F — o) of the estimator Q(Z) (7-20) to B(ZO) we need
conditions on the excitation signal, the disturbing noise, and the cost function. For example,
the persistence of excitation Assumption 7.7 requires that the excitation signal satisfies, at
least, the identifiability conditions of Section 5.5. Note that we do not require the existence
of a true model.

Assumption 7.1 (Excitation Signal—Time Domain Experiment): The excitation
u(t) either is a normalized periodic signal (see Definitions 3.2, 3.3, and 3.4) or can be written
at the sampling instances as filtered white noise u(f) = H (g)e(2), where H (z7!) is a stable
rational filter. e (¢) is independently distributed and has stationary first- and second-order
moments and uniformly bounded fourth-order moments. For periodic excitations the input-
output signals of the steady-state response are observed over an integer number of periods. N
samples of the input and output signals are transformed to the frequency domain using the
DFT. F<N/2 + 1 DFT frequencies of the input-output DFT spectra are used for the identi-
fication. The number of selected frequencies F is proportional to N:F = O(N).

In classical time domain system identification the excitation signal u(¢) should be
quasi-stationary (Ljung, 1999), which means that
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Slun) = p0) |10 S ) <o
E{u(u(r)} =R, 1,1 |R,(t,P)| Scy<e0 (7-21)

. 1Ion
R, ) = 1}131,,172' L Rutt-1)

should be satisfied for any ¢, r, and 7, with ¢;, ¢, constants independent of ¢, r. The class
of excitation signals defined by Assumption 7.1 forms a subset of the class of quasi-station-
ary signals (7-21) and, hence, is less general (see Exercise 7.1). This restriction is the price to
pay to allow noncausal filtering (removal of DFT frequencies) of the input and output DFT
spectra. Note that Assumption 7.1 is easily met if the excitation stems from an arbitrary
waveform generator.

Assumption 7.2 (Excitation Signal—Frequency Domain Experiment): The plant is
measured in steady state with a single sine excitation. This experiment is repeated at F dif-
ferent frequencies f ;< fi < fmaxr K = 1,2, .., F, with f ;. and f . <eo respectively
the minimum and maximum excitation frequencies.

min

Assumption 7.3 (Disturbing Noise—Time Domain Experiment): At the sampling
instances the disturbing time domain noise sources n.(#), n,(t) are jointly correlated filtered
white noise sequences

O < | Hu@ Hd@) O o ) < Bigre (7-22)
n®|  |Hu@ Hp@||ex0] °

with nI(t) = [n(t) n, (0], e7(t) = [e,(2) e,(*)] and where H(z™") is a stable filter. e(?) is
independently distributed (over ¢ and over its entries) with continuous probability density
function, has stationary first- and second-order moments, uniformly bounded fourth-order
moments, and is independent of the true (unknown) excitation u(f). The frequency domain
errors Ny(k), N(k) are related to the time domain errors n(f), n,f) by the discrete
Fourier transform: N, (k) = DFT(ny(t)) and Ny(k) = DFT(n(2).

Assumption 7.4 (Disturbing Noise—Frequency Domain Experiment): The fre-
quency domain errors Ny(k), N (k) are independent (over k), jointly correlated, zero mean
random variables with uniformly bounded absolute moments of order four. Ny(k), N (k)
are independent of the true (unknown) excitation Uy(k).

Assumption 7.5 (Frequency Domain Errors): The (co-)variances G3(k) =
var(N y(k)), 6§(k) = var(Ny(k)), and 63, (k) = covar(N ,(k), N (k)) of the frequency do-
main errors Ny(k), N (k) are known.

Assumption 7.6 (Continuity Cost Function): The cost function V (6, Z) is a contin-
vous function of @ in the compact set 9, .

Assumption 7.7 (Persistence of Excitation): There exists an F;; such that for any
F2F, oo included, the~ expected value of the cost function V(6) = &{ V(6,2Z)} has a
unique global minimum &Z;), which is an interior point of 8,.



Section 7.6 W Assumptions 193

If V(6) is not convex, then in the presence of model errors V (6) can have more than
one global minimum. An example of this can be found in Kabaila (1983). To handle these
cases we restrict the compact set @, in Assumption 7.7 such that V(6) contains a unique
global minimum in .

7.6.2 Stochastic Convergence Rate

When designing a new time or frequency domain experiment based on the results of a
previous experiment, one must choose the number of frequencies . To make a motivated
choice it is important to know how fast the difference xZ) - B(ZO) converges to zero as
F — oo, To establish the convergence rate of xZ) to ~O(ZO), we need suitable assumptions
concerning the first- and second-order derivatives of the cost function w.r.t. 8. We also need
a persistence-of-excitation condition that is stronger than Assumption 7.7. In addition to As-
sumptions 7.1 to 7.6, we require:

Assumption 7.8 (Continuity First- and Second-Order Derivatives Cost
Function): The cost function V (6, Z) has continuous first- and second-order derivatives
w.rt. 6 in @, for any value of F, oo included.

Assumption 7.9 (Persistence of Excitation): There exists an F such that for any
F 2 F,, oo included, the Hessian of the expected value of the cost function is regular at the
unique global minimizer &Z,), which is an interior point of 8,: ¢,I SV FOZ)) Syl n,
where 0 < ¢; < ¢, <o and ¢, ¢, are F-independent constants.

7.6.3 Systematic and Stochastic Errors

A more profound analysis makes it possible to distinguish between the asymptotic be-
havior of the stochastic and the systematic deviations in the residual &Z) — Z;). In addi-
tion to Assumptions 7.1 to 7.6, 7.8, and 7.9, we require:

Assumption 7.10 (Continuity Third-Order Derivative Cost Function): The cost
function has continuous third-order derivatives w.r.t. @ in @, for any value of F, o in-
cluded.

7.6.4 Asymptotic Normality

To calculate uncertainty regions with a given confidence level, we need the probability
density function of the estimate &Z). A good approximation can be found if the asymptotic
distribution function of #Z) is known. Whereas the consistency and convergence rate analy-
sis of &(Z) requires finite moments of order 4, the convergence and the convergence rate
analysis of the distribution function of &Z) needs the existence of the moments of any order
for a time domain experiment and of order 6 for a frequency domain experiment. In addition
to Assumptions 7.1 to 7.6 and 7.8 to 7.10, we require:

Assumption 7.11 (Excitation Signal—Time Domain Experiment): The excitation
signals u(r) in Assumption 7.1 have finite moments of any order. The excitation noise e,(t)
is independent and identically distributed.
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Assumption 7.12 (Disturbing Noise—Time Domain Experiment): The disturbing
noise e(t) in Assumption 7.3 is independent and identically distributed with finite moments
of any order.

For a frequency domain experiment, these conditions can be relaxed because the suc-
cessive frequency measurements are independent (see Assumptions 7.2 and 7.4), whereas
they are correlated for a time domain experiment (see Assumption 7.3).

Assumption 7.13 (Disturbing Noise—Frequency Domain Experiment): (a) For the
asymptotic normality: the disturbing noise N, satisfies Z]I; 1Cov(N 2(k)) = O(F) and has
uniformly bounded absolute moments of order 4+& with €>0, for example,
E{|Ny(k)|*+8} £ c; <o with ¢, independent of F. (b) For the convergence rate: in addi-
tion, the disturbing noise N, has uniformly bounded absolute moments of order six, for ex-
ample, & { [N (k)|¢} < ¢, <o with ¢, independent of F.

7.6.5 Deterministic Convergence

To study the deterministic convergence and the convergence rate of @(Zo) to 6y, we
must define the strategy of adding new frequencies to the data. We need this information be-
cause the model errors depend on the power spectrum of the excitation. In addition to As-
sumptions 7.1 to 7.6, 7.8, and 7.9, we require:

Assumption 7.14 (Strategy of Adding Frequencies): As F — oo the frequencies f;
cover the frequency interval [ f i, fmax] With a density function n(f) defined as

o Ne(f +Af) - Ne(f)
= lim 1 7-23
() Af1 Dor e FAf (7-23)
where Ny(f) is the number of frequencies in the interval [0, f] when the total number of
frequencies is F. The density n(f) is continuous with bounded second-order derivative w.r.t.
Fin [ fpnins Fmax] €Xcept at a finite number of frequencies.

Special cases are a uniform (n(f) independent of f) or a logarithmic (n(f) is propor-
tional to f~1) distribution of the number frequencies in [ f ;0. fimacl-

Assumption 7.15 (Constraint on the Residual): The second-order derivatives w.r.t.
the frequency f of the residual & { |&(Q(f), 8, Z(f))|2} and its first- and second-order deriva-
tives w.r.t. 8, are bounded in the frequency band [ f .., fmax]: €Xcept at a finite number of
frequencies (Q(f) = j2nf, /*™Ts, [j2rf or tanh(tg j27f)).

Assumption 7.15 puts some conditions on the limit power spectrum |Uq(f)? or
S,.(®) of the periodic or random excitation; it should be a continuous function of f with
bounded second-order derivative.

7.6.6 Consistency
Contrary to the stochastic convergence, consistency can be shown only if a true linear

model exists and if it belongs to the considered model set. It also imposes some conditions on
the expected value of the cost function, which should be verified for each estimator. To study,
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under these conditions, the stochastic convergence, the stochastic convergence rate, the im-
proved stochastic convergence rate, and the asymptotic normality, we require, in addition to
the assumptions of Sections 7.6.1 to 7.6.4, the following:

Assumption 7.16 (Existence of a True Linear Plant Model): There is an identifiable
parameterization 6,€ ©, such that G(Q, 6)Uyk), G(zil, Q) Uyk) + T(zi!, 6y), or
G(sy, 0)U k) + T(sy, 6,) + &s,) with G(s, 8,) stable represents the true output ¥ (k).

Assumption 7.17 (Consistency Condition on the Cost Function): The expected
value of the cost function V(6) = &{ V40, Z)}, or its limit value V.(6) = 11m VF(G) is
minimal in the true model parameters 6.

7.6.7 Asymptotic Bias

Speaking about systematic or bias errors makes sense only if a true model exists and if
it belongs to the considered model set. Studying the bias is possible only if the expected value
of the estimate &Z) exists. To ensure the existence of the expected value, we remove “large,”
“highly improbable” values of &Z). This results in the truncated estimate &Z), which is de-
fined as

az 8@ -8zy|,sL

o (7-24)
0 |6@) - Bz, > L

&2z ={

where L is an (arbitrarily) large number (0 < L < «0) independent of F. Lemma 15.27 guar-
antees that there exists an Fy such that for any F > F, Z) = &Z) with probability one (in
probability). We require that Assumptions 7.1 to 7.6, 7.8 to 7.10, 7.16, and 7.17 are valid.

7.6.8 Asymptotic Efficiency

A basic step in the analysis of the asymptotic efficiency of the estimate &Z) is the cal-
culation of the Fisher information matrix. It inherently assumes the existence of a true model
and knowledge of the probability density function of the disturbing noise in the frequency do-
main. Therefore, in addition to Assumptions 7.1 to 7.6, 7.8 to 7.13, 7.16, and 7.17, we require:

Assumption 7.18 (Circular Complex Frequency Domain Errors): The frequency
domain errors Ny(k), N,(k) are independent (over k), jointly correlated, zero mean, circular
complex distributed random variables.

Assumption 7.19 (pdf Frequency Domain Errors): The observations Z, are deter-
ministic and the frequency domain errors Ny(k), N, (k) are normally distributed random
variables.

Assumption 7.20 (Efficiency Condition Frequency Domain Errors): The number
of noncoherent noise sources equais 1. This is true if and only if one of the three following
conditions is fulfilled for k = 1,2, ..., F: (i) no input noise 6%(k) = 0, (ii) no output noise
G3(k) = 0, or (iii) totally correlated input-output errors |63, (k)| / (6, (k)G y(k)) =

For example, Assumption 7.20 is fulfilled in feedback when only process noise is
present (no measurement errors and no controller noise, see Section 7.18 and Exercise 7.2).
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7.7 ASYMPTOTIC PROPERTIES

In this section we give an overview and an elaborated discussion of the asymptotic properties
of the minimizer &Z) of cost functions V (6, Z) which are quadratic-in-the-measurements
Z. The overview starts with general estimators, proceeds with consistent estimators, and
ends with the maximum likelihood estimator. Afterward, the results are generalized to cost
functions of the form (7-14) that are nonquadratic in Z. In a first reading, one may skip The-
orems 7.21 and 7.28 and go directly to the discussion of the properties.

Theorem 7.21 (Asymptotic Properties &Z)): Consider models (7-7) and (7-8) with
any identifiable parameterization of Sections 5.2 and 5.3. Let &Z) be the minimizer of a
cost function V (6, Z) of the form (7-11) that is quadratic-in-the-measurements Z. Under
the assumptions of Section 7.6, the minimizer &Z) has the following asymptotic (F — eo)
properties,

1. Stochastic convergence: (2 ¥4) converges strongly to @(ZO), the minimizer of
V8 = E{ V(6 Z)} (assumptions Section 7.6.1).

2. Stochastic convergence rate: &Z) converges in probability at the rate Op(F-1/2) to
&Z,) (assumptions Section 7.6.2).

3. Systematic and stochastic errors: &Z) converges in probability to &z,) with

AZ) = AZy) + 642) + by2Z)

. . (7-25)
84Z) = -V NOZN)VFT(HZy), Z)
where 6((Z) = O,(F-1/2), with &{ §¢(Z)} = 0, is the dominating stochastic er-
ror and where b(Z) = Op(F-') contains the contribution of the systematic errors
(assumptions Section 7.6.3).

4. Asymptotic normality: NF(XZ) - &Z,)) converges in law at the rate O(F-1/2) toa
Gaussian random variable with zero mean and covariance matrix Cov(ﬁ 842))

Cov(JF84Z)) = V" UBZ)QHBZ )V " {(BZy)

. . . (7-26)
ORBZy) = FE{VT(KZy), Z)VF(0(Zy), 2))
(assumptions Section 7.6.4).
5. Deterministic convergence: &Z,) converges to 6,, the minimizer of
f max
Vu(O) = [ "8 {189, 6, ZUNIP)n(f)df (7-27)

with Q(f) = j2nf, 2T, Jj2nf, or tanh(tg j27tf). The convergence rate is
an O(F-2) for frequency domain experiments and O(F-1) for time domain exper-
iments (assumptions Section 7.6.5).
If in addition V (8, Z) satisfies the consistency conditions then,

6. Consistency: KZ) is strongly (weakly for model (7-8) with Q = s) consis-
tent; replace in properties 1 to 4 NG(ZO) ( }?igo:e(zo) = B, for model (7-8) with
Q = s5) by 8, (assumptions Section 7.6.6).
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7. Asymptotic bias: The asymptotic bias by = &{bg(Z)}, and its derivative w.r.t.
6y, 0by/06,, of &Z) are an O(F-1) (O(F-12) for model (7-8) with Q = s
and random excitation) for all 8, € @, (assumptions Section 7.6.7).

If in addition V (6, Z) is the maximum likelihood cost function then,

8. Asymprotic efficiency: The Gaussian maximum likelihood estimate OmiL(Z) is
asymptotically efficient: Cov(64Z)) = Fi~1(6,) with Fi(6y)) = FV;"(6,) the
Fisher information matrix. Moreover, we have

lim (Cov(JF&Z)) ~ Cov(JF8«Z))) = 0 (7-28)
F oo
(assumptions Section 7.6.8).
Proof. See Appendix 7.E. D

Corollary 7.22 (Asymptotic Properties &Z) —continued): Let &Z) be the mini-
mizer of a cost function V(6, Z) = f(6, N(Z), Z) of the form (7-14) where (0, 1, Z) is
quadratic-in-the-measurements Z. Assume that the cost function f (6, 11, Z) and its third-order
derivatives w.r.t. x = [67 n7]7 are continuous and that f (6, 17, Z) fulfills the assumptions of
Section 7.6. Define, furthermore, g(8, (Z), Z) = V 7(6,Z) and g(6, 1) = &{ g0, N, 2)}.
If Theorem 7.21 is valid for the (initial) estimate 1(Z), then the minimizer @(Z) has the asymp-
totic properties of Theorem 7.21 with the following three modifications:

1. To calculate V,(6) and V.(8) we first replace 7)(Z) by its limit value 7. before
taking the expected value, which gives

1
Vi) = =3, 8]y 6, 200, 1))
P (7-29)
Vi®) = [ "8 (|eQ(f), 6, Z(H), 1| *In(df
2. 8{8¢2)} is not necessarily zero or may not even exist.
3. 8(Z) in the expression of the covariance matrix (7-26) is replaced by d(Z)

d{Z) = -V""NHZ))dpZ)

i 3 (Az0), (7-30)
dx(Z) = g (8(Zg), N Z) + ﬁ%ﬁ)—i)%@)

where ,(Z) is given by (7-25), and with d(Z) = O (F-1%),8(d(2)} = 0.

Proof. See Appendix 7.F. t

We are ready now to answer the question we posed in Section 7.2: “What will happen
with one’s estimates (uncertainty, bias ...) if one gathered, for example, four times more
data?” Property 1 ensures that &Z) is likely to be closer to the minimizer &Z,) of the ex-
pected value of the cost function. Property 2 tells us that &(Z) is likely to be two times closer
to &Z,). From property 3 it follows that the systematic and stochastic errors in the residual
&Z) - 9(20) are likely to decrease with a factor of 4 and 2 respectively. Finally, property 4
ensures that the distribution function of Q(Z) is likely to be two times closer to a normal dis-
tribution. Similar results are obtained when no model errors are present &Z,) = 6.
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Expression (7-26) allows a theoretical calculation of the covariance matrix of the esti-
mates in the presence of model errors. It requires, however, knowledge of the fourth-order
moments of the noise and of the minimizer Q(ZO) of the expected value of the cost function.
Although 'Q(ZO) can be approximated by the actual estimate &Z), the fourth-order moments
of the noise are mostly unknown. For the maximum likelihood estimator, the covariance ex-
pression (7-26) can be significantly simplified (only second-order moments of the noise are
required) and a good approximation of the covariance matrix results as a by-product of the
nonlinear minimization scheme (7-16) (see Section 7.11). Property 4 then makes it possible
to calculate uncertainty regions around &Z) that contain b(ZO) with some user-defined
probability level. The same can be done for any model-related quantity (see Sections 14.2 and
17.4.7).

If model errors exist, then 9(2) converges to a value ~B(ZO) # 6y (8. # §,) that still de-
pends on F. Property 5 guarantees that Q(ZO) converges at the rate O(F-1) or faster to its
limit value 6., while according to property 2 the stochastic convergence rate of &Z) to
&Z,) isan O o(F -1/2), Therefore, &Z,) can be replaced everywhere by 6. in properties 1 to
4. In case of model errors, we may also wonder whether &Z) still converges to the same so-
lution if the same experiment is repeated with a higher signal-to-noise ratio (lower noise lev-
els). To verify this, we apply quick analysis tool number 3 (see Section 7.5) to the cost func-
tion. If so, then 9(20) (6:) can be interpreted as the solution of the noiseless problem.

Property 6 guarantees that the estimate #Z) converges to the true model parameters
8, for cost functions satisfying the consistency conditions 7.16 and 7.17. This does, however,
not imply that the (equivalent) initial conditions in model (7-8) are consistently estimated.
Indeed, the part of 6, corresponding to the (equivalent) initial conditions decreases to zero as
F-12 (use Lemma 3.5 taking into account that F = O(N) for a time domain experiment),
while the difference &Z)-— 6, is an Oy (F- 172y Hence, the relative difference
’(0[,](2) Oori))/ 00[1]] between the estimated and the true initial conditions does not de-
crease to zero as the number of frequencies F increases to infinity, which shows that the ini-
tial conditions are not consistently estimated. This result can easily be understood in the time
domain. The (equivalent) initial conditions (transient term 7(€2, @) in (7-8)) correspond to an
exponentially decaying transient in the time domain. Observing the input and output signals
during a longer period does not give more information about the transient, hence, it cannot be
estimated consistently. For the same reason, properties 7 and 8 do not imply that the esti-
mated equivalent initial conditions are asymptotically efficient and have an O(F-1) bias. Al-
though they cannot be estimated consistently, we still include the initial conditions in model
(7-8) because it turns out that they improve the finite sample behavior (F is not “large”) of
the estimated plant model G(£2, 9(2)). Note also that the influence of the transient term
T(€2, 6) to the cost function V (6, Z) is an O,(F -1) (see Appendix 7.D).

The asymptotic efficiency of the maximum likelihood estimator (property 8 of Theo-
rem 7.21) has been shown under some restrictive noise assumptions (see Assumption 7.20);
for example, the input must be known exactly. In general, the maximum likelihood solution is
not asymptotically efficient. This is not in contradiction with the general properties of maxi-
mum likelihood estimators (Section 1.5.3) because the number of estimated parameters in
the errors-in-variables problem increases with F (see Section 7.11).

For deterministic vectors 1(Z) = 7. the term d,(Z) in (7-30) reduces to
g p(é(zo), M+, Z). Therefore, modification number 3 of Corollary 7.22 shows that in general
the stochastic vector will increase the uncertainty of the estimates. If, however,
0g(B(zy), 1)/31N« = o(FY), then there is no asymptotic increase in uncertainty (see, for
example, Section 7.12.3).
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7.8 LINEAR LEAST SQUARES
7.8.1 Introduction

A reasonable measure of goodness of fit is to compare the observed output Y(k) with
the modeled output Y(k, 8) (7-7) or (7-8), where G(£2, 6) (and T(L}, 6)) can take any pa-
rameterization of Section 5.2 (and Section 5.3). The plant model parameters are then ob-
tained by minimizing the sum of the squared residuals

Vas(8,2) = Y5 _ | |Y(k) - Y(k, 6)|? (7-31)

w.rt. to 6. Because Y(k, 6) is a nonlinear function of 8, the cost function (7-31) is a non-
quadratic function of 6. All the estimation methods presented in this section try to minimize
(7-31) by (successive) linear least squares approximation(s). The key idea is to make (7-31)
quadratic in @ by parameterizing G(Q,8) (and T(Q,6)) as a rational form
B(Q, 6)/A(L2, 6) (and I(£2, 6)/A(L2, 8)) and by multiplying each residual Y(k) ~ Y(k, 8) in
the cost function (7-31) by A(,, 8).

7.8.2 Linear Least Squares

Multiplying each residual Y(k) — Y(k, 8) in the cost function (7-31) by A(L2,, ) gives
the linear least squares (LS) cost function

Vis(6,2) = Yr_ |e(Q 6, Z(k)|2 (7-32)

with e(€2,, 6, Z(k)) the equation error (7-9) or (7-10). The linear least squares (LS) estimate
B.s(Z) is found by minimizing (7-32) w.r.t. @ using the constraint a; = 1 or b, = 1. In
Levi (1959) the linear least squares approach was applied for the first time to identify contin-
uous-time models starting from transfer function measurements ((7-32) with equation error
79, Q=s, Y(k) = G(s), and U(k) = 1). The linearization of the output error
Y(k)-Y(Q,, 6) has two major drawbacks when identifying continuous-time models
(Q=s, A/];, and tanh(tys)): the overemphasizing of high-frequency errors in (7-32) and
the large dynamic range of the numbers in the normal equation (7-16). Indeed, e(€2,, 8, Z(k))
is a polynomial in Q, and, hence, the contribution of the disturbing noise at frequency €2, to
the cost function increases with |2 2max(n 7)) - This may result in poor low-frequency fits
(see Figure 7-4) and ill-conditioned normal equations for identification problems with a large
dynamic frequency range. Similar problems occur for discrete-time models (Q = z7!) when
identified on a “small” part of the unit circle.

