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Preface to the 
First Edition 

Identification is a powerful technique for building accurate models of complex systems from 
noisy data. It consists of three basic steps, which are interrelated: (1) the design of an experi-
ment; (2) the construction of a model, black box or from physical laws; and (3) the estimation 
of the model parameters from the measurements. The art of modeling lies in proper use of the 
skills and specialized knowledge of experts in the field of study, who decide what approxima-
tions can be made, suggest how to manipulate the system, reveal the important aspects, and 
so on. Consequently, modeling should preferably be executed by these experts themselves. 
Naturally, they require relevant tools for extracting information of interest. However, most 
experts will not be familiar with identification theory and will struggle in each new situation 
with the same difficulties while developing their own identification techniques, losing time 
over problems already solved in the literature of identification. 

This book presents a thorough description of methods to model linear dynamic time-
invariant systems by their transfer function. The relations between the transfer function and 
the physical parameters of the system are very dependent upon the specific problem. Because 
transfer function models are generally valid, we have restricted the scope of the book to 
these alone, so as to develop and study general purpose identification techniques. This 
should not be unnecessarily restricting for readers who are more interested in the physical 
parameters of a system: the transfer function still contains all the information that is available 
in the measurements, and it can be considered to be an intermediate model between the 
measurements and the physical parameters. Also, the transfer function model is very 
suitable for those readers looking for a black box description of the input-output relations 
of a system. And, of course, the model is directly applicable to predict the output of the 
system. 

In this book, we use mainly frequency domain representations of the data. This opens 
many possibilities to identify continuous-time (Laplace-domain) or discrete-time (z-domain) 
models, if necessary extended with an arbitrary and unknown delay. Although we advocate 
using periodic excitations, we also extend the methods and models to deal with arbitrary ex-
citations. The "classical" time-domain identification methods that are specifically directed to-
ward these signals are briefly covered and encapsulated in the identification framework that 
we offer to the reader. 
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This book provides answers to questions at different levels, such as: What is identifica-
tion and why do I need it? How to measure the frequency response function of a linear dy-
namic system? How to identify a dynamic system? All these are very basic questions, di-
rectly focused on the interests of the practitioner. Especially for these readers, we have added 
guidelines to many chapters for the user, giving explicit and clear advice on what are good 
choices in order to attain a sound solution. Another important part of the material is intended 
for readers who want to study identification techniques at a more profound level. Questions 
on how to analyze and prove the properties of an identification scheme are addressed in this 
part. This study is not restricted to the identification of linear dynamic systems; it is valid for 
a very wide class of weighted, nonlinear least squares estimators. As such, this book provides 
a great deal of information for readers who want to set up their own identification scheme to 
solve their specific problem. 

The structure of the book can be split into four parts: (1) collection of raw data or non-
parametric identification; (2) parametric identification; (3) comparison with existing frame-
works, and guidelines; (4) profound development of theoretical tools. 

In the first part, after the introductory chapter on identification, we discuss the collec-
tion of the raw data: How to measure a frequency response function of a system. What is the 
impact of nonlinear distortions? How to recognize, qualify, and quantify nonlinear distor-
tions. How to select the excitation signals in order to get the best measurements. This non-
parametric approach to identification is discussed in detail in Chapters 2 to 5, and 7.1 

In the second part, we focus on the identification of parametric models. Signal and 
system models are presented, using a frequency and a time domain representation. The 
equivalence and impact of leakage effects and initial conditions are shown. Nonparametric 
and parametric noise models are introduced. The estimation of the parameters in these mod-
els is studied in detail. Weighted (nonlinear) least squares methods, maximum likelihood, and 
subspace methods are discussed and analyzed. First, we assume that the disturbing noise 
model is known; next, the methods are extended to the more realistic situation of unknown 
noise models that have to be extracted from the data, together with the system model. Special 
attention is paid to the numerical conditioning of the sets of equations to be solved. Taking 
some precautions, very high order systems, with 100 poles and zeros or even more, can be 
identified. Finally, validation tools to verify the quality of the models are explained. The 
presence of unmodeled dynamics or nonlinear distortions is detected, and simple rules to 
guide even the inexperienced user to a good solution are given. This material is presented in 
Chapters 6, and 8 to 121. 

The third part begins with an extensive comparison of what is classically called time 
and frequency domain identification. It is shown that, basically, both approaches are equivalent, 
but some questions are more naturally answered in one domain instead of the other. The most 
important question is nonparametric versus parametric noise models. Next, we provide the 
practitioner with detailed guidelines to help avoid pitfalls from the very beginning of the pro-
cess (collecting the raw data), over the selection of appropriate identification methods until 
the model validation. This part covers Chapters 13 and 14. 

The last part of the book is intended for readers who want to acquire a thorough under-
standing of the material or those who want to develop their own identification scheme. Not 
only do we give an introduction to the stochastic concepts we use, but we also show, in a 
structured approach, how to prove the properties of an estimator. This avoids the need for 
each freshman in this field to find out, time and again, the basic steps to solve such a prob-
lem. Starting from this background, a general but detailed framework is set up to analyze the 
properties of nonlinear least squares estimators with deterministic and stochastic weighting. 

1. Chapters 4, 7, and 12 were not in the first edition. 
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For the special and quite important class of semilinear models, it is possible to make this 
analysis in much more detail. This material is covered in Chapters 15 to 20. 

It is possible to extract a number of undergraduate courses from this book. In most of 
the chapters that can be used in these courses, we added exercises that introduce the students 
to the typical problems that appear when applying the methods to solve practical problems. 

A first, quite general undergraduate course subject is the measurement of frequency re-
sponse functions (FRF) of dynamic systems, as discussed in Chapters 2 to 5. Chapter 71 deals 
with advanced techniques for measuring FRFs and is more suited for a graduate course on the 
topic. To understand Chapter 7 one should first master Chapters 1 to 6. 

Another possibility is a first introduction to the identification of linear dynamic sys-
tems. Such an undergraduate course should include Chapter 1 and some selected parts of 
Chapters 6, and 8 to 11. Chapter 121 generalizes the results of Chapters 10 and 11 to non-
steady state conditions and arbitrary excitations and is more suited for a graduate course on 
linear system identification. To understand Chapter 12 one should first read Chapters 7, 10, 
and 11. 

A final course, at the graduate level, is an advanced course on identification based on 
the methods that are explained in Chapters 17 to 20. This gives an excellent introduction for 
students who want to develop their own algorithms. 

A MATLAB® toolbox, which includes most of the techniques developed in this book, is 
available. It can be used with a graphical user interface, avoiding most problems and difficult 
questions for the inexperienced user. At the basic level, this toolbox produces almost autono-
mously a good model. At the intermediate or advanced level, the user obtains access to some 
of the parameters in order to optimize the operation of the toolbox to solve dedicated model-
ing problem. Finally, for those who want to use it as a research tool, there is also a command 
level that gives full access to all the parameters that can be set to optimize and influence the 
behavior of the algorithms. More information on this package can be obtained by sending an 
E-mail to one of the authors: rik.pintelon@vub.ac.be orjohan.schoukens@vub.ac.be 

Rik Pintelon 
Department of Electrical Engineering 

Vrije Universiteit Brussel 
BELGIUM 

Johan Schoukens 
Department of Electrical Engineering 

Vrije Universiteit Brussel 
BELGIUM 

1. Chapters 4, 7, and 12 were not in the first edition. 



Preface to the 
Second Edition 

During the 10 years since the first edition appeared, frequency domain system identification 
has evolved considerably. In the second edition we have added new material that reflects our 
personal view on this development. The book has been updated and new sections and chap-
ters have been added. These mainly deal with arbitrary excitations; periodic excitations under 
non-steady state conditions; discrete-time and continuous-time parametric noise modeling in 
the frequency domain; the detection, quantification, and qualification of nonlinear distor-
tions; the best linear approximation of nonlinear systems operating in feedback; and multi-in-
put, multi-output systems. Finally, a large number of new experiments have been included 
throughout the chapters. In the sequel, we explain these extensions in more detail. 

In the first edition the emphasis was strongly put on the use of periodic excitations be-
cause, at that time, it was the only way to obtain nonparametric noise models in a pre-pro-
cessing step, which considerably simplifies the system identification task. Although very suc-
cessful, this approach has a number of shortcomings: (i) it does not account for the noise 
leakage that increases the variability of the frequency response function (FRF) estimate and 
introduces a correlation among consecutive signal periods; (ii) it is sensitive to plant tran-
sients that introduce a bias in the FRF and the nonparametric noise models; and (iii) it cannot 
handle arbitrary excitations. Solutions for these problems are presented in Chapters 7 (non-
parametric models) and 12 (parametric transfer function models) of the second edition. These 
new methods have lead to new insights and, hence, also to new guidelines for the user (see 
Chapter 14). 

The first edition studied the properties of the best linear approximation of a nonlinear 
plant operating in open loop for the class of Gaussian excitation signals. It was unclear 
whether these results could be extended to nonlinear systems operating in closed loop config-
uration and to non-Gaussian inputs. These issues are handled in Section 3.5.2 (non-Gaussian 
excitations) and Sections 3.8, 7.2.8, and 7.3.5 (nonlinear plants operating in closed loop) of 
the second edition. 

In the first edition odd-odd (only every second odd harmonic is excited) random phase 
multisines were proposed to detect, qualify, and quantify the level of the nonlinear distortions 
in FRF measurements. The level of the nonlinear distortions at the non-excited harmonics (= 
detection lines) was used for quantifying roughly the level of the nonlinear distortions at the 
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nearest excited harmonics. No theoretical justification was given for this extrapolation. In 
Chapter 4 of the second edition it is proven that the extrapolation is asymptotically (for the 
number of excited harmonics going to infinity) exact if the detection lines (non-excited) har-
monics are randomly distributed over the frequency band of interest. It results in the so-called 
full or odd random phase multisines with random harmonic grid (see Section 4.2). 

The first edition handled the frequency domain identification of parametric discrete-
time noise models under the restriction that the DFT frequencies cover the unit circle uni-
formly. In the second edition (see Section 10.9) this is generalized to continuous-time and 
discrete-time noise models, identified on (a) part(s) of the imaginary axis or unit circle, re-
spectively. The link with the classical time domain prediction error framework is also dis-
cussed in detail. 

The first edition was mostly devoted to single-input, single-output systems. In the sec-
ond edition a full extension to the multivariable case is made for the design of periodic exci-
tations (see Sections 2.7 and 3.7), the nonparametric frequency response matrix (FRM) mea-
surement using periodic and random excitations (see Section 2.7 and Chapter 7), the 
detection and quantification of nonlinear distortions in FRM measurements using periodic 
excitations (see Sections 3.7, and 7.3.5 to 7.3.7), and the parametric transfer function model-
ing (see Chapter 12). 

In the first edition the experiments were mainly concentrated in one chapter. This chap-
ter has been deleted and replaced in the second edition by new experiments (see Chapters 4, 
7, 10, 12, and 13) that use the new insights and the newly developed identification methods. 

To guide the reader through this book a number of "lecture maps" for the following 
topics are provided: introduction to identification; nonparametric FRF measurements; identi-
fication of linear dynamic systems; measurement and modeling of multiple-input, multiple-
output systems; measurement and modeling of nonlinear systems; and analysis of the sto-
chastic properties of estimators. These selected topics can be used as undergraduate (u) and/ 
or graduate (g) courses. 
Introduction to Identification^ 

Chapters 1 and 2; Chapter 5, Section 5.1-5.3; and Chapter 8. 
Nonparametric FRF Measurements'"'g' 

Part 1 ^ — Basics: Chapter 1, Section 1.3; Chapter 2; and Chapter 5, Sections 5.1-5.3. 
Part II^U'g) — Influence of Nonlinear Distortions: Chapters 3 and 4. 
Part I I I ^ — Advanced Methods for Arbitrary and Periodic Excitations under Non-
Steady State Conditions: Chapter 6, Sections 6.1-6.3, and 6.6; and Chapter 7. 

Identification of Linear Dynamic Systems'"' & 
Part 1 ^ — Basics of Frequency Domain System Identification: Chapter 1; Chapter 6, 
Sections 6.1-6.3, and 6.5; and Chapters 8, 9, 11, and 20. 
Part II^U'g) — Estimation with Unknown Noise Model: Chapter 6, Sections 6.7 and 6.8; 
and Chapters 10 and 13. 
Part I I I ^ — Advanced Methods for Arbitrary and Periodic Excitations under Non-
Steady State Conditions: Chapters 7, 12, and 14. 

Measurement and Modeling of Multiple-Input, Multiple-Output Systems'8' 
Chapter 2, Section 2.7; Chapter 3, Section 3.7; Chapter 6, Section 6.6; Chapter 7; 
Chapter 9, Section 9.21; and Chapter 12. 

Measurement and Modeling of Nonlinear Systems'"'g' 
Chapters 3 and 4; Chapter 6, Section 6.8; Chapter 9, Section 9.19; Chapter 10, Section 
10.7; and Chapter 12, Section 12.4. 

Analysis of the Stochastic Properties of Estimators'8' 
Chapters 16-19. 
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Finally, software support for identifying multivariable systems is freely available at the 
website 

http://booksupport.wiley.com 

via MATLAB® m-files (design of multi-input periodic excitations, nonparametric frequency 
response matrix measurements using periodic and random excitations, detection and quantifi-
cation of nonlinear distortions in FRM measurements, parametric transfer function modeling 
using nonparametric noise models, and simultaneous parametric identification of noise and 
plant models). 
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An Introduction 
to Identification 

Abstract: In this chapter a brief, intuitive introduction to identification theory is given. By 
means of a simple example, the reader is made aware of a number of pitfalls associated with a 
model built from noisy measurements. Starting from this example, the advantages of an iden-
tification approach for measuring and modeling are shown, and finally a family of estimators 
is introduced. A comprehensive introduction to identification can be found in, among others, 
Beck and Arnold (1977), Goodwin and Payne (1977), Norton (1986), Sorenson (1980), and 
Kendall and Stuart (1979). Basic concepts of statistics such as the expected value, covariance 
matrix, and probability density function are assumed to be known. 

1.1 WHAT IS IDENTIFICATION? 

From birth onwards, we interact with our environment. Intuitively, we learn to control our ac-
tions by predicting their effect. These predictions are based on an inborn model fitted to real-
ity, using past experiences. Starting from very simple actions (if I push a ball, it rolls), we 
soon are able to deal with much more complicated challenges (walking, running, biking, 
playing Ping-Pong). Finally, this process culminates in the design of complicated systems 
such as radios, airplanes, and mobile phones. We even build models to get a better under-
standing of our universe: What does the life cycle of the sun look like? Can we predict the 
weather of this afternoon, tomorrow, next week, next month? From these examples it is seen 
that we never deal with the whole of nature at once: we focus on the aspects we are interested 
in and do not try to describe all of reality using one coherent model. The job is split up, and 
efforts are concentrated on just one part of reality at a time. This part is called the system, the 
rest of nature being referred to as the environment of the system. Interactions between the 
system and its environment are described by input and output ports. For a very long time in 
the history of mankind the models were qualitative, and even today we describe most real-life 
situations using this "simple" approach. For example, a ball will roll downhill; temperature 
will rise if the heat has been switched on; it seems it will rain because the sky looks very 
dark. In the last centuries, this qualitative approach was complemented with quantitative 
models based on advanced mathematics, and, until the last decade, this seemed to be the most 
successful approach in many fields of science. Most physical laws are quantitative models 
describing some part of our impression of reality. It soon became clear, however, that it can 
be very difficult to match a mathematical model to the available observations and experi-
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2 Chapter 1 ■ An Introduction to Identification 

enees. Consequently, qualitative logical methods typified by fuzzy modeling became more 
popular, once more. In this book we deal with the mathematical, quantitative modeling ap-
proach. Fitting these models to our observations creates new problems. We look at the world 
through "dirty" glasses: when we measure a length, the weight of a mass, the current or volt-
age, and so on, we always make errors because the instruments we use are not perfect. Also, 
the models are imperfect; reality is far more complex than the rules we apply. Many systems 
are not deterministic. They also show a stochastic behavior that makes it impossible to pre-
dict exactly their output. Noise in a radio receiver, Brownian motion of small particles, and 
variation of the wind speed in a thunderstorm are illustrations of this nature. Usually we split 
the model into a deterministic part and a stochastic part. The deterministic aspects are cap-
tured by the mathematical system model, while the stochastic behavior is modeled as a noise 
distortion. The aim of identification theory is to provide a systematic approach to fit the 
mathematical model, as well as possible, to the deterministic part, eliminating the noise dis-
tortions as much as possible. 

Later in this book the meaning of terms such as "system" and "goodness of fit" will be 
precisely defined. Before formalizing the discussion, we want to motivate the reader by ana-
lyzing a very simple example, illustrating many of the aspects and problems that appear in 
identification theory. 

1.2 IDENTIFICATION: A SIMPLE EXAMPLE 

1.2.1 Estimation of the Value of a Resistor 

Two groups of students have to measure a resistance. Their measurement setup is 
shown in Figure 1-1. They pass a constant but unknown current through the resistor. The 

^ - Α Λ Λ Λ 
Figure 1-1. Measurement of a resistor 
using an ammeter (A) and a voltmeter (V). 

voltage u0 across the resistor and the current i0 through it are measured using a voltmeter 
and an ampere meter. The input impedance of the voltmeter is very large compared with the 
unknown resistor so that all the measured current is assumed to pass through the resistor. A 
set of voltage and current measurements, respectively, u(k), i(k) with k = 1,2, ...,N is 
made. The measurement results of each group are shown in Figure 1-2. Because the measure-
ments are very noisy, the groups decide to average their results. Following a lengthy discus-
sion, three estimators for the resistance are proposed: 

RLSW = —t (1-2) 

¡ZlAv 
N' 
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REV(N) 
hX->«*> N' 
\ 

N' Z-*m 
(1-3) 

The index N indicates that the estimate is based on N observations. Note that the three esti-
mators result in the same estimate on noiseless data. Both groups process their measure-
ments, and their results are given in Figure 1-3. From this figure a number of interesting 
observations can be made: 

■ All estimators have large variations for small values of N and seem to converge to 
an asymptotic value for large values of N, except R$A(N) of group A. This corre-
sponds to the intuitively expected behavior: if a large number of data points are pro-
cessed we should be able to eliminate the noise influence by the averaging effect. 

■ The asymptotic values of the estimators depend on the kind of averaging technique 
that is used. This shows that there is a serious problem: at least two out of the three 
methods converge to a wrong value. It is not even certain that any one of the estima-
tors is doing well. This is quite catastrophic: even an infinite amount of measure-
ments does not guarantee that the exact value is found. 

■ The RSA(N) of group A behaves very strangely. Instead of converging to a fixed 
value, it jumps irregularly up and down before convergence is reached. 

These observations prove very clearly that a good theory is needed to explain and understand 
the behavior of candidate estimators. This will allow us to make a sound selection out of 
many possibilities and to indicate in advance, before running expensive experiments, whether 
the selected method is prone to serious shortcomings. 

g 5 R(k) 

100 

100 

Group A 

Figure 1-2. Measurement results u(k), i(k) for groups A and B. The plotted value R(k) is 
obtained by direct division of the voltage by the current: R(k) = u(k)/i(k). 
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N 

Group A 

10 100 1000 10000 
N 

Group B 

Figure 1-3. Estimated resistance values R(N) for both groups as a function of the number 
of processed data N. 

In order to get a better understanding of their results, the students repeat their experi-
ments many times and look to the histogram of R(N) for TV = 10, 100, and 1000. Normal-
izing these histograms gives an estimate of the pdf (probability density function) of k(N) as 
shown in Figure 1-4. Again, the students can learn a lot from these figures: 

■ For small values of N the estimates are widely scattered. As the number of pro-
cessed measurements increases, the pdf becomes more concentrated. 

■ The estimates RLS(N) are less scattered than REV(N), while for RSA(N) the odd be-
havior in the results of group A appears again. The distribution of this estimate does 
not contract for growing values of TV for group A, while it does for group B. 

■ Again it is clearly visible that the distributions are concentrated around different val-
ues. 

At this point in the exercise, the students still cannot decide which estimator is the best. 
Moreover, there seems to be a serious problem with the measurements of group A because 
RSA(N) behaves very oddly. First they decide to focus on the scattering of the different esti-
mators, trying to get more insight into the dependence on N. In order to quantify the scatter-
ing of the estimates, their standard deviation is calculated and plotted as a function of TV in 
Figure 1-5. 

■ The standard deviation of R(N) decreases monotonically with N except for the 
pathological case, ¿ S A W , of group A. Moreover, it can be concluded by compar-
ing with the broken line that the standard deviation is proportional to 1 /JW. This is 
in agreement with the rule of thumb that states that the uncertainty on an averaged 
quantity obtained from independent measurements decreases as 1 Á/Ñ~. 

■ The uncertainty in this experiment depends on the estimator. Moreover, the propor-
tionality to 1 /JÑ is obtained only for sufficiently large values of N for ^ L S W 
and REW(N). 
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Figure 1-4. Observed pdf of R(N) for both groups, from left to right N = 10, 100, and 1000. 
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Figure 1-5. Standard deviation of R(N) for the different estimators and comparison with 1 /JÑ; 
full dotted line: ^SA(N); dotted line: iLS(JV), full line: REw(N), dashed line 1/JN. 
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Because both groups of students use the same programs to process their measurements, they 
conclude that the strange behavior of RSA(N) in group A should be due to a difference in the 
raw data. For that reason they take a closer look at the time records given in Figure 1-2. Here 
it can be seen that the measurements of group A are a bit more scattered than those of group 
B. Moreover, group A measures some negative values for the current while group B does not. 
In order to get a better understanding, they make a histogram of the raw current data as 
shown in Figure 1-6. 

Group A 

Figure 1-6. Histogram of the current measurements. 

Group B 

These histograms clarify the strange behavior of R$A of group A. The noise on the 
measurements of group A looks completely different from that of group B. Because of the 
noise on the current measurements, there is a significant risk of getting current values that are 
very close to zero for group A, whereas this is not so for group B. These small current mea-
surements blow up the estimate R(k) = u(k)/i(k) for some k, so that the running average 
$SA cannot converge, or more precisely, the expected value E{u(k)/i(k)} does not exist. 
This will be discussed in more detail later in this chapter. This example shows very clearly 
that there is a strong need for methods that can generate and select between different estima-
tors. Before setting up a general framework, the resistance problem is further elaborated. 

It is also remarkable to note that, although the noise on the measurements is completely 
differently distributed, the distribution of the estimated resistance values R^s and REY seems 
to be the same in Figure 1-4 for both groups. 

1.2.2 Simplified Analysis of the Estimators 

With knowledge obtained from the previous series of experiments, the students elimi-
nate 7?SA> b u t t r iey a r e stitt n o t able t 0 decide whether Í?LS or REV is the best. More ad-
vanced analysis techniques are needed to solve this problem. As the estimates are based on a 
combination of a finite number of noisy measurements, there are bound to be stochastic vari-
ables. Therefore, an analysis of the stochastic behavior is needed to select between both esti-
mators. This is done by calculating the limiting values and making series expansions of the 
estimators. In order to keep the example simple, we will use some of the limit concepts quite 
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loosely. Precise definitions are postponed to Section 16.6. Three observed problems are ana-
lyzed in the following: 

■ Why do the asymptotic values depend on the estimator? 
■ Can we explain the behavior of the variance? 
■ Why does the RSA estimator behave strangely for group A? 

To do this it is necessary to specify the stochastic framework: how are the measurements dis-
turbed with the noise (multiplicative, additive), and how is the noise distributed? For simplic-
ity, we assume that the current and voltage measurements are disturbed by additive zero 
mean, independently and identically distributed noise, formally formulated as: 

i(k) = ι·0 + /!,<*) u(k) = u0 + njjc) (1-4) 

where /0
 a n d uo a r e the exact but unknown values of the current and the voltage, nt(k) and 

nu(k), are the noise on the measurements. 

Assumption 1.1 (Disturbing Noise): nfk) and nu(k) are mutually independent, zero 
mean, independent and identically distributed (iid) random variables with a symmetric distri-
bution and with variance σΐ and af. 

1.2.2.1 Asymptotic Value of the Estimators. In this section the limiting value of the 
estimates for N -» oo is calculated. The calculations are based on the observation that the 
sample mean of iid random variables x(k), k = 1, ...,N converges to its expected value (see 
Section 16.9), E{x} 

Moreover, if x(k) and y(k) obey Assumption 1.1, then 

Because we are dealing here with stochastic variables, the meaning of this statement should 
be defined more precisely, but in this section we will just use this formal notation and make 
the calculations straightforwardly (see Section 16.6 for a formal definition). 

The first estimator we analyze is RLS(N)> Taking the limit of (1-2) gives 

lim RLS(N) = lim ——I 

(1-7) 
lim Σ Γ . , ( « ο + «^) ) ( ίο + »Χ*)) 

_ 7ν->οο 

! i m . 2 ¡ r
= I ( i 0 + »i(*))2 

J V ^ O O 
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Or, after dividing the numerator and denominator by N, 

*V'o + ^ Z L i "«<*)+ ̂ ΣΓ= I "«*(*)+ χΣ"= i *„(*W*)] lim 
lim ¿ L S W = ^ = ^ 

lim 
7V->oo 

Because «,· and «M are zero mean iid, it follows from (1-5) and (1-6) that 

^ ¿ Σ ? . ,»«(*) = 0, JimJZLi".« = °> a n ^ ^ l L ^ W = ° 

However, the sum of the squared current noise distributions does not converge to zero but 
converges to a constant value different from zero 

so that the asymptotic value becomes: 

lim RUN) = -2Í2ÍÍL = R \ (1-8) 

This simple analysis gives insight into the behavior of the RLS(N) estimator. Asymptotically, 
this estimator underestimates the value of the resistance due to quadratic noise contributions 
in the denominator. Although the noise disappears in the averaging process of the numerator, 
it contributes systematically in the denominator. This results in a systematic error (called 
bias) that depends on the signal-to-noise ratio (SNR) of the current measurements: i0/a¿. 

The analysis of the second estimator REW(N) is completely similar. Using (1-3), we get 

lim REv(N) = lim - = *-»«>^ (1-9) 
ΛΓ^Γοο"" 1 "^" 7 Ñ~-y oo 1 v- iW - . N ,- 1 

]jLL I '<*> ¡^ #Σ? - I(/o + "#)) 

or 

"o + J Í ^ ¿ 2 . ,»«(*) Un 
lim ΛΕν(Λ0= £L¿fLL! = J¿ = R0 (1-10) 

N-+cc · , ι · 1 V ^ / / \ *0 

so that we can conclude now that REV(N) converges to the true value and should be preferred 
over RLS(N)- These conclusions are also confirmed by the students' results in Figure 1-3, 
where it is seen that the asymptotic value of RLS(N) is much smaller than that of REV(N). 
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1.2.2.2 Strange Behavior of the "Simple Approach". Finally, we have to analyze 
^ S A W in order to understand its strange behavior. Can't we repeat the previous analysis 
here? Consider 

A ( m - W N <k) _ lyN u0 + nu(k) 
RSA(N) ~ Ñ^-oJf) " ΝΣ* = οΊ^β) ( Μ 1 ) 

A major difference from the previous estimators is the order of summing and dividing: here 
the measurements are first divided and then summed together, whereas for the other estima-
tors we first summed the measurements together before making the division. In other words, 
for ^LS(N) and REV(N) we first applied an averaging process (summing over the measure-
ments) before making the division. This makes an important difference. 

1 Μοτ^Ν 1 + nJfy/un 
*sA(A0 = i - % = o T T 4 ^ - ° (1-12) 

In order to process RSA(N) along the same lines as the other estimators, we should get rid of 
the division, for example, by making a Taylor series expansion: 

14̂
 = zr=o(-i) /x / forw<i ( M 3 ) 

with x = nj(k)/i0. Because the terms nfl+l(k) and nl
u(k)n¡(k) disappear in the averaging 

process (the pdfs are symmetrical), the limiting value becomes 

Ü™/SA(N) = Λ0(ΐ + ± Σ " = , («Χ*)/ΐ0)2 + ^ Σ ^ I ("A)/*o)4 + · · ·) (1-14) 

with |H,(£) / Í 0 | < 1. If we neglect all terms of order 4 or more, the final result becomes 

lim¿sA(JV) = * 0 ( l + o?//2) (1-15) 

if | Λ Χ * ) / Ι 0 | < 1 , Vt. 

From this analysis we can draw two important conclusions: 

■ The asymptotic value exists only if the following condition on the measurements is 
met: the series expansion must exist otherwise (1-15) is NOT valid. The measure-
ments of group A violate the condition that is given in (1-14), while those of group B 
obey it (see Figure 1-6). A more detailed analysis shows that this condition is too 
rigorous. In practice, it is enough that the expected value E{Í?SA(N)} exists (see 
Chapter 17). Because this value depends on the pdf of the noise, a more detailed 
analysis of the measurement noise would be required. For some noise distributions 
the expected value exists even if the Taylor expansion does not! 
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■ If the asymptotic value exists, (1-15) shows that it will be too large. This is also seen 
in the results of group B in Figure 1-3. We know already that REV(N) converges to 
the exact value, and RSA(N) is clearly significantly larger. 

1.2.2.3 Variance Analysis. In order to get a better understanding of the sensitivity of 
the different estimators to the measurement noise, the students make a variance analysis us-
ing first-order Taylor series approximations. 

Again they begin with the R^s(N). Starting from (1-7) and neglecting all second-order 
contributions such as nu(k)n£k) or nf(k), it is found that 

RUN) * R0(l + ± Σ ί 1 1 K ( * ) / " o - n&Vioi) = *o + ^ (1-16) 

The approximated variance va,r(R^s(N)) is (using Assumption 1.1) 

var(¿LS(A0) = E {(ΔΛ)2} = f ( ^ + ^ (1-17) 
UQ lQ 

with E {x} the expected value of x. Note that during the calculation of the variance, the shift 
of the mean value of RLS(N) is not considered because it is a second-order contribution. 

For the other two estimators, exactly the same results are found: 

var(£EV(A0) = ™(RSA(N)) = ^ ί ^ + ^ ) (1-18) 
UQ lQ 

The result var(/?sA(A0) is valid only if the expected values exist. 
Again, a number of interesting conclusions can be drawn from this result 

■ The standard deviation is proportional to 1 /JÑ , as was found before in Figure 1-5. 
■ Although it is possible to reduce the variance by averaging over repeated measure-

ments, this is no excuse for sloppy experiments because the uncertainty is inversely 
proportional to the SNR of the measurements. Increasing the SNR requires many 
more measurements in order to get the same final uncertainty on the estimates. 

■ The variances of the three estimators should be the same. This seems to conflict with 
the results of Figure 1-5. However, the theoretical expressions are based on first-
order approximations. If the SNR drops to values that are too small, the second-
order moments are no longer negligible. In order to check this, the students set up a 
simulation and tune the noise parameters so that they get the same behavior as they 
observed in their measurements. These values are: i0 = 1 A, u0 = 1 V, 
σι, = 1 A, ou = I V . The noise of group A is normally distributed and uniformly 
distributed for group B. Next they vary the standard deviations and plot the results in 
Figure 1-7 for REV(N) and RL$(N). Here it is clear that for higher SNR the uncer-
tainties coincide, whereas they differ significantly for the lower SNR. To give closed 
form mathematical expressions for this behavior, it is not enough any more to spec-
ify the first- and second-order moments of the noise (mean, variance); the higher or-
der moments or the pdf of the noise are also required (see Section 16.15). 
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Figure 1-7. Evolution of the standard deviation and the rms error on the estimated resistance 

value as a function of the standard deviation of the noise (cu = σ,). Solid lines: 
^ E V W > dotted lines : RL$(N), and '+' the theoretical value aR. 

Although RLS(N) has a smaller variance than REV(N) for low SNR, its total root 
mean square (rms) error (difference with respect to the true value) is significantly 
larger because of its systematic error. The following is quite a typical observation: 
many estimators reduce the stochastic error at the cost of systematic errors. For the 
REv the rms error is completely due to the variability of the estimator because the 
rms error coincides completely with the theoretical curve of the standard deviation. 

1.2.3 Interpretation of the Estimators: 
A Cost Function-Based Approach 

The previous section showed that there is not just one single estimator for each prob-
lem. Moreover, the properties of the estimators can vary quite a lot. This raises two questions: 
how can we generate good estimators and how can we evaluate their properties? The answers 
are given in this and the following sections. In order to recognize good estimators it is neces-
sary to specify what a good estimator is. This is done in the next section. First we will deal 
with the question of how estimators are generated. Again, there exist different approaches. A 
first group of methods starts from a deterministic approach. A typical example is the observa-
tion that the noiseless data should obey some model equations. The system parameters are 
then extracted by intelligent manipulation of these equations, usually inspired by numerical 
or algebraic techniques. Next, the same procedure is used on noisy data. The major disadvan-
tage of this approach is that it does not guarantee at all that the resulting estimator has good 
noise behavior. The estimates can be extremely sensitive to disturbing noise. The alternative 
is to embed the problem in a stochastic framework. A typical question to be answered is: 
where does the disturbing noise sneak into my problem and how does it behave? To answer 
this question, it is necessary to make a careful analysis of the measurement setup. Next, the 
best parameters are selected using statistical considerations. In most cases these methods lead 
to a cost function interpretation and the estimates are found as the arguments that minimize 
the cost function. The estimates of the previous section can be found as the minimizers of the 
following cost functions: 
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^SA(A0' Consider the successive resistance estimates R(k) = u{k)/i{k). The overall 
estimate after N measurements is then the argument minimizing the following cost 
function: 

RSA(N) = argminVSA(R,N) with VSA(R,N) = i ^ = {(R(k)-R)i (1-19) 

This is the simplest approach ("SA" stands for simple approach) of the estimation prob-
lem. As seen before, it has very poor properties. 

^ L S W : A second possibility is to minimize the equation errors in the model equation 
u{k)-Ri(k) = e(k,R) in least squares (LS) sense. For noiseless measurements 
e(k, R0) = 0, with RQ the true resistance value, 

¿LS(A0 = arg minVLS(R, N) with VLS(R, N) = 1-^= χ e\K R) (1-20) 

REV(N): The basic idea of the last approach is to express that the current as well as the 
voltage measurements are disturbed by noise. This is called the errors-in-variables 
(EV) approach. The idea is to estimate the exact current and voltage (/0, u0), parame-
terized as (zp, wp), keeping in mind the model equation u0 = Ri0. 

REV(N) = arg min VEV(R, ip9 up9 N) subject to wp = Rip 

RJp,Up
 Ί i (1-21) 

VEY(R9 /p, Wp, N) = ^ Z L ! («(*) - "p)2 + ^ Σ ^ i «*)" ρ̂)2 

This wide variety of possible solutions and motivations illustrates the need for a more sys-
tematic approach. In this book we put the emphasis on a stochastic embedding approach, se-
lecting a cost function on the basis of a noise analysis of the general measurement setup that 
is used. 

All the cost functions presented here are of the "least squares" type. Again, there exist 
many other possibilities, for example, the sum of the absolute values. There are two reasons 
for choosing a quadratic cost: first, it is easier to minimize than other functions, and second, 
we will show that normally distributed disturbing noise leads to a quadratic criterion. This 
does not imply that it is the best choice from all points of view. If it is known that some outli-
ers in the measurements can appear (due to exceptionally large errors, a temporary sensor 
failure, a transmission error, etc.), it may be better to select a least absolute values cost func-
tion (sum of the absolute values) because these outliers are strongly emphasized in a least 
squares concept (Huber, 1981; Van den Bos, 1985). Sometimes a mixed criterion is used; for 
example, the small errors are quadratically weighted while the large errors only appear linear 
in the cost to reduce the impact of outliers (Ljung, 1995). 

DESCRIPTION OF THE STOCHASTIC BEHAVIOR 
OF ESTIMATORS 

Because the estimates are obtained as a function of a finite number of noisy measurements, 
they are stochastic variables as well. Their pdf is needed in order to characterize them com-
pletely. However, in practice it is usually very hard to derive it, so that the behavior of the es-
timates is described by a few numbers only, such as their mean value (as a description of the 
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location) and the covariance matrix (to describe the dispersion). Both aspects are discussed in 
the following. A detailed discussion is given in Chapter 16. 

1.3.1 Location Properties: 
Unbiased and Consistent Estimates 

The choice for the mean value is not obvious at all from a theoretical point of view. 
Other location parameters such as the median or the mode (Stuart and Ord, 1987) could also 
be used, but the latter are much more difficult to analyze in most cases. As it can be shown 
that many estimates are asymptotically normally distributed under weak conditions, this 
choice is not so important because, in the normal case, these location parameters coincide. It 
seems very natural to require that the mean value equals the true value, but it turns out to be 
impractical. What are the true parameters of a system? We can speak about true parameters 
only if an exact model exists. It is clear that this is a purely imaginary situation because in 
practice we always stumble on model errors so that only excitation-dependent approxima-
tions can be made. For theoretical reasons, it still makes sense to consider the concept of 
"true parameters," but it is clear at this point that we have to generalize to more realistic situ-
ations. One possible generalization is to consider the estimator evaluated in the noiseless sit-
uation as the "best" approximation. These parameters are then used as a reference value to 
compare the results obtained from noisy measurements. The goal is then to remove the influ-
ence of the disturbing noise so that the estimator converges to this reference value. 

Definition 1.2 (Unbiasedness): An estimator Θ of the parameters θ0 is unbiased if 
E{#} = #o for all true parameters θ0. Otherwise, it is a biased estimator. 

If the expected value equals the true value only for an infinite number of measure-
ments, then the estimator is called asymptotically unbiased. In practice, it turns out that (as-
ymptotic) unbiasedness is a hard requirement to deal with. 

Example 1.3 (Unbiased and Biased Estimators): At the end of their experiments, 
the students want to estimate the value of the voltage over the resistor. Starting from the mea-
surements (1-4), they first carry out a noise analysis of their measurements by calculating the 
sample mean value and the sample variance: 

m = jjlZ.lu(k) and σ^Λ0 = ^ Σ ί - ι («(*)" WO)2 t1"2 2) 

Applying the previous definition, it is readily seen that 

E { m } = ¿Σ?. ,E {«(*)) = ¿ Σ ϋ , «o = «o o-23) 

because the noise is zero mean, so that their voltage estimate is unbiased. The same can be 
done for the variance estimate: 

E{ófrV)} = n r r o 5 (1-24) 
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This estimator shows a systematic error of σ^/Ή and is thus biased. However, as N-> oo the 
bias disappears, and following the definitions it is asymptotically unbiased. It is clear that a 
better estimate would be Σΐ = i (WW ~ #C/V))2/(W- 1), which is the expression that is found 
in the handbooks on statistics. D 

For many estimators, it is very difficult or even impossible to find the expected value 
analytically. Sometimes it does not even exist, as is the case for RSA(N) of group A. More-
over, unbiased estimators can still have a bad distribution; for example, the pdf of the estima-
tor is symmetrically distributed around its mean value, with a minimum at the mean value. 
Consequently, a more handy tool (e.g., consistency) is needed. 

Definition 1.4 (Consistency): An estimator Θ(Ν) of the parameters θ0 is weakly 
consistent if it converges in probability to <90: plim θ(Ν) = θ0 and strongly consistent if it con-
verges with probability one (almost surely) to &í°a.s.lim0(JV) = 6L 

iV-*oo 

The precise explanation of these probability limits is given in Section 16.6. Loosely ex-
plained, it means that the pdf of Θ(Ν) contracts around the true value θ0, or 
lim Prob(|#(7V) - 0O| > S> 0) = 0. The major advantage of the consistency concept is purely 

mathematical: it is much easier to prove consistency than unbiasedness using probabilistic 
theories starting from the cost function interpretation. A general outline of how to prove con-
sistency is given in Section 17.3. Another nice property of the plim is that it can be inter-
changed with a continuous function: plim/(a) = /(plim(a)) if both limits exist (see Section 
16.8). In fact, it was this property that we applied during the calculations of the limit values 
of Í?LS and REV , for example, 

TrZik-!«(*) P l i m Τ τ Σ ^ Ι ^ * ) U 
plim^EvW = Plim -Λ = ^ ^ = ^ = R0 (1-25) 

Consequently, REV(N) is a weakly consistent estimator. Calculating the expected value is 
much more involved in this case due to the division. Therefore, consistency is better suited 
than (asymptotic) unbiasedness to study it. 

1.3.2 Dispersion Properties: Efficient Estimators 

In this book the covariance matrix is used to measure the dispersion of an estimator, 
that is, to ascertain how much the actual estimator is scattered around its limiting value. 
Again, this choice, among other possibilities (for example, percentiles), is highly motivated 
from a mathematical point of view. Within the stochastic framework used, it will be quite 
easy to calculate the covariance matrix, whereas it is much more involved to obtain the other 
measures. For normal distributions, all dispersion measures are obtainable from the covari-
ance matrix so that for most estimators this choice is not too restrictive because their distribu-
tion converges to a normal one. 

As users, we are highly interested in estimators with minimal errors. However, because 
we can collect only a finite number of noisy measurements, it is clear that there are limits on 
the accuracy and precision we can reach. This is precisely quantified in the Cramér-Rao 
inequality. This inequality provides a lower bound on the covariance matrix of a(n) (unbi-
ased estimator starting from the likelihood function. First we introduce the likelihood func-
tion, then we present the Cramér-Rao lower bound. 
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Consider the measurements z e RN obtained from a system described by a hypotheti-
cal, exact model that is parameterized in Θ. These measurements are disturbed by noise and 
are, hence, stochastic variables that are characterized by a probability density function J(z\ θ0) 
that depends on the exact model parameters θ0 with jzeRNf{z\0o)(k = l. Next we can inter-
pret this relation conversely, namely, how likely is it that a specific set of measurements 
z = zm are generated by a system with parameters ΘΊ In other words, we now consider a 
given set of measurements and view the model parameters as the free variables: 

L(zm\0) =f(z = zm\e) (1-26) 

with Θ the free variables. L{zm\ff) is called the likelihood function. In many calculations the 
log likelihood function l(z|Θ) = \n(L(z\0)) is used. In (1-26) we used zm to indicate explic-
itly that we use the numerical values of the measurements that were obtained from the exper-
iments. From here on, we just use z as a symbol because it will be clear from the context 
what interpretation should be given to z. The reader should be aware that L(z\ Θ) is not a 
probability density function with respect to Θ because j0L(z\0)d0^ i. Notice the subtle differ-
ence in terminology; that is, probability is replaced by likeliness. 

The Cramér-Rao lower bound gives a lower limit on the covariance matrix of parame-
ters. Under quite general conditions, this limit is universal and independent of the selected es-
timator: no estimator that violates this bound can be found. It is given by (see Section 16.12) 

(1-27) 

The derivatives are calculated in Θ = θ0, and be = E {θ} - θ0 is the bias on the estimator. 
Note that for biased estimators (θδθ/θθΦθ) the lower bound (1-27) can be zero: 
CR(0o) = 0 (see Example 16.20 on page 590). For unbiased estimators (1-27) reduces to 
CR(0o) = Fi-\6Q). 

Fi{0) is called the Fisher information matrix; it is a measure of the information in an 
experiment: the larger the matrix, the more information there is. In (1-27) it is assumed that 
the first and second derivatives of the log likelihood function exist with respect to Θ. 

Example 1.5 (Influence of the Number of Parameters on the Cramér-Rao Lower 
Bound): A group of students want to determine the flow of tap water by measuring the 
height h0(t) of the water in a measuring jug as a function of time t. However, their work is 
not precise and in the end they are not sure about the exact starting time of their experiment. 
They include it in the model as an additional parameter: h0(t) = a(t-tstart) = at+ b, and 
Θ = [a, b]T. Assume that the noise nh(k) on the height measurements is iid zero mean nor-
mally distributed N(0, σ2), and the noise on the time instances is negligible 
h(k) = atk + b + nh(k); then the following stochastic model can be used: 

Prob(A(Jfc),/*) = ?rob(h(k)-(atk + b)) = Prob^A:)) 

where Prob(/*(A:), tk) is the probability of making the measurements h(k) at tk. The likeli-
hood function for the set of measurements h = {(/z(l), tx),..., (h(N), tN)} is 
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Uh\a, b) i - ¿ Σ " «*)-«<*-»>2 

(2πσ2) ,N/2 (1-28) 

and the log likelihood function becomes 

N, 1 ^N l{h\a9b) = - ^ 1 ο Ε ( 2 π σ 2 ) - ^ χ ; = 1 ( ^ ) - ^ - ^ ) 2 (1-29) 

The Fisher information matrix and the Cramér-Rao lower bound are found using (1-27): 

N 
Fi(a, b) = — s2 μ\ 

β i. 
-> CR(a, b) = Fi~l(a, b) = 

N(s2-p2) -μ s 
(1-30) 

with μ = £ J_ , tk/N and s2 = Xf= , t\/N. These expressions are very informative. First, 
we can note that the attainable uncertainty is proportional to the standard deviation of the 
noise. This means that inaccurate measurements result in poor estimates, or identification is 
no excuse for sloppy measurements. The uncertainty decreases as JÑ, which can be used as 
a rule of thumb whenever independent measurements are processed. Finally, it can also be 
noted that the uncertainty depends on the actual time instances used in the experiment. In 
other words, by making a proper design of the experiment, it is possible to influence the un-
certainty on the estimates. This idea will be exploited fully in Chapter 5. Another question we 
can now answer is what price is paid to include the additional model parameter b to account 
for the unknown starting time. By comparing Frl(a, b) with Fr\a) (assuming that b is 
known), it is found that 

σ2(α, b) 
N(s2 V ) - ^ = 0¿(a) (1-31) 

where σ2(α, b) is the lower bound on the variance of a if both parameters are estimated, else 
G2(a) is the lower bound if only a is estimated. This shows that adding additional 
parameters to a model increases the minimum attainable uncertainty on it. Of course, these 
parameters may be needed to remove systematic errors so that a balance between stochastic 
errors and systematic errors is achieved. This is further elaborated in Chapter 11. D 

The Cramér-Rao lower bound is a conservative estimate of the smallest possible cova-
riance matrix that is not always attainable (the values may be too small). Tighter bounds exist 
(Abel, 1993), but these are more involved to calculate. Consequently, the Cramér-Rao bound 
is the criterion most used to verify the efficiency of an estimator. 

Definition 1.6 (Efficiency): An unbiased estimator is called efficient if its covariance 
matrix is smaller than that of any other unbiased estimator. 

An unbiased estimator that reaches the Cramér-Rao lower bound is also an efficient es-
timator. For biased estimators, a generalized expression should be used (see Section 16.12). 
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1.4 BASIC STEPS IN THE IDENTIFICATION PROCESS 

Each identification session consists of a series of basic steps. Some of them may be hidden or 
selected without the user being aware of his/her choice. Clearly, this can result in poor or sub-
optimal results. In each session the following actions should be taken: 

■ Collect information about the system. 
■ Select a model structure to represent the system. 
■ Choose the model parameters to fit as well as possible the model to the measure-

ments: selection of a "goodness of fit" criterion. 
■ Validate the selected model. 

Each of these points is discussed in more detail below. 

1.4.1 Collect Information about the System 

If we want to build a model for a system, we should get information about it. This can 
be done by just watching the natural fluctuations (e.g., vibration analysis of a bridge that is 
excited by normal traffic), but most often it is more efficient to set up dedicated experiments 
that actively excite the system (e.g., controlled excitation of a mechanical structure using a 
shaker). In the latter case, the user has to select an excitation that optimizes his/her own goal 
(for example, minimum cost, minimum time, or minimum power consumption for a given 
measurement accuracy) within the operator constraints (e.g., the excitation should remain be-
low a maximum allowable level). The quality of the final result can depend heavily on the 
choices that are made. Later, we will thoroughly discuss the selection of the excitation sig-
nals. 

1.4.2 Select a Model Structure to Represent the System 

A choice should be made within all the possible mathematical models that can be used 
to represent the system. Again, a wide variety of possibilities exist, such as 

■ Parametric versus nonparametric models 
In a parametric model, the system is described using a limited number of character-
istic quantities called the parameters of the model, whereas in a nonparametric 
model the system is characterized by measurements of a system function at a large 
number of points. Examples of parametric models are the transfer function of a filter 
described by its poles and zeros and the motion equations of a piston. An example of 
a nonparametric model is the description of a filter by its impulse response at a large 
number of points. 

Usually it is simpler to create a nonparametric model than a parametric one be-
cause the modeler needs less knowledge about the system itself in the former case. 
However, physical insight and concentration of information are more substantial for 
parametric models than for nonparametric ones. We will concentrate on transfer 
function models (parametric models), but the problem of frequency response func-
tion measurements (nonparametric model) will also be elaborated. 

■ White box models versus black box models 
In the construction of a model, physical laws whose availability and applicability de-
pend on the insight and skills of the experimenter can be used (KirchhofFs laws, 
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Newton's laws, etc.). Specialized knowledge related to different scientific fields may 
be brought into this phase of the identification process. The modeling of a loud-
speaker, for example, requires extensive understanding of mechanical, electrical, 
and acoustical phenomena. The result may be a physical model, based on compre-
hensive knowledge of the internal functioning of the system. Such a model is called 
a white box model. 

Another approach is to extract a black box model from the data. Instead of 
making a detailed study and developing a model based upon physical insight and 
knowledge, a mathematical model is proposed that allows sufficient description of 
any observed input and output measurements. This reduces the modeling effort sig-
nificantly. For example, instead of modeling the loudspeaker using physical laws, an 
input-output relation, taking the form of a high-order transfer function, can be pro-
posed. 

The choice between the different methods depends on the aim of the study: the 
white box approach is better for gaining insight into the working principles of a sys-
tem, but a black box model may be sufficient if the model will be used only for pre-
diction of the output. 

Although, as a rule of thumb, it is advisable to include as much prior knowl-
edge as possible during the modeling process, it is not always easy to do. If we 
know, for example, that a system is stable, it is not simple to express this information 
if the polynomial coefficients are used as parameters. 

■ Linear models versus nonlinear models 
In real life, almost every system is nonlinear. Because the theory of nonlinear sys-
tems is very involved, these are mostly approximated by linear models, assuming 
that in the operation region the behavior can be linearized. This kind of approxima-
tion makes it possible to use simple models without jeopardizing properties that are 
of importance to the modeler. This choice depends strongly on the intended use of 
the model. For example, a nonlinear model is needed to describe the distortion of an 
amplifier, but a linear model will be sufficient to represent its transfer characteristics 
if the linear behavior is dominant and is the only interest. 

■ Linear-in-the-parameters versus nonlinear-in-the-parameters 
A model is called linear-in-the-parameters if there exists a linear relation between 
these parameters and the error that is minimized. This does not imply that the system 
itself is linear. For example, ε = y- {axu + a2u

2) is linear in the parameters ax 

and a2 but describes a nonlinear system. On the other hand, 

</ω)= Υϋω)- \ U U(jco) 

describes a linear system but the model is nonlinear in the b{ and b2 parameters. 
Linearity in the parameters is a very important aspect of models because it has a 
strong impact on the complexity of the estimators if a (weighted) least squares cost 
function is used. In that case, the problem can be solved analytically for models that 
are linear in the parameters so that an iterative optimization problem is avoided. This 
is illustrated in Section 1.5.1. 
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1.4.3 Match the Selected Model Structure 
to the Measurements 

Once a model structure is chosen (e.g., a parametric transfer function model), it should 
be matched as well as possible with the available information about the system. Mostly, this 
is done by minimizing a criterion that measures a goodness of the fit. The choice of this crite-
rion is extremely important because it determines the stochastic properties of the final estima-
tor. As seen from the resistance example, many choices are possible and each of them can 
lead to a different estimator with its own properties. Usually, the cost function defines a dis-
tance between the experimental data and the model. The cost function can be chosen on an ad 
hoc basis using intuitive insight, but there also exists a more systematic approach based on 
stochastic arguments as explained in Section 1.5. Simple tests on the cost function exist (nec-
essary conditions) to check even before deriving the estimator whether it can be consistent 
(see Chapter 9, Section 9.5). 

1.4.4 Validate the Selected Model 

Finally, the validity of the selected model should be tested: does this model describe the 
available data properly or are there still indications that some of the data are not well mod-
eled, indicating remaining model errors? In practice, the best model (meaning the one with 
the smallest errors) is not always preferred. Often a simpler model that describes the system 
within user-specified error bounds is preferred. Tools will be provided that guide the user 
through this process by separating the remaining errors into different classes, for example, 
unmodeled linear dynamics and nonlinear distortions. From this information, further im-
provements of the model can be proposed, if necessary. 

During the validation tests it is always important to keep the application in mind. The 
model should be tested under the same conditions as will be used later. Extrapolation should 
be avoided as much as possible. The application also determines what properties are critical. 

1.4.5 Conclusion 

This brief overview of the identification process shows that it is a complex task with a 
number of interacting choices. It is important to pay attention to all aspects of this procedure, 
from the experiment design to the model validation, in order to get the best results. The 
reader should be aware that, besides this list of actions, other aspects are also important. A 
short inspection of the measurement setup can reveal important shortcomings that can jeopar-
dize a lot of information. Good understanding of the intended applications helps to set up 
good experiments, and is very important to make the proper simplifications during the 
model-building process. Many times, choices are made that are not based on complicated the-
ories but are dictated by the practical circumstances. In these cases, a good theoretical under-
standing of the applied methods will help users to be aware of the sensitive aspects of their 
techniques. This will enable them to put all their effort on the most critical decisions. More-
over, they will become aware of the weak points of the final model. 

1.5 A STATISTICAL APPROACH 
TO THE ESTIMATION PROBLEM 

In the previous sections it was shown that an intuitive approach to a parameter estimation 
problem can cause serious errors without even being noticed. To avoid severe mistakes, a the-
oretical framework is needed. Here, a statistical development of the parameter estimation the-
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ory is made. Four related estimators are studied: the least squares (LS) estimator, weighted 
least squares (WLS) estimator, maximum likelihood (ML) estimator, and, finally, the Bayes 
estimator. It should be clear that, as mentioned before, it is still possible to use other estima-
tors, such as the least absolute values. However, a comprehensive overview of all possible 
techniques is beyond the scope of this book. 

To use the Bayes estimator, the a priori probability density function (pdf) of the un-
known parameters and the pdf of the noise on the measurements are required. Although it 
seems, at first, quite strange that the parameters have a pdf, we will illustrate in the next sec-
tion that we use this concept regularly in daily life. The ML estimator requires only knowl-
edge of the pdf of the noise on the measurements, and the WLS estimator can be applied op-
timally if the covariance matrix of the noise is known. Even if this information is lacking, the 
LS method is usable. Each of these estimators will be explained in more detail and illustrated 
in the following sections. 

1.5.1 Least Squares Estimation 

One of the simplest estimation techniques is the least squares estimator. In this case, the 
match between the model and the measurements is quantified by a least squares cost func-
tion. As this is an arbitrary choice, initially, it is clear that the result is not necessarily optimal. 
By choosing other cost functions such as the sum of the least absolute values; it is possible to 
find other estimators, with different properties, that perform better in specific situations. 
Some of these are studied explicitly in the literature. In this book we concentrate on least 
squares, a choice strongly motivated by numerical aspects: minimizing a least squares cost 
function is usually less involved than the alternative cost functions. Later on, this choice will 
also be shown to be motivated from the stochastic point of view. Normally distributed noise 
leads, naturally, to least squares estimation. As seen in the resistance example, even within 
the class of least squares estimators, there are different possibilities resulting in completely 
different estimators. A full treatment of the problem is beyond the scope of this book, hence, 
we focus only on the aspects that are of direct importance to our major goal. 

Consider a multiple-input, single-output system modeled by y0(k) = g(uQ(k)9 θ0) with 
k the measurement index, y(k) e R, u0(k) e R1 xn», and θ0 e U"e the true parameter vec-
tor. The aim is to estimate the parameters from noisy observations at the output of the system: 
y(k) = y0(k) + n(k). This is done by minimizing the sum of the squared errors 
e(k, Θ) = y(k) -y(k, Θ), with y(k, Θ) the modeled output: 

¿ N L S W = arg minFNLS(0, TV), with KNLS(0, Λ0 = \^k= 1 e\K Θ) (1-32) 

In general, the analytical solution of the nonlinear least squares problem (1-32) is not known, 
so numerical methods must be used. A number of techniques are described in the literature 
(Fletcher, 1991), and many are found in commercially available mathematical packages. 
They vary from very simple techniques such as simplex methods that require no derivatives 
at all, through gradient or steepest descent methods (based on first-order derivatives), to 
Newton methods that make use of second-order derivatives. The optimal choice strongly de-
pends on the specific problem. However, the Gauss-Newton method is very well suited to 
deal with the least squares minimization problem because it makes explicit use of the struc-
ture of the cost function. The second derivatives of the cost function (the Hessian matrix) are 
approximated in this method by the first-order derivatives of e{0). Define the Jacobian ma-
trix J{0) eRNxn°: J{6) = θβ(θ)/δθ and consider the Hessian matrix: 
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5^φ* - jr^m-Z.^^^ 0-33, 

If the second term in (1-33) is small (for example, ||e(0)||2 is "small") with respect to the first 
one, then ^(θ)^θ) will be a good approximation for the second-order derivatives of the cost 
function. The numerical solution is then found by applying the following iterative process: 

5K/+1) = #Ο + Δ0('+1> with /Γ(6^μ(6ΚΟ)Δ0θ + ΐ) = - jT{e^)e{0^) (1-34) 

Equation (1-34) reveals two important advantages. First, only the gradient needs to be calcu-
lated, and not the Hessian, thus reducing the calculation time. Moreover, very often, the con-
dition number of the Hessian matrix is the square of that of the Jacobian. This leads us to the 
second advantage: using, for example, singular value decomposition (SVD) or QR decompo-
sition techniques, (1-34) can be solved without forming the product Jr(^,'))y(^/)) so that 
more complex problems can be solved, because the numerical errors are significantly reduced 
(see Exercise 1.12). If (1-34) converges to the global minimum of (1-32), then 
¿NLS(A0 = 0(oo)· 

Because there are no explicit expressions available for the estimator as a function of the 
measurements, it is not straightforward to study its properties. For this reason, special theo-
ries are developed to analyze the properties of the estimator by analyzing the cost function. 
These techniques are covered in detail in Section 19.4. Under quite general assumptions on 
the noise (for example, iid noise with finite second- and fourth-order moments), some regu-
larity conditions on the model g(u0(k), Θ), and the excitation (choice of u0(k))9 consistency 
of the least squares estimator is proved. Also, an approximate expression for the covariance 
matrix COV($NLS(A0) is available: 

COV(¿NLS(A0) * (^)J(e))-lJ\e)Cov(ny)J(e)(^)J(0))-^ I Λ (1-35) 

with Cov(«^) = E {nyn^}. Note that this approximation is still a stochastic variable because 
it depends on #NLS(N) , while the exact expression should be in θ0. If the model is linear-in-
the-parameters, y0 = K(uo)0o, and βψ) = y-K(uo)0, then (1-32) reduces to a linear least 
squares cost function, and explicit expressions are available for the estimator (note that 
K = -δβ(θ)/δθ = -J(0) is parameter independent in this case). In order to keep the ex-
pressions compact, we do not include the arguments of K in the following: 

¿LS(A0 = {KTKY'KTy (1-36) 

The covariance matrix still equals (1-35) with J0LS(N)) replaced by -K, but now it is an ex-
act expression and no longer an approximation. Moreover, it is possible to prove that the esti-
mator is unbiased for zero mean noise: 

E{¿LS(A0} = ( ^ ¿ O - ^ E M = {KTK)-'KTy0 = (Κ?Κ)-*ΚΤΚΘ0 = θ0 (1-37) 
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This result is valid only if K is not disturbed by noise. If the inputs u are also disturbed by 
noise, it is no longer possible to bring (KTK)~lKT outside the expectation. In this case, addi-
tional quadratic noise contributions appear in KTK so that &LS(A0 underestimates the true 
values. This was visible in the estimation of the resistance (K[k] = i(k), y(k) = u(k), 
Θ = R) where (1-8) shows the impact of the quadratic contributions of the input noise. 

Example 1.7 (Weighing a Loaf of Bread): John is asked to estimate the weight of a 
loaf of bread from N noisy measurements y{k) = θ0 + ny(k) with θ0 the true but unknown 
weight, y(k) the weight measurement, and ny(k) the measurement noise. From a prior analy-
sis, making repeated measurements, it turns out that ny(k) is zero mean iid with variance aj. 
The model becomes y = ΚΘ+ ny with K = ( 1 , 1 , . . . , l ) r . Using (1-36), the estimate is 

#i*(N) = {KTKrWy = ±ΣΙ= xÁk) (1-38) 

with variance 

var(0LS(JV)) = (ΚτΚ)-ΐΚτ(σΐΙΝ)Κ(ΚτΚ)~ι = σ*/Ν (1-39) 

This example shows that it is much easier to get the solution when it is possible to formulate 
the problem under the standard conditions. D 

This short analysis shows that the least squares estimator is applicable to a very wide 
range of problems. No prior information is required to use it, which explains its success. 
However, its specific properties depend on the actual situation. General statements can be 
made only if some noise characteristics are known. In that case it is also possible to improve 
the quality of the estimates by using this knowledge in the estimator. If, for example, the co-
variance matrix of the noise is known, a weighted least squares can be used. 

1.5.2 Weighted Least Squares Estimation 

In (1-32) all measurements are equally weighted. In many problems it is desirable to 
put more emphasis on one measurement with respect to the other. This can be done to make 
the difference between measurements and model smaller in some regions, but it can also be 
motivated by stochastic arguments. If the covariance matrix of the noise is known, then it 
seems logical to suppress measurements with high uncertainty and to emphasize those with 
low uncertainty. In practice, it is not always clear what weighting should be used. If it is, for 
example, known that model errors are present, then the user may prefer to put in a dedicated 
weighting in order to keep the model errors small in some specific operation regions instead 
of using the weighting dictated by the covariance matrix. 

In general, the weighted nonlinear least squares estimate #WNLS(A0 is 

¿WNLS(A0 = argmin ν^^θ,Ν) with Vy^WN) = 1-βτ(θ)Ψβ(θ) (1-40) 
Θ ¿ 

where We UNxN is a symmetric positive definite weighting matrix (the asymmetric part 
does not contribute to a quadratic form). The evaluation of this cost function requires OiN2) 
operations, which are very time consuming. Consequently, (block) diagonal weighting matri-
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ces are preferred in many problems, reducing the number of operations to 0(N). All the re-
marks on the numerical aspects of the least squares estimator are also valid for the weighted 
least squares. This can be understood easily by applying the following transformation: 
ε{θ) = Se(0) with STS = W so that * W s ( 3 ^ ) = ετ(θ)εψ)/29 which is a least squares 
estimator in the transformed variables. This also leads to the following Gauss-Newton algo-
rithm to minimize the cost function 

0V+D = # 0 + Δ # ' + 1 ) with ^(#Ο)07(0(Ο)Δ0<'+1) = - ^ ( 0 ( 0 ) ^ ( 0 ( 0 ) ( M i ) 

Equation (1-35) is generalized to (noticing that W7 = W) 

COV(¿WNLS(AO) * (^Ψ) wjwyww wcn Ψ3φ\βφ) wj(e)y i (1-42) 
y W = éwsLsW 

with Cn = Cov(ny). By choosing W = C~l, the expression simplifies to 

COV(¿WNLS(A0) * [^WNLsíAOÍC-y^wNLsW)]"1 (1-43) 

In Exercise 1.16 it is shown that among all possible positive definite choices for W, the best 
one is W = C~l because this minimizes the covariance matrix. The results for models that 

y 

are linear-in-the-parameters are immediately found, analogous to the least squares estimator. 
Also, in this case, the weighted least squares is unbiased under the same conditions as the 
least squares estimator. 

1.5.3 The Maximum Likelihood Estimator 

Using the covariance matrix of the noise as the weighting matrix allows prior knowl-
edge about the noise on the measurements. However, a full stochastic characterization re-
quires the pdf of the noise distortions. If this knowledge is available, it may be possible to get 
better results than those attained with a weighted least squares. Maximum likelihood estima-
tion offers a theoretical framework to incorporate the knowledge about the distribution in the 
estimator. The pdf fn of the noise also determines the conditional pdf f(y\ θ0) of the mea-
surements, given the hypothetical exact model, y0 = G(w0, 0O), that describes the system 
and the inputs that excite the system. Assuming, again, an additive noise model y = y0 + ny, 
with y,y0, ny e RN, the likelihood function becomes: 

f(y\ Θ0, «o) = f»(y - G(u0, θ0)) (i-44) 

The maximum likelihood procedure consists of two steps. First the numerical values ym of 
the actual measurements are plugged into (1-44) for the variables y, and next the model pa-
rameters #0 are considered as the free variables. This results in the so-called likelihood func-
tion. The maximum likelihood estimate is then found as the maximizer of the likelihood 
function 

¿ML(A0 = arg max f(ym\99 u0) (1-45) 
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From now on, we will no longer explicitly indicate the numerical values ym but just use the 
symbol y for the measured values. 

Example 1.8 (Weighing a Loaf of Bread—Continued): Consider Example 1.7 
again, but assume that more information about the noise is available. This time John knows 
that the distribution fv of nv is normal with zero mean and standard deviation σΛ). With this 

Jy y y 

information he can build an ML estimator: 

(y-0)2 

fty\0) = -jL=e 2σϊ (1-46) 

and the estimated weight becomes #ML = y. It is therefore not possible to give a better esti-
mate than the measured value itself. If John makes repeated independent measurements 
y(l), ...,y(N), the likelihood function is 

^«-(dps* * <1-47) 

Because (2πσ2)"Ν/2 is parameter independent, the ML estimate is given by the minimizer of 
Σ * . , (A*) -&)2/{2 af> and becomes 

This is nothing other than the sample mean of the measurements. It is again easy to check that 
this estimate is unbiased. Note that in this case the ML estimator and the (weighted) least 
squares estimator are the same. This is the case only for normally distributed errors. D 

The unbiased behavior may not be generalized because the MLE can also be biased. For 
example, the sample mean and sample variance are shown to be the ML estimates for the 
mean and the variance of measurements that are identically independent and normally distrib-
uted: 

¿ML = ̂ Z L l ^ ) ' M̂L = χΣ^Μ®-^2' 

Although the first estimate is unbiased, the second one can be shown to be prone to a bias of 
cP/N that asymptotically disappears in N: 

This shows that there is a clear need to understand the properties of the ML estimator better. 
In the literature, a series of important properties is tabled assuming well-defined experimen-
tal conditions. Each time these conditions are met, the user knows in advance, before passing 
through the complete development process, what the properties of the estimator would be. On 
the other hand, if the conditions are not met, nothing is guaranteed anymore and a dedicated 
analysis is, again, required. In this introductionary chapter we just make a loose statement of 
the properties; a very precise description can be found in the literature (Goodwin and Payne, 
1977; Caines, 1988). 
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Properties of the ML Estimator 

Principle ofinvariance: if #ML is an ML estimator of Θ e R"Q, then 0g = £(#ML) 

g 
is an ML estimator of g(9) where g is a function, 9g e 05"*, and n <n^ with w^ a 
finite number. 
Consistency: if OuiiN) is an ML estimator based on Af iid random variables, with 
ηθ independent of N, then #ML(A0 converges to θ0 almost surely: 
a.s.lim #ML(A0 = #o-
If ηθ depends on N, the property is no longer valid, and the consistency should be 
checked again. See, for example, the errors-in-variables estimator in the previous 
section where not only is the resistance value estimated, but also the currents 
z(l), ..., i(N) and voltages w(l), ..., u(N). In this case ηθ = N+ 1, e.g., the N cur-
rent values and the unknown resistance value, and the voltage is calculated from the 
estimated current and resistance value. 
Asymptotic normality: if ΘΜΙ(Ν) is an ML estimator based on N iid random vari-
ables, with ηθ independent of N, then 0ML(N) converges in law to a normal ran-
dom variable. 
The importance of this property is that it not only allows one to calculate uncertainty 
bounds on the estimates but also guarantees that most of the probability mass gets 
more and more unimodally concentrated around its limiting value. 
Asymptotic efficiency: if #ML(AO is an ML estimator based on N iid random vari-
ables, with ηθ independent of N, then #ML(N) is asymptotically efficient 
(COV(#ML(AO) reaches asymptotically the Cramér-Rao lower bound). 

1.5.4 The Bayes Estimator 

As described before, the Bayes estimator requires the most prior information before it 
is applicable, namely the pdf of the noise on the measurements and the pdf of the unknown 
parameters. The kernel of the Bayes estimator is the conditional pdf of the unknown parame-
ters Θ with respect to the measurements y: f(0\u9y). This pdf contains complete informa-
tion about the parameters Θ, given a set of measurements y. This makes it possible for the 
experimenter to determine the best estimate of Θ for the given situation. To select this best 
value, it is necessary to lay down an objective criterion, for example, the minimization of a 
risk function C(0\ θ0) that describes the cost of selecting the parameters Θ if θ0 are the true 
but unknown parameters. The estimated parameters Θ are found as the minimizers of the risk 
function weighted with the probability f(0\ u, y): 

Θ{Ν) = argmin f C(e\0o)f(9\u,y)de (1-49) 

For some specific choices of C(#|#0), the solution of (1-49) is well known; for example, 
C(#|#0) = |# -#o | 2 leads to the mean value, and C(^| ̂ 0) = | # - # 0 | results in the median, 
which is less sensitive to outliers because these contribute less to the second criterion than to 
the first (Eykhoff, 1974). 

Another objective criterion is to choose the estimate as 

¿BayesW = arg max/(0| u,y) (1-50) 
Θ 
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The first and second examples are "minimum risk" estimators, and the last is the Bayes esti-
mator. In practice, it is very difficult to select the best out of these. In the next section, we 
study the Bayes estimator in more detail. To search for the maximizer of (1-50) the Bayes 
rule is applied: 

fly) 

In order to maximize the right-hand side of this equation it is sufficient to maximize its nu-
merator, because the denominator is independent of the parameters Θ, so that the solution is 
given by looking for the maximum of f(y 10, u)f{6). This simple analysis shows that a lot of a 
priori information is required to use the Bayes estimator: f(y\ θ9 ύ) (also appearing in the ML 
estimator) and /(#). In many problems the parameter distribution /(#) is unavailable, and 
this is one of the main reasons why the Bayes estimator is rarely used in practice (Norton, 
1986). 

Example 1.9 (Use of the Bayes Estimator in Daily Life): We commonly use some 
important principles of the Bayes estimator without being aware of it. This is illustrated in 
the following story: Joan was walking at night in Belgium and suddenly saw a large ani-
mal in the far distance. She decided that it was either a horse or an elephant 
Prob(observation|elephant) = Prob(observation|horse). However, the probability of seeing 
an elephant in Belgium is much lower than that of seeing a horse: 
Prob(elephant in Belgium) « Prob(horse in Belgium) so that from the Bayes principle Joan 
concludes she was seeing a horse. If she was on safari in Kenya instead of Belgium, the 
conclusion would be opposite, because Prob(elephant in Kenya) » Prob(horse in Kenya). 

Joan continued her walk. When she came closer she saw that the animal had big feet, a small 
tail, and also a long trunk so that she had to review her previous conclusion on the basis of all 
this additional information: there was an elephant walking on the street. When she passed the 
corner, she saw that a circus had arrived in town. D 

From the previous example it is clear that in a Bayes estimator the prior knowledge of 
the pdf of the estimated parameters is very important. It also illustrates that it balances our 
prior knowledge with the measurement information. This is more quantitatively illustrated in 
the next example. 

Example 1.10 (Weighing a Loaf of Bread—Continued): Consider again Example 
1.8 but assume this time that the baker told John that the bread normally weighs about 
w = 800 g. However, the weight can vary around this mean value as a result of humidity, 
the temperature of the oven, and so on, in a normal way with a standard deviation GW. With 
all this information, John knows enough to build a Bayes estimator. Using normal distribu-
tions and noticing that f(y\6) = fy(ny) = fy(y-0)9 the Bayes estimator is found by maxi-
mizing 

(y-θ)2 ( 0 - H Q 2 

fiy\0)fl9) = -μ=β 2σ1 —L=e 2σ» (1-52) 
42πσ] J2nal 
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and the estimated weight becomes 

0Bayes = y/CJy W/CT- (1-53) 

In this result, two parts can be distinguished: y, the information derived from the measure-
ment, and w, the a priori information from the baker. If the quality of the prior information is 
high compared with that of the measurements (aw « σγ), the estimate is determined mainly 
by the prior information. If the quality of the prior information is very low compared with the 
measurements (σ^» ay), the estimate is determined mainly by the information from the 
measurements. 

After making several independent measurements y(\), ...,y(N) the Bayes estimator 
becomes 

0Bayes(JV) = ^ ^ 0 " , (1-54) 

The previous conclusions remain valid. However, when the number of measurements 
increases, the first term dominates the second one such that the impact of the prior 
information is reduced (Sórenson, 1980). Finally, when N becomes infinite, the estimate is 
completely determined by the measurements. D 

Conclusion. From these examples it is seen that a Bayes estimator combines prior 
knowledge of the parameters with information from measurements. When the number of 
measurements is increased, the measurement information becomes more important and the 
influence of the prior information decreases. If there is no information about the distribution 
of the parameters, the Bayes estimator reduces to the ML estimator. If the noise is normally 
distributed, the ML estimator reduces to the weighted least squares. If the noise is white, the 
weighted least squares boils down to the least squares estimator. 

1.5.5 Instrumental Variables 

In this section we will discuss a final parameter estimation method that is very suitable 
when both the input and the output are disturbed by noise. Although it does not belong di-
rectly to the previous family of estimators, we include it in this chapter for use later, to inter-
pret one of the proposed identification schemes. In the resistance estimation examples, it was 
shown that the least squares method RLS(N) is biased because of the quadratic noise contri-
butions appearing in the denominator: 

RLSÍN) = —. , with lim RLS(N) = R0 \ (1-55) 

This systematic error can be removed by replacing i(k) in the numerator and denominator by 
i{k- 1) so that the new estimate becomes: 
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RMM = -γ (1-56) 

Making the same analysis as in Section 1.2.2.1, it is seen that all quadratic noise contributions 
are eliminated by this choice, so that 

lim RW(N) = ^ο (1-57) 
N-><x> 

The idea used to generate (1-56) can be generalized as follows. Consider the linear-in-the-
parameters model structure y0 = Κ(κ0)θ0 in Section 1.5.1, and replace KT in (1-36) by Gr, 
to get 

ΘΜΝ) = (GTK(u))-lGTy (1-58) 

The choice of G, a matrix of the same size as K(u), will be defined later. Θ\\(Ν) is the in-
strumental variables estimate. Consistency is proved by considering the plim for N-^>ao 
(Norton, 1986). For simplicity, we assume all the plim exists, namely 

plim ¿iv = plim {{GTK{u)YxGTy} 

= ( p l i m { G ^ K + «M)})-i( plim{G^0 + G ^ } ) 

= (plim {GTK(u0 + nu)/N})-l(plim {GTK(u0)/N}θ0 + plim {GTn/N}) 

If 

plim {GTK(u0 + nu)/N} = plim {GTK(u0)/N} and plim {GTn/N} = 0 (1-59) 

then 

p\im0w(N) = θ0 (1-60) 

Equation (1-59) defines the necessary conditions for G to get a consistent estimate. Loosely 
stated, G should not be correlated with the noise on K(u0 + nu) and the output noise ny. The 
variables used for building the entries of G are called the instrumental variables. 

If the covariance for Cn = σ2/^, then an approximate expression for the covariance 
matrix of the estimates is (Norton, 1986): 

Cov(¿iv(A0) * °2R~¿KRGGR~JK
 w i t h RGK = GTK(u)/N and RGG = GTG/N (1-61) 

This reveals another condition on the choice of the instrumental variables G: although they 
should be "uncorrelated" with the noise on the output observation ny9 they should be corre-
lated maximally with K9 otherwise RGK tends to zero and Cov($iv(A0) would become very 
large. In the case of the resistance estimate, the instrumental variables are the shifted input. 
Because we used a constant current, no problem arises. In practice, this technique can be gen-
eralized to varying inputs under the condition that the power spectrum of the noise is much 
wider than the power spectrum of the input. In the following exercises the instrumental vari-
ables method is applied to the resistance example. 



Section 1.6 ■ Exercises 29 

1.6 EXERCISES 

1.1. Set up a simulation to measure the value of the resistance using 

i(k) = i0 + nfk) u(k) = u0 + nu(k) (1-62) 

Use for ni and nu zero mean iid noise with standard deviation ai and au. Consider 
uniformly and normally distributed noise and use i0 = 1 A, u0 = IV, σί = 0.5(1) A, 
and au = 0.5(1) V. Plot R(k) = u(k)/i(k) for k = 1, ..., 100. 

1.2. Apply the estimators RL$, #E V, RSA fr°m (1-1)to (1-3) to the results of the simulator in 
Exercise 1.1 and plot the results as a number of the processed measurements N. 

1.3. Measure the histogram for the three estimators of Exercise 1.2 for N = 10, 100, 1000 
and plot the approximated pdf. 

1.4. Use the simulator of Exercise 1.1 to estimate the variance of the three estimators of Exer-
cise 1.2 as a function of N and plot the results on a log-log scale. Check the 11JÑ rule 
of thumb. Vary N between 1 and 104 . 

1.5. Derive the variance expressions var(/?Ls(A0)> var(^Ev(^))» a n d var(^SA(^0) under 
Assumption 1.1 using linear approximations as illustrated in (1-16) and (1-17). 

1.6. Use the simulator of Exercise 1.1 to estimate the variance of the three estimators of Exer-
cise 1.2 for N = 100 as a function of the SNR of the current and the voltage measure-
ments. Compare the results with the theoretical level (see (1-17) and (1-18)) and discuss 
the results. 

1.7. The bias compensated least squares solution of the resistor problem is given by 

*BC(JV) = -f- (1-63) 

lX-A*>-<t 

Use the simulator of Exercise 1.1 to estimate the variance and the mean square error of 
^LS> ^EV> and ^ B C from (1-2), (1-3), and (1-63) with N = 100. Vary the noise-to-
signal ratio between 0.01 and 1, and plot the results on a log-log scale. Compare the 
mean square error with the variance. What do you conclude? 

1.8. Derive the estimators RL$(N), REy(N), and RSAW by minimizing the cost functions 
(1-19), (1-20), and (1-21). 

1.9. Reformulate the cost functions (1-19), (1-20), and (1-21) for the case that the current is 
varying from measurement to measurement (the current is no longer a DC source), and 
derive the new expressions of the estimators. Show that the errors-in-variables estimator 
REVW minimizes the following cost function w.r.t. R 

N (u(k)-RmY 
^k=la¡(k) + R2af(k) V 

with <T?(A:) and c%(k) the variances of, respectively, the current and voltage 
measurements (hint: eliminate i (k) and u (k) = RiJk) in (1-21) via 
dVEY/dip(k) = 0 , ^ = 1,2 JV). 

1.10. Consider a signal 

y0(k) = *ϊη(2πβΤ8 + φ) (1-65) 

and its measurement 
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y(k) = y0(k) + ny{k), for k = 1,..., 1024 (1-66) 

where n (k) is iid normally distributed noise with zero mean and variance σ^. Calculate 
the Cramér-Rao for the estimates (f, φ). What is the best choice for Ts if we want to 
estimate the frequency with minimum variance? 

1.11. Consider a polynomial model: 

y¿k) = TP
p=lapuP(k) (1-67) 

that is identified from a set of measurements y(k) = y0(k) + n (k), with 
w(£) = [-N:N]/N and ny(k) zero mean iid distributed noise with variance <£. Setup 

the least squares estimator for this problem, and observe the condition number for 
growing values of P (put N = 1000). What is the maximum order that can be reliably 
identified? 

1.12. Consider the least squares solution Θ^(Ν) = {βΤ)~λβγ of the overdetermined set 
J9 = y (as they appear in (1-36)). Show that this solution can be calculated using the 
SVD method of Section 15.5 on matrix algebra without forming the product JTJ as 
0 L S W = J+y, with J+ = V£+UT. 

1.13. Apply the method of Exercise 1.12. to the polynomial problem of Exercise 1.11, and find 
the maximum order that can be identified reliably. 

1.14. The polynomial identification problem is an ill-posed problem because of the poor nu-
merical conditioning of the normal equations. Using the SVD method, it is already possi-
ble to solve higher order problems, but even then the numerical conditioning decreases 
quickly. A much better solution is to change the model representation and to use orthog-
onal polynomials T (u) such that 

y<fiti = ΣΡ
ρ = ι apuP{k) = Σζ= ! tpTp(u(k)) (1-68) 

where T' (u) = X^ = {a ku
k is a polynomial of degree p. The coefficients a k are set 

s.t. 

Yl=xTr{u{k))Ts(u{k)) = 5{r-s) 

Note that the actual form of Tp(u) (the choice of apk) depends on the set of input values 
u(k) that appears in the problem. Reformulate the polynomial identification problem 
using the orthogonal basis and discuss the condition number of the new estimator. 

Remarks: 

For the given set of input values, the orthogonal polynomials T' (u) are given by the 
following recurrence relation (Ralston and Rabinowitz, 1984): 

J l J J~ (1-69) 
_β[(2Ν+1)2-β] α _ (2/)I 

n 4 (4 / 2 - l ) ' J {j\)\2Ny 

with T0(u) = 1 and T_x(u) = 0 for; = 0, 1, .... When using orthogonal polynomials 
the reader should take care not to use the explicit polynomial expressions, but only the 
values of the orthogonal polynomials. Otherwise the numerical stability is not 
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guaranteed. As a result, it is also not possible to calculate the coefficients a of the 
original solution; only the value of the solution can be calculated (see Ralston and 
Rabinowitz, 1984). 

1.15. Prove expression (1-42) for the covariance matrix of a weighted least squares for models 
that are linear-in-the-parameters. 

1.16. Show that the covariance matrix of the weighted least squares estimator becomes mini-
mal for W = C"1 (hint: use the Schwarz inequality ΒτΒ>(ΒτΑ)(ΑτΑ)~ι(ΑτΒ), see 
Eykhoff, 1974, p.^525, and put C"1 = CTC, B = CJ, ana A = C~TWJ). 

1.17. Consider the linear-in-the-parameters model y0 = K(uo)0o and calculate the variance 
of the modeled output y = K(u0)é starting from the covariance matrix Ce given in 
(1-43). 

1.18. Show that the variance on the output of the polynomial model in Exercise 1.11. is inde-
pendent of the model representation yQ(k) = Y£=\apuP(k) or y0(k) = lLPp=\tpTp(u{k)). 
Check this by a simulation using the estimators of Exercises 1.11. and 1.14. for a polyno-
mial of degree 5 (so that the numerical conditioning of the problem remains acceptable 
for the direct estimation). 

1.19. Consider the system y0 = au. Construct the least squares and the weighted least 
squares estimator for a starting from the measurements y(k) = au{k) + n (k) with 
E{ny(k)} = 0 and σ% (k) = u(k). Compare the bias and the variance of both estima-
tors for u{k) = 1, 2, ..., 10. Verify your results by means of a simulation. 

1.20. Construct R\v(N) for the resistance example of Section 1.2.1 using (1-58). Use the time-
shifted current as an instrumental variable. Study the behavior of the estimator (mean 
value and variance) as a function of the shift by means of a simulation. 

1.21. Study the behavior of R\v(N) (mean value and variance) of the previous exercise for the 
situation where i0(k) is generated as low-pass filtered noise (bandwidth of the filter at 
fs/50) as a function of the applied delay by means of a simulation. 



Measurement of Frequency 
Response Functions -

Standard Solutions 

Abstract: Frequency response function (FRF) measurements are an interesting intermediate 
step in the identification process. The complexity of the modeling problem is visualized be-
fore starting parametric modeling; the quality of the measurements is assessed in an early 
phase. In this chapter a number of basic FRF measurement methods are discussed. The reader 
is referred to Chapter 7 for the advanced techniques. An analysis of the bias and efficiency of 
the FRF measurements is made, and their dependence on the experimental conditions and on 
the excitation signal is analyzed. Averaging techniques are proposed to improve the quality of 
the FRF measurement. Guidelines given at the critical steps of the FRF measurement process 
enable the less experienced user to start modeling from good raw data. 

2.1 INTRODUCTION 

Consider the linear dynamic system G(J(6) between the input u(t) and the output y(f) as 
shown in Figure 2-1. The aim of this book is to build a parametric model for this system, 
identifying, for example, a transfer function G(jco, Θ). Such a model is called parametric be-
cause it employs a finite-dimensional parameter vector. Parametric modeling requires a series 
of user decisions (e.g., selection of the order of numerator and denominator of G(s, Θ); thus, 
it is strongly advised to get a good initial idea about the system under test. Step or impulse re-
sponse measurements provide this information. Also, frequency response function (FRF) 
measurements are very valuable. An FRF consists of transfer function measurements G(j(ük) 
at a discrete set of frequencies ω^, k = 1, ..., F. All these models are called nonparametric 
because the information is not condensed into a small set of parameters. In this chapter we fo-
cus, exclusively, on FRF measurements. A series of basic questions is addressed: 

■ How are the bias and efficiency of the FRF measurements influenced by the experi-
mental conditions? 

■ How should the excitation signal be chosen? 
■ Can we improve the quality of the FRF using averaging methods? 
■ Can we quantify the quality of the FRF measurements? 
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What is the impact of nonlinear distortions on the measured FRF and how can we 
detect their existence? 

u{t) i 
* 

git) 
G(jco) 

y(t) 
— > 

Figure 2-1. Block diagram of the system. 

All these aspects are discussed here or, for the last question, in the next chapter. Starting with 
a straightforward solution, the more advanced techniques are introduced step by step, show-
ing each time what additional problems are addressed by these more advanced techniques. As 
FRF measurement techniques rely heavily on the transformation of sampled signals from the 
time to the frequency domain, we will spend some time on the most important aspects of the 
discrete Fourier transform. 

AN INTRODUCTION TO THE DISCRETE 
FOURIER TRANSFORM 

In most situations, real-life systems are naturally continuous in time. However, most signal 
processing is now done on digital computers that operate on discrete-time signals. In practice, 
the continuous-time signals are discretized (sampled) and quantized (digitized) so that the 
signal can finally be stored in the memory of a digital computer. Next, the spectrum of these 
signals is needed in order to calculate the FRF of the system. This is done using the discrete 
Fourier transform (DFT), usually calculated with the fast Fourier transform (FFT) algorithm. 
Each of these steps creates errors, and it is important for a user to understand their behavior to 
minimize the impact of the errors on his/her results. In this section only a brief introduction is 
given. For an extended overview, the reader is referred to Brigham's (1974) book. First we 
discuss, briefly, the sampling process, next we show how to "measure" the Fourier spectrum 
of a signal, and finally we focus on the spectral properties of periodic excitations and how to 
exploit them to minimize measurement errors. 

2.2.1 The Sampling Process 

The continuous-time signal is sampled at an equidistant time grid and is represented by 
the equivalent discrete-time sequence u¿n) = u(nTs). In the time domain, the sampling pro-
cess can be formulated as a multiplication with a periodically repeated Dirac impulse 
(Brigham, 1974): 

ud(t) = u(t)STs(t) with ST%(i) = ΣΓ=-οο*->*Γ
8) (2-1) 

Note that in this framework the discrete-time signal u¿n) is formally represented by a con-
tinuous-time signal ud(t) that carries all its power at the discrete-time instances nTs. Define 
the spectrum of the discrete-time signal as 

Ud(e^) = £"_ χ ηά{η)ε-]2φΤ' (2-2) 

Then the following relation exists: 

U¿e!W>) = Od(j2nf) = F{üd(t)} = ¡+_2üá(t)e-J^f<dt (2-3) 



Section 2.2 ■ An Introduction to the Discrete Fourier Transform 35 

The spectrum Uá(e
,'(oTs) is linked to U(j(ü) by noticing that a multiplication in the time do-

main, u(t)dTs(t), corresponds to the convolution of the spectra in the frequency domain, 
U(j2nf)*(fsSfs{f)), with fsSf(f) the spectrum of δτ(ή, and Sf(f) a periodically repeated 
Dirac impulse with period fs = \/Ts 

w ΣΠ ¿(/-*¿) (2-4) 

Using (2-4), we get 

Ud(e>2*T') = U(j2nf)*(fsSf¡(f)) = ±ΣΖ U(j2n(f-kfs)) (2-5) 

The convolution of the spectra is illustrated in Figure 2-2. It shows that the sampling process 
results in a repeated spectrum in the frequency domain with period fs. If the bandwidth fB 

of the sampled signal is larger than half the sampling frequency, the shifted spectra overlap 
and information is lost. Therefore, it is important to restrict the bandwidth below half the 
sampling frequency fB <fs/2 in order to avoid errors. This error is called the aliasing error 
and the condition on the sample frequency is known as Shannon's sampling theorem. In prac-
tice, it is often necessary to add anti-alias filters to eliminate the high-frequency spectral con-
tent of the signal. 

2.2.2 The Discrete Fourier Transform (DFT-FFT) 

Three basic steps have to be taken to measure the spectrum of a continuous-time signal: 

■ Discretization in time: sample the continuous-time signal at an equidistant time grid. 
■ Restrict the length of the data record: our computers can deal with only a finite num-

ber of data. Thus, the length of the record is restricted to N samples, excluding the 
rest. This is called windowing. 

■ Discretization in frequency: the finite length discrete-time signal still has a continu-
ous frequency spectrum. The value of this spectrum will be calculated only at an 
equidistant set of frequencies. 

The impact of all these steps is illustrated in more detail in the following, in a simple exam-
ple. The continuous-time signal u(t) = cos(2nf0t), with f0 = 5.5 Hz is sampled at 
fs = 64 Hz during 1 second. From these measurements we will calculate the discrete 
Fourier transform step by step. 

JL 
U(jlTtf) 

0 fB f ~fs 

*M(/) 

fs f 

Figure 2-2. Impact of the time domain discretization (sampling) on the spectrum. 
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Continuous-time signal Discrete-time signal 

1|* ■■ ¿ -

0 1 
Time (s) 

Spectrum 

0 1 
Time (s) 

Frequency (Hz) 

Figure 2-3. The time signal before and after sampling together with the spectrum in the 
frequency band [-10 Hz, 10 Hz]. 

2.2.2.1 Discretization in Time. The sampling process has already been discussed in 
the previous section. Figure 2-3 shows the signal together with its spectrum before and after 
sampling. In order to keep enough detail in the figures shown, a zoom is made in the fre-
quency band [-10 Hz, 10 Hz]. The periodic repetitions of the spectrum of the discrete-time 
sequence are not shown. Note that if no aliasing appears, the spectra of the continuous-time 
and the discrete-time signal are equal to each other within a scale factor. 

Mathematical description: 

time domain: "d« = Σ7=-Α^-ηΤ*ϊ 
frequency domain: L / d ( e ^ ) = 7J"1 Σ ΐ ! _„ U{j2n(f- kfs)) 

(2-6) 

2.2.2.2 Windowing. The sampled signal still has an infinite length (-oo, oo.) Be-
cause the computer can process only a finite number of samples, we have to restrict the mea-
surement length. We consider only samples that appear in the measurement window: 

w(t) = 1 if 0 < ί < Γ and w(t) = 0 elsewhere (2-7) 

This rectangular window, together with its spectrum (the phase is omitted), is shown in 
Figure 2-4. This window is called a rectangular window and its major characteristic is its 
width T. Its spectrum W(j2nf) is a sine-like signal, see (2-8), with zero crossings at the 
multiples of l / 7 \ In this example, T = 1 s. This window is multiplied with the sampled 
signal to obtain a new signal that is different from zero in only a finite number of samples. 

The spectra have to be convoluted in the frequency domain. Remembering that a con-
volution with a Dirac impulse is nothing other than a shift of the origin to the position of the 
impulse, the result of Figure 2-5 is found. The broken lines in the spectra indicate the position 
of the original frequency components. As can be seen, the restriction of the signal to a finite 
interval in the time domain smears the power in the frequency domain over the neighboring 
frequencies. This phenomenon is called leakage. 
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- 1 0 1 2 -10 -5 0 
Time (s) Frequency (Hz) 

Figure 2-4. Rectangular window and its spectrum (the phase is omitted). 

Mathematical description: 

time domain: w(t)üá(t) 

frequency domain: W(j2nf)* £/d(e/2,t-/7;) 

with ^Ο'ω) = Τβ-&τ/2ύχ&(&Τ/2) and sinc(jt) = sin(x)/jc. 

10 

(2-8) 

2.2.2.3 Discretization in Frequency. As can be seen in Figure 2-5, the spectrum of 
the sampled and windowed signal is still a continuous frequency signal. Because the spec-
trum can be calculated in only a finite number of frequencies, the frequencies considered 
should also be restricted to a discrete grid. An equidistant grid with spacing 1 /T is selected. 
Hence, the spectrum is calculated only at the frequencies fk = k/T Hz. This can be consid-
ered as frequency sampling or discretization in frequency. The resulting sampled spectrum, 
shown in Figure 2-6, is quite disappointing. Although the shape of the original spectrum 
(Figure 2-3) can still be recognized, it seems that all detailed information about it has defi-
nitely been lost. The basic reason for this problem is that the original frequency (5.5 Hz) does 
not correspond to one of the sampled frequencies in the DFT (multiples of 1/7 = 1 Hz). 

Windowed signal Spectral convolution 

1H 

0 1 
Time (s) 

2 -10 -5 0 5 
Frequency (Hz) 

Spectrum of windowed signal 

-5 0 5 
Frequency (Hz) 

Figure 2-5. Spectrum of the sampled signal after applying a rectangular window. 



38 Chapter 2 ■ Measurement of Frequency Response Functions - Standard Solutions 
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-10 -5 0 5 10 
Frequency (Hz) Figure 2-6. DFT result. 

This can also be seen in the time domain representation of the DFT result. Sampling in the 
frequency domain at multiples of 1 /T is described as a multiplication with a Dirac train (see 
Section 2.2.1) so that in the time domain a convolution should be made with a Dirac train 
TST{t). This results in a periodic repetition with period T of the sampled and windowed sig-
nal as shown in Figure 2-7. However, T is not a multiple of the signal period, resulting in a 
discontinuity that appears at the borders of the window as seen in Figure 2 - 7 ( 7 = 1 s in this 
case). 

Mathematical description: 

time domain: (w(t)üá(t))*(Τδτ(ή) 
(2-9) 

frequency domain: (W(j2nf)* Uá(¿
2nfr*))Sx/T{f) 

From (2-9) it follows that the relationship between the time domain samples ud(n) = u{nTs) 
(amplitudes of the Dirac impulses of the time domain signal in (2-9)) and the frequency domain 
samples UO¥T(k) (amplitudes of the Dirac impulses of the spectrum in (2-9)), is given by 

^DFTW = ΣΝ
η:

1ο"("Όε-βπη*/Ν> * = 0, 1, ...,N- 1 (2-10) 

Equation (2-10) is called the discrete Fourier transform (DFT) of the samples u(nTs), 
n = 0 , 1 , . . . , # - 1 . 

If an integer number of periods is measured, the DFT will give an exact copy of the dis-
crete spectrum of the periodic signal. This is illustrated in Figure 2-8, showing the spectra af-
ter windowing and after discretization for u(t) = cos(27i/0/), /0 = 5 Hz, T = 1 s. This 
time, no leakage is observed. The basic reason for this remarkable difference is that the con-
tinuous-time spectrum equals zero at the frequencies where the spectrum is sampled because 
the window length is an exact multiple of the period length. Also, the time domain interpreta-
tion in Figure 2-9 illustrates the result: this time, the periodic repetition coincides with the pe-
riod of the signal (no discontinuities appear at the multiples of T). 

1 2 Figure 2-7. Interpretation of the DFT result in 
Time (s) the time domain. 
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■10 0 5 
Frequency (Hz) 

10 -10 -5 0 10 
Frequency (Hz) 

Figure 2-8. DFT spectrum for a periodic signal when an integer number of periods is measured. 

At a glance, this seems to be a theoretical result without practical value. The probability 
of getting an exact match between the signal and the window length is in general, indeed, 
zero. However, in many FRF measurements, the user masters the generator and the acquisi-
tion. In these experimental setups both systems are driven by mother clocks that are synchro-
nized with each other. It is therefore possible for the user to create this ideal match, which 
eliminates the leakage effect completely. We strongly advise realization of such a setup 
whenever possible. If for some reason it is impossible to get synchronized measurements, 
there exist other less attractive alternatives based on windows other than the rectangular win-
dow. An extended discussion of the window properties can be found in Harris (1978). In Sec-
tion 2.2.3 we will briefly touch on this topic. 

2.2.2.4 The DFT Expressions. For the samples u(nTs), n = 0, 2, ..., N- 1, the 
DFT relations between the time and frequency domain sequences are 

^ D F T W = Ση = ^ηΌβ -jlnnk/N and u(nTs) = - ^ = Q UO¥T(k)e jlnkn/N 

(see (2-10)). In this book the scaling factor \/N is symmetrically distributed over both trans-
forms using 1/JÑ", and the notation UO¥T(k) will be replaced by U(k) in order not to over-
load the equations. This gives 

W) = j=lZ:l
0«(nTt>e-J2"Hk/N and u(nTs) = j= Y?kl\U{k)eil*kn/N (2-11) 

The straightforward evaluation of (2-11) requires 0{N2) operations. However, if TV is a 
power of two, a very efficient implementation known as the FFT (fast Fourier transform) is 
available: it calculates the transforms in 0(N\og2N) operations (Brigham, 1974). If N is not 

Figure 2-9. Interpretation of the DFT result in 
the time domain when an integer number of 
periods is measured. 

-2J V V 

Time (s) 
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Time (s) 

Figure 2-10. Example of a periodic 
excitation consisting of the sum of 
15 sines with equal amplitude and 
frequencies kf0, k= 1, 2, ..., 15. 

a power of two, there still exist fast implementations such as the chirp-z transform (Rabiner 
and Gold, 1975). The FFT algorithm is available in many numerical packages. 

2.2.3 DFT Properties of Periodic Signals 

2.2.3.1 Integer Number of Periods Measured. Consider the periodic signal u(t) = 
Σ\5= i cos(2nkf0t + <j>¿) in Figure 2-10. Using the same sample frequency, this signal is 
measured over 1 period and over 10 periods. For both data records the DFT is calculated and 
the first 150 lines of the DFT spectrum are plotted in Figure 2-11. In both cases an exact re-
covery of the signal spectrum is made because each time an integer number of periods is 
measured. However, by measuring 10 times longer (ION data points), the spectral resolution 
is increased from \/T = fs/N to 1/(10Γ) = fs/(\0N). Whereas in the former time the 
spectral lines appear at harmonics k = 1,2, ..., 15, they are placed in the latter time at 
k = 10, 20, ..., 150. The gaps between these spectral lines can be used later on to extract 
noise information because the noise is nonperiodic and excites all spectral lines. 

2.2.3.2 No Integer Number of Periods Measured. From Section 2.2.2 it is known 
that leakage errors appear if no integer number of periods is measured. A sound solution for 
this problem is to change the setup and measure an integer number. If this is impossible we 
can try to minimize the impact of the leakage on the measurement. A classical technique is to 
apply a window other than the rectangular one. A concise review of windows and their prop-
erties is given by Harris (1978). Here, we present only one of the possibilities: the Hanning or 
cosine window 

w(t) = 1 - cos(2nt/T) if 0 < t < T and w(t) = 0 elsewhere (2-12) 

0Ί 

-20 

-4CH 

-60 

40 60 80 100 120 140 
DFT line 

-804 
0 20 40 60 80 100 120 140 
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Figure 2-11. DFT spectrum (amplitude in dB) of a periodic signal with 15 components. 
On the left, 1 period in the window; on the right, 10 periods in the window. 
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Hanning 

Rectangular 

Time (s) 
5 0 5 
Frequency (Hz) 

Figure 2-12. Comparison of the rectangular window with the Hanning window in the time 
domain (left) and the frequency domain (right, amplitude spectrum in dB). 

The aim of all the alternative windows is to taper the signal at the beginning and at the end of 
the window in order to decrease the discontinuities of the periodically reconstructed signal 
because they are the basic source of the leakage errors. In Figure 2-12 the rectangular (2-7) 
window and the Hanning (2-12) window are shown. By applying such an alternative window, 
we do not eliminate the leakage effect but only reshape its impact. Windowing in the time do-
main is equivalent to a convolution with its spectrum in the frequency domain. The spectrum 
of the Hanning window decreases much faster than that of a rectangular window, keeping the 
leakage effect more localized. On the other hand, the main lobe of the Hanning window (first 
lobe around zero) is two times wider than that of the rectangular window; hence, for compo-
nents that are close to each other (less than four DFT bins) the interference will increase. This 
is a typical effect of these windows: they minimize the far leakage effects (far from the posi-
tion of the original frequency) at a cost of a loss in resolution. The choice of the window also 
affects the noise sensitivity, the maximum error on the amplitude of the spectral components, 
etc. We refer the interested reader to Harris (1978) for more information. 

To illustrate the effect of the window on the spectrum, we considered 10.5 periods of 
the periodic signal and calculated the DFT, first with a rectangular window and second with 
the Hanning window (Figure 2-13). The separation between the components becomes much 
more visible for the Hanning than for the rectangular window. The interference is reduced 
from -30 dB (3%) to less than -60 dB (0.1%). 

Conclusion. The best solution is to measure an integer number of periods. If this is 
impossible, the leakage interference between the different spectral components can be re-
duced by measuring enough periods and using, for example, a Hanning window. For M mea-
sured periods, the leakage errors are an 0(M~l) effect for the rectangular window and an 

20 40 60 80 100 120 140 
DFT line 

20 40 60 80 100 120 140 
DFT line 

Figure 2-13. Impact of the rectangular (left) and Hanning window (right) on the 
spectrum for 10.5 measured periods. 
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0(M~2) for the Hanning window. Notice that if at least three or more integer periods are 
measured, the Hanning window also allows perfect recovery of the original spectral lines. 
This is a very specific property of the Hanning window that is due to the fact that its zeros co-
incide with those of the rectangular window except for the main lobe (Figure 2-12). 

2.2.4 DFT of Burst Signals 

The study of the DFT properties showed that no leakage errors occur if periodic signals 
are analyzed and an integer number of periods is measured. There is an important exception 
to this general rule: using a DFT, it is possible to sample the continuous spectrum of a burst 
signal. 

Definition 2.1 (Burst Signal): u(t) is a burst signal if u(t) = 0 W é [O, TB]. 

Remark. A time-limited signal cannot be band-limited (\U(j2nf)\ = 0 if | / | >fB)\ 
thus the time discretization of such a signal always creates aliasing errors. In practice, most 
burst signals are low-pass filtered signals, which minimize these aliasing effects if a reason-
able design is made. In Figure 2-14, an example of such a signal is given. This is an exponen-
tially damped signal that is not exactly zero at the end of the window. So the "burst" condi-
tion is not exactly met, but again the errors are negligible for a good design. 

-0.1-1 
-0.5 0 0.5 1 

Time (s) Figure 2-14. Burst signal. 

In Section 2.2.2, it was shown that the DFT eventually makes a periodic reconstruction 
of the original sequence. Because this sequence is zero outside the window (T>TB) this re-
construction does not create discontinuities at the borders and hence the calculated spectrum 
is a perfect copy of the original one at the DFT lines. This is illustrated in Figure 2-15, where 
the DFT spectrum of the burst signal in Figure 2-14 is shown. In the first case, the window 
length was 1 s, resulting in a frequency resolution of 1 Hz, and in the second case, the win-
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Figure 2-15. DFT spectrum of a burst signal. Left: window length 1 s (64 points); right: window 
length 2 s (128 points). The dotted line is the original continuous spectrum. 
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dow length was 2 s (this can be done by zero appending: N zeros are appended to extend the 
record length to 2N), resulting in a frequency resolution of 0.5 Hz. 

2.2.5 Conclusion 

It is possible to calculate the spectra of sampled signals using the DFT (FFT), but two 
errors can occur. The first is the aliasing error: the power at higher frequencies is mirrored at 
the lower frequencies. To avoid this, the sampling frequency should be set high enough 
(/s > % ) · The second error is leakage: the spectrum of the signal is smeared out due to the 
finite length of the measurements. In two special, but in practice very important, situations it 
can be completely avoided. For example, the spectrum of periodic signals measured over an 
integer number of periods is perfectly calculated by the DFT. It is an exact copy of the spec-
trum of the continuous-time signals, at least up to half the sample frequency for band-limited 
signals. We strongly advise the readers to get as close as possible to this ideal situation when-
ever they have enough freedom during the experiment design. If it is not possible to realize 
the previous conditions, errors will appear, but it is still possible to reshape these errors to 
minimize their effect on the results. 

2.3 SPECTRAL REPRESENTATIONS 
OF PERIODIC SIGNALS 

In this book we will use three different spectral representations of a periodic signal: the 
Fourier series, the Fourier transform, and the discrete Fourier transform. Because these all 
describe the same signal, it is clear that there are close connections between them. Consider a 
periodic signal, described by its Fourier series representation: 

<t) = Σ ί - , K|cos(A:<V + ¿Ak) = Σ ^ - ^ ο ^ ^ ) ^ 0 ' (2-13) 

with Ak = \Ak\e
jjCAK 

■ The Fourier coefficient at line k is then 

Uk = Ak/2 (2-14) 

■ The Fourier transform is F{u(t)} = U(j<ü) = ^"(ήβ'^'ώ, with 

*Όω) = ΣΓ-,,^0^*/2)^/-*/ο) i2"15) 

The Dirac impulses account for the convergence problems of the Fourier integral on 
periodic signals. 

■ The discrete Fourier transform of one period (fs = l/Ts = NfQ) of ud(n) = u(nTs) 
is given by 

U(t) = 4= ΣΝ„:1
0"Μβ~βπ,ίη/Ν = ^ V 2 (2-16) 
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The difference in notation between the Fourier transform £/(yco), the discrete Fourier 
transform U(k), and the Fourier coefficient Uk is indicated by the argument (;'co, k, or sub-
script k). 

ANALYSIS OF FRF MEASUREMENTS USING 
PERIODIC EXCITATIONS 

In this section we study the principal techniques to measure the FRF of a linear system. Dur-
ing the first part of this analysis we assume that the plant is periodically excited and that an 
integer number of periods of the steady-state response is measured. The aim of the study is to 
understand the impact of the disturbing noise on the measured transfer function. Next, we 
will also consider the use of arbitrary excitations. 

2.4.1 Measurement Setup 

The typical measurement setup for an FRF measurement is given in Figure 2-16. The 
generator signal (e.g., a ZOH-reconstructed signal) is applied to the plant (e.g., a mechanical 
system) using an actuator (e.g., an electromechanical shaker). The input ux{f) and output 
yx(i) (e.g., the applied force and resulting acceleration) are passed through the anti-alias filter 
before sampling, resulting in uAA(t) and yAA(t). For simplicity we assume that the anti-alias-
ing filters are perfect, leading to the following assumption: 

Assumption 2.2 (Band-Limited Measurements): uAA(t), yAA{t) are band-limited 
copies of Wj(0, y\(t) obeying the Shannon theorem: e.g., £/AA(yco) = ϋ^'ω) for 
|ω| < ω / 2 , and UAA(j(o) = 0 for |ω| > ω / 2 . 

These time domain signals are finally transformed to the frequency domain using the 
discrete Fourier transform (DFT), implemented as an FFT (fast Fourier transform). In this 
section we assume that an integer number of periods is measured so that no leakage errors ap-
pear. The FRF at frequency fk is eventually given by 

G O , ) = Y(k)/U(k) (2-17) 
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Figure 2-16. Principal measurement setup and notations for periodic signals. 
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with fk = k/T, and T = NTS the length of the measured record. This process is disturbed 
at different points with noise as shown in Figure 2-16. Generator noise ng(t) distorts the ac-
tual, applied excitation; mu(i) models the measurement noise (e.g., amplifier noise, quantiza-
tion noise) on the measured input; m (t) stands for the output measurement noise; and the 
process noise (generated by the plant itself) is given by np{t). Notice that although the gener-
ator noise ng(t) acts as a proper excitation signal, it is considered in the periodic setup as a 
noise source because it is a nonperiodic signal. Later in the chapter, the consequences of this 
decision will be analyzed in detail. After the DFT we find, at frequency fh, that 

Y(k) = Y0(k) + Ny(k) 

U{k)=U¿k) + Nu(k) ( 2 " 1 8 ) 

where Nv(k) and NY(k) are the contributions of the noise to the measured Fourier coeffi-
cients. The impact of the DFT on the noise is intensively studied. Under very mild conditions 
on the time domain noise, it is shown that (see Section 16.16) these noise contributions are 
circular complex normally distributed. For our purpose the most important properties of such 
a distribution are repeated in the following assumption: 

Assumption 2.3 (Disturbing Noise): The input Nv(k) and output NY(k) errors satisfy 

E{N{j(k)}=0, E{Nfo)}=0, 1=1,2, ... 

E{|*W*)|2> = <ήβ\ E{|#y(*)|2} = a2(k) (2-19) 

E{NY(k)Ñu(k)} = a2
YU(k) = a2

UY(k), EiNyiQNuik)} = 0 

for A: = 1,2, . . . ,F . 

At a glance it can be surprising that a squared variable has a zero mean (E {x2} = 0), 
but the reader should keep in mind that we deal here with complex variables (see also Exer-
cise 16.8). Using these properties, it is easy to carry out a simplified calculation of 
E{G(/<%)} and a¡(k) = var(G(/G)¿)). 

2.4.2 Error Analysis 

In this section we calculate the bias (systematic error) and the variability (variance) of 
the measured FRF. In order to address the essential aspects carefully, the analysis is simpli-
fied significantly using a Taylor series, assumed to converge. At the end of the section more 
precise results are included. 

Consider the measured FRF G(j(dk): 

ñ _ Y0(k) + NY(k) _ l+NY(k)/Y0(k) 
G(J^ ~ u0(k)+Nu(k) ~ G«{j^\+Nu{kyuo{k) ( 2 " 2 0 ) 

The Taylor series expansion of G(j(dk) is 
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In order to calculate the mean value and the variance of G(ja>k) it is necessary to make an as-
sumption on the relation between the noise Njj(k),NY{k) and the undisturbed signals 
U0(k), Y0(k): 

Assumption 2.4 (Disturbing Noise—Continued): The disturbing noise N^k), 
NY(k) is independent of the undisturbed signals U0(k),Y0(k). 

In many cases this is not a difficult assumption. However, in some applications such as 
measurements in feedback, this assumption is not met if arbitrary excitations are used, lead-
ing to systematic errors. 

2.4.2,1 Bias Error on the FRF. Under Assumptions 2.3 and 2.4 it follows directly 
from (2-21) that E{G(j(£>k)} = GQ(j(ük). This result can be extended easily to the higher or-
der terms of the Taylor expansion. It shows that if the Taylor series converges, the expected 
value equals the exact value. However, it is well known that the Taylor series of 1/(1 + JC) 
converges only if \x\ < 1, or in this case \Νν{Κ)/υ0{Κ)\ < 1. For normally distributed noise 
this condition is always violated by a fraction of the realizations. For high SNR 
(a^k) < | U0(k)\) the previous result will be a very good approximation, but for low SNR a 
significant bias pops up. If U0(k) is fixed and the noise is normally distributed, an exact cal-
culation of the expected value can be obtained without using the Taylor series approximation 
(Guillaume et al., 1992b). For uncorrelated input-output noise (&YU(k) = 0) the relative bias 
b(k) is 

bik) = E^G. ( 7 ( U\ ) } - 1 = - exp(-|t /#)|*/<ήβ)) (2-22) 

This shows that, even for a moderate SNR, small bias errors exist, for example, for an SNR of 
6dB ([\U0(k)\/au(k) = 2]), \b(k)\ = 0.018, but the reader should be aware that significant 
outliers on G(j(úk) can appear. For an SNR of 10 dB, \b(k)\ = 5x10" . 

If the input noise and output noise are linearly correlated, as in the case of feedback, a 
more complicated expression is found (see Appendix 9.G or Pintelon and Schoukens, 2001): 

b(k) = - exp(-|£/o(t)|2/ag(*))[l ~P(k) Y^y ¿¿k)J ( 2 " 2 3 ) 

with p(k) = aYU{k)/{au{k)aY{k)). Also, in this case the maximal relative bias (2-23) is 
quite small. It is smaller than 1 xlO- if the worst case input and output signal-to-noise ratios 
\U0(k)\ συ(Κ), \Y0(k)\/aY(k) are larger than 10 dB. 

This good behavior is due to the use of periodic excitations. If U0(k) is also a stochas-
tic variable, as is the case for random excitations, the analysis is much more involved. It turns 
out that in this case the FRF methods are much more sensitive to the noise, leading rapidly to 
large systematic errors. This discussion is postponed to Section 2.6 but, just as an illustration, 
it can be mentioned that the bias errors in this case grow to more than 20% for an SNR of 
6dB. 

2.4.2.2 Variance Analysis of the FRF. Under Assumption 2.4 and restricting the 
Taylor expansion in (2-21) to the first-order terms, gives 
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f N (k) N (k)\ 
GO-CD*)* G0Uo>k)(l +f¡¿- jf¡£ = GoC/ω*) + N¿k) (2-24) 

Y0(k) U0(k) 

where NG(k) = Ο0(;ωΙί)(Νγ(^/Υ0(^-Νυ(^/υ0(^). Because E{WG(£)} = 0 the vari-
ance a^{k) = var(G(y'c%)) is given by 

a2m*a2Jk) = E { M 2 } = | G 0 O ^ ) l < ^ ^ + ^ ^ - - 2 R e ( ^ } )1 (2-25) 

The variance is inversely proportional to the square of the signal-to-noise ratio (SNR) of the 
measurements. This result facilitates the excitation design and answers the question of how 
the power spectrum of the excitation signal should be chosen to cause a small uncertainty. 

Remark. In the previous calculations, an approximate expression for the variance 
a^(k) is obtained. A detailed analysis (Broersen, 1995) shows, however, that this variance 
does not exist because of the presence of outliers that appear when the denominator comes 
very close to zero. This risk disappears for improving input SNR. The variance a^(k) (2-25) 
can then be interpreted as that of the limiting distribution for the input SNR -> oo. Guillaume 
et al. (1992b) showed that the problem can be removed by eliminating the measurements 
with a "too small" denominator so that no outliers appear anymore. 

For the special case that the generator noise dominates (mu(t) = 0, my(t) = 0 and 
n(t) = 0), the following relations exist: ny{t) = go(0*w

w(0> with ^0(0 the plant impulse 
response, so that 

<ή&) * \G0U®¿\2ofrk) and a2
YU(k) = E {NY(k)Nv(k)} « G0U<s>¿aftk) 

The approximations are due to the leakage effect that appears when random signals are 
Fourier transformed with the DFT. Substituting these results into (2-25) gives a¿(&)« 0, 
which implies that the generator noise does not contribute to the uncertainty on the FRF mea-
surements. It also does not contribute to better knowledge of the system because the ng(t) 
contributions disappear in the periodic averaging process. This means that some information 
is lost because n (t) can also be considered as an excitation signal. 

A number of possibilities are available to reduce the variance (2-25). The most simple 
solution is to inject more power into the system, increasing | U0(k)\ and | Yo(k)\. In Chapter 5, 
methods are proposed to maximize this power, while the peak value of the excitations re-
mains below a user-specified level, so that nonlinear operation of the plant is avoided. A sec-
ond possibility is to measure the FRF frequency by frequency, making stepped sine measure-
ments that concentrate all power at one frequency at a time, so that the SNR is maximized. 
The disadvantage of this method is that it can become extremely slow because at each fre-
quency point sufficient waiting time should be added until all transients due to the frequency 
change have disappeared. The alternative is to use well-designed broadband excitations in 
combination with good averaging methods. This solution depends, again, strongly on the pe-
riodic or random nature of the excitation signal, leading to completely different methods. 
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2.4.2.3 Confidence Regions of the FRF. To construct confidence regions with a 
given confidence level, one needs the probability density function (pdf) of the measured FRF 
G(j(úk) (2-20). Assuming that the input and output errors are circular complex normally dis-
tributed (N^k), NY(k) are normally distributed and Assumption 2.3 is satisfied), the pdf of 
G(jcok) (2-20) is given by (for simplicity of notation we drop the frequency argument) 

fó(G) = \G0\-ifz(G/G0) (2-26) 

where fz(z) is the pdf of the ratio z = G/G0 

JA } na{z)\ a(z) 

with 

a(z) = a* + \z\2a2
u-2aauRe(pz) 

y _ y (2-28) 
b(z) = (z-l)(pay-zau)au 

σ2, σ2, a2
u the (co)variances of the normalized errors u = Nv/U0 and y = NY/Y0, and 

p = a2
u/(ayau) the corresponding correlation coefficient (proof: see Pintelon et al., 2003). 

Using (2-27), a circular 100 xp % (0 <p < 1) confidence region with center E { G} and ra-
dius R = r|G0| can be constructed as 

Prob(|G-E{G}| <R) = Prob(|z-E{z}| <r) = p (2-29) 

where the probability Prob() is calculated via numerical integration (see Pintelon et al., 
2003 for the details). 

If the input signal-to-noise ratio 1 / au = | U0\ / συ is larger than 20 dB, then the circu-
lar 100 xp % confidence region (2-29) can be constructed via a circular complex Gaussian 
approximation of (2-26) 

fo^a\Glhe'lÓ'E{á)^2G (2-30) 

where E{G} and σ2 are defined in, respectively, (2-22) or (2-23) and (2-25). Using (2-30), 
the radius R of the circular 100 xp % confidence region (2-29) equals 

R = V-ln(l -p) σβ (2-31) 

(proof: see Appendix 2.A). 

Remarks 

(i) Although the variance of the FRF measurement (2-20) does not exist in case of in-
put noise (σ υ Φ 0), the 100 x p % uncertainty bound defined in (2-29) and (2-31) 
is asymptotically (for \ϋ0\/συ-^ <χ>) exact. 

m+i\ 
\a(z) 

e-\z-i\2/a(z) (2-27) 
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(ii) For real normal random variables ellipsoids are the most compact 100 x p % con-
fidence regions (Stuart and Ord, 1987). For a circular complex normal random 
variable the ellipse reduces to a circle. 

(iii) The 95% (p = 0.95) confidence bound on the FRF measurement is a circle with 
radius Λ/3 σσ, which should not be confused with the 95% confidence interval 
±2 aG, valid for real normal random variables. 

2.5 REDUCING FRF MEASUREMENT ERRORS 
FOR PERIODIC EXCITATIONS 

This section shows how to reduce the bias and the variance of FRF measurements using well-
designed averaging techniques. Because the solutions strongly depend on the periodic or ran-
dom behavior of the excitation, the discussion is split into two parts. In the first part we deal 
with periodic signals because they lead to the best solutions, while the algorithms are very 
simple. In the next section, random excitations are considered because they are still very pop-
ular, even if they lead to inferior results compared with periodic excitations. 

All FRF averaging techniques start from M input-output data blocks uV\t)9 y[l\t), 
I = 1, 2, ..., M. To study the stochastic behavior of theses averaging methods we need an 
assumption concerning the way the data blocks uV\t), y^Xt), I = 1, 2 , . . . , M are collected. 

Assumption 2.5 (Measurement Data Blocks): The M input-output data blocks 
uW(t), yV\t)9 I = 1, 2, ..., M stem either (i) from M independent (possibly repeated) ex-
periments where the disturbing noise n¡¡\t), n^l\t) has finite Pth order moments and is in-
dependent over / or (ii) from a single experiment where the disturbing noise nu(t), ny{t) can 
be written as filtered white noise with finite Pth order moments. 

Intuitively, Assumption 2.5(ii) boils down to saying that the correlation length of the 
noise should be much smaller than the total measurement time. 

2.5.1 Basic Principles 

In this section we assume again explicitly that the excitation signal u0(t) is periodic 
with period Γ, such that the sampled signal u0(nTs) = uQ((n+Nv)Ts). Notice that this also 
imposes a constraint on the sampling period because the signal period should be a multiple of 
the sampling period T = NpTs. For notational simplicity, we drop the sampling period Ts in 
the argument of the signals; for example, x(nTs) is denoted as x(n). When periodic excita-
tions are applied, it is possible to collect M successive periods (with length Np) and to aver-
age the measurements in the time domain over these repeated periods, exemplified by the 
output measurement (Figure 2-17): 

X") = τ>ΣΓ="ο'*n+'V = ΐ/ΣΓ= iy{l]w with ^[/1(") = x » + c - 1 )^P) (2-32) 

u{i) 

U^Xt) uW\t) - M[/](0 
j>t Figure 2-17. Processing periodic excitations. 
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andtheDFTis Y(k) = DFT(j>(«)). The FRF estimate is 

G M I X M ) = ί ^ (2-33) 
U(k) 

GML is the maximum likelihood solution for Gaussian disturbances if the repeated measure-
ments i/M, yW can be considered to be independent over /. It is clear that due to the averag-
ing process, the noise is reduced as 1 Á¡M under Assumptions 2.4 and 2.5 (P = 2), so that, 
asymptotically, 

a.s.lim Y(k) γ (¡Λ 
a.s.lim ( 3 M L ( M ) = " - » - Λ = -f¿ = G¿ja>¿ 

M^K» a.s.lim £/(£) uoW (2-34) 
M->ao 

G M L ( M ) = G0{j<zk) + OJM-^) 

in the absence of other systematic error sources typified by instrumentation errors (proof: see 
Appendix 2.B). Moreover, under Assumptions 2.4 and 2.5 (i, P = 2 + ε) or (ii, P = oo), 
the FRF estimate GMLC/*0*) (2-33) is asymptotically normally distributed (see Appendix 
2.B). Many dynamic signal analyzers offer this averaging option; for example, M = 128 av-
erages are made over Np = 2048 points. Because this improves the results at a very low 
computational cost, it is strongly advised to make full use of this option. In practice, M is de-
termined by the maximum measurement time T and the minimum required frequency resolu-
tion f0: M = Tf0. 

Although the computational effort is minimized by first averaging the measurements in 
the time domain before calculating the DFTs, it also makes sense to calculate the spectrum of 
each individual subrecord and perform the averaging in the frequency domain. In the latter 
case it is also possible to estimate the noise (co)variance. Because the DFT is a linear opera-
tor, the order of the operations does not influence the result. Consider the DFTs of the sub-
records 

lAl\k) = DFT(«W(/i)), yM(Jt) = DFT(yW(w)) (2-35) 

and calculate the sample mean 

ύ<® = ¿ΣΓ= I m{®> *W = ¿ΣΓ= i ^*) · with ¿ΜΐΙ/ω*) = M (2-36) 
U{k) 

and the sample (co)variances 

*fo) = ¿ Σ ϋ , IW) - mi2, ¿fa = ¿ Σ ϋ , IÍ™(*) - ml2 

(2-37) 
¿}u(k) = ̂ Σ ί ί , (WQ - %Q){ WKk) - Ü(k)) 
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These are unbiased estimates of the true (co)variances. Under Assumptions 2.4 and 2.5 
(i, P = 2) , the asymptotic variance of GMLC/®*) (2-33) is given by (2-25) (see Appen-
dix 2.B). Using (2-37), it can be approximated as 

¿ J « * M (¿ fo) / ln*) l 2 +' tf(k)/\Ü(k)\2 - 2Re(d-^)/(y(*)[/(*)))) (2-38) 

The additional division by M is due to the averaging effect that reduces the noise variance by 
a factor M if the noise can be considered to be uncorrelated from one subrecord to the other. 
Note that the circular 100 xp% confidence region on the FRF estimate (2-29), with R de-
fined in (2-31), needs the value of the variance a¿(k) (2-25), which is unknown. In the se-
quel of this section we construct a circular 100 x p % confidence region on the FRF estimate 
(2-36) using the sample variance a¿(k) (2-38). 

Assuming that NG(k) (2-24) is circular complex normally distributed, and that the sam-
ple variance ó¿(k) (2-38) is based on M independent observations, then 

|GML(7%) - G^j^f/alik) (2-39) 

is the ratio of two independent chi-squared distributed random variables with 2 and 2M- 2 
degrees of freedom, respectively (the sample mean and sample variance of Gaussian random 
variables are independently distributed; Stuart and Ord, 1987). Hence, the ratio (2-39) is 
F(2, 2M-2)-distributed, and a 100 xp% confidence region for GMLC/O)¿) can be con-
structed as a circle with center GuhU^k) and radius a¿(k)jF (2, 2M- 2), 

Prob(|GML - G0\ < aójFp(2,2M-2)) = p (2-40) 

where Fp(2,2M-2) is the 100 xp% percentile of an F(2, 2M-2)-distributed random 
variable. If M is sufficiently large (M> 20), then Fp(2, 2M- 2) » - ln( 1 - /?) , and the ra-
dius of the circular confidence bound (2-40) reduces to (2-31). 

2.5.2 Processing Repeated Measurements 

Many instruments do not have enough memory to store long data records. Instead, they 
make repeated synchronized (starting each time at the same point in the period) measure-
ments of the periodic signal by using a good trigger. In practice, a slight variation appears 
from measurement to measurement, resulting in time jitter. Consider, for simplicity, noiseless 
measurements. Then 

uV\nTs) = u0(nTs-TW) (2-41) 

with TW the variation with respect to the perfect starting point of the measurement. The ex-
pected value becomes 

MjinTJ = E{Wt'](»rs)} = ¡y0(nTs-T)fT(T)dT (2-42) 

with fT(r) the probability density function of the jitter, and its spectrum is 
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Mw(e^) = Uae^WU®) (2-43) 

with FT(j(ü) = F{fT(r)} the characteristic function of fT(f). This shows that the jitter acts 
as a linear filter on the data (Souders et al., 1990). It creates no systematic errors if the jitter is 
the same for the input and the output error. However, the uncertainty on the FRF measure-
ment increases, especially at the higher frequencies because Fr(y ω) has a low-pass behavior. 
For example, for normally distributed jitter N(0, a2T2), 

FT(ja) = <r<°2«27?>/2 = β-
{αω/ω>)22π2 (2-44) 

For jitter with a standard deviation of one sample, a loss of 11 dB appears at fs / 4 and 43 dB 
at fs/2. This clearly shows that it is extremely important to pay sufficient attention to the 
quality of the triggering if full band measurements are made. 

2.5.3 Improved Averaging Methods 
for Nonsynchronized Measurements 

Sometimes it is impossible to get a proper trigger signal that guarantees good synchro-
nization of the measurements. A prime possibility to solve this problem is to perform a post 
synchronization, estimating each time the delay with respect to the reference record (for ex-
ample, the first one) and adding a corresponding phase shift β^ωτ[1] to the measurements. An 
alternative is to calculate the FRF of each individual measurement (the division Y(k)/U(k) 
eliminates the varying delay). As explained in Section 2.4.2.1, this can create bias errors if 
the simple arithmetic mean is used to average the individual FRF measurements. In 
Guillaume et al. (1992b) nonlinear averaging methods have been developed that are more ro-
bust on this aspect, without increasing the variance significantly. The most robust method 
turned out to be 

ZGHlog(j^k) = ZSYU(k) with SYU(k) = ±ZtxY
[l](k)Ü[lXk) 

(2-45) 

The split between amplitude and phase is made to avoid the phase wrapping problems of the 
complex logarithm. For circular complex normally distributed errors it is shown under As-
sumptions 2.4 and 2.5(i) that the relative amplitude error |G//log(y^)|/|G0(y<»A:)| - 1 con-
verges for M—» oo to 

expl2Ell- -agñ)- 2Ell- s@>)rl (2-46) 

with Ei(.) the exponential integral functions (Gradshteyn and Ryzhik, 1980). This result is 
also valid for correlated input-output noise (still assuming that U0(k) is independent of the 
disturbing noise). This results in very small bias errors, even for poor SNR, as given in 
Figure 2-18. A comparison with other classical methods that were originally developed for 
random excitations is given in Section 2.6. 
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Figure 2-18. Maximum relative bias of Φ/|0(/ωΛ) 
for a given worst case SNR (on input or output). 

Remarks 

(i) The relative amplitude error (2-46) is also valid in the presence of correlated noise 
because the log operator in (2-45) separates both noise sources. 

(ii) The phase estimate is unbiased if the noise is uncorrelated σγυ(Ιή = 0. 

2.5.4 Coherence 

A measure often used to quantify the quality of the obtained FRF is the coherence 
χ2(ω) defined as 

χ2(ω) = SyuU'G>)\: 

SuuÜ®)SyyU<») 
(2-47) 

It measures how much of the output power is coherent (linearly related) with the input power 
(Bendat and Piersol, 1980; Cadzow and Solomon, 1987). It is shown to be captured between 
Oandl: 

0 < /2(co) < 1 (2-48) 

If χ(ω) is smaller than 1 it indicates the presence of 

■ Extraneous noise in the measurements 

■ Leakage errors of the DFT 

■ A nonlinear distortion (only for random excitations) 

■ Other inputs besides u(t) contributing to the output 

For periodic signals (2-47) becomes 
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9\<»k) = 
¿iji.w)^*)! 

Λ.2 

i + . σγυ{Κ) 

Y0(k)U0(k) 

¿Σ^^«Χ^Σ" '̂«) 1 + 
\U0{k)\ 

1 + 
\Y«(k)\2) 

(2-49) 

where the exact (co)variances are replaced by sample (co)variances. Notice that y2((ok) = 1 
when there is only generator noise and the leakage errors are neglected. Sometimes coher-
ence is used to detect nonlinear distortions, although its value is unity for periodic excitations 
in the absence of noise (cr¿(A:) = 0, σ^/c) = 0 and σ^Ιή = 0), independent of the pres-
ence of nonlinearities (McCormack et al., 1994b). Hence, better alternatives, given in Chap-
ter 3, are sought for the detection of nonlinear distortions. 

The variance on the measured FRF can be estimated directly from the coherence by 

**-iw^ (2-50) 

This follows directly from substitution of (2-49) into (2-50), assuming that 

o$(k)ofrk) „ cr¿(k) ^ crAk) 

|tWIW)|2 W l 2 IWI5 and °γυ&) 

Y0(k)U0(k) 
«1 

This estimate will be very useful in the case of random excitations, where it is impossible to 
estimate cr¿(k), a$(k), and dyuik) directly from the data. 

FRF MEASUREMENTS USING RANDOM EXCITATIONS 

In this section we focus on methods that are also applicable to random excitations. The major 
difference compared with periodic excitations is the variation of the excitation from one real-
ization (subrecord) to the other. This requires other methods to get acceptable results. A com-
prehensive overview of dedicated FRF measurement techniques for random signals is given 
in the book of Bendat and Piersol (1980). In this section we give a brief introduction and an 
alternative to improve the classical methods. 

2.6.1 Basic Principles 

Consider a linear system driven with random excitations, so that u0(t) is no longer pe-
riodic. Under these conditions the analysis of the previous section is no longer valid. For ex-
ample, it is no longer possible to consider a fixed value U0(k) in the Taylor expansion as was 
done in Section 2.5. A more detailed analysis is needed because the excitation signal varies 
from one realization to the other. These aspects will be tackled first and dedicated solutions to 
deal with random excitations are proposed in Section 2.6.2. Also, leakage errors appear (see 
Section 2.2.2). In general, the spectrum of random signals does not even exist (Bendat and 
Piersol, 1980; Papoulis, 1981) so that again a detailed analysis is required to understand ex-
actly what is going on. 

2.6.2 Reducing the Noise Influence 

When measuring the FRF using random excitations, the same approach could be made 
as for periodic data. The full record is again split into M subrecords with input and output 
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Figure 2-19. Successive realizations of W\k) and Y^l\k). 

DFT spectra lAl\k), W\k) for block /. Eventually, the FRF for block / is then 
TfilXk)/lAl\k). Broersen (1995) showed that this direct calculation has an infinite variance. 
From (2-20) it is also seen that bias errors are created because E {1/(1 + Νν{Κ)/ U0(k))} Φ 1. 
This bias is mainly induced by the nonlinear behavior of the division. The bias will be small 
only if \Nu{k)/U0{K)\ « 1. It is, therefore, necessary to reduce the noise by averaging before 
making the division. However, because E{lAl\k)} = 0, it is clear that this cannot be done 
straightforwardly. The reason for this problem is that the vector lfil\k) has a random phase, 
uniformly distributed between [0, 2π) so that its averaged value is zero (see Figure 2-19). A 
possibility to avoid this problem is to eliminate the phase of lAl\k) by multiplying it with its 
complex conjugate, to get vectors with a fixed phase as shown in Figure 2-20. It is also possi-
ble to average before making the division: 

Gij^) = *"<*> 
tf'WlA'Xk) 

Suu(k) i-Tf AlA'\k)\2 
(2-51) 

Readers who are familiar with this field will observe that this expression is nothing other than 
the discrete implementation of the Wiener-Hopf equation (see Bendat and Piersol, 1980, Eq. 
(4.7), and Eykhoff, 1974, Eq. (8.10)), relating the cross-power with the autopower spectrum: 
S (J(o) = G(j(o)Suu(j(o). The asymptotic properties can be obtained easily by splitting the 
measurements into the undisturbed parts U0(k), Y0(k) (neglecting the leakage effects) and 
the distortions Nv{k), NY(k). Under Assumptions 2.4 and 2.5 (P = 4), the systematic errors 
and the variability can be calculated. 

iAlXk)uV\k) 
Imag Image 

Real Real 

Figure 2-20. Successive realizations of lAl\k)U^l\k) and YW(k)UW(k). 

2.6.2.1 Systematic Errors. Under Assumptions 2.4 and 2.5 (P = 4), the estimate 
(2-51) converges to 

a.s.lim I V f . niXk)UV\k) ¥ ί γ (ΊΛΓτ (ΊΛλ , o (¡A 

a.s.lim G í M ) = " — M " ¡ = E W K W ) } + **/(*) 
M->oo E{\U0(k)\*} + afrlc) 

(2-52) 
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at the rate Op(M~1/2) (see Appendix 2.B). Moreover, under Assumption 2.4 and Assumption 
2.5(i, P = 4 + ε) or (ii, P = oo), the FRF estimate G(j(ük) (2-51) is asymptotically nor-
mally distributed (see Appendix 2.B). Neglecting the leakage effects, (2-52) becomes 

l + a2
YU(k)/E{Y0(k)U0(k)} 

M^OO - " "- - I + a2(k)/E{\U0(k)\2} 
a.s.lim G(j(ok)« G0(j^k) , Ju

2', " n Z n " ' (2-53) 

Notice that for random signals E{|£/0(&)|2} cannot be replaced by |t/0(A:)|2 because U0(k) 
varies from one realization to the other. Equation (2-53) shows that there is a systematic error 
that did not appear in the previous approach. This is the price to be paid for using random in-
stead of periodic excitations. If the input signal can be measured free of noise, a^k) = 0, 
the bias disappears. The method (2-51) is sometimes called the Hx method. If the SNR at the 
output is much higher than that at the input, then it is better to use the following alternative: 

GO-co,) = *m = -M-Ll (2-54) 
Surik) | Y " W\k)^'\k) 

M 

which is called the H2 method. The H2 method (2-54) under the same noise assumptions has 
the same asymptotic (M-> <x>) properties as the Hx method (2-51). Neglecting the leakage 
effects, the asymptotic value of (2-54) is 

a.s.bm G(jak) * G0(jo>k) ' t ' n f ^ / m (2-55) 

For uncorrelated noise, σ^Α:) = 0, (2-53) and (2-55) reduce to, respectively, 

\G0(j(ok)\/\l + afrk)/E{\U0(k)\i}\ and \G0(j(ok)\\l + o%k)/E{\Y¿k)\*}\ 

Hence, 

|a.s.lim GHl(J®k)\ ^ \G0(j(ok)\ ^ |a.s.lim GH2(j(ok)\ (2-56) 
I M—> oo I I M—> oo I 

where GHX(J%) and ΟΗ20'ωύ a r e g i y e n by? respectively, (2-51) and (2-54). This result can-
not be generalized to the case of correlated noise. 

2.6.2.2 Variance. An approximate expression for the variance of G(j(ok) (valid for 
the Hl and H2) is found by considering only the linear noise contributions to (2-51): 

G(jcok) = GoU^H^ * GoO'o^Wi*)-N2(k)) (2-57) 

with 
M _ _ M _ _ 
£ N^ik) U\>\k) + YÜXk)N[¿\k) £ Nü\k) U\<\k) + U\,l\k)Nl¿\k) 

Σ,", J W W ¿liW*)ia 
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Figure 2-21. Realized power spectrum S^f)(j(ok) for a white noise sequence (M = 1,4, 16 ). 
Note that for a periodic signal a flat line at 0 dB would be found. 

Next, the variance of (2-57) is obtained assuming that the M data blocks (subrecords) 
are independent, Assumption 2.5(i), and by taking the expected value 
E {| G0(j(ü¿)(Nx(k) - N2{k))\2} with respect to the noise and not to the random excitation sig-
nal. This means that we calculate the variance that would be obtained if the experiment was 
repeated with the same noise realizations for the excitation signal. Neglecting the leakage er-
rors, 

G0(M) * rm Zf.^OTi*) 57-iW*)| 

we find 
^ ~ Ifi.KV "Zfi^'Ww 

<$(k) = |G0(M)|2 op) o2
v(k) 

-2Re(- tfui® 

■Sijnw s i . w w Σΐχη\*)ΰψ{Κ) 
(2-58) 

If the number of blocks M-» oo and we assume that the random excitation is stationary, the 
variance becomes 

a.s.J 
°r,X*> 

-+» G \sr0rjj<°k) SUttUJj(ok) ¿r0t/0(/< «>*)y 
(2-59) 

so that for M sufficiently large, the following approximate expression can be used: 

r 2 m J G o ( M ) | 2 f oft) + ¿fa) ofok) ) 
0 M {SyjJJvd SUoUo(j<ok) \u0(Jo>kY) 

(2-60) 

This expression is similar to (2-38) and shows that the uncertainty a^{k) decreases as 
0(M'l/2). However, for small M, 

V.(*) = ¿ZíiW*)l2 (2-61) 

which can be significantly different from Su u 0*CD¿); thus (2-58) should be used. At some fre-
quencies large drops in the realized power spectrum can appear, jeopardizing the FRF mea-
surement completely. Therefore, it is strongly advised to average over a number of blocks to 
avoid these dips. In Figure 2-21, the realized power spectrum Su0u0(k), after processing M 
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TABLE 2-1 Study of the Stochastic Behavior of the Averaged Spectrum 
of a Random Signal 

N Ratio 95% Upper/95% Lower Bound (dB) Ratio 1/95% Lower Bound (dB) 

1 
2 
4 
8 

16 
32 
64 

128 
256 

22 
14 
9 
6.2 
4.3 
3.1 
2.1 
1.5 
1.1 

13 
7.5 
4.7 
3.0 
2.1 
1.4 
1.0 
0.7 
0.5 

blocks of a white noise excitation, is shown in dB (Sxx in dB is given by lOlog^S^). It is 
clearly seen that, compared with the limit value Su0u0(k) (a constant value of 0 dB) for 
M—»oo, a significant loss can occur. The normalized power spectrum 
2MSu0u0(k)/SUoUo(j(ok) is X2 distributed, having 2M degrees of freedom because it con-
sists of the sum of 2M squared, independent, zero mean, normally distributed variables with 
equal variance (the real and imaginary part). In Table 2-1 the 95% uncertainty regions of the 
amplitude spectrum are described by their upper and lower bounds. The ratio of the lower 
bound to the rms value is also tabulated to illustrate the loss in SNR of the weakest compo-
nents because of the stochastic nature of the excitations. 

In Figure 2-22 the loss in the SNR for random signals when compared with a determin-
istic signal with flat amplitude spectrum is shown as a function of the number of processed 
blocks M. It shows that for small M the SNR increases very rapidly because dips in the av-
eraged input power spectrum disappear. It also shows that four experiments are needed to 
guarantee that 95% of the measurement points have an SNR corresponding to that of a well-
designed, deterministic excitation after only one period (SNR normalized at 0 dB). This is 
one of the reasons why we strongly advocate the use of periodic excitations. 

The coherence y2((ok), as given in (2-47), can be used again to give an overall impres-
sion of the quality of the measurement. In practice, the variance on the FRF is estimated from 
the coherence using (2-50). 

deterministic signal 

random signal 
(95% level) 

-Γττη 

1000 
Number of averages 

Figure 2-22. Loss in SNR for random 
excitations as a function of the number of 
processed blocks M. 
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2.6.3 Leakage Errors 

In the previous section we assumed that it was possible to pass easily from a continu-
ous-time signal u{t) to its Fourier transform i/(yoo). In practice, the DFT of random signals 
suffers from leakage errors (see Section 2.2.2). So even for undisturbed signals (nu(t) = 0, 
ny(t) = 0, and ng(t) = 0 in Figure 2-16) the FRF measurement is incorrect, that is, 
G0(j(ok) * Y0(k)/U0(k)9 where U0(k), Y0(k) denote the DFT of u0,y0. Ljung (1999) shows 
for discrete-time systems that the error on the FRF disappears as 0(N~l/2). This result can 
also be extended to FRF measurements of continuous-time systems. This is formulated pre-
cisely in the following theorem: 

Theorem 2.6 (Leakage Errors on FRF Measurements of Continuous-Time 
Systems): Consider the signals y{i) and u(i) obeying Assumption 2.2 and related by the 
strictly stable system G0(j(o) = F{g0(t)} (y(t) = g0(t) * u(t)). Let 

Í W = j=lZl\*nT^*k"/N, Y{k) = j=lZ:&nTa)erJ*«to'» (2-62) 

be the DFT spectra of the sampled signals u(nTs) and y(nTs). If u(nTs) is uniformly 
bounded, filtered white noise, then 

Y(k) = GoC/ω*) U(k) + r G ( M ) (2-63) 

with TG(j(ük) = 0(N~l/2) uniformly over the frequency k. 

Proof. See Section 6.5.2. D 

Formula (2-63) shows that the leakage errors can be interpreted as a transient effect. 
This is illustrated in Figure 2-23. 

Remarks 

(i) The DFT for random signals is defined with a scaling factor 1 /JÑ so that the 
DTF spectrum behaves as 0(N°). 

(ii) If the excitation signal is a periodic signal and the number of data points is in-
creased by repeating this signal (so that no additional frequencies are excited), the 
previous result can be formulated more strongly as |Γ(/ω^)| < 0(N~l). 

(iii) This theorem shows that the leakage error decreases with an increasing number of 
data, but it does not guarantee that the errors are small for finite N. 

Example 2.7 (Leakage Errors on FRF Measurement): To illustrate the impact of 
the leakage effect, a simulation is made on a second-order discrete-time system with a narrow 
resonance peak of 30 dB. The system is driven with white normally distributed noise, without 
disturbing noise. The record is split into M = 100 subrecords of length 256 data points each, 
and the DFT spectrum of each windowed record (2-8) is calculated for a rectangular (2-7) and 
a Hanning (2-12) window. Next, the FRF is estimated using (2-51) and the results are shown 
in Figure 2-24 for the rectangular and the Hanning windows. The errors can become very 
large, especially around the resonance frequency, where fast variations of the FRF occur. Re-
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Figure 2-23. Interpretation of the 
leakage error as a transient effect. 

placing the rectangular window with a Hanning window reduces the errors significantly at 
most frequencies, but the problem at the resonance persists. Note also that these results are 
obtained after 100 averages. So the systematic errors dominate in these results, which shows 
that leakage not only increases random errors but also creates a bias. These errors are propor-
tional to the second derivative d2G0(j(ü)/d(ü2 (Bendat and Piersol, 1980). In Figure 2-25 
the coherence calculated with (2-49) is shown. Although it is poor everywhere for the rectan-
gular window, it is quite good for the Hanning window except around the resonance fre-
quency. D 

Conclusion: Leakage can jeopardize the quality of the FRF measurements significantly. 
Averaging reduces the random appearance, resulting in smoother measurements, but cannot 
eliminate the systematic errors. Using other windows makes it possible to reshape the leak-
age errors, but they remain large in the frequency bands with fast variations of the FRF. Often 
these bands carry most information (e.g., the resonance frequency). To avoid leakage, the 
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Figure 2-24. Illustration of the leakage effect. 
: G0(e~JGiTs), +: complex errors with a 
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Figure 2-25. Coherence of the measurements 
in Figure 2-24. : G0(e~j(aTs), +: coherence 
with a rectangular window, — coherence 
with a Hanning window. 0.25 

Normalized frequency 

best solution is use of periodic excitations and measurements of an integer number of peri-
ods. Alternative methods that exploit the particular nature of leakage errors are given in 
Chapter 4. A last possibility is to use burst random excitations as explained in Section 2.2.4. 

2.6.4 Indirect FRF Measurements 

Consider the measurement setup of Figure 2-26, where the reference signal r(t) is ran-
dom. Due to the input measurement noise mu(t) (open and closed loop) and the process noise 
np(t) (closed loop only), the FRF estimate (2-51) is inconsistent (see (2-53) with σ^ϊθ and 
σ\υ ψ 0). The bias in (2-53) is avoided via the indirect FRF estimate 

nm\k)R[m\k) 

ML-¡m = 1 

(2-64) 

where R\m\k) is the DFT spectrum of the wth subrecord of the known reference signal 
(Wellstead, 1977 and 1981). Since all the noise sources in Figure 2-26 are independent of the 
reference signal r(t), we find, assuming that the leakage errors can be neglected, 

Figure 2-26. FRF measurement of a plant operating in open (black lines only) or closed (black and 
gray lines) loop. ux(f) and yx(i) are the true input-output signals and ng(t), nc(i)y 

n (t), and mu{i), m At) are, respectively, the generator noise, the controller noise, the 
process noise, and the input-output measurement noise. 
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Go(J<»k)GactÜ™k) c (1A 

..s,im 6u~d - a " - ^ W - ' + ^ M ) M (>,/»»<*> - ^ (2-65, 

1 + G0(j<ük)MQ(JG)ky 

where Gact(y co) and M0(y*ω) are, respectively, the true actuator and controller frequency re-
sponse functions. The drawback of the indirect method (2-64) is that the generator ng{t) 
(open and closed loop) and the controller nJJ) (closed loop only) noise parts of the true plant 
input u{(t) are considered as noise. Indeed, ng(t) and nc(t) are not correlated with the refer-
ence signal r(t) and, hence, vanish asymptotically (M—»oo) in the cross-power spectra 
SYR(k) and SUR(k). 

If Gact(j(ü) = 1 and if the process noise is the only disturbance in Figure 2-26 
(ng = 0, nc = 0, mu = 0, and my = 0) , then the controller transfer function M0(yco) is 
exactly known (since r(t) is known and since u(t) and y(t) are observed without measure-
ment errors, the input and output of the feedback branch in Figure 2-26 are exactly known). 
Under these conditions the indirect estimate (2-64) can be written as 

G\J<*k) - ~ (2-66) 
l-M0(j(ük)Gci(j(ük) 

where GCI(/G>¿) = SyR(k)/SRR(k) is an estimate of the closed loop transfer function. The fi-
nite sample properties (bias and variance) of the indirect estimate (2-66) have been studied in 
detail in Heath (2001) and Welsh and Goodwin (2002). 

Remarks 

(i) The indirect method (2-64) can be interpreted as an instrumental variables method 
where the reference signal plays the role of instrumental variable (Norton, 1986). 

(ii) Dividing the numerator and denominator of G(j(úk) in (2-64) by SRR(IC) shows 
that the indirect FRF estimate is the ratio of the FRF from reference to output 
Gryijtok) t 0 m e FRF from reference to input GruU^k) 

G(j(ok) = GryUcok)/GruU(ok) (2-67) 

(iii) For periodic reference signals r(i) we have that R\m\k) = R(k) and, hence, the 
indirect FRF estimate (2-64) reduces to the direct FRF estimate (2-33). 

2.6.5 Improved FRF Measurements Using Overlapping 
Segments 

The leakage errors in the direct (2-51) and indirect (2-64) FRF estimates are reduced by 
multiplying the input-output signals with a time domain window w(t), t = 0, 1, ..., iV- 1, 
(e.g., a Hanning window) before calculating the input-output DFT spectra (see Example 2.7). 
They can be reduced further by using overlapping subrecords (see Figure 2-27), resulting in 
the so-called weighted overlapped segment averaging (WOSA) introduced by Welsh (1967) 
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Figure 2-27. Principle of the weighted overlapped segment averaging: the signal (gray line) of 
length L is divided into M weighted segments (black lines) of length N with an 
overlap of N- R samples. The figure shows an overlap of 2/3. 

for estimating noise power spectra. The autopower and cross-power spectra in (2-51) and 
(2-64) are then replaced by 

*W*) = ¡¿ΣΤ= \^\k)7^\k) (2-68) 

where 

Jf[*](jt) = l YN~' W(ñr(t + mR\r-fl**</N (2-69) 

with X,Ze {U, Y,R}; x,ze{u,y,r}; w(t), t = 0, 1, . . . ,N- 1, the time domain win-
dow; N the length of the subrecord (segment); M the number of subrecords (segments); and 
N-R the number of common samples in two consecutive overlapping subrecords (seg-
ments). The total length of the signals equals L = RM+N-R = R(M- 1)+N samples, 
and the fraction of overlap between adjacent segments is 1 - R/N. The scaling factor in the 
DFT (2-69) is such that white noise e(t) with variance σ2 results in complex noise Ew(k) 
with the same variance σ2. Note that the computational effort of the WOSA estimate (2-68) 
increases with the fraction of overlap. 

The properties of the WOSA estimator have been studied in Carter and Nuttall (1980) 
and Nuttall and Carter (1982) within the context of spectrum estimation ((2-68) with Z = X 
and z = x). They reported that a Hanning window (2-12) combined with 1/2 overlap is a 
good compromise between leakage error suppression and computational effort. These set-
tings are often the default choice in digital spectrum analyzers. 

Assuming that the subrecord (segment) length N is larger than the system (plant) time 
constant, it has been shown in Antoni and Schoukens (2007 and 2009) that the mean square 
error of the leakage errors on the direct FRF estimate 

G(jcok) = SYwUw(k)/SUwUw(k) (2-70) 

are minimized by the half-sine window, w(t) = sin(nt/N), t = 0, 1, ..., N- 1, combined 
with 2/3 overlap (R = N/3 in (2-69)). Compared with the estimate without overlap 
(R = N in (2-69)), the 2/3 overlap reduces the variance of the leakage errors and the noise 
by a factor of 3 and 1.7, respectively, for the half-sine window. For the Hanning window 
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Figure 2-28. Linear time-invariant plant with nu inputs and n outputs, excited by a 
periodic nu x 1 signal r{t) via a (non)linear actuator. 

(2-12) these factors are, respectively, 3.8 and 2. Compared with the half-sine window, the 
bias due to the leakage errors is 1.09 times larger for the Harming window. 

FRF MEASUREMENTS OF MULTIPLE-INPUT, 
MULTIPLE-OUTPUT SYSTEMS 

The results that are presented in this chapter are also valid for multiple-input, multiple-output 
(MIMO) systems. Excitation signals that are suitable for single input, single output (SISO) 
systems also form a good basis to start MIMO measurements. However, additional precau-
tions have to be taken because the FRF of a MIMO system is described by an ny x nu matrix 
at each frequency: 

G0^k)eCnyxn" (2-71) 

with nu and ny the numbers of inputs and outputs of the system. Indeed, since the input-out-
put relationship 

Y(k) = G{jc»¿U(k) (2-72) 

has ny equations with nynu unknowns, the frequency response matrix (FRM) G(j(ok) can-
not be identified from one experiment (2-72) unless constraints are imposed on either the 
spectral content of the input signal (see Section 2.7.1) or the smoothness of the FRM (see 
Chapter 7). Another possibility consists in performing nu experiments with nu different ex-
citations signals. This approach is discussed in detail in Section 2.7.2. 

2.7.1 One Experiment 

It is possible to calculate the FRM G(j(£>k) via (2-72) if an excited frequency only ap-
pears at one input. For example, if the input signals are chosen such that each input contains 
F excited frequencies at an interleaved frequency grid (Figwer and Niederlinski, 1995; 
Verbeeck et al., 1999b) 

Uw(nu(k-\)+p) * 0 k= l ,2, . . . ,F; /> = 1,2, ...,*„ 
(2-73) 

y » B ( t - l ) + r) = 0 r= 1,2,...,nu;r Φ ρ 

one obtains the so-called zippered multisines (see Figure 2-29, left column, for the case 
nu = 3). Entry [q,p] of the FRM is then found as 

G ί /ω Y[g](nu(k-l)+p) 
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Figure 2-29. Input DFT spectrum of an nu = 3 input system (black: input 1; dark gray: input 2; light gray: 
input 3). Left: zippered multisine; and right: Hadamard and (random) orthogonal multisines. 

for k = 1, 2, . . . ,F , p = 1, 2, ..., «w and q = 1, 2, ..., ny. It shows that periodic signals 
with a zippered spectrum (2-73) are uncorrelated for a finite number of samples N. The zip-
pered multisine solution requires nu different generators to create the signals. Note that it is 
also possible to design ternary signals (take only the values {-a, 0, a}) with a zippered spec-
trum (Tan et al., 2009). 

The zippered input spectrum approach is useful in control applications where a model 
is needed from the generator signal (or output of the controller) r(t) (see Figure 2-28) to the 
output of the plant (Rivera et al., 2007 and 2009). Due to the (non)linear interaction between 
the actuators and the system (Verbeeck et al., 1999b), condition (2-73) is, in general, not ful-
filled at the input u(t) of the multivariable system (see Figure 2-28). In that case, the zip-
pered input spectrum approach cannot be used to measure the FRM of the system itself from 
one single experiment. For the same reason it can also not be used for direct FRM estimates 
under closed loop conditions. 

2.7.2 Multiple Experiments 

There are two kinds of approaches to perform the nu experiments: either the inputs are 
excited one after the other, or all inputs are excited simultaneously. The main advantage of 
the first approach is that it requires only one generator. The disadvantages of the first w.r.t. 
the second approach are: (i) for the same frequency resolution and input rms value, the sig-
nal-to-noise ratio is Jnu times smaller, or for the same signal-to-noise ratio and input rms 
value, the measurement time is nu times longer; and (ii) the experiments do not mimic the 
operational conditions, which might be a problem if the system behaves nonlinearly. There-
fore, in this section we do not consider the first measurement approach. 

In the noiseless case the relation between the input and output DFT spectra of the nu 

experiments is 

Y 0 (*) = σ0ο·ω*)υ0(*) (2-75) 

with U0(*) e Cn«xn\ Y0(k) e Ο Χ Λ « , and where the entry X ^ W corresponds to the 
pth input-output signal of the q th experiment. It is clear that solving (2-75) for G0(j(£>k) 
puts a strong condition on the excitation design: the matrix U0(£) should be regular, other-
wise G0(j(ük) is not identifiable. In the noisy case the FRM estimate is then obtained as 
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G ( M ) = Y(i)U-'(t) (2-76) 

The covariance of the FRM estimate (2-76) is related to the input-output noise covariances as 

Cov(vec(6(ya),))) « ( U p l i f t * ) ) " 1 <S> (F(£)C#)F"(£)) 

K(£) = [lny -G0(jcok)\ 

Cz(k) = 

(2-77) 

CY(k) LYU(k) 

CYU(k) Q / w 

with <8> the Kronecker product (see Section 15.7), and Cjj{k), CY(k), and CYU(k) the input-
output noise covariance matrices of one experiment (one column of Y(k) and U(&)). The 
proof of (2-77) is given in Appendix 2.C. From (2-77) it follows that the sensitivity of 
G(j(ok) (2-76) to input-output measurement errors depends strongly on the condition number 
of U0(£) (cond(U0(£)U^(&)) = (cond(U0(&)))2), and a careful design is necessary in order 
to avoid deterioration of the results. Sometimes the number of experiments is even higher than 
the number of inputs. In that case V~l(k) in (2-76) is replaced by the Moore-Penrose pseudoin-
verse U+(k) (see Section 15.5). 

Two solutions guaranteeing a good condition number for U0(&) are available. In the 
first solution the circular shifted versions of the entries of one nu x 1 zippered multisine sig-
nal r{i) (2-73) are used as inputs for the nu experiments (Verbeeck et al., 1999b). The draw-
back of this approach is the poor frequency resolution. The second solution starts from one 
scalar multisine rslS0(t) that excites all frequencies in the band of interest (see Figure 2-29, 
right column). Next, the nu linearly independent reference signals are obtained by multiply-
ing the spectrum ^SISoW w^t n a n arbitrary orthogonal nu x nu matrix T (T~l = TH, with 
TH the complex conjugate transpose of T) 

»(*) = *siso(*)r (2-78) 

(the pth column of R(k) represents the DFT spectrum of the nux I reference signal of the 
pth experiment). With the choice (2-78), the reference signals of the different experiments 
are orthogonal to each other for a finite value of the number of samples N. In addition, in 
case of an ideal actuator (u(t) = r{f) in Figure 2-28), (2-78) minimizes the determinant of 
the covariance matrix of the FRM estimate (Guillaume et al., 1996b; Guillaume, 1998; Do-
browiecki et al., 2006), i.e. it is D- optimal. 

If the number of inputs is a power of 2, then one can choose T in (2-78) to be equal to 
the Hadamard matrix of order nu = 2m 

T = -¡=H2m with Hlm = H2 ® H2m.l9 and H2 

4nu 

i i 
1 -1 

(2-79) 

leading to the so-called Hadamard multisines (Guillaume, 1998). Note that (2-79) can be gen-
erated using only one generator and a set of inverters to perform the multiplication by -1 
where needed. 

For any value of nu, one can choose T in (2-78) to be equal to the nux nu DFT matrix 
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TiP,q] = n-u
meJ2nip-l)(q-l)/n« withp,q = 1,2,...,,,„ (2-80) 

leading to the so-called orthogonal multisines (Dobrowiecki et al., 2006). Contrary to the 
Hadamard solution, nu generators are needed here to create the signals, but nu is not con-
fined to a power of two. 

In many applications, the power spectra of the operational perturbations differ over the 
inputs. To cope with this requirement, the matrix in (2-78) is multiplied by a frequency-de-
pendent diagonal nu x nu matrix DA (k) that defines the shape of the input amplitude spectra 

R W = ^siso(k)DA(k)T (2-81) 

where DA[pq](k) = Ap(k)S(p-q), with S(p-q) the Kronecker delta and A (k) > 0. Inde-
pendent of the choice of the orthogonal matrix Γ, (2-81) always requires nu different gener-
ators to create the signals. 

Note that R(k) in (2-78) and (2-81) always can be written as 

R(k) = Dm(k)TZR(k) (2-82) 

where D^(k) is a diagonal matrix with p th diagonal element equal to the 2-norm of the p th 
row of R(&), and with TZR(k) an orthogonal matrix such that TzR[p,q](k) = e-i^ip-d®. A 
numerical stable inverse of (2-82) is then obtained as R_1(&) = T^R{k)D7RXk). 

2.7.3 Discussion 

If the zippered (single experiment) and the orthogonal multisines (multiple experi-
ments) are designed with the same number of samples N per period (see Figure 2-29), then 
the frequency resolution and the measurement time of the multiple experiments with the or-
thogonal multisines (2-78) or (2-81) are nu times larger than those of the single experiment 
with the zippered multisine. Conversely, for the same frequency resolution, the measurement 
times of both experiments are the same if we do not consider the time to wait for steady state. 
The zippered multisine experiment has only one transient time, while the orthogonal multi-
sines have nu transient times. The multiple experiment is, however, robust to (non)linear har-
monic interference introduced by the actuator and, therefore, is the preferred solution for 
modeling from noisy input-output observations. If the spectral purity of the inputs can be 
guaranteed (e.g., in open loop control applications where the actuator is a part of the model), 
then the single experiment with zippered multisines is the prime choice (simpler experiment 
and calculations). 

The proposed periodic excitations (zippered, orthogonal, and Hadamard multisines) 
minimize the correlation among the different input signals. Otherwise, the input power spec-
trum matrix can be almost singular, which results in unreliable FRM estimates. However, the 
FRM of a highly interactive process can be ill-conditioned by the nature of the system itself. 
Accurate identification of the low gain directions of the FRM then requires high amplitude 
correlated inputs, and this is in conflict with the previous requirement for uncorrelated excita-
tions. The reader is referred to Zhu and Stec (2006) and Rivera et al. (2009) for more infor-
mation about this challenging problem. 
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GUIDELINES FOR FRF MEASUREMENTS 

The aim of this section is to condense the information from the previous sections to a short 
list of guidelines. Following these guidelines does not always guarantee good measurements 
but at least ensures avoidance of a number of common mistakes. 

2.8.1 Guideline 1: Use Periodic Excitations 

If one can impose the excitation, then periodic signals are preferred over random signals 
because the former lead to consistent estimates, even in feedback (see Section 2.5.1), and al-
low estimation simultaneously with the (co)variances of the input-output noise. The following 
are recommended in order of importance: (i) measure multiple periods in one record; (ii) select 
a good synchronization; (iii) collect a number of single measurements. The design of periodic 
and random excitations is discussed in detail in Chapter 5. 

2.8.2 Guideline 2: Select the Best FRF Estimator 

2.8.2.1 Periodic Excitations. Use GuhU^k) if multiple periods are measured or if 
repeated measurements with good synchronization are made (Section 2.5.2); otherwise, in 
case of poor or no synchronization, select GHlog(j^k) (2-45), GT^C/CO^) (2-51), or ΟΗ20'ωΰ 
(2-54) depending on the SNR of the measurements using Figure 2-30. Use a rectangular win-
dow in the DFT. 

If it is impossible to measure an integer number of periods precisely (even after select-
ing a smaller number of samples), a Hanning window can be used to reduce the errors from 
0(Nl) to 0(N~2) at the excited frequency lines (see Section 2.2.3) if at least four periods 
are captured. 

2.8.2.2 Random Excitations. Select a Hanning window (2-12) in the DFT to re-
duce the leakage errors. Use Gnx{j^k) (2-51) if the input SNR is best and GH2(j®k) 
(2-54) if the output SNR output is best to estimate the FRF. Keep in mind that the mea-
surements are biased if both input and output are prone to noise distortions, or if the sys-
tem operates in closed loop. The reader is referred to Chapter 7 for more advanced 
leakage suppression techniques. 
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Figure 2-30. Selection between G//log(y'co¿), 
¿τ/,Ο'ω^), an(* &Η2υ®ύ a s a function of the 
SNR in case the repeated measurements are not 
well synchronized. 
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If computation time is not an issue, then the WOSA estimate (2-70) combined with a 
half-sine window and 2/3 overlap is the prime choice because it minimizes the mean square 
error of the leakage. If a known reference signal is available, then the bias in the direct esti-
mates (2-51) and (2-70) due to input noise and/or a feedback loop is avoided by the indirect 
estimate (2-64) and its WOSA equivalent. 

2.8.3 Guideline 3: Pretreatment of Data 

Before processing the data, we strongly advise effecting a visual inspection for anoma-
lies such as (periodic) spikes, outliers, overload, drift, and offset. Some of these problems can 
also be detected automatically. A slow drift can be removed by use of polynomial regression 
(McCormack et al., 1994a; Peirlinckx et al., 1996). Outliers can be detected using the peri-
odic nature of the excitation by observing the variations from one period to the next. A sound 
solution is to perform a new experiment. If this is not possible, a simple alternative is to re-
place the erroneous data by the equivalent value of the neighboring periods. 

2.9 CONCLUSION 

FRF measurements give a great deal of information about the device or plant under test. Very 
often the FRF is easily accessible and it is strongly advised to take this intermediate step in 
the identification process. It provides not only much qualitative information about the com-
plexity of the problem but also quantitative information about the plant and the measurement 
quality. This can be used to set up a measurement-driven weighting function for the identifi-
cation step and also gives very valuable information for the model validation. The user has 
significant influence on the measurement quality by generating a good excitation and select-
ing the proper algorithms to process the raw measurement data. For these reasons, we 
strongly encourage the reader to take the time to understand the basic principles of FRF mea-
surements. Good nonparametric measurements will simplify the task of building parametric 
models significantly. 

2.10 EXERCISES 

Remark. In these exercises (and also in the next chapters) we will use the MATLAB® 
notation. MATLAB is a high-performance language for technical computing developed by 
Mathworks Inc. More information can be found at http://www.mathworks.com/. 

2.1. Calculate the signal uQ(t) = Υ}^λΑιύη(2π/0ΙίΤζ + φ{), t = 0, ...,N- 1 with f0 = 1, 
Ts = 1/1024, and φι independently and uniformly distributed in, [0, 2π[ . 
Calculate U0(k) = DFT(w0(0) using the MATLAB FFT instruction for N = 1024, 1500, 
4096, 5000 and plot the amplitude spectrum in dB UáB(k) = 201og10|í/0(*)|. Use for 
the first time a rectangular window and for the second time a Harming window, and dis-
cuss your results. (What is the impact of leakage? What happens if a Harming window is 
applied on a record consisting of an integer number of periods?) 
Note that this routine also works for ΝΦ 2η but that it becomes significant more slowly. 

2.2. This exercise shows how a very fast calculation of a periodic signal is achieved, starting 
from its spectrum. 
Define U = ZEROS(1024, 1) %; this is a 1024x1 vector with all entries zero. 
Set £/(2~256) = exp(27i/rand(255, 1)). 
u =~2*REAL(IFFT(L0) 
Compare the computational effort of this approach with that of Exercise 2.1 Give an ex-
planation of the algorithm. 
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Remark: In MATLAB U( 1) contains the DC component and U(k) the Fourier coefficient 
of the harmonic (k - 1 )f0. The underscore ; indicates that we refer to a spectrum in the 
MATLAB notation: U(k) = U(k+\). 

2.3. Calculate one period of u0(t) with random phased components (with unit amplitude) at 
the frequencies lf0 , I = 1,2, .. . ,255, / 0 = 10 Hz putting N = 512 points in one 
period. Use the method of Exercise 2.2 
What is the sample period rs that is needed to generate this signal? 
Set up the signals u0 e UlNpxl containing / successive periods using the REPMAT in-
struction for / = 1, 2, 4 and study the relation between the fundamental frequency, N , 
and the line number of the spectral components of the repeated signal. 

2.4. Define the discrete-time system G0(z~l): [b,a] = CHEBY1(2, 10, 0.5) (this is a second-
order system with resonance frequency at 0.25/s). 
Plot the amplitude of the transfer function of this system in dB (use the function FREQZ). 
Consider the signals u0. of Exercise 2.3 and calculate the responses v0 (t) = g0(t)*u0 (t) 
using the filter operation v0 = FILTER(Z>, a, u0) of MATLAB. 
Estimate the FRF of the system at the excited frequency lines as 
Gi(z~l) = Y0l(kr)/U0l(kr). The indices kr should be properly chosen to select only the 
lines where the system is excited. Compare the measured FRF with the exact one and dis-
cuss the result. What is the origin of the errors? 

2.5. Repeat the previous exercise for / = 2 but eliminate the first period in w0 , yQ2 before 
calculating the DFT spectra. Explain why the errors disappeared. 

2.6. Generate an iid random signal with zero mean u0(t)9 t = 1,...,512M. Normalize the 
rms value of this signal to 1. Calculate v0 = g^Yu^t) (Exercise 2.4) and estimate G# 
(2-51) for M = 1, 4, 16, 64. Discuss the results. Repeat the exercise but this time elimi-
nate the transient effects using the technique of Exercise 2.5. 

2.7. Generate an iid random signal with zero mean u0(t), t = 1, ..., 512M. Normalize the 
rms value of this signal to 1. Calculate y{t) - g0(t)*u0(t) + n (t) (Exercise 2.4) with 
n (t) iid normally distributed noise with zero mean and σ = 0.1. Estimate GHX (2-51) 
for M = 1, 4, 16, 64. Discuss the results. 

2.8. Generate an iid random signal with zero mean u0(t), t = 1, ..., 512M. Normalize the 
rms value of this signal to 1. Calculate y0 = g0(t)*u0(t) (Exercise 2.4). Generate 
u(t) = u0(t) + nu(t), and y(t) = y0(t) + n (t), with nu(t), n it) iid normally distributed 
noise with zero mean and au = 0.5, or = 0.1. Estimate Gfjx{j^¿) (2-51) for 
M = 1, 4, 16, 64. Discuss the results. Can you suggest a better method? 

2.9. Estimate the variance of (//^Ο'ω^) (2-51) for the setup of Exercise 2.7 using the coher-
ence ^2(ω^). Put M = 16. Repeat the simulation 50 times and calculate a^(k) from the 
repeated estimates. Compare both results. 

2.10. Consider the signal u0 of Exercise 2.4 and calculate the output for the input 
u(t) = u0 (t) + n it) where nit) is zero mean iid generator noise with ση = 0.1. Cal-
culate the system output y(t) = g(t)*u(t) and skip the first period to avoid transients. 
Calculate the FRF G M L O 0 ^ ) (2-33) and estimate the variance of the FRF for this setup 
using the coherence. Explain why the impact of generator noise on the variance is so 
small. 

2.11 APPENDIXES 

Appendix 2.A Radius of a Circular Confidence Region 
of the FRF 

Consider a circular complex normally distributed random variable v with mean μν and 
variance σ*. The p x 100% confidence circle with center μν and radius rav is defined as 
Prob( |v- / / v | <rav) = p. Using polar coordinates r}e

jVl = ( v - μν)/σν, it can be written as 
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f π f / v f o r ^ + μν)σ
2
ννχάνχάθι = p (2-83) 

where /v(v) = e" l v _ / / J 2 / ^ / ( j i^ ) is the probability density function of v (see (16-14), 
page 569). Elaborating (2-83) gives 

2 fe~r'rldrl = p => r = V-ln(l -/?) (2-84) 

which proves (2-31). D 

Appendix 2.B Asymptotic Behavior of Averaging 
Techniques 

The proofs of the asymptotic (M-> GO) properties of the averaging techniques (2-33), 
(2-51), and (2-54) follow the lines of Sections 16.13 (general theory) and 16.15 (application 
on the measurement of a resistance). To understand these proofs fully we advise reading Sec-
tions 16.13 and 16.15 first. 

We will prove the results for the ML estimator (2-33); the proofs for the Hx (2-51) and 
H2 (2-54) methods follow exactly the same lines. The only difference is that the Hλ and H2 

methods require the existence of the fourth-order moments of the disturbing noise instead of 
the second-order moments for the ML method (2-33). This is due to the squaring operation of 
the noise in (2-51) and (2-54). We split the proof in two parts: (i) the data blocks (subrecords) 
are independent, Assumption 2.5(i), and (ii) the data blocks are correlated, Assumption 
2.5(H). 

2.B.1 Independent Data Blocks. In (2-33) sums of the form 

S(M)/M = M-1 Σ7
Μ

= xNV\h) (2-85) 

occur with N¡-l\k) the DFT of n\¡\t) or nj/\t)9 t = 0, 1, . . . , iVp- 1. Under Assumption 
2.5(i, P = 2) the noise NW(k), I = 1,2, . . . ,M, is independent over / and has finite 
second-order moments. Hence, S{M)/M converges with probability one (w.p. 1) at the rate 
<9p(M-1/2) to its expected value (see Section 16.9, version 2 of the law of large numbers). 
The expected value of S(M) is zero because 

E{#M(*)} = Ν-ι/2Σ"ί~ο Ml!]e-j2nkt/N* = 0 f o r £ * 0 

where μψ = E{nV\t)} Using the results of Sections 16.13.1 and 16.13.2 it follows directly 
that the estimate GuL(j®k) (2-33) converges w.p. 1 (almost surely) at the rate Op(M~l/2) to 
^οθ'ω*). 

Under Assumption 2.5(i, P = 2 + ε), the noise N^l\k) is independent over / and has 
finite moments of order 2 + ¿\ Hence, S(M)/jM is asymptotically normally distributed (see 
Section 16.10, version 2 of the central limit theorem). Using the results of Section 16.13.4 it 
follows directly that GML(/CO¿) is asymptotically normally distributed and that its variance is 
asymptotically given by 

σ2(]ά = \Go(iM2( Φ) + <#*) 2Rc(
 σϊιΑ® ,) 
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where σ (̂Α:), aj(k), and σ^Ιή are the noise (co)variances of one data block (subrecord). 

2.B.2 Correlated Data Blocks. The proof follows the same lines of the previous sec-
tion. The only difference is that other versions of the strong law of large numbers and the cen-
tral limit theorem are used. The sum (2-85) can be written as 

S(M)/M = O¥T(s(M)/M) where s(M)/M = A ^ g i ^ ( 0 (2-86) 

with nV\i) = nu(f) or ny(f). Under Assumption 2.5(ii, P) the disturbing noise n{t) in 

(2-86) can be written as filtered white noise e(t) with finite moments of order P, so that n(t) 
is mixing over / of order P (see Example 16.6). Hence, the subrecord n\l\t) = n(t + lNp) is 
mixing over / of order P. We conclude that under Assumption 2.5(ii, P = 2), the sum 
s{M)/M converges w.p. 1 at the rate Op(M~l/2) to its expected value (see Section 16.9, ver-
sion 3 of the law of large numbers), and that under Assumption 2.5(ii, P = oo), S(M)/JM is 
asymptotically normally distributed (see Section 16.10, version 3 of the central limit theo-
rem). This is also valid for S(M)/M, with E{S(M)} = 0, because the number of elements 
Np in the DFT sum does not increase with M. Using the results of Sections 16.13.1, 16.13.2, 
and 16.13.4, it follows directly that the estimate GMLO'®*) (2-33) converges w.p. 1 (almost 
surely) at the rate Op(M~l/2) to G0(j(ok)md that GML(/CD¿) is asymptotically normally dis-
tributed. 

Appendix 2.C Covariance of the FRM Measurement 

For ease of notation we drop the frequency arguments in this appendix. Using 
X = X0 + N x , with X0 the true value, N x the noise contribution, and X = Y or U, the 
FRM estimate (2-76) can be approximated via a first order Taylor series as 

G « G0 + NG with NG = NYUol - G 0
N u u o l (2"87) 

Rewriting NG as 

NG = FNzUo1 with V = [l„y -G0] and N z = [N£ Ν £ ] Γ (2-88) 

and applying the vec( ) operator to (2-87) we find, using vec(ABC) = (CT®A)VQC(B), 

Cov(vec(6)) * ( U / ® F)Cov(vec(Nz))(lV ® VH) 

* (U07, ® V)(I„u (8 CZ)(Ü? O Κ^) (2-89) 

«(ϋΧ)"1®^**) 

The second equality uses the fact that the columns of N z are independently distributed (each 
column represents an independent experiment) and have the same covariance matrix 
Cz = Cov(Nz[. p]), p = 1, 2, ..., nu. The last equality applies twice (A ® B)(C® D) = 
(AC)®(BD).' 