Because V¢(6,Z) is quadratic-in-the-measurements Z, the asymptotic properties
proved in Theorem 7.21, with V6, Z) = V,4(6, Z)/F, are valid for B.5(Z). To reveal the
major properties of 8 s(Z) we use the quick analysis tools of Section 7.5. Taking the ex-
pected value of (7-32) gives (7-19) with

BLveBN)) = 237 06U, 0 (7-33)

(see Exercise 7.3). 0X(Q,, 6) = var(e($2,, 8, N,(k))) is the variance of the equation error
where the measurements Z have been replaced by the noise on the measurements N,
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Figure 7-4. Second-order simulation example G(s, 6) = 1/(1 +s+s’) defined in
Appendix 7.A (see also Figure 7-1 on page 184). Left: difference between
the estimated amplitude in dB and the true amplitude in dB, and right: phase
error in degrees. (a) Estimators requiring no noise information, (b} estimators
requiring the noise covariance.

cXQ;, 6) = o3(K)|AQ,, O)|% + o} (k)|B(Q,, B)| - 2Re(6}, (k) A(L,, 0)B(Q,, 6)) (7-34)

Applying quick tool 2 (see Section 7.5) to (7-33) shows that the linear least squares estimate
9Ls(Z) is, in general, inconsistent because (7-34) is, in general, 6 dependent. It is consistent
if 6%(2,, ) is independent of @, for example, no input noise (63(k) = 0, 63,(k) = 0)
and a polynomial plant model (A(2, 6) = 1). Replacing Cy_ by 1)2CNZ in the expected
value of the cost function gives, taking into account (7-33),

VHO) = 8{ VL8, Zy)} +0v28{vi(6,N;)} (7-35)

It shows that in general 8, (Z,) and 6.5 depend on the disturbing noise level v and, hence,
cannot be considered as the noiseless solutions (see Section 7.5, quick tool 3). They are the
noiseless solutions if 62(Q,, 6) is independent of 8. From (7-32) it follows directly that
Vis(A8,Z) = A?V4(6, Z) so that Bus(2) depends on the particular constraint chosen, for
example, a; = 1 or b; = 1 (see Section 7.5, quick tool 4). This is illustrated in Figure 7-5.
Note that on the average the estimate with g, = 1 is too small (underbiased), while the esti-
mate with b, = 1 is too large (overbiased). This is in agreement with the results of De Moor
et al. (1994). See Table 7-5 on page 238 for an overview of the properties of the LS estimator.
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Figure 7-5. Second-order simulation example G(s,8) = 1/(1 +s+s°) defined in
Appendix 7.A (see also Figure 7-1 on page 184). Comparison of the linear
least squares estimates using the constraint a, = 1 and the linear least
squares estimates using the constraint b, = 1. Left figure, true plant model
(solid line) and magnitude of the complex error between the estimated and
the true plant model. Right figure, difference between the estimated
amplitude in dB and the true amplitude in dB.

7.8.3 lterative Weighted Linear Least Squares

To overcome the lack of sensitivity to low-frequency errors of the linear least squares
estimator, the equation error e(€},, 6, Z(k)) in (7-32) is divided by an initial guess of the de-
nominator polynomial A(€,, 69). The obtained weighted linear least squares estimate 6(!)
can be used to calculate a (hopefully) better estimate of the denominator polynomial
A(,, 6V) resulting in a (hopefully) better estimate &2), and so on .... The ith step of the
iterative procedure consists of minimizing

‘ . (Q, 09, Z(k))|?
Vi (89, Z) = zlew (7-36)

with e($2, 6, Z(k)) the equation error (7-9) or (7-10), w.rt. () using the constraint a; = 1
or b; = 1. In most cases the linear least squares estimate is used as starting value
6 = @5(Z), and when convergent the iterative weighted linear least squares (IWLS) esti-
mate is AGIWLS(Z) = @), In Sanathanan and Koerner (1963) this iterative procedure was ap-
plied for the first time to identify continuous-time models starting from transfer function
measurements ((7-36) with equation error (7-9), Q = 5, Y(k) = G(s,) and U(k) = 1).
From Figure 7-4 on page 200 it can be seen that the low-frequency errors of the IWLS fit are
indeed smaller than those of the LS fit. When convergent (800 = 8¢-1) for i sufficiently
large) the IWLS cost (7-36) tends to the nonlinear least squares cost (7-31). Although this
property is very appealing, it does not guarantee that the global minima of both cost functions
are the same. Therefore, one needs that the derivatives of these cost functions w.r.t. 6 are
asymptotically (i — o) the same. In general, this is not true and, hence, éIWLs(Z) # @NLS(Z).
However, as the elementwise difference between the Jacobians is proportional to the equa-
tion error e(€,, -1, Z(k)) (see Exercise 7.4), both estimates will coincide
(QWLS(Z) = éNLs(Z)) for “sufficiently high” signal-to-noise ratios and “sufficiently small”
modeling errors, otherwise the difference may be large. This is illustrated by the “high noise”
simulation example of Figure 7-4 (compare IWLS with NLS), and the “low noise” simulation
example of Figure 7-8 on page 230 (compare IWLS to NLS).
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Analysis of the statistical properties of the estimate 6(=) is in general impossible. It is,
however, feasible to analyze the properties of the first step of the iterative procedure (7-36). If
the initial guess 8 is deterministic and independent of the number of frequencies F, then
Theorem 7.21 is valid and 8wis(Z) = 61 has asymptotic (F — oo ) properties similar to
those of 8.5(Z) (see Section 7.8.2). If the choice & = 8.5(Z) is made, then the cost func-
tion (7-36) is no longer a quadratic function of the measurements Z . Indeed, 6 s(Z) depends
on Z and appears in the denominator of (7-36). Although this complicates the analysis, it
turns out that Theorem 7.21 is still valid for Bwis(Z) = 61 with three minor modifications
(see Corollary 7.22). Hence, Brwrs(Z) = 6D has the same asymptotic (F —> oo ) properties
as bLS(Z). We conclude that in general the estimate Brwis(Z) is inconsistent, depends on the
particular constraint chosen, and does not converge to a noiseless solution.

Many modifications of and extensions to the original method of Sanathanan and
Koerner (1963) have been published. Almost all of them fit within the following (iterative)
weighted least squares framework:

F o wxQ,, 66-D)|eQ,, 680, Z(k))|2 (7-37)
k=1

where W(Q,, 6¢-1) is a well-chosen real weighting function (see Pintelon et al., 1994 for
an overview). One particular weighting is interesting, namely

1

(i-1)y _
WQ, 6" ) = m

with r € [0, e0) (7-38)

Two special cases of (7-38) are the linear least squares method for » = 0 and the iterative
weighted linear least squares method (7-36) for r = 1. Powers r, different from one, may
result in smaller output errors Y(k) — Y(k, 8); for example, if the iterative scheme (7-36) does
not converge, then relaxation (r <1) is helpful. In ’t Mannetje (1973), the relaxation idea
was applied for the first time to identify continuous-time models starting from transfer func-
tion measurements ((7-36) with equation error (7-9), Q = s, Y(k) = G(s,), and U(k) = 1).
The asymptotic (F — o) propertiecs of the minimizer of (7-37) are similar to those of
9IWLS(Z) (7-36), so that in general the minimizers of (7-37) and (7-31) are different. See
Table 7-5 on page 238 for an overview of the properties of the IWLS estimator.

7.8.4 A Simple Example

Consider the identification of an integrator G(s, 6) = by/(a,s), starting from fre-
quency response data G(s,) = Gy(s,) + Ns(k), perturbed with independent (over the fre-
quency), zero mean, circular complex noise N (k) with variance var(N;(k)) = 62 and fi-
nite fourth-order moments. The iterative weighted linear least squares estimate (7-37) is
calculated using the weight (7-38) and the constraint b, = 1

@) S [sd2Re(s,Gs)
a =
S YENMEIEE

(7-39)

Applying the strong law of large numbers (see Section 14.9, version 2) to the numerator and
denominator of (7-39) and the interchangeability property of the almost sure limit and a con-
tinuous function (see Section 14.8, property 1), we find
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. 1
Foe e lsdr0?/|Gyls))|?
1+ lim 7 >
Foe 2k=l|skl_r

with (a,), the true value. As predicted by the theory (apply quick tool number 2), it clearly
follows from (7-40) that (&) s and, hence, also G(s;, Owrs(Z)) are inconsistent esti-
mates. Taking, for example, F = 100 angular frequencies equally spaced between 0.1 and 2
and 62 = 0.5; the right-hand side of (7-40) is then equal to 0.587(a,), and 0.916(a,), for,
respectively, r = 0 (LS solution (7-32)) and r = 1 (IWLS solution (7-36)). It shows that
weighting the linear least squares residual with an initial guess of the denominator polyno-
mial indeed improves the estimates. In this numerical example, values of r > 1 give even bet-
ter results compared with r = 1.
Making the same calculations for the IWLS estimate with constraint a; = 1, we get

Y1 lsid#Re(s,Glsp)
Zf: LIS 2
Fo °°I-"z{lc ’Sk‘ ere(skG()(sk))

aiS-_l)iQIfl(l;o)ms = = (bg)y

- -2
h_I,nooFZk =1 |Sk| "

(bo)wis =

(7-41)

with (by), the true value. As predicted by the theory (apply quick tool number 2) ( bo)wis
and, hence, also G(s;, G;WLS(Z)) are consistent estimates. It illustrates nicely the dependence
of G(s,, GIWLS(Z)) on the parameter constraint used (quick tool number 4).

Putting r = 0 in (7-39) to (7-41) shows that the same conclusions hold for the least
squares estimate (d,), ¢ and (Z’O)LS-

7.9 NONLINEAR LEAST SQUARES
7.9.1 Output Error

The nonlinear least squares (NLS) estimator Onis(Z) minimizes the sum of the
squared residuals between the observed output Y (k) and the modeled output Y{(k, 8) (7-7) or
(7-8), where G(£2, ) (and T(L2, 6)) can take any parameterization of Section 5.2 (and Sec-
tion 5.3)

Vais6,2) = X, 1Y) - Y(k, 6))? (7-42)
The Newton-Gauss minimization scheme (7-18) is used to calculate &xis(Z), and as with
most nonlinear minimization problems, the method may converge to a local minimum of
(7-42) (=) # QNLS(Z)). Therefore, it is important to have starting values of “sufficiently
high” quality. The (iterative) weighted linear least squares solution (7-36) can be used for this
purpose. In Van den Enden et al. (1977) and Van den Enden and Leenknegt (1986) this
scheme was used for the first time to identify respectively continuous-time and discrete-time
models starting from transfer function measurements ((7-42) with output model (7-7),
Q = s orzl, Y(k) = G(sp), and U(k) = 1).



204

Chapter 7 B Estimation with Known Noise Model

Because Vy;4(6, Z) is quadratic-in-the-measurements Z, the asymptotic properties
proved in Theorem 7.21, with V{8, Z) = Vy (6, Z)/F, are valid for OnLs(Z). We use the
quick analysis tools of Section 7.5 to reveal the major properties of Onrs(Z). Taking the ex-
pected value of (7-42) gives (7-19) with

B{v6 N} = 237 0} O (7-43)

(see Exercise 7.5). 63(2,, 6) is the variance of the output error where the measurements Z
have been replaced by the noise on the measurements N,

63 (Q;, 0) = o}(k) + oE (k) |G, 6)|? - 2Re(63,(k)G(Q,, ) (7-44)

Applying quick tool 2 (see Section 7.5) to (7-43) shows that in general the nonlinear least
squares estimate BnLs(Z) is inconsistent. It is consistent if 03(Q,, ) is independent of 6,
which is the case for transfer function measurements (7-2) (Y(k) = G(Qp, Uk) = 1,
of(k) = 0, and 6},(k) = 0) or input-output measurements (7-1) with exactly known input
(63(k) = 0, ojyk) = 0). Replacing C v, by viC w, in the expected value of the cost
function gives, taking into account (7-43),

VeB) = E{ VB, Z)} +0%E{ve(6,N,)) (7-45)

It shows that in general 8y 5(Z,) and 6.y s depend on the disturbing noise level v and,
hence, cannot be considered as the noiseless solutions (see Section 7.5, quick tool 3). They are
the noiseless solutions for transfer function measurements and input-output measurements
with exactly known input, because 63(£2;, 6) and, hence, also & { vi(6, N,)} are then inde-
pendent of 6. From (7-42) it follows immediately that V; (A6, Z) = V1 4(6, Z) so that
Onws(Z) is independent of the particular parameter constraint a;=1,b;=1or|6)2 =1
chosen (see Section 7.5, quick tool 4).

We conclude from the previous discussion that the NLS estimator is inconsistent for
noisy input-output measurements, while it is consistent for transfer function measurements.
This suggests that for transfer function model (7-7) the bias in the estimates could be re-
moved if the input-output measurements (7-1) are transformed into a transfer function mea-
surement (7-2) with G(k) = Y(k)/U(k). The nonlinear least squares estimate then mini-
mizes

Vis(®) = Y5 _ | [Y(®)/ Uk) - G(Q,, 0) (7-46)

w.r.t. 8. From a theoretical point of view the minimizer of (7-46) is inconsistent because the
mean value of the noise on Y(k)/U(k) is not zero,

Y(R)/UR) = Go(Qy) + N (k)
1+ Ny(k)/ Y o(k) ) (7-47)

Ne) = 0ol N0
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with & { N(k)} = 0. Moreover, the moments of order 2 and higher of N(k) do not exist
(Guillaume et al., 1996a). We first study the bias term as a function of the signal-to-noise ra-
tios and next tackle the nonexistence of the higher order moments.

For zero mean, circular complex distributed errors Ny(k), N(k) (Assumption 7.18)
with even probability density function the bias & { N;(k)} is a function of the fourth-order
moments of the noise (see Appendix 7.G). Assume now that the input-output errors are lin-
early correlated,

GU(k)Gy(k)N @
2y 'V

k
Ny(®) op(k) (7-48)

N(k) +p(k)

Ny(k) = M(k) + Ny(k)

where N(k), M(k), and N (k) are mutually independent random variables, and with
plk) = o3,(k)/(oy(k)oy(k)) the correlation coefficient. Note that a correlation of the form
(7-48) occurs, for example, in linear feedback systems (see Section 7.18). If Ny(k), N (k)
are, in addition, circular complex normally distributed (Assumptions 7.18 and 7.19), then an
analytic expression can be found for the relative bias b(k) = &{ Nk)}/G(L,) (see Ap-
pendix 7.G)

Uyk)/ oyk)

W) for k20, N/2 (7-49)

b(k) = —exp(-] Uo(k)|2/o,2,<k)>(1 —p(®)

For uncorrelated input-output errors, p(k) = 0, (7-49) reduces to a real number
bk) = —exp(—| Uyk)|2/ o3(k)) (7-50)

and, hence, the bias does not affect the phase. From (7-49) it follows that the relative bias
|b(k)] is maximal for totally correlated input-output errors, |p(k)) = 1 and
Zpk) = m+ LGy,
|Uo(k)| 7 oy(k)
- 2/G2 -
max|b(o)] = exp(-|U) /oU(k))(1+ ) /Gy(k)] (7-51)
The relative bias |b(k)] (7-50) is smaller than 5x10”  for signal-to-noise ratios
|U0(k)| /6y(k) larger than 10 dB, and the maximal relative bias (7-51) is smaller than
Ix10™" if the worst case input and output signal-to-noise ratios |Uyk)|/oy(k),
|Y0(k)[/ Gy(k) are larger than 10 dB.
To ensure the existence of the higher order moments of N (k) we exclude large, highly
improbable values of G(Q2,) = Y(k)/ U(k). Define the truncated ratio G(€2,) as

Y(k)/U(k) |Utk)/Uyk)| 2 L

(7-52)
0 |Uk)/ Uk < L

Q(Qk) = {

with L an arbitrarily small number. Note that this is exactly what we do in practice: if the ra-
tio Y(k)/U(k) is unacceptably large, then we reject it. For input signal-to-noise ratios larger
than 10 dB and L = 1x10™> the change in bias of G(Q,) w.r.t. G(Q,) is negligible and the
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variance of the truncated estimate is in good approximation given by the variance obtained
via linearization (see (2-25) and Guillaume et al., 1996a)

04k = |Gy Q|63 k) /| Y o(k)|2 + 03 (k) /|Ugk)|? — 2Re(0} (k) / (Y (k) Upk) )] (7-53)

Hence, from a practical point of view, we may say that N (k) has zero mean with existing
higher order moments and that Assumption 7.4 is valid for N;(k) if Nj(k), Ny(k) satisfy
Assumptions 7.18 and 7.19. Because the cost function (7-46) is quadratic-in-the-measure-
ments Y(k)/U(k), we conclude that Theorem 7.21 is “practically valid” for the estimate
OnLs(Z) if the worst case input and output signal-to-noise ratio is at least 10 dB. Figure 7-6
shows that the errors of the NLS-I/O estimate (7-42) based on the input-output spectra are
larger than those of the NLS-FRF estimate based on the frequency response function (7-46).
As predicted by the theory, the NLS-I/O estimate is biased while the NLS-FRF estimate is
“practically” consistent (compare NLS-FRF of Figure 7-6 to ML of Figure 7-4 on page 200).
See Table 7-5 on page 238 for an overview of the properties of the NLS-FRF and NLS-IO es-
timators.

7.9.2 Logarithmic Least Squares

For frequency response functions with a large dynamic range, the nonlinear least
squares estimator (7-42) of rational transfer function model (7-7) parameterized in powers of
€, (see (5-20)) may become ill conditioned. The dynamic range of the frequency response
function can be limited by taking the natural logarithm of the model equation
Y(ky = G(Q,, OU(k) giving In(Y(k)/U(k)) = In(G(,, 6)). The logarithmic least squares
(LOG) estimator then minimizes

Viog(8, Z) = 25= 1 |1n(Y(k)/ U(k)) - In(G(£2,, 9))|2 (7-54)
20+ 0.5
] —— true plant § ]
o O"—’—'—\ ® 1
=l | — - NLS-i/O & 0 e
[y c ’ —_
é -20__ T NLS-FRF é’ O -~ -
g_ ................ Tl = *_3 _0_5.:
< -404 . : g-
4 <
'60 T T 1 -1 - L] T 1
0 0.1 0.2 0.3 0 0.1 0.2 0.3
f (Hz) f (Hz)

Figure 7-6. Second-order simulation example G(s, 6) = 1/(1 +s+5°) defined in
Appendix 7.A (see also Figure 7-1 on page 184). Comparison of the
nonlinear least squares estimates using the input-output spectra Y(k), U(k)
(NLS-1/0) and the nonlinear least squares estimates using the frequency
response function G(k) = Y(k)/U(k) (NLS-FRF). Left, true plant model
(solid line) and magnitude of the complex error between the estimated and
the true plant model. Right, difference between the estimated amplitude in
dB and the true amplitude in dB.
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w.rt. 8. Besides its improved numerical stability (Sidman et al., 1991), the logarithmic least
squares estimate 8;0c(Z) is particularly robust with respect to outliers in the measurements
(Guillaume et al., 1995). Good starting values for the LOG estimator are the LS (7-32) and
the IWLS (7-36) estimates.

From a theoretical point of view the logarithmic least squares estimator is inconsistent
because the noise on In(Y(k)/ U(k)) has no zero mean,

In(Y(k)/U(k)) = In(Gy(€2))) + N(k)

-55
N(K) = In(1 + Ny(k)/ ¥ (k) - In(1 + N (k) U(k)) (759

with & {N(k)} #0. The higher order moments of N(k), however, do exist (Guillaume et al.,
1996a). For zero mean, circular complex distributed errors Ny(k), N (k) (Assumption 7.18)
with even probability density function, the bias b(k) = & {N(k)} is a function of the fourth-
order moments of the noise (see Appendix 7.G). If the errors are, in addition, normally dis-
tributed (Assumption 7.19), then an analytic expression can be found for b(k) (see Appendix
7.G)

2 2
YOF) L To®P o k0, n/2 (7-56)
ok

.
blk) = FEi( 77 6520

with Ei(.) the exponential integral function (Gradshteyn and Ryzhik, 1980). Note that this
expression is also valid for correlated ingut-output errors. It follows that the maximum bias
error |b(k)| is smaller than 2x10" for signal-to-noise-ratios |Y,(k)|/Gy(k) and
|Uo(k)| /6 (k) larger than 10 dB (see also Figure 2-18 on page 51). Hence, from a practical
point of view, we may say that N(k) has zero mean and that Assumption 7.4 is valid for
N(k) if Ny(k) and Ny(k) satisfy Assumptions 7.18 and 7.19. Because the cost function
(7-54) is quadratic-in-the-measurements In(Y(k)/U(k)), we conclude that Theorem 7.21,
with Vi(6,Z) = V (6, Z)/F, is “practically valid” for the logarithmic least squares esti-
mate éLog(Z) if the worst case signal-to-noise ratio is at least 10 dB. The expected value of
(7-54) then equals (7-19) with

E{vi(,N,)} = %ZL S [In(1 +Nyk)/Yo) - In(1 + Ny(k)/ Uk} (7-5T)

Because &{vp(6, Nz}} is independent of 8, 9Log(Z) is “practically consistent” and
BrLoc(Zy), B0 are “practically” the noiseless solutions in case model errors are present
(apply quick tools number 2 and 3 of Section 7.5). From (7-54) it follows that
Viocr 6, Z) = Vioa(6, Z), and, hence, BLoG(2) is independent of the particular, chosen
parameter constraint a; = 1, b, = 1, or |63 = 1 (see Section 7.5, quick tool 4). See
Table 7-5 on page 238 for an overview of the properties of the LOG estimator.

7.9.3 A Simple Example—Continued
We use the example of Section 7.8.4 to calculate the nonlinear least squares estimate

(7-42) of the integrator model G(s, 8) = by/(a,s), using the constraint 5, = 1. Making
similar calculations as in Section 7.8.4, we get
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2{: 1 ‘sk|_2

3 Re(G(sp)/5p)

.1
lim }'725: s

F—oo

1 ]
lim lef _  Re(Gy(s9)/5p)

F—o0

(al)NLS =

aslim(a ) = = (a;),
F oo

which shows that the nonlinear least squares estimator (&,); ¢ and, hence, G(s;, Bnis(2))
are, indeed, consistent for transfer function measurements. It is easy to verify that the NLS
estima}e using the constraint a, = 1 equals (EI)NLS = 1/(a,)y.s- Hence, (EI)NLS and
G(s;, Onis(Z)) are  consistent estimates, which illustrates the independence of
G(sy, éNLs(Z)) on the parameter constraint used (quick tool number 4).

TOTAL LEAST SQUARES

7.10.1 Introduction

The total least squares (TLS) approach requires a model equation that is linear in the
model parameters 8. Transfer function models (7-7) and (7-8), where G(Q, 6) and T(€2, 6)
are parameterized as rational forms (5-20), (5-25) and (5-37), (5-40), can be made linear in 8
by multiplication with the denominator polynomial A(Q,, 8). This is not the case for the
other parameterizations and, therefore, the TLS estimators can only be applied to rational
forms without delay. Hence, the linear set of equations that needs to be solved in total least
square sense is

e(, 6, Z(k)) = 0 k=12, ., ,F (7-58)
with e(Q,, 8, Z(k)) the equation error (7-9) or (7-10). They can be written as
J(Z)8=0 or J (Z)0=0 (7-59)

with J(Z) = de(0, Z)/00 the Jacobian of the vector e(0, Z) (er1(6, 2) = ey, 6, Z(K))),
and where ( ),, stacks the real and imaginary parts on top of each other

1 (2) = [Re(l (Z))} (7-60)
Im(J(2))

(see Section 13.8). Operation (7-60) is necessary to ensure that the solution 8 is real. A left
and a right weighting can be applied to (7-59)

(WIZ)C1)(CO) =0 or (WgJ (Z)C)(CO) =0 (7-61)

where W e CF*F and C € R"™" are regular matrices and where (WJ(Z)),, = Wy J,(Z)
with
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W, = [Re(W) —Im(W):I .62
Im(W) Re(W)

(see Lemma 13.4). A diagonal left weighting matrix W influences each row of J(Z) sepa-
rately and makes it possible to introduce a frequency-dependent weighting of the residuals
e(Q,, 6, Z(k)). The right weighting matrix C influences each row of J(Z) in exactly the
same way and, hence, will not introduce a frequency-dependent weighting of the residuals
e(Q,, 8, Z(k)). It can be used to influence the noise characteristics of J(Z) (see Section
7.10.3).

The total least squares solution of the weighted problem (7-61) tries to find a modified
matrix Jy., which is as close as possible to J.(Z) (in Frobenius norm, see Section 13.3}, and
a vector @ satisfying J.6 = 0. The unknown parameters in the total least squares problem
are, hence, the matrix J,. (2Fn, real parameters) and the model parameters & (n, real num-
bers). These parameters are related to each other by the model equation J,.8 = 0 (2F real
equations), so that the total number of free parameters equals (2F + 1)ny— 2F. This should
be compared with the measured matrix J(Z) (2Fn, real numbers), which gives a redun-
dancy of 2F —ny. It shows that increasing F will (most probably) give more information
about 8, but not about J,.. Indeed, no additional information can be accumulated about
2Fn real parameters starting from 2F real measurements.

The matrix J and the vector 8 are the solution of

arg min|Wg,(J,o(Z) - Jre)C-1| 2 subject to Jrc8 = 0 and [CH|3 = 1 (7-63)
8

Jre’

(Van Huffel and Vandewalle, 1991). After elimination of Jre in (7-63), we get the following
equivalences.