Frequency Response Function 
Measurements in the Presence 

of Nonlinear Distortions 

Abstract: In this book we deal with the measurement and identification of linear dynamic 
systems. However, in reality the linearity assumption is only approximately valid. Many sys-
tems that are assumed to be linear are disturbed by nonlinear distortions. The aim of this 
chapter is not to show how nonlinear systems should be modeled, because this problem is be-
yond the scope of this book. The goal is to provide the reader with an insight into the impact 
of nonlinear distortions on FRF measurements. Finally, it will be shown how we can still use 
the linear framework under these conditions. 

3.1 INTRODUCTION 

The aim of this chapter is not to model nonlinear systems, because this problem is beyond the 
scope of this book. The goal is to provide the reader with insight into the behavior of nonlin-
ear distortions and their impact on frequency response function (FRF) measurements. This 
allows not only a better understanding of the error mechanism but also knowledge that can be 
used during the design of the experiment in order to get the best results under the imposed op-
erational conditions. To do so, the user should clearly specify the goal of his/her measure-
ments. In order to formalize this discussion, we use the general structure given in Figure 3-1. 
The measured output y{t) consists of a linear yL(t) and a nonlinear j>NL(0 contribution. For 
simplicity we assume that the linear contribution dominates the nonlinear one for sufficiently 
small inputs: 

lim ^ ™ 5 = 0 (3-1) 
"ιιη.-^Ο'ΐΛιηβ 

Under this assumption we have two basic options: (i) The goal of the measurement is to get 
the FRF of the underlying linear system, minimizing the impact of the NLS on the measure-
ments. If (3-1) is not valid, the theory that is developed in this chapter is still applicable, but it 
is no longer possible to define an underlying linear system, (ii) Trying to find the best linear 
approximation to the global system, including the NLS. The first option is the best choice if 
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NLS 

u(t) 
LS 

y{t) 

distortion. 
^/T\ ^ Figure 3-1. General setup of the nonlinear 

some underlying linear physical model exists and the user wants to identify it as well as pos-
sible. In that case, the rms value of the excitation should be chosen as small as possible. The 
second choice is preferred if the model will be used to describe the relation between input and 
output using a linear model. Then, the nonlinearity will be linearized around the operation 
point of the test. This is the topic of the present chapter and of Chapter 4. 

The chapter is structured along the following lines: first we give a simple introduction 
to the behavior of nonlinear systems; next we develop the theory for continuous-time systems 
operating in open loop and excited by Gaussian-like signals (random phase multisines, peri-
odic noise, and Gaussian noise); and finally the results are extended to discrete-time systems, 
non-Gaussian excitations, multivariable systems, and systems operating in feedback. Detec-
tion techniques for nonlinear distortions, and optimal measurement of the best linear approx-
imation are handled in Chapter 4. 

INTUITIVE UNDERSTANDING OF THE BEHAVIOR 
OF NONLINEAR SYSTEMS 

Consider the static nonlinear system y = w + w2 + «3 excited with a sine wave 
u(t) = Aün(2nf0t). The response of this system is split into its linear, quadratic, and cubic 
contributions. The corresponding amplitude spectra are given in Figure 3-2. It shows that 
nonlinear systems create additional harmonics. On the one hand, this allows the detection of 
nonlinear contributions, but it also shows that the FRF measurements are disturbed. The cu-
bic subsystem also puts power at the original frequency f0 that cannot be separated from the 
linear contributions using only a single sine measurement. More advanced methods that are 
beyond the scope of this book are needed to solve this problem (e.g., Bendat, 1998). In gen-
eral, for a multiharmonic periodic signal, the frequencies of quadratic terms are found by 
looking for all combinations fi +fj over the positive and negative frequencies of the signal. 
For the cubic terms triple sums f{ +fj +fk should be considered, and in general n frequencies 
should be combined for a nonlinearity of degree n. This shows that for periodic signals hav-
ing only odd frequency components (at f0, 3/0, 5/0, . . .) , the even nonlinearities do not dis-
turb the FRF measurements (the sum of two odd frequencies is always even), but it is 
impossible to avoid disturbances from the odd nonlinearities (e.g., fQ + / 0 -fQ = f0). 
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These results can be generalized using Volterra systems. A concise introduction to this 
technique is given in the book of Schetzen (1980). The basic idea is to extend the linear 
model to a nonlinear one using multidimensional convolutions, for example, 

Á0 = C s i W ' - r ^ r + Π & 2 < > ι , T2)u(t- Tx)u{t- τ2)άτχάτ2 + ··· (3-2) 

For static nonlinear systems this relation simplifies to a Taylor expansion: 

y(t) = gxu(t) + g2u\t)+··. (3-3) 

The autocorrelation Ryu(r) no longer depends on the second-order moments of u only but 
also on the higher order ones. Consequently, the nonlinear distortions of the FRF measure-
ment also depend on the amplitude distribution of the excitation, for example, normally, uni-
formly, or binary distributed excitations. If the aim is to get the best linear approximation, it 
is important to use the same kind of excitations (power spectrum and amplitude distribution) 
as will be applied later on to the system, otherwise the linear approximation can become in-
valid. 

For periodic excitations with F = N/2 - 1 harmonics at frequencies kfs/N, 
k = 1, . . . ,F , relation (3-2) simplifies to a sum over all possible frequency combinations 
adding to the output Fourier coefficient Yk at frequency kfs/N (Chua and Ng, 1979): 

^ = ι : = Λ α (3-4) 

with Yj* the contribution of degree a 

N/2-1 

Y? = Σ G? . . . UkUk...Uk UL 

kl,k2,...ka_l =-N/2 + \ (3-5) 

and Ur the input Fourier coefficient at frequency rfs/N (see Section 2.3 for the relationship 
between the Fourier coefficient and the DFT spectrum of a periodic signal). G^kkJc is 
the symmetrized frequency domain representation of the Volterra kernel of degree a 
(Schetzen, 1980) so that the order of the frequencies Lh ku k2,..., ka_ x has no importance 

+ O0 +00 

qU·.·.* = í - Í «α(η.···.«-αΚ^β(*,Γ, + -*Λ)Λΐ···Λ« (3-6) 
a - o o - o o 

The convergence of this sum is later guaranteed in Definition 3.5. 

3.3 A FORMAL FRAMEWORK TO DESCRIBE 
NONLINEAR DISTORTIONS 

Describing nonlinear systems is a tedious job because it is necessary to guarantee conver-
gence of the Volterra series (3-4). Moreover, the limiting value also depends on the amplitude 
distribution of the excitation. A normally distributed excitation can result in a different limit-
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ing value than a uniform distribution, even if the power spectra of both excitation signals are 
the same. For these reasons it is necessary to state, precisely, the validity of these theories. 
This depends on the class of excitation signals and the class of nonlinear distortions that will 
be considered. 

3.3.1 Class of Excitation Signals 

As mentioned before, FRF measurements in the presence of nonlinear distortions de-
pend on the class of excitation signals. We focus on random multisines. These are periodic 
random excitations with a user-defined amplitude spectrum. When an integer number of peri-
ods is measured, the amplitude spectrum is perfectly realized, which is not the case for a ran-
dom excitation (see also Chapter 5 on excitation signals). All the results can be generalized 
easily to (periodic) random signals (random amplitude and random phase), at a price of tak-
ing an additional expectation with respect to the amplitudes in the expressions, as is com-
mented on after Theorem 3.7. This generalizes the results to the wider class of normally dis-
tributed random excitations. However, from the experimental point of view, we have a strong 
preference to use periodic excitations with well-controlled amplitude spectra, as explained in 
the previous chapter. 

Definition 3.1 (Random Phase Multisine): u(i) is a random phase multisine if 

^ = i:t2:L+^ftKf'k'/N (3-7) 
with Uk = U_k = \Uk\e

j(p\ fs the clock frequency of the arbitrary waveform generator, 
F = N/2 - 1 the number of frequency components, N e N the number of samples in one 
signal period, and the phases <pk a realization of an independent distributed random process 
on [0,2π) such that E{eJ<Pk} = 0. 

Remarks 

(i) A possible choice for <pk could be to select it as a uniformly distributed noise se-
quence, but other choices will also do. For example, <pk can also be chosen to 
have a discrete distribution. 

(ii) If the amplitude spectrum \Uk\ is random, then (3-7) equals periodic noise. 

(iii) For simplicity, U0 is set to zero, considering the DC component as the operating 
point of the system. Also, the output bias of the nonlinear system depends nonlin-
early on the input. Consequently, linear models cannot describe the variations of 
the output bias as a function of the input. The DC information of the input and the 
output will not be used during the linear identification process. 

(iv) It is strongly advised to use FFT techniques to calculate multisine signals, other-
wise the computation time becomes very long (see Exercises 2.1 and 2.2). 

We will study the asymptotic behavior of the nonlinear distortions for multisines with a 
growing number of harmonics. In order to keep excitations with a finite power for TV—> oo, 
the signals are scaled with \/*JW. This leads finally to the class of normalized random mul-
tisines EN and the class of periodic noise excitations PN that we will use in this study. 
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Definition 3.2 (Normalized Random Phase Multisine): The class of normalized ran-
dom multisines E^ is given by the set of random multisines %(/) (3-7) having a normalized 
amplitude spectrum: \Uk\ = Ü(hfs/N)/JÑ. The deterministic amplitudes U(kfs/N) e (R+ are 
uniformly bounded, U(f)<MU9 where the function U(j) has a finite number of discontinuities 
on the interval [0 , / s /2 ] . The phases <pk are the realization of an independent (over k) ran-
dom process satisfying E{eJ(Pk} = 0. The DC component of the uN(i) is set to zero, U0 = 0, 
and the clock frequency fs is independent of N. 

Definition 3.3 (Normalized Periodic Noise): The class of normalized periodic noise 
excitations PN is given by the set of random multisines uN(t) (3-7) having a normalized ran-
dom amplitude spectrum: \Uk\ = Ü(kf/N)/JÑ. The amplitudes Ü(kf/N) e R+ and the 
phases <pk are the realization of independent (jointly, and over k) random processes satisfy-
ing the following conditions: U(kfs/N) has uniformly bounded moments of any order 
E{Ua(f)} < M£, the function E{ U2(f)} has a finite number of discontinuities on the interval 
[ 0 , / / 2 ] , and E{ej9k) = 0. The DC component of the uN(f) is set to zero, U0 = 0, and 
the frequency fs is independent of N. 

In the sequel of the book, a more general signal will be used. Because it is closely re-
lated to the concept of normalized multisines, we prefer to define it here. The ideas developed 
in this chapter can even be applied to this class of excitation signals, if some of the assump-
tions are modified (e.g., the convergence assumption in Definition 3.5). However, the reader 
should be aware that the limiting value of the measured FRF can depend on the specific sig-
nal in this generalized case. 

Definition 3.4 (Normalized Periodic Signals): The class of normalized periodic sig-
nals is given by the set of periodic signals uN(t) (3-7) that have a normalized amplitude or 
power spectrum. For signals with a deterministic amplitude spectrum, we have \Uk\ = 
0{N~XI2). For signals with a random amplitude spectrum, the expected value E{|£4|2} is 
normalized: E{|£4|2} = 0(\/N). For deterministic signals the peak value (max|w(/)|^ 
C < oo for any t, including t = oo) should be bounded. 

3.3.2 Selection of a Model Structure 
for the Nonlinear System 

In this section we set up a mathematical description for the nonlinear distortions. 
Although we are not interested, at all, in extracting these models from the measurement, a 
formal description is needed in order to characterize and quantify the impact of the nonlinear 
distortions. One of the most general descriptions for nonlinear systems is the Volterra models 
(3-2) splitting the relation between input and output in different contributions of increasing 
degree of nonlinearity (Schetzen, 1980). 

Convergence aspects are a central issue when dealing with these models. Uniform con-
vergence requires that there exists an upper bound on the output error (= system output -
model output) amplitude that is independent of the input and decreases to zero if the number 
of terms na in Σ^α

= { Y" goes to infinity. It can be shown only for a very restricted set of 
systems, e.g., the underlying nonlinear function is analytic for all considered inputs. The 
class of allowable systems is considerably extended if the uniform convergence is replaced 
by mean square convergence. In that case it is no longer necessary that the output converges 
everywhere in the domain of interest. Only the power (or root mean square value) of the error 
signal should converge to zero for a specified class of excitations. Thus, at a discrete set of 
isolated points the model does not necessarily converge (similar to the convergence of a Fou-
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rier series to a discontinuous function). Under mean square convergence relays, quantizers 
and other discontinuous nonlinear systems can be included in the model set. The reader 
should be aware that this set of systems is not complete; for example, bifurcations can still 
not be modeled within this concept. These ideas are very similar to the idea of Wiener series 
as explained by Schetzen (1980). Because the FRF measurements can be considered as the 
minimizers of a weighted least squares cost function, it is clear that the input-output relation-
ship of the nonlinear distortions is approximated in least square sense. This motivates the fol-
lowing assumption: 

Definition 3.5 (Class of Nonlinear Systems): S is the set of nonlinear systems such 
that for random multisines uN e E^ (see Definition 3.2) or periodic noise uN e PN (see Def-
inition 3.3) 

Σ ^ , Μ ^ Λ / ^ C ^ c o (3-8) 

with Mra = max \G? , , , I and where MSi is defined in Definition 3.2 or Definition 
Lr | Lk,Kl,K2,...,Ka_l\ U 

3.3. 

Under condition (3-8) there exists a uniformly bounded Volterra series whose output 
converges in mean square sense to the output of the nonlinear distortion for uN e EN. The 
FRF measurement G(j(ük) at frequency fk for nonlinear systems belonging to the set S ex-
cited with uN G E^ or uN e P^ is the sum of the nonlinear contributions of degree a, 
G«(ycD,)(see(3-5)): 

σθ·ωΑ) = ^ = Σ α « ι σ β Ο ω Α ) 
uk 

Y« N/2-\ UkUk...Uk UL
 ( 3 " 9 ) 

G«{j(ük) = I t = X Gf k k k *' k2
n

ka-' Lk 

* kx,...,ka_x=-N/2+\ k 

STUDY OF THE PROPERTIES OF FRF 
MEASUREMENTS IN THE PRESENCE OF NONLINEAR 
DISTORTIONS 

In this section, profound insight is given into the impact of the nonlinear distortions on the 
FRF measurements for normalized random multisine excitations. It is shown in Appendix 
3.A that the contributions to the FRF can be partitioned into two sets, the first consisting of 
contributions that do not depend on the random phases of the excitation and the second con-
taining the contributions that depend on the random phases: 

(i) Systematic contributions GB(j(úk): There exists a linear dynamic system 
GBLA(j(ok) to which the expected value of the FRF estimate converges under 
weak conditions. It differs from the underlying linear system G0(j(£>k) by the sys-
tematic contributions GB(j(£>k) of the nonlinear distortions. We will show that for 
the class of normally distributed signals (including random multisines and noise 
excitations) this linear system is the best linear approximation (BLA) to the non-
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linear system. The contributions of GBLA(j(ok) do not depend upon the random 
phases of the input. 

(ii) Stochastic contributions Gs(ja>k): Even for a very large number of frequencies 
and in the absence of disturbing noise, the FRF measurement is not smooth as a 
function of the frequency. It is scattered around its expected value, and these devi-
ations do not converge to zero. They are called the stochastic nonlinear distor-
tions. The contributions to Gs(j(dk) depend on the random phases of the input. 

These concepts are formalized below. For a system belonging to the set § and a normalized 
random multisine excitation uN e EN (or normalized periodic noise uN e PN), the measured 
FRF consists of three parts: 

G ( M ) = G B L A (M) + Gs(j(ok) + NG(k) (3-10) 

with GBLA(j(ok) the best linear approximation (BLA), Gs(j(ok) the stochastic nonlinear con-
tributions, and NG(k) the errors due to the output noise. 

The best linear approximation GBLA(j(ok) consists of two parts: 

G B L A ( M ) = Got/ω*) + GjC/ω*) (3-11) 

with G0(j(ok) the underlying linear system and GB(j(ok) the bias or systematic errors 
due to the nonlinear distortions. 

Gs(j(ok) is called a stochastic contribution because it behaves as uncorrelated (over the 
frequencies) noise, although the reader should be aware that it is not a random signal 
once the excitation signal is fixed. Because of this noisy behavior, the presence of non-
linear distortions is often not recognized. 

NG(k) describes the impact of the disturbing noise on the FRF measurement. For sim-
plicity, we assume that the input measurements are noise free (dominating output 
noise), resulting in a noise distortion NG(k) having the following properties: 

Assumption 3.6 (Measurement Noise): The noise NG(k) on the FRF measurement 
has the following properties. 

(i) E{NG(k)} = 0 

(ii) l{NG(k)ÑG(l)} = aG(k)5kl and Ε{|ΛΓ0(/ω,)|2} = aG(k) 

(iii) E{NG(l)\NG(k)\2} = 0 for* , /*0 

(iv) l{(\NG(k)\i-aG(k))(\NG([)\i-aG([))} = j ^ ^J¡ 

The different contributions to the FRF are studied in more detail in the following for two sit-
uations. In the first case we look for the average value if the experiment is repeated for a con-
stant number of harmonics in the excitation. The second case deals with the asymptotic be-
havior if the number of harmonics N-^>oo. 
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3.4.1 Study of the Expected Value of the FRF 
for a Constant Number of Harmonics 

What happens if the FRF measurement is averaged for different realizations of a nor-
malized random multisine excitation, keeping its amplitude spectrum constant? Or more for-
mally: what is the expected value E {G(jω^)} for N fixed? Thereto the mathematical ex-
pectation i{Ga(j(ok)} is calculated with respect to the phases. This means that the 
measured frequency response function of the system is averaged over different realizations of 
the random multisine excitation, keeping the frequency grid and the amplitude of the Fourier 
coefficients Uk of the excitation signal u(t) constant. 

Theorem 3.7 (Response Nonlinear System): For a system belonging to the set § 
(see Definition 3.5), excited with independent realizations of a normalized random multisine 
uN G EN (see Definition 3.2) or normalized periodic noise uN e PN (see Definition 3.3), we 
have: 

1. The expected value of G(j(ok) is given by 

EíGC/ω*)} = GBLAU®¿ = G0U®¿> + GB(j<i>¿ (3-12) 

with 

Σ°° = ? G\a~ Ιϋ'ωέ) uniform continuous phase distributior 

\ΣΖ = 2°2Βα~10'^) + Ο(Ν-^ otherwise 

G ^ - ' Í M ) = E{G2«-'0%)}. 

2. The expected value of Ga(j(ük) is given by 

JV/2-1 

5 „ . . . , 5 a _ , = 1 

+ Οα(Ν~ι) (3-13) 

[0 uniform continuous phase distribution 
Oa(N~3/2) otherwise 

G*(M) = 

E{G2«(M)} = , _ 3 / 2 , 

with ca = 2«->(2tf- l ) ! ! , Σ?α = 2Οα{Ν-β) = 0(N~^ and Eamp{.} the ex-
pected value with respect to the random amplitudes of the periodic noise. 

Proof. See Appendix 3.A. D 

Remarks 

(i) Note that from (3-13) it follows that E{G2a-\j(uk)} = 0(N°) because in the 
sum TV"-1 terms ofO(l/Na-1) are added together (\US{\ = 0(NU2); see Def-
initions 3.2 and 3.3). 
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(ii) The best linear approximation depends on the number of frequencies N that are 
used in the random phase multisine and the periodic noise (see (3-12) and (3-13), 
and Evans and Rees, 2000). Therefore, it would be better to denote it as GBLA N. 
However, later on it will be shown that the limit for 7V->oo exists: 
UmjGBLAN(jGi) = GBLA(yco). For that reason we preferred not to overload the no-

tation, leaving out the dependence on N. 

(iii) Instead of G%(j(£>k) being considered as the expected value (see (3-12)), it can be 
interpreted as that part of the transfer function contribution of degree a that is in-
dependent of the random phase of the random multisine excitation. All the com-
ponents that still depend on the random phase have a zero mean value because 
i{eJ<Pk} = 0 and as such do not contribute to the bias term. Consequently, 
G%(j(ok) is independent of the random phases of the excitation; in the contribut-
ing terms the random phases of the excitation cancel each other, resulting in a sys-
tematic contribution of the nonlinear distortion to the FRF. G^(jco¿) depends on 
the random phases of the excitation so that it is a random component, modeling 
the stochastic contribution of the nonlinear distortion of degree a to the FRF. 

(iv) A typical example of a discrete phase distribution is <pk e {0, π} . For discrete 
phase distributions, the even degree terms also have a bias contribution that disap-
pears asan 0{N~X). 

An important conclusion of this section is that only the odd terms G2a~ l(j(ok) contribute to 
the best linear approximation; it does (asymptotically) not depend on the even nonlinear dis-
tortions. This result will be used later on to formulate optimized measurement strategies. The 
theorem also gives a possibility to measure GBLA(j(ü¿). It can be obtained by averaging over 
a sufficient number of experiments with different realizations of the random multisine so that 
the stochastic nonlinear contributions are averaged to zero. 

3.4.2 Asymptotic Behavior of the FRF if the Number 
of Harmonics Tends to Infinity 

From the previous section we know that, besides the disturbing noise NG(k), the mea-
sured FRF consists of two remaining components: a deterministic one GBLA(j(ok) and a sto-
chastic one Gs(j(dk). A first possibility to measure GBhA(J(ok) is to average over a large 
number of experiments so that the contribution Gs(j(ok) is averaged to zero for a fixed num-
ber of frequency components N in the random multisine (periodic noise). Because in each re-
alization we should calculate and load each time a new random multisine (periodic noise se-
quence) in the generator memory and wait until the transients in the measured signals 
disappear, it is tempting to stick to one experiment, but using a very dense (N-> oo) multi-
sine (periodic noise). One might hope that the resulting measurement of the FRF would be-
come smooth because the stochastic nonlinear contributions would average to zero. It turns 
out that this is not the case. Neither of the contributions (GBLA(j(ok) and Gs(j(ük)) decreases 
if the number of frequencies N of the excitation increases; the FRF does not become smooth 
for N-^oo. Also the bias contribution GB(j(dk) does not decrease when TV increases be-
cause it is an 0(N°). This is formalized in the next theorem. 

Theorem 3.8 (Asymptotic Behavior of the Systematic and Stochastic Nonlin-
earities): Consider a system belonging to the system set § (see Definition 3.5), excited with 
a random multisine uN e E^ (see Definition 3.2) or periodic noise uN e PN (see Definition 
3.3). The systematic GB(j(ok) and stochastic Gs(j(x>k) contributions to the transfer function 
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G(j(ok) = GBLAUak) + Gs(j(*k), with GBLA(j(*k)
 = GoU®k) + GB(j(ok), do not decrease 

to zero as N-> oo: GB(ja>¿) is an 0(N°) and Gs(j(ok) is an Oms(N°). 

Proof. See remarks in Section 3.4.1 on GB(jo*k) and Appendix 3.B on Gs(j(úk). D 

The stochastic behavior of Gs(j(Dk) can be further characterized, showing that its 
second-order properties are completely similar to those of the noise NG(k). This explains 
why it is difficult to distinguish between noise and nonlinear distortions. It is also the reason 
why nonlinear distortions are often not recognized. 

Theorem 3.9 (Properties of the Stochastic Nonlinearities Gs(j<ok)): For a system 
belonging to the system set S (see Definition 3.5), excited with a random multisine uN e E^ 
(see Definition 3.2) or periodic noise uN e PN (see Definition 3.3), the following properties 
are valid: 

(i) E{GS(M)} = 0 
(ii) E{Gs(j&l)Gs(j&k)} = 0(JV-i) if**/ mdE{\Gs(j«>k)\i} = ais(k) = 0(N°) 

(iii) E{GsU^)\Gs(jWk)\^} = 0(N->) f o r * * / 

(iv) E{(|Gs(M)|2-CT¿s(*))(|G5(>;)|
2-a¿s(/))} = 

Proof. See Appendix 3.B. D 

Remark. These observations are in agreement with the classical result showing that 
the output of a nonlinear system can be split into two parts (Bendat, 1998; Forssell and Ljung, 
2000c): a first part that is linearly related to the input (in our case leading to GBLA(ycD¿)) and 
a second part that is uncorrelated with the input (leading to Gs(j(£>k)). Theorem 3.9 tells 
more about the second and higher order properties of the uncorrelated part. 

In the previous theorem, the moments of the nonlinear contributions up to the fourth or-
der were studied. In general, it is even possible to tell more about these nonlinear distortions. 
In the next theorem, it is shown that they are mixing (see also Section 16.4). Loosely speak-
ing, this means that the dependence of the nonlinear contributions decreases fast enough to 
zero if the frequency distance between the contributions increases. 

Theorem 3.10 (Mixing Property of the Stochastic Nonlinearities Gs(j(ük)): The 
nonlinear contributions for a system belonging to the system set § (see Definition 3.5), 
excited with a random multisine uN e E^ (see Definition 3.2) or periodic noise uN e PN (see 
Definition 3.3), are mixing of order infinity. 

Proof. See Appendix 3.C. D 

Theorem 3.11 (Asymptotic Distribution of the Stochastic Nonlinearities Gs(j($k)): 
For a system belonging to the system set § (see Definition 3.5), excited with a random 
multisine uN e E^ (see Definition 3.2) or periodic noise uN e PN (see Definition 3.3), the 
stochastic nonlinearities are asymptotically (N-> oo) circular complex normally distributed 
(convergence in law at the rate 0(N~1)). 

(0(N~l) k*l 

j <9(7V°) k = / 

Proof. See Appendix 3.E. D 
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3.4.3 Further Comments on the Best Linear 
Approximation 

In this section a physical interpretation is given for the best linear approximation 
(BLA) GBLA(j(o). First, it will be shown that normally distributed random excitations and 
random multisines (see Definition 3.2) result in the same BLA if both excitations are gener-
ated from the same power spectral density (SMW(yco) = E {U2(f)} /fs). Next, it will be shown 
that GBLA(j(o) corresponds to the best linear approximation, in least squares sense, of the 
nonlinear system; finally it will be shown that asymptotically GBLA0'o>) is smooth. In Sec-
tion 4.2 the asymptotic (N^> oo) equivalence is extended to a broader class of signals. 

3.4.3.1 Connecting the Random Multisine to Normally Distributed Noise. If the 
system is excited with Gaussian noise, the limit value of the estimated FRF (after averaging 
over an infinite number of blocks and neglecting leakage effects, see Chapter 2) is given by 

G B L A O ) = SyJJ<a)/SuJJ<s>) (3-14) 

which is the direct method for measuring the BLA. Splitting Y(j(ü) into its contribution of 
degree a results in Y(j(ü) = Σ ^ = ι Y

a(j(o) and shows that the nonlinear contribution of de-
gree a to GBLA(j(o) should be calculated as: Ga{j(ü) = S£u(j(ü)/Suu(ja>). To interpret 
S^LC/ω), higher order spectra can be used (Bendat and Piersol, 1980; Bendat, 1998; Billings, 
1980; Brillinger, 1981; Mendel, 1991; Nikias and Mendel, 1993; Nikias and Petropulu, 
1993). Because these higher order spectra depend not only on the power spectrum of the ex-
citation noise but also on their higher order moments, it is clear that the value of Ga(ja>) also 
depends on its pdf. In the case of zero mean normally distributed noise, the higher order spec-
tra can be calculated easily and the contribution of degree a is given by 

&°- >0'ω) = ca | ...J Gja
:}f _7 SujUa>0...SuJU<»a-i)#i···<%-1 „ . ^ 

J 0 JQ J>JI> JI> » j a - \ (3-15) 

G2a{ja) = 0 

with ca = 2a~l(2a- 1)!! (see Appendix 3.G). This result allows us a better understanding 
of the BLA as it was obtained for the random multisine: (3-15) is similar to (3-13). Integrals 
have to be considered over the continuous power spectrum of the noise instead of sums over 
discrete spectral components of the periodic signal. In Section 3.4.3.3 a formal statement is 
given on the asymptotic (N->oo) equivalence of GBLA(y ω) for the three considered classes 
of excitations: random multisines, periodic noise, and normally distributed noise. 

3.4.3.2 Interpretation of the Best Linear Approximation. When a nonlinear system 
is approximated using a linear system, it is important to be sure that the best approximation is 
made. This is actually the case for GBLA(J<o). This follows directly from the fact that (3-14) 
is shown to give the best linear approximation in least square sense (see Eykhoff, 1974; and 
Bendat and Piersol, 1980 for the continuous-time case; and see Enqvist, 2005 for the discrete-
time case). The estimated impulse response (and the corresponding FRF) minimizes the 
mean square value of e(t) = y(t) - g(t)*u(i) over the measurement interval. For periodic ex-
citations, the direct method (3-14) boils down to G(j(dk) = Syu(ju>¿)/Suu(j(ü¿) = Yk/Uk, 
which is exactly the starting expression used in (3-9). So the best linear approximation is also 
the best linear approximation for the class of random multisine excitations. The reader should 
be aware that this approximation is a function of the power spectrum (rms value and color-
ing) of the excitation. 
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3.4.3.3 Asymptotic Equivalences. The following theorem states that the asymptotic 
best linear approximation GBLA(j(d) is the same for random phase multisines (Definition 
3.2), periodic noise (Definition 3.3), and Gaussian noise with the same (power) spectra. 
Hence, GBLA(J(o) can be used to predict the response of the nonlinear system to any signal 
belonging to these three classes. Note, however, that the prediction error is bounded below by 
the stochastic nonlinear contributions ys(t) = lim ySjN(t) (the notation y N is used here to in-
dicate explicitly the dependence on the number of components). If this error is too large for a 
particular application, then the only way to improve the prediction quality is to model also 
the nonlinear behavior of the system. 

The advantage of using random phase multisines over periodic noise to measure 
GBLA(yco) is that additional averages over the random amplitudes are avoided. The advan-
tage of using periodic noise over Gaussian noise to measure GBLAC/co) is that the leakage er-
rors are avoided. 

Assuming that FRF measurements with M different excitations signals are made, the 
asymptotic best linear approximation GBLA(J(ok) can be estimated as 

GBLAO%) = ¿ Σ " . , K-KkVWKk) (3-16) 

for random phase multisines (see (3-14)) and as 

GBLA(M) = Σ". , H - W i ^ W / Z i - , |£^"](*)l2 (3-17) 

for periodic and Gaussian noise, where lAm\k) and Y^m\k) are the input and output DFT 
spectra of the mth FRF measurement. 

Theorem 3.12 (Asymptotic Best Linear Approximation): Consider the following 
three classes of excitation signals: (i) random phase multisines (see Definition 3.2) with 
U\f) = SÜ(Í(J)9 (ü) periodic noise (see Definition 3.3) with E{ Ü\f)} = SOÜ(f), and (iii) 
Gaussian noise with power spectrum SuJJ(o) = S^(f)/fs for \f\ <fs/2 and zero 
elsewhere. For these three classes of excitation signals, the best linear approximations 
GBLAN(j(o) {Hx -FRF measurement) of a nonlinear system belonging to the class S (see 
Definition 3.5) converge (measurement time and JV—> oo) at the rate 0(N~l) to the same 
limit value GBLA(j(o). If the joint second-order derivatives of the odd degree kernels 
Gla7\ r f , a= 1,2, ...,oo, w.r.t. Λ/Ί, ...,/*„ i, are bounded for 
/ , / i , ..../«-i e [0 , / /2 ] , then GBLA(ja) is given by 

G B L A O ) = G¿jv>) + GBU<») = σοΟ'ω) + Σ ^ 2 ^ 0 " ω ) 
f/2 f/2 (3-18) 

withc„ = 2 « " 1 ( 2 α - 1 ) ϋ . 

Proof. See Appendix 3.H. D 
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Figure 3-3. Nonlinear Wiener-Hammerstein system and its best linear approximation. 

From Theorem 3.12 it follows that the asymptotic best linear approximation GBLA(j(o) 
depends only on the second-order moments S^f) of the input spectrum. Note also that 
(3-15), with Suu(j($) = SÜC/(f)/fs for \f\ <fs/2 and zero elsewhere, reduces to Cf in 
(3-18). 

3.4.3.4 Smoothness. Additional assumptions are required to guarantee the smooth-
ness of GBLA(/co). This restricts further the class of allowable nonlinear systems. 

Assumption 3.13 (Even and/or Odd Degree): For any ω e [0, ω 5 / 2 ] , the even and/ 
or odd degree Volterra kernels G?f f f , a = 1, 2, ..., are continuous functions of ω 

ι ι · J\J\'J2> —-Ja- 1 

with continuous Pin order derivative w.r.t. ω. 

For example, systems consisting of the cascade and parallel connection of linear sys-
tems and multipliers result in rational Volterra kernels for which Assumption 3.13 is satisfied 
(Schetzen, 1980). 

Assumption 3.14: The series ^ α = 2^?Οω)> w^t n ^ΐ defined in (3-18), and its de-
rivatives of order 1,2, . . . ,P w.r.t. ω converge (β-»οο) uniformly in ω e [0, ω5/2] to 
their limit sum. 

Note that Assumptions 3.13 and 3.14 do not exclude the possible nonuniform (point 
wise or mean square) convergence of the output of the Volterra series model yQ(i) to y(t). 

Theorem 3.15 (Smoothness Best Linear Approximation): Under the conditions of 
Theorem 3.12 and Assumptions 3.13(odd degree) and 3.14, the asymptotic best linear 
approximation (7BLA(/a>) is a continuous function of ω e [0, ω5/2] with continuous Pih 
order derivative. 

Proof. See Appendix 3.1. D 

From this theorem it follows that GBLA(JG)) and its higher order derivatives w.r.t. ω 
are continuous functions of ω. This explains why GBLA(s) can be approximated very well 
by a rational function of s of sufficiently high order. 

3.4.3.5 Special Case: Wiener-Hammerstein Systems. In the case of a Wiener-
Hammerstein system, consisting of a linear system with transfer function R(j(o), followed 
by a static nonlinearity, v(/) = ΣΓ=οαΑ^(0> wu"n ak E ^> m¿ a second linear system 
S(j(o) (see Figure 3-3), the previous expressions can be simplified further. The Volterra ker-
nel of degree a at frequency k is (Schetzen, 1980) 

Gla
 k = ° 

* ! ' " · ' K2a 

(3-19) 
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with ω^ = ^f= ι ω ν P = 2a-I or /3 = 2a, and ala_x a constant independent of the 
frequencies and the input signal. Using Theorems 3.7 and 3.12, we find 

<?ο(/ω*) = a\RU<»k)S(j<*k) 

G2
B

a-\j<»k) = a2a_x DaR{j<*k)S{jak) + Oa(N-') 

. / /2 fs/2 (3-20) 

G¡a(jcok) = 0 

with ca = 2a-\2a-\)\\, R(f) = R(jco), and Σ ^ ι 0 ^ " 1 ) = 0(N~l). Hence, the 
asymptotic (N —> oo) best linear approximation is given by 

GBLAC/CO) = C(U9R)RU<t>)SU<») (3-21) 

with C(C/, 7?) = Σ « = i β2α-1 ^¿r As a result> f°r Wiener-Hammerstein systems, the asymp-
totic best linear approximation GBLA(j(o) equals the underlying linear system within a real 
frequency-independent scale factor C(U, R) that depends on the excitation signal and the sys-
tem R(j(d). Similar results were also reported (Billings and Fakhour, 1982; Nikias and Petro-
pulu, 1993) for special classes of excitation signals such as white zero mean Gaussian noise. 

Remark. Sometimes the structure in Figure 3-3 is called the "general model" (e.g., 
Billings and Fakhour, 1982). 

3.4.4 Further Comments on the Output Stochastic 
Nonlinear Contributions 

Also for the output stochastic nonlinear contributions, the smoothness and the equiva-
lence results can be obtained. In Section 4.2 these asymptotic (N—> oo) results are extended 
to a broader class of excitation signals. 

Using (3-9) and (3-10) with NG(k) = 0 (no disturbing noise), the relation between the 
input and output Fourier coefficients at frequency fk = kfs/N can be written as 

l*=GBLAO"o>*)t/*+^ (3-22) 

with YSk = Gs(j(£>k)Uk the stochastic nonlinear contributions observed at the output of the 
system. Because Uk = 0(Ν~ι/2) (see Definitions 3.2 and 3.3) and \GS(J®¿)\ = 0(N°) (see 
Theorem 3.9) it follows that 1^ = 0(N~l/2). The following two theorems study the (as-
ymptotic N-> oo) behavior of Ys(k) = <JÑYsk for random phase multisines, periodic noise, 
and Gaussian noise excitations. 

Theorem 3.16 (Properties of the Stochastic Nonlinear Contributions Ys(k)): For a 
system belonging to the system set S (see Definition 3.5), excited with a random multisine 
uN G E^ (see Definition 3.2) or periodic noise uN e PN (see Definition 3.3), the stochastic 
nonlinear contribution Ys(k) = Gs(j(dk)U(k) in the output DFT spectrum 

Y(k) = < W M ) t W + W (3-23) 
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has the following (asymptotic N-^cc) properties: 

(i) Ys(k) has zero mean and is uncorrelated with - but not independent of- U(k) 

(ii) Ys(k) has the same properties of Gs(j(ok) in Theorem 3.9 
(iii) Ys(k) is mixing over k of order infinity 
(iv) Ys(k) is asymptotically (N^>co) circular complex normally distributed (conver-

gence in law at the rate 0(N~1)) 

Proof See Appendix 3.J. □ 

Since U{k) is a random variable one could think that the asymptotic normality of 
Ys(k) = Gs(j(ok)U(k) (property iv of Theorem 3.16) is in contradiction with the asymptotic 
normality of Gs(j(dk) (Theorem 3.11) and vice versa (Gs(j(ük) = Ys(k)/U(k)). This is not 
the case because the random variable Gs(j(ük) (Ys(k)) is correlated with U(k). Note also 
that Ys(k)e~JZUW has exactly the same asymptotic (ΛΓ-> QO) properties as Gs(j(ok) (Theo-
rems 3.9, 3.10, and 3.11) because the phase of Ys(k)e~Jzu^ is equal to that of Gs(J(o¿. The 
(asymptotic N-^oo) equivalence of vzr(Ys(k)) for random phase multisines, periodic noise, 
and Gaussian noise excitations is established in the next theorem. To denote the dependence 
of the results on the number of frequencies N a subscript N is added. 

Theorem 3.17 (Asymptotic Variance of the Stochastic Nonlinear Contributions 
1 (̂A:)): Consider the following three classes of excitation signals: (i) random phase 
multisines (see Definition 3.2) with Ü2(f) = S##(/")> (ii) periodic noise (see Definition 3.3) 
with Έ.{ύ2{/)} =Sjj(j{f), and (iii) Gaussian noise with power spectrum 
^«ΜΟω) = $utAf)/fs f°r I/I <fs//2 a n d z e r o elsewhere. For these three classes of excitation 
signals, the variances var(Ys(k)) of the stochastic nonlinear distortions Ys(k) = *JÑYskiN of a 
nonlinear system belonging to the class § (see Definition 3.5) converge (measurement time 
and iV-> oo) at the rate 0(N~l) to the same limit value Oy ( / ) . 

Proof. See Appendix 3.K. □ 

Theorem 3.18 (Asymptotic Variance of the Best Linear Approximation): The 
asymptotic variance (N, M-> oo) of the FRF estimate GBLAO'O^) (3-16) and (3-17) due to 
the stochastic nonlinear distortions is given by 

lim Mvar(GBLA(M)) = °JS with aj(f) = lim var(jÑYsk^N) (3-24) 
Ν,Μ^χ» fsSuu(J^ N-

where S^if) = fsSuu(j<ü). The convergence rate in N of the variance of the BLA is an 
0(N~l). For random phase multisines (3-24) is valid for any finite value M> 1. 

Proof See Appendix 3.L. □ 

Although result (3-24) is straightforward for random phase multisines, it is not for periodic 
and Gaussian noise excitations because Ys(k) and U(k) in (3-17) are not independently dis-
tributed. The practical consequence of Theorem 3.18 is that no distinction should be made 
between the noise and the stochastic nonlinear distortions for generating uncertainty bounds 
on the nonparametric estimates (3-16) and (3-17) of the BLA. Hence, the 100 xp% confi-
dence region (2-40), where &Q is the sample standard deviation of the BLA over the M inde-
pendent realizations, remains valid. 
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From Theorems 3.17 and 3.18 it follows that the variance (3-24) of the FRF measure-
ment (3-16) and (3-17) depends only on the second-order moments S^(f) of the input spec-
trum. Hence, it is the same for random phase multisines, periodic noise, and Gaussian noise 
excitations. To establish the smoothness of σ\ (f) in Theorems 3.17 and 3.18 we need the 
following assumption: 

Assumption 3.19: Define C^Oco) = lim c$P where 0%β is given in (3-98). The se-
ries Σα = 2Σ^θ^(./ω) and its derivatives of order 1, 2, ..., P converge (Qa, Qp -» oo) uni-
formly to their limit sum. 

Theorem 3.20 (Smoothness Asymptotic Variance of ( / ) ) : Under the conditions of 
Theorem 3.17 and Assumptions 3.13(even and odd degree) and 3.19 the asymptotic variance 
of (f) is a continuous function of fe [0,fs/2] with continuous Pth order derivative. 

Proof. Follow the same lines of Appendix 3.1. D 

Theorem 3.20 explains why YskN can be modeled very well as filtered (band-limited) 
white noise. 

EXTENSION TO DISCRETE-TIME MODELING 

3.5.1 Periodic Signals 

The results of Sections 3.4.1 to 3.4.4 were obtained for continuous-time systems. In 
this section we will show that these can be extended to discrete-time models. Some precau-
tions should be taken because, for the discrete-time domain, the frequency axis is finite: 
ω G [-π, π) . In the nonlinear operations, higher frequencies can be created (e.g., &co), but 
these are folded back to the previous interval by the modulo operation: cofolded = 
[(ω + π) mod 2π] - π, so that new frequency combinations appear that were not present in 
the previous sections. We show subsequently that the folding operation does not change the 
nature of these components (systematic or stochastic contributions). To do so, we consider 
the unfolded frequency ω, as it results from the frequency combinations in the nonlinear sys-
tem. In the next theorem we show that for a nonlinear system, excited by a band-limited ran-
dom multisine excitation (ί/Ο'ω) = 0 for |ω| > ω5/2), its output components at frequencies 
Icol > ω5/2 can only be stochastic contributions. This means that they cannot be combined 
with any component of the random multisine excitation to result in a phase-independent com-
bination. 

Remark. To formalize this result in a theorem, we have to consider discrete-time ran-
dom multisines. These are obtained directly from Definition 3.2 by replacing t by the dis-
crete-time variable k, with k = 0, 2, ...,N- 1. The frequencies of a discrete-time random 
multisine are restricted to the grid 2π/Ν in order to get periodic discrete-time signals (see 
Oppenheim et al., 1997: not all frequencies result in a periodic signal in the discrete-time do-
main!). 

Theorem 3.21 (Stochastic Behavior of the Out-of-Band Components): For a 
(discrete-time) system belonging to the system set S (see Definition 3.5), excited with 
independent realizations of a (discrete-time) normalized random multisine uN e EN (see 
Definition 3.2 and the previous note) or (discrete-time) normalized periodic noise uN e P^ 
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(see Definition 3.3 and the previous note), with maximum angular frequency 
«max = ' m a x © 5 ^ ('max = N / 2 \ W e h a v e f o r ®L = L(Q5/N9 \L\ > / m a x ! 

E{Y«e-JZU'} = 0 (3-25) 

Proof. See Appendix 3.M. D 

Note that this theorem is valid for continuous-time and discrete-time systems (using 
ω). A direct result of this theorem is that all results of the previous sections can also be ap-
plied to discrete-time systems. Because none of the "out-of-band" components can create 
systematic contributions, the folding process does not change the nature of the output contri-
butions of a nonlinear system, and, hence, the previous proofs remain valid. 

3.5.2 Random Signals 

Consider the class of discrete-time filtered white noise excitations u(i) = L(q)e(t), 
with q the backward shift operator (qx(t) = x(t- 1)), e(t) discrete-time white noise with 
mean value μ and variance σ2, and L{z~x) a stable filter. The best linear approximation 
(BLA) of a nonlinear system belonging to the system set S (see Definition 3.5) can be de-
fined as 

GBLA(q) = arg min E{(yx(t) - G{q)ux{t)f} (3-26) 
G 

with yx(t) = y(t)-E{y(t)} and ux{t) = u(t)-E{u(t)}. The BLA (3-26) equals the linear 
time invariant second order equivalent (LTI-SOE) defined in Enqvist and Ljung (2005) and 
Enqvist (2005), except that G(q) is not restricted to the class of stable and causal models. In 
Enqvist and Ljung (2005) and Enqvist (2005) it is shown that the solution of the uncon-
strained minimization problem (3-26) is given by 

F{E{yx(t)ux(t-r)}} = SyiUx(ja) 

F{l{ux(t)ux(t-r)}} S(j<») GnAe-M) = T^XTA;r L^ = rX 1 (3-27) 

which coincides with (3-14). The BLA or LTI-SOE (3-26) has the following properties: 

1. For normally distributed noise e(t), the BLA (3-26) coincides with the BLA 
(3-12) obtained using random phase multisines with U2(f) = \L(e~j0}Ts)\2σ2 (see 
Definition 3.2 where N-> oo). In addition: (i) the BLA of a static nonlinear sys-
tem is static; (ii) the BLA of a nonlinear finite impulse response system has a fi-
nite impulse response; (iii) the BLA is independent of the phase of L(e~JG)Ts); and 
(iv) the BLA has small sensitivity to small nonlinearities (proof: see Sections 
3.4.1-3.4.4 and Enqvist, 2005). 

2. For non-Gaussian noise e(t), the output residuals ys(t) = yx(t)- GBLA(q)ux(t), 
with GBLA(q) the minimizer of (3-26), are still uncorrelated with ux(t). However, 
(3-26) has some counterintuitive properties: (i) the BLA of a static nonlinear sys-
tem is not necessarily static; (ii) the BLA of a nonlinear finite impulse response 
system does not necessarily have a finite impulse response; (iii) the BLA can de-
pend on the phase of L(e~J(úTs); and (iv) the BLA can have a high sensitivity to 
small nonlinearities (proof: see Enqvist, 2005). 
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EXPERIMENTAL ILLUSTRATION 

A nonlinear mechanical resonating system (mass, viscous damping, nonlinear spring) 
is simulated with an electrical circuit. The displacement y(t) (output) is related to the force 
u(t) (input) by the following nonlinear, second-order differential equation: 

m ^ + dd-f + k(At))y(t) = u(t) 

The nonlinear spring is described by a static but position-dependent stiffness 

(3-28) 

k(y) = a + by2 (3-29) 

For small excitations, the spring becomes almost linear so that the underlying linear system 
consists of a second-order resonance system. A series of experimental results on this system 
are shown. First, the nonlinear behavior will be illustrated using stepped sine measurements. 
Next, the split of the transfer function into the underlying linear system G0(j(dk), the best 
linear approximation GBLA(J(ok), the stochastic nonlinear distortions Gs(jcok), and the 
noise contributions NG(k) are shown. 

3.6.1 Visualization of the Nonlinearity Using Stepped 
Sine Measurements 

To visualize the nonlinear behavior of the system, a stepped sine measurement is made 
(Figure 3-4). The frequency of the sine is first stepped upward until the maximum frequency 
is reached and then stepped down again. At each frequency a measurement is made over an 
integer number of periods. During the experiment we took care to have a continuous excita-
tion signal; no discontinuities appeared at the frequency-changing instants. The nonlinear be-
havior of the system is clearly visible. The measured transfer function depends, strongly, on 
the amplitude of the sine excitation. Moreover, the measurements also show that the actual 
output of the system depends on the past inputs: the up-path differs from the down-path for 
large excitations. Such behavior cannot be described using Volterra-based descriptions. Nev-
ertheless, we will still apply the previously developed theory to this system. This can be done 
because the bifurcation appears only for large excitations, injecting a lot of power close to the 
resonance frequency of the system. If we use normalized random multisines, only a fraction 
of the power is injected in this band so that the bifurcation problem does not disturb the mea-
surements anymore. 

20 

m 
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13 

-20 
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Figure 3-4. Stepped sine measurement at different 
amplitudes (rms values given). An up and down 
sweep is made. For the 13.5 mV measurement: 
black boxes up sweep, white boxes down sweep. 
For the others: Ί up sweep, t down sweep. 
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Figure 3-5. Measurement of the underlying 
linear system G0(j(ük) and its standard deviation. 50 100 150 

Frequency (Hz) 
200 

3.6.2 Measurement of the Best Linear Approximation 

In a second step, the underlying linear system is measured using a normalized random 
multisine (fk = (2k+ l ) / 0 , k = 0, 1, ..., 1340 and / 0 * 0.0745 Hz) with a small amplitude 
(rms value of 34.2 mV). The standard deviation σΝ (k) is calculated from 10 consecutive pe-
riods. The results are shown in Figure 3-5. 

The impact of the nonlinearity is made visible by increasing the excitation level of the 
normalized random multisine to an rms value of 127 mV. The measurement was repeated for 
10 different realizations of the excitation signal so that as(k) could also be measured. The 
measurement results are shown in Figure 3-6. On the left side, the best linear approximation 
is compared with the underlying linear system. A number of observations can be made: the 
resonance frequency is shifted to the right, the peak value is decreased, and the measurement 
becomes more noisy. 

The shift to the right of the resonance frequency is due to the nonlinear behavior of the 
hardening spring. For larger excursions, the average stiffness increases and so also does the 
resonance frequency. Note that if the G0(j co¿) measurement were not available, there would 
be no indication at all that this system is strongly nonlinear. This shows, clearly, why we need 
dedicated tools to detect the presence of nonlinear distortions. The difference between 
GBLA(J°>k) an(* GoO'tok) is due to the systematic contributions GB(j(ok). 

The increased noise level can be understood only from the previous, explained theory; 
it is due to the stochastic contributions Gs(j®k)' Changing the excitation level did not 
change the disturbing noise, but Gs(j(ok) became much larger. This is visualized on the left 
side of the figure. The standard deviation aG (k) is obtained by measuring the FRF from 10 
realizations of the normalized random multisine. For the small excitation level, it is com-
pletely dominated by the measurement noise σ^ (&), whereas for the large excitation, aG(k) 

50 100 150 
Frequency (Hz) 

50 100 150 
Frequency (Hz) 

Figure 3-6. Comparison of the measured best linear approximation GBLA(j(Q¡) 
obtained from 10 realizations and the underlying linear system G0(j(£>k). 
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Figure 3-7. Evolution of the best linear 
approximation for growing excitation levels: 
rms values of 34 mV, 54 mV, 127 mV, 253 mV, 
and 507 mV. 

dominates. This is also illustrated in Figure 3-7, where the evolution of the measured FRF is 
shown as a function of the excitation level. As can be seen, the stochastic contributions grow 
with the level while the measurement conditions (and, hence, the disturbing noise) remain the 
same. Again, it is very difficult to understand this result without the previously gained insight 
into the behavior of nonlinear systems. This also suggests a first test to detect the presence of 
nonlinear distortions. The standard deviation calculated from a set of consecutive periods 
(without changing the excitation signal) should be the same as that calculated from repeated 
measurements, using different realizations of the excitation signal. 

MULTIVARIABLE SYSTEMS 

n x 1 nu * L 

Linear 
actuator 

u(t) 

n x 1 nu L 

Nonlinear 
plant 

yit) 

n x 1 ny Λ l 

Figure 3-8. Nonlinear plant with nu inputs and n outputs, excited with nu x 1 
random phase multisines r(t) via a linear actuator. 

In Dobrowiecki and Schoukens (2007a, b) it has been shown that the results proven for the 
single-input, single-output case are also valid for multiple-input, multiple-output nonlinear 
systems. To measure the n x nu BLA, one should ensure the randomness of the ny x 1 error 
term Ys(k) in (3-23). Therefore, the nonlinear multivariate system is excited by nu different 
random phase multisines r^(t), p = 1,2, ...,wM, (see Definition 3.1) with user-defined 
amplitudes |^[p](£)| and where the phases ZR^(k) are independently chosen over the fre-
quency k and the input p. Hence, the nu reference signals r(t) defined by (2-81) are re-
placed by 

R(k) = DR(k)T (3-30) 

where DR(k) e £η»χη« is a diagonal matrix with entries DR^q^k) = R^(k)d(p - q), and 
with T the nu x nu orthogonal matrix (2-80). Since the stochastic nonlinear distortions Ys(k) 
of the nu experiments with the random orthogonal multisines (3-30) are not independent of 
each other, their covariance matrix cannot be estimated. However, their contribution to the 
BLA can still be measured (Dobrowiecki and Schoukens, 2007a and b; Wernholt and Gun-
narsson, 2008). This dependency problem is solved by adding the same random phase φβ(Κ) 
to each input, such that E{eJ^®} = 0, where φβί) is randomly chosen over the frequency 
k and over the experiment e. Hence, (3-30) is replaced by 
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R(k) = DR(k)TD¿k) (3-31) 

where Όφ ̂  e](k) = eJ^k)S(p - e). Compared with (3-30), the full random orthogonal multi-
sines (3-31) allows us to estimate the covariance matrix of the stochastic nonlinear distortions 
Ys(k) (see Section 7.3.6). Both solutions require nu generators. Similarly to (2-81), R(&) 
(3-31) can be also be written under the form (2-82), which allows us to calculate the inverse 
R-1(&) in a numerically stable way. 

Finally, using the random orthogonal (3-30) or full random orthogonal (3-31) multi-
sines an estimate of the ny x nu BLA GBLA(j(ok) is obtained as 

GBLAC/ω*) = Y(*)U-i(*) (3-32) 

where the p th column of U(&) and Y(k) corresponds to p th multisine experiment (p th col-
umn of R(k)). Averaging (3-32) over M independent random phase realizations of the (full) 
random orthogonal multisines gives an improved estimate 

GBLA(M) = ¿ ΣΓ= I Y^XUMí*))-1 (3-33) 

that converges for M^> oo to G^LAO0 3*)· For full random orthogonal multisines the covari-
ance GBLAC/C0^) (3-33) is obtained as follows 

Cov(vec(GBLA(M))) = i {Gaci{j<»k)Dw{k)G»a{J<»k)Y
l ® Cr¡(k) (3-34) 

with G&ct(j(úk) the nu x nu actuator FRM (see Figure 3-8), D^2(k) a diagonal matrix con-
taining the squared 2-norm of each row of R¡-m\k), and where CY (k) = Cov(Ys(k)) is the 
covariance of the stochastic nonlinear contributions of one experiment (proof: see Appendix 
3.N). 

3.8 BEST LINEAR APPROXIMATION OF A SYSTEM 
OPERATING IN CLOSED LOOP 

Consider a nonlinear plant operating within a linear feedback loop that is excited with a ran-
dom phase multisine r(t) via a linear actuator (see Figure 3-9). Due to the feedback loop the 
plant input u(t) depends on the output of the nonlinear plant and, therefore, u(t) is no longer 
a random phase multisine (3-7). Hence, the properties proven for the best linear approxima-
tion (BLA) obtained via the direct methods (3-9) and (3-14) are no longer valid in closed 
loop. To handle this problem we redefine the BLA via the indirect method for measuring 
FRFs (see Section 2.6.4) 

GBLAO-CO) = ?*m = W"VSJJ°» = $¿M (3_35) 

where the expected values in the cross-power spectra are taken w.r.t. the random realization 
of the reference signal r(t). The last equality in (3-35) shows that the indirect BLA can be 
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Nonlinear 
plant 

Linear 
controller 

Figure 3-9. Nonlinear plant operating within a linear feedback loop. The plant 
is excited with a random phase multisine r(f) via a linear actuator. 

written as the ratio of the BLA Gry(j(a) from reference to output to the BLA Gru(j(a) from 
reference to input. In the open loop case the indirect method (3-35) reduces to the direct 
method (3-14) because S^C/ω) = Syu(j(o)/Gact(j(d) and Sur(J<o) = SwX^)/GactO'co), 
with Gact(/oo) the actuator FRF. Using definition (3-35) it is shown in the following theorem 
that the BLA and the stochastic nonlinear contributions of a nonlinear system operating in 
closed loop have similar properties as in the open loop case. 

Theorem 3.22 (BLA of a Nonlinear System Operating in Closed Loop): Consider a 
nonlinear system operating within a linear feedback loop (see Figure 3-9) that is excited with 
a random phase multisine rN e EN (see Definition 3.2) or periodic noise rN e P^ (see 
Definition 3.3). Assume furthermore that the nonlinear plant and the closed loop system 
belong to the set § (Definition 3.5), and that the BLA is calculated using the indirect method 
(3-35). The input-output DFT spectra of the nonlinear plant are then related as 

Y(k)- GBLAU^kW(k)+Ys(k) (3-36) 

where GBLA(JG)k) anc* Ys(k) have the following properties: 

(i) GBLA(j(ük) does not depend on the even degree nonlinearities 

(ii) Under the assumptions of Theorem 3.15 the asymptotic (N—»oo) BLA 
GBLA(jω) is a smooth function of the frequency with continuous P th order de-
rivative 

(iii) Ys(k) is uncorrelated with - but not independent of- the reference signal R(k) 
and satisfies properties (ii-iv) of Theorem 3.16 

(iv) Under the assumptions of Theorem 3.20 the asymptotic (JV—»oo) variance of 
Ys(k) is a smooth function of the frequency with continuous Pth order derivative 

Proof. See Appendix 3.0. D 

The main differences with the open loop case are that the stochastic nonlinear contribu-
tions Ys(k) are uncorrelated with the reference signal and not the plant input, and that the 
plant input depends on Ys(k) via the feedback law U(k) = Gact(j(dk)R(k) - M0(j(£>k)Y(k), 
where Gact(yco) and M0(y'co) are, respectively, the actuator and controller frequency re-
sponse functions. Contrary to the linear case (see Section 2.6.4), the indirect method (3-35) 
for measuring the BLA of a nonlinear system operating in feedback does not reduce to the di-
rect method (3-14) for the class of random phase multisines. 

ryij Linear 
actuator ->Θ—Η 

- A 
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3.9 CONCLUSION 

FRF measurements give a great deal of information about the device or plant under test. Very 
often it is easily accessible and it is strongly advised to take this intermediate step in the iden-
tification process. It provides a lot of qualitative information about the complexity of the 
problem, as well as quantitative information about the plant and the measurement quality. 
This can be used to set up a measurement-driven weighting function for the identification 
step and also provides very valuable information for the model validation. The user has a 
large impact on the measurement quality by generating a good excitation and selecting the 
proper algorithms to process the raw measurement data. For these reasons, we strongly en-
courage the reader to take the time to understand the basic principles of FRF measurements. 
Good, nonparametric measurements will significantly simplify the task of building paramet-
ric models. 

3.10 EXERCISES 

3.1. Generate a random multisine u0(k) (see Exercise 2.2), with Np points in one period, that 
excites the frequency lines, 4k + 1 for k = 1,..., ñx(Np/\2) with equal power. Normal-
ize the rms value of u{f) to 1. Calculate 

y0(t) = u0(t) + 0.1 aft/) + 0.01i/3(/) (3-37) 

Calculate the output spectrum and discuss it. Observe the spectral behavior inside and 
outside the excited frequency band. Does the behavior depend on the value of N_? 

3.2. Repeat the previous exercise for unns = 10 and urms = 100. Discuss the behavior of 
the even and odd spectral lines. 

3.3. Measure the FRF for uTms = 1, 10, 100. Consider, for each situation, 100 realizations of 
the random multisine. Study the mean value and the standard deviation of the FRF. Ex-
tract GB(J(Qk), Gs(j(ok), σ2 (k) and discuss your results. 

3.4. Repeat Exercise 3.3 but, this time, use a random multisine that excites all spectral lines 
between 1 and ftx(N /12). Compare both results and explain the different behavior. 

3.5. Repeat Exercise 3.3 but use a zero mean random noise excitation that has approximately 
the same power spectrum as the excitation in Exercise 3.4. 

3.6. Construct a discrete-time Wiener-Hammerstein system y0 = WH(u0) (see Figure 3-3) 
with static nonlinearity: z = x + 0.1 x2 + 0.01 x3. Measure GBLA(J(Ü¿) (make a moti-
vated choice for the power spectrum of the excitation signal) for unns = 1, 10, 100. 
Scale the gain of the first system so that the power of the contribution of degree 3 gener-
ates 1% of the linear output power for the first input amplitude. Discuss the results. 

3.7. Consider the Wiener-Hammerstein system of Exercise 3.6 and add white, zero mean dis-
turbing noise to the output. 

y0 = WH(uQ) and y{i) = y0(t) + ny(t) (3-38) 

Measure GBLA(j(dk) again (consider 100 realizations) and calculate σ^ (k) and a^(k). 
Use repeated periods to separate the measurement noise n (t) from the nonlinear 
distortions. 
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3.11 APPENDIXES 

Appendix 3.A Bias and Stochastic Contributions 
of the Nonlinear Distortions 

In this appendix we assume a deterministic amplitude and a uniform continuous phase 
distribution. The random amplitude, the discrete phase, and the nonuniform continuous phase 
distributions are commented on in Appendix 3.F. 

In order not to overload the notations, the following simplifications are made in this ap-
pendix: G(/co¿), GBLA0'®*)> a n d GsU®k) a r e denoted as G(k), GBLA(k), and Gs(k), re-
spectively. 

Consider the contribution of degree a to the FRF: 

N/2-l ukuk...uk u, 
kx,...,ka_x =-N/2+\ 

N/2-1 

= Σ K 
kl,...,ka_l =-N/2+\ 

Llc,kl,k2,...,ka_l JJ 

\uk\\uk\...\uk lie/,i 
I 'Mil K2\ I Ka-\\\ Lk\ 

(3-39) 

eMkl,k2,...,ka_l,Lk) 

\Uk\ 

with k = Lk + Σ":\ki9 φ$ΐ9...,Lk) = Y*Z\ (pk¡ + φ^ + <pG- <pk9 φ^ = ZUk¡ and 
φα = ZGg k k ... k - Define the disjoint sets 

KBka = {(kl,k29...,ka_l)M(kl,k2,...,ka_l,L¿) is independent of φ) 
(3-40) 

Ksk,a = {(kl,k2,...,ka_l)^(kl,k2,...,ka_l,Lk) depends on φ) 

with φ = {#>!,..., <pN}. The set KBka corresponds to the situation where all frequencies 
but one (equal to k) can be grouped in pairs (-/, /) so that their phases cancel. This results, 
by definition, in contributions to GB(k), while this is not the case for the set KSka (the 
phases cannot cancel) so that, by definition, these contribute to G%(k). Eq. (3-39) becomes 

G«(k) = Ga
s{k) + G«{k) 

G?(k) = Y G" k k k UkUk ...Uk UL /Uk 
¿ v ' ^ Lk,kx,k2,...,ka_x kx K2 κα_λ Lk K 

KsKskia (3-41) 

KeKana 

with K = (kl,k2,...,ka_l), and where Σκe Ksk,a
 anc* Σ ^ e KBkttx denote the sum over all 

combinations belonging to the sets KSka and KBka, respectively. 
In the second part of this appendix, we prove (3-13). From the definition of KBka, it 

follows that the only contributions different from zero are those with a odd. For that reason 
we focus from now forward on G\a~ l(k). The factor ca in (3-13) is due to the fact that each 
of the terms in this sum appears multiple times in the original expression (3-41) or (3-9) 
where the frequency indices run from -N/2 + 1 to N/2 - 1. The number of appearances 
when starting the sums at zero will be different, and ca compensated for that. The number of 
contributions to the sum (3-41) for a given frequency combination e KBka depends on the 
fact that some of the paired frequencies are equal to each other or not. If some of the paired 
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frequencies are equal to each other or equal to k, there remain less degrees of freedom (be-
cause not all paired frequency values can be freely chosen), and, hence, they contribute to the 
final result only as an Oa(N~P), /? > 1 (see also the following appendices) with 
Σ α = 2^*(^/ ?) =

 0(N~P) (the Volterra series converges). Hence, we can focus completely 
on the situation where all paired frequencies are different from each other and from k. Each 
such frequency combination appears (la- 1)! times in (3-41) for G\a~x(K), keeping in 
mind the symmetrical Volterra kernels. In (3-13) each contributing combination appears only 
(a- 1)! times. Hence, the following correction term is needed 

( 2 a ~ 1 ) ! = 2a~\2a-\)\\ (3-42) 
( a - 1 ) ! 

Appendix 3.B Study of the Moments of the Stochastic 
Nonlinear Contributions 

In this appendix we assume a deterministic amplitude and a uniform continuous phase 
distribution. The random amplitude, the discrete phase, and the nonuniform continuous phase 
distributions are commented on in Appendix 3.F. 

In order not to overload the notations, the following simplifications are made in this ap-
pendix: G(j(ok), GBhA(j(£>j¡), and Gs(j(dk) are denoted as G(k), GBLA(k)9 and Gs(k), re-
spectively. 

In this appendix, the moments of the stochastic nonlinear contributions Gs(k) are calcu-
lated for nonlinear systems belonging to the set S (Definition 3.5), assuming a normalized ran-
dom multisine excitation (Definition 3.2). From (3-41) it follows that the stochastic nonlinear 
contributions to the measurement, at frequency k, are given by multidimensional sums with 
(kl9 k2, ..., ka_ j) e Ksk , for which it is not possible to partition all the frequencies but one 
in pairs (-/, /). As a consequence, these terms have a random phase such that E { e7^} = 0. It 
follows directly that E{G£(Jt)} = 0, and, hence, E{Gs(k)} = E{X^ = 2Gf(£)} = 0. The 
study of the higher order moments is much more complicated. The basic idea is first to prove 
that 

| E {G¡KkOG¡\k2)...G
r
s%kn)}\ < 0 ( Λ ^ Μ - ] Χ = ! ΜφΜ% (3-43) 

for arbitrary n, where p depends on the actual situation. Gr¿(k¡) stands for the stochastic 
nonlinear contribution of degree rt at frequency k¡. Next, using (3-43) and Definition 3.5, 
we find 

I E {G¿kl)G¿k2)...Gs(k>)}\ <Σ;Ι = 2 ...Σΐ = 21 E {σ?(*,)<#(*2)···<#(*„)}| 

< 0(N-P)M-JY\1_ , Σ^2Μ
ΦΚ (3'44) 

< 0{N-P)M'^C1 

so that ^{Gs(k\)Gs(k2)-~Gs(kn)} converges to zero, at least, as an 0(N~P). 
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Lemma 3.23 (number of nonzero contributions): Consider a system belonging to 
the set § , excited with a random multisine uN e EN. Under Definitions 3.2 and 3.5, the 
expected value E {Gr

s
l(kl)G

r
s
2(k2)...G

r
s
n(kn)} is bounded by 

I E {Gr
sKk1)G

r
s\k2)...G

r
sik„)}\ < OiN-*)M¿H¡_ , ΜφΜ^ (3-45) 

with v = int((n -2rn+ l ) /2 ) and where m is the number of pairs (ki9 kj = -k¡) that can be 
formed in the set {kl9 k2,..., kn). 

Note: If the number of unpaired frequencies kt is odd, then v = 1, while v = 0 if it 
is even. 

Proof. The basic idea is to count the number of nonzero contributions in 
E {Gr

s\kx)G
r
s
2{k2)...G

r
s\k^} as a function of N. Note that each of the terms in the product 

Gr¿{k¡) consists of a multiple sum over the frequencies; see (3-41). The terms in the product 
Gr

s
1(kl)G

r
s
2(k2)—Gr

s
n(kn) that have a nonzero expected value are those where all phases of the 

participating frequency components cancel each other. This means that we have to look for 
frequency pairs (/, - / ) having a zero phase contribution. 

Consider the frequencies that contribute to Gr¿(k¡)9 i= ! , . . . ,« : 

-k2 (ΐ^2),ι2(^),...,ιΓ2_^2),ικμ2)) 

-kn (ll(kn),l2(kn),...,Ll(k„),Uk„)) 

(3-46) 

with 

- . » · , - 1 /#,·) = *, - Σ ; : , y*/), «■ = i,...,» (3-4?) 

The frequency -ki (called denominator frequencies) comes from the denominator in (3-41), 
where the minus sign accounts for the negative phase contribution of the denominator term; 
(liikf), l2(kj),..., lr(k¡)) are the frequencies in the numerator of (3-41) (called numerator fre-
quencies) and their sum should be equal to k¿ in order to get a contribution at frequency kr 

The total number of numerator frequencies participating in the sums is Fa = ]Γ"= χ rt. Equa-
tion (3-47) imposes n constraints, so that the total number of degrees of freedom at this mo-
ment is Fa-n. 

The only nonzero contributions to the expected value (3-43) are those where all fre-
quencies (numerator frequencies and unpaired denominator frequencies) can be grouped in 
pairs (-/, /) such that their phase contributions are canceled. This pairing process will be im-
posed step by step (first on the denominator frequencies ki9 next on the remaining numerator 
frequencies lj(kh)), and the additional constraints on the free frequencies in (3-46) will be 
checked. 

3.B.1 Denominator Frequencies 

(i) First pair the denominator frequencies (-k¡ = kj). Assume there are m such 
pairs. 
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(ii) All remaining n-2m unpaired denominator frequencies k¿ should be paired with 
one of the numerator frequencies lj(kh), h = 1, . . . ,« and j = 1, ...,rA. Be-
cause the denominator frequencies have fixed values (no summing over £,·), this 
fixes n-2m numerator frequencies. 

(iii) Eventually, after pairing all denominator frequencies, the number of free frequen-
cies is F a - n - (n- 2m) = Fdi-2n + 2m. Note that the worst case situation ap-
pears when m is maximized because this leaves the maximum number of numer-
ator frequencies free. 

3.B.2 Numerator Frequencies. Next the remaining numerator frequencies should be 
paired. These can be partitioned in two groups: the free numerator frequencies 
(Fa - In + 2m) and the (n) dependent frequencies lr(k¡). We impose pairs only on the free 
frequencies, assuming that the dependent frequencies are then automatically paired. This is 
again the worst case situation (the largest number of free frequencies), since in the other case 
additional constraints would be imposed. Note also that pairing is a worst case phase cancel-
ing process: grouping four or more frequencies together is a stronger restriction than making 
pairs of two frequencies. Two situations will be considered: n is even or n is odd. 

(i) n is even (Fa is even, otherwise there would always remain an unpaired fre-
quency and these terms have zero mean): all free frequencies can be paired, re-
sulting in (Fa -2n + 2m)/2 pairs where the frequency can be freely chosen. So 
the maximum number of zero phase terms in Gr

s
](kl)G

r
s
2(k2)...G

r
s
n(kn) is an 

0(NV°) with v0 = {Fa-2n + 2m)/2. From Definitions 3.2 and 3.5 and (3-9), it 
follows that each term in the sum of Gr¿(k¡) is an 0(NVi)M r.M¡j~x, with 
v. = (1 - r-) /2, and, hence, the expected value is bounded by 

| E {Gr
s\kx)G

r
s\k2)...G

r
s\kn)}\ < 0 ( Λ ί - ) Μ - Π · = ! MGr,M[; (3-48) 

with v = - ν ο ~ Σ " = i vi = (n-2m)/2 for n even. 
(ii) n is odd (Fa is odd, otherwise there would always remain an unpaired fre-

quency). In this case, not all the free numerator frequencies (Fa -2n + 2m) can 
be paired since they are odd in number. So (Fa-2n + 2m-\)/2 pairs of free 
frequencies can be formed, and there remains one unpaired free frequency that 
should be combined with one dependent frequency. Again we can assume that the 
other n - 1 (an even number) dependent frequencies are then automatically 
paired (worst case). So the question is whether the last pairing step (the indepen-
dent frequency equals minus the dependent frequency) creates a new constraint. 
To answer this question, it is important to note that not all but one numerator fre-
quencies in a row of (3-46) can be paired to each other, because this would be a 
systematic contribution (see Appendix 3.A). As a consequence, the dependent fre-
quency lr(k¡) (3-46) cannot be paired with another frequency in its own row. This 
would either impose a new constraint in this row (put lr(k¡) = -lp(k¡) for a given p 
in (3-47)) or create a systematic contribution. So the last pair (independent fre-
quency, dependent frequency) should be formed over two different rows (con-
nected to ki9 kj, i *j). Because the constraints (3-47) are active only row by row 
(they combined frequencies of the same row), this creates an additional constraint, 
and, hence, the frequency of the last pair is fixed by this constraint. So the number 
of free pairs is an 0(NV°) with v0 = (Fa-2n + 2m- l ) / 2 . Because each con-
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tribution in the sum of Grj{k¡) is an 0{NVi), with vt = ( l - r ¿ ) / 2 , it is clear that 
the expected value is bounded by 

| E {Gr
s\kx)G

r
s\k2)...G

r
s"{kn)}\ < OiN-^M-jU" = , MGrM[¡ (3-49) 

with v = - v0 - J ] " = jV,· = (n - 2m + 1 ) /2 for « odd. 

The bound in the results, (3-48) and (3-49), can be written as 0(AHnt«*-2w + 1>/2)), 
which proves the lemma. D 

Theorem 3.24 (Moments Stochastic Nonlinear Contributions): Consider a system 
belonging to the set § (see Definition 3.5), excited with a random multisine uN e E^ (see 
Definition 3.2). The expected value E{G^kl)G^k2)...G^kn)} is bounded by 
\E{Gs(kl)Gs(k2)...Gs(kn)}\<0(N-^M-JlC?,with v= mt((n-2m + l ) /2 ) . 

Proof The proof follows directly from Lemma 3.23, by the fact that v is independent 
of r/5 / = 1, 2, ..., n. Hence, Lemma 3.23 can be directly generalized to Theorem 3.24. D 

Theorem 3.25 (Properties Stochastic Nonlinear Contributions): Consider a system 
belonging to the set § (Definition 3.5), excited with a random multisine uN e E^ (Definition 
3.2). The stochastic nonlinear contributions Gs(k) have the following properties: 

1. l{Gs(k)Gs(l)} = 0(Nl) fork* I 

2. E{\Gs(k)\2} = a2(k) = 0(N») 

3. E{Gs(k)\Gs(l)\
2} = 0(N~i) 

4. E{( |G,W|2-a2(^( |G,_( / ) | 2 -a2( / ) )} = 0(N^) fork* I 

5. i{Gs(k)Gs(k + m)Gs(l)Gs(l + m)} = 0(N~2) for k*l,-k*I + m,-l*k + m, 
m*0 (all frequencies differ from each other) 

6. E{\Gs(k)\2\Gs(k + m)\2} = 0(N°) for m Φ 0 

Proof. The proof consists of a straightforward application of Theorem 3.24. Note that 
v is maximal if the number of paired numerator frequencies is maximized. 

1. E{Gs(k)Gs(l)} = Gs(k)Gs(-l) = 0(N~l) fo r** / . 
m = 0, n = 2 hence v = int((«-2m + l ) /2 ) = in t ( (2-0+ l ) /2 ) = 1. 

2. l{\Gs(k)\2} = E{Gs(k)Gs(-k)} = 0(N°)· 
m = 1, n = 2 hence v = int((«-2/w+ l ) /2 ) = int((2-2 + l ) /2 ) = 0. 

3. E{Gs(k)\Gs(l)\
2} = E{Gs(k)Gs(l)Gs(-l)} = Oitf-1). 

w = 1, n = 3 hence v = int((rc-2w+ l ) /2 ) = in t ( (3-2+ l ) /2 ) = 1. 
4. Ε{( |σ^) |2 -σ|(*)) ( |σ,( / ) | 2 -σ|( / ) ) } = 0(N^) for k*L 

Here, some precautions have to be taken. In order to simplify the proof, the expected value is 
rewritten as 

E{(|GS(£)|2 - a2
s(k))(\Gs(f)\i - <%!))} = E{\Gs(k)\^\Gs(^} - σ$ίΚ)σ&Ι) (3-50) 

We study the first term in the right-hand side of (3-50) 
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Ε{|σ5(*)|2|σ5(/)|2} = E{Gs(k)Gs(-k)Gs(l)Gs(-l)} 

Here, two disjoint situations can be considered. In the first situation (A), all denominator fre-
quencies are paired (k,-k) and (/,-/) so that v = in t ( (4-4+ l ) /2 ) = 0, while in the 
second situation (B), at least one of the pairs (k, -k) or (/, - / ) is not created in the pairing 
process so that m < 1, and v = 1. The expected value can be split over these two types of 
contributions. 

E{|Gs(fc)|2|Gs(/)|2} = E{|G#)|2|GS(/)|2}A + E{|GSW|2|GS(/)P}B (3-51) 

(i) First, situation (A) is studied. Again two possibilities exist: (1) some pairs link the 
k- lines to the /- lines; (2) no such links appear. 
First we deal with possibility (1): From claims 2 and 3 in Appendix 3.E, it follows 
that such combinations are an 0(N~l), so these terms do not act as the dominating 
contributions. Possibility (2): Here the A:-lines are not lined to the /-lines. Be-
cause the combinations no longer depend on the phase (sum of the phases is zero), 
they are deterministic contributions and, hence, 

E{|G,(£)|2|G,(/)|2}A = l{\Gs(k)\i}l{\Gs(k)\i} + 0(N~i) 

= <%k)a$) + 0(N-i) ( 3 ' 5 2 ) 

Clearly (3-52) cancels the second term in (3-50). 
(ii) In set (B), we have that v = 1, and, hence, it has again an 0(N~l) contribution 

to (3-50). 
We conclude that (3-50) is an 0(N~l). 

5. The proofs of 5 and 6 are completely similar to any one of the previously studied 
situations. 

Appendix 3.C Mixing Property of the Stochastic 
Nonlinear Contributions 

In this appendix we assume a deterministic amplitude and a uniform continuous phase 
distribution. The random amplitude, the discrete phase, and the nonuniform continuous phase 
distributions are commented on in Appendix 3.F. 

In this appendix, the proof of Theorem 3.10 is given: Consider a system belonging to 
the set S (Definition 3.5), excited with a random multisine uN e EN (Definition 3.2). The 
(stochastic) nonlinear contributions Gs(k) are mixing of arbitrary order n. 

Proof We prove the mixing property for the nonlinear contributions GB(k) + Gs(k). 
Because GB(k) is deterministic, the mixing property of Gs(k) follows immediately. We show 
that Gri(kx)G

r2(k2):.G
t"n(kn) are mixing, for an arbitrary n. The theorem follows then from 

Definition 3.5 and the linearity property of mixing variables (Lemma 16.4). 
G\kx)G

r\k2)...G
r"{kn) is mixing if 

N/2-1 
max £ |cum(Gr»(*i), G\k2\ ..., Gr-*{kn_x)9 Grikn))\ < c„ < «> (3-53) 

" kl,k2,...,kn_l =-N/2+\ 
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for any N, infinity included, with cn independent of N. Using Lemma 16.4 and Definition 
3.5, it turns out that it is sufficient to prove that 

N/2- N/2-1 

max Σ Σ 
_l = -N/2+l /,<*,·) = - # / 2 + l 

cnm{U-klYlUl^),...,U-klY[Umi 
/ = 1 / = 1 

< cn < oo (3-54) 

for any N, infinity included, with cn independent of N. In this expression 
Σψ]^-Ν/2 + ι stands for the sum over all numerator frequencies lx{kx)y l2(kx), ..., lrx(kx)t 

lx(k2), ..., lr2(k2), ..., lr(kn) (see Appendix 3.B) appearing in Gr\kx)G
r\k2)...G

r»{kn). To cal-
culate the cumulant we have to set up a table with all participating input Fourier co-
efficients (characterized by their frequency) and consider next all indecomposable sets in 
this table (see Appendix 16.A). The table is given by (see also 3-46) 

l i (/,(*,),/2(Α,λ ...,/,.,_,(*!),/,.,(*!» 

-k2 (lx{k2),l2{k2),...,lri_x{k2),lri(k2)) 

-k„ (ll(kn),l2(kn),...,L_l(kn),lr(kn)) 

(3-55) 

with 

* / - Z ^ ! W - W = 0, i= \9...,n (3-56) 

All frequencies but one (kn) appear as a summation index in (3-54). We will count again the 
number of nonzero cumulants over the indecomposable partitions that appear in the sum. To 
do so, we have to determine the maximum number of degrees of freedom, taking into account 
all restrictions that will appear. The following constraints will be considered: 

(i) The c u m ^ ,Uj9...,Uj) is different from zero only if \j\\ = \j2\ = ... = \js\ 
and the terms are paired. Hence, only cumulants over sets with an even number of 
elements can be different from zero. The sum of the frequencies in such a set is 
zero. 

(ii) All the row constraints (3-56) should be respected. 
(iii) All frequencies are different from zero j) Φ 0. 
(iv) Only indecomposable partitions are considered. 

The constraint (3-56) can also be written as 

AxJa = 0 (3-57) 

where Ja is a vector containing all frequencies that participate in (3-55). The entries of Ax 

are 1, - 1 , or 0 depending on how the corresponding frequency in Ja contributes to the corre-
sponding row. Note that the "indecomposability" property is completely preserved in A {. 

Partitioning. Consider an indecomposable partition of (3-55) and select the partitions 
that have nonzero cumulants. On each subset of such partition we can associate one fre-
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quency (see condition 1 above). All these frequencies are put in the vector Jp9 and we re-
place the set of equations (3-57) by 

AJp = 0 (3-58) 

Some of the subsets will combine only frequencies belonging to one row. Because the sum 
over all these frequencies in such a subset is zero (see condition 1 above), their entry in A is 
zero. So only subsets that combine frequencies from different rows can have an entry in A 
that is different from zero. If such a subset (over different rows) has zero entries in A, it can 
be split in smaller subsets with nonzero entries (the partition remains indecomposable). This 
is a worst case situation because a smaller number of frequencies are linked to each other, 
and, hence, a larger number of free frequencies remains. For example, 

/ - / 
- / / 

-> 
-/, -U 

(3-59) 

With these replacements, the structure of A and A x is the same with respect to the indecom-
posable partitions: A is indecomposable <=> Ax is indecomposable. So from now on we fo-
cus completely on A. 

Note that the entries corresponding to a given frequency in Jp appear at most in one 
column in A. 

A can also have subsets with an odd number of entries (e.g., three). However, because 
each subset covers an even number of frequencies, such a subset corresponds to a subset in 
Ax with an even number of entries, e.g., 

in A <-» corresponds, for example, to 
1 
1 

-1 -1 

in Αλ (3-60) 

Such a set can always be broken into 

-1 

(3-61) 

without changing the indecomposable structure. Again, this is a worst case situation. So, we 
should consider only subsets with an even number of entries in A. 

Indecomposable Partitions. Only the indecomposable partitions are considered. It is 
possible to select a submatrix in A, Aind, that is indecomposable. After rearranging the order 
of the columns, A can be written as A L^ind ^restJ-

No Zero Frequencies. None of the frequencies in Jp (3-58) may be equal to zero. So 
every row in A should contain at least two entries that are different from zero, otherwise 
(3-58) forces at least one frequency to be zero. Hence, it is possible to form a matrix A by 
extending Aind with additional columns of ^4rest, such that each row of A contains at least 
two nonzero entries. 
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Structure of A. We study the structure of A in more detail in Appendix 3.D, where it 
is shown that A can always be rearranged (some columns might be shifted back to ATQSt) to a 
matrix with Y%a?l2kN2k>2n entries grouped in Σ ί ^ ι ^ * columns, and rank(i) = Σ ^ Λ ^ - ΐ 
(N2k is the number of subsets in A with 2k elements). Because rank(^) > rank(J) it follows 
that at most one frequency can be freely chosen. 

Number of Degrees of Freedom. Jp contains at most Fa + n-2 free frequencies, with 
Fa = Σ"= j ri9 because at least one frequency is paired with -k„. Each entry of A corresponds 
to at least one free frequency in (3-55), so YJc

k
m=\2kN2k>2n frequencies of (3-47) are used in 

A while at most one is free (see above). The maximum number of degrees of freedom (worst 
case) appears when all remaining free frequencies (in ^rest) 
Fa + n - 2 - ΣΪΤι 2kN2k <Fa + n- 2-2n are grouped in pairs. So the free number of frequencies 
(including the free one of A ) is given by 

Ffree < (Fa - n - 2 ) /2 + 1 < (Fa - n)/2 (3-62) 

Each of these frequencies can be freely chosen out of the 2(N/2 - 1) input frequencies. The 
number of degrees of freedom is thus an 0{Ν^Ρα~η)/1). 

Mixing. Because Ul = 0(N~l/2), each cumulant in the sum (3-54) is an 0(Ν^η~Γα)/1). 
Each cumulant in (3-54) is calculated as the sum over all indecomposable partitions of table 
(3-55), which reduces the number of free frequencies in the sums (3-54) to (Fa - n)/2 (see 
(3-62)). Hence, (3-54) is an θ^Ρα-η)η)ΟΟ^η'ρ»)/2) = 0(N°), which proves the theorem. 

Appendix 3.D Structure of the Indecomposable Sets 

In this appendix, we assume a deterministic amplitude and a uniform continuous phase 
distribution. The random amplitude, the discrete phase, and the nonuniform continuous phase 
distributions are commented on in Appendix 3.F. 

The matrix A contains an indecomposable set extended with additional columns such 
that each row contains at least two nonzero entries. These additional columns might create 
additional links between the rows so that it might be possible to "break" larger subsets to 
smaller ones, the smallest ones corresponding to pairs, while the number of degrees of free-
dom is not decreased (so the worst case is maintained). The breaking process can be contin-
ued until all subsets are reduced to pairs, or the remaining subset is an "essential" set S e with 
2k (k>2) entries in A that cannot be broken without losing the indecomposability of A. 
This leads to the following definition. 

Definition 3.26: The subset S e with 2k (k>2) entries in A is an essential subset if 
it is possible to define a partition on the entries of A, {§e, {A \}, ..., {Á2k}}, where each of 
the subsets {̂ 4,·} is indecomposable and linked to only one element of Se . 

Lemma 3.27: Consider a subset S¿ with 2k (k>2) entries in A. Either it is possible 
to brake it into two subsets S n and Si2, without losing the indecomposability of A, or S¿ is 
an essential subset. 

Proof. The lemma follows directly from the definition. If S¿ is not an essential 
subset, there is a partitioning in A, where at least one of the subsets is linked to two elements 
of Sj. Hence, S¿ can be broken into two parts, each containing one of these elements, 
without losing the indecomposability of the partition. D 
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After repetitively applying Lemma 3.27, the matrix A is partitioned in pairs and essen-
tial subsets. Consider, for example, a situation with one essential subset: 

X X 

X 

X 

X 

x{A,} 

x{A2} 

(3-63) 

with x a nonzero entry in A, and {Á¡} indecomposable sets consisting of pairs. Hence, their 
structure can always be written as 

X 

X X 

X X 

X 

X 

X X 

(3-64) 

The entry y in the last column can appear at any of the rows but the last one. It is clear that 
the rank of this square matrix is the number of columns -1 because the sum of all entries in 
one column is zero. So only one frequency is free. This is the frequency that is linked to the 
essential set, so that no free frequency remains. This idea can be further extended to situa-
tions with multiple essential sets or no essential set (where one of the pairs can be considered 
as a special case of essential set). The conclusion is that the rank of A is the number of col-
umns-1. 