Lemma 7.23 (Total Least Squares Solution—Equivalences): The total least squares
problem (7-63) is equivalent to

L. arg min| WJZ)6l3/C6l3

2. arg 5nin||WJ(Z)9||% subjectto |CHY|2 = 1

3. finding the eigenvector @ corresponding to the smallest generalized eigenvalue A
of the generalized eigenvalue problem (Wg J (Z2))T(Wg.J,(Z))8 = ACTCO

Proof. See Appendix 7.H. O

Although we have assumed, during the proof, that the matrices W and C are non-
singular, it follows from Lemma 7.23 that the TLS solution remains well defined for singu-
lar weighting matrices W and C. In these cases, we take Lemma 7.23 as a definition of the
total least squares solution. Equivalences 1 and 2 of Lemma 7.23 (nonlinear minimization of
a cost function) are used to analyze the asymptotic properties (F — oo) of the TLS solution,
while equivalence 3 is used to calculate the solution. The generalized eigenvalue problem
(equivalence 3 of Lemma 7.23) can be calculated in a numerical stable way, even when C is
singular, through the generalized singular value decomposition (GSVD) of the matrix pair
(Wi (Z), C) (see Section 13.4.2). The TLS solution is then the generalized right singular
vector corresponding to the smallest generalized singular value of (Wg.J.(Z), C). When
C = I, then the generalized eigenvalue problem reduces to an ordinary eigenvalue prob-
lem, which is solved in a numerically stable way through the singular value decomposition
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(SVD) of the matrix Wy J(Z) (see Section 13.4.2). The TLS solution is then the right sin-
gular vector corresponding to the smallest singular value of W J (Z).

7.10.2 Total Least Squares

Putting W = I and C = [, in (7- 63) gives the total least squares estimate @)TLS(Z).
According to equivalence 2 of Lemma 7.23, B15(Z) is the minimizer of

Vis(6:2) = Y7 [e(Qy 6, Z(k))|* subject to 63 = 1 (7-64)

with e(,, 8, Z(k)) the equation error (7-9) or (7-10) (proof: see Appendix 7.J). It shows that
the total least squares solution (7-64) is nothing other than the linear least squares solution
(7-32) with parameter constraint |12 = 1. Hence, &r1.5(Z) has the same asymptotic prop-
erties (F — o) as GLS(Z) in general, BI—LS(Z) is inconsistent and BTLS(ZO) 611 depend
on the signal-to-noise ratio. To reveal when BrLs(Z) is consistent, we use equivalence 1 of
Lemma 7.23

Vis(6,2) = IW@013/1612 = 37 _ ey 6, Z()| /11613 (7-65)

Taking the expected value of (7-65) gives (7-19) with V(6) = &{V1;.4(6, Z)} /F, and
B{vHB, Ny} = —eTc,e/nol sz _,0X, 6)/63 (7-66)
where 62(€,;, 6) is defined in (7-34) and where

C; = 8{jLNDJNp} = E{Re(jH(N)jN)} with j(Np) = J(Z)-J(Zy) (7-67)

is the column covariance matrix of j (N, (see Appendix 7.I). Note that j(N,) #J(N,) for
model (7-10). Applying quick analysxs tool number 2 (see Section 7.5) to (7-66) shows that
the total least squares estimator Brig(Z) is consistent if C ; is proportional to 1,,
C, =04,

Like the LS estimate, the total least squares solution can be improved by adding an ap-
propriate frequency dependent. The TLS version of (7-37) is found by making the choice
C=1, and

W = diag(W(Q,, 8¢-1), W(Q,, 6¢-1), ..., W(Qg, 66-1)) (7-68)
with W(Q,, 8- e R, in (7-63) (proof: see Appendix 7.J). The weighted total least
squares solution is calculated as the right singular vector corresponding to the smallest singu-
lar value of Wy J (Z).

7.10.3 Generalized Total Least Squares
The total least squares estimator (7-64) is inconsistent because the column covariance

matrix C; (7-67) is different from 621 n, (se€ Section 7.10.2). Taking as right weighting C a
square root of C,
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C = C}/? such that C7C = C, (7-69)

(see Section 13.4.4), then the column covariance matrix of jre(NZ)C—l, with
JWNZ) = J(Z)-J(Z,), becomes

E{CTjLINDNHC1} = CTC,C =1, (7-70)

(4

It shows that the total least squares estimator can be made consistent by an appropriate choice
of the right weighting matrix C. Note that the calculation of C requires knowledge of the
noise (co)variances (Assumption 7.5).

Putting W = Iy and C = C}/? in (7-63) gives the generalized total least squares
(GTLS) estimate OGTLS(Z) Accordmg to equivalence 1 of Lemma 7.23, BGTLS(Z) is the
minimizer of

Yo leQ 8, Z(ky)?

(7-71)
Zk GZ(Qk’

Vors(6, 2) =

with 6X(Q,, 6) = var(e(Q,, 8, N,(k))) (see (7-34)) and e(Q,, 6, Z(k)) the equation error
(7-9) or (7-10) (proof: see Appendix 7.J). In Swevers et al. (1992) the generalized total least
squares method was applied for the first time to identify discrete-time models from noisy
input-output measurements ((7-71) with equation error (7-9) and Q = z-!). Due to the equal
weighting of the residuals e(§2,, 8, Z(k)) over all frequencies in (7-71), the GTLS estimate
suffers from the same problem as the LS and TLS estimates: it overemphasizes the high-
frequency errors. Although this effect is not apparent in the second-order simulation example
(see Figure 7-4 on page 200), it is visible on more complex systems (see Figure 7-8 on
page 230).

Because Vig(6,Z) is quadratic-in-the-measurements Z, Theorem 7.21, with
V8, Z) = Vims(6, Z), is valid for Bc1s(Z). Due to the denominator in (7-71), the ex-
pression for the limit cost V.(6) in property 5 is somewhat more complicated (see Exercise
7.6). Taking the expected value of (7-71) gives (7-19) with

E{v(8,2)) = 1 (7-72)

As &8{vg(B, Z)} is independent of 8, the generalized total least squares estimate Bsis(2) is
consistent, and OgTLs(Z,), O+grs are the noiseless solutions when model errors are present
(apply quick analysis tools number 2 and 3 of Section 7.5). From (7-71), it follows that
Vorsh 6, Z) = Vgrg(6, Z) so that Bcris(Z) is independent of the particular, chosen con-
straint @; = 1, b; = 1, or |63 = 1 (quick tool number 4). See Table 7-5 on page 238 for
an overview of the properties of the GTLS estimator.

To deemphasize the high frequency errors in (7-71), a left weighting matrix W should
be added, and at the same time, to keep the consistency, the right weighting C should be
adapted. For example, the choice,

W = diag(W(Q)), W(Qy), ..., W(Qp) with W(Q,) € R (7-73)

C = CY} suchthat CTC = Cy, = 8{Re((Wi(N,))H(WiN)))) (7-74)
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in (7-63), with Cy,; the column covariance matrix of Wy j .(N;) (see (7-67)), gives the fol-
lowing weighted generalized total least squares cost function:

L WAQ|e(Q,, 6, Z(K)|?

Vwors(6, 2) =
S WHQYOH, )

(7-75)

(see Appendix 7.J). Although the weight W(£2;) does not affect the consistency of the
weighted generalized total least squares estimate BwerLs(Z), it can seriously influence its
uncertainty. A motivated choice will be presented in Section 7.12.3. Apart from this effect,
Bwcris(Z) has the same asymptotic properties as Bc11s(Z). The estimate @}wGTLs(Z) is cal-
culated as the generalized right singular vector corresponding to the smallest generalized sin-
gular value of the matrix pair (Wg.J,(Z), C}/#). Note that the column covariance matrix
Cy; in (7-74) is singular under Assumption 7.20(i) or 7.20(ii) (see Appendix 7.K).

MAXIMUM LIKELIHOOD
7.11.1 The Maximum Likelihood Solution

To construct the maximum likelihood solution, starting from the frequency domain data
(7-1) or (7-2), we need the probability density function (pdf) of the frequency domain errors
Ny(k) = [Ny(k) Ny(©17, k = 1,2, ..., F. For a frequency domain experiment N (k) is
independent over k (Assumption 7.4), while for a time domain experiment N (k) is asymp-
totically (F — o) independent over k and circular complex normally distributed (see Sec-
tions 7.6.1 and 14.16). Therefore, it is reasonable to construct the maximum likelihood (ML)
solution under the assumption that N (k) is independent (over k) circular complex normally
distributed with known covariance matrix (Assumptions 7.5, 7.18, and 7.19). We also assume
that the true excitation Uy(k) and, hence, also the true response Y (k) are deterministic (As-
sumption 7.19).

Because the true input Uy(k) and output Y (k) DFT spectra in (7-1) are unknown, they
should be estimated and parameterized as Up(k), Y p(k). The unknown parameters in the
errors-in-variables approach are, hence, the unknown input Up(k) and output Y IJ(k) DFT
spectra (4F real numbers) and the model parameters @ (ny real numbers). These parameters
are related to each other by the model equations

e(€y, 6, Z,(k)) = 0 k=12..,F (7-76)

with e(Q,, 6, Z(k)) the equation error (7-9) or (7-10) (2F real equations); thus, the total
number of free parameters equals 2F + ng. This should be compared with the number of
measured input U(k) and output Y(k) spectra (4F real numbers), which gives a redundancy
of 2F — n,. It shows that increasing F will (most probably) give more information about 9
but not about Up(k) and Yp(k). Indeed, four new real parameters are added for each fre-
quency.

Under Assumptions 7.5, 7.18, and 7.19 the negative log-likelihood function is

-Infy(Z,Z,,0) = (Z-Z)HC} (Z-Z)+c

. (7-77)
Cy, = diag(Cov(N (1)), Cov(N /2)), ..., Cov(N 1(F)))
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with + the Moore-Penrose pseudoinverse and ¢ a constant, independent of Zp and 9 (see
Appendix 7.L). (7-77) should be minimized w.r.t. Zp and @ subject to the constraints (7-76).
This constrained minimization problem can be solved using Lagrange multipliers A € C¥

(Z-Z)HC} (Z-Z,) +Re(AHe(6,Z)) (7-78)
Elimination of Z, in (7-78) gives the maximum likelihood cost function

|e(©;, 8, Z(k)|?

o1, 0) (7-79)

Yw6.2) = 3,

(see Appendix 7.L) with e(Q,, 8, Z(k)) the equation error (7-9) or (7-10) and 6X(Q,, 6) the
variance of the equation error where the measurements Z have been replaced by the noise on
the measurements N,; see (7-34). f DC (Q,) and Nyquist (Q,,,) are present in the data,
then

1[e(Q, 6, Z(0))|? + 1|eQy,2 6, Z(N/2))|? (7-80)
2 cXQ, 0 2 o}Qp 0)

should be added to the cost function (7-79) (see Appendix 7.L). Dividing the numerator and
denominator of each term in the sum (7-79) by |A(Q,, 6)|? gives

Y (k) - Y(&, 6)|2

7-81
63, ) ( )

w(6.2) = 3,

with 63(,, 6) the variance of the output error, where the measurements Z have been re-
placed by the noise on the measurements N,; see (7-44). Under this form, it is suitable for
any parameterization of the transfer function model (see Sections 5.2 and 5.3). Cost functions
(7-79) and (7-81) can also be written as

Vi(6,2) = 5 _ |, 6, Z(k))|? (7-82)

where £(Q,, 6, Z(k)) are the respective weighted residuals,
&9, 6, Z(K) = e(Q,, 6, Z(K))/ 0 (2 0) (7-83)
&Q,, 6, Z(k) = (Y(K) - Y(Q, 6))/6,(Q;, 6) (7-84)

with var(&(Q,, 6, N4(k))) = 1. The maximum likelihood estimate Byi(Z) is the minimizer
of (7-82) (see Appendix 7.L, Section 7.L.4 for the numerical implementation).

Using BmL(Z), the maximum likelihood estimates {7y (k) and ¥ag(k) of the input
and output DFT spectra can be calculated, namely
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N — ey, 8,Z(k)
k) = Y() - (03K A(Qy, 8) - 65y (k) B(Qy, 8))—————
ng(gks 6)

e(Q,, 8, Z(k))
c2(Q,, 8

(7-85)
Umuk) = Uk) - (82,(k) Ay, 8) - 63 (k)B(Q,, 8)

with 8 = Bu(Z) (see Appendix 7.L). If the input is known (63(k) = 0 and 63,(k) = 0),
then (7-85) reduces to

k) = G, @) Ugk) (+ T(Q4, Ovi(2)))

R (7-86)
Umk) = Uyk)

and the ML estimate ¥y (k) is nothing other than the output predicted by the model.
7.11.2 Discussion

The maximum likelihood solution (7-82) weights the equation or output error at each
frequency €, with its measurement uncertainty, so that frequency bands with high-quality
measurements (G3(k) and 6#(k) are “small”) contribute more to the ML cost than frequency
bands with poor-quality measurements (63(k) and o7(k) are “large”). Hence, in a natural
way, the ML cost gives much confidence to accurate measurements while it rejects noisy
measurements. Inspection of the variance of the output error (7-44) leads to the following ob-
servations:

1. In the uncorrelated case (G, (k) = 0) the relative importance of the input distur-
bance w.r.t. the output disturbance is given by the model-dependent ratio

|G(Q, 6)|*cF (k)
63 (k)
2. The significance of the correlation between the input and output disturbances is
assessed by the model-dependent ratio

—ZRC(Gﬁu(k) G(Qka 0))
o3(k) +|G(Q,, 6)|*c} (k)

3. If the measurement errors M y(k) and M (k) in Figure 7-3 on page 186 are un-
correlated, then the sign of p(k) in (7-88) determines the behavior of the genera-
tor noise N £k If p(k)<0, then the variance G3(€;, 8) (see (7-44)) is de-
creased w.rt. the uncorrelated case (G§,(k) = 0), which means that N g(k)
contributes constructively to the excitation signal Uy(k) + N (k) at frequency Q.
If p(k) > 0, then the variance 63(£2,, 8) is increased w.r.t. the uncorrelated case,
which means that N (k) acts as a disturbing noise source at frequency €.

(7-87)

p(k) = (7-88)

If the Assumptions 7.5, 7.18, and 7.19 made to construct (7-82) are not fulfilled, for ex-
ample, the errors N (k) are not normally distributed, then (7-82) is no longer the maximum
likelihood solution of the problem. The same is true if the excitation is not deterministic. If
the errors N (k) are non-Gaussian, independent (over k), circular complex distributed ran-
dom variables, then (7-82) is a Markov estimator (see Section 17.2.2 ), for which all the
results of Chapter 17 apply. If the errors are not circular complex distributed,
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S{NLkNI(k)} #0, then Cov(N,(k)) does not contain all the information included in
Cov((N4(k)),.), and (7-82) is no longer the Markov solution of the problem (see Exercise
7.7, and Section 17.2). In that case (7-82) is just a weighted nonlinear least squares solution.
With some misuse of terminology @ML(Z) will, independent of the true noise properties, de-
note the minimizer of (7-82).

7.11.3 Asymptotic Properties

The general maximum likelihood properties listed in Section 1.5.3 are NoT vALID for
the maximum likelihood solution (7-82) of the errors-in-variables problem. Indeed, they have
been shown under the assumption that the number of estimated parameters does not increase
with the amount of data, while the number of free parameters in the errors-in-variables prob-
lem is 2F + ny and increases with the number of frequencies F. Therefore, even under the
ideal Assumptions 7.5, 7.18, and 7.19, the consistency, asymptotic normality, and asymptotic
efficiency still have to be proved, and it is not self-evident at all that the ML solution (7-82)
will have nice asymptotic (F — co) properties. We will first study the properties of Oyr.(Z)
under less restrictive noise assumptions than those made to construct the ML solution.

Because Vy;(8,Z) is quadratic-in-the-measurements Z, Theorem 7.21, with
Vi(6,Z) = Vyu(6, Z)/F, is valid for 9ML(Z). Taking the expected value of (7-82) gives
(7-19) with

E{v6,2)) = 1 (7-89)

It shows that By (Z) is consistent and, if there are model errors, that 8y (Z,), sy are the
noiseless solutions (apply quick analysis tools number 2 and 3 of Section 7.5). The noiseless
solutions are obtained by decreasing the input and output noise levels simultaneously to zero
while maintaining the ratios 63(k)/ 6% (k) and 63 ,(k)/c}(k) constant (see quick tool num-
ber 3). Changing the ratios 6$(k)/ (k) and 63 ,(k)/c#(k) introduces a frequency-depen-
dent modification of 62(2,, 6) or 63(€2,, 6) in the cost function (7-82) and, hence, changes
the noiseless solutions. We also have V5 (A8, Z) = Vy; (0, Z) (sec (7-82)) so that L(2)
is independent of the particular constraint chosen, for example, a; = 1, b, =1, or
612 = 1 (quick tool number 4). We conclude that 8y (Z) is, in general, consistent and
asymptotically normally distributed. From property 8 of Theorem 7.21, it follows that
OmL(Z) is, in general, inefficient. It is asymptotically efficient only if the input-output distur-
bances stem from one noncoherent noise source (see Assumption 7.20).

It can be seen from (7-85) that the estimates Uy (k) and ¥a (k) of the input and out-
put DFT spectra are in general inconsistent, even if Oui(Z) is consistent. This can easily be
understood as follows: making more measurements (increasing F) will not increase the
knowledge of the input and output DFT spectra at one particular frequency (no noise averag-
ing effect occurs). Because they are inconsistent, it makes no sense to calculate, for example,
an “improved” frequency response function estimate using Umi(k) and Yy (k). If the input
is known and 9ML(Z) is consistent, then ¥\q (k) is consistent (see (7-86)). Similarly, if the
output is known and Bui(Z) is consistent, then Uy (k) is consistent.

As the properties of Bui(Z) are also valid under the more restrictive Assumptions 7.5,
7.18, and 7.19, it follows from Theorem 7.21 that the maximum likelihood estimator ((7-82)
with Assumptions 7.5, 7.18, and 7.19) is consistent and asymptotically normally distributed
but that it is not asymptotically efficient (note the difference from the general maximum like-
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lihood properties of Section 1.5.3). An inefficiency term is present; it tends to zero as the
noise level v tends to zero

Cov(042)) = Fi'l(Bo)(I,,e+ o)) (7-90)

(see Appendix 7.E —asymptotic efficiency). For errors N, with an even pdf, the deviation in
(7-90) is an O(v?). In practice the inefficiency term will be neglected when calculating the
covariance matrix of the estimates (see Section 7.11.4). The ML estimator is asymptotically
efficient if only one noncoherent disturbing noise source is present (Theorem 7.21). This cor-
responds to the case where the total number of estimated parameters does not increase with
F (see Appendix 7.M), thus the general maximum likelihood properties of Section 1.5.3 are
valid. Note that the consistency and asymptotic normality properties of the ML estimator
((7-82) with Assumptions 7.5, 7.18, and 7.19) have been shown in Theorem 7.21 under much
less restrictive noise assumptions than those made to construct the ML solution. The errors
N (k) may be non-Gaussian, correlated over the frequencies k, and noncircular complex
E{NLk)NI(k)} #0. It shows the robustness of the consistency and asymptotic normality
properties of the ML estimator w.r.t. Assumptions 7.5, 7.18, and 7.19. See Table 7-5 on
page 238 for an overview of the properties of the ML estimator.

7.11.4 Calculation of Uncertainty Bounds

According to property 3 of Theorem 7.21, the covariance matrix of the truncated esti-
mator Gy (Z) (see (7-24)) is asymptotically (F — ) given by expression (7-26)

Cov(BmL(2)) = COV(SH(Z))(Ine + O(F12)) (7-91)

(see Theorem 15.30). Expression (7-26) for Cov(84Z)) is not really tractable because it re-
quires, for example, the third- and fourth-order moments of the noise, which are mostly un-
known. An approximation for “small” model errors (L — 0) and “large” signal-to-noise
ratios (v — 0) can be calculated. Applying quick tool number 6 of Section 7.5 to (7-26)
yields

Cov(842)) = Cll,, + OM) + O) + OU2VINZ,))

0€(8, ZO))H(BE(B, Zy
06vL(Zo)/ \9Bi(Zy)

(7-92)

Co = [8{2Re(( ))}T1 = V2O(F)

where AM(Z;) = 1 for random Z, and A(Z,) = O for deterministic Z; (see Exercise 17.10).
If model errors are present (U # 0), then the uncertainty of the estimated model parameters
(7-92) does not decrease to zero for random excitations (A(Z,) = 1) as the noise level v
tends to zero. To calculate (7-92) we need the true observations Z; and the minimizer
PML(ZO) of the expected value of the cost function, which are not available. An approxima-
tion is calculated by replacing Z, by Z and 8y (Z,) by h(Z), giving

Cov(BL(2) = [2Re((§g(M9L’é)) )H(gg(ié))))]"l (7-93)
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Note that the expression between brackets in (7-93) equals, within a factor of 2, the matrix of
the normal equation in the last Newton-Gauss step (7-17). Together with property 4 of Theo-
rem 7.21 and the results of Section 14.2, (7-93) allows the calculation of uncertainty regions
with a given confidence level for any model-related quantity (see also Section 17.4.7).

7.12 APPROXIMATE MAXIMUM LIKELIHOOD
7.12.1 Introduction

Compared with the maximum likelihood solution, the iterative weighted linear least
squares (IWLS) and weighted generalized total least squares (WGTLS) estimators have a big
advantage as global minimizers. Their noise sensitivity can, however, be poor. The basic idea
of this section is to construct estimators that combine the global minimization properties of
the IWLS and WGTLS estimators with the good statistical properties of the ML estimator.
The key to the solution of this problem is an appropriate choice of the frequency-dependent
weighting. Comparing the IWLS and WGTLS cost functions (7-37) and (7-75) with the max-
imum likelihood solution (7-79) suggests that the “optimal” weighting is
W) = o;1(Q,, 6). Because § is unknown, it should be reconstructed iteratively as

w(Q,, 8¢-Dy = 5;1(Q,, 8¢-1) (7-94)
The weighting (7-94) can even be relaxed as in (7-38)
W(Q,, 68¢-1) = 6,7(Q,, 68¢-Y) with re [0,1] (7-95)

Special cases are no weighting, r = 0, and “full” weighting, r = 1.

Just as in Sections 7.8 and 7.10, the estimators of this section require that the plant
transfer function G(£2, 8) and the transient term 7(£2, 6) are parameterized as rational forms
B(Q, 8)/A(Q, 8) (see (5-20), (5-25)) and 1(£2, 6)/A(Q, B8) (see (5-37), (5-40)), respectively.

7.12.2 lterative Quadratic Maximum Likelihood

Making the choice (7-95) in the IWLS cost function (7-37) gives the iterative quadratic
maximum likelihood method,

(i) 2
Vigu (89, Z) = ZF M)L (7-96)

k=1 Gezr(Qk’ 9(1'— 1))

with e(Q,, 6, Z(k)) the equation error (7-9) or (7-10). If convergent (8% = 6¢-1 for i suf-
ficiently large), the “full” IQML cost ((7-96) with » = 1) tends to the ML cost (7-79). This
does not, however, imply that @IQML(Z) = 9ML(Z). Indeed, therefore, one needs that the de-
rivatives of both cost functions w.r.t. 8 are the same. This is not the case here so that
AGIQML(Z) * 9ML(Z). However, because the elementwise difference between both Jacobians is
proportional to the residual &Q,, 6¢-1, Z(k)) (7-83) (see Exercise 7.8), both estimates will
coincide (b[QML(Z) =~ OmL(2)) for “sufficiently high” signal-to-noise ratios and “sufficiently
small” modeling errors; otherwise the difference may be large. This is illustrated by the “high
noise” simulation example of Figure 7-4 on page 200 (compare IQML and ML) and the “low
noise” simulation example of Figure 7-8 on page 230 (compare IQML and ML). We con-
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clude that the IQML estimator (7-96) is related to the ML solution (7-79) as the IWLS esti-
mator (7-36) to the nonlinear least squares solution (7-42).

Because (7-96) is a spemal case of (7-37), the estimate BIQML(Z) has the same asymp-
totic (F — oo) properties as BwLs(Z) (see Section 7.8.3): GIQML(Z) is inconsistent, depends
on the particular constraint chosen, and does not converge to a noiseless solution. See
Table 7-5 on page 238 for an overview of the properties of the IQML estimator.