Note. During the breaking process, additional dependent columns might appear. 
These are shifted back from A to AresV 

Lemma 3.28: The matrix A can be reduced using the breaking and column-removing 
process to a matrix with rank(J) = Σ ^ ι ^ 2 * ~ l j w*tn ^2k t n e number of sets with 2k 
entries. 

Appendix 3.E Distribution of the Stochastic 
Nonlinearities 

In this appendix, we assume a deterministic amplitude and a uniform continuous phase 
distribution. The random amplitude, the discrete phase, and the nonuniform continuous phase 
distributions are commented on in Appendix 3.F. 

In this appendix, the proof of Theorem 3.11 is given: for a system belonging to the sys-
tem set S, excited with a random multisine uN e EN, the stochastic nonlinearities are circular 
normally distributed. The frequency index k is sometimes omitted for notational simplicity. 
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The proof consists of the following two main steps. 

■ The Volterra series can be written as the sum of contributions up to degree M (Gs)
+ 

plus a rest term, Gs , which is an Ο(έ). 

■ Each of the M terms is normally distributed, and their variances are an 0(ε°). Also, 
the variance of G$ is an 0(ε°), while the variance of the rest term is an 0(ε2). So, 
Gs converges in distribution to G^, which is a finite sum of circular normally dis-
tributed variables. So, G$ is also circular normally distributed. 

We prove these results now step by step. 

(i) Gs(k) = G$(k) + Gg(k), with σ2_ = 0(ε2), σ2
+ = 0(ε°), and ε arbitrary 

small. 

Proof. Gs(k) = Σ α = 2 Gs<®> w i t h Σ α - i MG-MU < C i < °° (Definition 3.5). So, 

y£^MsX.^M+xMG^<£^\G-s{k)\ = \Z°a = M+l
Gs(k)\ = Ο(ε) 

The variance of G~s(k) can be bounded above by 

al(k)=i{Gs^}=Zla2,M+^{G^G^}<Zl^M+^{GS^}\ (3-65) 

From Lemma 3.23 (n = 2,m=l->v= 0), it follows that 

| E {G? Gp} | < OiN°)M-¿M% + amQax MQai (3-66) 

Combining (3-65) and (3-66) gives 

<£(*) * ̂ ( i ; - M+ , ^ , M»0(Z; . M+, MGaM%) < OW (3-67) 

Similarly, it is shown that σ^+(&) = 0(ε°). 

(ii) Study of the odd moments i{(Gg(k))2P+l} 

Using Lemma 3.23, with « = 2/7+1, m = p, it follows that v = 1. Hence, 

E{(G£(¿))2^ + 1} = 0(N~X) (3-68) 

(iii) Study of the even moments E {| G£(£)|2^} 

We use again the notation of Appendix 3.C. In (3-55) we put k2i_\ = k (i = 1, ...,/?, and 
k2i = -k, and define the set of equations 

K = BJp, with K = (*,-*,..., *, - £ ) r (3-69) 
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From Appendix 3.C, we know that the worst case (maximum number of combinations) is 
given if the denominator frequencies are paired with each other, because this leaves the larg-
est number of frequencies free. Hence, the numerator frequencies should be partitioned s.t. 
the phases cancel each other. Just as in Appendix 3.C, the subsets can each time be restricted 
to depend on only one frequency (otherwise they can be broken into smaller subsets without 
changing their contribution). Next we prove a number of additional properties on the group-
ing process. 

Claim 1: Partitions that contain subsets linking more than two rows in (3-58) give only 
0{N~V), v> 1 contributions. 

Proof. Consider the set of equations (3-58). Each row in B has more than one entry 
different from zero, because otherwise it would be a systematic contribution instead of a sto-
chastic one (all frequencies but one are paired). So there is a submatrix B in B, after rear-
ranging the columns, that contains at least Ap entries. Using the definitions of Appendix 3.C, 
the number of entries in B is Σ*Τι 2kN2k > 4p, and the number of columns (set frequencies) is 
ΣίΤι#2*> where, for the same reason as explained in (3-60), only subsets with an even num-
ber of entries are considered. So after pairing, the total number of independent frequencies is 

(Fa-2p)x-{t;:x2kN2k) kmm 

= + (Lk - , N2k\ 
Fa~2p ■Zk

kTÁk-l)N2k (3-70) 

with ( ){ the total number of independent frequencies after imposing the row constraints 
(3-47), ( )2 the number of entries used in B9 and ( )3 the number of set frequencies in B. 
Each of these combinations is an 0(N^2p~Fa>)/2). If 5 k > 1 s.t. N2k Φ 0, then the second part 
in (3-70) is negative, and consequently the claim is proved. D 

Conclusion. Only pairs should be considered. 

Claim 2: Partitions, using pairs as subsets, that link more than two rows (k, -k) in 
(3-58) give only 0(JV_v), ν>\ contributions. 

Proof. For such a partition, keeping in mind that each row should contain at least two 
entries different from zero, B should contain at least the following submatrix B: 

k 

-k 

k 

-k 

0 x 0 x 0 

x x 0 x 0 

x 0 x 0 x 

0 0 x 0 x 

(3-71) 

where x = ±1. It is clear that B, consisting of q columns, has rank 3 and uses 2q entries. 
Assuming that the row conditions for the corresponding lines are automatically met, we get 
that the number of free frequencies in B is q-3. The remaining 2p-4 row conditions 
should still be met, so that there are 2p - 4 dependent variables. Hence, the number of free 
pairs is 

(Fa-(2p-4)-2q)/2 + q-3 = (Fa-2p)/2-\ (3-72) 
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Because U¡ = 0(N~l/2)9 each term in the sums of E{|Gf(£)|2^} is an 0{Ν~{Εα~η)/2). The 
number of free summation variables in E{ |G^(A:)|2^} is given by (3-72). Hence, 

E{\G£(k)\2P} = Oi^^P^-^OiN-^-^2) = 0(N-1) 

since n = 2p. D 

Claim 3: Partitions that link pairs of rows (k, /), l^-k in (3-58) give only 0(Ν_ν), 
v> 1 contributions. 

Proof. For such a partition, keeping in mind that each row should contain at least two 
entries different from zero, B should contain at least the following submatrix B: 

1 1 
-1 -1 

or 
1 -1 

-1 1 
or similar (3-73) 

Because the rank of B is 1, and the rank of the augmented matrix 

B (3-74) 

is 2, this set has no solution. Hence, at least an additional link with another row is needed to 
increase the rank of B to 2. Claim 3 then follows from the previous Claim 2. Note that 
pairing (k, k) is a special case of this claim. D 

Claim 4: Partitions that contain rows that are not linked to another row do not exist. 

Proof. Because each row corresponds to a stochastic contribution, it is clear that not 
all the frequencies in one row can be paired within this row. 

From Claims 1 to 4, it follows that the only contributions of 0(N°) to E{|G£(£)|2^} 
are those where the partitions link all the rows per two with the denominator frequencies of 
the form (£,-&). E{|G£(£)|2^} is given, within an 0(N~l), by the sum of all these contribu-
tions 

E{\G%(k)\ip} E {G?(k)GS(-k)}.. .E{G°(k)G?(-k)} (3-75) 
all distinct combinations of pairs 

In this expression "all distinct combinations of pairs" indicates all permutations that can be 
formed over the rows (3-69) such that distinct products of pairs (k, -k) are formed. For ex-
ample, if we have four rows (1, 2, 3,4) with frequencies k, -k9 k, -k, we should consider 
(1,2)(3,4); (1,4)(2, 3). The combination (1,3)(2,4) forms pairs (k, k) and does not 
contribute. From Picinbono (1993, p. 112, Eq. (4.95)) it follows that this corresponds to the 
moments of a circular, normal distribution. As convergence in the moments implies conver-
gence in distribution (see Lemma 16.11), it follows that Gg(k) (3-41) is asymptotically 
(N-»oo) normally distributed. 
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The moments are the coefficients in the Taylor series expansion of the characteristic 
function φ(ή (Stuart and Ord, 1987). Since the convergence rate of the odd (3-68) even 
(3-75) moments is an 0(N~l), it follows that φ(ή corresponding to Gg(k) (3-41) equals that 
of a normal random variable within an 0(N~l), uniformly in /. Because the characteristic 
function is related to the probability density function by the Fourier integral, it follows that 
the distribution function Fjfyi) of Gg(k) equals that of a normal random variable within an 
0(N~l), uniformly in y. D 

Appendix 3.F Extension to Random Amplitudes 
and Nonuniform Phases 

Because the random amplitude has uniformly bounded moments of any order and is in-
dependently distributed of the phase, we can calculate the expected value w.r.t. the phase, in-
dependently of the amplitude distribution. Hence, all previous proofs in Appendix 3. A to 3.E 
remain valid for random amplitudes. 

The basic reason that a discrete phase or nonuniform continuous distribution needs spe-
cial attention is that E {U\} can be different from zero, e.g., <pk e {0, π} . However, a care-
ful check shows that all previous proofs in Appendix 3.A to 3.E remain valid if (/, /) is also 
considered as a paired frequency. Notice that for such a pair the sum of the frequencies is no 
longer zero (no major impact on the proofs). A second difference is the fact that such a pair is 
represented by one element in the A and B matrices, but notice that there are still two fre-
quencies linked to this single element. The q?k e {0, π} distribution is a worst case. Discrete 
distributions with more elements link more frequencies to generate a nonzero expected value. 

The major difference is the expected value E {Ga}. Additional 0(N~l) terms appear, 
also for the even nonlinearities. 

A typical odd degree bias contribution for a discrete phase distribution φ e {0, π} 
would be -A: /1? /1? ..., le, le, mx, -m{, ..., m0, -m09 k. It is important to notice that 
X^= j lx: = 0 in order to meet the frequency constraint and, hence, an additional fre-
quency constraint becomes active. Using arguments similar to those in the previous ap-
pendices, the sum of all these contributions is an 0(N~l). 

An example of an even degree systematic for a nonuniform phase contribution is 
-k /l9 ll9 /l5 /2, /2, k with 3/j + 2/2. Note that in this case at least three frequen-
cies are linked in one "pair" so that an 0(N~3/2) results. 

Appendix 3.G Response of a Nonlinear System 
to a Gaussian Excitation 

For noise excitations, the FRF is measured using the Hx method (2-51), and its limit 
value is given by 

Ga(M = E{n»gyco)} = Syu(j<o) 
Ε{£/0'ω)ί/0'ω)} Suu(j(o) 

The cross-spectrum Syu(j(£>) is the Fourier transform of the cross-correlation Ryu(r) between 
the input and the output and depends on higher order spectra. In the case of zero mean normal 
distributed noise, these higher order spectra can easily be calculated. Consider the contribu-
tion of degree a: 
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.+00 +00 

ya(t) = f ...f ga(T09...,Ta_l)u(t-T0)...u(t-Ta_l)dTx...dTa 
J - 0 0 J - 0 0 

Rya^To) = i{y°(t)u(t- r0)} (3-77) 
+ 00 +00 

= j ··· j &(ri> ···> *"a)E{w(/- * b M ' - η)...Μ(ί- r j } ^ . . . ^ 
- 0 0 - 0 0 

For zero mean jointly normally distributed noise, the higher order moments are given by 
(Schetzen, 1980, p. 218): 

Í0 ifMisodd 
EÍWIWO.-.WM} = < „_ (3-78) 

\ i 2 MS | Σ Π Ε { ^ . } ifMiseven v } 

The ΣΠ stands for the summation over all distinct ways of partitioning the M random vari-
ables into products of averages of pairs. It is shown that there are (M- 1)!! such combina-
tion for M even (Schetzen, 1980) and zero if M is odd. Hence, R 2au(T0) = 0 and 

From here on, it is assumed that a is odd so that an even number of input terms appear. 
Using (3-78), the expected value in (3-77) becomes 

E M / - T0)u(t- τχ)..Μ(ί- τα)} = Σ Μ ^ - TJ) (3-79) 

Using the relationship between the autocorrelation and the power spectrum of the input, 

*.«(*) = Csuu{j«>)e^df (3-80) 
- 0 0 

Eq. (3-77) can be rewritten as 

Ry2a-1U(T0) = 

.+00 +oo . (3-81) 
J ... j g2a_,(rls..., T2a_^USuu(j&r)e"a^-^dTv..dT2a^df]...dfa 
J-oo J-oo 

In order to calculate this expression, the contribution of one term of ΣΠ is analyzed in detail 
for the partition (r0, Ti),(r2, r3), ...,(r2a_2, τ2α_χ): 

+ 00 +oo «_ . 

\ - J g2e-l('l> - . ^-ΐ)Π^„0ω^°'' ( Γ ! '- !"Γ 2'- ΐ )Λ|-Λ2«-1#1··-#» 
—00 —00 r= 1 

Define 

+ 00 Λ+°0 

%-/2,/2 -/«,/„ J ■■■) S2a-\^x,-,r2a_x)e He ατν..ατ2α_χ 
- 0 0 - 0 0 < = 2 
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Because Gj"_£j ...,-/^/ ¡s a symmetrical kernel, it does not depend on the order of its argu-
ments. So, all possible terms in the partitioning give the same result, thus (3-81) becomes 

( 2 a - 1)!! £ . . . £ C ? ; ^ _^_Ufa ft ^ Ο ω ^ Ο ω , ) ^ 1 M i ···#* ^ " ^ 

Note that the power spectrum of R 2a_, a( r0) is given by 

Sfa-φω) = fRy2a-,u(T0)e'J<OTodT0 (3-83) 
- o o 

Applying (3-83) to (3-82) results in 

^.-,Β0·ω) = 5„Χ/ω)(2α- 1)!! [ ^ . . . ^ G j ? ^ ^fSJJ^-SuJJ^'Vi^a 

Dividing Sy2a-Iu(j<a) by SuJJ<o) gives G ^ - ' O ) : 

G f - ' O ) ^Χ/ω) 

= (2α- l ) ü f ... f G}«J) ffSuJJ^...SuJJ^^2...dfa 

—00 —00 

00 00 

- (2a- l ) ! !2- i f ...f Gfi^^mfSJJ*j)...SJJ*tWi~.dra "0 "0 

where in the last step the double-sided spectra are replaced by single-sided spectra. 

Appendix 3.H Proof of Theorem 3.12 

Note: In this appendix, we denote explicitly the dependence of the results on the num-
ber of frequencies F = N/2 - 1 by adding a subscript N. 

We elaborate the first term in the right-hand side of (3-13): 

^ i r : L 1 = 1
G ^ - , 1 , , , . . . , - ^ 1 > ^ 1 H | ^ i 2 . . . | c / V l | 2 } 0-84) 

Splitting the sums in (3-84) as £¿. = Xall k. different + £n o t all k. different and using 

Ε{|Ε/Λι|2...|ί/*σJ2} = ΠΓ=~ι1[Ε{Ι^Γ} for all ^.'s different (3-85) 

makes it possible to rewrite (3-84) as 
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Σ θ1α~χ ΓΊ Ir/ I2 

Vall k¡ different 
(3-86) 

not all ki different ^ 

Adding and subtracting ^not all k different m m e first summation of (3-86) gives, using I Uk 12 = 

C?N + C?N (3-87) 

where 

N/2-1 

na - °a V G2a~l V\alS! (ίΛ 
^ΙΝ Na-\ ^ KJK-kl,kl,...,-ka_x,ka_llh=\*UUKJki) 

k\, ...,ka_{ = 1 

Ca = c Ύ G2a~l A ^3'88^ 
^2N ca La ^k,-kx,k{, ...,-ka_x,ka^.x a-\ 

not all k¿ different 

Δβ_, = E{|£/Jtl|2...|i/te.j2}-nr;I
,|^j2 

Because S^(fk) and i G j ^ ^ , . . . , _ * _ 1 ,*_,| are uniformly bounded (see Definitions 3.2 to 
3.4), |£4|2 = OiiV"1) (see Definitions 3.2 and 3.3), and the sum / jnnt ail A: different contains at 
most a - 2 independent kt 's, we find 

\C^\<]^-lO{N"-^ = 0(N<) and |C»J <-^-{0{Ν^) = 0(ΛΗ) (3-89) 

Collecting (3-12), (3-13), (3-87), and (3-89), we get 

GBAS¿> = Σά^^,ν1^*) = I I = 2C^ + 0(iV-') (3-90) 

Because S^(fk) is by assumption the same for the three classes of excitation signals, it fol-
lows from (3-88) and (3-90) that for these three classes GBN(sk) converges (N-> oo) at the 
rate 0(N~l) to the same limit value GB(sk). Under some additional assumptions on the odd 
degree kernels it is possible to calculate an explicit expression for GB(sk). 

Because the joint second-order derivatives of 

(l2a-\ = Q2a-\ 

w.r.t. fki, fki, ... fK_x and fk are bounded for f^f^, ...,/*._,,/* e [ 0 , / / 2 ] , the Riemann 
sum 

N/2-1 

Cts'jjtl Σ <%)ti -^ , ,^ ,ΠΓ: , 1 ^^ , ) (3-91) 
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where fk -fk = fs/N, converges to C" 

c -/*/2 fs
/2 

at the rate 0(N'2) (Ralston and Rabinowitz, 1984; midpoint rule (4.10-10)). Together with 
(3-90) and Saú(f) = Suu(j(ú)fs it shows that lim GBLA,JVO'G>) = GBLA(J<o), with 
GBLAU<S>) defined in (3-18). ^ 0 0 

Appendix 3.1 Proof of Theorem 3.15 

The sum of a uniformly convergent series of continuous functions is continuous (see 
Kaplan, 1993, Theorem 31). Hence, under Assumptions 3.13 and 3.14, the sum 

GBU®)
 = Σ α = 2^?(^ω)> and its derivatives of order 1,2, ...9P w.r.t. co, are continuous 

functions of ω e [0, ω 5 /2] . 

Appendix 3.J Proof of Theorem 3.16 

From Theorem 3.8 it follows that the input-output DFT spectra are related to the best 
linear approximation GBLA(s) by (3-23) where Ys(k) = Gs(j(£>k)U(k) with Gs(j(dk) the sto-
chastic contributions to the transfer function. The correlation between Ys(k) = Gs(j(ok)U(k) 
and U(k) can be elaborated as 

l{Ys(k)U(k)} = E{Gs(j^k)\U(k)\2} = Σα = 2 Ε { ^ Ο ω , ) | [ « } = 0 (3-92) 

with G^(j(ok) defined in (3-41), and where the last equality uses the property that \U(k)\ is 
independently distributed of the phases of the Fourier coefficients (see Definitions 3.2 and 
3.3), and the fact that E {G^(j(úk)} = 0 is due to the random phase behavior of each term in 
the sum that defines Gg(j(dk). 

Equations (3-93) and (3-94) of Appendix 3.K give an explicit expression for the sto-
chastic nonlinear contribution Ys(k) = 4ÑYSk. Since the sums in JÑY& (3-93) are subject 
to the same frequency and phase constraints as those of G^(j^k) in (3-39), the proofs in Ap-
pendices 3.A-3.E can be redone for >JNYgk, showing that the results remain valid. 

Appendix 3.K Proof of Theorem 3.17 

Note: In this appendix, we denote explicitly the dependence of the results on the num-
ber of frequencies F = N/2 - 1 by adding a subscript N. 

From (3-9), (3-10), and (3-22), it follows that the stochastic nonlinear contributions 
Ysk,N are given by 

N/2-1 (3-93) 

*„ . . . , *„_ , =-ΛΓ/2 + 1 

with constraints 
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k = ΣΓ= j *,·, ΣΓ= i <Pk, * ^ ' * ^ ° ' a n d */ * 0 for / = 1, ..., a (3-94) 

and where G" ¿ = Gf f with/^ = k^f/N. The variance of Λ/ΛΓ Ysk N equals 

vuiJÑYsw) = ^ I L = 2 E { ^ , i v ^ ^ } = Σ ! * - 2 ς ^ (3-95) 

with 

C ^ = * Σ G« t Gj . . . , , E i ^ . · . ^ ^ . . . ^ } (3-96) 
* ι > · · · > * α - ι = -Λ^/2 + l 
/i / H = -ΛΓ/2 + 1 

Because £/Λ = Ν-ι,1ϋ{/^^ with /¿ = ¿fc//tf, Eje7'^} = 0 and ̂  independent of 
¿7(4), it follows that 

EÍ^...C/^...^Ι^Ο οΣΓ-ift, = Σί-ιΛ, (3-97) 

Taking into account the constraints (3-94), the phase condition in (3-97) can be met only if 
the frequencies are paired as (nip -rrij) with rrij e {kx, ..., ka, -lx, ..., -Ιβ} and where not all 
ntj should be different. The maximum number of terms in the sums (3-96) is obtained by 
maximizing the number of independent mJr's (number of independent pairs). Because 
\uk¡2 = süüVk)/N and the maximum number of independent pairs equals γ =(a + β)/2- 1, 
(3-96) can be written as 

N/2-1 / \ 

mx, ...,mr= -N/l + Y^ktJt 

Süü(fm)-Süü(fm)+0(N^) (3-98) 

where the sum Σ ν , · e x t e n d s o v e r t n e choices of m;. G {kx, ..., ka, -/1? ..., -/#} resulting in 
γ independent pairs (nip -/fly), and where the second term stems from the nonzero contribu-
tions in (3-96) containing at most γ- 1 independent nij's. Note that the first term in (3-98) is 
an 0(N°) and that it is the same for random phase multisines, periodic noise, and Gaussian 
noise with the same (power) spectra S^(f). Collecting (3-95) and (3-98) gives 

var(75v YSK N) = σ ^ N(k) + 0(N^) (3-99) 

where Gy N(k) = 0(N°) is the same for the three classes of excitation signals. Taking the 
limit N-* oo of (3-99) proves the theorem with of(f) = lim aY N(k). 

s N - » o o 5' 

Appendix 3.L Proof of Theorem 3.18 

In this section we study the variability of the BLA measurement (3-16) and (3-17) due 
to the stochastic nonlinear distortions only. 
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3.L.1 Random Phase Multisines. Calculating the variance of (3-16) taking into ac-
count (3-23) and the following properties (i) YJfXk) is independently distributed over the re-
alization m, (ii) vax(YJ™Xk)) is independent of m, (iii) Y^m\k) is uncorrelated with 
lAm\k), and (iv) |£/M(£)| is deterministic and independent of m, gives 

1 _ M i |4w ](^) |2] vM(Ylm](k)) 

Combining (3-99) with (3-100) using 4ÑYSkN = Y¡m\k) and Sü(j(fk) = \lAm\k)\2 shows that 
MvartGBLAt/cDfc)) converges at the rate 0(N~l) to σ2. (f)/Sú(j(f). 

3.L.2 Periodic Noise. Using (3-23), the estimated BLA (3-17) can be written as 

G B L A O , ) = G^UaJ + SY^ikySuuik) (3-101) 

For M sufficiently large, 1 /Suu(k) can be approximated as 

1 1 1 
T7KT * >U(4)( 1 - 0(JW-1/2)) (3-102) 

Suuik) Sú0(fk) + 0(M->/2) SM(fk){ 1 + 0(M-^)) 

(convergence in mean square sense at the rate 0(M~l/2)). Combining (3-101) and (3-102) 
gives 

G B L A ( M ) - GBLA(J<»k) = Srsu{k)/Sü(jV¡){ 1 - CKM-vi)) (3-103) 

Using (3-103) and the following properties (i) Y^m\k) is independently distributed over the 
realization m, and (ii) E{Ww](£)|2|Lrtw3(&)|2} is independent of m, we conclude that the as-
ymptotic (M—> oo) variance of the BLA equals 

lim Mvar(GBLA(M)) = ^{\Y[^\k)\^m\k)\2}/S2
ú((fk) (3-104) 

In the sequel of this section we will show that 

^{\Y¡m\k)\2\U^m\k)\2} = E{\Y^m\k)\2}E{\íAm\k)\2} + 0(N~l) (3-105) 

which proves (3-24). 
To simplify the notations we omit now the realization superscript [m] in (3-105). From 

(3-4) and Yk = Y(k)/JÑ, it follows that during the calculation of the numerator of (3-104), 
mixed terms of nonlinear degrees ax and a2 appear, viz. 

:{|rs(*)|TO)|2} = Σά,,^^Εί^*)^*)!^*)!2: (3-i<x>) 

Using Gs(k) = Ys(k)/U(k),_Uk = U(k)/JÑ, Gs(k) = Σ " - ι <?£(*) w i t h Gs^ defined 
in (3-41), one term E {Y^(k) ?^k) | U(k)\2} in (3-106) can be explicitly spelled out as 
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i{Ysyk)?syk)\u(k)\2} = N Ί 2 + 1 Σ G^kaG% 
K*KSka l 2 

i*<a2 (3-107) 

*HU{k¿U{k¿...U(ka)Ü{im 

with K = (kl9 k2, . · . , ka _j), / = (zl9 /2, ···, *«2-i)> a nd where KSka is defined in (3-40). 
For periodic noise the expected value in (3-107) can be split as the product of the expected 
value over the amplitudes and that over the phases (the amplitudes and phases are - by con-
struction - independently distributed). Hence, only those terms where the phases pair will 
contribute, which requires ax + a2 to be even. 

Two possible situations can be considered during the pairing of the phases: either all 
frequencies ir of the pairs U(ir)U(ir) are different from each other or not. 

1. All paired frequencies are different. Since U(k)U(k) is already a pair, the remain-
ing ax + a2 indexes in (3-107) should be paired. Notice that the indexes 
kl9 k2, ..., ka and il9 i2,..., ia in (3-107) have, respectively, ax -1 and a2 -1 de-
grees of freedom, because the frequency constraints Σ?!= i kr = k and Σ?11 ir = k 
should be fulfilled. Hence, after pairing, the total number of degrees of freedom is 
(ax + a2)/2 - 1 and, under these conditions, the expected value (3-107) is an 
0(N°). Since the amplitudes are - by construction - independently distributed 
over the frequency, the expected value (3-107) is proportional to 
E{TOP} = Sü(j{fk). 

2. Some paired frequencies are equal. When the frequencies of at least two pairs are 
equal to each other (iri = zV2), then the number of degrees of freedom after pair-
ing drops with at least 1. As a result, these terms are at most an 0(N~l) and can be 
neglected compared with the contributions of situation 1. Remark that in this case 
higher order E{|£/(&)|24} with q > 1 appear, but from Definition 3.3 it follows 
that these are finite. 

We conclude that 

E { 7 / W / W M 2 } - Sü(j(fk) E{Ys
aKk)fs

aKk)} + (KN-i) (3-108) 

Combining (3-106) and (3-108) proves (3-105). 

Remark We implicitly assumed that the phases of the periodic noise have a uniform 
continuous distribution. Following the lines of Appendix 3.F, the results can easily be ex-
tended to non-uniform continuous and discrete phase distributions. 

3.L.3 Gaussian Noise. For arbitrary excitations the relationship between the input-
output DFT spectra is given by 

Y(k) = GBLA(J^k)U(k) + rG(yco,) + Ys(k) (3-109) 

where TG(j(dk) = 0(N~l/2) represents the leakage (transient) error (see Section 6.3.2). Since 
U(k) and Ys(k) are both an Q(N°), it follows from (3-109) that TG(jak) can asymptotically 
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(N -> oo) be neglected in the variance analysis of the BLA. For filtered white Gaussian noise 
excitations w(7), the input DFT spectrum U(k) can be written as 

U(k)=L(zii)E(k) + TL(z1-i) (3-110) 

where E(k) = 0(N°) is circular complex normally distributed and with TL(z^1) = 0(N~l/2) 
the leakage (transient) error (see Section 6.3.2). Hence, TL(z¿1) can asymptotically (N -> oo) 
be neglected in (3-110). It shows that filtered white Gaussian noise has asymptotically 
(7V-> oo) the same properties as periodic noise. A detailed analysis shows that TG and TL 

have an 0(N~l) contribution to variGBLAO'cuj.)). This is left as an exercise for the reader. 

Appendix 3.M Proof of Theorem 3.21 

Consider the contributions to Y{*, \L\ > /max (see (3-5)). These are of the form 

Gi%, w e - . t / * . £ V- c / * . - , i / * . with k« = ¿-ΣΓ-"ί*/ (3-111) 

To get systematic contributions, a should be odd because even nonlinearities cannot create 
systematic contributions. Assume that Ξ / s.t. the phase of U_l(Uk Uk ...Uk Uk ) is zero 
(these combinations create the systematic contributions). We will check whether such combi-
nations can exist. 

The only possibility to get zero phase is that U_¡ is paired with one of the components 
Uk. In that case there exists a ki s.t. the phase U_lUk is zero. After rearranging the order of 
the components, we can put Uk. in the last place. Also, the components that pair are put to-
gether, and eventually the contributions can be written as 

UrUr2...Ur2fi(UsU_Si)...(UsUsJ(UkUJ (3-112) 

with t/r. the unpaired components. Now there are two possibilities: 

(i) There are no unpaired components left, β = 0. In that case, the combination in 
(3-111) contributes to the frequency L = / = ka, which is by definition in the 
excitation band (ka is an excitation frequency). This violates that \L\ > /max. 

(ii) There are unpaired components (βφ 0). In that case not all frequencies in (3-111) 
are paired, and, hence, the phase is not zero. So, this situation cannot also result in 
systematic contributions. 

This proves the theorem. □ 

Appendix 3.N Covariance of the Mu I ti varíate BLA 

The input-output DFT spectra in (3-33) are related by 

Y w ( * ) = G B L A ( M ) U M ( A O + Y£"](*) (3-H3) 

where the columns of Y\™\k) are uncorrelated for full random orthogonal multisines. Hence, 
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Cov(vec(YM(*))) = /„ ® CY(k) (3-114) 

withCr(A:) = Cov(Ys(k)) the covariance of the stochastic nonlinear contributions of one ex-
periment. Using (3-31) and XHm\k) = Gzct(J<ü¿fRím\k) (see Figure 3-8), we find that 

UM(*)UM"(*) = GJjvJDUQG&U®,) (3-115) 

where D>Rn(k) is a diagonal matrix containing the squared 2-norm of each row of RM(&), is 
independent of the realization number m. Applying (2-77) to (3-33) taking into account 
(3-114) and (3-115), proves (3-34). 

Appendix 3.0 Proof of Theorem 3.22 

The input-output DFT spectra Z(k) = [Y(k) U(k)]T of the nonlinear plant operating in 
closed loop (see Figure 3-9) are related to the DFT spectrum R(k) of the reference signal as 

Z(k) = GrzUak)R(k) + Zs(k) (3-116) 

with Grz(j(»k) the BLA from the reference signal r(t) to z(t) = [y(t) u(t)]T, Zs(k) the DFT 
transform of the stochastic nonlinear distortions zjj), and where Zs(k) is uncorrelated with 
R(k) (proof: the system from r{f) to z{t) belongs to the set S and operates in open loop so 
that the results of Dobrowiecki and Schoukens, 2007b are valid). The (ny + nu) x nu matrix 
Grz(j(£>k) and the (ny + nu) x 1 vector Zs{k) can be split in the first ny output rows and the 
last nu input rows giving 

Grz(j^k) = 
GruU^k) 

and Zs(k) 
Üs(k) 

(3-117) 

Using (3-116), (3-117), and the definition (3-35) of the BLA of a nonlinear plant operating in 
feedback, the difference Ys(k) between the actual output of the nonlinear plant and the output 
of the BLA is found to be equal to 

Ys(k) = Y(k)-GBLA(jcok)U(k) = Ys(k)-GBLA(j(ok)Üs(k) (3-118) 

Since Zs(k) is uncorrelated with R(k), it follows immediately from (3-118) that Ys(k) is also 
uncorrelated with R(k) 

E{Ys(k)R(k)} = [1 - G B L A ( M ) ] E{2s(W(k)} = 0 (3-119) 

Since Zs(k) satisfies properties (ii-iv) of Theorem 3.16 and Theorem 3.20 (multivariate open 
loop case) this is also valid for Ys(k) (3-118), which proves properties (iii-iv) of Theorem 
3.22. 

The indirect BLA (3-35) is the ratio of two BLAs (open loop case), each satisfying 
Theorems 3.7 and 3.15. Hence, these properties are also valid for (3-35), which proves 
properties (i-ii) of Theorem 3.22. D 



Detection, Quantification, and 
Qualification of Nonlinear 

Distortions in FRF Measurements 

Abstract: Full characterization of frequency response function (FRF) measurements on non-
linear systems requires the simultaneous quantification of the best linear approximation 
(BLA), its noise variance, and the variance of the stochastic nonlinear distortions. Two mea-
surement methods satisfying these requirements are presented in this chapter. They are based 
on specially designed random phase multisine excitations. In the first part of this chapter the 
invariance of the BLA and the variance of the stochastic nonlinear distortions within this spe-
cial class of excitation signals is shown. The second part describes the algorithmic details of 
the two measurement methods. The theory and algorithms are illustrated on real measure-
ment examples. 

4.1 INTRODUCTION 

The literature describes a series of methods, different from those presented in the sequel of 
this chapter. Here, we will touch only on a few of them; an extended list of references is 
available in Natke et al. (1988) and Vanhounacker et al. (2002). Also Haber (1985) gives a 
brief review of nonlinearity tests. 

■ A simple method is to scale the input u(t) —» au(t) and verify whether the output 
also scales with a, after taking care for the offsets. In practice, this method is less 
appealing. Two separate measurements are needed, and in many applications it is not 
simple to impose a scaled input due to the nonlinear load of the generator with the 
input impedance of the tested system. This problem is not disposed only in the spe-
cial case where a discrete-time model is built between a signal in a computer mem-
ory and the output of the physical system (see Section 13.2). In this special situation 
the user has full control over the excitation signal. Moreover, the small nonlinearities 
have to be detected by taking the difference between two large, measured signals, 
making the method extremely sensitive to all possible measurement errors due to 
this indirect nature. 

■ Another popular test is to check the coherence. This method does not allow separa-
tion of noise disturbances from nonlinearity problems and it fails completely for pe-
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riodic excitations. Extending the test to higher order spectra by probing directly for 
higher order correlations that are typical for nonlinear systems may eliminate these 
drawbacks, but these methods are very time consuming, especially for random exci-
tations. 

■ Also, Hilbert transform tests have been proposed (Tomlinson, 1987). Actually, these 
methods do not, directly, detect the nonlinear behavior itself. The method checks for 
a noncausality in the impulse response of the linear approximation (FRF) that might 
be induced by the nonlinear behavior, although there is no guarantee at all that there 
is a one-to-one relation between both effects. The method imposes significant con-
straints (e.g., only working on lowly damped systems) and a series of correction 
terms should be added because an FRF measurement can be made only in a re-
stricted frequency band, while the theory requires data from DC to oo. 

■ Finally, the sine test is the simplest test for characterizing directly the nonlinear be-
havior by verifying the presence of higher harmonics in the output spectrum. How-
ever, this approach has a number of serious drawbacks. It is not only very slow (see 
Section 5.2.2), but can also be insensitive to the nonlinear behavior. Indeed, if the 
nonlinear system consists of a nonlinearity followed by a linear dynamic lowpass 
system, then the higher harmonics can be attenuated below the noise level. 

In this chapter we will present nonlinearity tests based on random phase multisine excitations 
that do not suffer from the aforementioned problems. The possibility to detect nonlinear dis-
tortions with these signals will be embedded by a careful selection of their amplitude spec-
trum, only a selected set of harmonics will be excited. This idea has already been suggested 
by Evans et al. (1994) and McCormack et al. (1994b). 

The ideal FRF-measurement method should provide the measured FRF, and at the same 
time the presence of nonlinear distortions should be detected, qualified (even or odd distor-
tions), and quantified (the level of the distortions). Because the prime interest in these mea-
surements is the FRF, it is unacceptable that most of the time would be spent on the detection 
of the nonlinear distortion at the cost of a reduced quality of the FRF measurement. This ex-
cludes most existing methods that require a series of dedicated measurements to make the 
nonlinearity test. In general, it is impossible to realize this ideal; however, when random 
phase multisine excitations are applied, we can come close to it. 

This chapter is organized as follows. First, we define an equivalence class of excitation 
signal consisting of Gaussian noise and random phase multisines with randomly selected 
non-excited harmonics. Within this equivalence class it is shown that the best linear approxi-
mation (BLA) and its variance are the same. Next, two practical methods for measuring the 
BLA, its noise variance, and the variance of the nonlinear distortions using random phase 
multisines are proposed. The first method - called the "robust" method - applies directly the 
definition (3-12) of the BLA, while the second method - called the "fast" method - exploits 
explicitly the information at the non-excited harmonics. Contrary to the "robust" method, the 
"fast" method can also distinguish between odd and even nonlinear contributions. Finally, 
some guidelines for measuring the BLA and its uncertainty are given. 

4.2 THE RIEMANN EQUIVALENCE CLASS OF EXCITATION 
SIGNALS 

In Sections 3.4.3 and 3.4.4 the asymptotic equivalence of the best linear approximation and 
its variance has been established for Gaussian noise, periodic Gaussian noise, and random 
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phase multisines (see Theorems 3.12, 3.17, and 3.18). In this section we extend the equiva-
lence class to random phase multisines with randomly selected non-excited harmonics. 

4.2.1 Definition of the Excitation Signals 

4.2.1.1 Random Phase Multisines. Consider the zero mean random phase multisine 
(3-7) 

U(f) = γ * / 2 - 1 JJ JlnfsWN (4A) 

where the Fourier coefficients Uk are either zero (the harmonic is not excited) or satisfy 
\Uk\ = Ü(kfs/N)/JÑ, with Sú(j{f) = Ü\f) a uniformly bounded positive function 
(0 < Sfru(f) < MJJ < oo) with a finite number of discontinuities on the interval [ 0 , ^ / 2 ] (see 
Definition 3.2 on page 77). According to the choice of the excited harmonics we distinguish 
the following cases: 

■ Full random phase multisines: All harmonics in the frequency band of interest are 
excited, for example, * = 1, 2, 3, ..., F with F = 0(N) < N/2 in (4-1). 

■ Odd random phase multisines: All odd harmonics and none of the even harmonics 
are excited, for example, 2k- 1 with k = 1, 2, 3, ..., F and IF- 1 = 0(N) < N/2 
in (4-1). 

■ Random phase multisines with random harmonic grid: Within each group of Nsub 

successive harmonics a number of randomly selected harmonics is not excited. The 
probability that a harmonic is excited is called/?, for example, p = 3 /5 if two out 
of five consecutive harmonics (Nsuh = 5) are not excited. To guarantee a uniform 
coverage of the frequency grid in (4-1), we take a small number of successive har-
monics and eliminate randomly one excited harmonic, for example, Nsub = 2, 3, 
or 4, and, respectively, p = 1/2, 2 / 3 , and 3 /4 . The random harmonic grid can 
be applied to the full and odd random phase multisines. 

These multisines have the following nonlinearity detection properties: 

(i) Full random phase multisines: The sum of the odd and even nonlinear distortions 
appear in the output spectrum at the excited frequencies. In general no distinction 
can be made between odd and even in-band (= the excited frequency band) distor-
tions. 

(ii) Full random phase multisines with random harmonic grid: The sum of the odd 
and even nonlinear distortions appear in the output spectrum at the excited fre-
quencies and the non-excited in-band harmonics. The non-excited in-band har-
monics serve as nonlinearity detection lines where the level of Ys(k) can be re-
trieved. In general, no distinction can be made between odd and even in-band 
distortions. 

(iii) Odd random phase multisines: The even and odd nonlinear distortions appear in 
the output spectrum at, respectively, the even and odd harmonics. Hence, the ex-
cited odd harmonics are only disturbed by the odd nonlinear distortions, while the 
even in-band harmonics detect the even nonlinear distortions. 

(iv) Odd random phase multisines with random harmonic grid: The even and odd 
nonlinear distortions appear in the output spectrum at, respectively, the even and 
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odd harmonics. The even and odd non-excited in-band harmonics detect the pres-
ence of, respectively, the even and odd nonlinear distortions. The odd excited har-
monics are only disturbed by the odd nonlinear distortions. 

(proof: see Appendix 4.A). In practice, the nonlinear distortions should be detected in the 
presence of noise. Therefore, a number of consecutive periods of the steady state response are 
measured and the level of the non-excited in-band harmonics is compared with the noise 
sample standard deviation (see Section 4.3.2 for more details). 

4.2.1.2 Periodic Noise. Consider the periodic signal (4-1) where the amplitudes | Uk\ 
of the Fourier coefficients are either zero, or the realization of an independent (of the phases 
ZUk, and over &) random process, with S^uif) = E{Ü2(f)} a uniformly bounded func-
tion with a finite number of discontinuities on the interval [0,fs/2] (see Definition 3.2 on 
page 77). According to the choice of the excited harmonics we can also distinguish between 
full periodic noise, odd periodic noise, full periodic noise with random harmonic grid, and 
odd periodic noise with random harmonic grid (follow the same lines of Section 4.2.1.1). 
Notice that the only difference between periodic noise and a random phase multisine is the 
random nature of amplitude spectrum of periodic noise. 

4.2.1.3 Gaussian Noise. Consider stationary Gaussian noise excitations u(t) with a 
power spectrum (power spectral density) Suu(j(o), that is piecewise continuous with finite 
number of discontinuities and with Suu(j(d) = 0 for |ω| > ω5/2. Using a rectangular win-
dow, the squared amplitude of the DFT spectrum U(k) (2-11) of N samples u(t), 
t = 0, 1, ...,N- 1, is related to Suu(j(ok) as 

¿ E {| U(k)\ 2} = SUm) f + 0(N-i) (4-2) 

where the expectation is taken over the random realizations of the Gaussian excitation u(t) 
(the leakage error in E{|£/(&)|2} is an 0(N~l) for rectangular windows, see Brillinger, 1981). 

4.2.2 Definition of the Riemann Equivalences 

In this section we define the Riemann equivalence class of excitation signals that col-
lects all signals that are (asymptotically) normally distributed and have asymptotically 
(N-> oo) the same power in each finite frequency interval. Comparison of the power in a fi-
nite frequency interval is needed because the discrete power spectrum of a periodic signal can 
never be equal to the continuous power spectrum of a random signal. This leads to the defini-
tion of Riemann equivalent power spectra of signals (periodic and/or random). 

Definition 4.1 (Riemann Equivalent Power Spectra): The power spectra (power 
spectral density) Syiyi(J<ú) and Sy2y2(j(o) of two signals (periodic and/or random) yx(t) and 
y2(t) are Riemann equivalent if 

¡\y¡(j<»W= f2Sy2y2(J<o)df+0(N-í) (4-3) 

for any 0 < ω{ < co2 < ω5/2. If y¿(t) is a periodic signal then S χ /̂'ω) is a sum of Dirac 
functions and the integral in (4-3) is replaced by the Riemann sum 
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Is^ow- jfU.^nw (4-4) 

with kx = \Nfx/fs~\ and k2 = [_Nf2/fsJ, and where [x~] (\_xj) is the smallest (largest) in-
teger larger (smaller) than or equal to x. 

From this definition, it follows that Riemann equivalent power spectra asymptotically 
(JV-»oo) have the same power (continuous or discrete) in each finite frequency band. 
Hence, signals with different periodicity or even and odd signals (e.g., only harmonics 2k or 
2k + 1 are excited in (4-1)) can have Riemann equivalent power spectra. Using Definition 
4.1 we can define now the class of asymptotically (JV-»oo) normally distributed signals 
with Riemann equivalent power spectra. 

Definition 4.2 (Riemann Equivalence Class of Asymptotically Normally Distrib-
uted Excitation Signals): Nsuu is the class of asymptotically (JV-> oo) normally distributed 
signals u{t) with Riemann equivalent power spectrum (see Definition 4.1) Suu(j(o), which is 
piecewise continuous with a finite number of discontinuities. 

Examples of signals belonging to the Riemann equivalence class N5 (see Definition 
4.2) are: 

■ Random phase multisines: full and odd with or without random harmonic grid (see 
Section 4.2.1.1). 

■ Periodic noise: full and odd with or without random harmonic grid (see Section 
4.2.1.2). 

■ Gaussian noise (see Section 4.2.1.3). 

From (4-2)-(4-4) it is possible to define for these periodic signals a relationship between the 
probability p{k) that a frequency line k is excited, the expected value of the magnitude 
squared of their DFT spectra U(k), and the power spectrum Suu(j(o) of the Gaussian noise 
as 

1 E{|C/(A:)P} = ±p(k)SÚO(kjp = SjUn^+OQF*) (4-5) 

where S##(/) represents the power spectrum (mean square value) of the excited harmonics. 
Note that the expected value in (4-5) is taken w.r.t. the random amplitude and/or phase spec-
trum of the non-zero harmonics and the probability that a frequency line is excited. From 
(4-5) it follows that the rms value of the non-zero amplitudes of the periodic noise and ran-
dom phase multisines are given by 

« 4 ) = ^^^+^-') <4-6> 
For periodic signals that do not use all harmonics, for example, odd random phase multisines, 
an equivalent probability can be defined. Since an odd multisine excites only one harmonic 
out of two, we can use the factor p(k) = 0.5 in (4-5) as a measure for the "fill-factor" of the 
multisine (no longer a probability interpretation), such that we get the correct harmonic am-
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plitudes in (4-6). If the excited harmonics are logarithmically distributed over the frequency 
band of interest, then the "fill-factor" p(k) decreases as an 0(krl). 

4.2.3 Invariance of the Best Linear Approximation and 
the Variance of the Stochastic Nonlinear 
Distortions 

Using the Riemann equivalence class of asymptotically normally distributed signals we 
can formulate precisely the asymptotic invariance claims for the best linear approximation 
and the variance of the stochastic nonlinear distortions. 

Theorem 4.3 (Asymptotic Invariance BLA and Variance of the Stochastic 
Nonlinear Distortions): Consider a nonlinear system belonging to the set § (see Definition 
3.5). For all excitations u(t) belonging to the equivalence class M5 (see Definition 4.2) the 
best linear approximations GBLAiN(j(ú¿) are asymptotically (TV—»oo) the same, and the 
power spectra Sysy(J<£>) of the stochastic nonlinear distortions ys(t) are Riemann equivalent 
(see Definition 4.1) with 

G B L A , * 0 ^ ) = GBLA(yco,) + 0(N~') 

var(75? N{k)) = σψ) + <9(ΛΗ) ( 4 " ? ) 

where GBLA(J(Ú) *S defined in (3-18), aj(k) = Sysys(j(ük)fs, and where subscript N indi-
cates the dependency on the number of excited frequencies F = 0(N) in the signal 
u(t) E N5 . 

Proof. Follow exactly the same lines of the proofs of Theorems 3.12 (Appendix 3.H) 
and 3.17 (Appendix 3.K) where Sú(l(fk) is replaced by p{k)Sm{fk) = Suu(jak)fs. D 

Remark An important consequence of Theorem 4.3 is that for full (odd) random har-
monic grid signals (random phase multisines and periodic noise) the level of the stochastic 
nonlinear distortions at the excited (odd) harmonics can be estimated as the signal level at the 
nearest non-excited (odd) harmonic. This property is used in the "fast" method for detecting 
the nonlinear distortions (see Section 4.3.2). 

In the sequel of this section the Riemann equivalence of the power spectra Sysys(jQ¡) in 
Theorem 4.3 is discussed in detail for Gaussian noise, periodic noise, and random phase mul-
tisines belonging to the equivalence class N5 . Table 4-1 gives an overview of the discus-
sion. 

4.2.3.1 Gaussian Noise. Gaussian noise u(t) with power spectrum (power spectral 
density) Suu(j(d) is used as reference excitation signal. The corresponding power spectrum 
Sysys(j(o) of the stochastic nonlinear distortions ys(t) serves as a reference for the other exci-
tation signals. It can be split in even (SyyQyQn(j(o)) and odd (Syyodd(j(£>)) contributions 
originating from, respectively, the even (e.g., y = x2) and odd (e.g., y = x3) nonlinearities 

SytyMU<t>) = Sysys, e v e n O ) + Sy^ o d d ( y G)) (4-8) 

Similarly to (4-2), the DFT spectrum Ys(k) of ys(t) is related to S (j®) a s 
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TABLE 4-1 Comparison of the Riemann Equivalent Gaussian Signals. £¿)¿y(/¿): Mean 
Square Value of the Excited Harmonics of the Periodic Noise and Random Phase 
Multisine, and var(Ys(k)) the Variance of the Corresponding Stochastic 
Nonlinear Distortions. Suu(j(ük): Power Spectrum of the Gaussian Noise 
Excitation, and Sysys(j(ok) the Power Spectrum of the Corresponding Stochastic 
Nonlinear Distortions that Can Be Split in Even (Sysystewm(j(o¡)) and Odd 
(Sysys, odd(ya>¿)) Contributions. 

Excited harmonics 

full 

odd 

full random with prob. p(k) 

odd random with prob. p{k) 

%£,(/*> 

5»ι,0'ω*)Λ 

25. .(y«*)/ , 

sujj^f,/im 

^uu(j(ük)f/p(k) 

k even: 
k odd: 

k even: 
¿odd: 

var(Ys(k)) 

SysySJ0yk)fs 

2Sysys,wenUtok)fs 
2Sysys,oddÜ<ük)fs 

SysyU«>k)fs 

2Sysys,evenU®k)fs 
2Sysys,oddUak)fs 

Ιΐ{\Υ5(1ϊψ}=ΞχΛυω/^+0(Ν-ΐ) (4-9) 

where the expected value is taken over the random realizations of the Gaussian noise u{t). 

4.2.3.2 Full Random Phase Multisines and Full Periodic Noise. Since all harmon-
ics in the frequency band of interest are excited, (4-5) is valid with p(k) = 1. Hence, for full 
multisine and full periodic noise excitations the power spectra S^y(j(o) of the stochastic 
nonlinear distortions y^n(t) are Riemann equivalent to Syy(J(o). Moreover, Yf*\k), the 
DFT spectrum of y^l(t)9 satisfies (4-9). 

4.2.3.3 Odd Random Phase Multisines and Odd Periodic Noise. Since all odd har-
monics in the frequency band of interest are excited, (4-5) is valid with "fill factor" 
p(k) = 0.5. Hence, the resulting power spectrum Sy

dd(j(o) of the stochastic nonlinear dis-
tortions j>°dd(0 is still Riemann equivalent to 5ΛΛ(/ω). However, since for odd periodic ex-
citations the even nonlinear distortions are only present at the even output harmonics, 
whereas the odd nonlinearities are only active at the odd output harmonics, a "fill factor" of 
0.5 must be introduced in the relationship between Ygdd(k), the DFT spectrum of y?dd(t), and 
sy,y,U<i>k), g i v i n g 

E{|}fd(2*+D|2} = ^ o d d ( > 2 , + 1 ) § + 0 ( ^ - 2 ) 

^ E{\Y°dd(2k)\2} = SytyM9^U*2¿jf+0(N-*) 

05 
N 

05 
N 

(4-10) 

where the expected value is taken over the random realizations of the odd periodic excitation. 

4.2.3.4 Random Harmonic Grid Multisines and Periodic Noise. Multisines and pe-
riodic noise excitations that do not excite all the harmonics should carefully be designed. 
When randomly selected harmonics are not excited, then it is necessary to choose the rms 
value of the excited harmonics according to (4-6), where p(k) is the probability that har-
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monic k is excited. The power spectrum SJ^C/ω) of the stochastic nonlinear distortions 
>>5

harm(0 is Riemann equivalent to S^O'co), and the DFT spectrum Y^aTm(k) of^harm(0 sat-
isfies (4-9). For odd random harmonic signals we should also take into account the "fill fac-
tor" of 0.5 giving the same result (4-10), where Yg* is replaced by y™*"»™. 

4.2.4 Experimental Illustration 

u{f). 

i — > 

I—> 

G¿s) 

G2(s) 

—> 

—> 

^Π 
4 

y\ 

φ—>Χ0 
Figure 4-1. Block schematic of the 
parallel Wiener system. 

The goal of the measurement example is to illustrate Theorem 4.3 for the following sig-
nals belonging to the equivalence class: Gaussian noise, full and odd random phase multi-
sines, and full and odd random phase multisines with a random harmonic grid. John Lataire 
(Department ELEC of the Vrije Universiteit Brussel) has provided us with the experimental 
data (Schoukens et al , 2009). 

4.2.4.1 Measurement Setup. A nonlinear electronic test system has been designed to 
illustrate all aspects of Theorem 4.3. It consists of the parallel connection of two Wiener sys-
tems (see Figure 4-1). The upper branch in Figure 4-1 is the cascade of a lowpass filter Gx{s) 

while the - Jl. = z P with cutoff frequency of 1 kHz followed by an even static nonlinearity yx 

lower branch consists of a highpass filter with cutoff frequency of 2 kHz followed by an odd 
static nonlinearity y2 = z\. The gains of both branches are tuned to get about the same 
power in the even and odd nonlinear distortions at the output. In the crossover of both fre-
quency bands the even and odd nonlinearities are equally important. 

The excitation signals u{t) are generated with an arbitrary waveform generator 
(HPE1445A) in ZOH mode without reconstruction filter, while the input-output signals are 
measured with two data acquisition cards (HPE1430A) that have a high linearity and have 
anti-alias filters on board. The sampling frequency of the setup is 39.0625 kHz, and 
N = 3256 data points per period are measured. 

The full random phase multisines excite harmonics k = 1,2,..., 333, with equal am-
plitudes \Uk\, generator clock frequency fs = 39.0625 kHz, and N = 3256 in (4-1). 
Hence, the input signal covers the frequency band [12 Hz, 4 kHz], while output signal en-
ergy can be expected till 12 kHz ( = 3 x 4 kHz). The latter is well below the Nyquist fre-
quency fs/2 = 19.5 kHz of the acquisition. For the odd random phase multisines we set the 
amplitudes of the even harmonics in the full multisine to zero. To generate the random har-
monic grid with 100 xp % excited frequencies, 100 x (1 -p) % of the F excited harmonics 
are eliminated (full: F = 333; odd: F = 166). Experiments with M = 200 different ran-
dom realizations of the harmonic grid and/or the phases are performed, and each time two 
consecutive periods of the steady state response are measured. The best linear approximation 
(BLA) and its sample variance are calculated at the excited harmonics kQXC 

GBLAU^O = 
1 W*™) 

M(k^)m^keJ^\kexc) 

¿siKxc) = 
1 

M ¿ e x c ) - 1 
^"](^exc)_GBLA(yffl, ) 

(4-11) 
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withXlm\k), X = Y,U, the mean of the DFT spectra of the two periods, M(k) the set of re-
alization indices m where harmonic k is excited, and M(k) < M the number of elements in 
the set M(k); while the mean output power is calculated at the non-excited harmonics 
k 
^non-exc 

I ^non-exc) | = =¡7 7 X,m G M(knon.exc) I ^ (^non-exc)| ( 4 ' 1 2 ) 

with M(k) the set of realization indices m where harmonic k is not excited, and M(k) < M 
the number of elements in the set M(k). Using (4-11) and (4-12) an estimate of the variance 
of the stochastic nonlinear distortions at the excited kexc and non-excited ¿non_exc harmonics 
is obtained as 

v a r (^(^non-exc)) * ^r/^non-exc) = r(^non-exc)| 

var(ys(*exc))*«r2(*exc) = ai(keJ\U(kexc)\i 

Finally, the mean output power of the BLA at the excited frequencies is given by 

I W * e x c ) | 2 = | Ó B L A ( M J | 2 - ^ - Σ |^m ](^exc)|2 (4-14) 
mVKexc) m e M(kexc) 

with G B L A O ^ J , M*exc)» a n d M(^exc) defined in (4-11). 
The Gaussian noise experiments are performed as follows. First, the DFT of 3N white 

Gaussian noise samples is calculated, and the spectrum above 4 kHz is set to zero. The in-
verse DFT of the windowed spectrum gives periodic band-limited white Gaussian noise of 
length 3N. Next, the periodic Gaussian noise is applied to the nonlinear test system and 2N 
samples of the input-output signals are measured (same experiment time as for the multisine 
excitations). This is repeated for M = 200 independent realizations. Further, the BLA and 
the variance of the stochastic nonlinear distortions are estimated as 

r ( Τ7Λ Ϊ - SYUVÜ 
(jBLAU®k) ~ ~ 

Suu(k) 
, (4-15) vai(r5(*)) «*£(*) = -f-lSYYik)-

M ~ 1 V Suv(k)J 

with Syu(k) = M~l^m= Y^m\k)lAm\k) the cross-power spectrum based on the M input-
output DFT spectra (rectangular window) of the IN samples (Brillinger, 1981). Finally, the 
mean output power of the BLA is given by 

¿WBLAW = IGBLAO-OOI 2 ^*) (4-16) 

Note that - by construction - the frequency resolution of the BLA measurement with the 
Gaussian noise excitation is twice that of the periodic measurements. 

4.2.4.2 Results Full Multisines. Figure 4-2 shows the mean output power spectrum 
(4-12) and the variance of the stochastic nonlinear distortions (4-13) for the full random 
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phase multisines with random harmonic grid p = 0.1, 0.4, and 1. A s p decreases the am-
plitudes of the excited output harmonics ('+') increase as \/Jp (see (4-5)). It can be seen 
that the variance of the stochastic nonlinear distortions vai(Ys(k)) is independent of the value 
of p. Moreover, as predicted by Theorem 4.3 (see Table 4-1), var(Ys(k)) at the excited har-
monics coincides with var(Ys(k)) at the nearest non-excited harmonic for all p- values. Note 
also that the noise level (extracted from the M residuals over the two signal periods) is well 
below the level of the nonlinear distortions, which justifies formulas (4-13) for calculating 
vav(Ys(k)). 

Figure 4-2. Output power spectrum of the parallel Wiener system 
excited by full random phase multisines with a random harmonic 
grid (100 xp = 10%, 40%, 100%). For all p- values, '+': 
|yBLA(&)|2 (4-14) at the excited harmonics (only 1 out of 8 are 
shown); black lines: noise variance; light gray lines: var(Ys(k)) 
(4-13) at the non-excited harmonics; and dark gray dots: 
Yzr(Ys(k)) (4-13) at the excited harmonics. 

4.2.4.3 Comparison Gaussian Noise and Full Multisines. Figure 4-3 compares the 
mean output power spectrum (4-12) and the variance of the stochastic nonlinear distortions 
(4-13) of the full random phase multisine with random harmonic grid (p = 0.4) to that of the 
Gaussian noise excitation (see (4-12) and (4-15)). Since the multisine excites only 
100 x p = 40% of its harmonics, the amplitudes of the multisine harmonics (gray '+') are 
about 4 dB larger than the noise power spectrum (black '+'), which is in agreement with 
(4-5). As predicted by Theorem 4.3 (see Table 4-1), the variances of the stochastic nonlinear 
distortions are the same for both excitation signals (vdLr(Y^\k)) = var(7J01se(A:))). 

Figure 4-3. Output power spectrum of the parallel Wiener system 
excited by Gaussian noise (gray) and full random phase multisines 
(black) with a random harmonic grid (100 xp = 40%). '+': 
| W * ) | 2 (4-14) and ¿rB L ArB L AW ( 4 - 1 6 ) at the excited 

harmonics (only 1 out of 8 are shown); black line: var(y^n(A:)) 
(4-13) of the full multisine; and gray line (coincides with the black 
line): var(yjoise(A:)) (4-15) of the Gaussian noise. 

4.2.4.4 Comparison Odd and Full Multisines. The left plot of Figure 4-4 compares 
the mean output power spectrum (4-12) and the variance of the stochastic nonlinear distor-
tions (4-13) of the odd and full random phase multisine with random harmonic grid 
(p = 0.8). Since the odd multisine contains two times less harmonics than the full multisine, 
the odd harmonic amplitudes (gray '+') are 3 dB larger than those of the full multisine (black 
'+'). While for the odd multisines the odd (light gray line) and even (dark gray line) nonlinear 
distortions appear at, respectively, the odd and even harmonics only; all harmonics of the full 
multisine are disturbed by the sum of the odd and even nonlinear distortions (black line). As 
predicted by Theorem 4.3 (see Table 4-1), the mean of the odd and even nonlinear distortions 
of the odd multisine (see Figure 4-4, right plot, light gray) equals the total distortion of the 
full multisine (see Figure 4-4, right plot, dark gray): var(^füll(2A:+ l))*(var(í£dd(2¿+ 1)) + 
var(}Jdd(2¿)))/2. 

From the left plot of Figure 4-4 it can also be seen that the even nonlinear distortions 
are dominant below 2 kHz and almost drop to the noise level above 4 kHz, whereas the odd 

Full random grid multisine 

Frequency (kHz) 

Gaussian noise & Full multisine 
-20 r 

!-60P V ^ ^ ^ 
-8QL 

5 10 
Frequency (kHz) 
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nonlinearities are present in the whole frequency band [0 Hz, 11 kHz]. It illustrates that 
measurements with odd random phase multisines with a random harmonic grid fully charac-
terize a dynamic system from a single experiment: not only is the BLA obtained but also the 
nature (even and/or odd) and the level of the nonlinear distortions. 

Full & Odd multisines Full &Odd multisines 
-20 

5 10 
Frequency (kHz) 

5 10 
Frequency (kHz) 

Figure 4-4. Output power spectra of the parallel Wiener system excited by full (black) and odd (gray) 
random phase multisine with a random harmonic grid (100 xp = 80%). '+' left figure: 
I ^BLAW| 2 (4~ 14) at the excited harmonics (only 1 out of 8 are shown); black lines left and 
right figures: variY^^k)) (4-13) full multisine; light and dark gray lines left figure: 
var(Ygdd(2k+ 1)) (4-13) and var(Ygdd(2k)) (4-13) odd multisine; and light gray line right 
figure: (var(%odd(2£ + 1)) +var(75

odd(2A:)))/2. 

4.2.4,5 Best Linear Approximation. Figure 4-5 compares the best linear approxima-
tion (full lines) and its variance (dots) of the Gaussian noise excitation to that of the full (left 
plot) and odd (right plot) random phase multisines with random harmonic grid (p = 0.1, 
0.4, 1). In agreement with Theorem 4.3, the best linear approximation (BLA) is the same for 
all the excitation signals. Because the BLA of even nonlinearities is (asymptotically for 
7V-> oo) zero for all excitations u{t) belonging to the equivalence class N5 (see Theorem 
3.7 and (3-15)), the BLA of the nonlinear test system in Figure 4-1 is proportional to G2(ju>k) 
(see Section 3.4.3.5). It explains why the BLA in Figure 4-5 drops to zero at the lower fre-
quencies. 

From the left plot of Figure 4-5 it can be seen that the variance of the Gaussian noise 
BLA coincides with that of the full random phase multisine with p = 1. For decreasing val-
ues of p, the variance of the BLA decreases proportionally to /?, which is not in contradic-
tion with Theorem 4.3. Indeed, since the variances of the output stochastic nonlinear distor-
tions are the same for the Gaussian noise and the full multisines (all p -values), and since the 
power of the excited harmonics of the full multisine increases with p (see (4-5)), it follows 
from (2-38) that the variance of the full multisine BLA is proportional to p. 

Below 2.5 kHz, the variance of the odd random phase multisine BLAs is for all p- val-
ues smaller than that of the Gaussian noise (see Figure 4-5, right plot). This is explained by 

-30 

m -40 

| - 5 0 

DO -60 

-70 

Gaussian noise & Full multisine 

^^f^rn^^^^ -fit********* " n'"' 

HVffl 
ΗΓΓ 

Gaussian noise & Odd multisine 
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Figure 4-5. Best linear approximation (BLA) measured using Gaussian noise (left and right figure: gray), and full 
(left figure: black) and odd (right figure: black) random phase multisines with random harmonic grid 
(100 xp = 10%, 40%, 100%) - parallel Wiener system. Solid lines: BLA, and ' · ' : variance BLA. 
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(i) for odd multisines, the even nonlinearities are only present at the even output harmonics 
and, hence, do not disturb the BLA measurements; and (ii) the even distortions are dominant 
in the band [0 kHz, 2.5 kHz]. Since the odd nonlinearities are dominant above 2.5 kHz, the 
variance of the Gaussian BLA coincides with that of the odd random phase multisine with 
p = 1 (see Table 4-1: the signal-to-distortion ratios are the same). 

Note that the frequency resolution of the Gaussian BLA is 2/p (4/p) times larger 
than that of the full (odd) multisine BLA. Hence, the information content of the Gaussian 
BLA measurement is twice that of the full multisine BLA for all p- values (local averaging of 
the Gaussian BLA over 2/p neighboring frequencies reduces the variance by 2/p). Simi-
larly, if the odd distortions are dominant, then the information content of the Gaussian BLA 
measurement is four times that of the odd multisine BLA for all p- values. 

4.3 DETECTION OF NONLINEAR DISTORTIONS USING 
RANDOM PHASE MULTISINES 

Nonlinear 
plant 

Figure 4-6. Setup for measuring the best linear approximation of a nonlinear system operating in open 
(left) or closed (right) loop. The nonlinear system is excited via a linear actuator by the 
reference signal r(t). u(t) and y(t) are the noisy input-output observations and n (/), mu(t), 
and my(t) are, respectively, the process noise and the input-output measurement errors. 

In this section we present two methods for fully characterizing FRF measurements of nonlin-
ear dynamic systems operating in open or closed loop (see Figure 4-6). Beside the best linear 
approximation (BLA), the noise variance and the variance of the stochastic nonlinear distor-
tions are also quantified. The first method - called the "robust" method - detects the nonlin-
ear behavior via averaging of the FRF over multiple experiments with full or odd random 
phase multisines (direct application of definition (3-12)), while the second method - called 
the "fast" method - quantifies the nonlinear behavior via the non-excited output harmonics of 
one experiment with a full or odd random phase multisine with random harmonic grid (appli-
cation of Theorem 4.3). 

4.3.1 The Robust Method 

4.3.1.1 Basic Idea. The robust method starts from multiple experiments with full or 
odd random phase multisines. For each experiment a number of consecutive periods of the 
steady state response are measured, and the FRF corresponding to each period is calculated. 
Averaging of the FRFs over the consecutive periods quantifies the noise level (the stochastic 
nonlinear distortions have the same periodicity as the multisine excitations). Averaging of 
these mean FRFs over the multiple experiments quantifies the sum of the remaining noise 
level and the level of the stochastic nonlinear distortions (the stochastic nonlinear distortions 
dependent on the random phase realization of the multisine excitations). Finally, the differ-
ence between the total distortion level (averaging over the experiments) and the noise level 
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transient 
P periods 

o 

¿ Π . Π ¿[1,2] . . . ¿[\,P] 
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mean, variance: 
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Figure 4-7. The robust procedure for measuring the BLA: P consecutive periods of the steady state 
response to M independent realizations of full or odd random phase multisine excitations 
are measured. G^m,p^ is the FRF estimate of the pth period of the mth experiment, which 
depends on the BLA GBLA, the stochastic nonlinear distortions GJ¡¡m\ and the noise 
N¡?,p\ G^-m\ d¿[ w ] are, respectively, the sample mean and sample noise variance over the 
periods of the wth experiment. GBLA, <7GBLA are, respectively, the sample mean and sample 
total variance over the M experiments. Finally, CTQ n is the mean sample noise variance 
over the M realizations. 

(averaging over the periods) is an estimate of the stochastic nonlinear distortions. The whole 
procedure is summarized in Figure 4-7 and discussed in detail in the next section. 

4.3.1.2 Measurement Procedure. First, we explain in detail the procedure assuming 
that the system operates in open loop and that the input is known exactly (see Figure 4-6, left 
plot with mu(t) = 0). Next, we generalize the method to the noisy input - noisy output case 
(see Figure 4-6, left plot). For the latter we must make the distinction between two situations: 
either the reference signal is available or it is unknown. Finally, we handle systems operating 
in closed loop (see Figure 4-6, right plot). 

Known Input-Open Loop. If the input is known, then the FRF of each period can be 
calculated from the steady state response without introducing a bias error 

G[m'p]U<ok) = ^ S ? = GBLAU^ + G¡-\k) + N^ 
U\r](k) 

(4-17) 

with G¡m\k) = Y¡m\k)/U^\k), Nl
G

m-p] = N^/U[m\k), m = 1,2, . . . ,M, p = 1,2, 
...,P, (see Figure 4-7). Note that Y^m\k) does not depend on the period index p because 
y\m\t) has the same periodicity as the multisine excitation u^"\t). Calculating the sample 
mean and the sample variance of the FRF estimates (4-17) over the P periods, gives 

Gl mW = ^ ^ , ó [ f f l ' p W 

72
n

[m\k) 
1 

P(P-l) nz;jG[-W)-¿[m](M)i2 
(4-18) 

where o^[ml is the sample noise variance of the sample mean &m\j<a¿), which explains the 
extra factor P. Finally, we calculate over the M realizations the sample mean and the sample 
variance of the FRF estimates (4-18), and the mean of the sample noise variances (4-18) 
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^ = ΜΪΓΤ) 2 Í - 1 ^ " ^ " Ó *LA(M) | 2 (4-19) 

al (k) = -L VM ¿^ty) 
GBLA- "V ' 71/2 ¿Jm = 1 " V > 

where o ¿ (A:) and Og „(k) are, respectively, the sample total variance and the sample 
noise variance of the B L A estimate GBLAC/CO^), which explains the extra factor M. 

The expected values of the sample total and noise variances (4-19) are given by 

a2(k) σΐ ( 

( 4"2 0 ) 

Ε{σ2 „(£)} = ^—-r 
X GBLA'WV " M P | t / 0 ( £ ) | 2 

with crjn(k) = var(JV^m,/7]) the output noise variance of one period, aj(k) = vai(Y^m\k)) 
the variance of the output stochastic nonlinear distortions of one experiment, and where 
|£/0(&)|2 is independent of the random phase realization. From (4-19) it follows that an esti-
mate of the variance of the stochastic nonlinear distortions G^m\k) on the B L A w.r.t. one 
multisine experiment, a^k) = var(G]w ](£)) = a2(k)/\U0(k)\2

9 can be readily obtained as 

[Μ(σ2 (k)-a2 (k)) σ2 (k)> σ2 (k) 
cr2(k) = GBLA BLA' GBLA BLA' (4-21) 

lo σ2 (k)<a2 (k) 
G B L A V J GBLA'"V J 

A n estimate of a$(k) = \Sir(Y¡m\k)) is then given by cr$s(k) = a2(k)\U0(k)\2. 

Noisy Input-Unknown Reference-Open Loop. To avoid a bias in the FRF estimate 

G [ m ' p l ( M ) = tfm>P\k)/lAm>P\k) 

the noisy input-output DFT spectra are first averaged over the P periods before calculating 
the ratio. This gives the following input-output sample means and input-output sample noise 
(co)variances 

X[m\k) = I ΣΡ
Ρ- ^p\k) 
. (4-22) 

with X, Z = Y and/or U. The FRF and its noise variance are then obtained as 
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&m\k) 

iftmXk) = |G W (M) | : 
( ~2[m] ϊΛ™}(ΊΛ ϊΛ™} (ΊΛ ^ 

&Υ,η (*) + °U,n W _ 2 &YU,nW , 

\FmXk)\2 | ^ w p™Xk)WXk), 

(4-23) 

(see (2-25)). The rest of the procedure follows exactly the same lines as in the known input 
case (see (4-19)-(4-21) where NY(k) is replaced by NY(k) - GBLA(J(ok)Nu(k)). 

Noisy Input-Known Reference-Open Loop. To reduce the bias in the FRF estimate 
(4-23) due to the input noise even more, the mean input-output DFT spectra should be aver-
aged over the M realizations before calculating the ratio. However, straightforward averag-
ing is impossible because of the independent random phase realizations over the experiments. 
Therefore, before averaging, the phases of the mean input-output DFT spectra U^mXk) and 
flmXk) must be turned back by the phase of a known reference signal R\m\k) (typically the 
signal r(t) stored in the arbitrary waveform generator; see Figure 4-6, left plot) for each real-
ization, giving 

x[mXk) = X[mXk)/eJ¿R[m]M (4-24) 

with X = U,Y (\Rim\k)\ is independent of m). The sample means, and sample noise and 
total (co)variances of the projected input-output DFT spectra (4-24) equal 

w) = ¿z:^r]w 
σ\ ΧΒ^ΊΙ (*) = M(MZT} Σ ^ ! &\k) -XR{k)){Z\mXk) -ZR(k)) (4-25) 

aXRZR,nik) Jfi Σ 
M ±2[m] 

*£#) 

with X,Z = Y and/or U, and where the last equality uses σ ^ n(k) = a$g]
n(k). Using 

(4-25), the BLA and its noise and total variances are then estimated as 

GBLAO'CO*) = yR(k)/UR{k) 

¿GBLAW = lGBLA' .0·ω*)|: 
f 2^2 aUk) , σΟΜ 

\Uk)\2 \0R(ktf 

al rj (k) 
-2Re( Y"Ufl ) 

<,„w = \ό^υ«Μ$^+^-2^¥^> Ukf \UR(kf YR(k)UR(k)J 

(4-26) 

Finally, the variance of the stochastic nonlinear distortions aj(k) (aj (k)) is derived from 
(4-26) as in (4-21). 

Closed Loop. If the system operates in closed loop (see Figure 4-6, right plot), then 
the best linear approximation is defined via the indirect method (3-35). This is exactly what is 
calculated in (4-24)-(4-26) because 
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ό sYR(k) _ ¿Z.S-KWXk) _ YR(k) (4 
<JBLA(J®k) ~ ~ _ = ^ 7 77—, = = _ (4-27) 

SüR(k) Σ"., ^m\k)RlmKk) TO 

where the last equality uses the fact that |/?Μ(&)| is independent of m. Hence, we can follow 
the same procedure as for the noisy input-known reference case to estimate the BLA, its 
noise and total variance, and the variance of the stochastic nonlinear distortions σ|(&). The 
variance of the output stochastic nonlinear distortions obtained from a^(k) as άγ (k) = 
<3"|(&)| UR(k)\2 is exactly the variance of Ys{k) in Theorem 3.22. Using (3-118) it can also be 
calculated from the input-output sample noise and sample total (co)variances (4-25) as 

a$s(k) = a | (*) + | ( W 7 % ) | 2 < ^ (4-28) 

with <*%szs(k) = Μ(σχκΖκ{Κ)- ó^Zj?>/I(fc)), X, Z = Y and/or U, an estimate of the (co)vari-
ances of the input-output stochastic nonlinear distortions. 

Remarks 

■ If the nonlinear system is excited by a non-ideal actuator, then, due to the interaction 
between the actuator and the nonlinear system, the input is also disturbed by sto-
chastic nonlinear distortions. In that case, the averaging over the M realizations in 
(4-25) also reduces the bias of the estimated BLA due to the input stochastic nonlin-
ear distortions. The same is valid for the averaging over M in (4-27). 

■ The optimal choice of the number of periods P and the number of independent ran-
dom phase realizations (experiments) M in the robust method (see Figure 4-7) for a 
given measurement time T = Mx P x NTS depends on the ultimate goal of the 
identification experiment. If the aim is to minimize the total variance of the best lin-
ear approximation, while maintaining the ability to distinguish the noise from the 
nonlinear distortions, then one should maximize the averaging of the nonlinear dis-
tortions. Hence, P = 2 and M = T/(PxNTs) is the best choice (see (4-20)). If 
the objective is to maximize the nonlinear detection sensitivity, then the noise should 
be suppressed while keeping the level of the nonlinear distortions. In this case 
M= 2 and P = T/(MxNTs) is the optimal choice (see (4-20)). 

■ Whether the full or the odd random phase multisines are optimal for minimizing the 
total variance of the BLA measurement depends on the nature of the nonlinear dis-
tortions. If the odd nonlinear distortions are dominant (Sysysi0éd(J(úk)» 
Sysys, evenC/®*))' t n e n t n e signal-to-distortion ratios of the full and odd random phase 
multisines are the same (see Table 4-1), and the information content of the full mul-
tisine BLA measurement is twice that of the odd multisine (the frequency resolution 
of the full multisine is twice as large, and averaging the full multisine BLA over two 
neighboring frequencies reduces its variance by a factor 2). However, if the even 
nonlinear distortions are dominant (^^,βνβηθ'ω*) » Sysy^0da(j^k)) > t n e n t n e signal-
to-distortion power ratio of the odd multisine is much larger than that of the full mul-
tisine (see Table 4-1). Hence, the information content of the odd multisine BLA 
measurement is much larger than that of the full multisine (infinitely larger if there 
are no odd distortions). If the even and odd nonlinear distortions are of the same or-
der of magnitude (Syy o¿¿(J(úk) ~ Sy,y<s,evenU®k))> t n e n t n e information content of 
both full and odd multisine BLA measurements is the same. 
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4.3.2 The Fast Method 

4.3.2.1 Basic Idea. The fast method starts from one experiment with a full or odd 
random phase multisine with random harmonic grid. The random harmonic grid is generated 
by grouping the excited (odd) harmonics in Nsub consecutive harmonics, and eliminating ex-
actly I00x(l-p)% randomly selected (odd) harmonics in each group (see Figure4-8, 
black arrows). A number of consecutive periods of the steady state response are measured, 
and the input-output DFT spectra of each period are calculated. The sample mean and sample 
standard deviation of these input-output DFT spectra over the periods quantify, respectively, 
the signal and the noise levels (see Figure 4-8, black arrows and thin black horizontal line). 
Nonlinear distortions are present if the signal level is above the noise level at the non-excited 
harmonics (see Figure 4-8, left plot, gray arrows at harmonics 2-4, 6, 10-14, and 16; and 
Figure 4-8, right plot, gray arrows at harmonics 3, 5, and 7). Finally, using Theorem 4.3, the 
level of the nonlinear distortions at the excited (odd) harmonics is estimated as the signal 
level of the nearest non-excited (odd) harmonic (see Figure 4-8, dark gray arrows). 

L 
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Figure 4-8. DFT spectrum of the steady state response of a nonlinear system to a random phase multisine with 
random harmonic grid (Nsuh = 3,p = 2 /3) . Left: odd multisine; and right: full multisine. Black 
arrows: the linear contribution; light gray arrows: the even nonlinear distortions; dark gray arrows: the 
odd (left) or odd plus even (right) nonlinear contributions; and thin black horizontal lines: noise level. 

4.3.2.2 Measurement Procedure. First, we explain in detail the procedure for non-
linear system operating in open loop (see Figure 4-6, left plot). Next, we extend the method 
to the noisy input data. Finally, we discuss the closed loop case (see Figure 4-6, right plot). 

Known Input-Open Loop. Since the nonlinear system operates in open loop, the out-
put DFT spectrum of each period of the steady state response to a full or odd random phase 
multisine with random harmonic grid is given by 

yM(*) = Y0(k) + N^\k) + Ys{k) (4-29) 

with p = 1, 2, ..., P. The sample mean and sample noise covariance of (4-29) over the P 
periods equal 

íw = ±lf= ,í™(*) 
(4-30) 

with όγ n(k) the sample noise variance of the sample mean Y(k), which explains the extra 
factor P. The BLA and its noise variance are readily obtained from (4-30) as 
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^'^" wé md ^ * - > - TO (4-31) 
where kQXC is an excited (odd) harmonic. Note that the expected value of the sample variance 
(4-31) is given by 

E í ^ í L *(¿exc)} = σγ,η 6XC„ (4-32) 
1 LTBLA'"V e x c / } PITT (lr \\2 

r\U0\K&Lc)\ 

with a\ n(k) = veatN^Xk)) the output noise variance of one period. In the sequel we ana-
lyze (4-30) at the non-excited harmonics to detect (and classify) the nonlinear distortions and 
to estimate the level of the stochastic nonlinear distortions on the BLA estimate (4-31). 

Assuming that no signal energy is present at the non-excited output harmonic &non_exc 

Wnon-exc) = 0), the ratio \Y(knon.ej\
2/a¡n(kmn_QXC) is F(2, IP - 2)- distributed (Stuart 

and Ord, 1987) and the following null hypothesis test can be constructed. If 

|^non-exc) |Va?r t (^n o n . eJ<F^2,2P-2) (4-33) 

with F (2, IP - 2) the 100 x p % percentile of an F(2, IP - 2)- distributed random variable, 
then the null hypothesis (̂̂ non-exc) = 0 is accepted, otherwise it is rejected. Performing the 
test (4-33) at all non-excited harmonics allows one to detect, quantify, and classify (odd mul-
tisines only) the nonlinear distortions. 

The total variance (sum of the variance of the stochastic nonlinear distortions and the 
noise variance) at an excited harmonic kQXC is estimated as the magnitude squared of the level 
of the nearest non-excited (odd) harmonic 

tf(kexc) = |?(¿non.exc)|2 (4-34) 

Using Theorem 4.3, the expected value of (4-34) is found to be equal to 

E{¿?(*exc)} = ofJKJ/P+ a¡s(kexc) + 0(ΛΗ) (4-35) 

with ay (k) = var(Ys(k)) the variance of the output stochastic nonlinear distortions. Divid-
ing (4-34) by the magnitude squared of the input DFT spectrum gives an estimate of the total 
variance of the BLA 

¿¿Bu^exc) = < ^ ( * e x c ) / W e x c ) | 2 ( « 6 ) 

Finally, the variance of the stochastic nonlinear distortions on the BLA is estimated as 

.2, ^ B L A ^ e x c ) - ¿GB L A, «(^exc) ^ B L A ^ X C ) > ¿G^, n(*exc) Λ Z/7 >. ~BLA - w/vv" ~ B L A ' " ^ *""■" ~ BLA " *""■" ~ BLA' ' ' »""'- s* ^ q \ 

ί ° ^GBLA(kexc)<aGB^„(kexc) 

(proof: collect (4-31), (4-32), (4-35), and (4-36)). 
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Noisy Input-Open Loop. If the input is noisy, then lfip\k) = U0(k) + N^\k) is 
added to (4-29), and (4-30) is replaced by 

Μ)=ι
?Σρ=ιχ

[ρΧν 
1 p (4-38) 

bkn^ =
 P(F^T) ^=^\k)-m)(z^\k)-z(k)) 

with X, Z = Y and/or U. The BLA and its noise variance are calculated using (4-38) at the 
excited harmonics kQXC 

GBLAO'CO* ) = 5«£> 
™ C/(*«c) 

^BLA#exc) = \G^J^kjÍ$^4 + A&4 - 2Re( / ^ " ( > c ) )1 
' " c l W e x c ) | 2 l ^ e x c ) | 2 fe W e x c ) ^ 

(4-39) 

Note that the noise variance of the BLA depends on both the input N^\k) and output 
N^\k) noise, while the total variance of the BLA calculated as in (4-34)-(4-36) is indepen-
dent of the input noise. Hence, (4-37), where o^BLA(kexc) is calculated as in (4-36), is inap-
propriate for estimating the level of the stochastic nonlinear distortions because it contains a 
bias term depending on the input noise. In the sequel we handle this problem. 

To account for the input noise and the possible correlation between the input and output 
noise, we replace the output spectrum at the non-excited harmonics in (4-34) by the corrected 
output £(£non-exc) defined as 

mnon.QXC) = Y(kmn-eJ-GBLAUa,)U(kmn_exc) (4-40) 

where GBLAC/G^ ) is obtained via linear interpolation of the BLA (4-39) at the closest ex-
cited (odd) harmonics ¿lexc < £non_exc < k2exc 

A , . x (*2exc - ^non-exc)GBLA(/% ) + (*non-exc ~ k\exc)GBLA(j®k2eJ /λ , Λ Λ 

GBLAÜ^knonJ = τ τ τ (4-41) 
^exc 'Mexc 

Using Theorem 4.3, GBLA(j(*knmJ = GBLA(j(ükJ + 0(N~l), and neglecting the noise on 
GBLAUW/C ) as a second order effect, the expected value of the total variance estimate at 
an excited harmonic 

*/c(*«c) = |£(*non.exc)|2 (4-42) 

is given by 
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E{ */e(*exc)} - |^(M2<L A,„(*exc) + CT|^exc) + W ) 

GBLA'" P Vo(¿exc)|2 |̂ 0(̂ exc)|2 T0(*exc)t/0(*excF 

Hence, (4-37), where ¿GBLA, «(£exc) *s g i y e n by (4-39) and where the total variance 
CTg (&exc) is calculated as 

^ ( U = ^(^exc)/|^exc)|2. (4-44) 

correctly eliminates the influence of the input noise in the estimated variance of the stochastic 
nonlinear distortions (proof: collect (4-39) and (4-42}-(4-44) using Ε{σ?. (k)} = 

Closed Loop. If the nonlinear system operates in closed loop (see Figure 4-6, right 
plot), then both the input and output DFT spectra are disturbed by the stochastic nonlinear 
distortions, and (4-29) is replaced by 

Yto\k) = YQ(k) + NY\k) + Ys(k) 
(4-45) 

lflp\k) = U0(k) + N¡?\k)+Üs(k) 

The difficulty here is that the signal level at the non-excited output harmonics Ys(knon.exc) is 
no longer a measure of the stochastic nonlinear distortions Ys(k) (difference between the ac-
tual output of the nonlinear system and the output of the BLA). This problem is solved via the 
results of Theorem 3.22 on page 94 and Appendix 3.0 on page 118 where it is shown that 

W = G B L A C ^ Í / O W and Ys(k) = Ys(k)-GBLA(J<»k)Vs(k) (4-46) 

Comparing (4-40) to (4-46) it follows that the corrected output DFT spectrum Yc (&non_exc) 
(4-40) compensates properly the output nonlinear distortions for the presence of the input 
nonlinear distortions. We conclude that the fast procedure for noisy input - noisy output sig-
nals correctly handles nonlinear systems operating in closed loop. 

Remarks 

■ The fast method can be refined by replacing the nearest neighbor estimates (4-34) 
and (4-42) by a linear interpolation. 

■ The total variance estimates of the BLA in (4-36) and (4-44) are based on one output 
residual (see (4-34) and (4-42)). The variability of these estimates can be reduced at 
the cost of introducing an 0(N~l) bias by averaging (4-34) and (4-42) over neigh-
boring non-excited (odd) harmonics. 

■ The value of Nsub (number of consecutive excited (odd) harmonics) for generating 
the random harmonic grid is chosen small (typically 2, 3, and 4) in order to guaran-
tee a uniform frequency resolution of the BLA measurement and the nonlinearity de-
tection. Via the fraction p of the randomly selected excited harmonics in Nsuh, a 
trade-off is made between the frequency resolution of the BLA measurement 
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(pfs/N) and the nonlinearity detection ((l-p)fs/N). Typical choices are 
(Nsub,p) = (2, 0.5), (3, 2 /3) , and (4, 3 /4) , which corresponds to leaving out 1 
in 2, 3, or 4 consecutive excited frequencies. 
The optimal choice of the number of periods P for fixed measurement time depends 
on the goal of the identification experiment. If the purpose is to maximize the sensi-
tivity of the nonlinearity detection, then P should be chosen as large as possible. 
However, if the aim is to maximize the information content (Fisher information ma-
trix) of the BLA measurement (minimize the total variance of the parametric BLA 
modeling), while maintaining the ability to distinguish the noise from the distor-
tions, then P = 2 is optimal. 
For nonlinear systems operating in closed loop (see Figure 4-6), the FRF calculated 
at the non-excited harmonics equals minus one over the feedback dynamics. Indeed, 
assuming that no noise is present, the input-output DFT spectra are related as 

U{k) = G,ct(j(*k)R(k) - Α/οΟ'ω*) Y(k) (4-47) 

with GactO'a>) and M0(yco), respectively, the linear actuator and controller (feed-
back) dynamics. Finally, evaluating (4-47) at the non-excited harmonics 

t/(*„o„-exc) = -MoÜ<ÜkmJY(Kon-exc) (4-48) 

proves the statement. 