7.12.3 Bootstrapped Total Least Squares

Making the choice (7-95) in the WGTLS estimator (7-75) gives the bootstrapped total
least squares (BTLS) method

y |e(©,, 69, Z(k))|?
k=1 Gezr(gk, ot~ 1))
(Y, 6D)

Vans(69, Z) = (7-97)

with 62(Q,, 6) = var(e(€2,, 6, N;(k))) (see (7-34)) and e(€,, 6, Z(k)) the equation error
(7-9) or (7-10). Relaxation of the weighting (r < 1) may be necessary if a lowly damped pole
and zero are very close (relative to the spacing of the frequency grid) to each other. If conver-
gent () = @G-1 for i sufficiently large), the “full” BTLS cost ((7-97) with r = 1) tends
to the ML cost (7-79). The Jacobians of both estimators are, however, different, even for
i — oo, and therefore AGBTLS(Z) # 9ML(Z). Likewise, for IQML (see Section 7.12.2), the ele-
mentwise difference between both Jacobians is proportional to ML residual
&Q,, &i-1), Z(k)) (7-83). In practice, it turns out that the difference is small for large signal-
to-noise ratios such that the bootstrapped total least squares estimate OLs(Z) is mostly
(very) close to the maximum likelihood estimate GML(Z) (see Figure 7-4 on page 200 and
Section 7.15). The estimate Bsris(Z) is calculated numerically in exactly the same way as
the weighted generalized total least squares in Section 7.10.3.

The asymptotic (¥ — =) properties of the first step of the iterative procedure (7-97)
can be analyzed using Theorem 7.21 and Corollary 7.22. If the initial guess 6 is determin-
istic, then Theorem 7.21 is valid and the bootstrapped total least squares estimate
Osris(Z) = 6D has the same properties as BworLs(Z) (see Section 7.10.3). If the choice
6 = &Z) is made, then it is obvious that (7- 97) is no longer a quadratic function of the
measurements Z. Assuming that the initial guess &Z2) satisfies the properties of Theorem
7.21, for example, XZ) = Oi5(Z) or KZ) = BsrLs(Z), then Theorem 7.21 is still valid for
BsTis(Z) = 61 with three minor modifications (see Corollary 7.22). The first step of (7-97)
can be written as

VBTLS(G’ Z) = fF(Q 9(0)’ Z) (7-98)

Taking the expected value of the cost function (7-98), where 60 = &Z) has been replaced
by its limit (F — o) value 6, gives (7-19) with V(6) = &{ f(6, 6+, Z) } and

F 61 |e(Qk’ 0, Zo(k))lz}
k=1 GZr(Qk’ 9*)
C (Qk’ 6)
Zk =1 GZr(Qk g*)

Vi) = +1 (7-99)
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Hence, the bootstrapped total least squares estimate pris(Z) = (1) is consistent, even if
6® = §Z) is inconsistent (apply quick analysis tool number 2 of Section 7.5). If the limit
value 8, does not depend on the noise level v, then bBTLS(Z())’ O.p1 5 are the noiseless
solutions when there are model errors (quick analysis tool number 3). This is the case for
69 = Boris(Z) but not for 6O = B5(2). From (7-97) it follows that
Versh6, Z) = Vpris(6, Z) so that Bemis(Z) is independent of the particular, chosen
constraint @; = 1, b, = 1, or |63 = 1 (quick tool number 4). Because &1 = Os1L5(2)
satisfies Theorem 7.21, the same reasoning can be applied to &2, and so on, showing that
the estimates obtained in the successive iteration steps have exactly the same properties as
&), We conclude that the BTLS algorithm (7-97) generates consistent estimates in each
iteration step. Hence, the iterative algorithm can be stopped at any iteration number (four iter-
ations are uwsually sufficient). Further iteration (hopefully) decreases the uncertainty in the
nonasymptotic case (F # o). In the absence of model errors, &Z,) = 6, or 6, = 6, for
model (7-8) with Q = s, it follows from Corollary 7.22 that the asymptotic (F — o) uncer-
tainty of Bgris(Z) = 6D with 8 = &Z) equals that of Bprs(Z) = 61 with 8© = 6,
(see Appendix 7.N). See Table 7-5 on page 238 for an overview of the properties of the BTLS
estimator.

7.12.4 Weighted (Total) Least Squares

The IQML and BTLS estimators need an initial guess of the model parameters to re-
construct the optimal ML weighting iteratively and, hence, are not self-starting. In this sec-
tion, a noniterative approximation of the optimal ML weighting is given that does not require
explicit knowledge of the model parameters 6.

The approximation is constructed as follows. Taking out the factor |A(€;, 6)|[B(<;, 9)[
in the ML weighting (7-34) yields

0XY, 6) = |A(Q, 8)|B(y, 8)|(c3(K)/|G(Q, 6)] + 63 (0)|G(R,, 6)

(7-100)
~2Re (0} (k)exp(-j LG(Q,, )

Replacing the unknown plant transfer function G(£2,, 6) by the measured frequency re-
sponse function G(,) or Y(k)/U(k) and the factor |A(Q;, 6)||B(Q,, 6)| by a #-indepen-
dent function f(€2,) in (7-100) gives the following approximation:

W2 = fQIo}(k)/ |G| + 63(0)|G(Qy)| - 2Re(0F, (k)exp(~jLG(QY)N]  (7-101)

The explicit form of the function f(€2) depends on the particular domain £ and is given
below (see (7-103) and (7-104)). The reader is referred to Rolain and Pintelon (1999) for the
rationale behind the construction of f(€2). To avoid problems of division by zero in (7-101),
regularization is applied in the frequency bands where |G(€2,)| is of the order of the magni-
tude of the noise standard deviation ¢ ;(k):

W-2Q) +eW-XQ, . ) W-2Q) <eW-2Q,. )
W@ = k o+ 1 & o+ 1 (7-102)
W-2(Q) otherwise
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where ¢ is of the order of the numerical precision of the computer.

For continuous-time systems, Q = s, fs, or tanh(Tgs), the function f(£2) has the
form

Q) = 3(8,@DIGQ] + £, Q1G]
8@ = Q71 -12/(Q) - 1)?

(7-103)

Recall that the frequency axis is scaled by 0, = (@, + ®,,,)/2 when identifying con-
tinuous-time systems (see Section 7.4), so that Q in (7-103) represent the scaled frequency
(5> 8/ Ogq)-

For discrete-time systems, Q = 77!, the function f() has the form

@Y = 8™(fw fD) + 8" f1))?

7-104
8fw ) = |cos(@, Ty - cos(@T )| + (||cos(@, T )| — 0.5| +||cos(@y T )| - 0.5])/2 ( )

with n = max(n, n,)+1 and f;, f, thelower and upper frequencies of the “active” band
of the plant. The active band [ f;, f;] is defined as the largest segment of continuous fre-
quency points for which

W) > 237 (k)

h(k) = |G(z;h)|/ o1 + 01/ |Gzh)|

(7-105)

with 6% the mean (over the frequency) variance of the transfer function measurement G(z;!)
or Y(k)/ Uk),

(7-106)

Re(

o S¥E) . of(k) 5 o3y (k)
o} FZk—1| Gizgh|? (|Y(k)|2 [Uk)|? Y(k)[—/(k)))

The noise influence on A(k) in (7-105) is reduced by a running sum filter with a window
length equal to 1% of the number of available frequency points.

The weighting (7-101) can be used to construct optimally weighted linear least squares
(WLS) (7-37) or weighted generalized total least squares (WGTLS) (7-75) estimators. Be-
cause the weighting is a strong nonlinear function of the measurements Z, it is very difficuit,
if not impossible, to make precise statements about the asymptotic behavior of the WLS and
WGTLS estimates obtained. They are inconsistent but (hopefully) lie within the attraction
basin of the global minimum of the ML cost function. Although (7-101) may be a rough
approximation due to the lack of knowledge about 8, a sensible improvement of the esti-
mates w.r.t. to the unweighted case is obtained, even if the approximated and exact weight
differ by as much as two orders of magnitudes. This low sensitivity is the key to the success
of the proposed method. The power of the weighting is illustrated in Figure 7-9 on page 231
for a sixth-order discrete time system.
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7.13 INSTRUMENTAL VARIABLES

If two or more periods of the measured time signals are available, the measurements can be
split up into two time records, each of them containing an integer number of signal periods.
The DFT spectra calculated using the second time record can then be used as instrumental se-
quences for the linear least squares identification, based on the DFT spectra of the first time
record (Van den Bos, 1991). The instrumental sequences obtained are almost ideal because
they are strongly correlated with the true unknown DFT spectra and practically uncorrelated
with the noise of the first time record (in case of colored noise a small but nonzero correlation
may exist between the noise of the successive signal periods). The classical instrumental vari-
able equations are asymmetric in the measurements and the instrumental sequences (see
(1-58)). They can be made symmetric if the roles of the measurements and the instrumental
sequences are interchanged and added to the original equations. Proceeding in this way, full
use of the complete data set (measurements and instrumental sequences) is achieved. The
equivalent cost function of the resulting enhanced instrumental variables estimator is

V(B Z) = ZL | Re(e(€y, 6, ZIM(k))e(€, 6, AR (9))] (7-107)

where [1] and [2] indicate that the spectra are calculated using, respectively, the first and
the second experiment (time record). Note that the cost function (7-107) can take negative
values. Likewise, for the LS (7-32), TLS (7-64), and GTLS (7-71) cost functions, the high-
frequency errors are overemphasized in (7-107).

Although the cost function V,(8,Z) cannot be written under the quadratic form
(7-11), Theorem 7.21, with V{8, Z) = V(6, Z)/F, is still valid for Ov(Z) (see Appendix
7.0). Assuming that the two experiments are independent, the expected value of (7-107)
equals (7-19) with

E{vi(B,Np)} =0 (7-108)

Applying quick analysis tools number 2 and 3 of Section 7.5 shows that Brv(Z) is consistent
and, when model errors are present 6rv(Z;), 8.y are the noiseless solutions. From (7-107) it
follows that Vi (A8, Z) = A2Vy(6, Z) so that Hrv(Z) depends on the particular constraint
a; =1 or b, = 1 chosen (apply quick tool number 4). See Table 7-5 on page 238 for an
overview of the properties of the IV estimator.

Note that the IV method lowers the bias of the corresponding LS estimates on the com-
plete data set (DFT spectra of the first and second time records put together) at the price of a
higher variance. The mean square error of the IV estimates tends asymptotically (F — o0) to
zero, whereas that of the LS estimates tends asymptotically to the square of its bias. Hence,
the IV method will perform better than the LS method for F sufficiently large. Compare, for
example, the IV with the LS estimates in Figure 7-4 on page 200.

7.14 SUBSPACE ALGORITHMS
7.14.1 Model Equations

Subspace identification methods estimate the state space representation of (7-7),
namely

GE, 8) = C(&l, ~A)\1B+D (7-109)
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where € = z for discrete-time systems and £ = s for continuous-time systems. The identifi-
cation procedure starts from a transformed version of the state space equations (5-18) and
(5-19). These are constructed as follows. Assume that the input is periodic and that an integer
number of periods of the steady-state response is observed. The discrete Fourier transform
(DFT) of (5-18) and (5-19) then becomes

EX(k) = AX(k) + BU(K)

(7-110)
Y(k) = CX(k)+ DU(k)

with X(k) the DFT of the state vector x(f). By recursive use of the second and the first equa-
tion of (7-110) we find that

EpY(k) = &p~'(CEX(k) + DL UK))
Ep-(CAX(k) + CBU(K) + DEU(K))

(7-111)

CAPX(k) + (CAP='B + CAP-2BE, + ... + CBEP-1 + DEP)U(K)

Writing the last equation of (7-111)for p = 0, 1, ..., 7 — 1 on top of each other gives

WYk = 0,XK)+S,W, (k)UK (7-112)
with
1 c D 0 ..00
W k) = & 0. =| CA|aas =| CB D .. 0 0| 3
gr-1 CAT-1 CA"™-2B CA"™-3B ... CB D

Collecting (7-112) for k = 1,2, ..., F gives
Y = 0,X+S,U (7-114)
with
Y = [w,0rm w,ore) ... wEYe)
U = [W,(I)U(l) W(2UQ) ... W,(F)U(F)] (7-115)
X = [x1) X) ... X(F)

The complex data matrices Y and U have r rows and F columns. X is a complex n, by F
matrix, and O, and S, are, respectively, real by n, and r by r matrices. Equation (7-114),
with r larger than the model order n_, is the basic model used in subspace identification.

a’
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The extended observability matrix O, has the shift property
O1r-1,94 = Oair (7-116)

which will be used in the identification procedure. O, is not unique because it depends on the
choice of the state variables. Indeed, replacing (A, B, C, D, X) by (TAT-}, TB, CT-!, D, TX),
with T an invertible matrix, in the state space equations (7-110) does not change the input-
output transfer function (7-109) but does change O,

0, 0,T-! (7-117)

Note that 0,X and S, in model equation (7-114) are invariant w.r.t. the invertible transfor-
mation 7.

For identifiability purposes we will assume that the state space realization (7-110) is
observable, rank(0,) = n, for any r 2 n_, and controllable,

rank((B AB ... A4-1B]) = n, (7-118)

forany g 2 n,.
For noisy input-output DFT spectra, N (k)20 and Ny(k) %0, model (7-114) be-
comes

Y = 0,X+5,U+Ny-S,Ny (7-119)
where Ny and Ny have the same structure as Y and U in (7-115).

7.14.2 Subspace Identification Algorithms

Subspace identification algorithms are basically a three-step procedure. First, an esti-
mate O, of the extended observability matrix is obtained using model (7-119). This is the
most difficult step and consists mainly of eliminating the term depending on the input and
reducing the noise influence. Next, A and C are found as the least squares solution of the
overdetermined set of equations (7-116) and as the first row of 0, (see (7-113)), respectively.
Finally, B and D are found as the linear least squares solution of

Vsup(C. D, A, €, Z) = Zlfz1WZ(gk)‘Y(k)—(C(gkI,,ﬂ—A)—’B+D)U(k)12 (7-120)

where W(E,) is a well-chosen real weighting function.

We present two algorithms, one for discrete-time systems (& = z), based on McKelvey
et al. (1996), and one for continuous-time system (§ = s), based on Van Overschee and
De Moor (1996a). The numerically efficient implementation of these algorithms is due to
Verhaegen (1994).
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Algorithm 7.24 (Subspace Algorithm for Discrete-Time Systems)

1. Estimate O, given the data Y(k), U(k) and the noise (co)variances o%(k),
o k), 63, (k): :
la. Initialization:
(i) If opk)#0, replace Y(k), U(k), and o3(k) by, respectively,
Y(k)/U(k), 1, and 6%(k) (7-53).
(ii) If the required transfer function model is improper, n,<n,, inter-
change the role of the input and output.

(iii) Choose a value of r > n, and form the matrices

7 = [RC(U) M(U)] and CY = RC(CCH)
Re(Y) Im(Y)

with C = [W (1)o,(1) W, (2)0,(2) ... WAF)6,(F)] and where U and
Y are defined in (7-115), and W (k) asin (7-113) with £ = z.

1b. Elimination of the input term in (7-119): calculate the QR factorization of
ZT, ZT = QR, or Z = RTQT,

7 = RlTl 0 QlT
R, RG] |0F

where R;; are r by r blocks of the upper triangular matrix R.

lc. Reduction of the noise influence in (7-119): calculate the singular value de-
composition of C3!/2R%,,

C7'?R}, = UZVT
where C}/? is a square root of Cy (see Section 13.4.4), and estimate O, as
br = C%/2U[:,l:na]

2. Estimate A and C, given the estimate O,: solve the shift property (7-116) in
least squares sense and select the first row of O,

A= O:[l:r-l,:]or[Z:r,:] and C = b'[l’:]

with + the Moore-Penrose pseudoinverse (see Section 13.5).

3. Estimate B and D, given the estimates A and C: minimize (7-120) w.r.t. B and
D with W(z,) = 1/064(k).

Proof. See Appendix 7.R. (W}

One could use Algorithm 7.24 with £ = s for continuous-time systems. This works
reasonably well for small values of r. However, for larger values, the matrix Z in Algorithm
7.24 becomes ill conditioned, resulting in poor estimates. This problem is solved by introduc-
ing two scalar orthogonal polynomial bases that orthogonalize, respectively, the first r rows
of Z and the last r rows of Z. It can be shown that there are no other two scalar polynomial
bases that result in a smaller condition number of Z (Rolain et al., 1995). The final algorithm
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is also a three-step procedure. First, a generalized extended observability matrix @, | is esti-
mated. This matrix has a generalized shift structure that is used to estimate A. Next, A and

C are estimated using O,,. Finally, B and D are the linear least squares solution of
(7-120).

Algorithm 7.25 (Subspace Algorithm for Continuous-Time Systems)

1. Estimate O, given the data Y(k), U(k) and the noise (co)variances G3(k),
of(k), ofyk):

la. Initialization:

() If o}(k)=0, replace Y(k), U(k), and oj(k) by, respectively,
Y(k)/ U(k), 1, and c}(k) (7-53).

(ii) If the required transfer function model is improper n, < n, , interchange
the role of the input and output.

(iii) Choose a value of r>n, and normalize the frequencies s, with
mscale = (mmax+"0min)/2 (sk__> sk/(‘oscale)‘
1b. Orthogonalization of the output data: calculate the » by F matrix Y ; asfollows:
initialization:
Y=Y, /o with oy = [[Yp 4,
Yip =Yy gD/, with o, =[Y,;, 4D,
recursion: forn = 3 to r
Yimg= Y1, 00+ % 1Y [, 2 9)/ 0, with
0 = Y1, gD+ 0 Yoo,
where Y, ., = [¥(1) Y(2) ... Y(F)] and D, = diag(s,, 55, ..., S5)-

lc. Orthogonalization of the input data: perform the same calculation as in step
1b, but starting from Uj; ; = [U(1) U2) ... U(F)]. The result is an r
by F matrix U, and numbers B,, n = 1,2, ..., 7.

1d. Form the following matrices:

7 = *:RC(UJ_) Im(U_L)j| and CY = RE(C_LC_{I)
Re(Y,) Im(Y,) :

where C; iscalculated by starting from Ci1, g = [op(1) 6y(2) ... o],
initialization:

Cit,n=Cp, /0y and Cpp = Cypy 4D/t
recursion: for n = 3 to r

Cipny = Cuppy, gD/ 0+ 04170, C 5

le. Elimination of the input term: calculate the QR factorization of ZT,

ZT = QR or,
7. = RITI 0 QIT
© T RL RY |07

where R;; are r by r blocks of the upper triangular matrix R.
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If. Reduction of the noise influence: calculate the singular value decomposition
of C;‘l’ 2RY,

_I2RT. = T
C{\"2R}, = UZV

where C{/? is a square root of Cy (see Section 13.4.4), and estimate O, as
O,y = C%/J?U[:,l:na]

2. Estimate A and C given the estimate O,,: solve the generalized shift property in
least squares sense and select the first row of O,

A =[D0rip1r_1, 1 10r1p2r, -0l and € = 0, 0,111, 3

with + the Moore-Penrose pseudoinverse (see Section 13.5) and

- 0 D, = diag(1/0, 1/a,, ..., 1/a,)
Dy0r111:r -2, "D, = diag(0p/ 0y, 03/, ..., O,/ OL)

3. Estimate B and D, given the estimates A and C: minimize (7-120) w.r.t. B and
D with W(s,) = 1/0y(k).
4. Denormalization of the estimates: multiply A and € by ®yy,-

Proof. See Appendix 7.S. O

Algorithm 7.25 differs in three ways from that described in Van Overschee and
De Moor (1996a). First, the recursions in steps 1b and 1c are performed on rows with unit 2-
norm. Next, the orthogonal projection is calculated via a QR factorization (see step le of Al-
gorithm 7.25). Finally, one additional equation is used to estimate A (see step 2 of Algorithm
7.25). While the first two modifications improve the numerical stability of the algorithm, the
third modification decreases the estimation error.

7.14.3 Stochastic Properties

The persistence-of-excitation condition is somewhat different for subspace algorithms
compared with algorithms minimizing a cost function of the form (7-11). Therefore, we must
add the following assumptions to Section 7.6.1.

Assumption 7.26 (Persistence of Excitation): There exists an F;, such that for any
F2F,, o included, Re(UUX/F)2cl, with 0 <c < and ¢ independent of F.

Assumption 7.27 (Identifiability Condition): There exists an F, such that for any
F2>F,, o included, rank(YFII) 2 n,,.

Note that under Assumptions 7.14 (distinct frequencies) and 7.16 (no model errors),
Assumption 7.7 for (7-120) and Assumption 7.27 are fulfilled, if and only if (A, C) and
(A, B) in (7-109) are, respectively, observable and controllable (see Appendix 7.R).

Theorem 7.28 (Asymptotic Properties Bsup(Z) ): Consider model (7-109),
parameterized in its state space representation, and assume that the input-output data stem
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7.15

from the steady-state response of a system to a periodic excitation, observed during an integer
number of periods (time or frequency domain experiment). The estimate Gsyp(Z) obtained
via Algorithm 7.24 or Algorithm 7.25 has the following asymptotic (F — o) properties:

1. Stochastic convergence: 8suyp(Z) converges strongly to the noiseless solution
O.5yp (assumptions of Sections 7.6.1 and 7.6.5 and Assumptions 7.26 and 7.27).

2. Stochastic convergence rate: QSUB(Z) converges in probability at the rate
Op(F-” 2) to B.gug (assumptions of Sections 7.6.2 and 7.6.5 and Assumptions
7.26 and 7.27).

3. Consistency: Bsus(Z) converges strongly to the true solution &, (assumptions of
Sections 7.6.5 and 7.6.6 and Assumptions 7.26 and 7.27).

Proof. See Appendix 7.R and Appendix 7.S. O

Although the subspace (SUB) estimates are strongly consistent (F — o) for any
r2n,+ 1, with r independent of F, the finite sample properties of Osup(2) strongly de-
pend on the choice of ». For example, values of r close to n, + 1 usually result in poor esti-
mates. An appropriate choice of r is therefore recommended. We propose to choose r such
that

|Y(k) - Gy, Bsus@) Uk

F

is minimal. This optimization requires an exhaustive search for all r 2 n, + 1 values (the cost
function (7-121) is a craggy function of r, with many peaks and dips). In practice, we limit
the search to the interval [1.5n,, 6n,]. However, sometimes it may be necessary to go be-
yond the upper limit 6»n, to find the optimum (see Section 7.15.3, modeling of a synchronous
motor). It also turns out that the optimal value of r strongly depends on the plant and the
noise characteristics.

The results of the SUB estimates (Algorithm 7.25 with r = 5) on the second-order
simulation example are shown in Figure 7-4 on page 200. Note that the SUB method esti-
mates five free model parameters while the other methods estimate only three free model
parameters. This is due to the fact that the subspace algorithms cannot impose the order of the
numerator polynomial. See Table 7-5 on page 238 for an overview of the properties of the
SUB estimator.

ILLUSTRATION AND OVERVIEW OF THE PROPERTIES

The NLS-FRF (7-46), LOG (7-54), GTLS (7-71), ML (7-79), BTLS (7-97), IV (7-107), and
SUB (see Section 7.14) estimators perform equally well on the second-order example (see
Figure 7-4 on page 200 and Figure 7-6 on page 206). This is due to the very simple nature
(low order, low amplitude dynamics, low frequency range, no model errors) of the simulation
example. The differences are more apparent in the two simulation examples of this section.
Two real measurement examples are also shown to illustrate an aspect that is not shown by
the simulation examples: sensitivity to (small) model errors like unmodeled dynamics and
nonlinearities. For all the simulation and real measurement examples, the optimal value of r
in the SUB Algorithms 7.24 and 7.25 has been selected by an exhaustive search in the interval
[1.5n, 6n], except for the modeling of the electrical machine, where the search has been
done in the interval [1.57, 18n].
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7.15.1 Simulation Example 1

The simulated plant is a fifth-order continuous-time Butterworth filter with an extra
transmission zero at @ = 3 rad/s. The coefficients of the transfer function are given in Table
7-2 and the amplitude and phase characteristics are shown in Figure 7-7. A data set of
F = 100 equally distributed frequencies is generated in the band [0.05 Hz, 5 Hz]

TABLE 7-2 Coefficients of the Transfer Function of the Fifth-Order Butterworth
Filter with a Transmission Zero

b, b, b,
1 0 1/9
a, a a, a, a, as
1 0.449941 0.101223 1.40740e-2 1.20939¢-3 5.19623e-5

Y(k) = Gy(sy) + Ny(k)

(7-122)
Uk) = 1+N k)

with Ny(k) and N (k), k = 1,2, ..., F, independent, zero mean, circular complex Gaussian-
distributed random variables with variance 2x10™°. One hundred data sets of the type
(7-122) are generated. For each set the LS, “full” IWLS, NLS, LOG, GTLS, ML, “full”
IQML, and “full” BTLS estimates of model (5-20) with n, = 5 and n, = 2, and the SUB
estimate (Algorithm 7.25 with r = 20) of model (5-26) with n, = 5 are calculated. Note
that the SUB estimate of model (5-26) is equivalent to that of model (5-20) with
n, = n, = 5. All estimators use the constraint b, = 0 (the zero is forced to lie on the jw
axis) and |63 = 1, except the LS, “full” IWLS, and SUB estimators. The LS and “full”
IWLS use b, = 1 and b; = 0, and the SUB estimator uses no constraint at all. To perform
a bias test, the normalized squared residuals of the mean parameter estimates are calculated
for each set of 100 estimates of the model parameters,

b = ({82) -6, (Co/R)* ((XZ)) - 6y) (7-123)
154 1
50
~ 54
[ae]
i ~
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Figure 7-7. Fifth-order Butterworth filter with transmission zero (see Table 7-2): true
transfer function.



Section 7.15 W Illustration and Overview of the Properties 229

with 6, the true model parameters, (&2Z)) and Cg the sample mean and sample covariance
matrix of the data set,

B2) = z3°_ 8D
1 (7-124)
Co = z— 2. (8@ - (B2N(@ @ - (b))

and R the number of elements in the data set (R = 100). If &Z2) is an unbiased Gaussian es-
timate, then b is a Hotelling 72 -statistic that is

(R-1)
(R—ny)

ng F(ng R-ny) (7-125)

distributed with n, = 7, the number of free mode] parameters, and R = 100 (see Section
14.3). Because &Z) is asymptotically (F — o) normally distributed (see Theorem 7.21,
property 4), it is possible to perform a bias test on the estimates with a given confidence level.
For example, the 95% percentile of (7-125) equals 15.7 for n, = 7 (all estimates except
SUB) and R = 100 and 23.2 for ny, = 11 (SUB)and R = 100. Hence, with 95% confi-
dence, the estimates are unbiased if b < 15.7 (b <£23.2 for SUB), otherwise they are biased.
According to Table 7-3, all the estimates, except the LS, are unbiased.

Using each set of 100 estimates of the model parameters, we can also calculate the rel-
ative mean square error of the transfer function estimate

RMSE(G(s;, &2))) = ,%212 (G5, 8742)) = Gol5)/ Gos? (7-126)

within an error of 1 dB and compare it with the Cramér-Rao lower bound on the relative
transfer function error (G(s,, 9(2)) — Gy(sp))/ Gy(sy) . The results are shown in Figure 7-8. It
follows that BTLS has ML efficiency and that both estimators reach the Cramér-Rao lower
bound. Both LS and GTLS estimators perform equally well; however, the mean square error
(MSE) of the LS estimates is due to the bias (see Table 7-3) whereas that of the GTLS esti-
mates is due to the variance (see Table 7-3). The bad performance of the LS and GTLS esti-
mates is due to their inappropriate frequency weighting. The LOG, NLS, and SUB estimators
deteriorate somewhat in efficiency w.r.t. the ML and BTLS estimates, but their efficiency is

TABLE 7-3 Bias Test on the Parameter Estimates: Unbiased if b < 15.7
(b <23.2 for SUB)

Estimator b (7-123) Result Bias Test
LS 2.6F4 biased
TWLS 3.9 unbiased
NLS 23 unbiased
LOG 58 unbiased
GTLS 6.4 unbiased
ML 1.7 unbiased
IQML 1.6 unbiased
BTLS 1.7 unbiased

SUB 12.5 unbiased
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Figure 7-8. Fifth-order simulation example (see Figure 7-7 and Table 7-2): comparison
of the (relative) mean square error (R)MSE of the transfer function estimate
with the corresponding Cramér-Rao lower bound.

still much better than that of the GTLS method. Because of the high signal-to-noise ratio and
the absence of model errors, the IWLS estimator performs as well as the NLS estimator, and
the IQML and BTLS estimates coincide with the ML estimates.

7.15.2 Simulation Example 2

The goal of this simulation example is to compare different candidate starting value al-
gorithms: LS (7-32), GTLS (7-71), WLS (7-37), and WGTLS (7-75) with weighting (7-101)
and SUB (Algorithm 7.24 with r = 32). A sixth-order inverse Chebyshev discrete-time filter
with a stopband attenuation of 40 dB and a cutoff frequency of 0.05 is selected as test example
(see Figure 7-9a). The discrete time system is excited at F = 300 equally spaced frequen-
cies in the band [0, 0.5]f,, with unit amplitude. Next, independent (over the frequency),
zero mean, circular complex uniformly distributed noise is added to both the input and output
spectra with (co)variances

var(Ny(K)) = 1x10° +9x107|Go|2  var(N (k) = 0.161
covar(N y(k), Ny(k)) = 0

(7-127)

The noisy frequency response function G(zi') = Y(k)/U(k) is shown in Figure 7-9(b). The
GTLS, WGTLS, and ML estimates are calculated using the constraint |63 = 1, while the
LS and WLS estimates use the constraint a, = 1. No constraint is used in the SUB estimate.
Figure 7-9(c) and (d) show the estimated transfer functions in the band [0, 0.25] f,, and Ta-
ble 7-4 gives the value of the maximum likelihood cost function for the different solutions.
Starting from the LS and GTLS solutions (see Figure 7-9(c)) the ML estimate gets stuck in a
local minimum (see Figure 7-9(d) and Table 7-4). This is due to the fact that the LS and
GTLS solutions place a transmission zero, completely out of the frequency band of interest.
The two ML solutions are almost indistinguishable in the band [0, 0.25] f, but differ some-
what outside that band. Starting from the WLS, WGTLS, and SUB solutions (see Figure
7-9(c)), we find the global minimum of the ML cost function (see Figure 7-9(d) and Table
7-4). Although the WLS solution has a higher ML cost than the GTLS solution, it lies within
the attraction basin of the global minimum of the ML estimator. This shows that it may be un-
safe to select starting values based on the value of the ML cost.



Section 7.15 W Illustration and Overview of the Properties

Amplitude (dB)
&

o
Amplitude (dB)
&
<

-100 -100+
-140 -140 — T 1 T T+ T T 1
0 01 02 03 04 05 0 01 02 03 04 05
fff 1/
(@ (b)
20+ . 20
- ML(LS, GTLS)
g -zoj. g 20 —— ML (WLS, WGTLS, 5UB)
2 [
g ] 3
2 60+ 2 60
< ] <
-100 T T T 1 -100+ T T T T 1
0 005 01 0145 02 025 0 005 01 0156 02 025
g A
(© (@

Figure 7-9. Second simulation example. (a) True frequency response function (bold line),
maximum likelihood weighting (7-34) evaluated in 6, (solid line), and
weighting (7-101) (dots); (b) noisy frequency response function; (c) LS,
GTLS, WLS, WGTLS, and SUB solutions; (d) ML estimates starting from

the solutions shown in (c).

7.15.3 Real Measurement Examples

231

Two measurement examples that illustrate the properties of the estimators particularly
well are shown here. The norm constraint [[6|3 = 1 has been used in both examples for the
NLS-FRF, LOG, GTLS, ML, IQML, and “full” BTLS estimators, and for the LS and IV esti-
mators by = 1 in the g-axis impedance model and g, = 1 in the flight flutter data model.
No constraint is used in the SUB estimates. Because in both examples an improper model
(n,>n,) is selected, the SUB estimates of model (5-26) are calculated using 1/G(s,) in-

TABLE 7-4 Maximum Likelihood (ML) Cost Function of the Starting Value
Algorithms and the Corresponding ML Solution. Least squares: LS and ML (LS);
generalized total least squares: GTLS and ML (GTLS); weighted least squares:
WLS and ML (WLS); and weighted generalized total least squares: WGTLS and

ML (WGTLS).
Estimator LS GTLS WLS WGTLS SUB
ML cost function 2140 497 1770 354 333
Estimator (starting value) ML ML ML ML ML
(LS) (GTLS) (WLS) (WGTLS) (SUB)
ML cost function 436 431 317 317 317
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stead of G(s;). The optimal value of r in the SUB Algorithm 7.25 is 61 and 35 for, respec-
tively, the first and second examples. In the first measurement example the “full” IQML
method was used, while in the second example it was necessary to relax the weighting of the
IQML method (r = 0.5). For each measurement example, two sets of measured input and
output spectra were available.

In the first measurement example (see Figures 7-10 and 7-11), the g-axis impedance of a
3.4 MW synchronous motor is modeled with a rational form in s of order n, = 4 over
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Figure 7-10. Comparison of the measurements (dots) and the estimates requiring no noise
information (solid line) of the g-axis impedance of a synchronous machine
(model n, = 3, n, = 4). From left to right, amplitude and phase.



Section 7.15 W Hllustration and Overview of the Properties 233

n, = 3. The measurements were carried out using a multisine excitation of 1000 A consisting
of F = 100 frequencies logarithmically spaced in the band [12 mHz, 12 Hz]. The nonpara-
metric noise model was obtained by analyzing M = 30 periods of the input and output signals.
Note the particularly large dynamic range in both the amplitude and frequency band. All esti-
mators use the averaged input-output spectra, X(k) = M —‘ZZ X tml(k) with X = U andY,
except the IV estimator, which uses the two sets, X (k) = 2/M Zf/:l X")k) and
Xk = 2/MY Y X™(k) with X = U and Y. As expected, the LS, GTLS, and IV

estimates are poor in the low-frequency range. The difference between the IQML (norm
constraint), NLS-FRFE, LOG, and ML estimates is almost indistinguishable. Referring to the
large amplitude dynamics, the performance of the NLS-FRF estimator is remarkable. Figure
7-11 also shows the IQML solution using the constraint b, = 1. It illustrates, again, the in-
fluence of the parameter constraint on the estimates for cost functions that are NOT scale
invariant.

In the second measurement example (see Figures 7-12 and 7-13), the vibrations of
the wings of an airplane are modeled with a rational form in s of order n, = 11 over
n, = 10. LMS International (Belgium) have provided us with the experimental data. The
measurements were carried out using a burst swept-sine excitation. Three sets of input-
output signals of equal length are available. It is impossible to average the three measure-
ments because they are not synchronized. 144 frequencies lie in the frequency band of in-
terest [4 Hz, 11 Hz], giving three sets of 144 input-output DFT lines:
{YUnlk), Ulmik), k= 1,2, ...,144}, m = 1,2,3. These F = 3 x 144 input-output DFT
lines are used for all the estimators except the IV and SUB estimators. The IV method
uses one set as instrumental sequence, while the SUB algorithm uses the FRF measure-
ment, averaged over the three sets ZS’“ YUy Ulml(k), k = 1,2, ...,144. The non-
parametric noise model was obtained by analyzing the disturbing noise during the dead
time in between consecutive bursts. Although the NLS, LOG, ML, and SUB estimates ex-
plain the measurements very well, a careful analysis of the ML cost reveals the presence
of small plant model errors (a few tenths of a dB on the amplitude of the transfer func-
tion). These small modeling errors account for the better performance of the LS estimates
w.r.t. the GTLS estimates. The poor quality of the LS and IV fits is due to the bad weight-
ing of the residuals in their cost functions. Because of its more appropriate weighting of
the residuals, the IQML estimator performs better than the GTLS in both measurement
examples.

7.15.4 Overview of the Properties

Even if an identification method is based on sound theoretical principles, it can be put
into practice only if the normal equations (7-16) or (7-18) are numerically stable and the cor-
responding cost function can easily be minimized. A global minimization property of the pro-
cedure or easy generation of reliable starting values is highly desirable. As constraint inde-
pendence of the estimates allows the use of overparameterized models (see Chapter 18), it is
important that the (equivalent) cost function of the identification method is scale invariant.
Consistency and efficiency are important properties to assure that small stochastic deviations
in the data do not result in, respectively, large systematic and large stochastic errors on the pa-
rameter estimates. Because in practice the true plant model does not often belong to the
model set, it is desirable that the estimates are not sensitive to (small) plant modeling errors



234 Chapter 7 B Estimation with Known Noise Model

-30
40 e e e e (H2) f (Hz)
0.01 0.1 1 10 100 88'01 0.1 1 10 100
-10 60
@ [
~,-20 3140—
< L
-30 20
0.01 01 1 10 100
80-
001 0.1 1 10 100 0.01 0.1 1 10 100
0+ 80
-10
&
T ]
! 207
= ]
Ja1] ]
< i
-30-
) 10 100 8&01 0.1 1 10 100
60 o
£ 40
5] J
L. ]
20-;
f (Hz) 04——rrrem——rrrem—rre—rrrem  (H2)
001 0.1 1 10 100 001 041 1 10 100

Figure 7-11. Comparison of the measurements (dots) and the estimates requiring noise
information (solid line) of the g-axis impedance of a synchronous machine (model
n, =3, n, = 4). From left to right, amplitude and phase. For IQML, the
estimates used the constraint {63 = 1 (solid line) and b, = 1 (dashed line).
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Figure 7-12. Comparison of the measurements (dots) and the estimates requiring no

noise information (solid line) of the flight flutter data (model n, = 10,
n, = 11). From left to right, amplitude and phase.

and that they converge to the noiseless solution. It is also important that the estimates are not
sensitive to noise model errors, for example, wrong noise (co)variances or noncircular com-
plex noise. Table 7-5 on page 238 gives an overview of these properties for some of the esti-
mators discussed in the previous sections.
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Figure 7-13. Comparison of the measurements (dots) and the estimates requiring noise
information (solid line) of the flight flutter data (model n, = 10,
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L.

If the noise is circular complex and if the worst case input and output signal-to-
noise ratios are larger than 10 dB (see Section 7.9), then the nonlinear least
squares estimator, based on frequency response function measurements (NLS-
FRF), as well as the logarithmic least squares (LOG) estimator and the subspace
algorithms (SUB) are “practically consistent,” and when there are model errors
they converge to the “practically noiseless solution.” For circular complex noise
N (k) with even pdf, the biases of the NLS-FRF and LOG estimates are a func-
tion of the fourth-order moments of the noise (co)covariances. However, if the
noise is not circular complex, then the bias is a function of the second-order mo-
ments of the noise (cojvariances (see Appendix 7.T). If the input is exactly
known, then the NLS-FRF and SUB estimators are consistent or converge to the
noiseless solution without any approximation.

The maximum likelihood (ML), generalized total least squares (GTLS), boot-
strapped total least squares (BTLS), and subspace (SUB) estimates cannot be con-
sistent if the wrong noise (co)variances are used. The resulting bias of the ML,
GTLS, and BTLS estimates is proportional to the difference between the true and
the actual noise (co)variances (see Appendix 7.T). To have a consistent ML esti-
mate, it is sufficient that the actual noise covariance matrix C Nk equals the true
noise covariance matrix C Nk = Cov(N(k)) within a frequency-dependent
scaling factor

Cwa = FUCy (7-128)

(see Appendix 7.T). Note that the consistency proofs of the ML, GTLS, BTLS,
and SUB estimates do not require that the noise is circular complex (see Sections
7.10.3, 7.11, 7.12.3, and 7.14.3). Hence, the consistency property of the ML,
GTLS, BTLS, and SUB estimates is robust w.r.t. to the circular complex noise as-
sumption.

The efficiency of the iterative quadratic maximum likelihood (IQML) estimator
strongly depends on the signal-to-noise ratio and on the presence of model errors.
Its sensitivity to plant model errors is good if the parameter constraint |63 = 1
is used.

BTLS converges to the noiseless solution if the limit value 8. of the starting value
6 is independent of the noise level v.

If the disturbing noise on the instrumental sequences is independent of the dis-
turbing noise on the measurements, then the instrumental variables (IV) estimator
is consistent and, when there are plant model errors, converges to the noiseless so-
lution, irrespective of the true noise model. Otherwise, the estimate depends on
the correlation between the disturbing noise on the instrumental sequences and the
disturbing noise on the measurements.

7.16 HIGH-ORDER SYSTEMS

When identifying higher order transfer function models (7-7), (7-8) (typical n,, n, > 30)
with the rational forms (5-20), (5-37), the condition number of the normal equations (7-18)
can become so large that it is impossible to calculate a reliable solution within the available
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TABLE 7-5 Overview of the Properties of Some Estimators in the General Case
of Input-Output Errors

Conv. to

Noiseless Prior Noise Global Minim. Constraint Sense. to Plant Sense. to Noise
Estimator Consistent Solution Efficiency Knowledge Procedure Dependent Model Errors Model Errors
LS No No Poor No Yes Yes Medium —
IWLS No No Poor No Yes Yes Medium —
NLS-1/0 No No Medium No No No Very good —
NLS-FRF Yes(U Yes(V Medium No No No Very good Very good"
LOG Yes(D Yes Good No No No Very good Very good")
GTLS Yes Yes Medium Yes Yes No Poor Good?®
ML Yes Yes Excellent Yes No No Very good Good®
QML No No 3) Yes Yes Yes Medium/Good® ?
BTLS Yes Yes® Very good Yes Yes No Good Good?
v Yes Yes Poor No Yes Yes Medium Very good(s)

SUB Yes¥ Yes Very good Yes Yes — Good Good®
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arithmetic precision. Therefore, to tackle high-order systems the numerator and denominator
polynomials of the plant and transient models are expanded in scalar or vector orthogonal
polynomials (5-25), (5-40), which are chosen such that they minimize (improve) the condi-
tion number. The polynomials are orthogonal w.r.t. to some inner product defined by the cost
function and, hence, dependent on the estimator used. The whole process will be explained
for the IWLS estimator (7-37) in Sections 7.16.1 and 7.16.2 and afterward generalized to the
other estimators in Section 7.16.3. In what follows, we assume that the parameter constraint
a, = 1 is used. In order to simplify the notations, we will limit the discussion to transfer
functlon model (7-7). Generalization of the results to model (7-8) is straightforward.

7.16.1 Scalar Orthogonal Polynomials
The IWLS cost function (7-37) can be written as the sum of three terms

F F
T WAL, 60-D)Y(R)2AC, 692+ T WAQ,, 66~ D) URK)IZBE,;, 69)|2
= k=i (7-129)
~2Re( Y, WALy, 8- D)Y(R) DA, 6B, 8)
k=1

Under the identifiability conditions of Theorem 5.9 the Jacobian matrix corresponding to the
IWLS cost function (7-37),

Ttk (09, Z) = W(S, 61-D)de(€,, 6, Z(K)/ 263} (7-130)

where e(Q,, 6, Z(k)) is given by (7-9) and 67 = [aya,...a, _,byb;... b,] with a, =1,
has full rank: rank(J,,) = n,+n, + 1. Hence, each of the ﬁrst two terms in (7-129) defines
an inner product of scalar polynomlals

(X(Q), YQ)), = Re(Y, _, WAQ,, 60~ D)|Y (%) 2x(QH()

(7-131)
(HQ), 2(Q)), = Re(Y; _, WAQ,, 8- V)|U(R)2HQ)2L))

with x(Q), y(Q) polynomials of order smaller than or equal to n, and #(£2), z(€2) polynomi-
als of order smaller than or equal to n, (proof: see Lemma 13.6). Using definitions (7-131)
and

AQ, 0 =Y a,p(Q), BQ.6) =Y, b4q,(Q) (7-132)
the matrix M = Re(JH(6(D), Z)J(6D, Z)) of the normal equation (7-17) becomes

Iw[r+1,s+1]= (pS(Q)’Pr(Q)>a r,s=0,...,na

(7-133)
M[r+na+2,s+nﬂ+2] = <qs(Q), q,(Q))b r,s=0,..,n,
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The polynomials p (), r = 0,1, ...,n,, and g(Q), r = 0,1, ..., n,, are calculated via a

Gram-Schmidt orthogonalization (see Section 13.11) using inner products ( , ),, and
(, )y respectively. Hence, (p,(Q), p,(Q)), = ,,, {q,(D),q,.Q2)), = J,, and
: ; 1 n Cl
Re(J#(6, 2)J(6%,2)) = | ™ (7-134)
1 “ny+1

It can be shown that (7-134) is best conditioned: no other scalar polynomial bases for the nu-
merator and denominator of the rational transfer function model can be found resulting in a
better conditioned form Re(JH#(81), Z)J(8%), Z)) (Forsythe and Strauss, 1955; Rolain et al.,
1995). The IWLS solution is calculated by not using the special structure (7-134) but by solv-
ing the overdetermined set of equations (7-18). Proceeding in this way, the solution is insen-
sitive to a loss of orthogonality among the computed basis polynomials. In Richardson and
Formenti (1982), the scalar orthogonal polynomials were applied for the first time to improve
the numerical conditioning of the linear least squares method ((7-129) with
W(Q,, 8¢-1) = 1) in modal analysis problems ((7-32) with equation error (7-9) and
Q = 5).

7.16.2 Vector Orthogonal Polynomials

It is easy to verify that the IWLS cost function (7-37) can also be written as

. H — .
i W2Q,, 60-1) ALY, B(f)) [ iY(k)‘]2 —Y(k) U(k)jl Ay, 9(’.)) (7-135)
k=1 B(Q,, 60) |-Y(U®k) [U®K)|? ||BEy, 6D)

Under the identifiability conditions of Theorem 5.9, the Jacobian matrix corresponding to the
IWLS cost function (7-37) is

T (8D, 2) = W(Q,, 69-1)3e(Sy, 6, Z(k))/6(3) (7-136)

where (<, 6, Z(k)) is given by (7-9) and 67 = [aya;...a, ,,] with a, ., ,; =1 has
full rank: rank(/,.)) = n,+ n, + 1. Hence, the cost function (7-135) defines an inner product
of vector polynomials

F —
(), () = Re( T WA, eﬁ-l))yﬂ(nk){ Y@ -y (")U"‘)}xm» (7-137)
foo? YRR UG

where x(2) and y(Q) are 2 by 1 vector polynomials of order smaller than or equal to
n,+n,+1 (proof: see Lemma 13.7). The vector polynomials xT(Q) = [pAQ) ¢,(Q)],
r=20,1,...,n,+n,+1, are calculated via a Gram-Schmidt orthogonalization (see Section
13.11) using inner product (7-137). Hence we have

(x,(Q), x,(Q)) = &, (7-138)
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and
Re(JH(6D, 2)J(69,2)) = I, ., +1 (7-139)

Clearly, (7-139) has the smallest possible condition number: k(Re(J#J)) = 1. The IWLS
solution is given by

G, BWLS(Z)) = Gy 4y + /(D Py 1 1(D) (7-140)

(see Appendix 7.U). Note that solution (7-140) explicitly makes use of the orthogonality of
the polynomial basis and, hence, is sensitive to a loss of orthogonality among the computed
basis polynomials. A numerically stable and time-efficient implementation of the orthogonal-
ization procedure can be found in Van Barel and Bultheel (1994) for discrete time models
(Q=z1.

7.16.3 Application to the Estimators

Because the LS (7-32), IWLS (7-36), IQML (7-96), and WLS (7-101) estimators are
special cases of the general IWLS estimator (7-37), the calculation of the orthogonal polyno-
mials follows the same lines as in Sections 7.16.1 and 7.16.2. They are chosen such that they
minimize the condition number of the normal equation (7-18).

For all the estimators whose (equivalent) cost function is a nonquadratic function of the
model parameters, it is impossible to generate, in each iteration step of the Newton-Gauss
procedure, a set of orthogonal polynomials that minimize the condition number of the normal
equation (7-18). Indeed, the big difference between the IWLS solution and the nonlinear min-
imization scheme is that the former generates a solution in each iteration step, eventually
based on an initial guess, and the latter generates an increment w.r.t. the initial guess. Because
the initial guess and the increment should be calculated in the same polynomial basis, it is im-
possible to minimize the condition number of (7-18). However, it is still possible to make the
solution well conditioned. This is done in the following way.

As already emphasized in Section 7.10, the solution of the total least squares estima-
tors, GTLS (7-71), WGTLS (7-75), and BTLS (7-97), is not calculated via the nonlinear min-
imization scheme (7-18), but via the GSVD of the matrix pair (Wg.J.(Z), C). Compared
with the IWLS cost function (7-37), J(Z) is the Jacobian of the error vector
J(Z) = 0e(6, Z)/96, W is a diagonal matrix with Wy, 4y = W(Q,, 8¢-1), and C isa
square root of the column covariance matrix of Wy, j (N}, with j(N,) = J(Z)-J(Zy).
The orthogonal polynomial basis minimizing the condition number of the IWLS estimator is
used for the corresponding TLS estimator with W = I for GTLS, W 4, = W(€2,, Gi-1))
for WGTLS, and Wy, ,; = 6,7(€,;, 8(¢-1) for BTLS. This choice minimizes the condition
number of Wg.J/ ..

For the NLS-IO (7-42), NLS-FRF (7-46), LOG (7-54), and ML (7-79) estimators we
use the orthogonal basis of the starting value algorithm. This choice leads to well, but not
best, conditioned normal equations.

7.16.4 Notes
The IWLS solution calculated in the vector orthogonal polynomial basis is given by the

highest order vector polynomial (7-140): ¢, = a;, = -+ = q, =0anda, ,, . =L
If this solution is already of high quality, then the other estlmators (W)GTLS, BTLS, NLS-
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10, NLS-FRF, LOG, and ML, calculated in the same basis, will only marginally perturb the
solution: |ag|, |ay], ..., @ +p|« 1 and @, ,, .1 = L.