4.3.3 Discussion 

43.3.1 Nonlinear Actuator. If the actuator behaves nonlinearly and the plant is lin-
ear, then the actuator distortions act as generator noise: the estimated BLA is equal to the lin-
ear plant dynamics and its total variance only depends on the input-output noise (^var i -
ances (proof: see Appendix 4.B). 

If both the actuator and the plant are nonlinear, then the correction of the output DFT 
spectrum (4-40) in the fast method is a first order compensation for the spectral impurity of 
the plant input (it is exact for nonlinear plants operating in feedback and linear actuators, or 
for linear plants and nonlinear actuators). If the signal-to-distortion ratio at the output of the 
actuator is sufficiently large (e.g., > 20 dB), then the total variance of the BLA (4-44) pre-
dicted by the fast method coincides with that (4-26) of the robust method. Note that the ro-
bust method does not need the assumption of a sufficiently large actuator signal-to-distortion 
ratio. 

4.3.3.2 Classification in Even and Odd Distortions. Using odd random phase multi-
sines with a random harmonic grid, the FRF measurement of a nonlinear system operating in 
open loop and driven by a linear actuator can be fully characterized (see Section 4.2): besides 
estimates of the BLA, its noise variance, and its total variance, the level of the odd and even 
nonlinear distortions is also quantified. The fast method discussed in Section 4.3.2 extracts 
this information from one single experiment. If the actuator behaves nonlinearly, then the fast 
method still estimates the correct BLA and its noise and total variances, provided the actuator 
signal-to-distortion ratio is sufficiently large. However, the estimated level of the even and 
odd nonlinear distortions might be biased. This is illustrated in the following example. 

Consider a Hammerstein system (see Figure 3-3 on page 85 with R(jco) = 1) with 
static nonlinearity z(t) = a u2(t) + βu3(t). Since u2(t) and u\t) combine, respectively, two 
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and three frequencies of u(t) (see Section 3.2), the dominant stochastic nonlinear contribu-
tions at the even detection lines 2 m in z{t) are of the form 

au\t)\ aU(2L· + \)U(2k2 +1) 2L· + 2k2 + 2 = 2m 
(4-49) 

βιι\ί)\ pU(2k2+ \)U{2kA+ \)U(21) 2k3 + 2k4 + 2l + 2 = 2m 

with U(2k¿+ 1), i = 1, . . . ,4 , the excited odd harmonics and U{21) an even distortion line. 
If \βϋ(2ΐ)\ is not much smaller than \a\, then the third degree contribution in (4-49) will 
bias the estimated level of the even nonlinear distortions. As a rule of thumb, this bias can be 
neglected if the ratio of the power spectra (power spectral densities) of the odd to even non-
linear distortions is much smaller than the ratio of the power spectra (power spectral densi-
ties) of the odd excited harmonics to the even distortion lines 

^ ' o d d C / C ° ) « 5 "" -° d d 0 ' C 0 ) =* no bias on even distortions (4-50) 
Sy5ys, evenO 0 0 ) ^uu, evenO 0 0 ) 

(see Appendix 4.C for a rationale). The relationship between the DFT spectra and the power 
spectral densities is given in, respectively, (4-5) and (4-10). 

Similarly, the dominant stochastic nonlinear contributions at the odd detection lines 
2m + 1 in z(t) are of the type 

au\i)\ aU(2k{ + l)U(2l) 2kx + 2l+ 1 = 2m+ 1 

Pu\t)\ pU(2k2 + l)E/(2*3 + l)C/(2*4 + 1) 2k2 + 2k3 + 2k4 + 3 = 2m + 1 

with U(2ki+l), i = 1,...,4, the excited odd harmonics and U(2l) an even distortion line. 
If \aU(2l)\ is not much smaller than \fiU(2k2 + l)U(2k3 + 1)|, then the even nonlinear con-
tribution in (4-51) will bias the estimated level of the odd nonlinear distortions. As a rule of 
thumb, this bias can be neglected if 

ν ^ η θ ω ) ^ ¿yoddO-co) ^ n o b i a g o n Q d d d i s t o r t i o n s ( 4_5 2 ) 
Sysys,oddU®) ^ ι / ι / , β ν β η θ ω ) 

is satisfied (see Appendix 4.C for a rationale). 

Conclusion. The bias on the estimated levels of the even and odd nonlinear distor-
tions can be neglected if the even and odd distortions are of the same order of magnitude 
(S^j^evenC/®) ~ Sysys,oddU®))> a nd if the input signal-to-even-distortion ratio is sufficiently 
large (SUUiM(j^)/SUUiewen(J(o)>> 0 · If, for example, the even distortions are dominant 
(Sysj>s,even(7G)) >> S^oddO'o))), then (4-50) is automatically satisfied and the level of the 
even nonlinear distortions is correctly estimated. However, unbiased estimation of the level 
of the odd distortions puts a severe constraint on the input signal-to-even-distortion ratio (see 
(4-52)). If the odd distortions are dominant, then the opposite is true: the level of the odd non-
linear distortions is correctly estimated, while unbiased estimation of the level of the even 
distortions puts a strong condition on the input signal-to-even-distortion ratio (see (4-50) with 
Sysyst oddC/ω) » 5^^, evenC/ω)). These results are also valid for nonlinear systems operating in 
feedback. Note that conditions (4-50) and (4-52) can easily be checked a posteriori. 
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Figure 4-9. Basic block diagram for 
measuring the open loop gain of an 
operational amplifier (opamp). The x 1 
voltage buffers prevent loading of the 
circuit and the opamp, and the resistor 
values are matched R{ « R3 « 300 Ω, 
and R2*R4* 12 kQ. The circuit is 
excited by the voltage source v (/) with 
output impedance R = 50 Ω, and the 
input u{t) and output y(t) voltages of 
the opamp are measured. 

4.3.4 Experimental Illustration 

The goal of the measurement example is threefold: (i) experimental illustration of the 
fast method (Section 4.3.2) on a nonlinear system operating in feedback; (ii) comparison of 
the fast (Section 4.3.2) and the robust (Section 4.3.1) methods; and (iii) experimental verifi-
cation of (4-48). 

4.3.4.1 Measurement Setup. Figure 4-9 shows the basic setup for measuring the 
open loop gain A(Jti) = Vout(j(ü)/(V+(j(o)- F~(yco)) of an operation amplifier (opamp). 
Because of its very high gain, measuring the opamp in open loop would immediately drive 
the output into saturation. Therefore, to limit the output voltage, a feedback resistor R2 con-
necting the output of the opamp to its negative input and a resistor Rx in series with the volt-
age source vg(t) are added. To prevent loading of the output of the opamp by the resistor R2, 
a voltage buffer (gain 1, very high input impedance, and 50 Ω output impedance) is put in 
series to R2. The negative input v and output vout of the opamp are buffered (x 1 voltage 
buffers with very high input impedance and 50 Ω output impedance) before being sent to the 
acquisition units (HP E1430A). The systematic errors introduced by the dynamics of the volt-
age buffers and the acquisition units are eliminated via a relative calibration (see Section 
13.2.2.2 on page 501 and Pintelon et al., 2004b for the details). 

The odd random phase multisines with random harmonic grid vg(t) are generated by an 
arbitrary waveform generator (HP El445A) at the sampling frequency fs = 10 MHz/24 = 
625 kHz. The generator signal is lowpass filtered (cut off frequency of 250 kHz) before be-
ing applied to the circuit. The acquisition and generator units are synchronized, and their 
sampling frequencies are derived from the same mother clock. Of each signal, P = 5 con-
secutive periods of the steady state response with N = 216 = 64 x 1024 points per period 
are measured at the sampling rate fs = 625 kHz. 

The frequencies of the odd random phase multisines (4-1) are logarithmically distrib-
uted between /min = fs/N* 9.5 Hz and /max = 9 9 9 9 / / # * 9 5 kHz, and the amplitude 
spectrum is chosen to be flat. Of each group of three consecutive harmonics (7Vsub = 3) , ex-
actly one odd excited harmonic is randomly eliminated (p = 2 /3 ) . The resulting odd ran-
dom phase multisines with random harmonic grid contain F = 299 odd excited harmonics 
with equal amplitudes. These amplitudes are chosen such that the rms value of the negative 
input v(t) of the opamp equals 6.1 mV. 

While the fast method starts from one experiment with an odd random phase multisine, 
the robust method requires multiple experiments. Therefore, M = 25 experiments are per-
formed with M = 25 independent random phase realizations of odd random phase multi-
sines with the same random harmonic grid and the same amplitude spectrum. 
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Figure 4-10. Measured input (left) and output (right) Fourier coefficients of the operational 
amplifier excited by an odd random phase multisine with a logarithmic random 
harmonic grid (not all excited and non-excited frequencies are shown). '+': excited 
odd harmonics, 'ο ' : non-excited odd harmonics, 'gray *': non-excited even 
harmonics, and black line: noise variance (all harmonics). 

4.3.4.2 Fast Method. The fast method (Section 4.3.2) starts from P = 5 consecu-
tive periods of the steady state response to one particular random phase realization of the odd 
random phase multisines with random harmonic grid. Figure 4-10 shows the mean value of 
the Fourier coefficients of the input u(t) = -v~(t) and output y{t) = vout(/) signals over the 
P = 5 periods of the first experiment. The '+' indicates the excited odd harmonics, the Ό ' 
indicates the odd non-excited harmonics, the 'gray *' indicates the even non-excited harmon-
ics, and the black line indicates the noise standard deviation of the mean value of the Fourier 
coefficients (excited and non-excited harmonics). The following two observations can be 
made: 

1. The odd (o) and even (gray *) non-excited harmonics are well above the noise 
level (black line), except the even input harmonics below 200 Hz. 

2. The odd (o) nonlinear distortions are significantly larger than the even nonlinear 
distortions (gray *), indicating a dominant odd nonlinear behavior. 

Moreover, from the output Fourier coefficients (Figure 4-10, right plot) one would wrongly 
conclude that the nonlinear distortions (o and gray *) of the opamp are about 50 dB (o) to 70 
dB (gray *) below the linear contributions. This is due to the linearizing effect of the feed-
back loop in the test circuit (resistor R2 in Figure 4-9). 

Linear compensation (4-40) of the output Fourier coefficients for the parasitic power at 
the non-excited input harmonics gives the corrected output Fourier coefficients shown in 
Figure 4-11. The horizontal and oblique black lines indicate the noise standard deviation of, 
respectively, the excited and non-excited harmonics. In addition to the previous observations 
the following can be seen: 

> 
ω 

Output 

log1Q(Frequency (Hz)) 

Figure 4-11. Corrected output Fourier coefficients (4-40) -
operational amplifier (not all harmonics are shown). '+': excited odd 
harmonics, 'ο': odd non-excited harmonics, 'gray *': even non-
excited harmonics, bottom black line: noise variance excited 
harmonics, and top black line: noise variance non-excited harmonics. 
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1. Below 10 kHz the noise level of the non-excited output harmonics is much larger 
after correction (compare the oblique and the horizontal black lines). This is due 
to the input noise and the high gain of the operational amplifier. 

2. The nonlinear distortions in the corrected output spectrum are much larger than in 
the original output spectrum (compare Figures 4-10 and 4-11). Hence, the linear 
correction (4-40) opens the feedback loop. 

3. The nonlinear distortions are quite large in the band [10 Hz, 300 Hz] and de-
crease with increasing frequency. In the band [ 10 Hz, 200 Hz], the even (gray *) 
nonlinear distortions are below the noise level. 

Although the level of the nonlinear distortions in the compensated output spectrum (Figure 4-
11) quantifies correctly the level of the nonlinear distortions on the BLA measurement, the 
relationship between the true even and odd nonlinear behavior of the opamp and the level of 
the even and odd non-excited harmonics in the corrected output spectrum is valid only if ine-
qualities (4-50) and (4-52) are satisfied. 

To verify whether these inequalities are satisfied or not, the mean power spectra over 
the M = 25 experiments of the input signal u(t) and the output stochastic nonlinear distor-
tions ys(t) (level non-excited harmonics in the corrected output spectrum) are calculated at 
the even and odd harmonics. This is done via mean square averaging of the amplitudes of the 
Fourier coefficients taking into account their fill factor. Figure 4-12 shows the power ratios 
Sww,odd/Steven (black line), ^,odd/SM.,even (light gray line), and SM,even/SM,odd 
(dark gray line). The following conclusions can be drawn: 

1. Over the whole frequency band S^evei/Sj^odd (dark 8ray) i s m u c n smaller 
than £„„,odd/Steven (black) so that inequality (4-52) is fulfilled. Hence, the level 
of the odd non-excited harmonics in the corrected output spectrum (see Figure 4-
11,Ό') is a correct indication of the level of the odd nonlinear distortions. 

2. Above 1 kHz, the power ratio S ^ , odd/Sy^, even ( n 8 n t S r a v ) i s m u c h smaller than 
SMM,0dd/Sww,even (black) so that Inequality (4-50) is satisfied. Hence, the level of 
the even non-excited harmonics in the corrected output spectrum (see Figure 4-11, 
'gray *') is a correct indication of the level of the even nonlinear distortions. This 
is no longer true in the band [200 Hz, 1 kHz]. Below 200 Hz, the even output 
harmonics are at the noise level (see Figure 4-11). 

Figure 4-12. Comparison between the input signal-to-even-
distortion power ratio S™, odd/Sun, even (black), and the power 
ratio of the even to the odd 5^^ even/£>>,>>„ odd (dark gray) and 
the odd to the even S ^ 0aa^ysys, even Oight gray) distortions. 

Finally, the best linear approximation (4-39), its noise variance (4-39), and its total 
variance (4-44) are calculated from the input and corrected output Fourier coefficients. The 
results are shown in Figure 4-13: the bold black line represents the best linear approximation 
of the open loop gain, the thin black line the noise variance, and the gray line the total vari-
ance. The following observations can be made: 
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1. The total variance (gray line) is well above the noise variance (thin black line), in-
dicating that the nonlinear distortions are dominant. Hence, the non-smooth fre-
quency behavior of the amplitude and phase characteristics of the open loop gain 
is solely due to the nonlinear distortions. 

2. The nonlinear distortion (4-37) to open loop gain ratio o-s(Kxc)A^^J^kexc)\ is 
maximal at the low frequencies and decreases with increasing frequency. It indi-
cates that the operational amplifier behaves linearly for small gains and nonlin-
early for large gains. 

Note also that no information about the nonlinear distortions is available at the first two odd 
excited harmonics 1 and 3. This is due to the fact that harmonic 5 is the first non-excited odd 
harmonic, and that the distortion levels at the excited odd harmonics are obtained by (linear) 
interpolation - and not extrapolation - of the levels at the odd non-excited harmonics. 

Open loop gain 

1 2 3 4 5 
log10(Frequency(Hz)) 

Open loop gain 

1 2 3 4 5 
log10(Frequency (Hz)) 

Figure 4-13. Measured open loop gain of the operational amplifier - fast method. Bold black 
lines: amplitude (left) and phase (right), thin black line: noise variance, and gray 
line: total variance (noise + nonlinear distortions). 

4.3.4.3 Comparison with the Robust Method. The robust method (Section 4.3.1) 
starts from the M = 25 experiments with different random phase realizations of the odd ran-
dom phase multisines with fixed random harmonic grid and amplitude spectrum. The results 
are shown in Figure 4-14 (solid lines): it can be seen that the total variance (gray line) is ev-
erywhere much larger (20 dB and more) than the noise variance (thin black line). It indicates 
that the nonlinear distortions are the dominant error source in the open loop gain measure-
ment. 

Comparing Figure 4-14 to Figure 4-13, it can be concluded that both figures have the 
same qualitative information content and lead to the same conclusions. However, the noise 
and total variances in Figure 4-14 are about 14 dB lower and less noisy than in Figure 4-13. 
These two phenomena are due to the additional averaging over the M = 25 random phase 
realizations of the odd multisines in the robust method. Furthermore, in Figure 4-14, the total 
variance is available at all odd excited harmonics. 
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Figure 4-14. Comparison between the robust (solid lines) and 
fast ('+') estimates of the open loop gain. Black solid line: 
open loop gain (both estimates coincide), thin solid line and 
black '+': noise variance, and gray line and gray '+': total 
variance (noise + nonlinear distortion). 
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To verify that the fast and robust method are quantitatively equivalent, the fast method 
is applied to each of the M = 25 experiments. Next, the mean values of the open loop gain, 
its noise variance, and its total variance are calculated. Finally, the mean noise and total vari-
ances are divided by M. Figure 4-14 shows the results ('+'): it can be seen that the fast esti-
mates of the noise ('black +') and total ('gray +') variances coincide with those of the robust 
estimates (black and gray solid lines). 

4.3.4.4 FRF at the Non-excited Frequencies. For each of the M = 25 experi-
ments, the BLA is calculated at all non-excited frequencies 

ÓBLÍ(Mn„n J = ^ K n - e x c V ^ K n - e x c ) (4-53) 

where X[m\k), X = 7, U, is defined in (4-22), and with m = 1, 2, ..., M. The mean and 
variance (4-19) of (4-53) over the M = 25 experiments are shown in Figure 4-15 (horizontal 
black and gray lines). The following observations can be made: 

1. The variance of the BLA at the non-excited odd harmonics is significantly smaller 
than that at the non-excited even harmonics. The explanation follows immediately 
from Figure 4-10: the input-output odd-distortion-to-noise levels are about 20 dB 
larger than the input-output even-distortion-to-noise levels. 

2. Calculating the mean value over the frequency of GBLAC/®* ) gives 30.5 dB. 
This should be compared to the theoretical expected value 

-l/Af0(/a>) = -(Rx +Rg + R2)/(RX + # g ) * 31.0 dB 

(see (4-48) and Figure 4-16, where R2 includes the 50 Ω output impedance of 
the voltage buffer). 

The second observation is consistent with the results of Theorem 3.22 on page 94. It leads to 
the equivalent block schematic of an operational amplifier (opamp) shown in Figure 4-16, 
where the output of the opamp is modeled as the sum of two voltage sources -Av\i) and 
vs(t). The latter is uncorrelated with - but not independent of- the generator vg(t). The part 
of -Av(t) that is correlated with vg(t) contains energy at the excited harmonics only, while 
vs(t) contains energy at all harmonics. 
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Figure 4-15. Frequency response function evaluated at the excited (top black line) and non-
excited (horizontal black line) harmonics and the corresponding total variances 
(top light gray line: excited harmonics; horizontal dark gray line: non-excited odd 
harmonics; and horizontal light gray line: non-excited even harmonics). 
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Figure 4-16. Block schematic of the best linear 
approximation of the operational amplifier 
(opamp) excited by a random phase multisine 
v (/): the voltage source vs(t) of the stochastic 
nonlinear distortions is uncorrelated with - but not 
independent of- the generator v (t). 

4.4 GUIDELINES FOR MEASURING THE BEST LINEAR 
APPROXIMATION 

A first important rule is that the excitations used for the identification experiment should 
mimic as closely as possible the operational perturbations (same rms value, same power 
spectrum, same probability density function). If the operational perturbations are normally 
distributed, then random phase multisine with the appropriate rms value and power spectrum 
are well suited. Further, we distinguish two different cases: either nothing is known about the 
(possible) nonlinear behavior of the system, or it is known beforehand that the nonlinear dis-
tortions are the dominant error source in the FRF measurement. Each case leads to different 
recommendations. 

Case 1: No Prior Knowledge about the Error Sources. If it is unknown whether non-
linear distortions are present/important or not, then one should perform experiments with ran-
dom phase multisines because of their ability to distinguish noise from nonlinear distortions. 
The optimal experiment and the optimal type of random phase multisine depend on the ulti-
mate goal of the FRF measurement. 

■ Maximize the Sensitivity of the Nonlinear Detection. In this case, the noise averaging 
should be maximized for a given measurement time T and a given frequency resolu-
tion /0 of the FRF measurement. Hence, the optimal choice is measuring a maximal 
number of consecutive periods P = pTf0 (P = pTf0/2) of the steady state re-
sponse to a full (odd) random phase multisine with a random harmonic grid of 
100 x/7% excited (odd) harmonics. The measurements are processed with the fast 
method (Section 4.3.2). An odd random phase multisine is used if classification of 
the nonlinear distortions in even and odd contributions is needed. 

Minimize the Variance of the BLA Measurement. In this case, the averaging of both 
the noise and the stochastic nonlinear distortions should be maximized for a given 
measurement time T and a given frequency resolution f0 of the FRF measurement, 
while keeping the ability to quantify the noise and the nonlinear distortions. The op-
timal choice is measuring P = 2 consecutive periods of the steady state response to 
a maximal number M = Tf0/P (M= TF0/(2P)) of different random phase real-
izations of full (odd) random phase multisines. The measurements are processed 
with the robust method (Section 4.3.1). The choice between full or odd random 
phase multisines depends on the type of the nonlinearities: 

(a) Full multisines are optimal if the odd distortions are dominant. 
(b) Odd multisines are optimal if the even distortions are dominant. 
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If the odd and even distortions are of the same order of magnitude, then the informa-
tion content of the full and odd multisine BLA measurements is the same. 

Case 2: Nonlinear Distortions Are Dominant. If it is known beforehand that the non-
linear distortions are the dominant error source in the FRF measurement, then the averaging 
of the stochastic nonlinear distortions should be maximized for a given measurement time T 
and a given frequency resolution /0 of the FRF measurement. The robust method with 
P = 1 and M = Tf0 (M= Tf0/2) different experiments with full (odd) random phase 
multisines is then optimal. The choice between between full and odd multisines is the same 
as in Case 1 - minimize the variance of the BLA measurement. 

4.5 APPENDIXES 

Appendix 4.A Proof of the Nonlinearity Detection 
Properties of Random Phase Multisines 

From the Volterra theory (see (3-4) and (3-5)) it follows that even and odd nonlineari-
ties combine, respectively, an even and odd number of input frequencies. For baseband multi-
sines (the first excited frequency is fs/N), this leads to the following conclusions: 

1. If all input harmonics are excited (full random phase multisine), then - in general 
- all output harmonics are disturbed by both the even and odd nonlinear distor-
tions. Hence, at the non-excited output harmonics we detect the sum of the odd 
and even nonlinear contributions. 

2. If the even input harmonics are not excited (odd random phase multisine), then 
the even and odd nonlinear distortions appear at, respectively, the even and odd 
output harmonics (the sum of, respectively, an even and an odd number of odd 
harmonics results in, respectively, an even and odd harmonic). Hence, at the even 
output harmonics and the non-excited odd output harmonics we detect, respec-
tively, the even and odd nonlinear distortions; and the excited odd output harmon-
ics are only disturbed by the odd nonlinear distortions. 

For bandpass multisines (only the frequencies in the band [£min, kmSLX]fs/N are excited with 
^min > 1 anc* m̂ax < N/2) , the in-band output harmonics might only be disturbed by the odd 
nonlinearties. For example, if &max < 2kmin (&max < L5£min) then the second (fourth) degree 
nonlinear distortions fall outside the excited frequency band. 

Appendix 4.B Influence Generator Noise on the FRF 
Estimate 

We consider here the open and closed loop setup of Figure 4-6 where the actuator is 
nonlinear and the plant linear. The feedback dynamics remain linear. 

4.B.1 The Best Linear Approximation. Applying the definition of the BLA (3-14) 
for nonlinear systems operating in open loop gives 

GBLAO*0) - / ( ■ x " r, , . v - GoC/ω) (4-54) 
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where the second equality uses the property that the plant has linear dynamics G0(j(o). Sim-
ilarly, we find for the BLA (3-35) of nonlinear systems operating in closed loop 

GBLAO<») ~ / ,. , - g , . Λ - G0(JG>) (4-55) 

4.B.2 The Total Variance of the Best Linear Approximation. We assume here that 
the plant operates in open loop. The proof for the closed loop case follows exactly the same 
lines. The DFT spectrum of the output of the nonlinear actuator can be written as 

W = GBLA, actCMTO + W = Ux{k) + Ns(k) (4-56) 

with GBLA act(j(ok) the BLA of the nonlinear actuator and Ns(k) the corresponding stochas-
tic nonlinear distortions. To simplify the notations we will calculate the variance of the input-
output DFT spectra over the random realizations of the excitation r(/), assuming that the in-
put-output measurement noise and the process noise sources are zero. Under these assump-
tions the input-output errors are given by 

Nv(k) = Ns(k) and NY(k) = G0(jok)Ns(k) (4-57) 

with corresponding (co)variances 

a*(k) = v<iT(Ns(k)), afo) = \G00^k)\^r(Ns(k)), and 

a}v(k) = G0(yco,)var(A^)) (4-58) 

Evaluating the variance (2-25) on page 47, where the noise (co)variances are replaced by 
(4-58), and where U0(k) and Y0(k) are replaced by, respectively, U{(k) defined in (4-56) and 
Yx{k) = G00%)£/!(*), gives 

r2 <¿(k) = \G0U<s>¿\: \Go(Mk)\
2
 + _ L _ _ 2Rc( G f l ° y ) 

\ΥΧ(Κ)\* \U¿k)\* Yx{k)Ux(k); 
var(Ns(k)) = 0 (4-59) 

It shows that the stochastic nonlinear distortions Ns(k) of the nonlinear actuator do not influ-
ence the total variance (4-26) and (4-44) of the BLA estimate. 

Appendix 4.C Rationale for (4-50) and (4-52) 

The following two assumptions are made for deriving (4-50) and (4-52): (i) the phases 
of the plant input multisine are independently distributed, and (ii) the plant input signal-to-
even-distortion ratio is frequency independent. Assumption (i) is only approximately valid 
for nonlinear systems operating in open loop and driven by a nonlinear actuator, and for non-
linear systems operating in feedback (and driven by a linear actuator). In general, assumption 
(ii) will be an approximation too. Therefore, the reasoning in this appendix is a rationale and 
not a strict proof of (4-50) and (4-52). 
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4.C.1 Rationale for (4-50). The bias on the estimated level of the even distortions 
can be neglected if the sum of all stochastic nonlinear contributions of the form (4-49) satisfy 

\Zk3,k4PU(2k3 + l)l/(2*4 + l)£/(2/)|2 « | Σ * ocU{2kx + l)C/(2*2 + 1)|2 (4-60) 

where / depends on k3 and k4, and k2 depends on kx (see (4-49)), and where 

Σ , aU(2kx + l)U(2k2 + 1) = Ys9Cm(2m) (4-61) 

We elaborate now the left-hand side of (4-60), assuming that the input signal-to-even-distor-
tion ratio | U(2l + 1)| / | U(2l)\ is independent of /, and that the phases of the multisine are in-
dependently distributed. The factor U(2l) in the left-hand side of (4-60) can be rewritten as 

U{2r) = m¡+ DljggSJLj = ]U(2l+ φ ^ ι Ά . (4-62) 

Replacing U(2l) in the left-hand side of (4-60) by (4-62), taking into account that 
|E/(2/+l)|/ |i/(2/)| is independent of/, gives 

|2X^2*3 + D^*4 + D^OI2 = J g ^ p x (463) 

|Σ*»*/0(2*3 + l)í/(2¿4 + l)|[/(2/+ l ) | ^ ^ o | 2 

Since the phases of U(2l + 1) and i/(2/) are independently distributed, we can approximate 
the sum in the right-hand side of (4-63) as 

Σ ^ / £ / ( 2 £ 3 + \)U(2k4 + 1)|ϋ(2/+ 1 ) | ^ ^ 0 « 7^odd(2m + 1) (4-64) 

Collecting (4-60), (4-61), (4-63), and (4-64) and multiplying the result with \U(2m + 1)|2 we 
find 

\U(2m)\i\YSMd(2m + 1)|2 « \U(2m + \)\ψ5^η(2ηιψ (4-65) 

Taking the expected value of (4-65) and dividing by E {| U(2m)\2} gives 

vaitfkodd(2m + 1)) « § ^ | | ± ü p v a r ( 7 , 5 e v e n ( 2 m ) ) (4-66) 

Combining (4-2) and (4-10) with (4-66) finally proves (4-50). 

4.C.2 Rationale for (4-52). The bias on the estimated level of the odd distortions can 
be neglected if the sum of all stochastic nonlinear contributions of the form (4-51) satisfy 

| Σ * «0(2*, + l)U(2l)\2 « \Zk2,k^U(2k2 + 1)1/(2*3 + l)t/(2*4 + 1)|2 (4-67) 
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where the sum in the right-hand side is equal to Ys oáá(2m + 1). We now replace U(2l) in 
the left-hand side of (4-67) by (4-62), where £7(2/+ 1) is replaced by U(2l- 1), and take 
into account that 

Σ * , « ^ 2 * , + l)\U(2l- Ole^uPO * Fs>even(2m) (4-68) 

Following the same lines of Section 4.C.1, we get 

var(ys>even(2/»)) « l ^ ^ ± ü p v a r ( y S ! 0 d d ( 2 m + 1)) (4-69) 

Combining (4-2) and (4-10) with (4-69) finally proves (4-52). 



Design of Excitation Signals 

Abstract: Good experiments are the best guarantee of building good models. The selection 
of good excitation signals is an important step in the design of the experiment. In this chapter 
we explain how to get such signals. In the first part, three classes of excitations are consid-
ered: 

(i) General purpose signals that can be applied without any optimization. The only 
parameters to be selected are the bandwidth of the excitation signal and the fre-
quency resolution of the measurement. 

(ii) Optimized test signals: these facilitate excitation of the system with a user-speci-
fied power spectrum, for example, a semilogarithmic distributed spectrum. 

(iii) Dedicated test signals: these are signals with optimized characteristics for special 
situations; for example, the signal and its derivative do not exceed a user-specified 
value. 

The second part of this chapter deals briefly with: 

(i) The design of optimal power spectra so that the available power is used at the fre-
quencies where it contributes most to the knowledge of the system. 

(ii) Experiment design for control. 

5.1 INTRODUCTION 

In most system-analysis applications, the dynamic behavior of the system is derived from 
measurements of the input and output signals. In some situations the input signal is imposed 
by the environment and it is impossible to excite the device under test with an arbitrarily 
chosen input (for example, in biological systems, where the choice of excitation is very 
limited). In other situations, only binary signals may be applicable. However, in a wide vari-
ety of cases, the only restriction on input signals is that of a limitation in the permitted 
amplitude range. 

A very common method used in transfer function measurements, until the end of the 
1960s, was that of the combination of a slowly swept sine with a tracking filter. Since the de-
velopment of advanced digital signal processing algorithms, and especially since the efficient 
implementation of the discrete Fourier transform (DFT) with the fast Fourier transform 
(FFT), it became possible to use more complex input signals. Instead of exciting the un-
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known system frequency by frequency, sophisticated waveforms with a broadband spectrum 
are generated, enabling collection of all the required spectral information from a single mea-
surement. This can result in a considerable reduction of the measurement time but also in an 
undesired loss of accuracy if no precautions are taken. We will analyze the trade-off between 
accuracy and measurement time, but before starting we must choose between a nonparamet-
ric and a parametric modeling approach. In the nonparametric representation, the system is 
characterized by measurements of the frequency response at a large number of frequencies, 
whereas in a parametric model, the system is described by a mathematical transfer function 
model with a limited number of parameters. It is precisely these parameters that have to be 
estimated in the parametric modeling approach. The optimum spectrum of the excitation in 
the parametric case will be different from that in the nonparametric case: this is principally 
because the parametric model combines the information available from all frequencies in 
only a few parameters. In a direct nonparametric frequency response measurement, there is 
no relation between the measurements at the various frequencies and, therefore, the excita-
tion should be designed to achieve a predefined accuracy in the frequency bands of interest: 
for example, maximizing the absolute or relative accuracy of the measurements. In a para-
metric approach, the energy will be concentrated at the frequencies where it contributes most 
to the knowledge about the model parameters. 

To design an optimized excitation signal, it is necessary to specify the final goal. For 
the nonparametric case, we will look for signals that maximize the minimum accuracy ob-
tained in a fixed measurement time for a specified maximum peak value of the excitation: 

min(maxa¿(A:)) with max|w(/)l £ wmax (5-1) 

where F is the set of frequencies at which the frequency response is measured. In the para-
metric case, the determinant of the information matrix will be maximized, as discussed later. 

We first focus our attention on the design of excitation signals for non-parametric mea-
surements. The parametric modeling approach will be studied in the second part. 

GENERAL REMARKS ON EXCITATION SIGNALS 
FOR NONPARAMETRIC FREQUENCY 
RESPONSE MEASUREMENTS 

In this section the nonparametric frequency response function (FRF) measurement problem is 
studied. It should be clear to the reader that signals that provide good FRF measurements are 
also very well suited for use in a parametric identification step, which gives this section more 
general value. 

Before starting a detailed comparison of some candidate excitation signals, we first in-
troduce two quality measures for excitation signals. In general, these measures depend on the 
actual measured FRF and on the properties of the disturbing noise (e.g., its power spectrum). 
However, in order to simplify the discussion, we assume that we deal with flat systems (the 
amplitude of the FRF is a constant) in the presence of white noise. If necessary, we will indi-
cate how the conclusions should be modified to the general situation of arbitrary systems 
with colored noise distortions. 
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5.2.1 Quantifying the Quality of an Excitation Signal 

In Chapter 2 it was shown that the uncertainty on the FRF at co¿ after M averages is 

σ<&> M—\s77m + ̂ lk)~2Re(s77(k)) (5"2) 
SYoy0(k) SUoUo(k) ^S¥oUo(k) 

The uncertainty is inversely proportional to the total power of the excitation signal and also to 
the shape of its power spectrum. In order to have a constant variance a^(k) at all frequen-
cies, the power distribution should be proportional to the impact of the disturbing noise. This 
leads to the definition of two characteristics for excitation signals: the crest factor and the 
time factor. 

Definition 5.1 (Crest Factor): The crest factor Cr(u) of a signal u(t) is given by the 
ratio of the peak value wpeak of the signal to its rms value wrmse in the frequency band of 
interest 

max \u(t)\ 
Cr{u) = ^ = '^P with u^ = i f u\t)dt (5-3) 

with T the measurement time, uYms the rms value of the signal, Ptot the total power of the 
signal, and Pint the power in the frequency band of interest. 

The crest factor gives an idea of the compactness of the signal. Signals with an impul-
sive behavior (having a large crest factor) inject much less power into the system than signals 
having the same peak value and a small crest factor. The effective rms value « „ is used to 
express that only the power in the frequency band of interest contributes to the knowledge of 
the system. 

The time factor of an excitation signal also accounts for the power distribution of the 
signal over the frequencies. If this is unequally distributed with respect to the noise, some 
FRF points will be poorly measured. We will require that the worst measurements still reach 
a minimum quality. For the sake of general conclusions, we make the following simplifying 
assumptions: | G Q O ^ ^ I 2 , σ^(&), afá), a^k) are constant. Expression (5-1) reduces to 

°^~mm (5"4) 

and the number of averages to reach a specified variance is proportional to M~ 1/|£/(A:)|2. 
The total measurement time T is proportional to the required number of averages M. Also 
notice that Cr\u) = u^^/u^ and w 2 ^ = 2Ft/2

nse with F the number of frequen-
cies in the frequency band of interest and, t / 2 ^ = Σ*= ι l*Wl2/^)· Then 

Γ~ max — L - ~ max , Γ ^ ™ % - max €Λ%1\ (5-5) 
* \U(k)\2 k \U(k)\2U^se k \U(k)\^¡Qak 

uL* F 

and the required measurement time per frequency line for a specified peak value wpeak be-
comes proportional to 
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The proportionality factor is fixed by normalizing Tf(u) Ξ 1 for a sine wave. Thus, the time 
factor Tf(u) indicates the required measurement time per frequency point that is needed to 
guarantee a minimum SNR on the FRF measurement, and this is compared with a stepped 
sine excitation. 

Definition 5.2 (Time Factor): The time factor Tf{u) of a signal u(t) is given by 

TM = max 0 . 5 C V ( « ) i / L e / M 2 (5-7) 
k e¥ 

This result can be generalized for situations with frequency-dependent noise levels and vary-
ing transfer functions. However, it is still impossible to make general comparisons on the ex-
citation signals. The ability of the excitation signals to deal with these situations depends on 
their flexibility to impose a user-specified power spectrum. 

5.2.2 Stepped Sine versus Broadband Excitations 

In this chapter we use the time factor of the sine as a reference to qualify the broadband 
excitations. However, the reader should be aware that this quality measure deals only with the 
SNR properties of the signal. In practice, other aspects also influence the total measurement 
time. To make this clear, the measurement time of a stepped sine experiment (consisting of a 
series of single sine measurements at the desired frequencies) is compared with the measure-
ment time with a broadband excitation having the same time factor. Two extreme situations 
are considered, assuming a very good SNR the first time and a very poor SNR the second 
time. Finally, the intermediate situation is analyzed. 

5.2.2.1 Very Good SNR. For the stepped sine, the measurement time is determined 
by two elements. At least one period of the sine should be measured and, after each frequency 
step, a waiting time Tw(k) should be included, allowing the transients (of the plant and the 
measurement system) to disappear. For highly damped systems, these transients are short, but 
they are very long for lightly damped systems, as they appear, for example, in many mechan-
ical applications. For simplicity, we assume that Tw(k) is a frequency-independent constant. 
Under these conditions, the total measurement time is Tss = Σζ= \^^k + FTw f°r m e 

stepped sine and Tbs = 1/Δ/+ Tw for the broadband measurement, where Δ/ is the fre-
quency resolution (one period of the broadband measurement equals 1/Δ/). \ffk = kf0 and 
Af = f0, these expressions become 

Tss = ¿ Σ Γ = , 1 / ^ + FTW * 1(0.58 + InF) + FTW and Tbs = I + Tw 
Jo Jo Jo 

This shows that a significant gain in measurement time is obtained using the broadband exci-
tation. 

5.2.2.2 Very Poor SNR. When the SNR is poor, the measurement time needed to get 
an acceptable uncertainty is much larger than the waiting time Tw, and it is proportional to 
max\U(k)\~2 (if we assume for simplicity a constant noise level on the measurements). A 
broadband signal distributes the power over F frequencies, while a stepped sine measurement 
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keeps all power focused on one line at each partial measurement: |£/„(&)|2 = F\Ubs(k)\2. 
Hence, to get the same SNR, the measurement time at one frequency will be F times smaller 
for the single sine measurement compared with the broadband excitation measurement. How-
ever, for a single sine measurement, F measurements should be made, one after another, while 
all information is captured at once for the broadband measurement, so that, eventually, the total 
measurement time is the same. 

5.2.2.3 Intermediate Situation: Balancing the Transient Errors versus the Noise 
Errors. In general, the user faces a tricky situation with measurements of medium quality 
(for example, an SNR of 40 dB). In that case, (5-8) gives a rough rule of thumb for estimating 
the required waiting time so that the equivalent output noise errors equal the transient errors 
(Schoukens et al., 2000): 

Tw = l l n ( ^ SNR2) with SNR2 = ^ M ) _ (5_g) 
2 2T <#*) + σ2 (¿)|G(Q,)|2 - 2Re(a^(k)G(Qk)) 

with τ the dominating time constant of the system in the considered frequency band, T the 
length of the time record, and SNR expressed as the ratio of the output power Syy(j(ok) to the 
equivalent output noise. For example, for T = 10 s, τ = 1 s, and an SNR of 40 dB 
(SNR = 100), the waiting time becomes at least 3 s after each frequency change. 

Conclusion. The total measurement time required for step sine measurements will al-
ways be larger than that of broadband measurements, provided that we can design the latter 
excitations with a time factor close to 1. As the damping of a system decreases (time con-
stants increase), the SNR where the stepped sine becomes competitive increases. For most 
practical situations, the broadband measurement results in a significantly reduced measure-
ment time. For this reason, we focus completely on broadband excitations. 

5.3 STUDY OF BROADBAND EXCITATION SIGNALS 

The excitation signals are split into three classes: general purpose signals (no optimization in-
volved), optimized test signals (passing through a fully automatic optimization procedure), 
and, finally, advanced test signals that have some very dedicated properties to deal with spe-
cific situations, for example, optimizing not only the signal but also its first and second deriv-
ative (such as displacement, velocity, and acceleration). 

5.3.1 General Purpose Signals 

In this section we study and compare the properties of some general purpose excitation 
signals. This means that no special optimization is performed to deal with specific situations. 
These signals should be able to excite the system with an almost flat power spectrum in a 
user-specified frequency band. From the previous section, we know already that an optimum 
signal should have a low crest and time factor. Besides these two conditions, it is also impor-
tant that no leakage appears during the analysis of the measurements, as explained in Section 
2.2.3. Therefore, we are strongly in favor of periodic excitations. Leakage errors cannot be 
avoided if aperiodic signals are used, and it will be necessary to average over a large number 
of measurements, even if a nonuniform time window is used. This considerably increases the 
measurement time required for a specified accuracy. Bursts, or time-limited signals, are ex-
ceptions to this rule: the continuous spectra of these signals are correctly sampled with the 
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DFT if the amplitude spectrum is sufficiently band-limited for the aliasing effect to be ne-
glected (see Section 2.2.4). Six general purpose signals are considered: swept sine, also 
called periodic chirp; multisine excitation; maximum length binary sequences; white noise; 
burst white noise; and pulse testing. At the end of this section, the signals are compared with 
each other in an example. 

5.3.1.1 Swept Sine 

Definition 5.3 (Swept Sine): A swept sine (also called periodic chirp) is a sine sweep 
test, where the frequency is swept up and/or down in one measurement period, and this is re-
peated in such a way that a periodic signal is created (Brown et al., 1977). 

u(t) = A sin((at + b)t) 0<t<T0 (5-9) 

with T0 the period, a = n{k2-kx)f^ b = 2nkxf0, f0 = 1/Γ0, k2>kx e N, and kxf0, 
£2/0 the lowest and the highest frequency, respectively. 

Properties 

■ Periodic signal with period T0 = 1 / / 0 —> no leakage. 
■ Frequency resolution l/TQ. 

■ Most of the power is equally distributed in the user-selected frequency band 
[k\, k2]fo with k2 > k{ e N. 

m Crest factor typically 1.45, time factor typically between 1.5 and 4. 

Discussion. A swept sine has a low crest factor (comparable to the crest factor of a 
sine wave) but the amplitude spectrum is not actually flat (see Figure 5-5). This introduces 
frequency components with a lower SNR, resulting in a longer measurement time for a given 
accuracy. Although a swept sine can create band spectra, it is not possible to generate a signal 
with an arbitrary amplitude spectrum. A second drawback is that not only are the frequency 
lines of interest excited, but also a number of other spectral lines appear. This is unimportant 
with linear systems, but it can be very disturbing in systems with nonlinear behavior. 

5.3.1.2 Schroeder Multisine 

Definition 5.4 (Schroeder Multisine): A Schroeder multisine is a sum of harmoni-
cally related sine waves 

K0 = l L ^ c o s ( 2 7 ^ + ^ ) (5-10) 

with Schroeder phases </>k = -k(k- \)n/F and fk = lkf0 with lkeN. 

Properties 

■ Periodic signal with period T0 = 1 / / 0 -> no leakage. 
■ Frequency resolution l/T0. 

■ All the power at the user-selected frequencies that can be chosen without restriction 
on the discrete grid kf0. 

■ Crest factor typically 1.7, time factor typically 1.5. 
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Discussion. For the general purpose signal we selected a flat amplitude spectrum 
Ak = A for the harmonic components of the multisine. However, in general, the user can 
make an arbitrary choice. 

For simplicity, we also used the Schroeder phases (Schroeder, 1970). Although these 
are not optimal, they give good results for flat amplitude spectra of multisines where a suc-
cessive set of frequencies is excited. Smaller crest factors can be found by optimizing the 
phases by using a numerical optimization routine. Dedicated methods are discussed in the 
next section on optimized test signals, reducing the crest factor from, typically, 1.7 to about 
1.4. 

Remark. It is strongly advised to use FFT techniques to calculate multisine signals, 
otherwise the computation time becomes very long (see Exercises 2.1 and 2.2). 

5.3.1.3 Pseudorandom Binary Sequence 

Definition 5.5 (Pseudorandom Binary Sequence): A pseudorandom binary se-
quence (PRBS) is a deterministic, periodic sequence of length N that switches between one 
level (e.g., +1) and another level (e.g., -1). The switches can occur only on a discrete-time 
grid at multiples of the clock period Tc (k¡Tc, k¡ e N) and are chosen such that the autocor-
relation is as given in Figure 5-1 (Godfrey, 1993a, 1993b). 

1 

J A/N 

-T \T A NT 
C c T C 

Figure 5-1. Autocorrelation function of a PRBS of length N, switching between ±1. 

Properties 

■ Periodic signal with period T = NTC -» no leakage. 
■ Frequency resolution 1/71. 
■ Most of the power below 0.4/c = 0.4/Tc (see Figure 5-3). Optimal choice of the 

clock frequency fc = 2.5/max , with /max the maximum frequency of interest. 

■ Crest factor is 1 if all power is considered, time factor typically 1.5. 

Discussion. The PRBS has a spectrum whose components decrease in inverse pro-
portion to the frequency. The amplitude A(k) of the Fourier coefficient Uk of a PRBS is 
given by 

A(0) = - and A(k) = a^^-smc(kn/N) for k = 1,2, ...,N- 1 (5-11) 

with sinc(x) = sin(x)/x, 2a the peak-to-peak amplitude of the sequence, and fk = 
k(fc/N). 
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It is not possible to find a binary sequence for every arbitrary length N. However, there 
are a number of possibilities to generate these sequences, hence, there is still much freedom 
in choosing N. 

First possibility: Use a quadratic residue code method (Godfrey, 1993b). This method 
generates a PRBS with length N = 4k-I where N should also be a prime number 
(e.g., N = 3, 7, 11, 19, 23, 31, . . .). The signals can be generated by the following 
MATLAB® code: 

jt = -ones(N, l);x(mod([l:N].A2,JV)+l) = 1;JC(1)= 1 

These sequences can easily be generated, nowadays, using arbitrary waveform genera-
tors. 
Second possibility: For a long time (in the 1960s and 1970s), it was technically not pos-
sible to generate the previous sequences and for that reason other PRBS signals such as 
the maximum length binary sequences (MLBS) were preferred. These can be generated 
with the setup shown in Figure 5-2 (Godfrey, 1969, 1980, 1993b; Eykhoff, 1974; 
Norton, 1986). From all possible binary sequences that can be generated with a fixed 
register length, the MLBS has the longest period and the shortest correlation length. 
This means that the spectrum is as flat as possible. The feedback choice determines 
whether a sequence with the maximum period 

Tmax = (2«-1)TC 

is generated. Here, R is the register length and Tc is the clock period. 

(5-12) 

Because the length N (in clock cycles) does not equal 2n samples, it is not possible to apply 
a straightforward FFT analysis. Instead, the chirp-z transform can be used, which permits ef-
ficient calculation of the DFT for an arbitrary number of data points (Rabiner and Gold, 
1975; Oppenheim and Schafer, 1975). Most numerical packages can calculate the DFT for ar-
bitrary lengths. 

In Figure 5-3, details of the first lobe of the amplitude spectrum are given for an MLBS 
generated with lengths N = 15, 31, and 63. The amplitude of the individual components 
decreases with increasing length. The crest factor varies as a function of the spectral 
band (0 <f^fmSLX) in use, decreasing to 1 as the bandwidth increases to infinity. However, 
the time factor has a different behavior, as seen in Figure 5-3(b): it decreases for low frequen-
cies but increases to infinity if /max approaches fc, as the amplitudes decrease to zero at this 
frequency. The time factor is less than 1.5 if the upper limit of the frequency band is taken be-
tween 0.2 and 0.6 of the PRBS generator clock frequency. The optimal value of the upper fre-
quency limit is around 0.4/c, resulting in a time factor of 1.1 corresponding to a clock fre-
quency fc equal to 2.5 times the maximum frequency of interest. 

Clock 

I Shift register | 
T I T . I l 

register | Output 

Figure 5-2. Generation of a maximum length 
binary signal with a shift register (can be 
initialized with an arbitrary nonzero code). 
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Figure 5-3. (a) Part of the amplitude spectrum and (b) the time factor of an MLBS as 
function of the bandwidth used (0 ->fmax), lengths N = 15, 31, and 63. 

5.3.1.4 Random Noise 

Definition 5.6 (Random Noise): Random noise is a noise sequence whose power 
spectrum can be influenced by digital filters (Brown et al., 1977; Van Brussel, 1975). 

Properties 

■ Random excitation —» leakage problems. 
■ Equivalent frequency resolution \/T. 

m Shaping of the power spectrum using a digital filter. 
■ Crest factor, typically 2-3, and time factor 4.5. 

Discussion. In practice, the extreme values of the random signal are clipped (for exam-
ple, outside the 2 sigma interval) to avoid excessive peak values. The major disadvantages of 
random excitations are the leakage problems and the drops in the amplitude spectrum if only 
one realization is processed. In Section 2.6.2, we explain how to deal with these problems. 

To maximize the power injected into the system, it is advantageous to use binary noise. 
This is done by retaining only the sign of the original noise signal (Schoukens et al., 1995). In 
order to maintain the binary nature, all prefiltering should be done before the sign operation. 
Because the sign operation is a nonlinear operation, it distorts the power spectrum. Conse-
quently, it is impossible to keep full control over the power spectrum and the crest factor at 
the same time. This is illustrated in Figure 5-4. A white noise sequence is filtered, and then 
only the sign is retained so that a binary sequence is generated. The actual, realized spectrum 
is compared with the desired power spectrum. As can be seen, the power spectrum is only 
partly under control. Most of the power is injected in the frequency band of interest, but there 
is still a large fraction generated outside this band. 
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Figure 5-4. Comparison of the spectrum of a 
filtered noise sequence before and after the sign 
function. 
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5.3.1.5 Random Burst 

Definition 5.7 (Random Burst): A random burst is a noise sequence that is imposed 
on the system during the first part of the measurement sequence, and a zero input is applied 
for the rest of the measurement period (Herlufsen, 1984). 

u(t) = w(t)r(t) 

r i o < / < T\ 
w(t) = 

[0 Tx<t<T 

with r(t) 2L random variable and w(t) a window function. 

Properties 

■ Random excitation, no leakage if the system response becomes negligible before the 
end of the measurement window (Γ). 

■ Equivalent frequency resolution \/T. 

■ Shaping of the power spectrum using a digital filter. 
■ Crest factor, typically, 3(T/T{)

1/2, minimum time factor ^ 4.5777V 

Discussion. The crest factor of a random burst sequence is equal to that of the ran-
dom sequence multiplied by JT/TY. For systems with low damping factors, the relative 
width Tx/T of the burst must be very small, resulting in a high crest factor. The biggest ad-
vantage of using a random burst is that there are no leakage errors (a uniform window should 
be used to calculate the DFT). The power spectrum of a random burst is a random variable, as 
it is for a periodic noise sequence, and so the same restrictions are valid as those mentioned 
for periodic noise. 

5.3.1.6 Pulse-Impact Testing 

Definition 5.8 (Pulse): The impulse response is measured directly in the time domain 
by exciting the plant with a short pulse (Halvorsen and Brown, 1977). For example, for a sin-
gle pulse, 

[A 0 < ¿ < 7\ 

lo Tx<t<T 

with Τλ the pulse width and T the measurement period. 

Properties 

■ Deterministic excitation, no leakage if the system response becomes negligible be-
fore the end of the measurement window (Γ). 

■ Equivalent frequency resolution \/T. 

■ Shaping of the power spectrum by modifying the pulse shape. 
■ Optimal choice Tx = l /(2.5/m a x) . 
■ Minimum crest factor JT7J\, minimum time factor is T/Tx. 

Discussion. The autocorrelation of the impulse response is the same as that of the 
MLBS, so their amplitude spectra are the same. To get the same input energy, the amplitude 
must be increased by a factor of JfVT\. The minimum time factor is reached for the same 
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upper frequency limit as for the MLBS. More sophisticated impulse generation techniques 
are given by Halvorsen and Brown (1977), but the general characteristics remain the same. In 
mechanical testing, the impulse (or hammer) excitation is still popular because it can be ap-
plied very simply: no shakers or other expensive equipment are needed to create the input. 

5.3.1.7 Example: Comparison of the General Purpose Excitations. In order to get 
a better understanding of the behavior of the general purpose signals, they are compared with 
each other in this section. The aim is to excite a frequency band between 1 and 42 Hz, using 
signals with a length of 256 samples and a sampling frequency of 256 Hz. The resulting sig-
nals and their amplitude spectrum are shown in Figure 5-5. 

For the MLBS, a clock frequency of 128 Hz was used in order to get better coverage of 
the frequency band (N = 127). The peak value of every signal was scaled to one. The random 
excitations consist of filtered Gaussian noise (Butterworth filter of order 7 with a cutoff fre-
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Figure 5-5. Comparison of the general purpose excitation signals in the time (left 
column) and frequency (right column) domains. 
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quency of 42 Hz). The figure is very informative. The multisine is the only signal that exclu-
sively excites the frequency band of interest. All the other signals also excite outside this 
band. The first three signals inject considerably more power into the system than the noise 
excitations. After normalization, the power in the frequency band of interest is 1 for the 
MLBS, 0.81 for the periodic chirp, 0.60 for the multisine, and 0.08 and 0.05 for the random 
and burst random signals, respectively. The worst measurements will appear at the lines with 
the smallest amplitude spectrum. This was 0.009 and 0.004 for the random and burst random, 
0.55 for the chirp, 1.037 for the multisine, and 1.18 for the MLBS. The amplitude of the chirp 
drops only at a few border lines of the frequency band of interest; it is slightly above the mul-
tisine on most other lines. From this we can conclude that the chirp, multisine, and MLBS 
have about the same quality and the selection should be based on personal preference, techni-
cal possibilities, and second rank arguments that are important for specific situations (e.g., no 
power outside the band). The random excitations have inferior properties compared with the 
first three deterministic excitations. They are prone to leakage and inject significantly less 
power into the system, resulting in a poor SNR. 

5.3.2 Optimized Test Signals 

Whereas in the previous section we considered signals that could be applied directly, 
we consider in this section excitation signals where an iterative algorithm is needed to opti-
mize their design. Because of the continuously increasing computer power, this is not a real 
drawback. The design time runs from a few seconds for simple signals to a few minutes for 
complex signals with a few hundred frequency components. 

Two classes of signals are considered. First the design of multisine excitations with 
minimized crest factor is discussed, then optimized binary sequences are designed. 

5.3.2.1 Optimized Multisines. These are classical multisines where the user chooses 
the excited frequencies on the equidistant frequency grid kf0 and also selects the desired am-
plitude spectrum. This is the signal preferred by the authors because it gives maximal flexi-
bility combined with a minimum measurement time and a maximum quality of the 
measurements. Moreover, by making a dedicated selection of the components of the excita-
tion signal, it is even possible to detect, qualify, and quantify the presence of nonlinear distor-
tions (see Chapter 3). 

Properties 

■ Periodic signal with period T0 = 1 / / 0 —> no leakage. 
■ Frequency resolution l/T0. 

■ All the power at the user-selected frequencies that can be freely chosen on the dis-
crete grid kf0. 

■ The amplitude of the harmonic components can be freely chosen and is exactly real-
ized, no out-of-band power appears. 

■ Crest factor from 1.4 to 2, depending on the complexity of the amplitude spectrum. 

Discussion. Instead of using explicit phase relations for the multisine, a numerical 
search method is used to select optimal phases that minimize the crest factor. In the literature, 
many crest factor minimization methods have been presented. In (5-10) the explicit expres-
sions of the Schroeder phases are given, allowing a direct calculation of the phases. For mul-
tisines with a sparse spectrum, where the frequency lines are few and far apart, or for multi-
sines with an amplitude spectrum that is not flat, the Schroeder phases give no better results 
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Figure 5-6. Example of the general purpose multisine after optimizing phases, (a) Without 
snow, (b) with snow: — (reference signal without snow as in a), with snow. 

than those obtained with a random phase selection, uniformly distributed in [0, 2π) . In these 
situations, more sophisticated methods are needed and no explicit formulas are available. 
Two algorithms are proposed. The first one is a clipping procedure that cuts the largest peaks 
of the signal. The second one is based on the successive minimization of a series of 12ρ(φ) 
norms w.r.t. for increasing p 

ι2ρ(Φ) = Htj)\\2p = (γί^2η*,Φ)<ι*)2ρ 

»(*>Φ) = ΣΓ=ιΛ°ο δ( 2 πΛ'+Λ) 

(5-13) 

with φτ = [φιφ2...φρ] the phases of the multisine w(/), T0 the period of the multisine, and 
p = 2, 4, 8, 16, .... Compared with the first one, it gives smaller crest factors but needs a 
larger memory, especially for multisines with a large number of components. With increasing 
computing power, the last method becomes more and more attractive. Both algorithms are 
discussed in Appendix 5.A. 

Note: Both algorithms can be generalized easily to generate a signal with a power spec-
trum Suu(j(o) + Saa(j(o), with Suu(j(o) the desired power spectrum and Saa(j(¿) additional 
power that is added by the algorithm at other frequencies such that the crest factor of the sig-
nal decreases further (e.g., by adding additional harmonics to a sine wave, a block-like signal 
results, pushing the crest factor well below J2) (Guillaume et al , 1991). This is called 
snowing. During the calculation of the crest factor, the additional power is not considered 
when calculating wrsme. 

Example 5.9 (Flat (Snow) Multisine): The signal of the previous section is also opti-
mized with the l2p algorithm, resulting in a crest factor of 1.42 (compared with 1.67 for the 
Schroeder multisine). It is shown in Figure 5-6(a). Next, snowing was allowed on the lines 
43-255, pushing down the crest factor to 1.19. This made it possible to get 40% more power 
in the frequency band of interest, compared with the original signal, which had no snow. 
Compared with the PRBS, 19% more power is injected in the frequency band of interest. 
About 5% of the totally available power is "wasted" at the snow lines. □ 
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Example 5.10 (Quasi-Logarithmic Excitation): The advantage of the iterative algo-
rithms becomes most obvious when dealing with more complex power spectra. In this exam-
ple, a quasi-logarithmic multisine is generated, depositing the power at an almost logarithmic 
frequency grid (Nlog = 4096, /max = 0ANlog, fk+x/fk* 1.05). Each time, the frequencies 
are shifted to the nearest harmonic line. After optimization, the crest factor is 2.0 (Schroeder 
phases: 3.3) so that almost three times more power can be injected for the same peak value of 
the excitation. In this example the crest factor is reduced using the successive minimization 
algorithm (5-13). The alternative is to use the clipping algorithm (Van der Ouderaa and Ren-
neboog, 1988), but the first algorithm gives better results in a shorter time, at a cost of need-
ing a larger memory. The signal is shown in Figure 5-7. D 

5.3.2.2 Discrete Interval Binary Sequence (DIBS). The second class of optimized 
excitation signals are the discrete interval binary sequences. These are periodic binary se-
quences, where the sign can change only at an equidistant discrete set of points in time (Van 
den Bos, 1974; Paehlike and Rake, 1979; Van den Bos and Krol, 1979). The amplitude spec-
trum of the sequence can be optimized by choosing a good switching sequence so that the en-
ergy is concentrated within the frequency band of interest. 

Properties 

■ Periodic signal with arbitrary period length T0 = 1 / / 0 -> no leakage. 
■ Frequency resolution l/T0. 

■ The power is concentrated at the user-selected frequencies that can be freely chosen 
on the discrete grid kf0, but the other frequencies are also excited. 

■ The amplitude of the harmonic components can be freely chosen but is only approx-
imately realized. 

■ The crest factor depends on the complexity of the signal but is usually rather small. 

Discussion. The generation of a DIBS is based on an iterative algorithm proposed by 
Van den Bos and Krol (1979). The procedure is begun a number of times from different start-
ing values, and the best signal is retained. With a DIBS, it is possible to concentrate the en-
ergy in a discrete set of spectral lines. The crest factor is greater than one because not all of 
the power is concentrated at the frequencies of interest; but even then, most of the energy can 
be confined to the frequency band required, which is not possible with the MLBS. Paehlike 
and Rake (1979) have presented an iterative scheme for putting more of the energy into the 

Figure 5-7. Example of a quasi-logarithmic multisine on an equidistant frequency grid. 
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weakest spectral lines, thus improving the SNR and decreasing the time factor. Compared 
with the PRBS, the DIBS can be generated for any sequence length with an arbitrary power 
spectrum. 

Example 5.11 (Low-Pass Spectrum): The general purpose signal of the previous sec-
tion was also recalculated using this method and is compared with the results of the MLBS in 
Figure 5-8. The crest factor of the DIBS signal is 1.36, compared with 1.5 for the MLBS. D 
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Figure 5-8. Comparison of the spectrum of a DIBS (fc = 256 Hz, N = 256) and an PRBS 
(TV = 103, fc = 103 Hz) to generate a flat spectrum in a band 1-42 Hz. (a) Global 
view, (b) zoom on the frequency band of interest, DIBS, — PRBS. 

Example 5.12 (Bandpass Spectrum): Figure 5-9 illustrates the possibility of creating 
a bandpass spectrum using a DIBS (crest factor 1.29). Note that this is not possible at all with 
an MLBS. D 

5.3.3 Advanced Test Signals 

In this section we discuss some excitation signals with very specialized properties, for 
example, signals where the crest factor of the first or second derivative is also minimized. 
These should be used only in critical conditions, where the special shape of the excitation 
gives a significant advantage. Even for these signals, the additional design time is quite re-
stricted (from a few seconds to a few minutes), but their proper design and application re-
quires a good user's insight into the properties of these signals and their application. 

5.3.3.1 Crest Factor Minimization of Linearly Related Multiple Multisines. In 
some problems, it is not sufficient to keep the crest factor of the excitation low; the system 
output should also have a small crest factor. In other applications, the signal and its first or 
second derivative should be small. For example, in mechanical systems the acceleration 
should be restricted in order to avoid excessive forces, while excessive displacements are 

Figure 5-9. Spectrum of a DIBS (fc = 256 Hz, 
TV = 256) designed to generate a flat spectrum 
in the band 40-60 Hz. 
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TABLE 5-1 Crest Factor Minimization of u(t) and cfu(t)/dt2 

Crest Factor Input Crest Factor Output 

Input min. (5-13) 1.39 2.85 

Input/output min. (5-14) 1.61 1.63 

avoided to keep the stroke of the shaker small and to maintain a linear behavior of the system. 
Again, it would be useful if the crest factor of both signals is minimized at the same time. 

The l2 crest factor minimization algorithm of the previous section makes it possible to 
optimize multiple multisines linked by linear systems, e.g., 7(/ω) = G(j(o)U(j(ü). Crite-
rion (5-13) is generalized to 

\W(t, Φ) y(t, Φ) 
wrms ^rms 2P U v Mrme . /rms 

^F (5-14) 

y(t,<f>) = Zk=lM
Go(Qk)\^s(2nfkt+ 4>k + ZG0(Qk)) 

with φτ = [φχφ2...φρ], ^k = J®k f°r continuous-time systems and Clk = e~J(°kTs for 
discrete-time systems. In Guillaume et al. (1991), it is shown that the minimum of (5-14), 
with respect to φ, for p growing to infinity results in two multisines with equal and mini-
mum crest factors. Sometimes, it is more advantageous to minimize the scaled peak values of 
both multisines, allowing optimal use of the full scale of the measurement equipment. This is 
done by minimizing 

(5-15) 
2p 

with S a scaling factor. When S is chosen as the ratio of the rms values, signals with equal 
crest factors are obtained. Clearly, when S is chosen too large (or too small), the problem re-
duces to the minimization of \\u(t, φ)\\2ρ or \\y(t, φ)\\2ρ. 

Example 5.13 (Crest Factor Minimization of Linearly Related Multisines): A 
multisine u(t) with F = 512 consecutive components is designed to have minimum crest, 
together with its second derivative d2u(i)/dt2. Table 5-1 gives the crest factors that are ob-
tained using l2p and the resulting output signals d2u(i)/dt2 are shown in Figure 5-10. As 
can be seen, the crest factor is reduced to 60% of its original value. In the case of a mechani-
cal system this allows a significant reduction of the forces and, hence, the dimensions and the 
cost of the shaker used to generate the signals. □ 

5.3.3.2 Multilevel Excitation Signals. The DIBS (see Section 5.3.2) is a binary se-
quence that excites two levels only. In some applications, ternary signals can be used (e.g., 
levels - 1 , 0, 1), allowing greater flexibility during the design. In general, this leads to the fol-
lowing results: 

The total power of the signal decreases: since the signal is set equal to zero at some 
points (instead of-1 or 1), it is clear that less power is available in the design. 
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The out-of-band power is reduced: the greater flexibility due to the additional level 
gives better control over the power spectrum. This makes it possible to reduce the out-
of-band power. 
The lowest in-band level is about the same: although less power is generated, the low-
est amplitude at a frequency line of interest remains almost the same. This guarantees 
that the minimum uncertainty of the measurement will be the same for binary and 
three-level signals. However, by using the ternary signal, less power is wasted. 

The design of multilevel signals is extensively discussed by McCormack et al. (1995) and 
Barker and Zhuang (1997). 

5.3.3.3 Harmonic Suppression. In Section 4.2 it was shown that periodic signals 
with an odd (spectral lines 2 k + 1 present) spectrum with randomly selected non-excited odd 
harmonics make it possible to eliminate the even nonlinearities and detect the presence of 
odd nonlinearities. Such signals can easily be obtained from multisines where the amplitudes 
of the corresponding lines are put to zero. It is also possible to create such signals from binary 
(Tan et al., 2005) and ternary (Tan et al., 2009) sequences. The inversely repeated sequence 
[w(0, -w(0] has no even components in its spectrum. Using multilevel designs (Barker and 
Zhuang, 1997), it is also possible to suppress the second and third harmonics of a set of spec-
ified primes. Finally, it is also possible to design sparse harmonic multisines that facilitate a 
direct probing of the second and third degree Volterra kernels (Evans, 1998; Boyd et al , 
1983) with a minimum interference. 

5.4 OPTIMIZATION OF EXCITATION SIGNALS 
FOR PARAMETRIC MEASUREMENTS 

5.4.1 Introduction 

Here, the parametric measurement problem is studied. We will concentrate on the pa-
rameters Θ of the mathematical model G(Qh 0), with Ω^ = ycô . for continuous-time sys-
tems and Qk = e~J(SikTs for discrete-time systems, which describes the measured transfer 
function G0(nk). To fit the model G(nk, Θ) on the measurements G(Qk), a cost function 
V(0, Z), with Z a vector containing the measured input-output DFT spectra, which is an in-
dication of the quality of the fit, is minimized. As explained in Chapter 1, a simple and very 
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Figure 5-10. The second order derivative of a multisine with minimum crest factor (a) 
and input-output optimized crest factor (b). 
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popular choice for V( θ, Ζ) is the least squares cost function in which the squared differences 
between the model and the measurements are summed together. Another possibility is to em-
bed the choice of the cost function in a statistical framework, as done for the maximum like-
lihood (ML) estimator, resulting in a weighted least squares estimator if the disturbing noise 
is normally distributed (Chapter 1). The quality of the estimates strongly depends on the exci-
tation signals applied during the experiment. As in the nonparametric case, the excitation sig-
nal will be optimized in two steps, the first being the selection of an optimized power spec-
trum followed by a crest factor minimization of the involved signals in the second step. 

To optimize the input spectrum, we need a scalar criterion that is sensitive to the accu-
racy of all the parameters of the system. The determinant of the covariance matrix, which is 
equal to the volume of the uncertainty ellipsoid, is such a criterion. 

A range of criteria, other than the determinant, can be found in the literature, optimiza-
tion of the trace being the most popular. For the sake of brevity, we limit ourselves in this text 
to examining the minimization of the determinant of the covariance matrix. For more infor-
mation on other criteria, the reader is referred to other publications (Federov, 1972; Goodwin 
and Payne, 1977; Zarrop, 1979; Walter and Pronzato, 1997). 

For computational simplicity, the covariance matrix is approximated by the 
Cramér-Rao lower bound (inverse information matrix) because the latter is easier to calculate 
(Chapter 1). General expressions of the information matrix can be obtained (without specify-
ing an estimator) and the problem of minimizing the determinant of the covariance matrix is 
replaced by maximizing the determinant of the information matrix. This approximation is 
valid if the covariance matrix of the actual estimator approximates the Cramér-Rao lower 
bound sufficiently close for the considered experiments. 

5.4.2 Optimization of the Power Spectrum of a Signal 

5.4.2.1 Preliminary Aspects. The information matrix is the kernel of optimizing al-
gorithms. It is a real symmetric and semipositive definite ηθ χ ηθ matrix, where ηθ is the 
number of unknown model parameters. Each optimal design in the frequency domain can be 
reduced to a design consisting of a discrete set of ηθ(ηθ + l ) / 2 + 1 frequencies (Federov, 
1972; Goodwin and Payne, 1977), which corresponds to the number of free parameters in a 
symmetric ηθ x ηθ matrix + 1. The minimum number of frequencies required to avoid a non-
singular information matrix is mt(n0/2) (with int(x) the integer part of x). When using 
classical optimizing algorithms, the computer time needed to search for an extreme value de-
pends strongly on the number of frequencies. From a modeling point of view, however, the 
minimum number is undesirable, because if an estimate of ηθ parameters is made using 
mt{ne/2) frequencies, there is no possibility of detecting model errors. A second drawback 
of working with the minimum number of frequencies is that it is more difficult to compress 
the signals in the time domain. 

Most algorithms presented in the literature searched for optimal designs with the mini-
mum number of frequencies. We present a method for designing optimal power spectra based 
on a discrete frequency grid: this is not in itself a restriction because we look for periodic sig-
nals that have discrete spectra. This will lead to a significant reduction of the computation 
time. The method can be applied in the Laplace domain (continuous-time systems) as well as 
in the z-domain (discrete-time systems). In order to stress this equivalence, we use Ω as the 
frequency variable in the following interchangeable manner: Ω = y'co (Laplace), or 
Ω = e~J(S>Ts (z-domain). The following function is used in the optimization algorithm. 
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Definition 5.14 (Dispersion Function): The dispersion function ν(χ, Qk) for a given 
input power spectrum χ(Ω) = (\U(1)\2...\U(F)\2), with £ [ = χ \U(k)\2 = p is 

ν α , Ω , ) = trace([F/U)]-i//(Q,)) 

with Fi(X) the information matrix resulting from the design 2{Ω), fi(Clk) the information 
matrix corresponding to a single frequency input with a normalized power spectrum 
\U(k)\2 = p , and Ω^ the frequency. 

The dispersion function has the following properties: 

■ The dispersion function can be related to the input and output noise on the measure-
ments (Schoukens and Pintelon, 1991) as 

vtf, Ω,) = ^ , * ) p 2 - (5-16) 
a2(k)\G(Qk)\

2 + afrV-lReia^WGin,)) 

with σ^ (Clh Θ) the uncertainty on the transfer function using the Cramér-Rao lower 
bound as covariance matrix for the model parameters. The dispersion can be inter-
preted as the ratio of the variance of the system frequency response, calculated with 
the estimated parameters, to the noise power of the measurements referred to the 
output of the system at the frequency Q¿. 

■ The dispersion function is a normalized quantity (Goodwin and Payne, 1977): 

IL.^^)M = W, (5-17) 

■ The maximum of the dispersion function v(Z, Ω^) over the frequency grid is larger 
than or equal to the number of parameters ηθ (Goodwin and Payne, 1977). 

These three properties will be used in the algorithm for designing an optimized excitation signal. 

5.4.2.2 An Efficient Algorithm for Maximizing the Information Matrix. Although 
the optimal input may be found analytically for simple situations, in general, no closed form 
solution can be found. Therefore, an iterative design is required. Most algorithms carry out a 
search in the continuous frequency space to find the frequency with the maximum dispersion 
and then add extra energy at this frequency. The resulting spectrum is normalized, and the 
procedure is repeated until the variations are negligible. More sophisticated algorithms com-
bine this procedure with a mechanism that removes components from the spectrum (Federov, 
1972; Zarrop, 1979). The search for a maximum is very time consuming, and the final spec-
trum is difficult to generate because the optimal frequencies are not harmonically related. For 
these reasons, it is better to reduce the frequency space to a discrete set of frequencies in the 
analysis; the implications of this restriction for the attainable accuracy are studied in more de-
tail by Van den Eijnde and Schoukens (1991), and it turns out that there is no significant loss 
in attainable accuracy if the discrete set of frequencies is sufficiently dense. 

In general, any discrete set of frequencies can be used, but if only periodic signals are 
retained, it is obvious that the selected frequencies should be harmonically related. For the 
initial design, the simplest first choice is that of equally spaced spectral lines within the fre-
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quency band of interest, with the total fixed input power uniformly distributed over the F 
frequencies in this set. The resulting spectrum constitutes the initial design χ0. The response 
dispersion function ν(χ0, Qk) is computed for every spectral line Qk in the set, and the 
available power is redistributed over all spectral lines proportionally to the corresponding 
values of the dispersion function. The optimal input is found by repeating this procedure; the 
iteration can be stopped when the variation of the determinant of the information matrix is 
small. This method was described in the late 1970s (see Walter and Pronzato, 1997, pp. 305-
306, and the references therein). If we express this approach in mathematical terms, we end 
up with an algorithm with the following consecutive steps: 

Algorithm 5.15 (Optimization Power Spectrum) 

1. Initiation: 
Select a set F of F frequencies Ω1? ...,QF within the frequency band of interest: 
F = {Qj, . . . ,QF}. Distribute the input power equally over these F frequencies. 
This constitutes the initial design χ0. 

2. Iteration: 

2a. Set /' = /'+ 1 and compute the response dispersion function v(zh Qk) for 
* = 1,...,F. 

2b. Compose a new design in the following way: 

Xi+l(nk) = Zi(nk)v(zi9nk)/n0 for k = l, . . . ,F (5-18) 

2c. If max(v(^, Ω .̂) - ηθ) < ε with ε sufficiently small and Ω^ e F, then the 
optimum design is found; otherwise go to step 2a. 

Proof. See Van den Eijnde and Schoukens (1991) and Delbaen (1990). D 

It has been shown (Walter and Pronzato, 1997; Delbaen, 1990) that each run of this al-
gorithm yields a superior input design and that consecutive designs converge monotonously 
to a design with the optimum dispersion function and, hence, the minimum determinant of 
the Cramér-Rao bound (= D- optimality). 

5.4.2.3 Importance of Crest Factor Minimization. In a second step, after the selec-
tion of the power spectrum, the crest factor of the corresponding multisine(s) should be mini-
mized. To compare different excitations, it is necessary to scale the determinant of the 
Cramér-Rao lower bound and the dispersion function with the optimized crest factor so that 
all signals are compared for the same peak value. 

det(Ctfscaled(0)) = det(Ctf(0))Cr2**(W) (5-19) 

5.4.2.4 Practical Implementation. It is obvious that the calculation of the optimum 
amplitude spectrum is possible only if enough knowledge of the system is available. In most 
situations, a two-step procedure is required, restricting the applicability of these methods sig-
nificantly. In the first step, the unknown parameters are estimated using a multisine with a flat 
amplitude spectrum; in the second step, these estimated values are used to optimize the am-
plitude spectrum. The covariance matrix of the estimated, unknown model parameters should 
be close enough to the Cramér-Rao lower bound. 
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Figure 5-11. Amplitude transfer characteristic of the studied system. 
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5.4.2.5 Example: An Experimental Verification. The power spectrum optimization 
for a parametric measurement is illustrated in the following example: 

G0(s) 
b2s

2 + b3s
3 + b4s

4 

a0 + axs +... + a6s
6 (5-20) 

The coefficients are given in Table 5-2 and the corresponding amplitude characteristic is 
given in Figure 5-11. The system is excited with a multisine at the frequencies fk = kf0, with 
k = 25, 26,..., 100 and /0 = 50/2048 MHz. The rms value of the multisine is set equal to 
1/72. Two multisines are considered, the first one having a flat amplitude spectrum and the 
second one being optimized on the basis of the procedure described before. The evolution of 
the power spectrum optimization process is given in Figure 5-12. The optimization is stopped 
before the final convergence is reached (after three iterations) to avoid signals with a sparse 
spectrum. These are very difficult to compress and have a large crest factor. From (5-19) it is 
seen that this would jeopardize the accuracy gain that is obtained with the design of an opti-
mal spectrum. In this example the determinant of the corresponding Cramér-Rao lower 
bound was reduced with a factor 43 after three iterations. 

The crest factors or peak values of the multisine at the input and output are minimized us-
ing the l2p algorithm (5-15) and the results are given in Table 5-3. Three situations are consid-
ered: 

■ Minimization of the crest factor of the input signal 
■ Simultaneous minimization of the crest factors of the input and output 
■ Simultaneous minimization of the peak values of the input and output 

For our purpose, the last possibility is the most interesting because it will determine the set-
tings of the full scale of the measurement instruments. In Table 5-3, it is seen that the peak 
values of the multisine, with the optimized power spectrum, are equal to those of the multi-
sine with flat power spectrum (optimization c). So the settings of the measurement instru-

TABLE 5-2 Coefficients of the Transfer Function of the Sixth-Order 
Continuous-Time Bandpass Filter 

8.973e-10 5.5155e-12 3.2010e-17 

2.5017e-4 3.5869e-7 5.5550e-ll 3.36031e-14 2.5351e-18 1.0131e-21 
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Figure 5-12. Evolution of the power spectrum 
optimization process. 

ments can remain the same for both excitations, and, consequently, the noise on both 
measurements will be equal. However, the uncertainty on the estimated parameters will be 
smaller in the second case because the determinant det(F/(0)) is much smaller than in the 
first case, resulting in a smaller uncertainty on the calculated transfer characteristics. 

From experimental tests, it turned out that these signals can be generated in practice; 
small disturbances at the amplitudes or the phases in the generator (and reconstruction filter) 
do not result in an excessive growth of the crest factor. In Figure 5-13(b) measurements of the 
calculated multisines are given. They were generated with a 12-bit arbitrary waveform gen-
erator with 2048 points in one period (sampling frequency 20 kHz). The generator was fol-
lowed by a reconstruction filter (a Cauer filter with a cutoff frequency of 2 kHz). No phase 
or amplitude compensation was made for the distortion introduced by the reconstruction fil-
ter. If this amplitude/phase distortion becomes disturbing, it is always possible to give a pre-
compensation to the amplitudes/phases of the multisine. The measurements were made with 
an 8-bit digitizer (full scale ± 1 V) at 512 points with a sampling frequency of 5 kHz. 

Figure 5-13(a) compares the uncertainty σσ(ΩΑ:, Θ) on the estimated transfer function 
model in case a multisine with a flat and an optimized amplitude spectrum is used. These re-
sults were experimentally verified using the setup described before. Sixty measurements 
were made to measure the standard deviation of the FRF measurement. The results are shown 
in Figure 5-13(b). It is obvious that this result is relevant only if the model errors of the para-
metric model in the identification step are smaller than the identification uncertainty due to 
the noise. 
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Figure 5-13. Comparison of the model uncertainty with the flat and the optimized power 
spectrum, (a) theoretical (scaled) results, (b) experimental results. 

5.5 EXPERIMENT DESIGN FOR CONTROL 

Although experiment design has a long history (see, for example, Mehra, 1974; Goodwin and 
Payne, 1977), it was only in the late 1990s that the field obtained a renewed interest (Antou-
las and Anderson, 1999; Gevers, 2005). Most approaches (see, for example, Gevers and 
Ljung, 1986; Forssell and Ljung, 2000b) focus on designing a power constrained input signal 
(input spectrum) that minimizes some control-oriented criterion (e.g., model mismatch be-
tween the nominal and actual closed loop system). In practice it boils down to finding the 
constrained input signal that minimizes a measure of a control-oriented model uncertainty 
set. A dual point of view for the optimal experiment design problem has been formulated. It 
looks for the least costly identification experiment that gives an uncertainty set lying within a 
given maximum allowable control-oriented model uncertainty measure (see, for example, 
Bombois et al., 2006; Barenthin and Hjalmarsson, 2008). The identification cost can be mea-
sured as the input energy, or the experiment time, or the performance degradation during ex-
perimentation due to the additional excitation signal, or a combination of these. 

As is the case for the power spectrum optimized signals (see Section 5.4), the optimal 
control-oriented experiment can only be calculated if the true system is known. Hence, an it-
erative procedure is needed. The reader is referred to the literature for the algorithmic details 
(see, for example, Bombois et al., 2006; Barenthin et al., 2008). 

TABLE 5-3 Crest Factor or Peak Value Minimization of Two Multisines Related by (5-20) 

Crest Factor 

Flat input power spectrum 
a 1.459 
b 1.667 
c 1.509 

Input 

Optimized input power spectrum 
c 1.459 
b 1.582 
c 1.508 

Peak Value 

1.031 
1.170 
1.067 

1.031 
1.118 
1.066 

Crest Factor 

2.749 
1.667 
2.065 

1.860 
1.582 
1.643 

Output 

Peak Value 

1.418 
0.862 
1.067 

1.200 
1.026 
1.066 

a: minimization of the crest factor of the input 
b: simultaneous minimization of the crest factors of the input and output 
c: simultaneous minimization of the peak values of the input and output 
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5.6 APPENDIX 

Appendix 5.A Minimizing the Crest Factor 
of a Multisine 

5.A.1 Clipping Algorithm. In Van der Ouderaa et al. (1988a, 1988b) an iterative 
method has been developed to optimize the phases. The method is very close to an algorithm 
presented by Van den Bos (1987). The basic idea behind this method is a clipping procedure, 
which is illustrated in Figure 5-14. For a given amplitude spectrum, a time signal with a min-
imum peak value has to be found. The iteration procedure is started from the specified ampli-
tude spectrum, and arbitrary phases are taken as starting values. Using the inverse Fourier 
transform, the signal is calculated at a set of discrete equidistant times. A new time signal is 
then generated by clipping off all the values larger than a given maximum, and the new mod-
ified spectrum and phases are calculated using the FFT. These new phases are retained as a 
first approximation to the solution, but the modified amplitude spectrum is rejected in favor 
of the original one. This procedure is repeated until no further significant reduction of the 
crest factor is obtained. During the iteration process, the clipping level is changed from a low 
value in the beginning (e.g., 0.7 wmax) to almost no clipping (e.g., 0.999 wmax) at the end of 
the process, for strongly compressed signals. In general, the algorithm needs a few hundred 
iterations to obtain useful signals (for example, a flat multisine with a crest factor of 1.5), but 
in order to obtain near-optimal crest factors (of 1.4) a few hundred thousand iteration steps 
are more likely to be required. This algorithm is called the clipping algorithm. 

5.A.2 Infinity Norm Algorithm. In Guillaume et al. (1991) an algorithm has been 
developed based on the minimization of the l2p norm 

ι2ρ(Φ) = Ηι,φ)\\2ρ = [^\^ρ{ί,φ)ώ)2ρ 

u(t, φ) ΣΓ=Λ0 0 8(2 πΛ'+^) 
(5-21) 

with T0 the period ofthe multisine and p = 2 ,4,8, 16,.. . . It is shown that the 12ρ(Φ) norm 
is equal to 

hp(0 = (jf If:d«2 ρ«Τ» Φ))Τρ ifN>2pfmaxT0 + 1 (5-22) 
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with /m a x the maximum frequency occurring in the multisine and N the number of samples 
in one period. Condition N>2pfmaxT0 + 1 in (5-22) expresses that no alias contribution may 
appear on the DC component. 

The l2p norm is minimized with respect to the phases using a Marquardt algorithm for 
values ofp that are gradually increased during the iteration process. This defines a descent al-
gorithm that converges to a local minimum. From our experiences, it turned out that the 
results of this algorithm were better than those obtained with the previous method. In prac-
tice, conditions (5-22) may be violated as long as a sufficiently large number of points is con-
sidered (e.g., N> 16/maxr0 + 1), leading to a significant reduction of the calculation time. 



Models of Linear 
Time-Invariant Systems 

Abstract: This chapter presents the nonparametric and parametric system (signal) and noise 
models used throughout this book. The models are described in the frequency domain 
and cover linear time-invariant discrete-time systems (z- domain), continuous-time systems 
(s- domain), diffusion phenomena (Js- domain), commensurate microwave systems 
( tanh^s)) , and damped (complex) exponentials. The classical transfer function models 
describing the relationship between the DFT spectra of the input and output signals are 
valid for periodic and time-limited signals only. These models are extended to arbitrary 
excitations for discrete-time and continuous-time systems. Extended transfer function mod-
els are also derived in case samples are missing at the input and/or output signals. The 
identifiability issues of the different models are discussed and generalizations to the mul-
tivariable case are given. The basic concepts of linear system theory are assumed to 
be known. Textbooks on the topic are by Oppenheim et al. (1997), Kailath (1980), and 
Kwakernaak and Sivan (1991). 

6.1 INTRODUCTION 

Although most real-life processes are nonlinear and time variant, they can often be approxi-
mated very well by linear time-invariant systems. Linear time-invariant continuous-time sys-
tems are described by differential equations (finite dimensional or lumped systems) or partial 
differential equations (infinite dimensional or distributed systems) with constant coefficients. 
The transfer function between the input u(t) and the output y(t) of the process is calculated 
assuming that the initial conditions are zero. 

Example 6.1 (Lumped Continuous-Time System): Consider the LC resonator of 
Figure 6-1. 

The input of the system is the voltage source u(t) and the output is the voltage y(t) 
across the capacitor. Both are related by a second-order differential equation, 

LC^m+y(t) = u(t) (6.!) 
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"(0 y(t) 

Figure 6-1. LC series resonator. 

Taking the Laplace transform of (6-1), assuming that the initial conditions are zero 
(K0) = 0 andy(0) = 0), gives the transfer function 

G(S) = m = 1 
U(s) l+LCs2 (6-2) 

Note that G(s) has one complex conjugate pole pair s = ±j/jLC on the imaginary axis. D 

Example 6.2 (Distributed Continuous-Time System): Consider the clamped beam 
of Figure 6-2. 

y(x, t) 

u(t) 

x = 0 
Figure 6-2. Longitudinal vibrations of a 
clamped beam. 

The input of the system is the force per unit area u(t) and the output is the longitudinal dis-
placement y(x, i). Both are related by a second-order partial differential equation, 

d2y(x, t) = Ed2y(x, i) 
dt2 P dx2 (6-3) 

with boundary conditions y(0,t) = 0 and dy(x, t)/dx\x = l = u(t)/E. E, p are, respec-
tively, the elasticity modulus and the density of the beam. The transfer function between the 
force per unit area u{t) and the longitudinal displacement at the end of the beam y(l91) is cal-
culated, assuming zero initial conditions y{x, 0) = 0, dy(x, t)/dt\t = 0 = 0. We find 

G(s) = 
Y(l, s) = /tanh(rc) 
U(s) E TS 

(6-4) 

with T = Jpl2/E. Note that G(s) has an infinite number of complex conjugate pole pairs 
s = ±j(2k+ 1)π/(2τ), h N on the imaginary axis (see Exercise 6.1). According to the 
Mittag-Leffler theorem (Henrici, 1974), (6-4) can be expanded in an infinite series of partial 
fractions (see Exercise 6.2) 

00 

£ ^ η ( " ) 2 + (π(2£+1)/2)2 
(6-5) 
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Because the active frequency range of \2/((TS)2 + (n(2k+ 1)/2)2)|5=7·ω is limited, it 
follows from (6-5) that, within a given frequency band, (6-4) can be approximated very well 
by a rational transfer function of finite order in s. D 

The conclusions of Example 6.2 are valid for most physical infinite-dimensional pro-
cesses: their irrational transfer functions have an infinite (countable) number of poles (those 
at infinity included) and can be approximated well in a limited frequency band by a rational 
form of finite order in s. The advantage of using a rational approximation is that the form of 
the model is robust w.r.t. (small) changes in the geometry and/or the boundary conditions. 
This is not the case for the irrational transfer function models, because they must be recalcu-
lated for each particular geometry and boundary condition. The disadvantage of the rational 
approximation is that the model contains too many parameters; for example, the irrational 
transfer function (6-4) has two independent parameters while a rational approximation of or-
der two uses five independent parameters. 