Because the inner products (7-131) and (7-137) depend on the measurements, the or-
thogonal basis depends on the disturbing noise. Therefore, the estimated numerator and de-
nominator orthogonal polynomial coefficients of different experiments cannot be compared.
Also, the properties of Theorem 7.21 cannot be applied to the estimated numerator and de-
nominator coefficients. However, because the proof of Theorem 7.21 is independent of the
parametrization, its properties are still valid for the invariants of the model, for example, the
poles and the zeros.

Evaluating orthogonal polynomials at a particular frequency, or calculating the roots,
should always be done through the recursion formula used to construct the orthogonal basis
AND NOT via the expansion in powers of 2, which is numerically ill conditioned for high or-
ders (see Sections 13.11 and 13.12 and Exercise 1.13). To preserve the numerical stability, the
calculations for continuous-time systems (£ = s or A/s) should be performed using the nor-
malized frequencies (see Section 7.4).

7.17 SYSTEMS WITH TIME DELAY

The main difficulty of estimating systems with an unknown time delay (plant model (5-29) or
(5-30)) is that the corresponding NLS-IO (7-42), NLS-FRF (7-46), LOG (7-54), and ML
(7-79) cost functions teem with local minima. A “sufficiently high” quality starting value for
the delay is necessary to avoid the local minima. In time domain reflectometry, the time dif-
ference between the edges of the excitation pulse and the reflected (transmitted) pulse is a
good initial guess of the delay (Pintelon and Van Biesen, 1990). This approach is no longer
possible for overlapping pulses, periodic and random excitations. In these cases, a starting
value can be obtained via the sample cross-correlation R,,(t) between the output and the in-
put signals,

A a 1 i~
t=amg mg.leyu(t)| = arg mgx]mzﬁt IS0V () (7-141)

where x(f) = x() - N —121\’:_01 x(t) with x = y, u, or via the mean slope of the unwrapped
phase of the measured frequency response function

3= 1 Zkz—léG(‘Qk+l)_4G(Qk)
ky = ky Sk =k Op 41— 0

(7-142)

where [mkl, (okz] defines the passband of the system. In both cases, the delay is an estimate
of the sum of the true delay of the plant minus the slope of the linearized phase of the rational
part of the plant. Using the initial guess (7-141) or (7-142) as fixed value in the plant model
(5-29) or (5-30), we can calculate starting values for the numerator and denominator coeffi-
cients in (5-29) or (5-30), for example, through the IWLS, WGTLS, or SUB estimates (see
Sections 7.12.4 and 7.14).

7.18 IDENTIFICATION IN FEEDBACK

Figure 7-14 shows a block diagram of a basic linear feedback experiment. According to the
nature of the reference signal r(¢), there is a subtle difference between what is considered as
the true excitation of the plant and the disturbing noise. If the reference signal is periodic,
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controller
Co( )

plant
G(

m(1)
——

u(?) y(®)

Figure 7-14. Feedback experiment with r(z) the reference signal, m/ (1), mJ(f) the
measurement noise sources, n,(f) the process noise, n.(f) the controller
noise, and #,(f) , y.(#) the input and output of the plant.

then any deviation from the periodic behavior is considered as noise. The true input-output
DFT spectra in (7-1) are then given by

Yy k) = Y R(k)
1+ Gy Q) C(€2) (7-143)
Uk = 1 R

1+ Gy(Q)C(R2p)

with R(k) the DFT spectrum of the reference signal, where Gy(£2), C,(£2) are the true plant
and controller transfer functions, respectively. The frequency domain errors N (k) and
Ny(k) in (7-1) are related to the DFT spectra of the disturbing noise sources in Figure 7-14 as

Np(k) ~ G(QON %)
1+ G(Q)C(Q2Y
N (k) + Co QN (k)
1+ Gy(Q)Co(€2y)

Nyk) = M (k) +
(7-144)
Nytk) = My(k) -

Clearly, the disturbances N (k) and Ny(k) are mutually correlated and are independent of
the true input Uy(k). Assumption 7.3 or 7.4 is fulfilled and, hence, Theorem 7.21 is valid for
periodic excitations and systems in feedback. If the reference signal is arbitrary, then the
controller noise n.(f) and the feedback part of the process noise n A1) are indistinguishable
from the contribution of the reference signal r(t) to the excitation u,(#). Hence, the true
input-output signals are uy(f) = u,(f) and y,(t) = y,(£). The technical difficulty arising, es-
pecially if the noise model is unknown (see Chapter 8), is that the true input signal uy(?) is
correlated with the process noise np(t) and, hence, also with the disturbing error at the
output.
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7.19 MODELING IN THE PRESENCE

OF NONLINEAR DISTORTIONS

The goal of a linear identification experiment in the presence of nonlinear distortions can be
the identification of the true underlying linear system, or the best linear approximation of the
overall system, including the nonlinearities. The first case is useful for physical modeling
and, if the system behaves linearly for small inputs, then crest factor optimized excitation sig-
nals are most suited for the identification experiment (see Chapter 4). The second case is use-
ful if a linear input-output description is required for a certain class of excitation signals. In
this section, we handle the second case. The validity (utility) of the linear model is applica-
tion dependent and should be established in practice.

The identification starts from measured input-output DFT spectra of a time domain ex-
periment with a random phase multisine (see Figure 7-15). Assuming that an integer number
of periods of the steady-state response are observed, we have

Y(k) = Gpls)Ug(k) + N (k)

(7-145)
Uk) = Uglk) + Ny(k)

with Gg(s) the related linear dynamic system (see Section 5.8), Ny(k) = My(k), and
Ny(k) = Npk) + Yg(k) + My(k). The properties of the stochastic nonlinear contributions
Y (k) are quite similar to those of the measurement and process noise in a time domain ex-
periment (see Sections 5.8 and 7.6). Therefore, Theorem 7.21, where Gy(s) is replaced by
Gr(s), remains valid (proof: see Appendix 7.V).

ny 1) +y,0

Figure 7-15. Time domain experiment: a
Ho(t) nonlinear Yol®) random phase multisine is applied to a nonlinear
plant —> plant y(r} = G[u(f)]. The DFT spectra of N
G(s) observed input-output samples are calculated.
F = O(N) DFT frequencies of the input-output
m,(t) m () g spectra are retained. m,(f) and m,(#) are the

g input and output measurement errors, n,(f) is
the process noise, and y/(r) is the stochastic
nonlinear contribution having the same
u(t) ¥(@) periodicity as the excitation u,(f).

7.20 MISSING DATA

The form of the output Y(Q, ), predicted by the model, basically changes if input and/or
output samples are missing. Instead of (7-7) and (7-8), we get the following from transfer
function models (5-49) and (5-50):

Y™Qy, 6) = Gy, OU™K) + T(Qy, 6) + 2.5G(Q, O (25", W) - 51z, W) (7-146)

with ©7 = [67yT], y the vector containing the M, missing input samples and M, miss-
ing output samples, Y™, ©) the output predicted by the model, U™(k) the DFT spectrum
of the missing input data set, and Q = z7! or s (see Section 5.3.3). Inspired by the maxi-
mum likelihood solution (7-81), we can construct the following weighted nonlinear least
squares (WNLS) estimator:
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7.21

-1 |Y™k) - Y™, 6)]2

7-147
k=0 G%(Qk’ 9) ( )

with Z® the missing data set and Y™(k) the DFT spectrum of the missing output data set.
03(2;, 0) is the variance of the output error (7-44) calculated by using the (co)variances
of the complete disturbing noise sequence (no missing samples), for example,
of(k) = var(N ng)) and o%(k) # var(NP(k)). Minimizing (7-147) wrt. © gives the
WNLS estimate Gwnis(Z™) of the plant model parameters 6 and the M, + M y missing in-
put and/or output samples y. To obtain starting values for the plant model parameters 8, the
missing data are put equal to zero (y = 0 in (7-146)). If the number of consecutive missing
samples is small, then better starting values for ¥ can be obtained via linear interpolation of
the known samples. This reduces the risk of being trapped in local minima (cost function
(7-147) has more local minima than the problem without missing data).

The properties of BwnLs (Z™) can be studied, assuming that the fraction of the missing
samples does not increase with the amount of data

ut Y 0
MM, | -148
5N O (7-148)

To show the consistency of BwnLs (Zm), more restrictive assumptions are required than for
the problem without missing data. In addition to the assumptions of Section 7.6.6 it is neces-
sary that Assumptions 7.18, 7.19 and condition (7-148) are fulfilled (see Appendix 7.W).
Note that the consistency proof relies entirely on the knowledge of the noise (co)variances.
If the noise model is unknown and a parametric noise model is identified, then the estimates
are no longer consistent. Hence, getting a consistent noise model is the key to the solution of
the missing data problem.

More information about the missing output data problem in discrete-time modeling can
be found in the literature on time series analysis (see, for example, Little and Rubin, 1987)
and system identification (see, for example, Isaksson, 1993; Goodwin and Adams, 1994;
Albertos et al., 1999). By considering the missing inputs as unknown parameters, the missing
input data problem in discrete-time modeling can be solved by classical prediction error
methods (Ljung, 1999).

MULTIVARIABLE SYSTEMS

Plant models (7-7) and (7-8) remain valid for multivariable systems. Y(£2,, 8) is then the
modeled n, by 1 output vector, G(£2;, 6) the n, by n, transfer function matrix, U(k) the
n, by 1 vector of the input DFT spectra, and T(L2,, 8) the n, by 1 vector of the plant tran-
sients.

Following the lines of the scalar case, the multivariable versions of the NLS-IO (7-42),
NLS-FRF (7-46), LOG (7-54), and ML (7-79) estimators can be constructed for any of the
multivariable parameterizations of G(€,, 6) and T(£2,, 6) described in Section 5.6 (see, for
example, Guillaume et al., 1992a, 1996b; Peeters et al., 2000). The numerical minimization
of the cost function using the Newton-Gauss scheme (7-18) is somewhat more subtle for the
multivariable estimators than for the scalar case (see Guillaume and Pintelon, 1996 for more
details).

The TWLS (7-37), WGTLS (7-75), IQML (7-96), BTLS (7-97), and IV (7-107) estima-
tors need a parameterization leading to an equation error that is linear in the model parame-
ters. If the identification starts from measured input-output DFT spectra, then the common
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denominator model (5-55) and left matrix fraction description (5-56) are suitable. The equa-
tion errors (7-9) and (7-10) remain valid with A(€2,, 6) the denominator polynomial (com-
mon denominator model (5-55)) or the n, by n, denominator matrix polynomial (left matrix
fraction description (5-56)), Y(k) the n, by 1 vector of the output DFT spectra, B(C}, 6)
the n, by n, numerator matrix polynomial, and (€2, 6) the n, by 1 vector of the plant
equivalent initial conditions. If the identification starts from the measured frequency response
matrix (see Section 2.7) then, besides the common denominator model and left matrix frac-
tion description, we can also use the right matrix fraction description (5-57). The correspond-
ing n, by 1 equation error vectors are

ey, 6, Z(k)) = Ay, O)G(Q)) - B, 6) (7-149)
for the common denominator model and left matrix fraction description and
e(€Q, 6, Z(k)) = G(QPA(,, 6) - B2, 6) (7-150)

for the right matrix fraction description. Note that constructing an appropriate frequency
weighting of the equation errors is somewhat more subtle for the multivariable WGTLS and
BTLS estimators than for the scalar case (see Pintelon et al., 1998 for more details).

The subspace algorithms (see Section 7.14) require a multivariable version of model
equation (7-119). It is easy to verify that (7-119) remains valid if Y and U in (7-115) are re-
placed by

Y = [W0)® Y1) W) ®FQ) ... W(F)® ¥(F)
(7-151)

U= [W,()® UML) W28 UQ) ... W(F)® UF)

with ® the Kronecker product (see Section 13.7), and similarly for Ny and Ny . The multi-
variable versions of Algorithms 7.24 and 7.25 can be found in McKelvey et al. (1996) and
Van Overschee and De Moor (1996a).

7.22 TRANSFER FUNCTION MODELS WITH COMPLEX

COEFFICIENTS

Typical applications of transfer function modeling with complex coefficients can be found in
nuclear magnetic resonance modeling (see Kumaresan et al., 1990 and Section 5.4) and the
identification of rotor bearing systems (see Lee, 1993; Peeters et al., 2000). Because the cost
functions of all the estimators for rational transfer function models have been developed
without using the fact that € is real, they remain valid for complex parameters 6. Also, the
properties of the estimators remain the same. Indeed, to see this, it is sufficient to replace
6 C™ by 6, € R*" and to note that Theorem 7.21 is valid, independent of the particular
parameterization chosen.

If € C™ is replaced by 8, € R>", then all the formulas for the real case apply to
the complex case, except that the real part in the definition of the inner products (7-131),
(7-137), and (7-248) should be removed. The modification of the inner product changes only
the recursion formula used to calculate the orthogonal polynomial basis (see Section 13.11).
For example, the normal equation (7-18) becomes
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J (84D, Z)A0Y = ~£, (041, Z) (7-152)

with J (0,., Z) = 9€,(0,, Z)/96,,. If the weighted residual &6, Z) is an analytic function
of 8, then (7-152) is equivalent to

J(8G-1, Z)AGD) = —g(8G-1), Z) (7-153)

with J(6, Z) = J€&(6, Z)/ 080 (see Appendix 7.X). This is the case for IWLS (7-37), NLS-IO
(7-42), NLS-FRF (7-46), LOG (7-54), IQML (7-96), and IV (7-107) estimators. This is not
true for the ML estimator because 6,(€2, 8) in (7-83) and 64(L, 8) in (7-84) are not analytic
functions of 8. Hence, the ML normal equation (7-152) cannot be simplified to (7-153).

The solution of the WGTLS (7-75) and BTLS (7-97) estimators is calculated as the
right generalized singular vector corresponding to the smallest generalized singular value of
the matrix pair (WyJ(Z),C), with W the diagonal weighting matrix (7-73),
J(Z) = 0e(6,Z)/96, and C a square root of the column covariance matrix of Wy, j.(N7),
with j(N;) = J(Z) - J(Z;). Because e(6, Z) is an analytic function of 6, the solution can
also be calculated as the right generalized singular vector corresponding to the smallest gen-
eralized singular value of the matrix pair (WJ(Z), C,) with C, a square root of the column
covariance matrix of W j(N,) (see Appendix 7.Y).

7.23 EXERCISES

7.1. Show that the signals defined in Assumption 7.11 are quasi-stationary (7-21) (hint: as-
sume that an integer number of periods is observed for periodic signals and use
u(t) = IDFT(U(k)) with UN -k) = U(k)).

7.2. Consider the setup shown in Figure 7-14 with r(#) a periodic signal and m(¢) = 0,
my(t) = 0 (no measurement errors). Show that Assumption 7.20(iii) is fulfilled (hint:
use Eq. (7-144)).

7.3. Show that the contribution of the disturbing noise to the expected value of the linear
least squares cost function is given by (7-33) (hint: use (7-12) with
A8, 8, N4(K)) = A€y, O)N y(k) - B(Q,, O)N (k).

7.4. Show that the difference between the Jacobians of the nonlinear least squares cost (7-31)
and the iterative weighted least squares cost (7-36) is given by

e, 811, Z(k))3|A(Qy, 64~ 1))
|A©,, 66-D)2  agfi D

(Uns(BF~1, Z) — g (841, 2y )y =

(hint: compare the ith Newton-Gauss step (7-17) applied to the nonlinear least squares
cost (7-31) with the ith normal equation of the IWLS cost function (7-36)).

7.5. Show that the contribution of the disturbing noise to the expected value of the nonlinear
least squares cost function is given by (7-43) (hint: wuse (7-12) with
ARy, 8, N7K) = Nyik) - G, ON(K)).

7.6. Consider the weighted generalized total least squares estimator (7-75). Show that property
5 of Theorem 7.21 is still valid to
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 max
[ wHQU) 811 @), 6, Zf M InHdf

+1

V*WGTLS(G) = —
[ WAQUNCHRAS), On(hHdf

(hint: divide the numerator and denominator of (7-75) by F and follow the lines of
Appendix 7.E, Section 7.E.3).

7.7. Assume that the errors Ny(k), N(k) on the measured input and output spectra Y(k),
U(k) are independent (over & ) random variables that are not circular complex distributed
(4 {N)z((k)} #£0, X = U,Y). Show that the Markov estimator of model (5-32) mini-

mizes

1 i ef(k, 6)07(k, 6) + ef(k, Ok (k, 6) - 2ek, )ertk, O)hi(k, 6)

2k =1 GR(ka H)GIZ(IC, 9) - Gﬁl(ks 9)
with exlk, @) = Re(e(Qy, 6, 2)), ek, §) = Im(e(Q,, 6, 2)), ok, 0) =
var(Re(e(€2,, 6, N ), of(k, 6) = var(Im(e(Q, 6, N2))), ojk, &) =

covar(Re(e(€;, 8, N ), Im(e(Q,, 6, N,))), and e(;, 6,Z) given by (7-9) (hint: use
(17-12) with €,(6, z;) = (e(€Y, 6, Z))re and ( ), defined in (13-48)).

7.8. Show that the difference between the Jacobians of the ML cost (7-79) and the IQML cost
(7-96) is given by

e(Qk) e(i_ 1)’ Z(k))ao-e(gk’ g)

oAQ, 60-D) 260 D
(hint: compare the ith Newton-Gauss step (7-17) applied to the ML cost (7-79) with the
ith normal equation of the IQML cost function (7-96)).

7.9. Assume that the wrong noise (co)variances are used in the GTLS estimator (7-71). Show
under Assumptions 7.16 and 7.17 that the bias Q(ZO) ~ 6, is given by (7-277) with

I (6Y D, 2) = o (64D, D)) g = -

n(G(L,;, 6))
2 [Yo®)*[¥o(D|*Re (—k

(Vi@ Ty + Vy) - Py (VD + V(D))

Y@ H(V k) + Vi)

where V(k), Vy(k), Vy(k), and Py(k) are defined in Appendix 7.T. Show that the
bias is not zero if the noise covariance matrix used, C N, satisfies (7-128). Note that
the bias expression for the BTLS estimator (7-97) is similar to that of the GTLS estimator.
(hint: follow the lines of Appendix 7.T; use Vy(k) = f()Vy (&), Vyk) = fRV k)
to show that the bias is not zero under condition (7-128)).

7.24 APPENDIXES
Appendix 7.A: A Second-Order Simulation Example

The second-order system G(s, 8) = 1/(1 + s+ 52) is excited at F = 100 frequen-
cies, equally distributed in the band [0.1, 10]/(27)2 Hz. The true input Uy(k) = 1 and out-
put Y (k) spectra are disturbed by independent, zero mean, circular complex Gaussian noise
with variance 0.04: Ny(k), Ny(k) € N0, 0.04) (see Section 14.1). Two sets of noisy simu-
lated data { UL1)k), YI2Xk), k = 1,2, ...,100 } and { U2(k), YI21(k), £ = 1,2,...,100}
are generated. The noisy frequency response function G(s;), shown in Figure 7-1, is the ratio
of the averaged output Y(k) = (YII(k)+Y2(k))/2 to the averaged input
Uk) = (UNKk) + UT2I(k))/2 spectra and is used as simulation data for the least squares
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(LS), iterative weighted least squares (IWLS), nonlinear least squares based on frequency re-
sponse function (NLS-FRF), total least squares (TLS), logarithmic least squares (LOG), and
subspace (SUB) estimators. The nonlinear least squares based on input-output data (NLS,
NLS-IO), generalized total least squares (GTLS), maximum likelihood (ML), iterative qua-
dratic maximum likelihood (IQML), and bootstrapped total least squares (BTLS) estimators
use the averaged input U(k) and output Y (k) spectra as simulation data, and the instrumental
variables (IV) method uses the two original noisy data sets separately. The constraint
(613 = 1 is used to calculate all the estimates except for the SUB algorithm, which uses no
constraint, and for the LS, IWLS, IQML, and IV methods, which use ¢, = 1.

Appendix 7.B: Signal-to-Noise Ratio of DFT Spectra
Measurements of Random Excitations

Consider a random excitation x(f), which is mixing of order 2 (the mixing condition
limits the span of dependence of x(¢), see Section 14.4) and with var(x(?)) > 0 for any ¢, in-

finity included. The variance of its DFT spectrum X(k) = N-1/2 f’;ol x(H)zz* equals

var(X(k)) = 1%2:’,;21: o covar(x(y), x(1))z; 1" (7-154)

Because x(7) is mixing of order 2, we have that (see (13-38) with cum(x, y) = covar(x, y))
N-1
X glcovarGe(y), x(e)| = OW)

and, hence, (7-154) can be bounded above by
1 on-
var(X(k) < £ 3,7 o eovar(x(zy), x(2)] = OV®) (7-155)

The same reasoning holds for disturbing noise v(¢) satisfying the same conditions as x(z), so
that the signal-to-noise ratio [var(X(k))/ var(V(k))]!/2 is an O(NY).

Appendix 7.C: Signal-to-Noise Ratio of DFT Spectra
Measurements of Periodic Excitations

Consider a multisine x(#) with finite power, N —12?’;01 x2(tT) = O(NY), and consist-
ing of F harmonically related frequencies

x0) = Y5 _ Asin@nm,fot + ) (7-156)

where m, e N, r = 1,2, ..., F and m| <m, < :» <mg. Assume that we observe the multi-
sine during an integer number of periods, NT /T, = Nf,/ f, € N, and that we respect the
Nyquist condition myf; < f,/2. Assume, furthermore, that the disturbing noise v(#) is mix-
ing of order 2 with var(v(z)) >0 for any #, infinity included. Here, we handle two cases: F
is independent of N, F = O(N9), and F increases withN, F = O(N).

7.C.1 F Is Independent of N. Because F is independent of N and x(¢#) has finite
power, we have A, = ON%, r=1,2,...,F. Using sin(x) = (e/*-e*)/(2j),
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2?’:—01 xt = (1-xM)/(1-x), and ¥ =1, the DFT  spectrum  X(k) =

N-V2ZYN =D X(tT )z equals

2£-VAr o k% = mrfO
Xk = {7 ; (7-157)
0 kﬁs;tmrfo

for k=0,1,....,N/2 with X(N-k) = X(k) for k = N/2+1,...,N-1. Because
A, = O(N%, wehave X(k) = O(N'/2) at the excited DFT frequencies. For disturbing noise
v(#), which is mixing of order 2, we have var(V(k)) = O(N? (see Appendix 7.B) so that
the signal-to-noise ratio |X(k)|/ +/var(V(k)) of the multisine at the excited DFT frequencies
increases as O(N1/2),

7.C.2 F Increases as O(N). Because F = O(N) and x(¢) has finite power, we
have A, = O(N-1/2), r = 1,2, ..., F, and, hence, |X(k)| = O(N®) at the excited frequen-
cies (see (7-157)). Combining this result with var(V(k)) = O(N?% (see Appendix 7.B) gives
|X(k)|/ var(V(k)) = O(NO).