The irrational transfer functions of systems where diffusion phenomena such as mass 
or heat transfer are important are very often a function of */s. For such systems it might be a 
good idea to use a rational approximation in Js instead of s (see, for example, Pintelon et 
al., 2005). Examples of such systems are electrochemical processes where the charge trans-
port, controlled by diffusion, is modeled by an impedance (Warburg impedance) that is pro-
portional to *fs (Wang, 1987). Practical applications can be found in visco-elasticity (Baker 
et al., 1996), mechanics (Sakakibara, 1997), electrochemistry (Durbha et al., 1999), heat con-
duction (Battaglia et al., 2001), and control (Moreau et al., 2002). 

The irrational transfer functions of lossless commensurate microwave devices are a ratio-
nal function of the Richards variable S = tmh(TRs) (Rizzi, 1988). For real (lossy) microwave 
devices it might be a good idea to use rational approximations in tmh(TRs) instead of s. 

When a lumped continuous-time system is excited by a piecewise constant signal, then 
there exists a discrete-time model that, exactly, describes the input-output behavior of system 
at the sampling instances (see Example 6.3). This result is used in control applications where 
the input of the system (plant) is the piecewise constant output of a digital controller. 

Example 6.3 (Discrete-Time System): Consider a lumped continuous-time system 
(see Figure 6-3) excited by a piecewise constant excitation signal 

^zohW-zr=owWzoh^-r^) <6-6) 

with zoh(0 = 1 for / e [0, TS) and zoh(i) = 0 elsewhere. The Laplace transform of the 
output X 0 equals 

F ( s ) = ^ ) ( l _ z - . ) C / ( z ) | sT¡ (6-7) 
S \z = e s 

with U(z) the Z-transform of the samples u(k). Applying the residue formula (Selby, 1973) 

- £ ► y(t) Figure 6-3. Lumped continuous-time system excited wzohW 
by a piecewise constant signal. 

G(s) 



Chapter 6 ■ Models of Linear Time-Invariant Systems 

''zohiO 
L(s) 

u(t) 
—>· G(s) 

y(t) 
Figure 6-4. Cascade of continuous-time 
systems excited by a piecewise constant signal. 

Z{Y(s)} = Σ Res(—^Tfc) ) 
poles Y(s) z-e 

(6-8) 

to (6-7), we find the Z-transform of the sampled output y(kTs) 

Y(z) = (l-z-l)U(z)Z{G(s)/s} 

It follows that there exists a discrete-time model with transfer function 

(6-9) 

GZOH(Z-') = m/U(z) = ( l -z- i )Z{G(5)A} (6-10) 

that exactly describes the input-output behavior of the continuous-time model at the sampling 
times t = kTs. Formula (6-10) is known as the step-invariant transformation. Result (6-10) 
can be generalized to the cascade of two systems (see Figure 6-4). However, in this case the 
discrete-time model relating the sampled input u(t) to the sampled output y(t) of the plant 
G(s) 

Gd(z-') = Y(Z)/U(Z) = m m = Ζ%?5*??> (6-11) 
U(z)/R(Z) Z{L(s)/s} 

depends on the characteristics of the preceding system L(s) (see Exercise 6.4). D 

The results of Example 6.3 can be generalized to a certain class of nonlinear continu-
ous-time systems. If a continuous-time Volterra system is excited by a piecewise constant sig-
nal, then there exists a discrete-time Volterra model that, exactly, describes the input-output 
behavior of the system at the sampling instances (see Example 6.4). 

Example 6.4 (Nonlinear Discrete-Time System): The output y(t) of a time-invariant 
continuous-time Volterra system can be written as 

Á0 = ΣΙ=Μ^ 
(6-12) 

with u(i) the input, ya(t) the nonlinear contribution of degree a,and ga(rx, ..., τα) the mul-
tidimensional impulse response of degree a (Schetzen, 1980). Note that ya(t) is written as a 
multidimensional convolution of ga(r l s ..., τα) with the input. The contribution of degree a 
in (6-12) can always be written as 

00 H^Ts "aTs 

ya(t)= £ J ... J ga(Tl,...,Ta)u(t-Tl)...u(t-Ta)drl...dTa (6-13) 
ηλ,...,ηα= 1 {nx-\)Ts {na-\)Ts 
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Evaluating (6-13) at t = kTs for piecewise constant inputs uzoh(t) (6-6), taking into account 
that uzoh(kTs - τ) = u(k-n) for τ e ((n - 1)7¡, nTs ], gives 

(6-14) 
ya(

kTs) = Σ gazoÁn\in2>'->na)<k-n\)<k-n2)-'Mk-na) 

nltn2,...,na = 1 

where gazoh(nv n2, ..., na) is defined as 

nlTs naTs 

S«zohO*l>···^) = \ '·· j 8α(τ\>->τα)άτ\-άτα (6"15) 
{nx-\)Ts {na-\)Ts 

Equation (6-14) is a shift-invariant discrete-time Volterra model (Brillinger, 1981) that ex-
actly describes the input-output behavior of the time-invariant continuous-time Volterra sys-
tem (6-12) at the sampling times t = kTs. 

Note that the Z-transform of the linear contribution in (6-14), 

y\(kTs) = ΣΓ1=1«1ζώ(ΛΐΜ*-Λΐ) WÍthSlzoh("l) = J(
,l1

1l1)2;^l(rl)£/rl 

is exactly (6-9) and (6-10). □ 

We conclude from Examples 6.1 to 6.3 that rational transfer function models of some 
generalized frequency variable are appropriate for describing a broad class of (in)finite-
dimensional linear time-invariant systems. The stable and minimum phase regions of the 
poles and zeros in the s-, z- and */?- domains are shown in Figure 6-5 (proof: see Appendix 
6. A). It follows that the impulse response of a stable s- or z- domain system decreases expo-
nentially to zero while that of a stable Js- domain system decreases algebraically to zero as 
an 0 ( r 3 / 2 ) . For unstable systems (s-, z- and J~s- domains) the impulse response growths 
exponentially (proof: see Appendix 6.A). In what follows, we discuss several possible pa-
rameterizations of transfer function models and establish the relationship with the discrete 
Fourier transforms (DFTs) of the input and output signals. 

For lumped continuous-time and discrete-time systems the transfer function models, 
and their relationship with the input-output DFT spectra, are obtained by taking, respectively, 
the Laplace transform of the following differential equation: 

Figure 6-5. Gray area: stable and minimum phase regions of, respectively, the poles and zeros. 
s -domain: Re(s) < 0, z -domain: \z\ < 1, and Js -domain: \zjs\ > π / 4 . 
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and the Z- transform of the following difference equation: 

If the system is proper, na>nb, then (6-16) and (6-17) can be written under their state space 
representation form as, respectively, 

^Φ- = Ax(t) + Bu{t) 
dt (6-18) 
y(t) = Cx(i) + Du(t) 

and 

x(t + 1) = Ax(t) + Bu(i) v } w w (6-19) 
y(f) = Cx(t) + Du(t) 

where x(t) e Rw* is the state vector (Kailath, 1980). The parameters i e R " » x \ 
5 6 R " » x l , C E IR1 XM«, and D e R of the state space equations (6-18) and (6-19) can eas-
ily be related to the an and bm coefficients of (6-16) and (6-17) (see Exercise 6.6). 

PLANT MODELS 

The parametric model that will be used mostly throughout this book is a rational form 

G(Q, θ) = Β(Ω> θ) = ^ r = 0 ¿ V Í y (6-20) 

with Ω = s for lumped continuous-time systems, Ω = z_1 for discrete-time systems, 
Ω = Js for diffusion phenomena, Ω = t anh^s ) for commensurate microwave devices, 
and Θ G R"* the vector of the plant model parameters 

& = [a0al...oHb0bl...bnt\ (6-21) 

The reason for this is that it is very easy to get good starting values for (6-20) (see Chapter 9). 
For lumped continuous-time and discrete-time systems, (6-20) is obtained by taking the 
Laplace and Z-transform of (6-17) and (6-16), respectively, assuming that the initial condi-
tions are zero. For large order systems (typically na, nb>30) parameterization (6-20) be-
comes numerically unstable (leads to ill-conditioned normal equations, see Chapter 9), thus 
requiring other representations to be used. 

In modal analysis (Ewins, 1991) and nuclear magnetic resonance modeling (see Sec-
tion 6.4) a partial fraction expansion of (6-20) is often used. Assuming that (/(Ω, Θ) has sim-
ple poles, it has the form (Henrici, 1974) 
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ant», i^i^- («2, 
r = -p r r = 1 r 

for strictly proper (nb < na) continuous-time models (Ω = s, Js or t anh^s ) ) and 

A* = - p r r=\ r 

for proper discrete-time models (nb < na) with b0 = 0 (see Exercise 6.5). In both cases we 
have ¿_r = Lr, X_r = lr and Sr9 ar e U with 2p + q = na so that 

^ = [^. . . ^ R e W I m W . . . R e ( A p i m O y S ! . . . ^ R e ^ I m ^ , ) . . . R e ^ I m ^ ) ] (6-24) 

Because parameterizations (6-22) and (6-23) are numerically more stable than (6-20) (except 
in the case of poles of multiplicity larger than one), one could think of using these models to 
identify high-order systems (typically na, nb > 30). In practice, these representations are not 
really helpful because the starting values, generated by using parameterization (6-20), are of 
insufficient quality for higher order systems, resulting in poor transfer function estimates 
(6-22) and (6-23) (one gets stuck in a local minimum). The disadvantage of parameteriza-
tions (6-22) and (6-23) is that they do not allow the choice of the order nb of the numerator 
polynomial of G(Q, Θ). The advantage is that they can deal very easily with constraints on 
the residues and the poles (see Section 5.4). 

An alternative solution for high-order systems is to factorize transfer function (6-20) in 
its poles and zeros. Assuming that G(Q, Θ) has simple poles and zeros, we get 

ΙΓ-ι<Ω-« 
G(n, Θ) = K —— 

ΙΓ-,ίΩ-^) 
However, this representation suffers from the same problems as (6-22) and (6-23): (i) starting 
values should be generated via (6-20), and (ii) it leads to ill-conditioned normal equations if 
the true plant model contains multiple poles and/or zeros. Note that the latter is not the case 
for parameterization (6-20). 

To handle high-order systems (typical na, nh > 30) the numerator and denominator 
polynomials of the transfer function (6-20) are expanded in scalar or vector orthogonal poly-
nomials (see Section 15.11 and Exercise 1.14) 

For scalar orthogonal polynomials we have np = na, nq = nb and/?r(Q), qr{Ci) are poly-
nomials of order r; for vector orthogonal polynomials br = ar, nq = np = na + nb+ 1 
and /?r(Q), qr(Cl) are polynomials of increasing order with pn (Ω), qn (Ω) polynomials of 
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order na, nb, respectively. These are chosen such that they maximize the numerical stability 
of the model (minimize the condition number of the normal equations, see Chapter 9). 

The state space representation form of a proper (nb < na) transfer function (6-20) is 

G(s, Θ) = C{sIn-A)~xB + D (6-26) 

for lumped continuous-time systems and 

G(z-\6) = z-lC(In-z-lA)-lB + D (6-27) 

for discrete-time systems. Equations (6-26) and (6-27) are obtained by taking the Laplace and 
Z-transform of (6-19) and (6-18), respectively, assuming that the initial conditions are zero. 
In both cases we have A e Rw«xw«, 5 e R " « x l , C e R1 *\ and D e R, so that 

θτ = [vecT(A) BT C D] (6-28) 

The disadvantages of the state space representation are that it does not exist for improper sys-
tems (nb> na) and that it does not allow one to choose the order nb of the numerator polyno-
mial of G(s, Θ). The advantage is that it allows straightforward extension to multivariable 
systems (see Section 6.6). 

A time delay can be added to transfer function models (6-20), (6-22), (6-23), (6-25), 
(6-26), and (6-27). For example, for continuous-time models (Ω = s, Js or tanh(r^^)) 
(6-20) becomes 

σ(Ω' *> = β~Τί^Έ = e~TS Ι ^ - (6-29) 
,4(12, V) γ»α Q r 

and for discrete-time models 

G(z-i, 0) = z-"* ^ 4 = ζ«τ> Ί+ZÍÍL (6-30) 

where re U is an arbitrary time delay (not necessarily an integer multiple of the sampling 
period Ts). Then the vector of the model parameters Θ also contains the delay r. 

RELATION BETWEEN THE INPUT-OUTPUT 
DFT SPECTRA 

In this section we establish the relationship between the DFTs of the sampled input and out-
put signals of a linear dynamic system 
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U(k) = j= Z J I O V ' W , Y(k) = j= ΣΐΐΐΛ'Όζ? with zk = e/2**/" (6-31) 

and the transfer function models G(Q, (9) of Section 6.2. We start with periodic excitation 
signals, proceed with arbitrary signals, and finally handle the case where data samples are 
missing at the input and/or output signals. For the continuous-time systems (Ω = s, ^ or 
tanh(r^)) we will assume that the excitation is band-limited. 

6.3.1 Models for Periodic Signals 

Assume that we apply a periodic signal u(i) with harmonically related frequencies 
hf0, h sHczN, and period T0 = 1 / / 0 to the system and that we observe the steady-state 

response during an integer number of periods NTS = MT0 with M G N . If the excitation is 
band-limited (continuous-time systems) or piecewise constant (discrete-time systems), then 
the ratio of the output to the input DFT spectra at the excited frequency lines k = Mh, 
h G H, gives the true transfer function 

Y(k) = G{0.h9)U(k) (6-32) 

where Ω^ = sk9 z^1, Js~k or tanh(rRsk) with sk = j(dk and zk = e7®* ,̂ and where 
G(Q, Θ) can take any parameterization of Section 6.2 (Brigham, 1974; Oppenheim et al., 
1997). For single sine excitations (6-32) is valid at arbitrary (not related to a DFT grid) 
frequencies. 

6.3.2 Models for Arbitrary Signals 

6.3.2.1 Introduction. Spectral leakage occurs in the calculation of the DFT of non-
periodic signals and of periodic signals observed at a noninteger number of periods (see Sec-
tion 2.2.3 and Brigham, 1974). For these signals, relationship (6-32) is no longer valid and 
should, therefore, be generalized. We will show that the DFT spectra Y(k), U{k) satisfy an 
extended transfer function model that includes the beginning and end effects of the data 
record (see Figure 2-23 on page 60). The relationship is exact, without any approximation for 
discrete-time systems, and is approximately valid within some spectral alias errors for 
(lumped) continuous-time systems. 

6.3.2.2 The Extended Transfer Function Model. The DFT spectra Y(k)9 U(k) of 
the observed samples y{t), u(t), t = 0, Ts, ..., (N- l)Ts satisfy 

A(Qk, 0)Y(k) = B(Qh 0)U{k) + l(nh Θ) + A(D.k) with A{z~k
x) = 0 (6-33) 

(Cl = s,J~s or z_1), and where the polynomial /(Ω, θ) = Σ7= o*V^r wu"n ni = 

max(«a, nb) - 1 is independently parameterized of the plant model parameters (6-21) (proof: 
see Appendix 6.B). The coefficients ir are a linear function of the difference between the ini-
tial and final conditions of the system and, therefore, will be called the equivalent initial con-
ditions. The term A(Qk) in (6-33), with Ω ^ ζ - 1 , represents the residual alias error and is 
present even if the signals have been low-pass filtered before sampling. Dividing (6-33) by 
A(D.h Θ) gives the extended transfer function models 
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Y(k) = G{ah 0)U(k) + TG{flh Θ) + S(Qk) with δ(ζ^) = 0 (6-34) 

(Ω = s, Λ/S or z_1), and where G(Q, (9) and rG(Q, 0) can take any parameterization of 
Section 6.2. Τ0(Ω, Θ) is called the plant transient term. 

For the rational form, representation G(Q, Θ) is as in (6-20) and 

where i0ii...it! is added to Θ (6-21). For the partial fraction expansion, G(Q, Θ) is as in 
(6-22), (6-23), and 

p I q s 
TG(C1, θ) = Σ j j f j + Σ ^ with Cl = s,Ss (6-36) 

r = -p r r=\ r 

where ls1...5^Re(/1)Im(/1)...Re(//7)Im(//7) is added to Θ (6-24). For the orthogonal polyno-
mials, G(Q9 Θ) is as in (6-25) and 

Τ0(Ω,Θ) = ^r
n-° (6-38) 

For scalar orthogonal polynomials, np = na, nq = nb, nr = ni9 andpr(Q), #Γ(Ω), ?ν(Ω) 
are polynomials of order r; for vector orthogonal polynomials, ar = br = ir, np = nq = 
nr = na + nb + nt + 2 and ρΓ(Ω), ^(Ω), rr(Q) are polynomials of increasing order with 
pn (Ω), #„(Ω), Γ „ ( Ω ) polynomials of order «α, «¿, «/5 respectively. These are chosen 
such that they maximize the numerical stability of the model (minimize the condition number 
of the normal equations, see Chapter 9). Finally, for the state space representation, G(Q, Θ) 
is as in (6-26), (6-27), and 

TG(s,ff) = C(sIn-AyXl (6-39) 

TG(z-\0) = C{Ina-z-^A)-% (6-40) 

where x¡ e Un° is added to Θ (6-28) (proof: see Appendix 6.C). 
The convergence rate to zero of the transient term ^(Ω^, Θ) and the alias term S(Clk) 

in the extended transfer function model (6-34) is established in the following two lemmas. 
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Lemma 6.5 (Convergence Rate TG(Qk, Θ)): Consider bounded excitations u(t) 
(z-domain), bounded excitations u{t) with finite left (max(na, nb)- l)th order derivative 
0 - domain), or bounded excitations u(t) with finite left (max(«a, nb) - l)th fractional order 
derivative (Js- domain). For these inputs applied to stable plants or unstable plants captured 
within a stabilizing feedback loop, the transient term ^(Ω^, Θ) tends to zero as 0(N~U2). 
For bounded random excitations Τβ(ζ^ι,θ) is an Oas(7V_1/2). 

Proof See Appendix 6.D. □ 

Lemma 6.6 (Convergence Rate S(Qk)): Consider band-limited periodic signals, 
ί/(/ω) = 0 for |ω| > ωΒ, and band-limited random signals, Suu(j®) = 0 for |ω| > ωΒ, with 
ωΒ < ω5/2 . Assume furthermore that these signals have finite nonzero power 

+NTS / 2 

j^r } E{x\t)}dt = O(N»)>0 (6-41) 
5 -NTS / 2 

for any N, oo included. The residual alias error S(Qk) tends to zero as 0(N~U2) for band-
limited periodic excitations, and Oms(N~l/2) for band-limited random excitations with dif-
ferentiable power spectrum Suu(j(ü) {dSuu(j(ü)/d<ü < oo for |ω| < ωΒ). 

Proof. See Appendix 6.F. D 

Using Lemmas 6.5 and 6.6, we can calculate how fast the extended transfer function model 
(6-34) tends to the transfer function model (6-32) as N -> oo. 

Theorem 6.7 (Convergence Rate Extended Transfer Function Models): Under the 
assumptions of Lemma 6.5, the convergence rates of discrete-time model (6-34) to (6-32) are 
0(N~l/2) for normalized periodic signals (see Definition 3.4, F = 0(N)), 0(N~l) at the 
excited DFT frequencies for periodic signals with a fixed number of frequencies 
(F = 0(N°)), and 0as(N~1/2)for random excitations with differentiable power spectrum. 
Under the assumptions of Lemmas 6.5 and 6.6, the convergence rates of continuous-time 
model (6-34) to (6-32) are 0(NV2) for normalized periodic signals (see Definition 3.4, 
F = 0(N)\ 0(N~l) at the excited DFT frequencies for periodic signals with a fixed number 
of frequencies (F = 0(N°)), and Op(N~l/2) for random excitations with differentiable 
power spectrum and 0{N~XI2). 

Proof It follows directly from Lemmas 6.5 and 6.6 and the fact that the DFT 
spectrum of band-limited signals with finite nonzero power is 0(N°) for random signals, 
0(N°) for normalized periodic signals, and 0(Nl/2) at the excited DFT frequencies for 
periodic signals with a fixed number of frequencies. D 

6.3.2.3 Discussion. The extended transfer model (6-34) shows that the leakage er-
rors on the input and output DFT spectra can be modeled by a rational function and are, in 
fact, an initial condition (transient) problem. This is illustrated in Figure 2-23 on page 60. 
The difference from time domain identification is that the equivalent initial conditions take 
into account the beginning as well as the end effects of the finite data record. In the time do-
main the initial conditions remain the same as the number of data N increases, whereas in the 
frequency domain they vary with N (not only due to the scaling factor N~112 but also due to 
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the varying final conditions of the experiment). Asymptotically (7V->oo), the extended 
transfer function model (6-34) reduces to (6-32) (Theorem 6.7). 

Theorem 6.7 shows that the classical transfer function model Y{k) = G(shff)U(k) 
contains no asymptotic (N-> oo) approximation errors in the complete frequency band from 
DC to Nyquist for band-limited input signals with finite nonzero power. 

The transient term TG(Q, Θ) is zero if the initial and final conditions of the experiment 
are the same (see Appendix 6.B, (6-93) and (6-100)). This is the case for periodic signals ob-
served during an integer number of periods and for time-limited signals. For the band-limited 
versions of these signals the alias term <5(Q¿) is also zero. 

From Lemmas 6.5 and 6.6 it follows that the transient term TG(Q.h Θ) and the alias er-
ror S(Qk) (Ω ψ z"1) tend to zero at the same rate. Hence, S(Qk) cannot be neglected w.r.t. 
rG(Q£, Θ), even for "large" values of N. However, practice has shown that the alias error 
S(Qk) can be approximated well by a polynomial (Pintelon and Schoukens, 1997b). There-
fore, to reduce S(Qk) in (6-34), the order of the polynomial /(Ω, θ) (Ω Φ Z_ 1 ) is increased: 
ni> max(«a, nb)-\. 

6.3.3 Models for Records with Missing Data 

6.3.3.1 Introduction. Because of temporary sensor failure and/or data transmission 
errors, it may happen that data samples are missing in the measured signals. The best thing to 
do then is to throw away the data set and to repeat the experiment. This is not always possible 
because, for example, the experiment is too expensive, or some of the data are collected in an 
irregular way using laboratory analysis. Sometimes the output is sampled at a lower rate than 
the input, which is a periodic missing output data problem (Goodwin and Adams, 1994; Al-
bertos et al., 1999). Treating the missing data as unknown parameters, a generalized version 
of the extended transfer model (6-34) is constructed. It can handle missing input and/or out-
put data and does not assume any particular missing data pattern. 

6.3.3.2 The Extended Transfer Function Model. For simplicity of notation we will 
assume that Mu consecutive input samples starting at t = KUTS and My consecutive output 
samples starting at / = K Ts are missing. The sets Mu and My describing the time in-
stances of the missing input and output samples are then 

Mx= {Kx,Kx+l,...,Kx + Mx-l} (6-42) 

where x = u,y. Define xm(tTs), t = 0, 1, ..., iV— 1 as the data set where the missing sam-
ples are replaced by zeros 

Γ0 teMY 

xm(tO = \ (fT. Λ * (6-43) 
* ( / υ elsewhere 

and Xm(k) as the corresponding DFT spectrum (X = U,Y and x = w, y). The DFT spectra 
Ym(k), Um(k) of the observed samples (missing data sets) ym(tTs), um(tTs), t = 0 , 1 , . . . , 
N-l satisfy 

A(ilh 0)T\k) = B(Clh 0)U*{k) + /(Ω„ Θ) + 
(6-44) 

z-k
K«B(Qk, 0)Iu(z-k\ ¥)-zfyA(nh θ)ψι\ ψ) + Δ(Ω,) 
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with A(zk
l) = 0 (Ω = s,*Js or z"1), and where the polynomials Ιχ(ζ~\ψ) = 

N-xl2YJf^~0
lx(Kx + t)z-t, x = u9y, contain the missing data and ψ is the parameter vector of 

the missing samples 

Ψτ= [u(KJs)..M((Ku^Mu-l)TJy(KyTs)...y((Ky + My-l)Ts)] (6-45) 

(proof: see Appendix 6.G). Note that model (6-44) is bilinear in the parameters θ, ψ. Divid-
ing (6-44) by A(Qh Θ) gives the extended transfer function model 

Y™(k) = G(Qh 0)U™{k) + TG(Qh Θ) + 
K , K ( 6 " 4 6 ) 

z?*(HClh 6)lu(z-k\ ψ)-ζ-^ψι\ ψ) + S(Qk) 

with S(zk
l) = 0, and where ϋ(Ω9θ) and Τ0(Ω9Θ) can take any parameterization of Sec-

tions 6.2 and 6.3.2. The alias error ¿>(Q¿), ΩΦΖ~Χ
9 has the same properties as in Section 

6.3.2. Hence, its influence can be captured by choosing the order of the polynomial Ι{Ω^ Θ) 
>msLx(na, nb)-l. The generalization of (6-46) to the case where data are missing at more 

than one place is straightforward (see Exercise 6.7). 

6.3.4 Models for Concatenated Data Sets 

6.3.4.1 Introduction. Sometimes several data sets of experiments on a plant operat-
ing under exactly the same conditions are available (e.g., the historical data sets in the pro-
cess or power plant industry). Due to temporary sensor failure and/or transmission errors it 
may also happen that a large number of consecutive input and output samples are missing at 
several time instances in one experiment. If the number of consecutive missing samples is 
larger than the dominant time constant of the plant, then the approach of Section 6.3.3 no 
longer makes sense. A first solution consists of handling the complete input-output data sets 
as independent experiments. A better solution consists of expressing that the different data 
sets have been collected under exactly the same operational conditions. This is done by con-
catenating the different data sets. It is shown that the concatenated data sets satisfy a general-
ized version of the extended transfer function model (6-34). 

6.3.4.2 The Extended Transfer Function Model. Consider, for example, two input-
output data sets ui{tTs)9yi{tTs)9 with i = 1, 2 and t = 0, 1, ...9N(- 1, of the same system 
gathered under the same operational conditions. Define xc(tTs), with t = 0, 1, ...,7V- 1 and 
N = N{ + N2, as the concatenated data set 

\xx{tTs) t = 0 ,1 , . . . , # ! - 1 
x%tTs) = \ (6-47) 

and Xc(k) as the corresponding DFT spectrum (X = U9Y and x = u, y). The DFT spectra 
Yc(k)9 Uc(k) of the concatenated data sets yc(tTs)9 uc(tTs)9 t = 0, 1, ...,7V- 1 satisfy 

Y%Qk) = G(Qk9 0)U%k) + TG(Qh Θ) + zf^{ak9 Θ) + ¿(Ω,) (6-48) 

with δ(ζιχ) = 0, and where G(Q.9 Θ), TG(£l, θ)9 and T£(Qk9 θ) = Ι^Ω^ θ)/Α(ΩΙζ9 Θ) can 
take any parameterization of Sections 6.2 and 6.3.2 (proof: see Appendix 6.H). /C(Q¿, Θ) is a 
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polynomial of order max(na, nb) - 1. Since the alias error S(Qk), Ω*ζ _ 1 , has the same 
properties as in Section 6.3.2, its contribution is captured by the polynomials I(Qh Θ) and 
^(Ω^, Θ) where the order is chosen > max(«fl, nb) - 1. The generalization of (6-48) to the 
case where more than two data sets are concatenated is straightforward (see Exercise 6.8). 

MODELS FOR DAMPED (COMPLEX) EXPONENTIALS 

In some applications an impulse excitation is applied to the system and only the free decay 
response is observed, which consists of the sum of (complex) exponentially damped cosines. 
For real strictly proper lumped continuous-time systems (Θe Un& in (6-35)) with simple 
complex conjugate pole pairs, it has the form 

y(f) = 2 Σ Χ ! α,β-*« + r ) cosK( / + τ) + φ,) (6-49) 

with ar e U+ the amplitude, dr e R+ the decay, cor e R+ the angular frequency, and 
<fir e R the phase of the rth exponentially damped cosine, τ is the (known) delay between 
the beginning of the free decay experiment and the start of the observations. In modal analy-
sis (6-49) is parameterized in the resonant angular frequency ω0 = Jd2 + ω2 and the damp-
ing coefficient ζ = d/a>0, while in circuit theory the resonant angular frequency ω0 and the 
quality factor Q = \/{2ζ) are used. For complex strictly proper lumped continuous-time 
systems (Θ e Cn& in (6-35)) with simple complex poles the response is 

y(o = z ; : 1 ^ '^ M r + M ) ( ' + r ) (6-50) 

Examples of (6-49) and (6-50) are, respectively, impact testing in modal analysis (Ewins, 
1991) and nuclear magnetic resonance (NMR) measurements (Kumaresan et al., 1990). In the 
first application the mechanical structure is excited with an impulse, and the free decay re-
sponse of the structure, for example, the displacement or the acceleration, is measured at a 
given location. In the second application the free decay responses of a magnetic field in two 
orthogonal directions are combined into one complex signal. 

The DFT spectrum Y(k) of the free decay response y(t) of a strictly proper lumped 
continuous-time system or a proper discrete-time system with b0 = 0 satisfies 

Y{k) = Ύ0(ζι\θ) (6-51) 

where TG(z~l, Θ) is the rational function (6-35) with ni = na- 1 (proof: see Appendix 6.1). 
rG(z_1, Θ) can also be parameterized as in (6-37), (6-38), and (6-40). The parameters of the 
free decay responses (6-49) and (6-50) can easily be related to the parameters of the partial 
fraction expansion (6-37) with q = 0 (A_r Φ Xr and l_r Φ lr for complex systems). In both 
cases we have 

"^"s?^)·-*^-^ <6-52) 

(proof: see Appendix 6.J). 
In NMR measurements the response is typically of the form (6-50) where each term 

corresponds to the response of a particular chemical substance in a (human) tissue. The am-
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plitude ak is a measure of the concentration of the substance. Often it is known that a partic-
ular substance with known frequency fr is present in the tissue. Sometimes the chemical 
structure of the substance imposes the ratio of some amplitudes. All this prior information re-
sults in parameter constraints that can easily be taken into account in the partial fraction ex-
pansion (6-37). This is not the case for the other parameterizations, which explains why rep-
resentation (6-37) is popular in NMR modeling. Parameterization (6-35) is appropriate for 
obtaining starting values for (6-37). 

6.5 IDENTIFIABILITY 

Loosely speaking, a parametric model Μ(θ, Ζ) is identifiable when the parameters Θ can be 
estimated uniquely using the data Z. It requires that the data are informative enough to dis-
tinguish between different models (= condition on the experiment) and that different parame-
ter values give different models (= condition on the model structure). More formally, the 
identifiability concept can be defined as follows. 

Definition 6.8 (Identifiability): A model Μ(Θ,Ζ), with Θ the model parameters and 
Z the data, is identifiable at θχ if for any Θ in a (possibly small) neighborhood of θλ, 
Μ(Θ,Ζ) = Μ(Θ{,Ζ) implies that Θ = θχ. 

Note that Definition 6.8 gives a definition of local identifiability. If the implication in 
Definition 6.8 is valid for almost all Θ and θλ values, then one has global identifiability (see 
Ljung, 1999 for a detailed discussion of this issue). In this section we give necessary condi-
tions for the identifiability of the transfer function models of Section 6.3. These conditions 
can be split into constraints on the parameters Θ (identifiable parameterization) and con-
straints on the input signal (persistent excitation). 

6.5.1 Models for Periodic Signals 

The identifiability of transfer function model (6-32) depends on the particular parame-
terization of G(Q, Θ). The rational forms (6-20) and (6-25) are not identifiable because re-
placing Θ by λθ, with λ e R0, results in the same input-output description: G(Q, λθ) = 
G(Q, Θ). This parameter ambiguity is removed by constraining the model parameters, for 
example, θ^ = 1 or ||0||2 = 1. For transfer functions with a time delay (6-29) and (6-30), 
the parameter ambiguity is removed by constraining the numerator and denominator coeffi-
cients, but not the delay. The partial fraction expansions (6-22) and (6-23) contain no param-
eter ambiguities and, hence, are identifiable. Replacing (A, B, C, D) by (TAT~l, TB, CT~l 

D) in the state space representations (6-26) and (6-27) with r e R " f l X " a , a regular matrix 
(det(7) Φ 0), leaves G(Q, Θ) unchanged. This parameter ambiguity is removed by imposing 
n2

a constraints on #, which leads to the so-called identifiable state space representations 
(VanOverbeek and Ljung, 1982). Besides possible constraints on Θ, the identifiability of 
transfer function model (6-32) also puts conditions on the DFT spectrum U(k) of the input 
signal. 

Theorem 6.9 (Identifiability Transfer Function Model (6-32)): Transfer function 
model (6-32), parameterized as in (6-20) and (6-25) with, for example, constraint αΆα = 1, is 
identifiable if and only if 

1. The polynomials Α(Ω, Θ) and Β(Ω, Θ) have no common roots. 
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2. The input DFT spectrum U(k) is different from zero for at least (na + nb+l ) /2 
different DFT frequencies, where DC (k = 0) and Nyquist (N/2) each count for 
1/2. 

Proof. See Appendix 6.L. D 

With appropriate additional assumptions on G(Q, Θ), Theorem 6.9 also applies for the 
other parameterizations. For example, the partial fraction expansions (6-22) and (6-23) as-
sume that G(Q, Θ) has simple poles. The condition on U(k) is fulfilled, for example, if u(t) 
consists of the sum of at least (na + nb+ 1 ) /2 sine waves. Note that for complex systems, 
Θ e Cn&, (na + nb + 1) frequencies are required. 

6.5.2 Models for Arbitrary Signals 

The identifiability of transfer function model (6-34) depends on the particular parame-
terization of G(Q,0) and Γσ(Ω, #). The partial fraction expansions (6-22), (6-23) and 
(6-36), (6-37) are identifiable, while the same parameter ambiguities occur as in the periodic 
case (see Section 6.5.1) for the rational forms (6-20), (6-25) and (6-35), (6-38) 
(Θ(Ω,ΑΘ) = CJ(Q, 0), Τ0(Ω,λθ) = Τ0(Ω,Θ)) and the state space representations (6-26), 
(6-27) and (6-39), (6-40) (replacing (A, B, C, D) by (TAT~\ TB, CT~\ D) leaves £(Ω, Θ) 
and Τβ(Ω, Θ) unchanged). Compared with the periodic case, the identifiability of transfer 
function model (6-34) requires additional conditions on the DFT spectrum, U(k), of the in-
put signal. Necessary conditions for the identifiability of transfer function model (6-34) are 

1. The polynomials Α(Ω, θ), Β(Ω, 0), and /(Ω, Θ) have no common roots. 
2. The input DFT spectrum U(k) is different from zero for at least (nb + ni + 2 ) /2 

different DFT frequencies, where DC (k = 0) and Nyquist (N/2) each count for 
1/2. 

3. U(k) cannot be written as a rational form in Ω^ of order n¡ over nb or less. 

(Proof: See Appendix 6.M). D 

Note that condition 1 does not exclude ^(Ω, Θ) and Β(Ω, Θ) for having common roots and/or 
2?(Ω, Θ) and /(Ω, Θ) for having common roots (see Exercise 5.9). If condition 3 is not ful-
filled, then the terms Ω(Ω]ζ, 0)U(k) and ^(Ω^, Θ) are indistinguishable. This is, for exam-
ple, the case when the DFT spectrum U(k) is a constant (u(t) is an impulse (Dirac)). 

6.5.3 Models for Records with Missing Data 

The identifiability of transfer function model (6-44) depends on the particular parame-
terization of £(Ω, Θ) and Τβ(Ω, Θ), the missing data pattern, and the input DFT spectrum 
Um(k). The same parameter constraints should be applied on Θ as in Section 6.5.2. A similar 
analysis, as in Section 6.5.2, gives the following necessary conditions on Um(k) and the 
missing data pattern: 

1. The polynomials Λ(Ω, 0), Β(Ω,Θ), and /(Ω, Θ) have no common roots. 
2. The input DFT spectrum Um(k) is different from zero for at least (nb + nt + 2) /2 

different DFT frequencies, where DC (k = 0) and Nyquist (N/2) each count for 
1/2. 
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3. It is not possible to write Um(k) as a rational form in Ω^ of order ni over nb or 
less. 

4. For discrete-time systems, it is not possible to write Um(k) + z^KuIu(z^\ ψ) as a 
rational form in z^1 of order ni over nb or less. 

5. For discrete-time systems it is not possible to write z^Ky~Ku>}Iy(z]¡1, y/)/Iu(z¿1, ψ) 
as a rational form in z^1 of order nb over na or larger. 

Condition 5 constrains the missing data pattern. For example, discrete-time systems are not 
identifiable (the condition number of (6-44) is infinitely large) if the input and output samples 
are missing at the same place, Ku = Ky and the number of consecutive missing samples is 
larger than or equal to the system order, Mu9 My > max(«a, nb). The missing input and output 
samples ψ cannot be estimated and the plant model parameters Θ should be estimated from 
the two sets of complete input-output data. Everything happens as if two experiments with 
full data are available (see Section 6.3.4). Continuous-time systems are still identifiable if 
Ku = Ky and Mu = My> max(«a, nb); however, the condition number of model (6-44) in-
creases quickly with the number of consecutive missing samples. For too large an Mu = M , 
(6-44) is no longer identifiable within a given finite arithmetic precision (Pintelon and 
Schoukens, 1999b). The identifiability conditions can easily be extended to the case where 
data are missing at more than one place. 

6.5.4 Model for Concatenated Data Sets 

The identifiability of transfer function model (6-48) depends on the particular parame-
terization of G(Q, Θ), 7G(Q, Θ), and 7£(Ω, θ)9 and the input DFT spectrum Uc(k). The 
same parameter constraints should be applied on Θ as in Section 6.5.2. A similar analysis, as 
in Section 6.5.2, shows that the necessary conditions for the identifiability of transfer func-
tion model (6-48) are conditions 1-3 of Section 6.5.2, where the polynomial IQ{0.h Θ) is 
added to condition 1, and where U(k) is replaced by Uc(k). 

6.6 MULTIVARIABLE SYSTEMS 

The ny outputs and the nu inputs of a multivariable system are related by an ny x nu transfer 
function matrix G(Q, Θ), where each entry G[/y](Q, Θ), with / = l,29...,ny and 
j = 1,2, ...,nu is a rational function of Ω (Ω = s9 Js9 t a n h ^ s ) or z-1, see Section 
6.2). If no relationships exist between the coefficients of the different transfer functions 
G[z 7](Ω, 0), then the multivariable system is the parallel connection of separate multiple-in-
put, single-output (MISO) systems. Often, the transfer functions G[U](Q, Θ) have the same 
denominator, for example, in modal analysis (Ewins, 1991) and the two port description of 
LC, LR, and RC circuits (Balabanian and Bickart, 1969). This leads to the common denom-
inator model 

G(Q, Θ) = * Í M = ? V W (6.53) 

where ^(Ω, θ)9 with ar e R, is the common denominator polynomial and 2?(Ω, 0), with 
Br e Unyxn\ a polynomial matrix. 
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A natural generalization of the scalar transfer function (6-20) is the so-called matrix-
fraction descriptions (Kailath, 1980). Writing the transfer function matrix as a left matrix 
fraction gives 

G(Q, Θ) = A-KO, Θ)Β(Ω, θ) = (Σ% οΑ^)~\Σ"ΐ (ΑΩ') (6"54) 

where Α(Ω, 0), with Ar e Mnyxny, and Β(Ω, 0), with Br e Unyxn»9 are polynomial matri-
ces. Writing the transfer function matrix as a right matrix fraction gives 

G(Q, Θ) = Β(Ω, Θ)Α~\Ω, θ) (6-55) 

where Λ(Ω, Θ) and Β(Ω, θ) are, respectively, nu x nu and ny x nu polynomial matrices. 
The partial fraction expansion of G(Q, Θ) has the same form (6-22), (6-23) where each 

residue matrix Lr, Sr e Unyx "u may have a different rank. Sometimes the rank is known be-
forehand and this should be taken into account in the parameterization. For example, in 
modal analysis the residue matrices have rank one (Heylen et al., 1997) and are written as 
Lr = vrwf with vr e Rny and wr e Un» the modal vectors. 

The state space representation has the same form (6-26), (6-27) with A G M"aXna, 
BeUn°xn% CeR"yxn% maDeU"yxn«. 

Remarks 

(i) The relation to the input and output DFT spectra and the identifiability issues of 
the multivariable parametric models are similar to the single input, single output 
case. For example, the left matrix fraction description (6-54) is made identifiable 
with the parameter constraint An = In . 

(ii) The common denominator (6-53) and the left matrix fraction (6-54) descriptions 
allow straightforward generalization of the scalar relationship (6-33) between the 
numerator and denominator polynomials of the transfer function model and the 
input and output DFT spectra. This is important for generating starting values (see 
Chapter 9). Formula (6-33) is then valid with Λ(Ω, θ), Β(Ω, Θ) as defined in 
(6-53) and (6-54) and /(Ω, θ) = Σ"*=0/ΓΩΓ, IreUny, a polynomial vector. This 
is not the case for the right matrix fraction description (6-55), which can, how-
ever, be used if the identification starts from the measured frequency response 
matrix (/(Ω^) 

σ(Ω,) = Β(ΩΙζ9 Θ)Α-\Ω,, θ) => (XCl¿A(Clh θ) = Ζ?(Ω„ θ) 

(iii) The residue matrices Ln Sr e Unyx "u of the partial fraction expansions (6-22) and 
(6-23) of the left and right matrix fractions (6-54) and (6-55) and the state space 
models (6-26) and (6-27) have rank one (proof: see Appendix 6.N). This is not the 
case for the common denominator model (6-53) which, in general, has full rank 
residue matrices. In those applications where it is known beforehand that the resi-
due matrices have rank one (e.g., in modal analysis), the common denominator 
model uses too many parameters and, hence, the left and right matrix fraction de-
scriptions and the state space model are preferred. However, the common denom-
inator model should be used in all applications where the rank of the residue ma-
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trices is unknown (e.g., the best linear approximation of a multivariable nonlinear 
system). 

6.7 NOISE MODELS 

6.7.1 Introduction 

In practice, disturbing noise sources occur everywhere in the measurement setup (see 
Figure 2-16). The DFT spectra U(k) and Y(k) of the observed input u{t) and output y(t) sig-
nals are noisy replicas of the true (unknown) DFT spectra U0(k) and Y0(k) 

Y(k) = Y0(k) + NY(k) 

U(k) = U,{k) + Nv{k) ( 6 ' 5 6 ) 

where Nv(k) = O¥T(nu(t)) and NY(k) = DFT(« (*)) are functions of the measurement 
noise, the process noise, and possibly the generator noise (see Section 2.4). In order to put a 
quality label (uncertainty bounds) on the measured frequency response function (see Chap-
ters 2 and 4) and the estimated transfer function model (see Chapters 9, 10, and 12), we need 
a model for the disturbing errors Na(k) and NY(k). 

6.7.2 Nonparametric Noise Model 

As a nonparametric noise model, we will take the (co)variances of the discrete Fourier 
transform of the input and output errors 

o*(k) = var^Jfc)), afo) = var(Nr(¿)), <ήν{Κ) = covar(NY(kl N^k)) (6-57) 

at the DFT frequencies k of interest. It can be obtained via a noise analysis without excitation 
signal (r(t) = 0 in Figure 2-16 on page 44) or via independent, repeated experiments with 
the same excitation signal r(t). The last approach is strongly recommended because it re-
duces the total measurement time (the frequency response function and the noise model are 
measured at the same time), and because the noise model is measured at nominal operating 
conditions. In practice, the independent, repeated experiments are obtained from consecutive 
periods of the (steady state) response of the system to a periodic excitation r(t) (see Chapters 
10 and 12). For arbitrary (random) excitations r(t), SL nonparametric noise model for the 
measured input-output signals u(t) and y(t) can still be obtained if r{t) in Figure 2-16 is 
known (see Chapter 12). 

6.7.3 Parametric Noise Model 

6.7.3.1 Introduction. Most stochastic processes in engineering applications have an 
intrinsic continuous-time nature. Think, for example, of the thermal noise generated by resis-
tors (Pyati, 1992) or the flicker and generation-recombination noise generated by semicon-
ductor devices (Lowen and Teich, 1990). Despite this fact, the impact of noise in system 
identification has mostly been modeled as discrete-time filtered white noise (Ástrom, 1970; 
Hannan and Deistler, 1988; Sóderstrom and Stoica, 1989; Middleton and Goodwin, 1990; 
and Ljung, 1999). The two main reasons for this are: (i) the success of digital control and the 
related discrete-time modeling, and (ii) the mathematical difficulty of handling stochastic dif-
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ferential equations. In various other disciplines such as operational modal analysis 
(Cauberghe et al., 2003; Pintelon et al., 2006b), signal processing (Fan et al., 1999), astro-
physics (Phadke and Wu, 1974), and econometrics (Bergstróm, 1990), continuous-time mod-
eling is of considerable importance. For example, in operational modal analysis of civil engi-
neering structures (bridges, buildings, ...) the system is excited by an unobserved input 
(turbulent wind flow, traffic, ...), and the observed response (acceleration) carries informa-
tion about the system poles (resonance frequencies and damping ratios). Knowledge of the 
latter is important for security/maintenance reasons. In the sequel of this section we handle 
both the discrete-time and continuous-time cases. 

6.7.3.2 Discrete-Time Models. In control applications the input is assumed to be 
known, nu(f) = 0, and the disturbance ny{t) is modeled at the sampling instances as filtered 
white noise e(t) 

n(t) = H(q, θ)β{ί) (6-58) 

with q = z"1 the backward shift operator, e(t) a stationary white noise sequence with zero 
mean and variance σ2, and 

H(z-\ Θ) = C(z~\ θ) = 

D(z-\ Θ) 

Σ:Ι )Crz-

Σ;Ι0^-
(6-59) 

The unknown parameters are c0, cx, ..., cn , d0,dl9 ...,dn 9 and σ. Model (6-58) contains 
two parameter ambiguities: replacing cr9 dr and σ by X\xX2cr, X2dr and λχσ9 with 
λί9 λ2 * 0, leaves (6-58) unchanged (e(t) is multiplied with the same factor as σ). These 
parameter ambiguities are removed by adding two constraints on the numerator and denomi-
nator coefficients of (6-59). In most cases, the choice d0 = c0 = 1 is made (monic transfer 
function). 

Under the following assumption the relationship between the discrete-time model 
(6-58) and the true underlying continuous-time stochastic process can be established. 

Assumption 6.10 (Wiener Process or Zero-Order-Hold Noise): The unobserved 
driving noise source ec(t) in Figure 6-6 is either a Wiener stochastic process (= process with 
continuous-time white Gaussian noise increments, also called Brownian motion) or is piece-
wise constant in between white noise samples (zero-order-hold). 

Wiener 
process 

ZOH r^T. 

>-

ec(t) 

Hc(s) 

Hc(s) 

v(0 

v(0 

" " ^ 

v(0 V s ny(m) = v(mTs) 

v(0 O VOT) = v(~mO 

Figure 6-6. Two continuous-time noise-generating mechanisms ec{t) (Wiener process and 
piecewise constant white noise) within a zero-order-hold acquisition setup (no 
anti-alias filter), leading to discrete-time modeling. The "o" indicate ec(mTs). 
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Theorem 6.11 (Discrete-Time Noise Model): Under Assumption 6.10 the noise ny(i) 
at the sampling instances is described exactly by a discrete-time model (6-58). The poles of 
the discrete-time model H(z~l) (6-59) are related to those of the continuous-time transfer 
function Hc(s) by the impulse invariant transformation z = esTs. 

Proof. Under the zero-order-hold input assumption on ec(t), H(z~l) (6-59) is related 
to Hc(s) via the step-invariant transformation (6-10). For Wiener processes ec(t), the 
theorem is proven in Ástrom (1970) and Jazwinski (1970). D 

One can wonder whether Wiener stochastic processes, whose variance increases lin-
early in time, and zero-order-hold white noise processes are realistic descriptions of the true 
noise-generating mechanism. This is rarely the case in practice. However, by increasing the 
orders nc and nd of the polynomials in (6-59) and/or the sampling frequency / s = 1 /Ts, the 
approximation errors in (6-58) can be made sufficiently small. In general, (6-58) will be only 
approximately true and any physical interpretation of the results should be done with care. 

6.7.3.3 Continuous-Time Models. Since continuous-time white noise has infinite 
variance (power), it is rather difficult to link it to a physical noise-generating mechanism. 
Therefore, the concept of continuous-time band-limited white noise has been introduced in 
Ástrom (1970). 

Definition 6.12 (Continuous-Time Band-Limited White Gaussian Noise): A contin-
uous-time stochastic process ec(t) is band-limited white Gaussian noise if ec(t) is normally 
distributed and if its power spectral density (Fourier transform of its autocorrelation function) 
S* *(/ω) satisfies 

r</(2/B) I/U/B 
* . Λ ϋ ' ω ) = ' . . . , (6-60) 

[0 l/l > / B 

where aj = var(ec(i)), and with /B the bandwidth of the power spectral density. 

The actual continuous-time noise process η(ή is then modeled as a filtered version of 
the band-limited white noise source ec{f) 

η(ή = H{p, 0)ee(t) (6-61) 

with p = d/dt the derivative operator, and 

H{s, θ) = ^ 3 . = ^ - ' C / (6-62) 
ΣΚμ,θ) Σ ; Ι 0 ^ 

The unknown parameters are cQ,cu ...,c„c, d0,dl9 ...,d„d, and σ6. Similarly to (6-58), 
model (6-62) contains two parameter ambiguities that are removed by adding two constraints 
on the numerator and denominator coefficients of (6-62). 

Under the following relaxed assumption on the driving noise source ec(t), an important 
property of the band-limited observation v(0 of the noise process 77(f) (6-61) can be shown. 
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Assumption 6.13 (Generalized Band-Limited White Gaussian Noise): The power 
spectral density of the unobserved driving noise source ec(t) in Figure 6-7 satisfies 

o , x r</(2/B) \/\<fB 
S Ο'ω) = \ n , , , (6-63) 

l0(/-d-)) \f\>fB 

with £->0. 

Theorem 6.14 (Band-Limited Observation of Continuous-Time Noise): Under 
Assumption 6.13, with fB >fs/2, the band-limited observation v{t) of η(ή (see Figure 6-7) 
can be written as 

v(t) = #(p, 0)sc(/) (6-64) 

where sc(t) is band-limited white Gaussian noise with/B = fs/2 in (6-60). At the sampling 
instances t = mTs , e(m) = sc(mTs) is independent, normally distributed, discrete-time 
white noise. 

Proof See Appendix 6.0. D 

Remarks 

(i) The condition S^jjco) = 0(f~(l + £>>) for \f\ >fB in Assumption 6.13 is the 
weakest decay giving a finite variance 

var(ec(0) = J S « A 0 ^ ) # 

An example of band-limited white noise satisfying (6-63) is the thermal noise 
generated by resistors in electrical circuits. 

(ii) In practice, a perfect anti-alias filter does not exist and, consequently, £c(t) in 
(6-64) is only approximately band-limited white noise. However, the only require-
ment to be satisfied by the anti-alias filter is that the attenuation in the stop band 
(f>fs/2) is sufficiently large (attenuations of more than 100 dB are easily realiz-
able), even at the price of an increased passband ripple. Indeed, since the phase of 
the anti-alias filter does not influence the power spectral density 
S£cecU<ü) = \AA(J(o)\2Seeec(j<ü), it is sufficient to compensate the passband rip-
ple of |^(/co) | via an absolute amplitude calibration. 

o . u·* c - i 1 · - i 1 - v n(m) = v(mTs) 

■¡US* -ΛΛΛΝ. 
Figure 6-7. Continuous-time band-limited white noise generating mechanisms ec(t) 

within a band-limited acquisition setup (AA(s) is the anti-alias filter), 
leading to continuous-time modeling. The "o" indicate ec(m Ts). 

*c(0 
*^ 

" "¿^ H(s) 

η(ί) 
-^ 
«^ AA(s) 
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(iii) Replacing p = d/dt by the fractional derivative dl/2/dtl/2 (see Appendix 6.B, 
Section 6.B.3) in (6-61), and s by *fs in (6-62) shows that the results are also 
valid for diffusion phenomena. An example is the 1 / / noise generated by semi-
conductor devices: S (yeo) in Fig. 6-7 is then proportional to l/\f\, which im-
plies that the continuous-time transfer function H is proportional to 1 / Js. 

(iv) It is tempting to think that the results of Section 6.7.3.2 are valid, irrespective of 
the intersample behavior of the noise-generating mechanism. The following rea-
soning shows that this is wrong. Consider a filtered continuous-time band-limited 
white noise process with an autocorrelation function R(r). Its power spectral den-
sity S(j(o) = F{R(T)} is a rational function of ;ω for \f\ <fB. Consider now a 
discrete-time stochastic process with an autocorrelation function Rd(n) = 
R(nTs). At the sampling instances, this discrete-time process has the same first 
and second order moments as the continuous-time process. The power spectrum 
Sd(J(o) of the discrete-time process is related to the power spectral density £(700) 
as 

+00 1 +00 

Sd(/a>) = £ Rd(n)e-J"2"K = ± £ S(y(a>-«a>.)) 

It clearly shows that, in general, Sd(yco) is not a rational spectrum in 
exp(-yco7¡). Hence, a "high" order rational function Hd(z~l) is needed to model 
Sd(J(o) accurately, and physical interpretation of Hd(z~l) is dangerous, especially 
at low sampling rates. 

6.7.3.4 Relation Between the Input-Output DFTSpectra. Taking the DFT of (6-58) 
and (6-64), it follows that the DFT spectrum NY(k) of the observed noise samples 
ny(m) = v(mTs) is related to the DFT spectrum E(k) of the unobserved driving noise source 
samples e(m) = ec(mTs) or £c{mTs) as 

NY(k) = H(nh Θ)Ε(Κ) + TH(Clh Θ) + S(nk) (6-65) 

with δ(ζιχ) = 0 (Ω = s, +/s orz-1)> and where E(k) is (asymptotically for N -> oo) circu-
lar complex normally distributed (proof: apply (6-34) to (6-58) and (6-64), and apply Lemma 
16.24 to e(m)). TH(z~l, Θ) is the noise transient term, 

Γ„(Ω, Θ) = 4 ^ 5 = ̂ LllfL (6-66) 
ΙΚΩ,Θ) i : V r £ y 

with rij = (max(«c, nd) - 1), and where the coefficients jr are a function of the difference 
between the initial and final conditions of the noise process. The convergence rate to zero of 
TH and δ in (6-65) as TV—> oo is given by Lemmas 6.5 and 6.6, respectively. Because the 
sum 7^(Ω, θ) + ¿(Ω) decreases to zero as Ov(N~l/2) (see Theorem 6.7), and H{Q.h 0)E(k) 
is an Op(N°) (see Section 16.16), (6-65) is often approximated by NY(k) = H(Qk, 0)E(k). 

Since the numerator coefficients of the transient term ΤΗ(Ω) only depend on a finite 
number rij = max(«c, nd)- 1 of initial and final conditions, one can expect that TH(Qk) is 
only weakly correlated with the input DFT spectrum E(k). This result is confirmed in the fol-
lowing theorem. 
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Theorem 6.15 (Correlation Noise Transient with Noise Input): Under the 
assumptions of Theorems 6.11 and 6.14, the correlation of the transient term TH(Qk) with the 
unobserved input DFT spectrum E(k) converges to zero at the rate (7V-> oo) 

[0(1/N) Ω = z-1 

E{TH(Qk)E(k)} = r (6-67) 
[0(\n(N)/N) Ω = s,Js 

Proof. See Appendix 6.P. D 

If we replace the ideal anti-alias filter in Theorem 6.14 with a real lowpass filter such that the 
power spectral density S£c£c(j(o) of sc(t) in (6-64) is a rational function of ;ω , then 
0(ln(N)/N) in (6-67) reduces to an (9(1/TV) (see Appendix 6.P). Under the same condi-
tions, the residual alias error S(sk) in (6-65) is also weakly correlated with E(k). 

Theorem 6.16 (Correlation Noise Alias Error with Noise Input): Consider the 
assumptions of Theorem 6.14, where the ideal anti-alias filter is replaced by a real lowpass 
filter such that the power spectral density S£c£c(jw) of ec(t) in (6-64) is a rational function of 
/ω . The correlation of the alias error S(sk) with the unobserved input DFT spectrum E(k) 
decreases to zero at the rate (N->co) 

E{S(sk)E(k)} = 0(1/N) (6-68) 

Proof See Appendix 6.Q. D 

6.7.3.5 Model Structures. The parametric noise model (6-65) can be combined with 
any plant model of Section 6.3. For example, combining (6-34) and (6-65) within a general-
ized output error framework ((6-56) with Nv(k) = 0), gives 

Y(k) = G(Qh ff)U(k) + TG(Qh Θ) + H(Qk, θ)Ε(Κ) + TH(Qk, θ) + ¿(Ω,) (6-69) 

with S(zk
l) = 0 and where cl9 ..., cn , dl9 ...,dn and possibly /0, ...Jn, are added to the 

parameter vector Θ. Model (6-69) with Ω = z_1 represents the classical time domain model 
structures, for example, ARX (AutoRegressive with exogenous input) for C(z~l, Θ) = 1 and 
D(z~\ θ) = Α(ζ-\ Θ), 

ARX: Y(k) = B^U(k),7^E(k),^^ (6-70) 
A(zk\0) A(zk\0) Α(ζι\θ) 

with K(z~\ Θ) = I(zk
l, Θ) + J(zk\ Θ) and nk = max(«a, nb)-l; ARMAX (AutoregRessive 

Moving Average with exogenous input) for D(z~l, θ) = Α(ζ~ι, Θ), 

ARMAX: w . ^ ^ W l · , , , ^ (M., 
A(z-k\0) A(zk\0) A(z-k\0) 

with Κ(ζ~\θ) = I(zk\0) + J(zk\0) and nk = max(na, nb, nc) - 1; ARMA (AutoRegres-
sive Moving Average) for G(zl, Θ) = 0 and T(z~l, Θ) = 0, 
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OE (Output Error) for H(zr\ Θ) = 1 and TH{zr\ Θ) = 0, 

OE: 

and BJ (Box-Jenkins) 

A(zk\V) A(zk
l
90) 

BJ: m = B-^U(k) + «ΪΕ1* +
 C-^E{k) +

 J±Élfí ( 6 .74) 

when the plant G(z_1, Θ) and the noise H(z~\ Θ) models have no common parameters 
(Ljung, 1999). Replacing z~l by s or Js in (6-70) to (6-74) gives the continuous-time coun-
terparts C-ARX, C-ARMAX, C-ARMA, C-OE and C-BJ. 

Combining a continuous-time plant model ((6-34) with Ω = s or +/s) with a discrete-
time noise model ((6-65) with Ω = z_1) in a generalized output error framework ((6-56) 
with Nv(k) = 0), gives a hybrid Box-Jenkins model: 

Y{k) = G(Q„ Θ)U(k) + TG(Ω„ Θ) + H(z~k\ ff)E{k) + TH(z?, θ) + ¿(Ω,) (6-75) 

with Ω = s or A/S, and where S(Q.k) is independent of the noise dynamics (Pintelon et al., 
2000; Young et al , 2006; and Young et al , 2008). 

The plant transient ^ (Ω^ , Θ) and the noise transient TH(Qk, Θ) terms in (6-69) are not 
always distinguishable (separately identifiable), for example, 

Γσ(Ω, Θ) + ΤΗ(Ω, θ) = m , ^ J < ^ , 0 ) (6-76) 

for (C-)ARX and (C-)ARMAX models and only the sum ir +jr of the coefficients can be 
identified. Therefore, we replaced /(Ω, Θ) +J(Q, Θ) by ^(Ω, Θ) in (6-70) and (6-71). For 
(C-)BJ models we have 

w Θ ) + w Θ) = m ^ D { ^ ^ m , e ) ( 6 " 7 7 ) 

where ^(Ω^, Θ) and TH{Q.h Θ) are distinguishable (ir and jr are identifiable) if Α(Ω, Θ) 
and D{il, Θ) have no common roots and if nh<na and nc<nd (see Exercise 6.12). If 
Α(Ω, Θ) and D(Q., Θ) have common roots then the parameterization should be adapted ac-
cordingly (see Exercise 5.12). Although the transient terms ΤΗ(Ω, Θ) and Τ0(Ω, Θ) are often 
neglected, they are important in model validation tests (see Section 13.10.1) and in lowly 
damped systems (e.g., vibrating mechanical structures). 

Under the assumptions of Theorems 6.15 and 6.16 the noise transient TH(Qh Θ) and 
the noise alias error S(Qk) in (6-69) are weakly correlated with E(k). A similar result is true 
for the plant transient term ^(Ω^, Θ) and the plant alias errors if the input u(t) can be writ-
ten as filtered (band-limited) white noise. 
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Theorem 6.17 (Correlation Plant Transient and Plant Alias Error with Plant 
Input): If the input power spectrum (power spectral density) Suu(j(d) is a rational function of 
Ω = y* co, Jja or e J 8, then, as N - » oo, the correlation of the plant transient TG(Qh Θ) 
and the plant alias error S^sk) with the input DFT spectrum U(k) decrease to zero as 

E{TG(Clk)U(k)} = 0{\/N) 

l{o\sk)U(k)} = 0(1/N) 

Ω = 5, *Js9 z~l 

(6-78) 

Proof. See Appendix 6.R. 

NONLINEAR SYSTEMS 

1 

r{i) -ψ u(t) 
>K¿J s 

I Linear controller 
' Λ/0(Ω) 

Nonlinear plant 
G[.] 

< ■ -

! m 
? 

1 

R(k) ¿^ U(k)^ 

>® > 

Μ0(Ω) 

^BLA(^) Y°{k)Á >φ 
w 

% * 

Figure 6-8. Nonlinear system y{t) = G[w(/)] operating in open (solid lines only) or closed 
(solid and dashed lines) loop. Left: time domain representation; right: equivalent 
frequency domain representation using the best linear approximation (BLA). 

In this section the response of the nonlinear system y(t) = G[u(t)] (see Figure 6-8, left 
block diagram) is studied for random phase multisine (Definition 3.2) and periodic noise 
(Definition 3.3) excitations u(i). These are periodic signals with a deterministic (random 
multisine) or random (periodic noise) amplitude spectrum and a random phase spectrum. The 
class of nonlinear distortions considered is restricted to the nonlinear systems that can be ap-
proximated arbitrarily well in least squares sense by a Volterra series on a given input domain 
(see Definition 3.5). It makes it possible to describe strongly nonlinear phenomena such as 
saturation (e.g., amplifiers) and discontinuities (e.g., relays, quantizers). 

From Theorems 3.16 and 3.22 it follows that the input-output DFT spectra are related 
to the best linear approximation (BLA) GBLA(Q) as 

Y(k) = GBLA(Qk)U(k)+Ys(k) (6-79) 

where GBLA(Qk) consists of the sum of the true underlying linear system G0(Qk) and the 
bias term GB(D.k), which depends on the odd nonlinear distortions and the power spectrum 
of the input signal (Theorem 3.7). The stochastic nonlinear contribution Ys(k) has the follow-
ing properties: it is uncorrelated with - but not independent of- the input U(k) (open loop 
setup, Figure 6-8, left block diagram) or the reference signal R(k) (closed loop setup, Figure 
6-8, left block diagram); its variance is a smooth function of the frequency, it is mixing over 
k of order infinity; and it is is asymptotically (N-> oo) circular complex normally distrib-
uted (see Theorem 3.16). These observations motivate the right block diagram of Figure 6-8. 
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6.9 EXERCISES 

6.1. Show that the transfer function between the force per unit area and the longitudinal dis-
placement of the clamped beam is given by (6-4). Calculate the poles of (6-4) (hint: val-
ues of s such that coshes) = 0). 

6.2. Calculate the partial fraction expansion (6-5) of transfer function (6-4) (hint: note that 
G(oo) = 0 and calculate H^=_xR2k+\/(s~s2k+0 with i?^ the residue of the pole sk). 

6.3. Consider the charging of a capacitor (see Figure 6-9). Show that the transfer function be-
tween the piecewise constant voltage source u(t) and the sampled voltage y(t), 
t = kTs, across the capacitor is given by 

GZOH(z-i) = ( l - ^ / ( / ? C ) ) / ( - ^ / ( " C ) ) (6-80) 

(hint: first show that G(s) = 1/(1 + RCs)).. 

Figure 6-9. Charging of a capacitor with a 
voltage u(t). 

6.4. 

6.5. 

6.6. 

Consider the cascade of two continuous-time systems shown in Figure 6-4 and show that 
discrete-time model (6-11) describes the input-output behavior of the continuous-time 
model exactly at the sampling times t = kTs (hint: apply (6-10) on the transfer func-
tions from rzoh(t) to u(t) and from rzoh(0 to y{t)). 

Show that the partial fraction expansion of a proper (nb<na) discrete-time system 
G(z~l, Θ) with b0 = 0 is given by (6-23) (hint: multiply the numerator and denomina-
tor polynomial of G(z~l, Θ) with ζη° and calculate the partial fraction expansion in z). 
Show that a state space representation of difference equation (6-17) is given by (6-19) 
with 

0 

0 

,B = 

1 

0 

0 

c = t>„ —a„ —, -a„ + , — 
"0 

andD = ^° 

(hint: eliminate the state vector in (6-19)). 
6.7. Assume that MM[/j input samples are missing at time instants t = Ku[qTs, 

i = 1,2, . . . , Μ φ ] , 
t Κλ y\jV J 

and 
1,2, 

Myy] output samples are missing at time instants 
My[f]. Show that the extended transfer function model for 

discrete-time systems is given by 

F\k) = G{z-k\0)U™(k) + TG{z-k\0) + 

G{z-k\ 0)I^lzf«vuu[ifrK Ψ)-Σ^\^ιγυρι\ Ψ) 
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where Ix[ip-\ ψ) = Ν-χ/2Σ^ΐ]
0~

1 x(Kx[i] + n)z~n, x = u,y (hint: follow the lines of 
Appendix 6.G). 

6.8. Assume that MQ input-output data sets u^tT^y^tT^, t = 0, 1, ...,N¿- 1, are avail-
able. Show that the DFT spectra of the concatenated input-output signals satisfy 

Y%k) = G(Q¿, 0)U%k) + TG(Qk, Θ) + Σ ί \ lz~kT%n ( % *) + < W (6-81) 

with δ{ζΐι) = 0, T¡ = Vr=iNr> and where T¿{i](Qk,0) = Ι^](Ω^Θ)/Α(ΩΙς,θ) with 
nc[i] = ni = max(n

a>
 nb) ~ ^ (hint: follow the lines of Appendix 6.H). 

6.9. Show relation (6-52) for the real case (6-49) (hint: use COS(JC) = (e¡x + e~J'x)/2 and fol-
low the lines of Appendix 6.J). 

6.10. Show that a0 in α^(ί) + y\t) = a0u(t) + u\t), with x'(t) the derivative of x(t) w.r.t. t, 
is identifiable if and only if y(0-) Φ w(O-). Note that y(t) can never be made different 
from u(i) if^(O-) = w(O-). Only internal action in the system can make ^(O-)^w(O-). 

6.11. Show that the functions fr(Qk) = Q.rkU(k), r = 0, 1, ..., nb, and k = 0, 1, ...,N/2 
are linearly independent if and only if U{k) Φ 0 for at least (nb + 1 ) /2 DFT frequencies 
where DC and Nyquist each count for 1 / 2 (hint: study Σ% 0Α·Λ(Ω*) = 0 at the DFT 
frequencies where U(k) * 0). 

6.12. Consider model (6-69) where nb < na, nc < nd, A(z~l, Θ) and D(z~l, Θ) have no com-
mon roots, and G(z~x, θ), H(z~l, Θ) have respective minimal orders nb over na and 
nc over nd. Show that TG(z~l, Θ) and TH(z~l, Θ) are identifiable (hint: suppose that 
Α(ζ~ι,θ) and D(z~l, Θ) are given and write TG(zk

l,0) +ΤΗ(ζ^ι,θ) as 
Σ ^ Ο ' Γ Λ ^ + Σ ^ Ο / ^ ^ ) with f¿z?) = z-kWA(z-k\ Θ), gr(z-¿) = 
z]¿r/D(Zfcl, Θ); next show, following the lines of Appendix 6.K, that fr(zk

x), gr(zk
l) 

are independent functions). 

6.13. Consider model (6-69) where nb < na, nc <nd, A = AF, D = DF, A and D have 
no common roots, and G, H have respective minimal orders nb over na and nc over 
nd. Show that 

G = -?-, H= £- a n d r G + 7 y , = i í / 2 + í + S ) , 
AF DF υ M F^¿ A £/ 

where I2, I, and C are polynomials in z~x of respective orders nr- 1, ηα-η,- 1, and 
nd - nr- 1, is an identifiable parameterization. 

6.10 APPENDIXES 

Appendix 6.A Stability and Minimum Phase Regions 

To determine the stability regions of the poles we expand the rational form G(Q, Θ) in 
partial fractions. We find 

G(s9 Θ) = Σ A " > G(z_1> Q = Σ ~ \ and G(^, 0) = Σ τ ^ — (6-82) 
r
 J ~ Ar r

 Z - Ar r *JS ~ λγ 

(see (6-22) and (6-23)). Calculating the impulse responses of G(Q, Θ) in (6-82) gives 
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β(/) = ι-1{σ(ί,β)} = Σ ν ν (a) 
r 

g(n) = Z-i {G(z-\ Θ)} = Σ Μ ί " - 1 } . for « > 0 (b) (6-83) 
r 

g(t) = L-1 { GUs, Θ)} = Σ ^ / 4 = + Ke^e&i-Xjt)) (c) 

with L_1 { } the inverse Laplace transform, Z_1 { } the inverse Z- transform, and erfc( ) 
the complementary error function (Selby, 1973; Spiegel, 1965). The asymptotic (t -> oo) be-
havior of (6-83c) is studied in Lemma 6.18. It follows that the impulse responses are asymp-
totically zero (poles are stable) if and only if Re(/lr) < 0 in the s -domain (6-83a), \Ár\ < 1 in 
the z- domain (6-83b), and |ZAr| > π / 4 in the Js- domain (6-83c). The convergence rate to 
zero of the impulse response is exponentially for s- and z- domain systems, while it is alge-
braically as an 0(t~3/2) for ^-domain systems (proof: see Lemma 6.18). For unstable s~, 
z-, and J~s- domain systems the impulse response growths exponentially. By definition, the 
minimum phase region of the zeros equals the stable region of the poles. 

Lemma 6.18 (Asymptotic Behavior Impulse Response (6-83c)): For t -»oo the 
function 

f{t) = — + ÁeÁ2tQnc(-Ájt) 
Jñt 

(6-84) 

can be written as 

Λ0 = 
2Xexh + 0 ( r 3 / 2 ) 

1 , /->^-5/2\ 
2Á2Jñt: 3/2 

+ 0( r 5 / 2 ) 

\Z?\ < π / 4 

\Ζλ\ > π / 4 (6-85) 

It shows that fit) (i) grows exponentially for \Ζλ\ < π / 4 (=> Re(Á2) > 0), (ii) decreases al-
gebraically to zero as 0(Γ3/2) for \Ζλ\ > π / 4 , and (iii) converges to a periodic solution for 
\Ζλ\ = π / 4 (=> Re(A2) = 0)as 0 ( r 3 / 2 ) . 

Proof. Using erfc(z) = 1 - erf(z) and erf(-z) = -erf(z), with erf(z) the error func-
tion, (6-84) can be rewritten as 

fit) = — + A^ 2 ' ( l+er f ( / l /0 ) = - i = + Λβ*'(2 - erfcOW/)) 
*Jñt Jñt 

Applying the following asymptotic expansions (z -> oo) of erfc(z) 

\Zz\ > π / 4 6Γί0(-ζ) = - £ - ί ι + Υ " (-nm&Lzll 
z 

z«Jn 

(2m- 1)!! 
erfc(z) = . . . y. , v -y ,Λ o Ώ1Ϊ] | Ζ ζ | < 3 π / 4 

(6-86) 

(6-87) 
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(see Abramowitz and Stegun, 1970) to (6-84) and (6-86) gives (6-85). With the property 
erf(z) = erf(z) the results for the complex conjugate root λ can easily be derived from 
(6-84) to (6-87). D 

Appendix 6.B Relation between DFT Spectra and 
Transfer Function for Arbitrary Signals 

First, the result is proved for discrete-time systems, and next, for (lumped) continuous-
time systems. In both cases we assume that the input and output samples are known (no mea-
surement and no process noise) exactly for / = 0, 1, ..., N- 1 and are unknown elsewhere. 

6.B.1 Discrete-Time Systems (z-domain). The discrete input and output samples 
satisfy difference equation (6-17) for any t. Taking the one-sided Z-transform of both sides 
of (6-17) using 

where X(z) = Σ"= 0χ(ήζ~' (X = U,Y and x = u,y) is the one-sided Z-transform of x(t) 

mdX^z) = Σ"=ι*Η)*'> gives 

A(z~l)Y(z) = B(z-x)U(z)+Ix(z-x) (6-88) 

A(z~x) and B{z~x) are, respectively, the denominator and numerator polynomials of the plant 
transfer function (6-20) and I{(z~l) stands for the influence of the initial conditions of the ex-
periment (past samples of u(t) and y(t)) 

/,(--') = Σ ? . , ΣΓ- , bmu{-i)z<-™- Σ";, ,Tt-_ ,any(-t)z>~» (6-89) 

Model (6-88) cannot be evaluated on the unit circle because the input and output samples for 
t>N are unknown. These samples must, hence, be eliminated. We solve, thereto, difference 
equation (6-17) for / = N, N + 1, ..., oo. Multiplying both sides of (6-17) with z- ' and mak-
ing the summation over / = N, N+ 1, ..., oo using 

Σ^Ν^-Φ-' = z-«(X(z) + z-»X2(z)) 

where X(z) = ΣΓ=#Χ^)Ζ~' a n d χι(ζ) = Σ"= lx(N-t)zt (X = U,Y and x = u,y), gives 

A(z~l) Ϋ(ζ) = Β(ζ~χ)ϋ(ζ) + z~NI2(z-1) (6-90) 

72(z_1) stands for the influence of the final conditions (samples of u(i) and y(t) at the end of 
the experiment) 

i*rl) = Σ^,ΣΓ-Λ^-Ο^-Σ^,Σ^*^-')*'-" (6-91) 

Subtracting (6-90) from (6-88) gives 
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A(r*)YN(z) = B(z-i)UN(z) + I{(z-i)-z-%(z-i) (6-92) 

where xN(z) = X{z)-X{z) = If=~0
ljcW^ (X = U,Y and x = u,y). Evaluation of (6-92) on 

the unit circle at the DFT frequencies zk = exp(j2nk/N), taking into account that 
z% = 1, YN(zk) = Nl/2Y(k) and UN(zk) = Nl/2U(k)9 finally gives 

A(z?)Y(k) = B(z?)U(k) + I(z?) (6-93) 

where 7(z_1) = Ν-χΙ2(Ιλ(ζ-χ) - I2{z~x)) is a polynomial of order ni = m3Lx(na,nb)- 1. The 
polynomial I(z~l) can be parameterized independently of the numerator and denominator co-
efficients of G{z~x) (6-20) because its coefficients ir depend, for a given plant model, lin-
early on max(«fl, nb) independent initial conditions. 

6.B.2 Lumped Continuous-Time Systems (s- domain). The proof follows the same 
lines as in the previous section. We assume that the excitation u{t) is band-limited. The input 
and output continuous-time signals satisfy differential equation (6-16). Taking the one-sided 
Laplace transform of (6-16) gives 

A(s) Y(s) = B(s) U(s) + Ix(s) (6-94) 

where U(s) and Y(s) are the one-sided Laplace transforms of u(t) and y(t), respectively. 
A(s), B(s) are, respectively, the numerator and denominator polynomials of the plant trans-
fer function (6-20) and Ix(s) represents the influence of the initial conditions (value and de-
rivatives of u(t) and y(t) at t = 0-) 

h(s) = Σ:ΐ1Σ;:1
0ν"-'-1^)(ο-)-Σΐ1Σ::>^'"-'-1«Μ(ο-) (6-95) 

The integrals appearing in the model (6-94) cannot be evaluated because the input and output 
signals are unknown for t>NTs. The differential equation (6-16) is, therefore, solved for 
t > NTS using the one-sided Laplace transform. Multiplying both sides of (6-16) by e~st and 
integrating from / = NTS to t = oo gives 

A(s) Y(s) = B Ü(s) + e~NT* sI2(s) (6-96) 

where X(s) = j™Te-stx(t)dt (X = U, Y and x = u,y). I2(s) stands for the influence of the fi-
nal conditions (value and derivatives of u(t) and y(t) at t = NTS -) 

his) = Σ"1 , Σ ^ Χ ^ - ' - ' ^ ^ - Σ ^ ,ΣΓ-'ό b^-'-WXNT,-) (6-97) 

Subtracting (6-96) from (6-94) gives 

A(s)YN(s) = fi(í)£/JV(í) + /1(5)-e-O T' , /2(í) (6-98) 
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where XN(s) = X(s)-X(s) = \NJ° e~stx{t)dt (X = U,Y and x = u,y). Evaluating (6-98) along 
the /co-axis at the DFT frequencies sk = j2nfsk/N using the relationship between the 
DFT and the Fourier integral (Brigham, 1974) 

m = j= Σ?:> w = ρ^ Σ::!:^*-«Μ) (6-99> 

and taking into account that e~NTs Sk = 1, results in 

A(sk)Y(k) = B(sk)U(k) + I(sk) + A(sk) (6-100) 

I(s) = N~ll2(Ix(s)-I2{s))/Ts is a polynomial of order max(«a, nb)-l, and A(sk) is the 
residual spectral alias error 

n = +oo 

4 ^ ) = - ^ = Σ [ ^ * ) £ / A K * * - « / O > J ) - ^ * ) ^ ( Í * - » M ) ] (6-101) 

Note that the spectral alias error is due to the piecewise constant approximation of the Fourier 
integrals UN(j(o) and YN(ja>) by the discrete Fourier transforms U(k) and Y(k) (see (6-99)): 
it is present even if the signals u(t) and y(t) passed through a low-pass filter before sam-
pling. For the same reason as in the previous section, the polynomial I(s) is parameterized 
independent of the numerator and denominator coefficients of G(s) (6-20). 

6.B.3 Diffusion Phenomena (Js- domain). The proof follows the same lines as in 
Section 6.B.2, but now we start from the following fractional differential equation 

Σ!-a«ny( n / 2\t) - Σ":= ob^m/2)(t) (6-102) 

where x^i+l/2\t), with i e N , is the Riemann-Liouville fractional derivative of order 
Ϊ + 1 / 2 

i ^ l = *(<Q with *!ψ = ±"¡4É=dr (6-103) 
o 

(see Oldham and Spanier, 1974). Taking the one-sided Laplace transform of (6-103) gives 

A{Js)Y{s) = Bi/sWW + Iiis) (6-104) 

(see Oldham and Spanier, 1974) with A{Js) and B(Js), respectively, the numerator and de-
nominator polynomials of the plant transfer function. Ix(s) represents the influence of the ini-
tial conditions (value and fractional derivatives of u{f) and y(t) at t = 0) 
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/ na \n/l\-\ 

Σ*ι, Σ sr(yt"/2-r-lX0)-yl»/2-'- l\NTs)) 
ViV V„ = o r = 0 

"b \m/l\-\ \ 

~lLbm Σ s\u^/2-r-x\G)-u^m/2-r-l\NTs)) 
m=0 r=0 

(6-105) 

with |~*1 the smallest integer value larger than or equal to x. Although Ix(s) is a polynomial 
function of s9 it can be written as a polynomial in */s of order nt = max(«fl, nb) - 1 . The re-
mainder of the proof follows exactly the same lines of Section 6.B.2. 

Appendix 6.C Parameterizations of the Extended 
Transfer Function Model 

The partial fraction expansions (6-36) and (6-37) follow directly from the fact that 
TG(Q, Θ) has the same poles as G(Q, θ). The particular form (6-37) is obtained by rewriting 
TG(z~l, Θ) as z(z~lTG(z~l, #)), where the partial fraction expansion of z~lTG(z~l, Θ) has the 
form (6-23), because the orders of the numerator and the denominator of z~lTG(z~l, Θ) are 
equal (see Exercise 6.5). 

The state space equations of a proper (nb<na) discrete-time system are given by 
(6-19). Following the lines of Appendix 6.B, we solve (6-19) for t = 0, 1, ..., αο and for 
t = N, JV+ 1, ..., oo using the one-sided Z-transform. Using the same notations as in Ap-
pendix 6.B, we find 

Y(z) = G(z-l)U{z) + C{Ina-z-xA)-xjdQ) (6-106) 

F(z) = G{z-x)Ü(z) + z-NC(Ina-z~xAyxx(N) (6-107) 

where G(z~l) is given by (6-27). Subtracting (6-107) from (6-106) and evaluating the result 
at the DFT frequencies z = zk gives (6-40) with xl = N~l/2(x(0) -x(N)). 

The state space equations of a proper (nb< na) lumped continuous-time system are 
given by (6-18). Following the lines of Appendix 6.B, we solve (6-18) for t e [0, oo] and for 
/ G [NTS, oo] using the one-sided Laplace transform. Using the same notations as in Appen-
dix 6.B, we find 

Y(s) = G(s)U(s) + C(sI„a-Aylx(0-) (6-108) 

Y(s) = G(s)Ü(s) + e-NT°sC(sIna-A)-lx(NTs-) (6-109) 

where G{s) is given by (6-26). Subtracting (6-109) from (6-108) and evaluating the result at 
the DFT frequencies s = sk gives (6-39) with x1 = N~l/2(x(0-)-x(NTs -))/Ts. D 

Appendix 6.D Convergence Rate of the Equivalent 
Initial Conditions 

We prove the result for a discrete-time system (Ω = z_1). The proof for continuous-
time systems (Ω = s, J~s) follows the same lines. Using (6-89), (6-91), and (6-93) of Ap-
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pendix 6.B, we find the following relationship between the coefficients of the polynomial 
7(z_1, Θ) = ^r

i
=0irz~r in the plant model (6-33) and the initial and final conditions of the 

experiment: 

1{ζ-\θ) = ΛΜ/2 £ ZbmANu(t)z<-»>- Σ Σ"ΑΝΛ()Ζ'-" 
\w = 1 / = 1 n= \t=\ 

\ 
(6-110) 

where ANx(t) = x(-t)-x(N-t) with x = u9y. It shows that the coefficients ir, 
r = 0, 1, ..., ni9 of I(z~l, Θ) depend linearly on 2na output and 2nb input samples (finite 
number independent of N). A bounded input applied to a stable linear system results in a 
bounded output; see Kailath (1980). The same is true for unstable plants captured in a stabi-
lizing feedback loop. Therefore, it follows from (6-110) that ir in (6-35) is an 0(N~l/2). 

For bounded random inputs we still have |/r| <C/JÑ with probability one, so that 
ir = 0&s(N~l/2). Because the residues of the poles of a rational function are proportional to 
its numerator coefficients, the same conclusions hold for the residues lr and sr in (6-37). 
Similar reasoning proves the results for x¡ in (6-40) (see Appendix 6.C for explicit expres-
sions of Xj). D 

Appendix 6.E Some Integral Expressions 

6.E.1 Definite Integrals Involving sin(x)/x Functions. Using 

cos(ajc)sin(Z?x) = 0.5[sin((a + b)x) - sin((a - b)x)] (6-111) 

' ! Í H ^ = r C > ° (6-112) 
X \-K C<0 

and 0 < a < b we find 

+ 00 +°° 

f cos(ax)sm(bx)ac _ r sin((a + b)x) - sm((a - b)x)άχ _ 1 ( \\ _ χ (6-113) 
J nx J 2πχ 2 v V 

Note that (6-113) is zero if a > b. Because sm(ax)sin(bx)/(nx) is a uniformly bounded odd 
function of x in [-oo, +oo], we have 

nx 

| s i n ( ^ ) s i n ( f a ) ^ = 0 ( 6 U 4 ) 

- 0 0 

for any value of a and b. 

6.E.2 Convergence Rate of Integrals Involving sin(x)/x Functions. In this section 
we study the convergence rate to zero of 
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\fx(x)dx, ¡f2(x)dx, jf\(x)dx and ¡f2(x)dx (6-115) 

as N -> oo, where 

r( \ _ cos(ox)sin(£jc) _ sin((#+ &)*)-sin((a-&);t) 
7iW ~ ~ ^ 

π χ ζ π * 
/ · / x _ sin(ajc)sin(6;c) _ cos((a - ¿)JC) - cos((a + &)JC) 
I ^ - - _̂  

πχ 2πχ 

(6-116) 

are uniformly bounded functions of JC. Because /j(jt) and /2(x) are, respectively, even and 
odd functions of JC, it follows from (6-115) and (6-116) that it is sufficient to analyze the con-
vergence rate of 

»sin(cjc) 
\™V*>dx (6-117) 

with c > 0. The basic idea is to write the integral (6-117) as an infinite sum of integrals over 
one period Ιπ/c of the sin(cx) function 

+oo 2kxn/c +oo 2(Jt+l)jt/c 

Γ«5(£2θ Λ = Γ ! 2 ^ 1 ) Λ + Y f 5Ε££ΐ)Λ (6-118) 
J x J x , , J * 

TV W * = *i 2/fcTt/c 

with itj = ίηί(Μ:/(2π)) + 1 and int(jc) the integer part of the real number x. Each integral 
in the infinite sum can be bounded above by 

2(k+l)n/c . , N (2k+\)n/c . 2(k+l)n/c . 

J x J x J x 
2kn/c 2kn/c (2k+\)n/c 

(2k+\)n/c . 2(*+l)ic/c . 

< r s m ( c x ) A + f sm(c*> dx 
~ J 2kn/c J 2(*+l)ic/c 

2*7t/c (2*+1)TI/C 

(6-119) 

because sin(cjc) > 0 for any JC in [2kn/c9(2k+l)n/c] and sin(cx) < 0 for any x in 
[(2k + l)n/c, 2(k+ l)n/c]. Working out the integrals in (6-119) gives 

2(*+1)πΛτ 

f ™<£Ξ>Λ < 1 - 1 = I (6-120) 
J x ~nk n(k+l) nk(k+l) 

2kn/c 

Hence, the second term in the right-hand side of (6-118) can be bounded above by 
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+00 2{k+\)n/c +oo +oo 

,Σ ί ^ Σ ^ , ι * - ! ^ (MÍ., 

with Cj a constant independent of N. The second inequality is due to the Cauchy integral 
test (Gradshteyn and Ryzhik, 1980). The first term in the right-hand side of (6-118) can be 
bounded above by 

2k,n/c 
2k}n/c-N 2π ¿-Hv—-% = 0{N> (6-122) J X 

N I 

Collecting (6-121) and (6-122) proves that the integral (6-118) is an 0(N~l). 