Appendix 7.D: Asymptotic Behavior Cost Function for a
Time Domain Experiment

The cost functions that can handle time domain experiments can be written as

Ve6,2) = . 3. Wi, O)Y() - Gy, OUR) - T, O (7-158)
ke ¥

with F a subset of the DFT frequencies {0, 1, ..., N -1} and W(£2, 6) the absolute value of
a rational function of . We will show that

ViH6,2) = %kzp W2, )|Y(k) - G(Q,, HUK)|> + R(6) (7-159)

with R(6) = O,(F -1y uniformly in @,.
Elaborating (7-158) gives (7-159) with

RO = 7 3, WAQ, O[T, O
P (7-160)

- 2Re(}pkzF WAQ,, O)(Y () - Gy, HURNTE,, )

The first term in (7-160) is an O, (F ~1) because the numerator coefficients of T(Q, 6) tend to
zero as O(F -1/2) (Lemma 5.7). The second term in (7-160) can be written as the sum of two
terms of the form
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Fa/z 3, XWF @, 0) (7-161)

with X = Y or U and F(£, 6) a noncausal, rational filter of finite order (independent of
F). The additional factor F-1/2 stems from the numerator coefficients of T(£2, 8). We now
extend the sum in (7-161) to all the DFT frequencies

ZRC(Fm ZPX(k)F(Qk’ 0) = I%,ZZk”;(l,Xl(k)F(Qk, 0) (7-162)
with
X,k = {XI(N—k) = X(k) keF 1-163)
0 elsewhere

Using X (k) = X,(k)F(Q;, ) and F = O(N), (7-162) becomes

XN e X ) = I;/;zxf(O) O(F-1)x(0) (7-164)

where x f(t) = IDFT(X f(k)) is, within some transient effects, the response of x,(¢) to the
noncausal rational filter F(Q, 8). The original noisy signal x(¢) consists of the sum of a
signal term x,(f) and a noise term n,(f) that satisfy respectively Assumptions 7.1 and 7.3.
Therefore, the second-order moments of x,(f) and n(#) are uniformly bounded. This is also
valid for x,(f) = IDFT(X,(k)) because it is obtained by replacing the original DFT spectrum
X(k) by zeros at some DFT frequencies (see (7-163) with F < {0, 1, ..., N—1}). Finally,
the second-order moments of x.(r) are uniformly bounded because it is, within some
transient effects, the response of x,(f} to the noncausal rational filter F(, 6). Hence,
x[{0) = O,(F% sothat R(6) = O,(F') uniformly in 6,, which concludes the proof. Note
that using Lemma 14.23 exactly the same reasoning can be followed for the noise transient
terms in N (k) and N (k). O

Appendix 7.E: Asymptotic Properties of Frequency
Domain Estimators with Deterministic
Weighting (Theorem 7.21)

If the frequency domain errors of the time and frequency domain experiments were
mixing of order four (infinity), then Theorem 7.21 (except property 5) would follow immedi-
ately from the results of Chapters 15 and 17 (then the assumptions of Section 7.6 fulfill all the
necessary conditions). For the frequency domain experiment the frequency domain errors are
mixing of order four (Assumption 7.4) but not of order infinity (moments of order higher than
4 + & do not necessarily exist, see Assumption 7.13). Hence, properties 1, 2, 3, 6, and 7 are
valid but properties 4 and 8 still remain to be proved. Because after a DFT the noise is not
mixing of order four (infinity) (see Section 14.16), all the properties of Theorem 7.21 remain
to be proved for the time domain experiment. Fortunately, the resulting technical difficulties
in the proofs can easily be solved using the results of Section 14.16. To understand fully the
proofs of this appendix, we advise reading Chapter 15 first.
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7.E.1 Stochastic Convergence (Properties 1, 2, 3, 6, and 7). For the frequency do-
main experiment, properties 1, 2, 3, 6, and 7 follow directly from Theorems 15.6, 15.19,
15.21, 15.11, and 15.28, respectively. To show that the properties are valid for the time do-
main experiment, it is sufficient to show that the cost function and its higher order derivatives
w.r.t. 8 still converge strongly (weakly) and uniformly in @, to their expected values when
the mixing assumption of order four (Assumption 15.1 with P = 4) is replaced by Assump-
tion 7.3. We will prove this for the cost function; the proof for its higher order derivatives
w.r.t. 8 follows exactly the same lines.

Because A(L2y, 6, N (k)) is linear in N (k) with A(€Q,, 6,0) = 0 (see (7-12)) we have
A(Q,, 8, N(k)) = M (Q,, O)N (k) with M,(Q,, ) e C1*2. It facilitates rewriting (7-13)
as

Ve6.2) = Vi(6,Z9 + 235 _ | [M (@, ON ()2
1 (7-165)
+ 2Re(;,2£ _ My(Q, ON (k)

with M,(&Q,, 68) = &K, 6, Z (k)M ,(Q,, 6). Vi(6,Z;), M(Q, 6), and M,(L,, 6) are
continuous in 8, (Assumption 7.6) and, therefore, also uniformly bounded in @, . If the input
is random, then V (6, Z;) and M,(Q,, 6) have uniformly bounded second-order moments
(see Assumption 7.1). Hence, under Assumptions 7.1, 7.3, and 7.6, the sums in (7-165),

Ve®, Z9), 130, IM\(Qp ONAR? and 2Re(EYF_ My @y ONAL)  (7-166)

satisfy the conditions of Theorems 14.28 and 14.32 (strong laws of large numbers) and, there-
fore, converge uniformly w.p. 1 to their expected value at the rate O (F-!/?) in the compact
set 8,. We conclude that V (6, Z) converges uniformly w.p. 1 to its expected value V() at
the rate O,(F-1/2) in 8,.

For the consistency and the bias (properties 6 and 7), we have to make a distinction be-
tween correct models ((7-7) with Q = z-1, s, s, or tanh(tgs) and (7-8) with Q = z71)
and asymptotically correct models ((7-8) with Q = 5). For the correct models we have
&Z, = 6, and for the asymptotically correct model, 8, = hm &Z,) = 6, (Assumption
7.17). Note that for the signals defined in the time domain expeﬁment (Assumption 7.1), the
model error &(s,) of (7-8) with Q = s converges weakly to zero at the rate O, (F-1/2)
(Lemma 5.6, with F = O(N) for a time domain experiment). Hence, xZ) is weakly consis-
tent with bias O(F~1/2) for model (7-8) with & = s.

7.E.2 Asymptotic Normality (Properties 4 and 6). JF(&Z) - &Z,)) is asymptotl-
cally normally distributed if and only if JF 842), and, hence, the vector JFVE (G(ZO) Z)
is asymptotically normally distributed (see (7-25)). Taking the derivative of (7-11) wr.t. 6
gives for JEVE T(E)(ZO), Z)

- 08(Q,, 8, Z(H))\H -
JEVET @z, 2 = L3 12Re((—‘9((,,—’i—z—(—))) §(Qy, BZy), Z(0)
JF Zy) (7-167)

x(k)

_lgF
_ﬁ2k=l
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where x(k) depends on zero, first, and second order powers of N (k). We will show here that
(7-167) is asymptotically normally distributed for a frequency domain experiment (Assump-
tion 7.13) and for a time domain experiment (Assumption 7.12).

Under Assumption 7.13 (frequency domain experiment) x(k) is independently distrib-
uted (over the frequency k) with bounded absolute moments of order 2 + € and 3 and with
Zf _,var(x(k)) = O(F). Hence, F -1/ 2Zf= (k) converges in law to a normal distribution

at the rate O(F-1/2) (see Section 14.10, version 2 of the central limit theorem).

Each entry of x(k) in (7-167) can be written as the sum of terms of the form X(k) V()
where V(k) and X(k) depend either on the disturbing noise or on the true input-output DFT
spectra. We now study the sum

F12%7  X(k)V(k) (7-168)

under Assumptions 7.1, 7.11, and 7.12 for each combination of X(k), V(k) giving a random
term X(k)V(k). If V(k) and X(k) depend on the DFT spectrum of one of the following sig-
nals, filtered iid noise, a normalized nonrandom periodic excitation (see Definition 3.4), a
normalized random multisine (see Definition 3.2), or normalized periodic noise (see Defini-
tion 3.4), then (7-168) converges in law to a normal distribution at the rate O(F-1/2) (proof:
apply Theorems 14.29 and 14.33). We conclude that F -I’ZZL , X(k) converges in law to a
normal distribution at the rate O(F-1/2),

7.E.3 Deterministic Convergence (Property 5). Theorem 15.24 is valid if Assump-
tions 15.4, 1522, and 15.23 are fulfilled. We will show that the expected value of the cost
function V() converges uniformly in @, to V.(6) at the rate O(F-2). The proof for V;'(6)
and V;"(0) follows the same lines. The expected value of the cost function equals (see
(7-11))

VO = 335 8{|&Q; 6,ZM)2) (7-169)

Note that for a time domain experiment the influence of the transient term T(L2,, 6) in the
cost function V (6, Z) can be neglected in the convergence rate analysis (see Appendix 7.D).
Let 8 { |(Q(f), 6, Z())I?} be the limit value (F — o) of & { |&(Q,, 6, Z(k))|?}. We have

E{ |, 6, Z(K)|2} = 81|, 6, Z(MH)I? (7-170)

}|f=fk

for a frequency domain experiment, whereas due to the leakage errors in the DFT spectra of
the true input-output signals Z, and/or the disturbing noise N (k)

& ey, 6, Z(k)|*} = E{ Q) 6, ZUDIPY|, _ , +OF) (7-171)

for a time domain experiment (see Section 2.2 and Appendix 5.F with F = O(N)). Under
Assumptions 7.14 and 7.15 the Riemann sum

LyF_ &=, 6,200, , (7-172)
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converges to
V.6 = jjf'“‘_“@{le(n(f), 8, Z()2}n(f)df (7-173)

at the rate O(F-2) (see Ralston and Rabinowitz, 1984; midpoint rule (4.10-10)). Hence, the
convergence rate of V(6) to V.(6) is an O(F-2) for a frequency domain experiment and an
O(F-1) for a time domain experiment. Under Assumption 7.6 & { |&(%,, 6, Z(k))|?} is a con-
tinuous function of @€ @,, and, hence, also uniformly bounded in ®,. Therefore, the conver-
gence of V(6) to V.(6) is uniform in §,. Note that the integrand in (7-173) may be zero in
some subintervals of [ f .., fma]- In that case, the integral can be written as the sum of inte-
grals. We conclude that Theorem 15.24 is valid with X = 2 for a frequency domain experi-
ment and X = 1 for a time domain experiment.

7.E.4 Asymptotic Efficiency (Property 8§). In the efficiency study, the covariance
matrix of the limiting random variable 64Z) or the truncated estimate @(Z) is compared
with the Cramér-Rao lower bound (14-88). As the bias b, and the derivative of the bias w.r.t.
6, of the truncated estimate @(Z) tend to zero as O(F-!) (property 7) and Cov(8«Z))
(Cov(@(Z))) tends to zero as O(F-1) (Assumption 7.9), it is sufficient to compare
Cov(84Z)) or Cov(&Z)) with F i-1(6,) in (14-88).

Under Assumptions 7.18 and 7.19 the Fisher information matrix of the model parame-
ters is given by

9&(6), Zo))H(ae(e’ Zo>)) (7-174)

Fi(8y) = FV;'(8y) = 2Re(( 35, 35,

(see Section 17.3, formula (17-22)).

Under Assumption 7.18, (7-82) is a Markov estimator. For such an estimator the ex-
pression of the covariance matrix (7-26) can be elaborated. The cost function V(8, Z) can be
written as

V(6,2) = £4(8,2)6(6,2) = 3(-/2eul6, 2)) (N26(6, 2))

and similarly for v(8, Z) in (7-13). Therefore, Theorem 17.3 is still valid when &(6, z) and
A(6,n,) are replaced by ﬁe,e(e, Z) and ﬁAm(B, N), respectively (compare (7-11) and
(7-13) with (17-8)). Applying Lemmas 13.3 and 13.4 to expression (17-32) of Theorem 17.3,
we get

Cov(ﬁSa(Z)) = V" 1(6p) + V"1 (8 g () V"~ 1(6,)
qi(6p) = FE{vpT(8y, NOve' (8, Ny} +

96(8, Z)\H
2Re(2herm(& { [—8(89—00)) JE A8y, N)vi' (64, N2) 1))

(7-175)

where vi(6, N;) = AH(6, N,)A(B, N)/F is defined in (7-13) and where the expected values
are taken w.r.t. to the disturbing noise N, and the observations Z,,.

Under Assumptions 7.18 and 7.19, (7-82) is the maximum likelihood solution. Com-
paring (7-175) with (7-174) for deterministic Z, and Gaussian errors N, (Assumptions 7.18
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and 7.19) shows that in general the maximum likelihood solution is asymptotically ineffi-
cient, g(6;) # 0. Under Assumption 7.20 the rank of the 2F by 2F matrix Cy_ equals F
Applying Theorem 17.4 with r = 1 and ¢t = 2 shows, then, that vg(8, N) is independent
of 8, so that gz(8;) = 0. We conclude that the maximum likelihood estimate is asymptoti-
cally efficient under Assumption 7.20.

To analyze the influence of the noise level v on the inefficiency term in (7-175), we
apply quick tool number 6 of Section 7.5. It follows that V;"-1(8) = O(v?) and
qr(6p) = O(v1), which gives (7-90). If the pdf of N, is even, then the second term in the
expression of gg(8,) is zero, so that gz(8;) = O(VY). O

Appendix 7.F: Asymptotic Properties of Frequency
Domain Estimators with Stochastic
Weighting (Corollary 7.22)

To understand fully the proof of this appendix, we advise reading Chapters 15 and

16 first. To prove the corollary, it is sufficient to verify that all the conditions of the
theorems in Chapter 16 are fulfilled. The cost function V(8, Z)/F (7-14), where the
stochastic vector 1(Z) has been replaced by the deterministic vector 77, is denoted by
Fr(6,n,2Z). Clearly, fz(0,1n,Z) satisfies the assumptions of Section 7.6. Therefore the
cost function fz(6, 1, Z) and its higher order derivatives w.r.t. 8 converge w.p. 1 to their
expected values (proof: follow the same lines as in Appendix 7.E). By assumption, the
stochastic vector 7(Z) satisfies all the properties of Theorem 7.21, and the cost function
f#(6,n, Z) has continuous third-order derivatives w.r.t. x = [67nT]T. We conclude that
all the assumptions of Chapter 16 are fulfilled. From Theorems 16.5 and 16.6, it follows
that ~G(Zo) and 6, are the minimizers of, respectively, Vg(6) = &{ f(6, n., Z)} and
V(0 = llmg { (6, N+, Z)}. The expected value of 64Z) may not exist because the

moments of n(Z) in VF(O(ZO), Z) = f£(6, n(Z), Z) do not necessarily exist. Moreover, if it
exists, we will have, in general, &{84Z)} #0. Equation (7-30) follows from Theorem
16.25. Because 1(Z) satisfies, by assumption, Theorem 7.21, it follows directly that
M(Z) — n. is given by BH(Z) (7-25) in Theorem 16.25. O

Appendix 7.G: Expected Value of an Analytic Function

Consider an analytic function f(z) that has the property f(0) = 0. Its Taylor series
expansion at the origin is then given by

f@=Y" A r( )z’ forany |z| <R (7-176)

r=1

with R the convergence radius. For zero mean circular complex errors z (see Assumption
7.18), we have &{z} = 0 and 8{ 72} = 0. If, in addition, the errors have an even pdf, then
&{z27+1} = 0. Hence, for uniformly bounded random variables |z| < R the expected value
of (7-176) becomes

(2r)
8{f@) = ';°=2f(2—r§(!’)5{z2r} = 06 () (7-177)
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For circular complex normally distributed z we also have &{z"} = 0 (see Exercise
14.8) and, hence, &{ f(z)} = 0 if R = oo,

The two functions of interest are f(z) = 1/(1 +z)-1 and f(z) = In(1 +z). Both
functions have the property f(0) = O and the convergence radius of their Taylor series ex-
pansion at the originis R = 1. Hence, for circular complex uniformly bounded noise |z| < 1
with even pdf we have

E{1/(1+2)-1} = 08{7*)) and &{ln(+2)} = OE{z*}) (7-178)

For unbounded noise, the Taylor series expansion (7-176) diverges for all realizations |z| > 1
and (7-178) is no longer valid. However, for sufficiently large signal-to-noise ratios
&(12)2} « 1, the probability to “hit” a value |z| =1 is small and (7-177) is a very good ap-
proximation. For example, for Gaussian noise the right-hand sides of (7-178) would be zero,
while the expected value is a very small number, given by

81 ILH -1} = —exp(—l/cg) and&{In(l +2)} = —%Ei(—l/cg) (7-179)

with 62 = &{|z/?} and Ei( ) the exponential integral function (Guillaume et al., 1992b).
Applying to (7-179) to (7-55) with z = N(k)/Y4(k) and z = N (k)/ U k) gives (7-56).
Using (7-48), the expected value of N (k)/Gy(2,) (7-47) can be written as

v
1+z

oK) (k) Uy(k) ,
o2(k) Y k)

B(N)/GyQ) = 811 +p®) (f=} (180

where z = Ny(k)/Uyk) and v = Ny(k)/Uyk). Using z =m+v with m =
M(k)/Uyk) we find

v 1 1+v 1 1
= _ = |- 1 —_— 1 7-181
1+z 1+z+1+m+v ( l+z+ )+(1+m/(1+v) ) ( )

The expected value of the second term in (7-181) is further elaborated. Because m and v are
mutually independent, we have

1 _ 1
8l iy~ = 8 ey~ D)
= &{—exp(-|1 +v|2/062)} (7-182)

= —exp(-1/62)62 /62

with 62 = o2 + 2. The second equality uses (7-179) and the third equality uses the circu-
lar complex normality of v. Collecting (7-179), (7-181), and (7-182) gives

8 1L+z } = exp(-1/62)62/62 (7-183)
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Putting (7-183), with 62 = 63 (k)/|U,R)|? and 62 = o}(K)/|Ug(k)
(7-49).

2, into (7-180) gives
O

Appendix 7.H: Total Least Squares Solution—
Equivalences (Lemma 7.23)

To simplify the notations, we put A = Wy J (Z)C-! and x = CO. This facilitates
writing (7-61) and (7-63) as Ax =0 and

arg min]|A — A subjectto Ax = 0 and |Ix[2 = 1 (7-184)
A, x

respectively. Using the method of the Lagrange multipliers, the constrained minimization
problem (7-184) can be reformulated as follows:

arg min trace((A - AY(A-A)) + uTAx subjectto x|} = 1 (7-185)
A x,u

where gt e R?F is a Lagrange multiplier vector. Expressing the stationarity of the preceding
cost function w.rt. A yields

—2(A-A)+uxT =0 or2(A-A) = uxT (7-186)

(use derivative rule (13-62) of Section 13.9.2 and uTAx = trace(u?’Ax)). Right multiplica-
tion of (7-186) by x, taking into account that Ax = 0 (stationary cost function w.r.t. u),
gives u = 2Ax/||x||3. Elimination of g in (7-186) gives the following expression:
A—A = Axx"/|x|3. Replacing A— A in (7-185) by this expression and taking into ac-
count the constraint Ax = 0 results in

arg :ninlleII%/ |x||2 subjectto ||lx]3 = 1 (7-187)

We will show that the constrained minimization problem (7-187) is equivalent to

1. arg min|Ax[3/]|x(3

2. arg minj|Ax||? subject to ||x]|3 = 1

3. Finéing the eigenvector x corresponding to the smallest eigenvalue A of the
eigenvalue problem ATAx = Ax.

In equivalent form number 1 the norm constraint is already included in the cost function, there-
fore the constraint [[x}}2 = 1 in (7-187) can be removed. Equivalence 2 follows directly from
equivalence 1. To prove equivalent form number 3, we reformulate equivalence 2 using a
Lagrange multiplier A

arg min|4x]3 - Al - 1) (7-188)
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Expressing the stationarity of the preceding cost function w.r.t. x yields
xTATA - AxT = 0 or ATAx = Ax (7-189)
subject to f|x|2 = 1 (stationarity cost function w.r.t. ), which is an eigenvalue problem.
Putting the solutions (x,, A,), k = 1,2, ..., ny of (7-189) in (7-188) taking into account the

constraint ||x]|2 = 1 gives

argmin A,  k=1,2,...,np, (7-190)
xk,k

It shows that the eigenvector x, corresponding to the smallest eigenvalue A, of A minimizes
(7-188).
Substituting A = Wy J (Z)C-! and x = C8 into equivalence 3 of (7-187) gives
CT (Wi J (2T (Wi J(2))0 = ACEO (7-191)

Left multiplication of (7-191) by C7 gives equivalence 3 of the lemma. Making the same
substitution in equivalences 1 and 2 of (7-187), and taking into account that

lAx3 = |WreJ D83 = [(WI2)6) ]2 = IWIZ)6l3 (7-192)

(see Lemma 13.4), proves equivalences 1 and 2 of the lemma. O

Appendix 7.1: Expected Value Total Least Squares
Cost Function

Because ||j(N)6|? is a real number, we have
E{|iNpO|3} = Re@G {67 j(N,j(N;)O}) = 078 {Re(jH(N ) j(N ) } 6 (7-193)

with Re( (N j(N,) = jL(N,)j.(N;) (Lemma 13.4), which proves the first equality in
(7-66). Using j(N,)@ = (J(Z) - J(Zy)B8 = e(B, Z) — (B, Z) we find

E{|jN)O| 2} = S5 _, 62, 6) (7-194)

which proves the second equality in (7-66). O

Appendix 7.J: Explicit Form of the Total Least Squares
Cost Function

7.J.1 Total Least Squares. Using (7-59), the cost function appearing in equivalence
number 2 of Lemma 7.23, with C = Ine and W = I, can be written as

112812 = lle(8, 2)13 = X _ (S 8, Z(K))|2 (7-195)
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which is exactly (7-64). For the TLS with weight (7-68) we have
IWIZ)69]3 = [We(0D, D), = 35 WAQ,, 66-D)[e(@,, 69, ZK)|>  (7-196)

which is exactly (7-37).

7.J.2 Generalized Total Least Squares. According to equivalence number 1 of
Lemma 7.23, with W = I, the GTLS cost function equals

Vors(8 Z) = V@2)yal3/1Ca3 (7-197)
Using CTC = &{Re(jH(N,)j(N,)} and (7-194) we can rewrite |C 6|3 as
ICOlI3 = E{6TRe(GE(N ) j(N)0} = E{|jN)HG2} = Z,I::IO'E(Q,C, )] (7-198)

Division of (7-195) by (7-198) gives (7-71).
For the WGTLS estimator with left and right weighting (7-73) and (7-74), we have

Vwers(6, 2) = (WI@)dl3/ICa3 (7-199)
(see Lemma 7.23, equivalence number 1). Following the same lines as for (7-198), we find

ICOl} = 8{|WjN,86|2}. Applying (7-196) to [WJ(2)6[3 and (7-194) to
E{|WjiNO|?} gives (7-75) after division. O

Appendix 7.K: Rank of the Column Covariance Matrix

We will show that the rank of the column covariance matrix Cy,; (7-74) is rank defi-
cient under Assumption 7.20(i) or 7.20(ii). For the diagonal weighting (7-73), the kth row of
Wj(Nz), with j(N;) = J(Z)-J(Z,), can be written as

(WilND)y, ., = WQONZK)ST(k) (7-200)

with NI(k) = [Ny(k) Ny(o)],

ST(k) = [P i) 0 } (7-201)
0 -PI(n,)

and Pl(n) = [1 Q, .. Qlﬂ. The column covariance matrix Cy,; (7-74) then becomes
Cyy = E{Re((WHNH(WIN) ) = Re(SF_, WAQ)S(K)Cov(N (k)SH(®K)) (7-202)
Under Assumption 7.20, Cov(N 4(k)) has rank one for k = 1,2, ..., F, so that

Cov(N (k) = c(k)cH(k) (7-203)
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with c(k) € C? (see the SVD expansion (13-18)). Using (7-203), (7-202) can be written as
Cw; = Re(BEB) = BLB,, where the k th row of B is given by

By = WQYHRISHE) = W) [e, (0P f(n,) ~cy(K)PE(ry)] (7-204)

and where the rank of B, determines the rank of Cy,;. According to Assumption 7.20, we
can distinguish three cases. Under Assumption 7.20(i), there is no input noise and
k)20, cpyk) = 0 for any k, so that rank(B,.) = n,+ 1. Under Assumption 7.20(i),
there is no output noise, and c(;1(k) = 0, c¢[)(k) 20 for any k, so that rank(B,) = n, + 1.
Under Assumption 7.20(iii), the input-output errors are totally correlated and cy;(k) #0,
c[2j(k) #0 for any , so that in general B,, is of full rank. It is rank deficient only if, in addi-
tion, c;4(k)/ ¢y (k) is real and independent of k. This is, for example, the case for totally
correlated white noise errors ny(t), n,(t) (Cov(N,(k)) is then independent of k). O

Appendix 7.L: Calculation of the Gaussian Maximum
Likelihood Estimate

7.L.1 Gaussian Log-Likelihood Function. Under Assumptions 7.5, 7.18, and 7.19,
the pdf of N, is given by

f v,V 7 = exp(-NEC ,—,12 N,) (7-205)

1
nFdet(C Nz)
(see (14-14)) with C N, = Cov(N ),

Cy, = diag(Cov(N (1)), CoV(N(2)), .., Cov(N ,(F)))

7-206
COV(NZ(k)) = G%’(k) G%U(k) ( )
Gyk) ofk)

If Cy, is singular, then C;,lz and det(Cy ) are replaced by Cy_ and the product of the non-
zero eigenvalues of C Ny respectively. Replacing N, by Z-Z; in (7-205) and taking the
negative of the natural logarithm gives the negative log-likelihood function

In fy (2.2, 0) = (Z-Z)HC} (Z-Z,) +c (7-207)

with ¢ = Fln(m) + In(det(Cy_)).