Appendix 6.F Convergence Rate of the Residual 
Alias Errors 

We proof the result lumped continuous-time system (s- domain). The proof for diffu-
sion phenomena (*J~s- domain) follows the same lines. Because the output Fourier spectrum 
7(yco) is related to the input Fourier spectrum U(jco) by 7(yco) = G(j(o)U(J(o) with G(s) 
stable, the output signal has exactly the same spectral properties as the input signal, for exam-
ple, band-limited, discrete Fourier spectrum. Similarly, because Syy(j(£>) = \G(j<ü)\2Suu(j(o) 
with G(s) stable, the output power spectrum Syy(j(ü) has the same spectral properties as the 
input power spectrum Suu(j(o), for example, band-limited, differentiable power spectrum. 
Therefore, to study S(sk) = A(sk)/A(sk) (see (6-101)) it is sufficient to study the spectral 
content of a band-limited signal x(t), observed during a time NTS. The errors in the DFT 
spectra giving the term S(sk) are in fact, leakage errors that can be interpreted as alias errors. 
Indeed, due to the multiplication of x(t) with a rectangular window wN(t), sharp transitions 
occur at the edges of xN(t) = x(t)wN(t). These sharp transitions have a high frequency con-
tent. For ease of notation, we will take the time origin in the middle of the observation win-
dow wN(t): wN(t) = 1 for t e [-N/2, N/2)TS and zero elsewhere. First, we prove the re-
sult for normalized periodic signals (see Definition 3.4), and next, for random signals. 

6.E1 Periodic Signals. A normalized periodic signal has the form 

*(o = ZLi4^ s i n K ? + ^) (6-123) 

where Ak> 0 and where F increases with N, F = 0(N) (see Definition 3.4). By assump-
tion, the signal x(t) is band-limited so that max/¿</B <fs/2. The outline of the proof is as fol-
lows. First, we calculate the high frequency content xa(t) of the observed signal 
%(0 = *%(0*(0· Next, the energy of xa(t) is compared with that of %(/)· Finally, via 
Parceval's theorem, we draw conclusions concerning the Fourier spectra XN(J(o) and 
Χαϋ

ω) οϊχΝ(ή andxa(0, respectively. 
The high frequency content xa(t) is found by multiplying ΧΝ(/ω) with a window P(f) 

that excludes all frequencies in the band [-fs/2,fs/2], and by taking afterward the inverse 
Fourier transform. We find 
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XJJlnf) = XN(j2nf)P(f) => xa(t) = xN(t)*p(t) (6-124) 

with p(i) the inverse Fourier transform of P(f) and * the convolution product. The window 
P(f) can be written as P(f) = 1 -B(f), where B(f) = 1 for | / | < / , / 2 and zero else-
where, so that 

p{t) = ¿(0-8 ίη(ω, / /2) / (πΟ (6-125) 

with sin((Dyf/2)/(fl;f) the inverse Fourier transform of B(f). Using (6-125), we get the fol-
lowing expression for xa(f): 

*β(0 = xN(t)-xN(t)*(sm((»st/2)/(nt)) 

t + NTs/2 ύη(ωΞτ/2) (6-126) J + NT./2 sin(cn r /2) 
Jt-NT/2 π τ 

Putting (6-123) in (6-126) gives, using s in(a-¿) = sin(a)cos(¿>)-cos(fl)sin(¿>), 

χβ(0 = %(0 - χ ^ ) + x2(0 (6-127) 

with 

F Λ t + NTs/2 

^ i4A . / / x f _ x f _ N cos(oKr)sin(co„r/2) 
i 1 A/ /V π r 

k=\^iy t-NT/2 

(6-128) 
v-> ^* , r , , x smto¿r)sin(cocr/2) 

*2« = Z - p C o s ( c V + ^ ) ¡ f2(T)dr, f2(r) = k ) y s -7 

lc=\*iy t-NT/2 

We now study (6-127) for the four following cases: (i) t e (-NTs/2,NTs/2), 
(ii) t = -NTs/2 and / = NTs/2, (iii) t>NTs/2, and(iv) t<-NTs/2. 

If f G (-JV7¡ / 2 , JV?; / 2 ) , then we can split up the integrals in (6-128) as 

t + NT / 2 +oo t- NT /2 

J /<r)rfr= ¡mdr- J ffr)dT- J y¡(r)Jr (6-129) 
t-NTs/2 -oo -oo t + NTs/2 

for z = 1,2. From Appendix 6.E it follows that 

+ 00 +00 

\/χ{τ)άτ = 1 / Λ ( Γ ) Λ = 0 (6-130) 



214 Chapter 6 ■ Models of Linear Time-Invariant Systems 

and that for N - » oo and t fixed, or / = aNTs / 2 with a e ( -1 , 1), 

t-NT/2 

Í mar = <Kj-l) Í mdr = Oi7T±-^ (6-131) 
t + NT/2 

The first integral in (6-130) is valid only if x(t) (6-123) is band-limited, ω^<ω 8 /2 for 
k = 1, 2, ..., F, while the second integral follows from the fact that f2(r) is an odd function 
of r. Collecting (6-127) to (6-131) gives, using x(t) = 0(N°), 

**(') = °( , + i¿V2> + ^t-NT/J f°r t = aNTs/1 With a G (_1' 1} (6'132) 

For ¿ = -N7¡ / 2 and NT; / 2 the integrals in (6-128) are finite for any N9 oo included. The 
same is true for t = -NTS /2 ± At and NTS /2 ± At, with At independent of N. Together 
with x(t) = 0(7V°), it follows that 

xa(t) = 0(N°) for t = - NTS /2 ± At and NTS /2 ± At (6-133) 

with Δ/ independent of TV. 
If / > aNTs /2 with a > 1, then we can split up the integrals in (6-128) as 

t + NTs/2 +oo +oo 

J fi(T)dT= J ftfidT- j mdr (6-134) 
t-NTs/2 t-NTs/2 t + NTs/2 

where, according to Appendix 6.E, 

+ 00 +00 

J fW = (Kj-±rtf J fffidr = OijT±^ (6-135) 
t-NTs/2 t + NTs/2 

Collecting (6-127), (6-128), (6-134), and (6-135) gives, using x{i) = 0(N°) and xN(t) = 0 
fort>NTs/2, 

Xa(t) = °(t-NT/2} + ° (7TW72) for ' > aNT*/2 With a>1 {6A36) 

Following the same lines, we find for t < -NTS / 2 , 

X"(t) = ^t-NT/l*+ ^t + NT/J for ' < ~aNTs fl With a > l (6"137) 
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0(N°) 0(N~l) 0(N°) 

0(N~l) 

^ΛΛΛ/\Μ 

0(N-1) 

lA/vvvwv -> 

-NT/2 +NT/2 

Figure 6-10. Visualization of the high frequency content xJJ) of the observed signal xN(i). 

From (6-132), (6-133), (6-136), and (6-137) we conclude that xa(i) tends to zero everywhere 
as 0(Ν~ι), except in a close, N-independent, neighborhood of / = -NTs/2 and 
t = NTs/2 where it behaves as an 0(N°). A graphical representation of xa(t) is shown in 
Figure 6-10. The ringing at the edges of the observation window are known as the Gibbs phe-
nomenon. Note that the difference xN(t) - xa(t) is band-limited. 

Using (6-132), (6-133), (6-136), and (6-137), we can calculate the energy of xa(t). We 
find 

¡x¡(t)dt = 0(N<) 
-00 

From (6-123) it follows that 

+oo +NTs/2 

¡x£(t)dt = J x\t)dt = 0(N) 
-oo -NTs/2 

Applying Parceval's theorem to (6-138) and (6-139), we get 

+ 00 +00 +00 

\xl(t)dt = \\Xa(j2nf>\>df = 2 ¡ \Xa(j2nJ)\2df = 0(7V°) 
-co -co / / 2 

+f,/2 +co +co 

I \XN(j2nJ)\>df = \\XN(j2nJfdf- \\Xa(j2itf)\^df 
-fs/2 -co -co 

(6-138) 

(6-139) 

(6-140) 

(6-141) 
= \x2

N{t)dt- ¡x2
a(t)dt 

—00 —00 

= 0(N) 

It follows that the ratio of the energy above Nyquist (\f\ >fs / 2 ) to the energy below Nyquist 
(1/1 <fs

//^) °f XN(0 *S a n 0(N~l). By construction, the energy of the normalized periodic 
signal x(t) is continuously spread over the F = 0(N) frequencies fk (see Definition 3.4), 
so that the DFT spectrum X(k) of xN{t) is an 0(N°). As the energy of the pulse-like signal 
xa(t) is also continuously spread over the frequency, it follows directly that 
d{sk) = 0(ΛΜ/2). 
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Note that formulas (6-138) to (6-141) are also valid for periodic signals with a fixed 
number of frequencies F = 0(N°)md fixed amplitudes Ak/jÑ = 0(N°) in (6-123). The 
difference with the normalized periodic signals is that the signal energy is concentrated at a 
fixed number of frequencies fk. Hence, at the excited frequencies fk, X(k) is an 0(Nl/2), 
while S(sk) is still an 0(N~U2). It shows that the relative convergence rate of S(sk) is an 
0(ΛΗ) a t ¿ . 

6.F.2 Random Signals. The autocorrelation function RN(r,f) of the observed ran-
dom signal xN(t) is related to the autocorrelation R(r) of the complete signal x(t) by 

RN(T, t) = E {χΝ(ήχΝ(ί + r)} = wN(t)wN(t + T)R(T) (6-142) 

Taking the Fourier transform of (6-142) w.r.t. τ gives the power spectrum 

SN(jco,t) = w„(0[S(>)*(^(yco)e/»9] 

= H ^ O j S(j2ng)e>-2«<f-^WN(j2n(f-g))dg 
(6-143) 

wN(t)\*S{j2%g)eiWs)'WN(j2n{f-g))dg 
"/B 

with WN(j(o) = 2ω_18ίη(ωΛ^/2) the spectrum of the window wN(t), and where the last 
equality is due to the fact that x(t) is band-limited, S(j(£>) = 0 for / > / B . Because 
S(j2ng)/(f-g) is finite for any f>fs/2 and \g\ </B, we can apply partial integration to 
(6-143). We find for f>fs/2 

+Λ (6-144) 
_ w^t) f cos(n(f-g)NTs) d (S(j2ng)eJ2^s)f\ 

N J π2Γ5 d¿\ / - g J; g 

-Λ 

Clearly, the first term in the right-hand side of (6-144) is an 0(N~l). Because S(j2ng) is dif-
ferentiable for \g\ <fB a n d / - g * 0 for any |/f > / / 2 and |g| </B, the integral in (6-144) 
is finite for any N, oo included. Hence, the second term in the right-hand side of (6-144) is 
also an 0(N~l), so that SN(j(o, t) = 0{N~X) for f>fs/2. This establishes the mean square 
convergence (see Chapter 16) of the signal energy above fs/2 to zero (the power spectrum 
is a second-order moment). As SN(jco, t) = 0(N°) for |/| <fB and the DFT spectrum X(k) is 
an 0(N°) for stationary random signals, we have S(sk) = Oms(N~l/2). 

Appendix 6.G Relation between DFT Spectra 
and Transfer Function for Arbitrary 
Signals with Missing Data 

The DFT spectrum X(k) = DFT(x(0) of the complete set (no missing data) can be 
split into the contributions of the known and the unknown samples 
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X(k) = X%k) + zf'IJrt) (6-145) 

where X™(k) = DFT(xm(0), I¿z?) = Ν-χΐ2Σ™χ
=^ χ(Κχ + ί)ζ~\ and x™(t) is defined in 

(6-43). Applying (6-145), with X = U, Y and x = u,y, to (6-33) gives (6-44). D 

Appendix 6.H Relationship between DFT Spectra 
of Concatenated Data Sets 
and Transfer Function 

The proof will be given for the discrete-time case (Ω = z_1). That of the continuous-
time case (Ω = s, Js) is similar and the analogy with the discrete-time case is the same as in 
Appendix 6.B. 

The Z-transforms ^(z_ 1) , i = 1,2 and X = U, Y9 of the input-output signals of the 
two data sets x¡(tTs)9 i = 1,2 and t = 0, 1, . . . , N ¡ - 1, with x = u9 y9 satisfy, respec-
tively, (see Appendix 6.B, (6-92)) 

A(z-l)Yx(z-1) = Bizr^U^z-^ + I^z-^-z-^Qr1) (6-146) 

A(z-l)Y2(z~l) = B(z-l)U2(z-l) + I3(z-l)-z-N%(z-1) (6-147) 

where It{z~l)9 i = 1, 2, 3, 4, are polynomials of order ni = max(«0, nb)~ 1 that represent 
the initial or final state of the system at t = 0 (Il9I3)9 t = N{ (I2) and t = N2 (/4). Mul-
tiplying (6-147) by z~N] and adding the result to (6-146) gives 

A(z-l)Yc(z~l) = ^z -^ t /^z -^ + Z ^ z - ^ - z - ^ z - ^ + z - ^ ^ z " 1 ) - ^ - 1 ) ) (6-148) 

where X%z~l) = Xx{z~x) +ζ~Ν'Χ2{ζ-χ)9 X = U9 7, is the Z-transform of JC^ÍT;) defined in 
(6-47), with x = u9 y. Evaluating (6-148) along the unit circle at the DFT frequencies 
zk = cxp(2njk/N), taking into account that z^N = 1, gives, after division by *JÑ9 

A(z-kWk) = B(z~k
x)U%k) + I(zf) + z?*F{z?) (6-149) 

withXc(A:) = X%z¿l)/«JÑ9 X = U9 Y, the scaled DFT spectra of the concatenated data sets 
χ°(ηΤ5), n = 0, 1, . . . , # , x = u9 y9 and where /(z^1) = (1\{zf)-14(ζ^))/ JÑ and 
F(z]-1) = (I3(Zkl) -I2{zix))/ JÑ are polynomials in z^1 of order n¡. Equation (6-149) 
results in parametric model (6-48) with θ- [α0αχ...αη b0bl...bn i0ix...inic0icl...icn]

T. D 

Appendix 6.1 Free Decay Response 
of a Finite-Dimensional System 

For discrete-time systems, (6-51) follows directly from (6-33) with U(k) = 0. For 
strictly proper lumped continuous-time systems we use (6-98) with UN(s) = 0 
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and where the polynomials I^s), I2(s) have order na - 1. Taking the one-sided Z-transform 
of the sampled inverse Laplace transform of (6-150) gives 

YN(z) = Tx{z-\)-z-"T2{z-') (6-151) 

with YN(z) = YüllyitT^r-* and T^z'1), T2(z~l) rational forms in z~l of order (na-\) 
over na. The poles zp of Tx{z~x), T2(z~l) are related to the roots sp of A{s) by the impulse 
invariant transformation, zp = exp(spTs). Evaluating (6-151) at the DFT frequencies 
zk = eJ2nk/N w i t h Z-N = i g i v e s (6-51), after division by JÑ. D 

Appendix 6.J Relation between the Free Decay 
Parameters and the Partial Fraction 
Expansion 

We will prove (6-52) for the complex case (6-50). Using Σ?=οχ* = (l -x*)/(i -*) and 
zf = 1, the DFT transform Y(k) = Ν-ι/2Σ^οΛ^)ζρ of y(t), (6-50) becomes 

where_ Xr = e
{~dr+jc°r)Ts. Comparing (6-152) with (6-37) where, q = 0, λ_νΦλγ, and 

l_r Φ lr, gives (6-52). The proof of the real case follows the same lines (see Exercise 6.9). D 

Appendix 6.K Some Properties of Polynomials 

Lemma 6.19: Consider the polynomial Ρ(Ω), 

with ar, br fixed coefficients and ar, βν free parameters, and suppose that Ρ(Ω) = 0 must 
be fulfilled for any Ω. All the parameters ar and βγ are zero if and only if the polynomials 
Α(Ω9 Θ) and Β(Ω, θ) have no common roots. 

Proof. If the parameters ar and βν are not all zero, then we can rewrite Ρ(Ω) = 0 as 

Β(Ω,Θ) = Σ?=ο&ΩΓ 

Α(Ω,Θ) y ^ W 
Lar = 0 r 

(6-154) 

(if all ar are zero in Ρ(Ω) = 0 then all βν are zero and vice versa so that at least one ar and 
one βν should be different from zero). 

If the polynomials Α(Ω, Θ) and Β(Ω, Θ) have no common roots, then 
Β(Ω, Θ)/Α(Ω, Θ) has minimal order nb over na. Equation (6-154) implies that Β(Ω, Θ)/ 
Α(Ω, Θ) can be written as a rational form of order nb over na - 1, which is impossible. 
Hence, Ρ(Ω) = 0 can be true for any Ω only if the parameters ar, βΓ are all zero. 
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If the polynomials Α(Ω, Θ) and Β(Ω, Θ) have common roots, then the minimal order of 
Β(Ω, Θ)/Α(Ω, Θ) is less than nb over na, and (6-154) is fulfilled with ar and βτ not all 
zero. □ 

Lemma 6.20: Consider the polynomial Ρ(Ω) in (6-153) and suppose that Ρ(Ω) = 0 
for at least {na + nb+\)/2 DFT frequencies Ω^ where DC (k = 0) and Nyquist 
(k = N/2) each count for 1/2. The free parameters ar, βν are zero if and only if the 
polynomials Α(Ω, Θ) and Β(Ω, Θ) have no common roots. 

Proof. The polynomial equation Ρ(Ω) = 0 is fulfilled for any Ω if and only if the 
coefficients of all the powers of Ω are zero. We will show that this is also true if Ρ(Ω) = 0 
for at least (na + nb + l ) / 2 DFT frequencies. Applying Lemma 6.19 proves the lemma. 

Evaluating Ρ(Ω) = Σ% 0Pr^
r> w i t h n

P
 = na+ nb> a t F D F T frequencies 

* , € { 1, 2, . . . , i V / 2 - 1 } , / = Í , 2 , . . . , F , gives 

ν(Ω,ϊ,ΩΙί2,...,Ω^)ρ = 0 (6-155) 

with pT = [p0px ...pn] and where the matrix V(Clk, ΩΛ , ..., ΩΛ ) e C F x ( ^ + 1 ) has a Van-
dermonde structure 

v(nki,ak2,...,akF) 

1 Ωέ Ω | ... Q"k" 

1 Ω*2Ω,2
2 

1 Ω*,Ω& 

Ω& 

«fe 

(6-156) 

The Vandermonde matrix (6-156) is of full rank if and only if the F DFT frequencies Q.k are 
all different (see Golub and Van Loan, 1996 and Exercise 15.6). Adding the F complex con-
jugate DFT frequencies to (6-155) gives 

ν(Ω^...,ΩΙ(ρ9Ω_Ι(ι,...,Ω_,ι)ρ = 0 (6-157) 

where V(Clki, . . . , Ω ^ Ω ^ , . . . , Ω ^ ) e £2Fx{np+l) is of fall rank (ΩΑ, ^Ω_^). Hence from 
(6-157), it follows that p = 0 if and only if F > (/i + l ) / 2 . The same reasoning holds if 
DC (it = 0) and Nyquist (k = N/2) are added to the frequencies. However, since Ω0, 
ΩΝ/2 are real numbers, they increase the rank of Κ(ΩΛ, ..., Ω^, Ω_^, ...,Ω_^) by one 
instead of two as for each complex Ω^. D 

Appendix 6.L Proof of the Identifiability of Transfer 
Function Model (6-32) (Theorem 6.9) 

Choosing an = 1, transfer function model (6-32) can be written as 

(6-158) 
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withfr(Qk) = ilr
kU(k) ¡magr(£lk) = &kY{k). The coefficients a0, al9 ..., a„a_l9 b0, ..., 

bnb in (6-158) are identifiable if and only if the functions fr(Qk)9 r = 0, Í, ...,nb and 
gr(Clk), r = 0, 1, ..., na - 1 are linearly independent. This is the case if and only if 

Σ Χ oPrfx^)+Ση;:1 <*rgrm = o (6-159) 

k = 0, 1, ..., JW2, implies that all parameters ar, /?r are zero. Multiplying (6-159) by 
Λ(Ω*, 0) and using Y(k) = G(Qh 0)U(k) gives Px(ak)U(k) = 0, it = 0, 1, ..., JVY2, with 

Λ(Ω) = (Σ?= ο Α Ω Ο ( Σ ; : 0
f l r« r )+(ΣΧ 1 « , Ω Ο Ε ' . 0*ΓΩΓ) (6-16°) 

At the DFT frequencies where £/(£)* 0, P,(n^C/(it) = 0 is equivalent to PX(C1¿) = 0. 
The free parameters ar and βν in Ρ^Ω) = 0 are zero if and only if Α(Ω., Θ) and 5(Ω, 0 
have no common roots and U(k) Φ 0 for at least (na + nb + 1 ) /2 different DFT frequencies 
(proof: see Appendix 6.K). D 

Appendix 6.M Proof of the Identifiability of Transfer 
Function Model (6-34) 

Choosing an = 1, transfer function model (6-33) can be written as 

"Í-JW = Σ^/^-ΣΧο1^^^^ (6-161) 

with /Γ(Ω*) = nr
kU(k), gr(Qk) = Clr

kY(k) and with A(zk
l) = 0 and A(Qk) given by 

(6-101). A necessary condition for the identifiability of the coefficients a0, ..., αΛβ-ι, ¿ο» 
..., bn , z0, ..., /„ in (6-161) is that fr(0.k) and Ω£ are linearly independent. If fr(Qk) and 
Ω£ are linearly dependent, then there exist coefficients βη γη not all zero, such that 

Σ " ! o Α # Ω * ) + Σ"'= ο ̂  = ° (6-162) 

As the functions fr(£lk) and Ω£ are themselves linearly independent (see Exercise 6.11) not 
all βΓ and not all γΥ are zero. From (6-162) it follows, then, that 

U(k) = -(Σ"'= o ̂ ) / ( Σ " = o A«í) i6"163) 

A: = 0, 1, ..., TV/2. We conclude that the functions /Γ(ΩΛ) and Ω£ are linearly dependent if 
and only if U(k) can be written as a rational form of order ni over nb or less, otherwise they 
are linearly independent. If U(k) Φ 0 for less than (nb + nt + 2 ) /2 different DFT frequen-
cies, then U(k) can always be written as in the form (6-163) (a rational function of order nt 

over nb fits exactly (nb + ni + l ) / 2 arbitrary complex numbers). 
Transfer function model (6-34) can be written as 

Y(k) = G(Qh G)U(k) + TG(ilh θ) + S(Qk) (6-164) 
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with δ{ζιχ) = 0 and 

%s*> = τΤΊττ Σ Wsk>e)VN(sk-njas)-YN{sk-njas)] (6-165) 
n = +oo 

n - -oo 
n*0 

(see (6-101)). If the polynomials Α(Ω, <9), Β(Ω, Θ), and /(Ω, Θ) have common roots, then 
the rational functions G(Q, Θ) and TG(Q, #) can be simplified, leaving (6-164) unchanged. 
Clearly, the roots that have been removed are not identifiable. D 

Appendix 6.N Rank of the Residue Matrices of 
Multivariable Transfer Function Models 

The transfer function model of the left and right matrix fraction descriptions (6-54) and 
(6-55), and the state space models (6-26) and (6-27), depends on the inverse of a polynomial 
matrix. Let A(s) be an n x n polynomial matrix with simple zeros (roots of dQt(A(s)) = 0). 
The residue matrix L0 of a simple pole s0 of A~x(s) (det(,4(s0)) = 0) is given by 

LQ = lim (s-s0)A-\s) = lim ( 5 - S o ) g d g i = adj04(s0)) lim <ί-^°> (6-166) 
s-*s0 s-^s0 aei(A(s)) s -> 50det(̂ 4(5')) 

with adj(A(s)) the adjoint matrix of A(s) (Gantmacher, 1990), and where the last limit in 
(6-166) is different from zero. Since adj(i4(s)) = det(A(s))A-l(s)9 d e t ( a ^ ) ) = andQt(A(s)), 
and det^-1^)) = l/det(A(s)), it follows that det(adj04(s))) = (det(A(s)))n-1. It shows 
that s0 is a root of multiplicity n - 1 of det(adj(v4(s))) and, therefore, the rank of adj(,4(s0)) 
cannot be larger than 1 {n-\ eigenvalues of adj(^(^0)) are zero). Finally, 
rank(L0) = rank(adj(^(50))), which concludes the proof. D 

Appendix 6.0 Band-Limited Observation of 
Continuous-Time Noise (Theorem 6.14) 

The power spectral density of the stochastic process v(t) at the output of the anti-alias filter 
AA(j<$) can be written as 

Swt/ω) = \Η(]ωψ\ΑΑΟωψΞ6^0'ω) = |#0 'ω) | 25^0"ω) (6-167) 

Since \AA(Ja>)\ = 1 for \f\<fs/2 and zero elsewhere, S ^ t / o ) = \AA(j<o)\2SeceJ(J®) i s 

constant for \f\ <fs/2 and zero elsewhere. Because filtered Gaussian noise remains nor-
mally distributed, it shows that ec(t) is a band-limited white Gaussian noise process (6-60) 
with/B = fs/2. Taking the inverse Fourier transform of S^jjco) gives the autocorrelation 
function R£ce^) of £c(/) 

+fs/2 

R***& = Í fdf= ^ ^ π / , Γ ) (6-168) 
-fs/2

Js 
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with sinc(x) = sin(x)/x and where σ2 = v a r^ f ) ) . Since R£c£c(mTs) = 0 for m*0, it 
follows that e(m) = sc(mTs) is uncorrelated over m. Finally, using the normality of sc(t), it 
proves that e(m) is independent, normally distributed, discrete-time white noise with 

D 

Appendix 6.P Correlation Noise Transient with Noise 
Input (Theorem 6.15) 

Since the proof does not use the stability of the noise transfer function Η(Ω) (ΤΗ(Ω) and 
Η(Ω) have the same poles), the result (6-67) is also valid for unstable systems captured in a 
stabilizing feedback loop. 

6.P.1 Discrete-Time Systems (z- domain). For discrete-time systems H(z~l) of or-
der nc over nd, the coefficients of the numerator polynomial of the rational form ΤΗ(Ω) de-
pend on (e(N-r)-e{-r))/JÑ, r = \,2,...,nc and (ny(N-r)-ny(-r))/JÑ, r = 1,2 
..., nd (see Appendix 6.B, Section 6.B.1). Hence, in E{TH(z^l)E(k)} terms of the form 

-Li{(e(N-r)-e(-r))E(k)} = I Σ ^ 1 E{(e(N-r)-e(-r))e(t)}eWN 

^N (6-169) 
-j=E{(ny(N-r)-ny(-r))E(k)} = I Σ^ο l{(ny(N-r)-ny(-r))e(t)}eJ^^ 

should be calculated. Since e(t) is discrete-time white noise it follows immediately that 

^ll^MN-r)-<-r))<0}ePnkt/N = σν2π*<*-Γ>/* = 0(N°) (6-170) 

In the sequel we study the terms depending on the cross-correlation between ny(t) and e(i). 
The cross-power spectrum S„ β(/ω) between ny(t) and e(t) is given by S„ye(j(o) = 
a2H(e~J(oTs), with σ2 = var(e(¿)). As a consequence, the cross-correlation Rn β(τ), which is 
the inverse Fourier transform of Sn eC/ω), consists of the sum of damped (complex) exponen-
tials: the poles of H(z~l) inside the unit circle define Rn e(r) for τ> 0, and those outside the 
unit circle define Rn Jj) for τ< 0 (Kwakernaak and Sivan, 1991). Hence, Rn β(τ) can be 
bounded above as | i?v(r) | < /te_Qrr, with or, β> 0, and 

|Zf=~o E K ( " M " ~ 0}^π*'/Λ1 * P ZfJo e~at = °(N°) (6~171) 

From (6-170) and (6-171) we conclude that (6-169) is an 0(Nl)9 which proves the first 
equality of (6-67). 

6.P.2 Lumped Continuous-Time Systems (s- domain). For continuous-time systems 
H(s) of order nc over nd, the coefficients of the numerator polynomial of the rational form 
TH(s) depend on (ε^\ΝΤ8) - 4r\0))/JÑ9 r = 1,2, ..., nc and (y<r\NT¿ -
-v(r\0))/jÑ, r = \,2,...,nd (apply the results of Appendix 6.B, Section 6.B.2, to 
(6-64)). Hence, in E{TH(sk)E(k)} terms of the form 
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(6-172) 

with e(n) = sz{nTs) and zk = eJ'2nk/N, should be calculated. We analyze the cross-correla-
tion Rv(r)£c(r) between the r th derivative of v(0 and the input ec(t) (the analysis of R^r)e(r) 
follows exactly the same lines). It is calculated via the inverse Fourier transform of the cross-
power spectral density Sv(r)£(j(ú) 

*ν«*Ρ'ω) = (7ω)^0 ·ω)^ , ο ( 7 ω) (6-173) 

with SSc£c(j(£>) the power spectral density of the band-limited white noise source sc(t) with 
variance σ2 (see Definition 6.12 with fB = fs/2). We find 

V>£W = ^1{(;ω)'·//0·ω)}*Γ-ΐ{^,οΟ·ω)} 

+oo (6-174) 
= j R(t)a2smc(nfs(T-t))dt 

—00 

with F~l{.} the inverse Fourier transform, sinc(x) = sin(x)/x, and where 
R(t) = F-l{(j(d)rG(j(£>)} is a sum of damped (complex) exponentials: the poles of s rG(s) 
in the left half plane define R(t) for t > 0, and those in the right half plane define R(t) for 
t < 0 (Papoulis, 1981). Using (6-174) we get for a general term of (6-172) 

1 N_ Λ 1 +00 

^nJQUv{%NTs)e{n)}efl*kn/N = j - ¡ R(t)a2S(N-n,t)dt (6-175) 

where 

S(N-n,t) = X ^ s i n c ^ í í i V - w ) ^ - / ) ) ^ 7 1 ^ = 0(\og(N)) (6-176) 
Hence, (6-175) can be bounded above by 

¿ f R(t)a2S(N-n,t)dt\<0(log(N)/N) j \R(t)\dt = 0(log(N)/N)0(l) (6-177) 
\-N *'_00 I -oo 

where the last equality uses the fact that R(t) is a sum of damped (complex) exponentials. 
Collecting (6-172), (6-175), and (6-177) proves the second equality of (6-67) for Ω = s. 

Remark If the perfect anti-alias filter is replaced by a real lowpass filter such that 
S£cecÜ<ü) is a rational function of ; ω then R^^T) (6-174) is a sum of damped (complex) 
exponentials, and 

^N
nl\^{v^{NTs)e{n)}^%kn/N = Σ ϋ - Χ ' ) ^ - » ) ^ " * " ™ = °(N°) (6"178) 
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(proof: apply Ση = οχ" = (1 ~ χΝ)/( 1 — Jc)_to the sum of complex exponentials). Combining 
(6-172) with (6-178) shows that E{ TH(sk)E(k)} = 0(l/N). 

6.P.3 Diffusion Phenomena (Js- domain). The only difference with the lumped 
continuous-time case is that R(t) in (6-177) is a sum of 0 ( r 3 / 2 ) terms instead of a sum of 
damped (complex) exponentials (see Appendix 6.A, Lemma 6.18). Results (6-177) and 
(6-178) remain valid because \+™ 0(rvl)dt = 0(1). 

Appendix 6.Q Correlation Noise Alias Error with 
Noise Input (Theorem 6.16) 

In this appendix we study the asymptotic (N-»oo) behavior of E{S(sk)E(k)}, with 
S(sk) = (A(sk)/A(sk)), and where A(sk) is defined in (6-101). In E{A(sk)E(k)}, terms of 
the form 

NT 

j=E{EN(sk-mjas)E(k)} = ¿ je^-W^R^t-nTMdt 
^^ 0 n=0 

(6-179) 
NT 

1 Ε { % - Φ , ) Κ * ) } = i Je-e*-·/»*.)' N^RVSc(t-nTs)z"kdt 
^N 0 « = 0 

with ra^O, e(«) = ec(nTs), sk = ja>k and z¿ = eJ2nk/N, should be calculated. Since 
SVSJJQÜ) = H(j(o)S£c£c(j(ü)9 where Secec(j(o) is by assumption a rational function of 7'ω, 
i?v¿rc = F~l {SveJ(j(ú)} is a sum of damped (complex) exponentials aeP^ with Re(/7) < 0. It 
can be verified that the sum J ^ Z \ Rνε (t - n Ts )z% consists of terms of the from 

eft9e±JKt-MTt)9eJKNT,-t) ( 6 . 1 8 0 ) 

with (M- l)Ts <t<MTs , and where MeN depends on t (proof: apply 
]>^~QJCM = (\ -xN)/(l-x) to the sum of complex exponentials). Since 

NTS 

J e - ( ' r M ) ' g(f)dt = <9(#°) for g(/) = eft, e±p{t~MT°\ ββ{ΝΤ° ~ή and m * 0 (6-181) 
0 

it follows that the integrals in (6-179) are an 0(N°), which proves the theorem. D 

Appendix 6.R Correlation Plant Transient and Plant 
Alias Error with Plant Input (Theorem 
6.17) 

Since Suu(j(d) is, by assumption, a rational function of Q¿, all cross-power spectra, for 
example, Syu(J(o) = G(Q)SMW(/co), are also a rational functions of Ω. Hence, the 
corresponding cross-correlation functions, for example, Ryu(T) = F-l{Syu(j(o)}, are a sum 
of damped (complex) exponentials (s-, z- domains), or a sum of 0(Γ3/2) terms, which is the 
key property needed for proving Theorems 6.15 and 6.16 (see Appendices 6.P and 6.Q). D 



Measurement of Frequency 
Response Functions - The 
Local Polynomial Approach 

Abstract: The classical methods for measuring the frequency response function (see Chapter 
2) suffer from a number of shortcomings: the bias and/or variance caused by the residual 
plant and/or noise leakage errors, the frequency resolution is much smaller than the inverse of 
the experiment duration, and separate data records (random excitations) or transient data (pe-
riodic excitations) cannot be handled. This chapter describes advanced methods for measur-
ing the frequency response function of multivariable nu input, ny output systems using 
arbitrary and periodic excitations. They reduce the aforementioned problems by exploiting 
explicitly the smooth behavior of the frequency response function and the leakage (transient) 
errors as a function of the frequency. The key idea is to approximate locally the frequency re-
sponse function and/or the transient errors by a low degree polynomial. 

7.1 INTRODUCTION 

The major problem in estimating the nonparametric frequency response function (FRF) and 
noise covariance matrix using arbitrary excitations is the suppression of the system and noise 
leakage errors. These errors are introduced when transforming a finite number N of time do-
main samples to the frequency domain via the discrete Fourier transform (DFT). Spectral 
analysis methods handle this problem via time domain windowing (see Section 2.6). To re-
duce the noise on the estimates, the record of N samples is divided in M subrecords of 
length N/M, which decreases the frequency resolution from fs/N to Mfs/N, and the re-
sults are averaged over the M subrecords. Hence, choosing M is making a trade-off be-
tween, on the one hand, the leakage elimination and the frequency resolution (the larger M, 
the larger the leakage errors and the smaller the frequency resolution), and, on the other hand, 
the noise suppression (the variance of the estimates decreases by M). Another shortcoming 
of the classical spectral analysis method is that it cannot handle the concatenation of separate 
data records. 

In Section 7.2 of this chapter we present a method for estimating the frequency re-
sponse matrix (FRM) and its covariance at full frequency resolution fs /N from an experi-
ment with random excitations. The basic assumption made is that the plant and noise transfer 
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functions (and hence also the plant and noise transient terms) are smooth functions of the fre-
quency that can locally be approximated by a low degree polynomial. This so-called local 
polynomial method suppresses much better the leakage (transient) errors, while maintaining a 
useful noise averaging effect that is at least as good as that of the spectral analysis methods. 
Hence, even if the noise errors dominate the leakage errors, the local polynomial method is 
preferred because the FRF is estimated at the full frequency resolution of the experiment (= 
the inverse of the experiment duration). Moreover, it can also handle concatenated data 
records (Section 7.2.9). The major disadvantage of stationary random excitations is that no 
distinction can be made between noise and nonlinear distortions. 

Via steady state experiments with periodic inputs one can easily separate the noise 
from the nonlinear distortions in FRM estimates (see Chapter 4). Moreover, uncorrelated in-
put signals can be constructed for finite samples (see Sections 2.7 and 3.7). The major disad-
vantages are the reduced frequency resolution (much smaller than the inverse of the total ex-
periment duration), and the fact that no transient data can be handled. Section 7.3 of this 
chapter presents two methods for increasing the frequency resolution (or decreasing the mea-
surement time) of FRM estimates using periodic excitations, while keeping the ability to sep-
arate the noise contribution from the nonlinear distortion. The first (= "robust") method re-
quires multiple (at least nu) experiments with uncorrelated sets of inputs, and puts no 
condition on the FRM; while the second (= "fast") method starts from one single experiment, 
but assumes that the FRM can locally be approximated by a polynomial. 

Due to the non-periodic nature of noise, the steady state response of a dynamic system 
to a periodic input is still subject to noise transients (noise leakage errors). For lightly 
damped systems these noise transients (significantly) increase the variance of FRF estimates. 
Section 7.3 of this chapter presents a technique for suppressing the noise transients in FRM 
estimates using periodic excitations. It is based on a local polynomial approximation of the 
noise leakage error. Irrespective of the number of inputs nu and outputs n , it is shown in 
Section 7.3.2 that two periods of the steady state response are enough to suppress the noise 
transients and to estimate the input-output noise covariance matrix. Since no distinction can 
be made between the system and noise transients, the presented method is also applicable to 
the first two periods of the transient response of the system to a periodic input (see Section 
7.3.8). For lightly damped systems this results in a significant reduction of the experimental 
time. 

To separate the noise from the nonlinear distortions in the FRM estimate of a nonlinear 
system, the "robust" method needs a number of FRM estimates with independent random re-
alizations of Gaussian-like input signals (see Chapter 4). Irrespective of the number of inputs 
nu and outputs ny, it is shown in Section 7.3.6 that two independent realizations are enough. 
For lightly damped systems this results again in a significant reduction of the experimental 
time. 

The "fast" method estimates the FRM, the noise level, and the level of the nonlinear 
distortions from two consecutive periods of the transient response to one set of uncorrelated 
periodic input signals that - for all inputs - excites all harmonics in the frequency band of in-
terest (see Section 7.3.7). Hence, irrespective of the number of inputs nu and outputs ny, the 
loss in frequency resolution (or increase in measurement time) of the "fast" method w.r.t. sta-
tionary random excitations is a factor 2. Compared with the "zippered multisine" approach 
(see Section 2.7.1), the "fast" method does not suffer from the (non)linear spectral distortions 
introduced by an actuator or a feedback loop, and has a larger frequency resolution (at least a 
factor nu). Similarly to the random input case (see Section 7.2.2), the "fast" method for peri-
odic signals requires a local polynomial approximation of the FRM. This is the price to be 
paid for relaxing the experimental conditions w.r.t. to the "zippered multisine" approach (all 
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Figure 7-1. Linear dynamic system with known input 
u{i) and noisy output y{t). The output noise v(/) is 
written as filtered (band-limited) white noise. 

u(t) 
>· G(Q) 

I vio 
y{t) 

instead of 1 out of nu harmonics are excited) and the "robust" method (1 instead of nu exper-
iments). 

7.2 ARBITRARY EXCITATIONS 

7.2.1 Problem Statement and Assumptions 

Consider the linear dynamic multivariable system of Figure 7-1 with nu inputs and ny 

outputs. The arbitrary (random) excitation u(t) is assumed to be known and the output y(t) is 
disturbed by filtered (band-limited) white noise v(/) (= generalized output error framework, 
see Section 6.7.3 on page 195). The input-output discrete Fourier transform (DFT) spectra 
U(k), Y(k) of N samples of the input-output signals u(t), y(t) are related as 

Y(k) = G(Qk)U(k) + TG(Qk) + H(Qk)E(k) + TH(Qk) (7-1) 

where G(Q) and Η(Ω) are, respectively, the ny x nu system and ny x ny noise rational 
transfer function matrices, with Γσ(Ω) and 7^(Ω) rational nyxl vector functions that have 
the same poles as, respectively, G(Q) and Η(Ώ) (see (6-69) on page 200). TG(Q) and 
ΤΗ(Ω) are, respectively, the system and noise transient (leakage) terms. The goal is to obtain 
a nonparmetric estimate of the noise covariance matrix 

Cy(k) = Cow(V(k)) with V(k) = H(Qk)E(k) (7-2) 

and the frequency response matrix (FRM) G(Q.k) starting from the measured input-output 
DFT spectra U(fc), Y(k) in the frequency band of interest. The two difficulties in obtaining 
accurate estimates of Cv(k) are the presence of the exogenous part (^(Ω^) U(fc) and the sys-
tem and noise leakage terms ^(Ω^) and TH(Qk) in (7-1). While the dominant term 
G(Qk)U(k) can easily be eliminated via a nonparametric estimate of the FRM, the major 
problem is the suppression of the leakage terms. The latter is also valid for the FRM estimate. 

Assuming that the unobserved (band-limited) white noise source e(t) is independent 
and identically distributed (iid) at the sampling instances, the DFT spectrum E{k) of e(t), 
k = 1,2,..., N/2 - 1 (DC and Nyquist are excluded), has the following properties (see Sec-
tion 16.16 on page 601): 

(i) E(k) is uncorrelated (over k), circular complex distributed (i.{E2(k)} = 0 ) for 
any N if e(t) has finite second order moments. 

(ii) E(k) is asymptotically (for N->co) independent (over k) circular complex nor-
mally distributed if e(i) has existing moments of any order. 

(iii) E(k) is independent (over k), circular complex normally distributed for any N if 
e{t) is Gaussian. 
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While the first property is sufficient to estimate the noise covariance matrix (see Section 
7.2.2.2), the second property is needed to calculate uncertainty bounds on the measured fre-
quency response function with a given confidence level (see Section 7.2.4). The last property 
is needed if the estimated noise covariance matrix is used as weighting for the parametric 
identification of the system transfer function (see Chapter 12). 

Although the local polynomial approach presented in Section 7.2.2.2 can be applied to 
both random and deterministic (periodic and non-periodic) input signals, its bias and covari-
ance matrix will be studied assuming that the input is a stationary stochastic process that can 
be modeled as filtered white iid noise with existing moments of any order. Hence, similarly to 
the disturbing noise, the input DFT spectrum is asymptotically (for N->co) independent 
(over k) circular complex normally distributed. In addition, it is assumed that the input u(t) 
is independent of the disturbing noise v(0, which implies that the system operates in open 
loop. If a known reference signal is available, then these two assumptions can be relaxed, and 
the noisy input case and systems operating in feedback can also be handled (see Section 
7.2.7). 

7.2.2 The Local Polynomial Method 

k-n+ 1 A T — 1 k+\ k + n\k + n+ 1 k + n + 2 

Figure 7-2. The 2/2+1 DFT frequencies used by the local polynomial method at 
frequency k (black rectangle) and frequency k + 1 (gray rectangle). 

7.2.2.1 The Basic Idea. Since G(Q) and Γ(Ω) = TG(Q) + ΤΗ(Ώ) are all smooth 
functions of the frequency, they can be approximated in the band [k-n9k+n] (see 
Figure 7-2, black rectangle) by a polynomial. This is done via a Taylor series expansion of 
G(Qk±r) and 7\nk±r) at Qk for r = 0, 1, . . . ,« . The coefficients of these expansions can 
be estimated from the data via a linear least squares fit, provided that the exogeneous term 
G(Q.k)U(k) in (7-1) can be distinguished from the transient term T(Clk). Since Τ(Ω) and 
G(Q) are smooth functions of the frequency it requires that the input U(k) varies sufficiently 
"wild" over the frequency. This condition is fulfilled for filtered white noise and random 
phase multisine excitations. The result is an estimate of the frequency response matrix G(Qk) 
and the transient term f(Qk) at DFT frequency *. From the residuals of the linear least 
squares fit we also obtain an estimate Cy(k) of the noise covariance matrix 
Cv(k) = Cov(H(nk)E(k)). Next, the DFT frequencies are shifted over one DFT bin and the 
same procedure is repeated in the band [ £ - w + l , * + w + l ] (see Figure 7-2, gray rectan-
gle), giving an estimate of the frequency^ response matrix G(Q¿+1), the transient term 
f(Qk+ λ), and the noise covariance matrix Cv(k + 1) at DFT frequency k + 1. Proceeding in 
this way estimates of the frequency response matrix, the transient term, and the noise covari-
ance matrix are obtained at all frequencies in the frequency band of interest. Since the con-
secutive frequency bands used for the linear least squares fits are overlapping (see Figure 7-2, 
black and gray rectangles), the estimates at consecutive DFT frequencies are correlated. 
From Figure 7-2 it can easily be seen that the correlation length of the estimates equals ±2n. 
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7.2.2.2 The Basic Algorithm. 
rewritten as 

First the output DFT spectrum at DFT line k + r is 

Y{k+r) = G(nk + r)U(k+r) + T(Qk + r)+V(k+r) (7-3) 

where V(k) is defined in (7-2) and Γ(Ω) = Γσ(Ω) + 7^(Ω). For continuous-time systems, 
where ni > max(«a, nb) - 1 and rij > max(wc, w¿) - 1, Γ(Ω) represents the sum of the tran-
sient (leakage) term and the residual alias term. This is permitted since the transient and the 
residual alias terms have exactly the same properties (see Lemmas 6.5 and 6.6 and Theorems 
6.15 and 6.16). Next, since G(Q) and Γ(Ω) are, respectively, rational matrix and rational 
vector functions, they have continuous derivatives up to any order. Hence, G(Qk+r) and 
T(Qk + r) can be expanded at Ω^ as 

mk + r) = T(Cik) + £ f _ , t¿k)r> + N-"*(K(r/Ny* + ' ) 
(7-4) 

(proof: apply Taylor's formula with remainder, see Theorem 41 of Kaplan, 1993), where 
0(Ν-(κ + ιϊ) in the remainders stems from fk + r-fk = rfs/N, and where the additional fac-
tor N~l/2 in the remainder of 7 " ^ + ,.) is due to the fact that Τσ(Ω) and 7^(Ω) are both an 
0(N~l/2) (see Section 6.3.2 on page 185 and Section 6.7.3 on page 195). One could think of 
using different orders for the Taylor series expansion of the system transfer function G(D.) 
and the leakage term Γ(Ω). However, it turns out that if an Rth order polynomial approxi-
mation is suitable for G(Q), it is also appropriate for Γ(Ω). The basic reason for this is that 
G(Q) and TG(Q) have exactly the same poles, and that the system leakage term TG(Q) 
mostly dominates over the noise leakage term ^ ( Ω ) . The remainders in the polynomial ex-
pansions (7-4) of G(Qk+r) and T(Qk+r) are, respectively, the system interpolation error and 
the sum of the residual system and noise leakage errors. 

Assuming further that the remainders in (7-4) can be neglected, (7-3) becomes 

Y(k + r) = (G(Qk) + Σ*= ! gs(Qrs) U(k + r) + T(Qk) + Σ*= x ts{k)r* + V(k + r) 
(7-5) 

= ®K(k + r)+V{k+r) 

where Θ is the n x (R + 1 ){nu + 1) matrix of the unknown complex parameters 

Θ = [G(Qk) gx(k) g2(k) ... gR(k) T(Qk) φ) t2(k) ... tR(k)\ 

and K(k + r) is the (R + 1 )(nu + 1) x 1 input data vector 

K(k+r) 
Kx(r)®U(k + r) 

Kx{r) 
with Kx(r) = 

(7-6) 

(7-7) 
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with ® the Kronecker product (A Θ B is the matrix with block elements A^B, see Section 
15.7 on page 552). Collecting (7-5) for r = -n, - n + 1, ..., 0, ..., n finally gives 

Yn =®Kn+Vn (7-8) 

where Yn, Kn, and Vn are, respectively, nyx(2n+l), (R+ l)(nu+ 1) x (In + 1), and 
ny x (In + 1) matrices 

Xn = [ X(k-n)X(k-n+\) ... X(k) ... X(k+n) ] (7-9) 

with X = Y, K, and V. 
Eq. (7-8) is an overdetermined set of equations in the unknown Θ that can be solved in 

least squares sense as 

Θ = YnK»(K„K»y (7-10) 

if In + 1 > (R + 1 )(nu + 1), where xH is the Hermitian (complex conjugate) transpose of x 
(proof: see Appendix 7.A). The residual of the least squares fit, 

K = Yn -®Kn = YnPn, where Pn = I2n+l -K«(KnKff)-^Kn (7-11) 

is an idempotent matrix (see Section 15.6), is related to the noise Vn as 

Vn = V„P„ (7-12) 

Hence, an estimate of the noise covariance matrix (7-2) is given by 

Cv(k) = -VnV? with tf = 2n+l-(R+l)(nu+l) (7-13) 

and where q = rank(Pw) is the number of the degrees of freedom (dof) of the residual Vn 

(proof: see Appendix 7.B). 
Since (7-13) implicitly assumes that the true noise covariance matrix Cv(k + r) is equal 

to Cv(k) for r = -n, - n + 1, ..., 0, ..., n, the value of n should be chosen as small as possi-
ble. The minimal values of n are such that the number of degrees of freedom dofarb = q in 
the residuals (7-13) satisfies 

q = dof2LVh>ny + m (7-14) 

where 

m = 0 rank(C>(A;)) = rank(CF(£)) 

m = 1 E{Cv\k)} exists (7-15) 

m = 2 E{Cv2(k)} exists 
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(see Mahata et al., 2006). The value m = 0 is sufficient for calculating uncertainty bounds 
on the FRF, while values m > 0 are needed when Cy(k) is used as weighting for the paramet-
ric identification of the system transfer function (see Chapter 12). Note that rmk(Cv(k)) < n 
for m = -ny+ 1,-w +2, . . . , - 1 . 

Using (7-10), the local polynomial estimate of the frequency response function is ob-
tained as 

G(Qk) = Θ = ©[:,!:/!,] (7-16) 

where X^\:n ] selects the first nu columns of the matrix X. 

Since DFT lines k + r, r = -n, -n+ 1, . . . ,« , are used for estimating the noise cova-
riance matrix (7-13) and the FRM (7-16), it follows that Cv(k) and G(Q¿) are correlated 
with, respectively, Cv(k+r) and G(Q¿ + r), r = -In, -2n + 1, ..., In. It explains why 
more parameters Θ (ny x (R + 1 )(nu + l ) x F : see (7-6) with k = 1, 2, ..., F) can be iden-
tified than the number of measurements (ny x F: see (7-1) with k= 1,2, ..., F). 

7.2.2.3 Bias Error. The bias error of the noise covariance estimate (7-13) consists of 
four contributions: the zero order interpolation error OintH of the noise covariance matrix 
over In + 1 frequencies, the polynomial interpolation error OintG of the frequency response 
matrix over 2n + 1 frequencies, the residual noise leakage error #leak/f, and the residual 
leakage error 0leak that depends on both the system and noise dynamics: 

E{CK*)} = Cv{k) + C\}\k)OintH(n/N) + C\}\k)OhakH((n/N)(« + V) + ... 

G(*+ V(Qk)OiniG((n/N)i(R + l))(G(R + 1>(Ω,))^+ Oleak((«/A0(2* + 3)) 

(proof: see Appendix 7.D). In (7-17) X^m^ is the mth order derivative of X w.r.t. the fre-
quency. Note that C\}\k) = 0 for white noise (Η^ι\Ω) = 0) or at a transmission zero of the 
noise (H(Qk) = 0), because Cv(k) = H(Qk)Cov(E(ky)HH(Qk). For white noise excitations, 
and n sufficiently large, it can be shown that OintH(n/N) in (7-17) is replaced by 
OintH((n/N)2) (see Pintelon et al., 2010a). 

The bias error of the frequency response matrix (FRM) estimate (7-16) consists of two 
contributions: the polynomial interpolation error OintG of the FRM over In + 1 frequencies, 
and the residual system leakage errors 0leakG in (7-4) 

E{G(Q,)} = G{ak) + G^^\ak)OmtG{{n/N)^^)) + 0^G{{n/N)(^)) (7-18) 

(proof: see Appendix 7.D). Note that the noise leakage errors do not affect the expected value 
of the FRM estimate. 

From (7-17) it can be seen that the optimal choice of the polynomial degree R is case 
dependent: the noise interpolation error OintH increases with R (n is proportional to R, see 
(7-13) and (7-14)), while the other error terms decrease for increasing values of R. Extensive 
simulations show that a second order polynomial approximation R = 2 is often a good com-
promise. However, for lowly damped systems larger values (R = 3,4) are sometimes 
needed, especially around the resonance frequency. 
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7.2.2.4 Covariance Frequency Response Matrix. The covariance matrix of the FRF 
estimate (7-16) is given by 

CovCvecCG^))) = E{S«S} ® Cr(k) + OintH{n«/N) (7-19) 

with 

S = Kj/(KnKZ) -1 E{SHS} = O(N0/n), Cv(k) = 0(N*) (7-20) 

where vec(X) puts the columns of matrix X on top of each other, and where the expected 
value is taken w.r.t. the random input (proof: see Appendix 7.E). From (7-19) it can be seen 
that increasing the frequency width n of the local polynomial estimate (7-10) will decrease 
the covariance of the FRF at the rate 0(rrx) as long as the noise interpolation error contribu-
tion OmiH can be neglected. Once OmXH becomes dominant, it makes no sense to increase n 
further. 

In practice, the expected value E{SHS} and the true noise covariance matrix Cv(k) are 
unknown and both are replaced by, respectively, SHS and Cy(k) (7-13), giving 

Cov(vec(G(n¿))) » S^S ® Cv(k) (7-21) 

7.2.2.5 Numerically Stable Implementation. Using the singular value decomposi-
tion (SVD) 

K? = ϋκΣκν
Η

κ (7-22) 

the matrix inversion in the calculation of the projection matrix Pn (7-11) can be avoided 

P« =hn+x-UKU»= UfrUtf* (7-23) 

where U^ is the orthogonal complement of UK (U^U^ = 0). As a result the residual Vn 

(7-12) can be calculated even if the input DFT spectrum U(k + r) is zero for r = -n, 
- n + 1, ..., 0, ..., n. Hence, the local polynomial estimate of the noise covariance matrix 
(7-13) is robust to lack of excitation in the frequency band of interest. The SVD (7-22) also 
allows to calculate Θ (7-10) in a numerically reliable way as 

Θ = YnUKI$V» (7-24) 

giving a numerically stable estimate G(Qk) (7-16). 
The numerical stability of the calculations can be improved further by scaling the rows 

of Kn before calculating the SVD 

Kn->D-c{lQKn (7-25) 

where Z)scale is a diagonal matrix with entry £>scale[/, ιΊ = \\Kn[h :]||2 if \\Kn[u :]||2 Ψ 0 and oth-
erwise £>scaie[/,/] = 1 (^[,·,:] denotes the i throw of X). Note that after scaling (7-25), for-
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mulas (7-11) and (7-23) remain valid with (D^Kn)
H = UKZKV*, while (7-16) is 

modified as 

G(Q,) = ( F „ t / ^ i F ^ s - i l e ) 
0 

(7-26) 

The covariance expression (7-21) is calculated in a numerically reliable way via the 
S V D o f ^ (7-22): 

SHS = (K„K?r = S?Sl with 5, = Σ~κ
ι V% (7-27) 

If the rows of Kn have been scaled as in (7-25), then 5, in (7-27) is replaced by 

Sx-*Z¿V»D-¿k 
0 

(7-28) 

7.2.2.6 Border Effects. Model equation (7-8) assumes that n frequencies are avail-
able at the left- and right-hand sides of the DFT frequency k, which is not the case at the left 
and right borders of the frequency band. At those borders, r = -n, -n + 1, ..., 0, ..., n in 
(7-8) is replaced by 

-n+p,-n+p+ 1, . . . ,0, ...,n+p (7-29) 

with p = n, n - 1, ..., 1 for the first n DFT frequencies (left border), and p = - 1 , -2 , ..., 
-n for the last n DFT frequencies (right border). All formulas remain valid for (7-29), ex-
cept the bias error terms (7-17) and (7-18), where n/N should be replaced by (n + \p\)/N, 
p = ±1,±2, ...,±n. 

Since Kn has a Vandermonde type of matrix structure in the powers of r (Golub and 
Van Loan, 1996), and since at the first n and last n DFT frequencies the r -values (7-29) are 
in absolute value larger than those at the other DFT frequencies k + r9 r = -n, - n + 1, ..., 
0, ..., n, it follows that the condition number of Kn is larger at the borders. Hence, it can be 
concluded from (7-27) that the variance of the estimated FRF (7-19) increases at the borders. 
Simulations indicate that the order of magnitude of the increase in variance is 
((« + \p\)/nfR+1\ p = ±1, ±2, ..., ±n9 with a maximum of 2(R + V for the first and the 
last DFT frequencies. 

7.2.3 The Spectral Analysis Method 

7.2.3.1 The Basic Algorithm. The spectral analysis method (also called the Hx esti-
mator) calculates the frequency response matrix (FRM) and the output noise covariance ma-
trix via the cross- and autopower spectra of the input-output signals 

G(Qk) = Syu(jn¿SÜU<»¿) 

Cr(k) = S ^ 7 ^ ) - S Ο ω ^ ί ί Ο ω ^ ^ Ο ' ω * ) 
(7-30) 
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Figure 7-3. Principle of the spectral analysis method: the signal (gray line) of length 
N is divided in M weighted segments (black lines) of length N/M. 

(see Bendat and Piersol, 1980 and Brillinger, 1981). In practice, the true cross- and auto-
power spectra are unknown, and are replaced by sample estimates obtained by splitting the 
input-output records into M non-overlapping segments of length N/M (see Figure 7-3). To 
suppress the influence of the system and noise leakage terms in the DFT spectra, a window 
w(t) is applied to the time signals, for example, 

and similarly for SYwYw(k) and Suwuw(k), where X%\k), with X= Y,U, is the DFT 

X$\k) E N/M-l 
-0 w(t)\2 

ΣΓ = o " w ( / W +(m~l )N/M)e-J2nkt/N (7-32) 

of the m th weighted segment. The scaling in (7-32) is such that the transformation preserves 
the rms value of the signal. The FRM and the noise covariance matrix are then estimated as 

-1 G W 1 I W = SYwUw{k)S^wUw{k) 

CT(k) = - ( ^ r # ) - ^ ^ ) ^ ^ W ^ ^ W ) 

with q = M- nu the number of the degrees of freedom in the residual 

(7-33) 

ciH 
SYwyw{k) - SYwUw(k)Sü[

wUw(k)S?wUw(k) (7-34) 

(see Brillinger, 1981). Note that the variance of the FRM estimate (7-33) can be decreased 
further by using overlapping segments (see Section 2.6.5 on page 62). 

The properties of the spectral analysis estimator are studied for the following windows 

rectangular (win = rect, W= ): 
diff (win = diff, W=D)\ 

half-sine (win = sine, W= S): 

Hanning (win = hann, W = H)\ 

w(t) = 1 
w(t) = 1 - eJ

2ntM/N 

w(t) = sin(ntM/N) 

w(t) = 0.5(1-cos(2ntM/N)) 

(7-35) 
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In practice the diff window is calculated as the difference of the DFT spectrum 

XD(k) = (X(k+ \)-X(k))/Jl (7-36) 

(see Schoukens et al., 2006a). Formula (7-36) shows that the diff estimates of the noise cova-
riance matrix and FRF (7-33) are in fact estimates of the true values at half the DFT fre-
quency: Cv(k+ 1/2) and G(Qk+l/2). The Hanning window can be interpreted as a scaled 
double difference of the DFT spectrum 

XH(k) = (2X(k)-X(k- \)-X(k+ 1))/V6 (7-37) 

(see Harris, 1978), and the half-sine window is related to the diff window by 

Xs(k) = -XD(k+\/2)/j (7-38) 

(see Antoni and Schoukens, 2007). In Antoni and Schoukens (2007) it has been shown that 
the half-sine window is optimal for suppressing the stochastic and systematic leakage errors 
in FRF measurements. The same is true for the diff window, as shown by (7-38). 

To minimize the leakage errors in the FRM and noise covariance matrix estimates 
(7-33), the number of blocks M should be chosen as small as possible. The minimal values 
of M are such that the number of degrees of freedom q in the residuals (7-34) satisfies 
(7-14) where m = 0, 1, or 2 according to the required property of the estimate Cy(k) (see 
(7-15)). M is bounded above by the requirement that N/M should be larger than the domi-
nant time constant of the system. 

Since the rectangular, diff, and Hanning windows combine, respectively, zero, two, and 
three DFT frequencies, the correlation length over the frequency of the estimated FRM and 
noise covariance matrix (7-33) equals, respectively, zero, ±1, and ±2 DFT frequencies. 

7.2.3.2 Bias Error. The expected value of the noise covariance matrix C^m(k) in 
(7-33) is given by 

E{Cr;ct(¿)} = Cv(k) + Ole,k(M/N) 

E{¿diff,sine(¿)} = CK*!) + gC<K
2>(*^ 

ÍG(0(Q,)OintG((M/^)2)(G(i)(Q,))^+Oleak((M/7V)3) 

E{Ch;n»} = CK*) + k<F
2>(*)^^ 

(7-39) 
6 v 

1 
6 
oXQ^M/m 

ÍG(D(n,)OintG((M/7V)2)(G(1)(Q,))^+ G(1)(Q,)OleakG((M/A04)+ ... 

where kx = k + 1 / 2 or kx = k for, respectively, the diff and half-sine window, and where 
Gleak depends on both the system and the noise dynamics (proof: see Pintelon et al., 2010a). 
It can be seen that the bias E {C^m(k)} - Cv(k) is only due to leakage Gleak for the rectangu-
lar window, while for the diff, half-sine, and Hanning windows the bias error consists of an 
interpolation error OintH and OintG of, respectively, Η(Ω) and G(Q) over two (diff and half-
sine) or three (Hanning) neighboring DFT frequencies, and a leakage error 0leak. 
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The expected value of the FRJVI Gwin(Qk) in (7-33) equals 

G(nk) + OlQakG(M/N) 

G(Qk{) + l-G^\nki)OintG((M/N)^) 4- OleakG((M/A02) ( 7_4 0 ) 

G(Qk) + l-GV\Qk)OintG((M/N)i) + OleakG((M/A03) 

where kx is defined in (7-39) (proof: see Pintelon et al., 2010a). It can be seen that the bias 
E {Gwm(Qk)} - G(Qk) only depends on the system leakage error 0leakG for the rectangular 
window, while for the diff, half-sine, and Hanning windows the bias error has two contribu-
tions, an interpolation error OintG of the FRJVI over two (diff and half-sine) or three (Han-
ning) neighboring DFT frequencies, and a system leakage error 0leakG. Note also that the 
noise leakage errors do not affect the expected value of the FRJVI estimates. 

From (7-39) and (7-40) it can be seen that the system and noise interpolation errors of 
the Hanning window are 4/3 times larger (1.25 dB for Cy in (7-39), and 2.5 dB for G in 
(7-40)) than those of the diff and half-sine windows. This is due to the fact that the Hanning 
window combines three DFT frequencies, while the diff and half-sine windows only combine 
two DFT frequencies (see (7-36), (7-37), and (7-38)). The system and noise leakage errors of 
the Hanning window are, however, much smaller. 

7.2.3.3 Covariance Frequency Response Matrix. The covariance matrix of the 
FRJVI estimate (7-33) is given by 

Cov(vec(Gwi ,W)) = I £{S¿rUw(k)} ® Cv(k) + O™ ((Μ/ΛΓ)2) (7-41) 

where the expected value is taken w.r.t. the random input, and where 0™H{(M/N)2) is zero 
for the rectangular window 0\^X

H = 0 (proof: see Pintelon et al., 2010a). In practice the ex-
pected value E{S^ u (k)} and the true noise covariance matrix Cv{k) are unknown and are 
replaced by, respectively, SÜ Ufv(k) and C™m(k) (7-33), giving 

Cov(vec(Gwi,W)) * I Sul
wUw{k) ® C ; > ) (7-42) 

Since Cym(k) in (7-33) estimates the covariance matrix of the residual of model equation 
(7-1), the covariance matrices (7-42) of the FRJVI estimates correctly account for the variabil-
ity due to the leakage terms (see Pintelon et al., 2010a). 

7.2.4 Confidence Regions of the FRM 

For fixed inputs, the FRJVI estimates G(Qk) (7-16) and (7-33) are asymptotically 
(N -> oo) circular complex normally distributed with mean value G(Qk) and covariance ma-
trix Cov(vec(G(Q¿))) (7-21) and (7-42). Hence, the most compact 100 xp% confidence 
bounds are ellipsoids (Stuart and Ord, 1987). For example, the 100 xp% confidence ellip-
soid of vec(G(Qk)) is defined by those values of X e C"?"" such that 

E{Grect("t)} 

E { ( Adi f f > s ine ( i ^ ) } 

E{Ghann(",)} 
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(X- vec(G(Q,)))//Cov-i(vec(G(Q,)))(X- vec(G(Q,))) < \x¡{2nynu) (7-43) 

with zj(2nynu) the 100 xp% percentile of a ^-distributed random variable with 2nynu 

degrees of freedom. For entry [ij] of the frequency response matrix G(Qk), (7-43) reduces 
to a circle with center G[zJ](Q¿) and radius (-ln(l -p)y/2std(G[ij](Qk)) (see Section 
2.4.2.3 on page 48). 

If the true covariance matrix in (7-43) is replaced by an asymptotically (Af-> oo) com-
plex Wishart distributed estimate Cvec(~(£) (7-21) or (7-42) with dof degrees of freedom, 
then a 100x/?% confidence bound is constructed via the Hotelling's Γ2-statistic (Giri, 
1965) 

(X- wec(G(ak)))
HC^có(k)(X- vec(G(Q,))) < *^Fp(nl9 n2) (7-44) 

n2 

with nx = 2nuny, n2 = 2dof-2nuny + 2, and Fp(nun2) the 100x/7% percentile of a 
F(nl9 n2) -distributed random variable (proof: use (16-32b) with n = nynu and 
R = dof+ 1). For entry [i,j] of the frequency response matrix G(D.k), (7-44) reduces to 
the F-test (2-40) on page 51 where M = dof+ 1. 

7.2.5 Comparison of the Methods 

We first compare the local polynomial approach with the spectral analysis method us-
ing non-overlapping segments. Next, we discuss the benefits of using overlapping segments 
in FRF measurements. 

7.2.5.1 Bias and Covariance of the Estimates. From (7-17), (7-18), (7-39), and 
(7-40) it can be concluded that the spectral analysis method with the rectangular window has 
the largest leakage bias error in the noise covariance matrix Cy(k) and in the frequency re-
sponse matrix G(Qk) estimates. Compared with the spectral analysis method with the diff, 
half-sine, and Hanning windows, the local polynomial approach has, for N sufficiently large 
and R > 2, (i) the smallest system interpolation error for Cv(k) (compare (7-17) and (7-39)) 
and G(Qk) (compare (7-18) and (7-40)), and (ii) the smallest noise and/or system leakage er-
ror for Cy(k) and G(Qk). Moreover, the frequency resolution of the local polynomial esti-
mates is M times larger than that of the spectral analysis methods, and the noise covariance 
matrix estimates Cy(k) are robust to lack of excitation in the frequency band of interest, 
which is not the case for the spectral analysis methods. The noise interpolation error OintH 

for the local polynomial estimate Cy(k), however, decreases slower to zero as N-^> oo. 
Although an analytic comparison of the bias (7-18) and (7-40) and the covariance ma-

trices (7-21) and (7-42) of the FRM estimates (7-16) with R > 2 and (7-33) is not feasible, a 
rationale will be given for the following ranking 

bias(G(Q¿)) < bias(Gwin(Q¿)) (a) 

bias(CK£\)) < b i a s ( C 7 ^ ) ) (b) (7-45) 

Cov(vec(G(Q¿))) < Cov(vec(Gwin(Q¿))) (c) 

with bias(x) = E{Jc} -x the bias of JC. Since no exact proof is given, the ranking should be 
interpreted as a general trend, without guarantee that no counter examples can be found for 
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particular systems and values of N. The inequality (7-45a) for the bias of G follows imme-
diately from (7-18) and (7-40) by comparing the powers of N in OintG and 0leakG. Since the 
spectral estimates (7-33) of the noise covariance matrix include the variability of the (resid-
ual) leakage errors (see Pintelon et al., 2010a), and since in practice OintH in (7-17) can be 
neglected w.r.t. the other terms, we conclude from (7-17) and (7-39) that 
E{CV(&)} < E{Cym(k)}. Hence, bias(Cv(Clk)) < bms(Cym(Clk))9 which proves the inequal-
ity (7-45b). Combining (7-45b) with (7-21) and (7-42) already justifies (7-45c) at those fre-
quencies where the system and/or noise leakage errors are important. Simulations reveal that 
Cov(vec(G(Q¿))) can be larger than Cov(vec(Gwm(Q¿))) for the same value of m (or q) in 
(7-14), in the frequency bands where the interpolation/leakage errors can be neglected (see 
Pintelon et al., 2010a). However, the comparison is not fair because the frequency resolution 
of the local polynomial method is M times larger than that of the spectral analysis methods. 
Therefore, the local polynomial FRF estimate G(Qk) should first be averaged over M neigh-
boring frequencies before calculating the covariance matrix. In order to avoid the resulting 
first order interpolation bias error, the averaging of the FRF is done by increasing m (n) in 
(7-14) with M (m ->m + M). Proceeding in this way, n increases and the covariance ma-
trix of the local polynomial FRF estimates can be made smaller than that of the spectral anal-
ysis methods as long as OintH in (7-19) can be neglected w.r.t. the first term. Since, by 
assumption Oint, <9leak « Cv, the covariance of the FRF (7-19) can be reduced without detect-
able increase of the bias (7-18). This is not in contradiction with the results of Schoukens et 
al. (2006b) where, similarly to the spectral analysis methods, the local polynomial FRF esti-
mate (called the Taylor method) was averaged over M subrecords of length N/M at the fre-
quency resolution Mfs/N9 while here, the averaging is performed at the maximal frequency 
resolution fs/N by increasing m (n) in (7-14). 

Comparing the powers of (M/N) in (7-39), it can easily be deduced from (7-39) and 
(7-42) that 

Cov(vec(Gdiff)) = Cov(vec(Gsine)) < Cov(vec(Grect)) 

Cov(vec(Ghann)) < Cov(vec(Grect)) 

Cov(vec(Ghann)) < Cov(vec(Gdiff)) if Oint < 6>leak ( 7 4 6 ) 

Cov(vec(Gdiff))<^^ if Oi n t>0l e a k 

Cov(vec(Ghann)) « Cov(vec(Gdiff)) * Cov(vec(Grect)) if 0int, 0leak « Cv 

This ranking, where 4/3 is replaced by 16/9 in the last upper bound, is also valid for the mean 
square error (mse = Cov + bias bias7), because (7-46) also applies for the bias (7-40) on the 
FRM estimates. We conclude that, among the spectral analysis estimates, the diff and half-
sine windows perform somewhat better (smaller mean square error) than the Hanning win-
dow when the interpolation errors dominate, while the Hanning window outperforms (small-
est mean square error) in those frequency bands where the leakage errors are dominant. 
Simulations show that the latter is typically the case in the neighborhood of a transmission 
zero of the system or noise transfer functions, even if the measurement time is much larger 
than the dominant system time constant. It refines the conclusions of Schoukens et al. 
(2006a) and Antoni and Schoukens (2007) that the diff/half-sine windows are optimal for 
FRM measurements. Note that the upper bound in the last inequality of (7-46) is reached if 
the interpolation errors are the largest terms in the noise covariance matrix (7-39). This is 
consistent with the single-input, single-output results of Schoukens et al. (2006a). 
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7.2.5.2 Spectral Analysis with Overlapping Segments. The benefit of using overlap-
ping segments (see Section 2.6.5 on page 62) is the variance reduction of the FRM estimate 
(7-30). This reduction is maximal for 100% of overlap (Antoni and Schoukens, 2007). Com-
pared with the non-overlapping case a maximal noise variance decrease of a factor 1.49 (1.2 
dB), 1.70 (2.3 dB) and 2.08 (3 dB) is obtained for, respectively, the rectangular, half-sine/diff, 
and Hanning windows (Antoni and Schoukens, 2007). The maximal reduction of the sum of 
the system interpolation variance and system leakage variance is a factor 3.54 (5.5 dB) and 
3.86 (5.9 dB) for, respectively, the half-sine/diff and Hanning windows (Antoni and 
Schoukens, 2007). However, the convergence rate as a function of M/N of the bias (7-40) 
and covariance (7-39), (7-42) of the FRM estimates (7-30) are qualitatively the same for the 
spectral analysis methods with and without overlapping segments. Hence, the following con-
clusions can be drawn: 

1. The ranking (7-46) for the covariance matrix and the mean square error remains 
valid for the spectral analysis with overlapping segments, except that the last 
equality must be replaced by 

Cov(vec(Ghann)) < Cov(vec(Gdiff)) < Cov(vec(Grect)) if Oint, <9leak « Cv 

2. In those frequency bands where the system interpolation and system leakage er-
rors are dominant, ranking (7-45) still applies. 

3. Compared with the non-overlapping case, m (n) in (7-14) should be increased in 
order to satisfy (7-45) in those frequency bands where the interpolation and leak-
age errors can be neglected (OmV 0leak « Cv). 

7.2.5.3 Correlation of the Estimates over the Frequency. The correlation length 
over the frequency of the noise covariance matrix and FRF estimates equals ±2n DFT fre-
quencies at the resolution fs/N for the local polynomial method; while for the spectral anal-
ysis method with the rectangular, diff, and Hanning windows it is, respectively, zero, ±1, and 
±2 at the resolution Mfs /N. This correlation length should be taken into account when con-
structing confidence bounds of the estimated FRM over the frequency. The influence of the 
correlation over the frequency of the nonparameteric estimates in parametric modeling of the 
system transfer function is discussed in Chapter 12. 

7.2.6 Bias-Variance Trade-Off 

Comparing (7-18) and (7-19) it follows that the mean square error (mse) of the local 
polynomial FRF estimate (mse = Cov + bias bias^) might be decreased by increasing the 
bandwidth n of the local polynomial approximation (Cov = 0(n~x) + OintH(n°) and 
b = OintG(nR +1) + OleakG(nR + 2)). It is clear that increasing n (m) is beneficial in those fre-
quency bands where the interpolation/leakage errors can be neglected (Oint, 0 l e a k« Cv). 
However, in all other cases a bias-variance trade-off must be made. Following the lines of 
Fan and Gijbels (1995) a frequency-dependent data-driven bandwidth n can be selected giv-
ing an optimal bias-variance trade-off. One could, for example, choose that value of n (m) 
in (7-14) that minimizes Akaike's information criterion (AIC) of the local least squares ap-
proximation (7-10) (see Schoukens and Pintelon, 2010a for the details). 

Another way to reduce the mean square error of the local polynomial FRF estimate 
consists of exploiting the relationships between the polynomial coefficients (7-6) in neigh-
boring frequency windows. For a fixed value of the bandwidth n9 the resulting constrained 
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r(t) 
Actuator 

ng(t) 

$H?é 

^ιιίθ 

Figure 7-4. Measurement of the frequency response function matrix of a linear multivariable 
system operating in open (black lines only) or closed loop (black and gray lines). The 
linear system is excited by the known reference signal r{t) via an actuator. u(t) and 
y(t) are the noisy input-output observations and nc(t), n{i), njf), mu(t), and m (t) 
represent, respectively, the controller, generator, and process noise, and the input-
output measurement errors. The actuator or the controller may behave nonlinearly. If 

0, and nc{t) = 0. the controller behaves nonlinearly, then n if) 0, np{t) 

local polynomial method makes a trade-off between the variance reduction and the bias in-
crease induced by the constraints (see Gevers et al., 2011 for the details). 

7.2.7 The Noisy Input, Noisy Output Case 

7.2.7.1 Linear Actuator and Linear Controller. Consider first the closed loop set up 
of Figure 7-4 with a linear actuator and a linear feedback loop. Note that feedback is inher-
ently present in any experimental setup where the system loads the actuator. For example, a 
voltage generator with non-zero output impedance that is driving a circuit with finite input 
impedance. As a consequence the actual input of the system depends on both the actuator and 
the system dynamics. Hence, the actual input (ux(t) in Figure 7-4) is mostly unknown and 
should be measured. Moreover, due to the feedback loop, ux(t) is correlated with the process 
noise np(t) (see Figure 7-4). These are the two major difficulties of identification in closed 
loop. 

If the input observations are noisy and/or the input depends on the process noise due to 
a feedback loop, then the local polynomial and spectral analysis estimates of the FRM and 
the noise covariance matrix are biased. To avoid this bias, the nux I reference signal r(t) in 
Figure 7-4 - typically the signal stored in the arbitrary waveform generator - should be 
known, and model (7-1) is replaced by 

Z(k) = Grz(Qk)R(k) + Vz(k) + Trz(nk) (7-47) 

with 

Z{k) = Y(k) 
U(k)_ 

. GrtflJ = Gryi^k) 

Grym 
and Vz(k) = Hrz(nk)Ez(k) = 

Vy(k) 

Vv{k) 
(7-48) 

and where Vz(k) models that part of the input-output DFT spectra that does not depend on 
the reference signal. From the FRM estimate Grz(Qk) we obtain a consistent estimate of the 
FRM G(Qt) 
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G(Qk) = Gry(ilk)G-r
x
u{ak) (7-49) 

Eq. (7-49), where the spectral analysis method (7-33) is used for estimating the FRM 
Grz(Q¿), is the multivariable version of the indirect FRF estimate (see Section 2.6.4 on 
page 61). The drawback of the indirect method (7-49) is that the part of the true system input 
ux(t) (see Figure 7-4) depending on the process np(t), controller nc(t), and generator ng(f) 
noise sources is considered as a disturbance and is suppressed in the FRM estimate. The co-
variance matrix of G (7-49) is related to that of Grz by 

Cov(vec(G)) « (G~l® [IHy - G])Cov(vec(G,z))(G™® [IKy - G]f (7-50) 

(proof: see Appendix 7.F) where Cov(vec(G>z)) depends on the estimated noise covariance 
matrix Cvz(k) as given by (7-21) for the local polynomial estimate, and by (7-42) for the 
spectral analysis methods. 

7.2.7.2 Nonlinear Actuator and Linear Controller. If the actuator behaves nonlin-
early, then we can replace its block diagram in Figure 7-4 by the best linear approximation 
(BLA) of the actuator plus an additive output source representing the stochastic nonlinear 
distortions rs{t) (proof: combine Theorem 3.16 on page 86 with (6-69) on page 200). These 
stochastic nonlinear distortions rs(t) are uncorrelated with - but not independent of- the ref-
erence signal r(t). Eq. (7-47) becomes 

Z(k) = Grz(Qk)R(k) + Vz(k) + Zs(k) + Trz(Qk) (7-51) 

where Zs(k) depends on Rs(k), and the plant and controller dynamics, and where Grz(Qk) 
depends on the BLA of the actuator, and the plant and controller dynamics. Since the plant 
and the controller are linear, Grz(Qk) and Zs(k) still satisfy 

G(Qk) = Gry(Qk)G^(nk) and Ys(k) = G(Qk)Us(k) (7-52) 

with Gry(Qk) and Gru(Qk) defined in (7-48), Ys(k) the first ny rows of Zs(k), and Us(k) 
the last nu rows of Zs(k). Zs(k) is uncorrelated with R(k) and, therefore, it follows from 
(7-51) and (7-52) that the conclusions of Section 7.2.7.1 are also valid here. 

7.2.7.3 Linear Actuator and Nonlinear Controller. If the controller behaves nonlin-
early, then we assume that no generator, process, or controller noise sources are present. The 
controller block diagram in Figure 7-4 is replaced by the best linear approximation (BLA) of 
the controller plus an additive output source representing the stochastic nonlinear distortions 
vs(t) (proof: combine Theorem 3.22 on page 94, where the role of the plant and the controller 
are interchanged, with (6-69) on page 200). Eqs. (7-51) and (7-52), where Zs(k) depends on 
Vs(k) and is correlated with - but not independent of- the reference signal R(k), remain 
valid. Hence, the results of Section 7.2.7.1 also apply here. 

7.2.8 Nonlinear Systems 

The setup for measuring the best linear approximation (BLA) of a nonlinear system is 
shown in Figure 7-5. The main difference with the setup for measuring the FRM of a linear 
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Nonlinear 
plant 

Figure 7-5. Setup for measuring the best linear approximation of a multivariable nonlinear system 
(nu inputs, n outputs) operating in open (left) or closed (right) loop. The nonlinear 
system is excited via a linear actuator by the known nu x 1 reference signal r(f). u(t) 
and y(t) are the noisy input-output observations and n (t), mu(t), and m (t) are, 
respectively, the process noise, and the input-output measurement errors. 

system (see Figure 7-4) is that both the actuator and the feedback controller should be linear, 
and that the reference signal ríj) is assumed to be normally distributed. The input-output 
DFT spectra of the measured input-output signals are then related by 

U(k) = UúQ+VuW + Tuinú 

m = GBLA(nkW0(k) + VY(k) + Ys(k) + TY(Qk) 
(7-53) 

where the input-output errors Vv(k) = H^Q^E^k) and VY(k) = HY(Qk)EY(k) depend on 
the noise sources in Figure 7-5 (proof: combine Theorems 3.16 and 3.22 with (6-69)). U0(k) 
depends on the reference signal R(k) (open and closed loop) and the stochastic nonlinear dis-
tortion Ys(k) (closed loop only). The zero mean stochastic nonlinear distortion Ys(k) is un-
correlated with - but not independent of- the input U0(k) (open loop) or the reference signal 
R(k) (closed loop); and the input-output transient terms 7^(0^) and TY(Qk) comprise the 
plant and noise leakage errors (discrete-time and continuous-time) and the residual alias er-
rors (continuous-time only). Comparing (7-53) to (7-47), it can be seen that the indirect 
method of Section 7.2.7 estimates the BLA and its covariance matrix. The latter depends on 
both the input-output noise VV(K), VY(k) and the output stochastic nonlinear distortion 
Ys(k). 

If the linearity assumption on the actuator is not satisfied, then the BLA of the nonlin-
ear plant also depends on the actuator characteristics. However, in those frequency bands 
where the signal-to-distortion ratio is larger than 10 dB, the BLA of the cascade of the nonlin-
ear actuator and the nonlinear plant is in very good approximation equal to the product of the 
BLA of the actuator and the BLA of the plant (Dobrowiecki and Schoukens, 2006). Equation 
(7-53) is then replaced by 

U(k) = U0(k) + Vv{k) + Us(k) + ^ ( Ω , ) 

m = GBLA(nk)U0(k) + VY(k) + Ys(k) + TY(Qk) 
(7-54) 

where the input-output stochastic nonlinear distortions Us(k) and Ys(k) are correlated via 
the nonlinear distortions of the actuator. Comparing (7-54) to (7-47) it follows that the indi-
rect method explained in Section 7.2.7 automatically accounts for the input stochastic nonlin-
ear distortion Us(k) and for the correlation between Us(k) and Ys(k). The nonlinear 
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contribution of the plant is eventually found as Ys(k) - GBLA(Q.k)Us(k) (proof: see Appendix 
3.0). 

It can be concluded that using stationary random excitations it is impossible to distin-
guish the stochastic nonlinear distortions from the measurement and/or process noise in 
Figure 7-5. At the price of a loss in frequency resolution of at least a factor 2, it is possible to 
detect the nonlinear behavior and to estimate an upper bound on the noise level via an exper-
iment with nonstationary random signals (Zhang et al., 2010). 

We analyze now the bias error of the BLA (7-16) and the covariance (7-13) estimate as-
suming that the nonlinear plant operates in open loop and that the input is known exactly. Ex-
tension to noisy inputs and/or nonlinear systems operating in feedback and/or nonlinear actu-
ators is straightforward via the indirect method of Section 7.2.7. Since Ys(k) is uncorrelated 
with the input, the expected value (7-18), where G(Qk) is replaced by GBLA(Qk), remains 
valid. However, an additonal term appears in the expected value (7-17) because Ys(k) is only 
asymptotically (7V-» QO) uncorrelated over the frequency. We find 

i{Cv} = Cv(k) + CYs(k) + (C{;\k) + Cys\k))OintH(n/N) + 0(4n^/(qN)) (7-55) 

with CYs(k) = Cov(Ys(k)), q defined in (7-13), and where the bias term 0(4n2/(qN)) 
stems from the correlation of Ys(k) over the frequency (proof: see Appendix 7.G). 

7.2.9 Concatenating Data Records 

7.2.9.1 The Basic Algorithm. Given Mc data records originating from experiments 
on the same plant under the same operational conditions, we will estimate the frequency re-
sponse matrix (FRM) and its covariance at the full frequency resolution of the concatenated 
data records. We first assume that only the output is disturbed by noise (output error stochas-
tic framework), and next handle the noisy input, noisy output case (errors-in-variables sto-
chastic framework). 

Combining the extended transfer function model for concatenated data records (6-48) 
with the output noise model (6-65) gives 

Y%k) = G(nk) U%k) + T(Qk) + X f : ; l zk^Tf(Qk) + H(nk)E(k) (7-56) 

with xi = T!r=i N
r> Nj the length (in samples) of the / th record, and where T = TG+TH 

and T? = T?G + T?H represent the sum of the plant and noise transient (leakage) contribu-
tions. For continuous-time systems (Ω = s9 J~s) the contribution of the residual alias error 
S(Qk) is included in the transient terms T and Tf by increasing the order of the numerator 
polynomials. Note that (7-56) can be rewritten as 

Y%k) = G(nk)Ü%k) + T(Qk) + H(Qk)E(k) (7-57) 

where G(Q.k) and Ifik) are the extended FRM and the extended input DFT spectrum 

G(Qk) = [G(Qk) η(Ω,) ... ^ ( Ω , ) ] 
τ (7-58) 
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Comparing (7-57) to (7-1) it can be concluded that the local polynomial method of Section 
7.2.2 is directly applicable to concatenated data records. One only needs to extend the known 
nuxl input u(t) by M c - 1 signals S(í-J^r=lNr), i = 1, 2, ..., M c - 1 , with S(f) = 0 
for ^ 0 and S(0) = 1. 

To handle the noisy input, noisy output case (errors-in-variables stochastic framework) 
it is sufficient to add the Mc - 1 signals S(t - ^ = x Nr)9 i = 1, 2, ..., Mc - 1, to the known 
reference r(i) in the indirect method of Section 7.2.7. 