7.L.2 Elimination of the Unknown Input-Output DFT Spectra in the Cost
Function. Using Lemmas 13.3 and 13.4, Example 13.5 and Exercise 14.4, (7-78) can be
written as

pre) T ALle (6, Z) (7-208)

1 T
5Ze=Zp) Ck, (Ze=Z
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where Cyy = Cov(Ng,) = 0.5(Cy ), with Cy = Cov(N,). Because e,(6,Z)) is lin-
ear in Z, e minimization problem (7-208) is exactly equivalent to (17-6), and, hence, all the
results of Section 17.2 are valid. Elimination of Z, in (7-208) gives (17-8)

Vo (6, 2) = %eg;(e, Z)C;1(B)e (6, 2) (7-209)

with Cem(ﬂ) = Cov(e,(8, N;)). Because the noise residual e(8, N,) is linear in N, it is
complex circular

E{(e(6,Nz) -8 {e(6, N7 )(e(6, N -E{e(d, N DT} = 0 (7-210)

and Cem(e) = 0.5(C(6))g, (see Exercise 14.4). Note that &{e(6,N;)} #0 for model
(7-10). Applying the result of 13.5 to (7-209) under Assumption 7.18 gives

C,(6) = Cov(e(6, N;)) = diag(c2(€2;, 6), 6X,, 6), ..., 6HQp, 6) )
which is exactly (7-79).

In the derivation of (7-211), we implicitly assumed that no DC (€,) and no Nyquist
(Qy,-) components were present in the data. Indeed, expressions (7-77) and (7-78) are valid
only if all the elements of Z are complex, which is not the case for the DC and Nyquist com-
ponents (real numbers). If DC and Nyquist are present, then under Assumption 7.18 the terms

17 1
5NZO)(Cov(NZ(0)'NZ(0) + NE(N/2)(Cov(N (N /2)))' NE(N/2) (7-212)

+ Age(Qq, 8, Zy(0) + Ay 2e(Qy 15, 6, Z,(N/2))

where N (0), NAN/2), Ay, Ay €8, 6, Zp(O)), and e(Qy,,, 6, Z,(N/2)) are real
numbers, should be added to (7-78) and (7-208). Their contribution to (7-209) equals

1€X(Qg, 6, Z(0))  1€X(Qy,y, 8, Z(N/2))

7-213
2 0XQy 0 2 o0Qy,, 0 (7-213)

Because (€2, 6, Z(0)) and e(2y, 5, 6, Z(N/2)) are real numbers, the terms (7-213) remain
unchanged in the transformation from (7-209) to (7-211).

7.L.3 Maximum Likelihood Estimate of the Input and Output DFT Spectra. In the
previous section, it was shown that all the results of Section 17.2 are valid for Z .. Hence, the
ML estimate Z,. of the true DFT spectra Z,, equals (17-11)

Cy,,Ch, Zre = Cy, Ch, Zre— Cn, MI(BYC;(B)e, (8, 2) (7-214)

with 8 = &y(Z) and
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dRe(e(6, Z)) dRe(e(6, Z))
9¢(6,2) _ | 9Re(2) olm(Z)
0Z, 9Im(e(6, Z)) dIm(e(6, Z))
oRe(Z) oIm(Z)

M(6) = (7-215)

Because ¢(8, Z) is an analytic function of Z, it satisfies the Cauchy-Riemann equations

oRe(e(6, 2)) _ dlm(e(6, Z))

dRe(Z) =~ 9Im(2)
(7-216)
ORe(e(6,2)) _ dlm(e(6, 2))
olm(Z) dRe(2)
(Henrici, 1974). Applying (7-216) to (7-215) gives
dRe(e(8,Z)) oIm(e(, 2))
_ | 9Re(Z) dRe(Z) | _ (0e(6,2)
M(6) = = [ 2= 7-217
6 dIm(e(6, Z)) ORe(e(6, Z)) ( 0Z )Re (7-217)
dRe(Z) dRe(Z)
Using (7-217), C, (6) = 0.5(C(6))g,» Cu, = 0.5(Cy )y, and Lemmas 13.3 and 13.4,

(7-214) becomes

Cn,Ch 2 = Cy Ct Z—Cy MEB)C;1(B)e(B, Z)
3e(6,2) _ .. (7-218)
M(g) = —'az’—— = dlag([A(Qp 6) —B(Qp 6)]’ saey [A(QFa 0) _B(QF’ 9)])

Putting (7-206) and (7-211) in (7-218) assuming that C N, is regular (CNZC,T,Z =Ip) gives
(7-85). Note that the solution (7-85) remains well defined if C N, is singular.

7.L.4 Minimization of the Maximum Likelihood Cost Function. The maximum
likelihood cost function (7-82) is minimized using the Newton-Gauss algorithm (7-18). It re-
quires the calculation of the Jacobian matrix J(6, Z) = 0&(8, Z)/ 96, where £(6, Z) is given
by (7-83) or (7-84). In this appendix an explicit expression of the Jacobian matrix J(6, Z) is
given for rational transfer function models (cost function (7-82) with weighted residual
(7-83)). The calculation of J(8, Z) for the other transfer function models (partial fraction ex-
pansion and state space representation) follows exactly the same lines (cost function (7-82)
with weighted residual (7-84)).

Using (7-10), (7-34), and (7-83) we find for k = 1,2, ..., F,

08(€Y;, 6, Z(k))

da,
_ Q]'C‘Y(k) _ S(Qky 9, Z(k))
T 0,(Q,60 oXQ,6)

Jig re1)(6, 2) =

Re(Q[[6}(k)A(Q,, 6) - 63, (k)B(Q,, O)])

withr =0,1,...,n,
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ag(gk’ 99 Z(k))

ob

_ -QrU(k) N &8, 6, Z(k)
0 0) 07 6)

J[k,nn+r+2](9’ Z) =

r

Re(Q{[03 (KB, 6) - 53, (AL, 6)D

with r = 0, 1, ..., n,, and

08Qy, 6,20) -9
J[k, 'la+"b+"+3](e’ Z) = 81‘, = Ge(Qk, (7))

with r = 0, 1, ..., n;. If a constraint of the form 6;; = 1 is used, then the corresponding
column in J(6, Z) must be eliminated. If the constraint ||63 = 1 is used, then (7-18) is
solved using the pseudoinverse (see Section 13.5) and 6 = @i~ + A6® is normalized
(6% — 60)/||6D),) before making a new iteration step (i — i + 1).

The Levenberg-Marquardt version of (7-16) with constraint 6;; = 1 is
(JL(BU-D, Z)J (6¢-D, Z) + XZI,,B)AG(") = —JT(60-D, Z)e (641, Z) (7-219)
(see Fletcher, 1991). The numerical stability of (7-219) is improved by solving the overdeter-

mined set of equations

Al 0

]

|:Jre(0(i_ 1)’ 2)} Ae(i) = _I:ere(e(i_ 1)’ Z)‘| (7-220)

using a QR factorization (see Section 13.4.3). If the constraint |8, = 1 is used, then the
Levenberg-Marquardt version of (7-18) is calculated as

AGD) = —VAUTe, (64-1, Z) (7-221)

with
Jre(e(i_ 1), Z) = Udiag(Gl, 62, “eey G"B_ 12 O)VT
. G, G, O-n,,—l
A = dia . g seey s 0
' g(<512+)»2 63 +AY ok + A2 )

and 6,206,2 ... 20, _;. The initial value of A in (7-220) and (7-221) is chosen propor-
tional to the largest singular value of J, (6, Z), for example, A = &,/100. If the iteration
step 69 = 6(-D 4+ ABD s successful (the ML cost function decreases), then A is de-
creased as A — 0.4A; otherwise (the ML cost function increases) A is increased as
A — 10A and the iteration is restarted from 6(-1),
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Appendix 7.M: Number of Free Parameters
in an Errors-in-Variables Problem

The total number of free parameters in an errors-in-variables problem (7-1) equals the
sum of the number of free parameters in Zo,. and the number of free model parameters in 6.
According to Section 17.3, the number of free parameters in Zore equals rank(C N, ) 2F.
Using Cy, = 0.5(Cy ), and rank((Cy )p) = 2rank(Cy ) (Lemma 13.3) the total num-
ber of free parameters becomes

2rank(Cy ) - 2F +ng (7-222)

Under Assumption 7.20 we have rank(C Nz) = F and (7-222) reduces to n,. We conclude
that under Assumption 7.20 the total number of free parameters is independent of F . a

Appendix 7.N: Uncertainty of the BTLS Estimator
in the Absence of Model Errors

Cost function (7-99), where 8, is replaced by 1, equals f(6, 17, Z). The expected
value of the derivative of f (6, 1, Z) w.r.t @ is denoted as g.(8, 1) = &{ f(6,n,2Z)}.
In the absence of model errors, we have 8gr5(Zg) = 6 (Ouprs = 6, for model (7-8)
with Q = s), so that e(Q,, 8y, Zy(k)) = 0 (e(Qy, 8y, Zy(k)) = O(F-1/2), see Lemma 5.7),
independently of 7. Hence, from (7-99) and the definition of g(8, ) it follows that
gr6ym) =0  (gp(6y, M) =OF"D) for any n, so that 0guBy /N =0
(9g (6, M/ 0N = O(F-1)). We conclude that the second term in the right-hand side of
(7-30) is zero (vanishes asymptotically w.r.t. the first term). It shows that the stochastic
weighting does not increase the asymptotic uncertainty of the consistent BTLS estimate. [

Appendix 7.0: Asymptotic Properties
of the Instrumental Variables Method

The basic step in the proof of properties 1, 2, 3, 6, and 7 of Theorem 7.21 (see
Appendix 7.E) is the strong convergence of the cost function V,(6, Z) and its (higher order)
derivatives w.r.t. @ to their expected values. It is easy to verify that the strong laws of large
numbers used to prove the strong convergence can also be applied to cost functions that are
bilinear in the measurements Z[!1 and Z[21. To prove the asymptotic normality (properties 4
and 6) it is sufficient to note that the central limit theorems used in Appendix 7.E also apply
to cost functions that are bilinear in the measurements Z{!] and Z[?l. The deterministic
convergence (property 5) follows the same lines of Appendix 7.E exactly. O

Appendix 7.P: Equivalences between Range Spaces

In this appendix we show the following equivalences between the range spaces:
(i) range(0,X) = range(0,), and (ii) range(O,X"*II) = range(O,).

7.P.1 Proof of the First Equivalence. To prove the first equivalence, it is sufficient to
show that X has full rank. The n#, by F matrix X in (7-115) is rank deficient if and only if
there exists a (complex) row vector C #0 such that CX = 0. From (7-110) it follows that
Xk) = (&klnﬂ — A)-1BU(k). Assuming that U(k) # 0 it is possible to rewrite CX = 0 as
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C&l, —A)'B=0fork =12,..,F (7-223)

Because, by assumption, at least n,+ 1 frequencies are distinct (Assumption 7.14) and the
strictly proper system G(&) = C(§I, — A)~!B can, at most, have n,— 1 zeros, (7-223) can
only be true if and only if G(§)= 0. Assuming that the state space realization (7-110) is
controllable, G(£) =0 can only be true if and only if C = 0 (Kailath, 1980). O

7.P.2 Proof of the Second Equivalence. The range space of O, X™II equals the
range space of O, , unless rank cancellation occurs in X®II. The rank cancellation does not
occur if the intersection between the row spaces of X™ and U™ is empty. This is true if the
r+n, by F matrix

z=V (7-224)
X

has rank r+n,. Z is rank deficient if and only if there exists a row vector L# 0 such that

LZ = 0. Putting L = [Dl}l,...I,_;C], and using X(k) = (&klna—A)‘lBU(k) (see

(7-110)), LZ = 0 can be written as

GE) =0fork =1,2,...,F (7-225)

with G(&) = (D+C(ilna—A)—lB)+Z:”_=lllm§’". Because, by assumption, at least
r+n,+1 frequencies are distinct (Assumption 7.14) and G(§) has, at most, n,+r—1
zeros, (7-225) can only be true if and only if G(§)=0. G()=0 is true if and only if
D=0,1,=0form=1,2,...,r-1, and C(&l, - A)y"'B=0. Assuming that the state
space realization (7-110) is controllable, C(§!,, —A)'B=0 is true if and only if C = 0
(Kailath, 1980). ’ O

Appendix 7.Q: Estimation of the Range Space

The range space of a matrix equals the span of its left singular vectors corresponding to
the nonzero singular values. In the first part of this appendix we study the estimation of the
left singular vectors of a noisy » by F matrix A for F — oo. In the second part these results
are applied to estimation of the range space of O,.

7.0.1 Asymptotic Properties of the Left Singular Vectors. Consider the real r by F
matrix A = Ay + N, where A is the deterministic part and N is the zero mean noise contri-

bution. The left singular vectors of A are equal to the eigenvectors ¥ of AAT (see Exercise
13.16)

(AAT/F)x = A% (7-226)

If NNT/F and AGNT/F converge w.p. 1 to, respectively, C, and 0, then AAT/F con-
verges w.p. 1 to

AJAT +Cy with A AT = lim A,AT/F (7-227)
F— oo
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Hence, (7-226) converges w.p. 1 to
(AGAT + Cp)xe = Aux. (7-228)

where x. and A, are the limit values of respectively ¥ and A

If Cy = 621, then (7-228) becomes AjAfxs = (As—62)x,. Clearly, x, = x,, with
x, the left singular vector of A,. This proves the strong convergence of % to x,,.

If Cy #0621, then we form the matrix B = C3!/2A, where C}/2 is a square root of
Cy, C}?CE? = Cy. Because CRl/2(NNT/F)C{’? converges w.p. 1 to 1,, the equation
(BBT/F)y = iy converges w.p. 1 to

BoB{y. = (- 1)y. with By = C3!2A, (7-229)

Clearly y. = y,, with y, the left singular vector of By, = C3!/2A,. It follows that
¥o = Cx'/?x,, which proves the strong convergence of C}/29 to x,.

Note that we have shown the strong convergence of the estimate X to the solution x,, of
the noiseless problem A, without requiring the existence of a true model. If a true model ex-
ists and if it belongs to the considered model set, then x,, equals the true value.

7.0.2 Estimation of the Range Space of O,. The results of the first part of this ap-
pendix are applicable to YIT if NN7/F and X®™IIN7/F converge w.p. 1 to, respectively,
some Cy and 0. We will show that this is true under the assumptions of Section 7.6.1 and
assuming that N (k) = 0.

Using (7-237) with Nff = 0 we find

NNT = NgN§T - N§U=T (UrUrT)-1UeNgT
= Re(NyN¥) - Re(NyUH)(Re(UUH))-'Re(UNY) (7-230)
X[INT = Re(XN{) — Re(XUH)(Re(UUH))-1Re(UN¥)
with
UUH = 37 |UsR)2W () WH(K)
XUR = 3F XUy W (k) WH (k)
and

NyN#/F = %.25 MLEGRACYHG)
NyU#/F = %2{ _ Ny TR)W (k) WH(k) (7-231)

1 —
XNY/F = 230 XONAOW O WHE)

By assumption Re(UU¥)/F > cl,, with 0 <c << and ¢ independent of F, for any F, oo
included, and, hence, (Re(UUM))-1 = O(F-1). For a frequency domain experiment, N (k)
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is independently distributed over k, while for a time domain experiment, |[Ny(k)|? and
Ny(k) converge w.p. | to random variables which are mixing of order 2 (see Section 14.16).
Hence, the sums in (7-231) converge w.p. 1 to their expected values (see Section 14.9, ver-
sions 2 and 3 of the law of large numbers)

E(NNG/FY = 23T GHRW,0)WHRD)
8(NyUH/F} = 0 (7-232)
E{XN§/F} =0
Hence, NNT/F converges w.p. 1 to
Cy/F = E(Re(NyN{) }/F = 2Re(T_ | GHOW (BWH(K) (7-233)

and X*IIN7/F converges w.p. 1 to 0.

We conclude that range(C{/2U|, ., ;) converges strongly to range(0,X"™II), which is
equal to range(0,) (Appendix 7.P). Hence, we have established the strong consistency of
O,. From versions 2 and 3 of the law of large numbers (see Section 14.9), it follows that
NN7/F and X*IIN?/F converge in probability at the rate O (F~!/?) to their limit value.
Hence, this is also valid for Y™II and C{/2Uy, 1., (7-241) so that O, converges in proba-
bility at the rate O (F~'/2) to O, . In case of model errors Assumption 7.27 guarantees that
the results of the ﬁrst part of thls appendix can be applied to equation (7-241) showing the
strong convergence of O, = range(C{/2U|, ., 1) to the solution O.. of the noiseless prob-
lem (N = 0 in (7-237)). The convergence rate is also an O(F~ 172y,

Appendix 7.R: Subspace Algorithm for Discrete-Time
Systems (Algorithm 7.24)

We first discuss the three basic steps of the subspace algorithm in more details. Next,
we present a numerical efficient implementation.

7.R.1 Basic Subspace Algorithm. The three basic steps of the subspace algorithm
are (i) estimation of the range space of 0,, (ii) estimation of A and C given O,, and (iii) es-
timation of B and D given A and C.

FIRsT STEP.  As O, is known only within a right invertible transformation matrix 7,
see (7-117), it is sufficient to estimate the range space of O,. If the F > n, frequencies are
distinct, then the matrix X has rank n, (see Appendix 7.P), and range(0,X) = range(0,).
Hence, we can estimate the range of O, using (7-119) if we can eliminate S,U and suppress
the influence of the noise Ny — S, Ny.

Because O, is a real matrix, we are interested in a real range space. Therefore, we con-
vert (7-119) into a set of real equations as

Yre = 0,X"+5 Ue+ Ny - S,N§ (7-234)

where ( )* locates the real and imaginary parts beside each other, for example,
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Y™ = [Re(Y) Im(Y)] (7-235)

The operator ( )™ should not be confused with ( ), which stacks the real and imaginary
parts on top of each other. Both operators are related by X™ = ((X7),.)7.

The term S, U™ in (7-234) is eliminated by right multiplication of (7-234) with an or-
thogonal projection IT

I1 = I~ UreT(UreyreT)-lyre (7-236)
which has the property URI1 = 0. We get

YeIl = 0,X=IT+N

(7-237)
N = (N¥ - S,Np)II
If U=U=T/F >cl, with 0 <c <c and where ¢ is independent of F, for any F, o in-
cluded, the frequencies are distinct, and F >n, + r, then range(O,X"*II) = range(0,) for
any F, o included (see Appendix 7.P).

From (7-237) it follows that the range of O, can be estimated as range(Y*™II). Since
the range of a matrix equals the span of the left singular vectors corresponding to the nonzero
singular values (see Section 13.4.1), range(Y™II) is calculated via a singular value decom-
position (SVD) of Y™I1. The left singular vectors of Y™II are consistently estimated if

aslim X*IIN/F = 0 and aslim NN/F = Cy with Cy = o7, (7-238)
- o0

(see Appendix 7.Q). The second condition in (7-238) is in general not satisfied and, therefore,
the noise N in (7-237) is whitened by left multiplication of (7-237) with C§!/2,

CR/2Y™II = C§l/20,X*I1 + C§\/?N (7-239)

where C/? is a square root of Cy (see Section 13.4.4 for the calculation of the square root
of a positive (semi-)definite matrix). Because & { Cl/2(NNT/F)CRI/?}) — 1, for F — oo,
the left singular vectors of Cxl/2Y™II are consistently estimated. From the SVD

CR/?Y™Il = UZVT (7-240)
we estimate the extended observability matrix O, as
Cil/ZOr = U[:’l:"a] or 01- = CIIQ,ZU[:,I:na] (7'241)

The problem with the proposed algorithm is that N is a function of the unknown state space
parameters, via S, (see (7-113) and (7-237)), and, hence, Cy cannot be calculated. If the in-
put is exactly known, Ny; = 0, then N is independent of S, and Cy can be calculated. If
the input observations are disturbed by noise, Ny, # 0, then we replace U(k), Y(k), o3 (k),
and 63(k) everywhere by, respectively, 1, G(Q,) = Y(k)/U(k), 0, and 6% (7-53). If the
worst case input and output signal-to-noise ratio is larger than 10 dB, then the bias on
&{Y(k)/U(k)} can be neglected and the variance of the truncated ratio G(€2,) is given by
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(7-53) (see Section 7.9 for an elaborated discussion). We conclude that from a practical point
of view Y(k)/U(k) acts as a zero mean random variable with variance (7-53). From now on,
we will assume that Ny = 0. The matrix Cy is then asymptotically (F — o) given by

Cy = lim Cy/F with Cy = 8{NgN§T} = Re(Yh_, 6HOW (OWHK)  (7-242)

F=o

(see Appendix 7.Q). We conclude that the estimate O, converges w.p. 1 to the true solution
O, under the assumptions of Section 7.6.6 and Assumption 7.14 and that it convergences
w.p. 1 to the noiseless solution O under the assumptions of Section 7.6.1 and Assumption
7.14. Moreover, the convergence rate is an Oy (F-!/?) (see Appendix 7.Q).

SEcoND STEP.  Using the estimate O, we calculate from (7-116) and (7-113),
A = 0f(1:r-1, 1025, and € = Oypy (7-243)

Note that /i, (:', and their derivatives w.r.t. @, are continuous functions of O, in a closed
and bounded neighborhood of the true value O, or the noiseless solution O,.. Because O,
converges w.p. 1 to the true solution or to the noiseless solution, the estimates A and C also
converge w.p. 1 to the true solution or to the noiseless solution (Lemma 15. 31) Since the
convergence rate of O, isan O (F—” %), the convergence rate of A and € is also an
O,(F-12) (Lemma 15.34).

THIRD STEP. We choose W(E,) = o5!(k) in the cost function Vg ,5(C, D, A, C, Z)
(7-120). If Ny (k) #0 then we replace Y(k), U(k) by Y(k)/U(k), 1 (see First step) and put
W&y = ogl(k) (see (7-53)). This choice would give the smallest uncertainty on the esti-
mates C and D if A and C were nonrandom. Under Assumptions 7.14 and 7.16 the linear
least squares problem (7-120) is identifiable if and only if the state space realization (7-110)
is observable (McKelvey et al., 1996).

Under the assumptions of Sections 7.6.5 and 7.6.6, the estimates B and D are strongly
consistent because A and C are strongly consistent. To prove this statement, it is sufficient to
apply Theorem 16.7 with w(6,1(Z),Z2) =0, nZ) = [(vec(d))” €717, and
N« = [(vec(Ay)T CI17, and to verify that &{Vgyg(C, D, Ay, Cy, Z)) is minimal in the
true parameters C,, D,. This last condition is satisfied because for W(§,) = o7'(k),

E{Vgup(C.D, Ay, Cp, Z) } = Vgup(C, D, Ay, Cp, Zy) + F (7-244)

with Vgyp(Cy, Dy, AO, Co Zo) = 0. Similarly, under the assumptions of Sections 7.6.1 and
7.6.5, the estimates B and D converge w.p. 1 the noiseless solution (see Theorem 16.5).

Under the assumptions of Section 7.6.2 and 7.6.5 the estimates B and D converge in
probability at the rate O (F ~1/2) to their limit value. To prove this, it is sufficient to note that
the convergence rate of A and € is an O o(F1/2) and to verify that all the conditions of
Theorem 16.16 are satisfied.

7.R.2 Numerical Efficient Implementation. The matrix Y®™II can be calculated
without forming the huge 2F by 2F matrix I1. This is done as follows. Form the matrix
Z = [UrT YrT]T and calculate the QR factorization (see Section 13.4.3) ZT = QR with
QTQ = I,; and R a 2r by 2r upper triangular matrix. This factorization can be written as
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Z = RTQT or |U%] = |RD O [j@f (7-245)
Ye R}, RL||QF

with R, aregular » by r matrix. Using the property 070, = 0, it is easy to verify that
YrIT = RL,QF. The left singular vectors of Y™II are the eigenvectors of Y®eI1(Y™II)”
(see Exercise 13.16). Using Q7 Q, = I, we find that Y*ITI(Y™IT)T = RLR,, is indepen-
dent of Q,. It follows that the left singular vectors of Y™II and the (asymptotic) covariance
matrices Cy and Cy (7-242) are not influenced by Q,. Hence, we can calculate (7-240) as

C3'2RL, = UZVT (7-246)

Appendix 7.S: Subspace Algorithm for Continuous-
Time Systems (Algorithm 7.25)

The algorithm is a three-step procedure. The main differences from Algorithm 7.24 for
discrete-time systems are (i) the orthogonalization of the input and output data, (ii) the esti-
mation of a generalized extended observability matrix O, in the first step, and (iii) the esti-
mation of A from a generalized shift property of 0, in the second step. The third step re-
mains exactly the same. We first explain the orthogonalization, next we discuss the impact of
the orthogonalization on the model equation (7-119), and finally we prove the generalized
shift property of O, . The appendix is concluded with a discussion of the stochastic proper-
ties and the numerical implementation.

7.8.1 Orthogonalization Procedure. The data matrices Y and U in (7-1