7.2.9.2 Bias Error. The bias error of the local polynomial estimates is analyzed in 
the special case that the Mc data records have equal length N0. We compare the bias of the 
concatenated data records method with that of the non-concatenated approach where the esti-
mates of each data record separately are averaged. For both methods the same degree R of 
the local polynomial approximation and the same number of degrees of freedom dofarh = q 
(7-13) of the residuals of the least squares fit. The latter implies that the difference between 
the number of complex equations and the number of complex parameters in (7-8) remains 
constant in the analysis. 

From (7-18) it follows that the ratio RblSLS G of the Frobenius norm of the bias error on 
the mean FRM estimate GmQan(Qk) over the non-concatenated data sets to that of the FRM 
estimate Gconcat(Qk) using the concatenated data records is given by 

*bias,G = 0{ξ*+\Μ,)) (7-59) 

where 

q-\ +{R+ \)(n + 1) q-l+(R+ 1 )(/!„+ 1) 
ξ(ΜΛ = M, Λ , n ', u ' with #oo) = 1 i íLü ί (7-60) 

It can easily be verified that Rbias G> 1 for any value of q, R, and nu if Mc > 2, which 
shows that the bias error on the FRM estimate is reduced by concatenating data records. The 
bias reduction (7-59) of Gconcat(£\) w.r.t. Gmean(£\) is maximal as the number of records 
Mc tends to infinity 

¿Ζ,β = I** *biaS>G = 0(<f+ 10»)) (7-61) 
Mc->oo 

For example, for q = 6 (a typical value needed in single-input, single-output parametric 
transfer function modeling, see Chapter 12), R = 2, and nu = 1, ^bias,G (7-59) becomes 

( UMo V 
*bias,G " °({ZT3MJ } 

and the corresponding maximal bias reduction equals R™^ G = 33.9 dB. (see Figure 7-6). 
Following the same lines, bounds on the ratio 7?bias c of the Frobenius norm of the 

bias errors on the noise covariance estimates (7-17) are found 

0 (^ )< / ? b i a S ; C r <0 (^ (^D) (7-62) 

where ξ is defined in (7-60). The lower and upper bounds in (7-62) are reached when, re-
spectively, the noise and the plant interpolation errors in (7-17) are dominant. Using the same 
numerical example as for the FRM estimate, the maximal bias error reduction on the noise 
covariance estimate Rffiü c varies between 5.6 dB and 33.9 dB. 
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7.2.9.3 Covariance Frequency Response matrix. Under the same conditions as for 
the bias error (see Section 7.2.9.2), we compare the covariance of the frequency response ma-
trix (FRM) estimate CjConcat(P¿) of the concatenated data sets with the covariance of the 
mean FRM estimate G m e a n^ ) over the non-concatenated records. Since q (7-13) is con-
stant in the analysis, the difference between the number of columns and rows of Kn in (7-8) 
is independent of the number of data records Mc. Hence, E{SHS} in (7-19) will be more or 
less the same for GmGan(Qk) and Gconcati^), and it is sufficient to compare the expected 
value of the noise covariance estimate Cy(k) of both approaches. Two limiting cases are con-
sidered: (i) the term in (7-17) depending on the plant interpolation error OintG is dominant, 
and (ii) the noise contribution Cy(k) in (7-17) is dominant. 

If the plant interpolation error is dominant in (7-17), then it follows from (7-19) that the 
ratio i?C0VjG of the Frobenius norm of the covariance of Gmem(Qk) to that of Gconcati^) is 
given by Rcoy>G = 0^2(<R+x\MJ)/Mc where ξ is defined in (7-60). The additional factor 
1 /Mc quantifies the covariance reduction of Gmean (Q¿) due to the averaging over the Mc 

data records. As the number of records Mc tends to infinity, the ratio Rcoy G tends to 
Ο(ξ2<<κ+ιΧνο))/Μ0. Hence, for Mc sufficiently large, the covariance of Gmean(Qk) becomes 
smaller than that of GC0ncat(O,k). However, since the frequency resolution of (jCOncat(P¿) is 
Mc times larger than that of Gmean(Q.k)9 the information content of Gconcat(Qk) is still 
0^2(R + i)(oo)) t i m e s i a r g e r t h a n that of Gmean(n¿). 

If the noise contribution Cy(k) is dominant in (7-17), then it follows from (7-19) that 
the ratio equals ^COv, G = M~x. Since the frequency resolution of GCOncat(£\) is MQ times 
larger than that of Gm e an(^), it follows that both estimates have the same information con-
tent. 

We conclude that the ratio Rcoy G is bounded by 

¿- < tfcov,G * ^O^W^XMJ) (7-63) 

where ξ is defined in (7-60). Figure 7-6 shows the bounds (7-63) for the same numerical ex-
ample as the bias error in Section 7.2.3.2. The upper bound (7-63) becomes maximal in 
Figure 7-6 for Mc = 13: 7?c

m
0
a
v̂ G = 17.9 dB. 

7.2.9.4 Conclusion. Concatenating data records reduces significantly the bias of the 
FRM and noise covariance estimates. In those frequency bands where the plant interpolation/ 
leakage errors are important, there is also a significant reduction in the covariance of the 
FRM estimates. Taking into account the increased frequency resolution, the concatenation 
does not increase the noise sensitivity of the FRM estimate in those frequency bands where 
the noise error is dominant. 

Figure 7-6. Comparison between the frequency 
response function (FRF) estimates using the non-
concatenated (¿mean) a nd the concatenated (GConcat) 
data records for the case q = 6, R = 2, and nu - 1. 
Black line: the bias ratio bias(Gmean)/bias(Gconcat), a nd 
gray lines: upper and lower bound of the variance ratio 
var(Gmean)/var(GCOncat) · 

CÜ 
■D 

100 
Number of data records 
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7.2.10 Experimental Illustration 

The goal of the measurement example is threefold: (i) comparison of the local polyno-
mial estimates (Section 7.2.2) with the classical spectral analysis method (Section 7.2.3); (ii) 
comparison of the direct (Section 7.2.2) and indirect (Section 7.2.7) local polynomial esti-
mates on noisy input-output data; and (iii) experimental performance analysis of the concate-
nation of data records (Section 7.2.9). 

7.2.10.1 Measurement Setup. A steel beam (p= 7800 kg/m 3 ) of length 61 cm, 
height 2.47 cm, and width 4.93 mm is hung by two nylon threads perpendicular to the excita-
tion direction. It is excited in its transverse direction by a mini-shaker (B&K 4810) at 10 cm 
from the end of the beam. The force (input) and acceleration (output) at the excitation point 
are measured with an impedance head (B&K 8001). These signals are amplified (charge am-
plifier B&K 2635) and buffered (Zin > 5 ΜΩ, Zout = 50 Ω) before being applied to the ac-
quisition channels (HPE 1430A, Zin = 50 Ω) of the VXI measurement device. The excita-
tions are generated by an arbitrary waveform generator (HPE 1445A, Zout = 50 Ω) at a 
sampling frequency fs = 10 MHz/29 « 19.53 kHz. The output of the arbitrary waveform 
generator is amplified before being applied to the mini-shaker. In order to reduce the effect of 
the inductive impedance of the shaker on the amplifier unit, an 18 Ω/5 W resistance is put 
in series with its input. 

An experiment is performed with a random binary sequence covering the band from 
DC to 6 kHz (urms = 241 mV). N = 50x 1024 samples of the reference signal (signal 
stored in the arbitrary waveform generator), the force (input), and the acceleration (output) 
are collected. Based on these signals the indirect (7-49) and direct (7-26), (7-33) local poly-
nomial and spectral analysis (diff window) estimates of the frequency response function are 
calculated. 

7.2.10.2 Comparison Local Polynomial and Spectral Analysis Estimates. The indi-
rect FRF estimates (7-49) are calculated for the local polynomial method (7-26) with R = 2 
and n in (7-13) chosen such that dof^ = q = 13, and the spectral analysis method (7-33) 
using the diff window where M = 13 in (7-31). With this choice of the parameters, the use-
ful noise averaging in the FRF estimate of the spectral analysis method over the M = 13 
blocks is equivalent to that of the local polynomial method over the In + 1 neighboring fre-
quencies (q = 13). Figure 7-7 shows the results: compared with the local polynomial esti-
mates (black lines), the spectral analysis method (gray lines) has a much lower frequency res-
olution and a larger variance. The latter is due to the superior leakage (transient) suppression 
of the local polynomial method. 

7.2.10.3 Comparison Errors-in-Variables and Output Error Estimates. To illus-
trate the importance of the noise on the input data, we compare in Figure 7-8 the indirect lo-
cal polynomial estimate using the reference signal and the input-output data (= errors-in-vari-
ables estimate, see Section 7.2.7), with the direct local polynomial estimate using the input-
output data only (= output error estimate, see Section 7.2.2). Note the large bias and large un-
certainty of the output error (direct) estimate at the resonance frequencies. This is explained 
by the fact that, at the resonance frequencies, the amplitude of the input spectrums drops to 
zero, resulting in a poor input signal-to-noise ratio. This invalidates the hypothesis of a high 
input signal-to-noise ratio made by the output error approach. 
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Figure 7-7. Measured force-to-acceleration frequency response function (FRF) - flexural vibrations 
of a steel beam. Top row: local polynomial estimate (black lines) and its standard 
deviation (gray line). Bottom row: zoom around the first (left figure) and fifth (right 
figure) resonance of the local polynomial (black) and the spectral analysis (gray) 
estimates and their corresponding standard deviation (dashed lines). 
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Figure 7-8. Comparison between the local polynomial estimates of the frequency response function 
(FRF) using an errors-in-variables (black) and the output error (gray) approach - zoom 
around the first resonance. Solid lines: FRF; dashed lines: standard deviation FRF. 

7.2.10.4 Concatenation of Data Records. To illustrate the concatenation of data 
sets, the reference signal and the input-output data are divided in four blocks of equal length 
N/A. Next, the concatenation of the blocks in the reversed order (4, 3, 2, 1) is processed us-
ing the indirect local polynomial method of Section 7.2.7, where three signals S(t-iN/A), 
i = 1,2,3 mat = 0, 1, . . . , N - 1 with S{t) = 0 for t*0 and S(0) = 1, are added to the 
known reference signal (see Section 7.2.9). The result is the frequency response function esti-
mate GCOncat(£\). Further, the following indirect local polynomial estimates are calculated: 
the mean Gmean(^) of the FRFs of each block of length N/A separately, and the FRF 
Gfuii(^) using the full data record. 

Figure 7-9 compares the mean FRF over the four blocks (GmQm(£l¿)) with the FRF us-
ing the concatenated data blocks (GCOncat(£\)). It follows that both estimates coincide: 
49.9% of the differences between the FRFs (top left figure black line) fall within the 50% 
confidence bound of Gconcat(i^) (top left figure, gray line). In the frequency bands where the 
plant interpolation errors are dominant, the variance of (jmean(£\) is about 23.1 dB larger 
than the variance of Gconcati^); while in the bands where the noise error is dominant the 
var(Gmean(*\)) is about -4.5 dB smaller than var(GCOncat(^^)). These values are in good 
agreement with the theoretical upper (19.5 dB) and lower (-6 dB) bounds in (7-63). 



Chapter 7 ■ Measurement of Frequency Response Functions - The Local Polynomial Approach 

Q -100 
2 4 

Frequency (kHz 

LI-
CE 

-50 

20 

0 

-20 

-40 

-60 

^ y \ 
-*** x ^ s . ^t^""^"""' 

1 "* ^ ^ ^ ^ 8 8 " * ^ ^ 1 

'/ \ - - „ - „ 
«../ V*'* - \ "%..„ 

0.16 0.18 0.2 
Frequency (kHz) 

4.12 4.14 4.16 4.18 
Frequency (kHz) 

4.2 

Figure 7-9. Comparison between the frequency response function (FRF) estimate using the non-
concatenated (Gmean) and concatenated (GCOncat) records - flexural vibrations of a steel 
beam. Top left figure: the difference | Gconcat - Gmean| (black) and the 50% confidence 
bound of GConcat (gray). Top right figure: the variance ratio var(Gmean)/var(GCpncat)· 
Bottom row: zoom around the first (left figure) and fifth (right figure) resonance of Gconcat 

(black) and Gmean (gray) and the corresponding standard deviations (dashed lines). 
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Figure 7-10. Comparison between the indirect local polynomial estimates of the frequency 
response function (FRF) using the full (Gfuii) and the concatenated (GconCat) ^ata 
sets - flexural vibrations of a steel beam. Left figure: the difference |Gconcat - Gfuii| 
(black) and the 50% confidence bound of Gconcat (gray). Right figure: the variance 
ratio var(GfUii)/var(Gconcat). 

Figure 7-10 compares the FRF estimates using the full data record (ΟΜ\(^))
 a n d t n e 

concatenated data records (GConcat(£^)). It follows that both estimates coincide and have the 
same variance: 61.5% of the differences between the FRFs (left figure, black line) fall within 
the 50% confidence bound of the FRF estimate (left figure, gray line), and the mean ratio of 
the variances equals 1.05 (right figure). 

PERIODIC EXCITATIONS 

7.3.1 Introduction 

Consider a linear multivariable nu- input, ny- output system operating in open or closed 
loop (see Figure 7-4). The input-output DFT spectra of the measured steady state response of 
that system to a periodic reference signal r(t) are related as 
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Y(k) = G(nk)u0(k) + vY(k) + TH(nk) 
(7-64) 

w i t h Tfí^k) and THy(Qk) the «w x 1 input and the ny x 1 output noise transient (leakage) 
errors, and where νν\Κ) = H^Q^E^k) and VY(k) = HY(Qk)EY(k) depend on the noise 
sources in Figure 7-4 (proof: use (6-69) on page 200 with TG = 0). The input-output noise 
transient errors increase the variability of the classical frequency response matrix estimators 
(see Sections 2.4 and 2.7), and introduce a correlation between the DFT spectra of consecu-
tive periods. The goal is to obtain, at the excited frequencies, a noise leakage-free FRJVI esti-
mate and a non-parametric estimate of the input-output noise covariances 

Cv(k) = Cowrie)), CY(k) = Cov(Ky(*)), and CYU(k) = E{VY(k)V»(k)} (7-65) 

starting from the measured input-output DFT spectra U(k), Y(k). We hereby assume that the 
DFT spectra E^k) and EY(k) satisfy properties (i-iii) on page 227. 

First an algorithm for suppressing nonparametrically the noise transient (leakage) er-
rors in periodic signals is presented in Section 7.3.2. It is the first step of the robust method 
for measuring the frequency response matrix of linear systems (Sections 7.3.3), and the ro-
bust and fast methods for measuring the best linear approximation (BLA) of nonlinear sys-
tems (Sections 7.3.6 and 7.3.7). Next, the methodology is extended to non-steady state condi-
tions (Section 7.3.8). Finally, the theory is illustrated on real measurement examples in 
Section 7.3.9. 

To guide the reader through the different algorithms, we give in Table 7-1 an overview 
of the experimental conditions (required number of experiments, periods P, and random 
phase realizations M) and the approximations made (smooth behavior of the FRF/BLA and/ 
or the transient errors) when measuring the frequency response function (FRF) of a linear 
time-invariant system, or the best linear approximation (BLA) of a nonlinear PISPO system. 
For a given measurement time, a maximal frequency resolution is obtained by selecting the 
minimal values of M and P. 

TABLE 7-1 Overview of the Experimental Conditions and the Approximations 
Made When Measuring an nu Input, n Output System 

Algorithm Frequency Response Function 
(FRF) 

Best Linear Approximation 
(BLA) 

• nu experiments with multisines of Sec-
tions 2.7.2 or 3.7 

Robust . p>2 periods 
• local polynomial approximation of the 

transient (leakage) error 

• 1 experiment with uncorrelated inputs 
Fast . p > i periods 

• local polynomial approximation of the 
PRp(a) an ( j m e transient (leakage) error 

Mxnu experiments with full random 
orthogonal multisines (3-31) 
P > 2 periods and M> 2 random 
phase realizations 
local polynomial approximation of the 
transient (leakage) error 

1 experiment with uncorrelated multi-
sines 
P > 2 periods 
local polynomial approximation of the 
BLA and the transient (leakage) error 

a. Not for single input systems (nu = 1). 
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Figure 7-11. DFT spectrum of P = 2 consecutive periods of a noiseless (left) and a noisy 
(right) periodic signal. The light gray arrows represent the noise (random 
function of the frequency), the dark gray arrows the noise transient (smooth 
function of the frequency), and the black arrows the periodic signal. 

7.3.2 Suppression of the Noise Transient (Leakage) 
Errors in Periodic Signals 

7.3.2.1 Basic Idea. The method starts from the input-output DFT spectra of P peri-
ods of the steady state response to a broadband periodic excitation signal 

JPÑ '"° 
(7-66) 

with N the number of samples per period, and where z(f) is a (n + nu) x 1 vector of the 
outputs and inputs stacked on top of each other 

z{t) At) 
u{t\ 

(7-67) 

Since the DFT spectrum Z0(k) of the noiseless signal z0(/) is exactly zero at the DFT fre-
quencies kP + r, for k = 0, 1, ...,Ν/2-l and r = 1,2, ...,P- 1 (see Figure 7-11, left 
plot for the case P = 2), it can only contain signal energy at DFT frequencies kP (see 
Figure 7-11, left plot). Therefore, 2n non-excited DFT lines Z(kP + r) - the n first lines to 
the left and the n first lines to the right of Z{kP) (see Figure 7-11, right plot, odd DFT fre-
quencies) - are used for estimating the input-output noise covariance matrices 

Cfls\kP) = Cov(Vz(kP)) with Vz(kP) 
VY(kP) 

Vv{kP) 
(7-68) 

(see Figure 7-11, right plot: light gray arrows), and the input-output noise transient terms 

THz<&kp) = 
THJ&kp) 

τ„βΡ) 
(7-69) 

(see Figure 7-11, right plot: dark gray arrows) in (7-64). This is done via a local polynomial 
least squares approximation of degree R > 1 of the noise transient terms at the non-excited 
frequencies 



Section 7.3 ■ Periodic Excitations 251 

Γ/ΓΖ(Ω*Ρ + Γ) = THz(ílkP) + £ * = γ φ)τ* + (PN)-M(K{r/{PN))*^) (7-70) 

Removing the estimated noise transient term fHz{ilkp) from the signal line Z(kP) (see 
Figure 7-11, right plot: dark gray arrows at the even DFT frequencies) finally gives the sam-
ple mean of the input-output DFT spectra. The whole procedure is a simplified version of the 
local polynomial method for arbitrary excitations (see Section 7.2.2), and is summarized in 
the next section. 

7.3.2.2 Algorithm. The noise transient fHz(ü.kP) and the noise covariance 
Cz°lse(kP) estimates are calculated from the (ny + nu) x (R + 1) local polynomial least 
squares approximation Θ of degree R of the noise transient as 

ΪΉΖ(Ω„) = Θ[:,1] 

dz°ÍS\kP) = -L¿Zn - ΘΚη)(Ζη - ΘΚη)
Η (7-71) 

β = znK»(KnK»y 

with <7noise = In - (R + 1) the number of degrees of freedom of the least squares residuals, 
and x[: !j the first column of x. The (ny + nu) x In matrix Zn and the (R + 1) x In matrix 
Kn have the following form 

Xn = [x(kP - rn) ... X(kP - rx) X(kP + r{) ... X(kP + r j ] (7-72) 

with X = Z,K; Z(kP ± rz) the input-output DFT spectra at the non-excited DFT lines; and 
K(kP±rt) = [1 (±rz) ... (±ri)

R]T with R the degree of the polynomial approximation. The 
numbers ri9 i = 1, 2, ..., n, are the n first elements of the set N \ {kP\k e N} (e.g., the 
gray arrows at the odd lines in the right plot of Figure 7-11). Combining (7-68) and (7-69) 
with (7-71) finally gives the local polynomial estimates of the input-output transient terms 
and noise covariances. 

Subtracting the transient term fHz(0.kP) (7-71) from the excited DFT lines Z(kP) de-
fines the sample mean of the input-output spectra over the P periods 

Z(kP) = Z(kP) - fHz(QkP) (7-73) 

The sample covariance Cflsc(kP) of the sample mean Z(kP) (7-73) is related to the sample 
noise covariance Cf{s\kP) (7-71) as 

cftikP) = M^yc7s\kP) ( 774 ) 

/w-HI^Si . : ] ! ! 
with ||JC||2 the2-normofx, x[l:] the first row of x, and UKZKV% the singular value decom-
position of Kf* (proof: see Appendix 7.H). The factor //poly quantifies the increase in noise 
variance of the sample mean Z(kP) (7-73) w.r.t. the uncorrected DFT spectrum Z(kP). It is 
induced by the estimate fHz(QkP) of the transient term in (7-73), and is typically 1 dB. 
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The degrees of freedom (dof10^) of the sample noise covariance matrices (7-71) and 
(7-74) are set by qmise in (7-71) 

afo/noise = ^noise = 2 / J - (R + 1) (7-75) 

To ensure that C2°lse(fcP) has the same rank as the true noise covariance C^01s%kP), one 
needs to fulfil the condition dofnoisQ>ny + nu. As a consequence the frequency width 
[kP-rn, kP + rn] of the local polynomial least squares approximation is larger for multi-
variable than for single-input, single-output systems. However, in any case P = 2 periods 
remain sufficient for the noise analysis. 

Remarks 

(i) The two main differences between (7-71) and the local polynomial method for ar-
bitrary excitations (7-10) are: (i) only the transient term is estimated in (7-71), 
while (7-10) estimates both the FRM and the transient, and (ii) only non-excited 
neighboring frequencies are used in (7-71), while (7-10) uses all neighboring fre-
quencies. 

(ii) Following the same lines of Section 7.2.2.5, the least squares estimate (7-71) is 
calculated in a numerically stable way via the singular value decomposition of 
KH. 

7.3.2.3 Bias Error. The expected values of the sample mean (7-73) and the sample 
noise covariance matrix (7-71) equal 

E{Z(kP)} = Z0(kP) 

E {cf s \kP)} = Cf**(kP) + 0.mXH{{rn/{PN)Y) + Ox^H{{rn/{PN)Y + *) 

with Z0(kP) the true DFT spectrum, rn defined in (7-72), Cfise(kP) the true noise covari-
ance (7-68), and where OmiH and OleakH are the bias contributions of the noise interpolation 
error and the residual noise leakage error, respectively (proof: see Appendix 7.1). The inter-
polation errors stem from the noise coloring over the 2n neighboring non-excited DFT lines 
in the linear least squares estimate (7-71). Notice that the noise interpolation error in (7-17) is 
larger than in (7-76). This is due to the coloring of the input power spectrum over the neigh-
boring 2n + 1 excited frequencies. 

7.3.3 The Robust Method for Measuring the 
Frequency Response Matrix 

7.3.3.1 Basic Algorithm. The robust method for measuring the frequency response 
matrix (FRM) starts from P > 2 consecutive periods of the steady state response to nu lin-
early independent nu x 1 broadband reference signals r^e\t), e = 1,2, ...,«M, for example, 
the Hadamard or orthogonal multisines of Section 2.7.2 on page 65, or the (full) random or-
thogonal multisines of Section 3.7 on page 92. Next, the noise transient suppression algo-
rithm of Section 7.3.2 is applied to each experiment separately, giving the following sample 
means and sample covariances of the input-output DFT spectra 

Z[e\kP\ CfisQ[e](kP) for e = 1, 2, ..., nu (7-77) 
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±{kP) = [Z[l\kP) Z[2\kP) ... ZM(kP)] (7-78) 

(see (7-73) and (7-74)). Finally, the FRM is calculated from (7-78) as 

GQ'<o¿ = Y(kP)\]-\kP) (7-79) 

with Y(kP) and Ü(A:P), respectively, the first ny and last nu rows of Z(kP), and where 
nk = 2nkfs/N. 

7.3.3.2 Bias Error. The expected value of sample noise covariance in (7-77) equals 

E {Cf SG[e\kP)} = MpolyCf*%kP) + OintH((rn/(PN))*) (7-80) 

with //poly defined in (7-74), rn defined in (7-72), and where Cz
oise(kP) is the true noise co-

variance (7-68) of one multisine experiment (proof: combine (7-74) and (7-76), and neglect 
C W w.r.t OmiH). 

Since THz(0.kP) is an unbiased estimate of TH (Qk) ((7-71) with Έ{ΤΗ (Qk)} = 0 and 
E{ Vz(k)} = 0), it follows that the FRM estimate (7-79) is unbiased in the absence of input 
noise. Although the FRM estimate (7-79) is biased in the presence of input noise, the bias can 
be neglected if the input signal-to-noise ratio is larger than 10 dB (see Section 2.4.2.1 on 
page 46). 

7.3.3.3 Covariance of the Frequency Response Matrix. The covariance of the FRM 
estimate (7-79) is calculated as in (2-77) on page 66, where G0(j(ük), U0(¿) and Cz(k) are 
replaced by, respectively, G(j(£>k), V(kP) and the mean over the nu experiments of the sam-
ple noise covariance estimate (7-77) 

7.3.4 The Fast Method for Measuring the Frequency 
Response Matrix 

The fast method for measuring the frequency response matrix (FRM) starts from 
P = 1 period of the steady state response to a known nu x 1 broadband reference signal 
r(t) with a random phase DFT spectrum. Examples of such signals are one column of the 
Hadamard or orthogonal multisines of Section 2.7.2 on page 65, where rslS0(t) is a random 
phase multisine, or one column of the (full) random orthogonal multisines of Section 3.7 on 
page 92. Next, the local polynomial method for arbitrary excitations of Section 7.2.7 is ap-
plied to the known nu x 1 input r(/), noisy (ny + « J x l output data z(t) = \yT(t) uT(t)]T, 
giving the FRM estimate (7-49) and its covariance (7-50). Note that the random phase condi-
tion of the reference signal is sufficient to separate in (7-47) the exogenous term Grz(Qk)R(k) 
(random function over the frequency) from the transient term ^ (Ω^) (smooth function of 
the frequency). 

For random phase multisines the bias expressions (7-17) and (7-18) are valid with 
0leakG = 0. The main differences w.r.t. the random excitations are that (i) the amplitude 
spectrum of the multisine is deterministic instead of random, and (ii) the transient (leakage) is 
only due to the noise dynamics. 
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7.3.5 Nonlinear Systems 

Figure 7-5 shows the setup for measuring the best linear approximation (BLA) of a 
nonlinear system operating in open or closed loop. The input-output DFT spectra of the 
steady state response to a periodic reference signal r(t) are then related as 

U(k) = U0(k) + Us(k) + Vv{k) + THu(Qk) 

m = < W i W o ( * ) + Ys(k) + VY(k) + THY(Qk)
 (7"81) 

with GBLA(Qk) the best linear approximation, Us(k) and Ys(k) the input-output stochastic 
nonlinear distortions, TH (Qk) and Γ# (Q.k) the input-output noise transient (leakage) errors, 
νν(Κ) = H^Q^Ejjik) and VY(k) = HY(Qk)EY(k) the input-output errors depending on the 
noise sources in Figure 7-5, and where U0(k) is the DFT spectrum of the periodic part of the 
plant input that is correlated with the reference signal 

U0(k) = (I„u + Gcont(Q,)GBLA(Q,))"i Gact(Qk)R(k) (7-82) 

(proof: combine Theorems 3.16 and 3.22 with (6-69)). Gact(Q) and Gcont(Q) are, respec-
tively, the actuator and controller transfer functions, and Us(k) and Ys(k) are correlated via 
the feedback loop and/or the nonlinear distortions of the actuator (see Section 7.2.8). 

The robust and fast methods explained in, respectively, Sections 7.3.6 and 7.3.7 are in-
direct methods: as in (7-49), the BLA is obtained via the FRMs from reference to output and 
from reference to input. Hence, they can handle the open as well as the closed loop cases, and 
automatically account for the input stochastic nonlinear distortions Us(k) and for the correla-
tion between Us(k) and Ys(k). 

7.3.6 The Robust Method for Measuring the Best 
Linear Approximation 

7.3.6.1 Basic Algorithm. The robust method for measuring the best linear approxi-
mation (BLA) requires that the nu steady state experiments are performed with the full ran-
dom orthogonal multisines (3-31) on page 93, and that the reference signal r(i) is known. 
Since the stochastic nonlinear distortions us(t) and ys(t) have the same periodicity as the ref-
erence signal, no information about us(i) and ys{t) can be gathered by comparing consecu-
tive periods of these experiments. Therefore, the experiments with the full random orthogo-
nal multisines are repeated for M> 2 independent random phase realizations (ZR^(k) as 
well as </>e(k) in (3-31), for/?, e = 1,2, ...,nu and A: = 1,2, . . . ,F) . Since ys{i) depends on 
the particular random phase realization of r(t), comparing the FRM estimates over the M 
different full random phase experiments allows us to estimate the BLA and the covariance of 
the stochastic nonlinear distortions as explained in detail in the sequel of this section. 

Applying the robust method for measuring the FRM (see Section 7.3.3) to each realiza-
tion of the full random orthogonal multisines gives the following sample means and sample 
noise covariances of the input-output DFT spectra 

Z[m>e\kP\ cfse{m'eXkP) for e = 1, 2, ..., nu and m = 1, 2, ..., M (7-83) 

Z[m\kP) = [Z[mA\kP) Z[m>2](kP) ... Z[m>n«\kP)] (7-84) 
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Averaging of C™ m'e (kP) over the M realizations gives an improved estimate of the in-
put-output noise covariances 

Cf SQ[e\kP) = ¿ X ^ = χ Cfse[m> e\kP) (7-85) 

Straightforward averaging of the input-output DFT spectra Z[m\kP) over the realizations m 
is not possible because of the random choice of the phases of the reference signal (3-31) over 
m. To allow for averaging over m, the input-output DFT spectra 2}m\kP) must first be re-
ferred to the reference signal. This is done as follows. 

First, note that for each random phase realization m, the full random orthogonal multi-
sines (3-31) can be written under the form (2-82) on page 67, where D\R][(kP) is a diagonal 
matrix containing the - by construction - realization independent input amplitude spectra, 
and where T¡¿¡¡(kP) is an orthogonal matrix (T 7 ^ - 1 = T[™JH) containing the random real-
ization of the input phases. Next, the input-output DFT spectra t}m\kP) are right divided by 
T%\kP) giving 

Z[™\kP) = Z[m\kP)T[^H(kP) (7-86) 

Notice that the columns of Z^\kP) are uncorrelated because the columns of Z}m\kP) are -
by construction - independently distributed, and because vec(Z^ (&P)) and vec(ZM(&F)) 
have the same covariance (proof: see Appendix 7.K). Further, the sample mean of the DFT 
spectra is obtained by averaging (7-86) over the M realizations, and the total sample covari-
ance of each column of Z^"\kP) is calculated by an averaging over the M realizations and 
2nE + 1 neighboring excited frequencies. The latter is necessary for getting a covariance es-
timate with sufficient degrees of freedom. The resulting algorithm becomes 

UkP) = ¡£:=Am]w σ-87) 

c[f](kP) = -YM Y"E r[™>eXk^e]H(k^ 
'ZR V > M^m = i ̂  = -*E ( M - \){2nE + 1) (7.88) 

r^e\k¡) = ΖΜ^Ρ)-ΖΚ[:^Ρ) 

where Χ^. e] denotes column e of X, C?\kP) is the sample total covariance of the sample 
mean ZR{kP) (7-87), and where the integer numbers ki9 with k0 = k, indicate the first nE 

excited harmonics left (/ = -nE, ..., -1) or right (/ = 1, ..., nE) from k. Note that the total 
covariance C^\kP) (7-88) includes the influence of the noise and the stochastic nonlinear 
distortions. The noise covariance of each column of (7-87) is given by (7-85) divided by M 

cfse[e\kP) = ±C™ise[e\kP) (7-89) 
¿¡R JyJ ZJ 

Finally, the best linear approximation is calculated from (7-87) as 

GBLAO'<D*) = YR(kP)V-R\kP) (7-90) 
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with YR(kP) and VR(kP), respectively, the first n and last nu rows of ZR(kP) (7-87), and 
where ω̂ . = 2nkfs/N. 

The degrees of freedom of the sample noise (7-89) and total (7-88) covariances are 
given by, respectively, 

¿ < o t S = Win - (R + 1)) and ¿O/r0bust = ( M - 1 )(2nE + 1) (7-91) 

It follows that via an appropriate choice of n and nE, measuring P = 2 periods of M = 2 
realizations is enough for estimating accurately the noise and total covariances. However, the 
minimal values of n and nE increase with the number of inputs nu and outputs n (e.g., for 
the sample noise covariance (7-89) the condition dof^^ >ny + nu must be fulfilled). 

Remarks 

(i) The major difference with the robust method of Section 4.3.1 on page 130 is that 
M = 2 independent random phase realizations are sufficient for estimating the 
total covariance. This result is achieved by averaging the sample covariance over 
neighboring excited frequencies. The latter, however, introduces a bias in the esti-
mate (see Section 7.3.6.2), that can be important for highly correlated input-out-
put errors (see Section 7.3.6.5). 

(ii) The estimated BLA (7-90) and the sample noise (7-89) and total (7-88) covari-
ances are correlated over the frequency. The correlation length is ±2n/P at the 
frequency resolution fs/N for the BLA (7-90) and the sample noise covariance 
(7-89), while it is ±2nE for the sample total covariance (7-88). 

(iii) The sample noise (7-89) and total (7-88) covariance estimates of the nu experi-
ments are used as weighting in parametric transfer function modeling (see Chap-
ter 12). To calculate uncertainty bounds on the nonparametric FRJVI estimates the 
sample covariances are averaged over the nu experiments, 

tf\kP) = I ^ C — ' ^ P ) and C¿R(kP) = ^ . ^ k P ) , (7-92) 

which increases the degrees of freedom (7-91) with nu. 

7.3.6.2 Bias Error. Multiplying the sample noise (7-89) and total (7-88) covariances 
by M, and taking the expected value gives 

ME{C^se[e\kP)} = MpolyC™%kP) + OintH((r„/(PN)¥) 

M E {cfR{kP)} = MvolyCfse(kP) + PCZs(kP) + OintH((rn/N)") 

with //poly defined in (7-74), C™1SQ(kP) the true noise covariance (7-68) of one multisine ex-
periment, CZs(kP) the true covariance of the stochastic nonlinear distortions Zs = [7f 1¡IY 
of one period of one multisine experiment, rn defined in (7-72), rn = kn - k, and where 
a = 1,2 for, respectively, non-uniformly and uniformly distributed excited harmonics 
(proof: see Appendix 7.L). The interpolation bias OintH in the sample total covariance origi-
nates from the averaging over the 2nE + 1 neighboring excited frequencies in (7-88). 
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Since the estimated input-output DFT spectra are unbiased E{Z^(A:P)} = Z0(kP)9 the 
estimated BLA (7-90) is unbiased in the absence of input errors (noise and/or nonlinear dis-
tortions). In the presence of input errors the BLA (7-90) is biased. However, if the input sig-
nal-to-noise and signal-to-distortion ratios are larger than 10 dB, then the bias can be ne-
glected (see Section 2.4.2.1 on page 46). 

7.3.6.3 Covariance of the Stochastic Nonlinear Distortions. From (7-93) it can be 
concluded that the difference between the total (7-88) and the noise (7-89) sample covari-
ances is a measure of the covariance of the stochastic nonlinear distortions Cz (kP), where 
Zs = [ 7 j UlY. Hence, an estimate Czs(kP) of Cz (kP) can be obtained as the mean value 
over the nu experiments of these differences 

Czs(kP) - ^ Σ ΐ ΐ , (C[H(kP) - e£*'\kP)) (7-94) 

7.3.6.4 Covariance of the Best Linear Approximation. The noise and total covari-
ances of the BLA estimate (7-90) are calculated as in (2-77) on page 66, where G0(j(ok) and 
\J0(k) and are replaced by, respectively, GBLAC/'03^) and U/?(A:P) (see (7-90)), and where 
Cz{k) is replaced by, respectively, C¿™\kP) and CÍR(kF) (7-92). 

To estimate the level of the stochastic nonlinear distortions on the BLA estimate w.r.t. 
one multisine experiment we replace Cz(k) in (2-77) by Czs(kP) (7-94). 

7.3.6.5 Special Case: Dominant Generator Errors. The contribution of the genera-
tor errors ng(t) to the input-output errors νν(Κ) and VY(k) in (7-64) and (7-81) are related by 
the true system transfer function (see Figure 7-4). Therefore, the generator error contributions 
to the input-output covariance matrices are cancelled in the covariance expression of the 
FRM (proof: see Appendix 7.M). Hence, if the generator error in Figure 7-4 is the dominant 
noise source, then the slightest error made in the input-output covariance estimates causes a 
large error in the covariance estimate of the FRM (the difference of large terms should almost 
be zero). This high sensitivity to small errors on the input-output covariance estimates is 
avoided by performing the sample mean and sample covariance calculations on the FRM in-
stead of on the input-output DFT spectra. The bias introduced by the divisions in (7-79) and 
(7-90) can be neglected if the input signal-to-noise and signal-to-distortion ratios are larger 
than 10 dB (see Section 2.4.2.1 on page 46). 

In modal analysis experiments, the nonlinear distortions generated by the shakers act as 
dominant generator errors that contribute to the input-output total covariances but not to the 
input-output noise covariances. Indeed, the nonlinear distortions are random (over the ran-
dom phase realization of r(t)) periodic signals that are uncorrelated with the reference signal 
(see Section 3.8 on page 93). Since the robust method of Section 7.3.6 introduces small inter-
polation errors in the total covariance estimates (the 0[ntH term in (7-93)), the sample mean 
and sample covariance calculations (7-87) and (7-88) are replaced by, respectively, 

W^ = i Ίΐ= I é [ m W with G™(M) = y[m\kP){t[m\kP)T' (7-95) 

A (V\ = L· V M Y" E rvecG("-|)rvecG^i) 
CvecGW Μ Α » = 1 ^ , = - % ( Λ / _ 1 ) ( 2 % + 1 ) ( 7 % ) 

r\£eW = vec(G['»]OQ,))-vec(GO^i)) 
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where VQC(X) puts the columns of the matrix X on top of each other, and with Y^m\kP) and 
V[m](kP), respectively, the first ny and last nu rows of Z[m\kP) (7-84). Although the input-
output noise covariances are also subject to small interpolation errors (the OintH term in 
(7-93)), they are still calculated via the procedure of Section 7.3.3, because the generator 
noise is mostly not dominant in modal analysis experiments. 

7.3.7 The Fast Method for Measuring the Best Linear 
Approximation 

7.3.7.1 Basic Algorithm. The fast method for measuring the best linear approxima-
tion (BLA) requires one experiment with a set of known uncorrelated random phase multi-
sines r(t) (e.g., one column of the (full) random orthogonal multisines R(k) in (3-30) or 
(3-31)). Starting from P > 2 periods of the steady state response to r(t), the noise transient 
(leakage) errors in the input-output signals (7-81) are suppressed first via the procedure of 
Section 7.3.2, giving 

Z(kP) = Grz(nkP)R(kP) + Zs(kP)+V¿(kP) 
(7-97) 

V¿(kP) = Vz(kP) + THz(QkP)-fHz(QkP) 

and the noise covariance estimate C™isQ(kP) (7-74), where Grz(Q), Vz(kP), ΤΗζ(Ω), 
fHz(nkP) and Z(kP) are defined in, respectively, (7-48), (7-68), (7-69), (7-71), and (7-73), 
and with Zs = [Yj Ul]T. Next, a modified version of the local polynomial method for arbi-
trary excitations of Section 7.2.7 where no transient term estimated is applied to (7-97). The 
result is an estimate of the BLA GBLA(j(ok) and the total covariance Cow(Z(kP)) of the in-
put-output DFT spectra. The latter can be written as the sum of the covariance of the stochas-
tic nonlinear distortions and the noise covariance 

Cov(Z(kP)) = Cov(Zs(kP)) + Cov(V¿(kP)) (7-98) 

where a sample estimate of Cov(^(A:P)) is given by (7-74). The modified local polynomial 
method is explained in the sequel of this section. 

Since the transient term has already been suppressed in (7-97), we only need to esti-
mate the FRM Grz(ilkP). Applying the local polynomial method of Section 7.2.7 without 
transient term to 2nE + 1 neighboring excited frequencies [{k-rn¡)P, (k-r + l)P9 ..., 
kP, ...,(k+rn)P] gives the following algorithm 

GrJLakp) = Ψ[:,1:«.] 

Cz(kP) = kzñB - *LnE){ZnE - VLHf (7-99) 

with q = 2nE +\-(R+\)nu the number of degrees of freedom of the least squares residu-
als, and X[.ti:n ] the first nu columns of x. The (ny + nu) x {2nE+ 1) matrix Z„£ and the 
(R + \)nu x (2nE +1) matrix Ln have the following form 
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X„E = [X((k - rn£)P) ... X(kP) ... X((k + r„E)P)\ (7-100) 

with X = Z,L; Z{{k ± r¡)P) the input-output DFT spectra at the excited DFT lines; and 

W + r^P) = 

1 

(±n)R 

®R((k±ri)P) (7-101) 

C¿(kP) in (7-99) is the sample total covariance of the input-output DFT spectra that includes 
the influence of the noise and the stochastic nonlinear distortions. Combining (7-49) and 
(7-99) gives an estimate of the BLA of the nonlinear system 

ÓBLA(/<%) = Gry(QkP)Ó;¡(QkP) (7-102) 

with CDj. = 2nk/N, and where Gry(QkP) and Gru(ClkP) are, respectively, the first ny and 
last nu rows of Grz(Qkp). 

The degrees of freedom of the sample noise (7-74) and total (7-99) covariances are 
given by, respectively, 

dof™* = In - (R + 1) and dofiast = 2nE+\-(R+\ )nu (7-103) 

It follows that via an appropriate choice of n and nE, measuring P = 2 consecutive periods 
of one multisine experiment is enough for estimating accurately the noise and total covari-
ances. However, the minimal values of n and nE increase with the number of inputs nu and 
outputs ny (e.g., for the sample noise covariance (7-74) the condition dof£™se >ny + nu must 
be fulfilled). 

Remarks 

(i) The major difference with the fast method of Section 4.3.2 on page 135 is that the 
information about the nonlinear distortions is obtained via a local polynomial ap-
proximation of the BLA over the excited frequency, while in Section 4.3.2 the dis-
tortion information is extracted from the non-excited multisine frequencies. 

(ii) Following the same lines of Section 7.2.2.5, the least squares estimate (7-99) is 
calculated in a numerically stable way via the singular value decomposition of 

(iii) The estimated BLA (7-102) and the sample noise (7-74) and total (7-99) covari-
ances are correlated over the frequency. The correlation length is ±2n/P at the 
frequency resolution fs/N for the sample noise covariance (7-74), while it is 
±2nE for the BLA (7-102) and the sample total covariance (7-99). 

7.3.7.2 Bias Error. The bias error of the sample noise covariance (7-74) is given in 
(7-76). Taking the expected value of the sample total covariance C¿(kP) (7-99) gives 

E{C¿(kP)} = / / p o l y C f s e ( ¿ m Z ^ ^ (7-104) 
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with Cz(kP) the true covariance of the stochastic nonlinear distortions Zs= [ 7 j UlY of 
one period, and where rn and doffast are defined in (7-99) and (7-103), respectively (proof: 
use (7-55), where Cv{k) is replaced by Cov(Z(£P)) (7-98)). 

If the input signal-to-noise and signal-to-distortion ratios are larger than 10 dB, then the 
bias on the BLA estimate is mainly due to the plant interpolation error 

E { G B L A ( M ) } = < W M ) + OintG((rn/N)(«+ 0) (7-105) 

with rn£ defined in (7-99) (proof: use (7-18) with 0leakG = 0). 

7.3.7.3 Covariance of the Stochastic Nonlinear Distortions. From the expected val-
ues (7-76) and (7-104) it can be seen that the difference between the sample total covariance 
(7-99) and the sample noise covariance (7-74) is an estimate of the covariance of the stochas-
tic nonlinear distortions Zs = [7 j UlY 

^zs{hP) = ±(C¿(kF) - Cfise(kP)) (7-106) 

7.3.7.4 Covariance of the Best Linear Approximation. The noise and total covari-
ances of the BLA estimate (7-102) are calculated as in (7-21) and (7-50), where Kn is re-
placed by Ln£ (see (7-99) and (7-101)), G by GBLA (7-102), and Cv by, respectively, 
Cfise(kP) (7-74) and C¿(kF) (7-99). 

To estimate the level of the stochastic nonlinear distortions on BLA estimate, we re-
place Cv in (7-21) by £ζβΡ) (7-106). 

7.3.8 Non-Steady State Conditions 

In the previous sections the analysis was done under steady state operation of the dy-
namic systems in Figure 7-4. If the plant is measured under transient conditions, then (7-64) 
is replaced by 

u(k) = u0(k) + vv{k) + Tv{ak) 
Y(k) = G(Qk)U0(k) + VY{k) + TY(nk) 

with U0(k) the DFT spectrum of the periodic part of u(t), and where 7^(0^) and TY(Qk) 
are, respectively, nux \ and ny x 1 rational vector functions depending on the actuator, the 
controller (closed loop only), the plant, and the noise dynamics, and on the difference be-
tween the initial and final conditions of the experiment (proof: use (6-69) on page 200). Fol-
lowing the same lines, it can be seen that (7-81), where THV and THY are replaced by, 
respectively, Τυ and TY, is also valid under transient conditions. Since no distinction can be 
made between the noise and the plant transients (leakage) errors, the robust method for linear 
systems (Section 7.3.3) and the robust and fast methods for nonlinear systems (Sections 7.3.6 
and 7.3.7) can handle the first two periods of the transient response to a periodic input. Simi-
larly, one period of the transient response is sufficient for the fast method of Section 7.3.4. 

The major difference between the plant and noise transient (leakage) errors is that the 
plant leakage errors introduce a bias in the estimated frequency response matrix (or best lin-
ear approximation). For the fast methods (Sections 7.3.4 and 7.3.7) the plant leakage bias 
0leakG can be neglected w.r.t. the plant interpolation bias OmtG (see (7-18)). For the robust 
methods (Sections 7.3.3 and 7.3.6) the plant leakage bias is of the order 
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^ l e a k G ( ^ ( ^ ) ) (7-108) 

(proof: see Appendix 7.N). 

7.3.9 Experimental Illustration 

The goal of the measurement example is twofold: (i) comparison of the robust (Section 
7.3.6) and the fast (Section 7.3.7) estimates of the best linear approximation (BLA) of a 
weakly nonlinear system; and (ii) comparison of the robust local polynomial method (Section 
7.3.6) with the classical robust method that neglects the noise transients (Section 4.3.1). 

7.3.9.1 Measurement Setup. A plexiglass beam (density 1200 kg/m3, height 
2.00 cm, and width 1.03 cm) under free-free boundary conditions is excited in its longitudi-
nal direction by a periodic force applied at one of its ends (see Pintelon et al., 2004 for a de-
tailed description of the experimental setup). The force (excitation u(t)) and acceleration (re-
sponse y{t)) are measured at the excitation point (see Section 7.2.10.1 for a detailed 
description of the analog signal conditioning: generation, amplification, impedance match-
ing). The generator and acquisition units operate at the same sampling frequency fs = 
10 MHz/210 «9.77 kHz. 

Experiments are performed with odd random phase multisine excitations r(t) consist-
ing of the sum of F = 1137 harmonically related frequencies (2k + l)fs/N (k = 0, 1, ... 
F- 1, and N = 8192 samples per period) in the band [100 Hz, 4 kHz], with equal har-
monic amplitudes. These signals are applied to the plexiglass beam via a mini-shaker. The 
rms value of the resulting force signal u(t) equals 124 mV. P = 2 consecutive periods of the 
steady state response u(i) &nd y(t) to M = 3 different random phase realizations of the mul-
tisine excitation r(t) are measured. Based on these signals the best linear approximation is 
estimated using the robust method of Section 7.3.6 (first two experiments) and the fast 
method of Section 7.3.7 (third experiment). 

7.3.9.2 Comparison Robust and Fast Estimates. Using u(i) and y(i) of the first 
two experiments, the robust estimate (7-95) of the best linear approximation (BLA) are cal-
culated with R = 2 (second order local polynomial approximation of the noise transients) 
and n, nE chosen such that dof^ = dofrohust = 7 in (7-91). The fast estimate (7-102) of 
the BLA is calculated using r(t), u(t), and y(t) of the third experiment with R = 4 (fourth 
order local polynomial approximation of the BLA and the noise transient) and n, nE chosen 
such that doff™¿se = doffast = 8 in (7-103). The degrees R of the local polynomial approxi-
mations are chosen such that the bias error of the respective BLA estimates are below the 
noise level. Since the fast method also approximates the BLA, a higher degree is needed than 
for the robust method. The results are shown in Figure 7-12: it can be seen that the total vari-
ance (gray lines) is significantly larger than the noise variance (black thin lines), indicating 
that the nonlinear distortions are the dominant error source in the BLA estimate. The level of 
the stochastic nonlinear distortions is estimated from this difference as in (7-94) and (7-106) 
for, respectively, the robust and fast methods. 

Figure 7-13 compares the robust and the fast BLA estimates. From the top left plot it 
can be concluded that the BLAs coincide within their total uncertainty (61.6% of the residu-
als lie outside the 50% confidence bound). From the right column of Figure 7-13 it follows 
that the mean variance ratios var(GB°LASVvar(^BLA) of the noise, the total errors, and the 
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Figure 7-12. Robust (top row) and fast (bottom row) estimates of the force-to-acceleration 
best linear approximation (BLA) - longitudinal vibrations of a plexiglass beam. 
Left column: magnitude BLA (bold black lines), noise variance BLA (thin black 
lines), and total variance BLA (gray lines). Right column: phase BLA. 
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Figure 7-13. Comparison between the robust and the fast estimates of the best linear approximation (BLA) -
longitudinal vibrations of a plexiglass beam. Top left: the difference I^SLA* - ^BLAI (black) a n d 
its 50% confidence bound (gray). Top right: the noise (black) and total (gray) variance ratios 
varíGgJS^/vaiíGg^). Bottom left: variance of the stochastic nonlinear distortions Gs on the 
robust (black) and fast (gray) BLA estimates. Bottom right: variance ratio var(GJPbust)/var(G|ast). 

stochastic nonlinear distortions are, respectively, 3.1 dB, 2.3 dB, and 5.9 dB. This can be ex-
plained by the averaging effect over 2nE + 1 neighboring frequencies in the fast BLA esti-
mate (7-99) and (7-102). However, the smaller variances of the fast estimate do not necessar-
ily imply that the information content of the fast BLA estimate is larger than that of the robust 
BLA estimate. Indeed, the robust BLA estimates are uncorrelated over the frequency, while 
the correlation length of the fast estimates equals ±nE = ±12 excited frequencies. Also, in-
creasing nE in (7-99) decreases the variance of the fast BLA estimate (7-102), but increases 
the correlation length over the frequency. 
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Figure 7-14. Comparison between the local polynomial and the classical robust estimates -
longitudinal vibrations of plexiglass beam. Left: robust local polynomial estimate of 
the BLA (black bold line), its noise variance (black line), and its total variance (gray 
line). Right: noise (gray) and total (black) variance ratios of the classical robust 
estimate without transient suppression to the robust local polynomial estimates. 

7.3.9.3 Comparison with the Classical Robust Estimates. The previous experiment 
is repeated measuring P = 10 consecutive periods of the steady state response for M = 25 
different random phase realizations. Figure 7-14 compares the robust local polynomial ap-
proach that suppresses the noise transients (Section 7.3.6 with R = 2 and dofTobust = 
Φ/robust = 24) with the classical robust method that neglects the noise transients (Section 
4.3.1 on page 130). The gain in noise variance of the local polynomial method ranges from 6 
dB at the resonance with the lowest damping to 1 dB at the resonance with the highest damp-
ing. In between the resonances the variance of the local polynomial method is about 1 dB 
larger than that of the classical method (variance ratio of-1 dB in Figure 7-14, right plot). 
This observation is consistent with the increase in noise uncertainty due to the transient sup-
pression, which is quantified by //poly in (7-74). It nicely illustrates the importance of the 
noise transient (leakage) errors in lightly damped systems. Since the nonlinear distortions are 
much larger than the noise errors (see Figure 7-14, left plot), and since the system operates in 
steady state, the total variances of both approaches are equals (0 dB ratio in Figure 7-14, right 
plot). Note that the noise and total variances in Figure 7-14 (left) are, respectively, 
( 1 0 x 2 5 ) / ( 2 x 2 ) = 21 dB and 25/2 = 11 dB smaller than in Figure 7-12 (top left). 

7.4 COMPARISON PERIODIC - RANDOM EXCITATIONS 

7.4.1 Discussion 

Since the structure of the covariance of the robust FRM estimate (2-77) on page 66 is 
totally different from the covariance of the fast FRM estimate (7-21), it is very difficult (if not 
impossible) to compare them. The structure of the covariance matrix of the fast estimate is, 
however, exactly the same as that for random excitations (see Section 7.3.7.4), if the same or-
der R and frequency width In + 1 (n = nE) are used for the local polynomial approxima-
tions. Therefore, we compare in this section the fast method of Section 7.3.7 applied to the 
first P = 2 periods (N samples per period) of the transient response to a (full) random or-
thogonal multisine r(t), with the local polynomial method of Section 7.2.2 applied to the first 
2N samples of the response to stationary Gaussian inputs. The experiment time, the excita-
tion rms value, and the coloring of the input power spectrum are in both cases the same. 

■ The frequency resolution of the frequency response matrix (FRM) measurement us-
ing the random phase multisines Gfast is 2 times smaller (2 times less frequencies) 
than that of the Gaussian excitation Garb· However, the random phase multisine ex-
citations allow us to separate the noise from the nonlinear distortions, which is not 
the case for the stationary Gaussian inputs. 
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■ Since the signal spectra are averaged over two periods in the fast method, the signal-
to-noise ratios of the input-output DFT spectra and the FRM measurement using the 
random phase multisines are «Jl times larger than those using the Gaussian excita-
tion. However, since the arbitrary excitation has 2 times more frequencies, the noise 
sensitivity of both FRM estimates is exactly the same (e.g., averaging Garb over two 
neighboring frequencies increases the signal-to-noise ratio by Jl). 

■ Because the rms values of the random phase multisine and the Gaussian noise exci-
tations are the same, the signal-to-distortion ratios of the input-output DFT spectra 
and the FRM measurement for both excitation signals are the same (see Section 4.2 
on page 120 and Schoukens et al., 2009). However, the arbitrary excitation has 2 
times more frequencies and, therefore, the sensitivity of Garb to the nonlinear distor-
tions is Jl times smaller than that of GfaSt (e.g., averaging Garb over two neighbor-
ing frequencies increases the signal-to-distortion ratio by *Jl). 

■ In both cases, a local polynomial approximation of degree R of the leakage (tran-
sient) errors and the FRM is made. The bias error on the FRM estimate introduced 
by the local polynomial approximation of the FRM is 2R+X times larger for the ran-
dom phase multisines. This is due to the loss of a factor 2 in frequency resolution 
w.r.t. the Gaussian noise excitations: compare (7-18), where TV is replaced by 2N, 
with (7-105). 

Summarized, the fast method using P = 2 periods of the transient response to a (full) 
random orthogonal multisine allows us to quantify the noise level and the level of the nonlin-
ear distortions on the FRM estimates. The drawbacks w.r.t. stationary random noise are a re-
duced frequency resolution (factor 2), a larger bias error on the FRM estimates (factor 
2R + l), and an increased sensitivity w.r.t. the nonlinear distortions (factor *¡2). The noise 
sensitivity of both approaches is exactly the same. 

7.4.2 Experimental Illustration 

The goal of the measurement example is threefold: (i) illustration of the local polyno-
mial approach on a multivariable system; (ii) illustration of the importance of system and/or 
noise transient (leakage) errors in frequency response function (FRM) estimates; and (iii) 
comparison of the fast method using periodic excitations (Section 7.3.7) with the local poly-
nomial method using arbitrary excitations (Section 7.2.7). The latter will be referred to as the 
"arb" estimate. 

7.4.2.1 Measurement Setup. As test case we take an aluminum tooling plate (PE 
200) of size 30.4 cm x 61.8 cm x 6.7 mm (see Pintelon et al., 201 lb for a detailed description 
of the experimental setup). The plate is excited under free-free boundary conditions by two 
mini-shakers spaced 25.5 cm apart, and the forces ( 2 x 1 excitation u(t)) and accelerations 
(2 x 1 response y(t)) are measured at the two excitation points (see Section 7.2.10.1 for a 
detailed description of the analog signal conditioning: generation, amplification, impedance 
matching). The two generators and two acquisition units are synchronized and operate at the 
sampling frequency fs = 10 MHz/212 * 2.44 kHz. 

In a first experiment, one column of the full random orthogonal multisine (3-31) is ap-
plied to the nu = 2 input, ny = 2 output system. The multisines (3-31) have a flat ampli-
tude spectrum (D^(k) in (2-82) on page 67 is independent of k) with equal rms values for 
all inputs, and contain F = 12887 harmonically related frequencies that are uniformly dis-
tributed in the band [120 Hz, 600 Hz] (kfs/N with k= 3221, 3222, ..., 16107 and 
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N = 64 x 1024 points per period). The frequency resolution of the corresponding FRM 
measurement is 37.3 mHz. We measure P = 2 periods (2N samples) of the force (= input) 
and acceleration (= output) signals after a waiting time of N/64 = 1024 samples. These sig-
nals are used for calculating the fast estimate (Section 7.3.7) of the best linear approximation 
(BLA). 

Instead of Gaussian noise, we use a full random orthogonal multisine (3-31) with pe-
riod length 2N samples in the second experiment. The reason for this is that the amplitude 
spectrum of the multisine is deterministic while that of the Gaussian noise is random 
(Rayleigh) distributed. The random phase multisines have the same rms value as in the first 
experiment, and contain F = 25772 harmonically related frequencies in the band 
[120 Hz, 600 Hz] (kfs/N with k = 6442, 6443,..., 32213 and N = 128 x 1024 points 
per period) with flat amplitude spectra. The frequency resolution of the corresponding FRM 
measurement is 18.6 mHz. Only P = 1 period (2N samples) of the force and acceleration 
signals are measured after a waiting time of N/32 = 2048 samples. These signals are used 
for calculating the local polynomial estimate (Section 7.2.7) of the best linear approximation 
(BLA). The latter is called the "arb" estimate in the sequel of Section 7.4.2. 

7.4.2.2 The Fast Estimate of the BLA. The fast estimate (7-102) of the BLA is cal-
culated using r(t)9 u(t), and y(t) of the first experiment with R = 4 (fourth order local 
polynomial approximation of the BLA and the transient) and n, nE chosen such that 
d°filtQ = d°ftex = 9 i n C7"103)· F i g u r e 7 " 1 5 s h o w s t h e results. It can be seen that G[hl] 

contains less resonances than G[2,2]> which is a nice illustration that the multivariable ap-
proach reduces the risk of missing important resonances. The total variance (dark gray) is 
only significantly larger than the noise variance (light gray) around the resonance frequencies 
(see also Figure 7-17). Note also the presence of the third mains harmonic (150 Hz) in the 
noise variance of G[2) i] and G[2,2]· 

To illustrate the importance of the system and/or noise transient in the time signals, the 
fast estimates are repeated without transient suppression. For this purpose we replace the 
sample mean (7-97) and the corresponding sample noise covariance (7-74) by 
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Figure 7-15. Fast estimate of the best linear approximation (black), its noise variance 
(light gray), and its total variance (dark gray) - aluminum plate. 
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Figure 7-16. Ratio of the total variances of the fast best linear approximation estimates 
without and with transient suppression - aluminum plate. 

Z(kP) = Z(kP) and Cfls\kP) = ZnZ(*/(2n + 1) 

where Zn is defined in (7-72). Figure 7-16 shows the ratio of the total variance of the BLA 
estimate without transient suppression to the variance of the BLA with transient suppression. 
At the resonances the uncertainty of the estimates without transient suppression is about 10 to 
30 dB larger. In those frequency bands where the transient (leakage) errors can be neglected, 
the noise uncertainty of the BLA estimate with transient suppression is about 1 dB larger than 
that without transient suppression. This observation is consistent with the increase in uncer-
tainty quantified by //poly in (7-74). 

7.4.2.3 Comparison Fast andArb Estimates. The arb estimate (7-49) of the BLA is 
calculated using r(/), u(t), ana y(t) of the second experiment with R = 4 (fourth order lo-
cal polynomial approximation of the BLA and the transient) and n chosen such that 
do/art, = # m (7-13) equals 10. Figures 7-17 to 7-19 compare the fast with the arb estimates. 

The arb estimates of the BLA have twice the frequency resolution of the fast method, 
however, they gives no indication about the possible nonlinear behavior of the system 
(Figure 7-17). In the frequency bands where the noise is dominant, the mean ratio of the total 
variance of the fast estimate to that of the arb estimate is -2.8 dB (see Figure 7-18), which is 
in good agreement with the theoretical expected value of -3 dB (see Section 7.4.1). In the 
neighborhood of those resonance peaks where the total variance is significantly larger than 
the noise variance, the mean total variance ratio is about 0.15 dB, which is close to the theo-
retical predicted value of 0 dB (see Section 7.4.1). 

Finally, it can be concluded from Figure 7-19 that both BLA estimates agree fairly well 
but not exactly. Indeed, although about 54% of the residuals lie outside the 50% confidence 
bound, some small systematic deviations between both estimates can be observed in the band 
[480 Hz, 500 Hz] for G[2? i] and G^2] anc* below 220 Hz for G[2 2]> an(* around some of 
the sharp resonances of some of the entries of G. 
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Figure 7-17. Zoom of the estimated best linear approximation (black), its noise 
variance (light gray), and its total variance (dark gray) - aluminum plate. 
Top rows: fast estimate, and bottom rows: arb estimates. 
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Figure 7-18. Ratio of the total variances of the fast to the arb estimates of the best 
linear approximation - aluminum plate. 
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Figure 7-19. Differences between the estimated best linear approximations |<5fast-Garb| 
(black) and their 50% confidence bounds (gray) - aluminum plate. 

7.5 GUIDELINES FOR ADVANCED FRF MEASUREMENTS 

■ Guideline 1: Use Uncorrelated Inputs. It is strongly recommended to minimize the 
correlation among the different excitation signals of the multivariable system. Other-
wise, the input power spectrum matrix can be close to singular, resulting in poor fre-
quency response matrix (FRM) estimates (7-16) and (7-79). However, sometimes 
the FRM of a highly interactive system can be ill-conditioned by the nature of the 
system itself (Zhu and Stec, 2006; and Rivera et al., 2009). Accurate identification 
of the low gain directions of the FRM then requires highly correlated inputs, which 
is in contradiction with the previous requirement of uncorrelated inputs. A two step 
procedure can solve this problem. First, an estimate of the FRM is obtained with un-
correlated inputs. Next, the system is excited in its low gain direction with a highly 
correlated input designed using the low gain direction estimated in the first step. It-
erative refinement is possible. 

■ Guideline 2: Keep Track of the Reference Signal. The local polynomial method as-
sumes that the input is known exactly. If the input is disturbed by noise and/or the 
system operates in feedback, then the direct local polynomial estimate of the FRM 
(7-16) is biased. This bias is avoided by adding a known reference signal (typically 
the signal stored in the arbitrary waveform generator) to the problem: the FRM is es-
timated from the known reference to the inputs and outputs of the plant, and the re-
sulting indirect estimate of the plant FRM (7-49) is consistent. Hence, it is strongly 
recommended to keep the known reference signal together with the measured input-
output signals. The only drawback of the indirect method is that the part of the plant 
input that is not correlated with the reference signal does not contribute to the FRM 
estimate (7-49). 

■ Guideline 3: Use Periodic Excitation Signals. The prime choice is the fast method 
(Section 7.3.4) applied to the first two periods of the transient response of the plant 
to a set of uncorrelated random phase multisines. For a given experiment time, it 
maximizes the frequency resolution of the FRM measurement, while keeping the 
ability to distinguish the noise from the nonlinear distortions. The major drawback 
of the fast method compared with the robust method (Section 7.3.3) is the plant in-
terpolation bias error in the FRM estimate. 

x, o 

-100 

^^ CO 
■ a 

— 0 
CM 
cvT 

« Γ 

5 -50 
CQ 
H-j 

Q -100 

.. 

I L 11 j 
1 1 1 É I. , . 

mm^khm f JWm f h-Aiw* ;5 «J 
1 if if i nr 



Section 7.6 ■ Appendixes 269 

Using stationary random excitations it is not possible to detect the presence of non-
linear distortions in the FRM measurement. However, if frequency resolution is the 
major concern, then random excitations or one period of the transient response to 
uncorrelated random phase multisines are a good choice. The latter has the advan-
tage of having a deterministic amplitude spectrum. Compared with the fast method 
applied to two periods, the sensitivity to nonlinear distortions of these solutions is 
Jl smaller. 

Conclusion. For lowly damped systems the local polynomial methods result in a sig-
nificant reduction of the measurement time or, for a given experiment time, in a significant 
increase of the frequency resolution. In addition these methods also reduce the required skills 
of the users because there is no need anymore to select the steady state part of the measure-
ments (periodic excitations), or to decide upon the length of subrecords for calculating the 
cross-power spectra (arbitrary excitations). 

7.6 APPENDIXES 

Appendix 7.A Proof of Equation (7-10) 

Applying vec(ABQ = (CT®A)vec(B) (see Section 15.7 on page 552) to (7-8), 
where vec(x) stacks the columns of x on top of each other (see (15-9)), we get 

y„ = kn0+v„ (7-109) 

with^rt = vec(7J, kn = Κ%®Ιη, Θ = vec(0), and vn = vec(Vn). The least squares so-
lution of (7-109) is given by 

Θ = {k»knyik«yn (7-110) 

Using (A®B)H = AH®BH, (A®B)~l = A~x ®B~\ and (A®B)(C®D) = (AC)® 
(BD) (see Section 15.7), (7-110) can be written as 

vec(0) = ((KnK»)-'Kn ® In)vec(Yn) (7-111) 

with x the complex conjugate of x. Applying (CT®A)VQC(B) = VQC(ABC) to (7-111) 
gives vec(0) = \Qc(YnK^(KnK^)~l), which is exactly (7-10) where all columns are stacked 
on top of each other. D 

Appendix 7.B Proof of Equation (7-13) 

Using PnPj* = Pn , entry [i,j] of Cv(k) (7-13) can be written as 

(Cv{k)\u] = \{VnPnV»\hn - Χ-νη[ί,ΛΡην»υΛ = i trace(/>„^. : ] Fn[,:]) (7-112) 

where X[i:] denotes the ith row of X and with tracê Y) = Σ^/,, ·] · Since V(k) is uncorre-
lated over the frequency k (see Section 7.2.1), the expected value of (7-112) equals 
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l{(Cv(k))[u]} = l-tmcc(PnE{Vn
H

U:] V„[h:]}) = -Urace(/>„C„) (7-113) 

where 

Cn = dmg((Cv(k-n))[iJV ...,{Cv{k))[ijV . . . , (C^+/ i ) ) [ / f y ] ) (7-114) 

The noise covariance matrix is a smooth function of the frequency and, therefore, 

Cv{k + r) = Cy(k) + C^(k)OintH(r/N) (7-115) 

with Cv
x\k) the derivative of Cv(k) w.r.t. the frequency (proof: apply the mean value theo-

rem with fk + r-fk = rfs/N9 see Theorem 41 of Kaplan, 1993). Collecting (7-113), (7-114), 
and (7-115) gives 

E{(Cv(k))[u]} = ^(Cv(k))[iJ]tiBC^Pn) + (7-116) 

Since Pn (7-11) and K^{KnK^yxKn are idempotent matrices it follows that 

trace(P„) = rank(Pn) = In + 1 - r a n k ^ J = In + 1 - (R + \){nu + 1) = q (7-117) 

(see Section 15.6 on page 551), which concludes the proof. D 

Appendix 7.C System Leakage Contribution to the 
Bias on the FRM Estimates 

In this appendix we study the contribution of the system leakage error to the bias on the 
FRM estimates. It will be shown that for the polynomial approach 

HOXQJ,{n/N)^^)Kll{KnK^)} = 0leakG((«/7V)(^2)) ( 7 . 1 1 8 ) 

where <9leak stems from (7-122), and where 0leakG is the term in (7-124). 
The matrix Kn (see (7-7) and (7-9)) depends the input DFT spectrum U(k + r), 

r = -n, ..., 0, . . . ,« , and, hence, is correlated with the system leakage term TG(Qk). To cal-
culate the expected value (7-118), a first order Taylor series approximation of (KnK^)~l is 
made 

( * ^ - i = ( E { * ^ (7-119) 

where Δ is a linear combination of U, U, UUH. Using (7-119), the fact that Kn is an affine 
function of U, and the fact that 0leak in (7-122) is an affine function of Τ^ + ι \ 

C,eak((«/^)(S + 3 / 2 )) = 0((«/^)(«+D)(7<f+ 1>+r(f + 1)) 
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(proof: combine (7-3), (7-4), and (7-8)), it can be seen that (7-118) is a linear combination of 
terms of the form 

E{T^Um}, E{T^ÜU]U[k]}, E{7S0
+1>£7wff[t]>, 

a n d E I T ^ ' ^ C / ^ , ] } (7-120) 

Since T^+l>l and U are zero mean, jointly normally distributed random variables, the third 
order moments in (7-120) are zero, and the fourth order moment is given by 

E{T^ÜV]U[k]ÜV]} = EiT^^U^EiU^U^ + liT^^U^EiDyiUin) 

+ £{T«+»DU]}E{U[k]Uul} 

(see Picinbono, 1993). Combining (6-67) and (6-68) on page 200 (for continuous-time sys-
tems TG with ni > max(«a, nb) - 1 represents the sum of the transient and the residual alias 
terms) with (7-120) and (7-121) proves (7-118). Using the property that an even order mo-
ment of Gaussian random variables can always be written as the sum of products of second 
order moments (Stuart and Ord, 1987), it can easily be verified that (7-118) remains valid if 
higher order terms are included in the Taylor series expansion (7-119). 

Appendix 7.D Proof of Equations (7-17) and (7-18) 

7.D.1 Proof of equation (7-18). Collecting (7-3) and (7-4) for r = -n,-n+ 1, ..., 
0, . . . ,« , and taking into account that the remainder of the FRM in (7-4) depends on the 
(R + 1) th derivative of the FRF G<* + 1}(ΩΛ), the matrix Yn can be written as 

Yn = ΘΚη +Vn + G(«^Xnk)OintG((n/N)(«+V) + Oleak((n/N)(* + ^ ) (7-122) 

with Θ the true parameter value, and where OintG stems from the remainder of the polyno-
mial approximation of the FRF, and 0leak from the remainder of the leakage term. Note that 
0leak consists of two contributions: the noise leakage term TH(Qk) and the system leakage 
term TG(Qk). The former is correlated with the noise Vn, while the latter is correlated with 
the input and hence with Kn (see Theorems 6.15 and 6.16: for continuous-time systems TG 

with ni > max(«fl, nb) - 1 and TH with «. > max(«c, nd) - 1 represent the sum of the tran-
sient and the residual alias terms). 

Since 7^(Ω) is a rational form whose numerator coefficients (i) depend linearly on the 
difference between the initial and final conditions of the experiment, and (ii) decrease as an 
0(N~l/2), it can be shown that under the excitation assumption of Section 7.2.1 

E{TG(Qk)U"(k)} = (KN-*) => E{0leak((»/iV)(* + 3 /2))^} = OleakG((n/NY« + V) (7-123) 

(proof: see Theorems 6.15 and 6.16, taking into account that for continuous-time systems TG 

with nt > max(«a, nb) - 1 represents the sum of the transient and the residual alias terms). 
Taking the expected value of (7-10), using (7-122) and (7-123), gives 

Ε{Θ} = Θ + G<* + D(Q,)OintG((«/A0<* + '>) + OleakG((«/A0(* + 2)) (7-124) 
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(proof for the leakage term: see Appendix 7.C). Combining (7-16) and (7-124) proves (7-18). 

7.D.2 Proof of equation (7-17). Using (7-122), the residual of the least squares fit 
Vn (7-11) can be written as 

V„ = Y„Pn = VnP„+ G(« + >XClk)OintG((n/N)(x + V) + 0Xtak{{n/N)(* + W) (7-125) 

where OintG is independent of the noise Vn, and where 0leak is correlated with Vn through 
the noise leakage part TH(Qk) of T(Qk). 

Since TH(Qk) is zero for white noise (H(Qk) = 1 in (7-2)), its correlation with E(k) 
(see Theorems 6.15 and 6.16, taking into account that for continuous-time systems TH with 
rij > max(«c, nd) - 1 represents the sum of the transient and the residual alias terms) can be 
written as 

E{TH(tl¿)E«(k)} = 0(HVXn¿N-i) (7-126) 

with Η^\Ω) the derivative of Η(Ω) w.r.t. the frequency. From (7-126) and the definition of 
V(k) (7-2), it immediately follows that 

E{^ieak((«/^)(/? + 3/2))^} = 0^kflH^\ak){n/N)^^)) (7-127) 

Using (7-125) and (7-127), one finds for the expected value of Cv{k) (7-13) 

E{CK*)} = \HvnPnv*) + G^xn¿artG({n/^ 

OleakH(HVXQk)(n/N)(« + V) + Oleak((«/A0(2/? + 3 )) 

where the first term is elaborated in Appendix 7.B. Note that at a zero of the noise model, 
H(Qk) = 0, the correlation (7-127) can be neglected because Vn « 0 for TV sufficiently 
large (V(k) = 0 and K(£+r)«0, r = -n, . . . , - 1 , 1, . . . ,«). Hence, since 

C(
v
l\k) = 2hQrm(HVXQk)Cov(E(k))HH(Qk)) (7-129) 

with herm(X) = (X +XH)/2, the leakage term 0l e a k i / in (7-128) can be replaced by 

Cy\k)OlQakH((n/N)(« + V) (7-130) 

Combining (7-116), (7-128), and (7-130) proves (7-17). D 

Appendix 7.E Proof of Equation (7-19) 

Combining (7-10) and (7-16) shows that (for notational simplicity we omit the fre-
quency argument) 

G = G+VnS (7-131) 
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where S is defined in (7-20). Using vec(ABQ = (CT®A)vec(B) (see Section 15.7) we 
find vec(G-G) = (ST®In )vec(FJ. Combining this with (A®B)H = AH ® BH gives 

Cov(vec(G)) = E{(ST®In)Cov(vec(Vn))(S®In)} (7-132) 

where Cov(vec(FJ) = I2n + l ® Cv(k) + OmH(n/N) (see (7-114) and (7-115)), and where 
the expected value is taken w.r.t. the random input. Applying twice 
(A®B)(C®D) = (AC)®(BD) to the right-hand side of the covariance expression 
(7-132), taking into account that E{SHS} = 0(N°/n), proves (7-19). D 

Appendix 7.F Proof of Equation (7-50) 

Defining AX = (X-X), the noise on the FRF estimate G = Gryó;¡ (7-49) can be 
obtained as a function of the noise on Grz via a first order Taylor series approximation 

G = GryGru 

= (Gry + AGry)(Gru + AGruy
l 

= {Gry + AGry)(In +G¿AGrur
lG¿ 

(7-133) 
* (Gry + AGry){Inu-G-rlAGRU)G-l 

* G + {AGry-GAGru)Grl 

« G+[IHy -G]AGrzG-rl 

Applying \ec(ABQ = (CT®A)vec(B) to (7-133) gives 

vec(AG) « (G-J ® [/^ - G])vec(AGr.) (7-134) 

Calculating the covariance matrix of (7-134), and replacing the true unknown values by the 
estimates gives (7-50), which concludes the proof. D 

Appendix 7.G Proof of Equation (7-55) 

The proof follows the same lines of Appendixes 7.B and 7.D, where the output noise 
V(k) is replaced by the sum of the output noise and the stochastic nonlinear distortions 
V(k) +Ys(k). Since V(k) is independently distributed of Ys(k) we can analyze the contribu-
tion of Ys(k) separately. The fact that V(k) is uncorrelated over the frequency, while Ys(k) is 
only asymptotically (N-+co) uncorrelated over the frequency 

E{Ys(k)Y*([)} = 0(Nl) fork*l (7-135) 

(see Theorem 3.16) is the key technical difference that matters in the proofs of Appendixes 
7.B and 7.D. Due to the correlation, the matrix Cn (7-114) is no longer diagonal. While the 
main diagonal has a similar contribution as in (7-116), where Cv is replaced by CY = 
Cov(Ys), the 2n(2n + 1) non-diagonal elements decrease as an 0(N~l), giving 
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E{CK¿)} = CYs(k) + C^\k)OiatH{n/N) + -OiArfi/N) (7-136) 

Combining (7-136) with (7-116) proves (7-55). 

Appendix 7.H Proof of Equation (7-74) 

Using the singular value decomposition K*¡ = υκΣκν%, the estimated noise transient 
term (7-71) can be written as 

f„z(akP)=THz(ClkP)+Vnbl (7-137) 

where Vn has the structure (7-72) with V = Vz and Vz defined in (7-68), and with 

bx = {Κΐ}{ΚηΚ«)-\Λ] = υκΣκν»[λ.Λ (7-138) 

Combining (7-73) with (7-137), taking into account that at the non-excited DFT frequencies 
Z(kP + rt) = Vz(kP + r¡) + THz(QkP + r), gives 

Z(kP) = Z0(kP) + Vz(kP) + Vnbx (7-139) 

Since Vn is independent of Vz(kP) (see (7-72)), the covariance of (7-139) is given by 

Cov(Z(kP)) = C™is%kP) + Cov(K„ bx) (7-140) 

Entry [i,j] of the second term in (7-140) can be elaborated as 

( C o v ^ , ) ) ^ = E ^ m M r a , : ] } = t race i^ i f E { ^ . : ] K n [ , : ] } ) (7-141) 

Using a first order Taylor series expansion with remainder 

C™ise(kP ± rt) = C™ise(kP) ± C™™VXki)r/(PN) (7-142) 

with kx G [kP, kP ± r¿\, and C™ise(1) the first order derivative of C*oise w.r.t. its argument, 
it can be verified that 

E< C : ] V*\i. O } = ((Cf^P))^ + 0(rn/(PN)))I2„ (7-143) 

where I2n is the In x In identity matrix. Collecting (7-141) to (7-143) gives 

(Cov(F„ bx)\iñ = <,<Τ*&Ρ)\ι,$>Α\ + <*rH/(PN)) (7-144) 

Combining (7-140) and (7-144), taking into account that U^UK = I2n, finally gives 
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Cow(Z(kP)) = Mpo]yC™%kP) + 0(rn/(PN)) (7-145) 

It shows that (7-74) is the asymptotic (PN^> oo) covariance of (7-73). D 

Appendix 7.1 Proof of Equation (7-76) 

The noise interpolation error is analyzed assuming that the residual leakage error origi-
nating from the local polynomial approximation is zero. Expanding the noise covariance ma-
trix in Taylor series with remainder 

C™%kP + r¿ = C ^ Í ^ + C ^ ^ ^ ^ ^ + i c ^ W í ^ ^ ) +0((^Q ) (7-146) 

and combining this result with (7-113) and (7-114), where Cv(k) = C™ise(kP) (compare 
(7-71) to (7-13)), gives the following bias expression 

E{{Cr°{kP))[i,Ji}-(C™%kP))[liJ] = ^^f^ + C z 0 i s e ( 2 ) (^ )° in«((^) 2 ) (7-147) 

where P„ = I2n-K»(KnK»)-lK„, with K„ defined in (7-72), and D„ = diag(-r„, ..., 
-rx, r , , . . . , rn). Since trace(£)„) = 0, the first term in (7-147) can be elaborated as 

trace(/>„ D„) = trace(£>„) - ince{{KnK^KnDnK») = - t r a c e d M2) (7-148) 

where 

Mx = KnK% = Σ% .nK{kP + r¡)K%kP + r¡) 

M2 = KnDnK* = ZU^^kP + r^mkP + r^ 
(7-149) 

The (R + 1) x (R + 1) matrix K(kP + r¡)KH{kP + r¡)9 with K(kP + rt) = [ 1 r¡ ... rf ]T, has 
a Hankel structure 

K{kP + r¡)KH{kP + r¡) = 
r2 

(7-150) 

Substituting (7-150) in (7-149) shows that all entries of Mx with even row and column 
indexes are zero M1[2/,2/] = 0; while all entries of M2 with odd row and column indexes 
are zero Af2[2/+1,2/+1] = 0· Since My1 has the same zero pattern as Mx (proof: see 
Appendix 7J), the matrix product M\XM2 has zero entries on its main diagonal. Hence, 
traceiM^A^) = 0, which shows that the noise interpolation bias (7-147) is an 
Oint((r,/(/W))2). D 
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Appendix 7.J Zero Pattern of the Inverse of a Matrix 

In this appendix we show that M\x = &ά](Μχ)/άε\(Μλ) has the same zero pattern as 
Mx (Ml[2i,2j] = 0)· For example, for R = 5, Mx has the following form 

x 0 x 0 x 0 
0 JC 0 JC 0 x 
x 0 x 0 x 0 
0 x 0 x 0 x 
x 0 x 0 x 0 
0 JC 0 JC 0 JC 

(7-151) 

where x denotes a non-zero entry. The adjoint matrix ad^Mj) is obtained by replacing each 
entry by its co-factor and next taking the matrix transpose. The co-factor of a zero-entry of 
Mx is obtained by deleting the corresponding row and column, calculating the determinant, 
and multiplying the result by -1. For example, for the zero entry [1,4] in (7-151) 

x 0 x φ x 0 
0 x 0 J| 

x 0 x 

0 x 0 J| 

x 0 x 

0 x 0 

0 x 

x 0 

0 x 

x 0 

0 x 

(7-152) 

This reduces the number of non-zero entries for R odd (or even) from (R + l ) / 2 (or 
R/2 + 1) to (R - l ) / 2 (or R/2) rows with the same zero pattern (in (7-151): rows 2,4 and 
6 with column 4 deleted). It shows that these (R + l ) / 2 (or R/2 + 1) rows are linearly 
dependent and, hence, the co-factor corresponding to a zero entry is zero. Since the zero 
pattern of Mx is symmetric, it proves that M\x has the same zero pattern asMj . D 

Appendix 7.K Covariance Matrix of (7-86) 

Using \QC(ABC) = (CT®A)vec(B) and removing the frequency arguments for nota-
tional simplicity, we find for the covariance of (7-86) 

Cov(vec(ZjT])) = (7W(8)/n2)Cov(vec(Z[m]))(rW^(g)/„z) 

= {T^®In){In^Cz){T^T^In) 
(7-153) 

with nz = ny + nu, and where the second equality in (7-153) uses the following properties of 
the nu experiments with the full random orthogonal multisines (3-31) of Section 3.7 

1. The noise is independent and identically distributed over the nu experiments and 
the M random phase realizations. 
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2. By construction of the full random orthogonal multisines, the stochastic nonlinear 
distortions are uncorrelated over the nu experiments and independent over the M 
random phase realizations. 

3. Since the power spectrum of the reference signal E{R[^R[:
m]^}, where X[:,e] 

denotes column e of X, is independent of the experiment e and the realization 
m, the covariance of the stochastic nonlinear distortions E{YS ^ Ϋ ^ 1 . ^ } , is 
also independent of e and m. 

Elaborating (7-153) using (A®B)(C®D) = AC®BD9 finally gives 

Cov(vec(ZJjw])) = TWTMH®CZ = I„u® Cz = Cov(vec(Zw)) (7-154) 

The second equality in (7-154) uses the orthogonality of the matrix Γ ^ . Note that we also 
have proven that the columns of ZJ™] are uncorrelated and have the same covariance. D 

Appendix 7.L Expected Value of the Sample Noise 
and Total Covariances (7-93) 

The expected value of the sample noise covariance follows immediately from (7-74) 
and (7-76) where (9leak has been neglected w.r.t. Om. 

Let c(k¡) be one entry of the matrix r^e\k¡)r\™>e}H{k¡) in (7-88). Using a second or-
der Taylor series with remainder of c(k¡) 

c(k,) = c(k) + cO\k)kjj^ + ^ ( 2 ) ( / , ) ( ^ r ) i7"1 5 5) 

with χ(") the n th order derivative of x, l¡&[k, k¡], it can be found that 

with nE = kn - k. For uniformly distributed excited harmonics we have that 

{k_i = -kt) and, hence the bias in (7-156) is an 0((nE/N)2); otherwise it is an 0(nE/N). 
The multiplying factor //poly quantifies the increase in noise variance due to the leakage 
removal in the sample mean Z^m,e\kP) for each realization m, and each experiment e (see 
(7-73) and (7-74)). D 

Appendix 7.M The Generator Noise Does Not 
Contribute to the Covariance of the FRM 

Assuming that only generator errors ng(t) are present in the open loop setup of 
Figure 7-4, the input Vv(k) and output VY(k) errors are related by VY(k) = G0{j(ü¿)Vjj{k), 
with G0 the true FRM. The covariance matrix Cz of Z = [Y7 UT]T can then be written as 



278 Chapter 7 ■ Measurement of Frequency Response Functions - The Local Polynomial Approach 

Q = ^oQ/^o ^ O Q / | 
C CrH 

CT 

C^[G0 In] (7-157) 

Substituting (7-157) in the expression of the covariance matrix of the FRM (2-77) on 
page 66, taking into account that [G% ln ]VH{k) = 0, with V{k) defined in (2-77), shows 
that Cov(vec(G)) = 0. 

Appendix 7.N Bias Robust FRM Estimate under 
Transient Conditions 

To simplify the notations the proof is given for single-input, single output systems with 
exactly known steady state input, and exactly known transient output. Extension to multivari-
able systems with noisy non-steady state inputs and outputs is straightforward. From Section 
7.3.3 it follows that the FRF estimate (7-79) can be written as 

U(kP) uo(kp) 

Taking into account that |£/0(fcP)| is deterministic, the bias of (7-158) equals 

t{(TG(Q„)-fG{n„))ü¿kP)} 

(7-158) 

E{GC/co,)}-G(yco,) = 
\U0(kPf 

(7-159) 

where the expected value is taken w.r.t. the random phases of the input. For multisines with a 
fixed rms value and a number of harmonics increasing as an 0(N), the input DFT spectrum 
satisfies \U0(kP)\2 = 0(P). Combining this result with (7-159) and 

TG(nkP)-TG(QkP) = 0((rn/(PN)) R + 3/1 ) 

(use (7-70)), proves that (7-108) is an upper bound for the bias. D 



An Intuitive Introduction 
to Frequency 

Domain Identification 

Abstract: In the next three chapters a detailed study of frequency domain identification 
schemes will be made. A wide class of methods is discussed, and it will be shown how the 
properties of the estimators are set by the choice of their cost function. Those readers who 
just want to solve their modeling problem, without passing through all these underlying 
theories, might still profit from a basic understanding of the methods they will use. For that 
reason we decided to provide, in this chapter, an intuitive insight into the frequency domain 
identification problem. First, a straightforward approach will be discussed, starting from 
the measured FRF of the systems transfer function; next a more general formulation will be 
made, based on the errors-in-variables concept, leading to a very robust identification 
method. Finally, it is discussed, briefly, how the general method can be applied to specific 
situations: no input noise present; the FRF is measured, and so on. 

8.1 INTUITIVE APPROACH 

The basic aim of this book is to measure and model the transfer function G0(Q) of a plant, 
starting from noisy input and output measurements (see Figure 8-1). An intuitive approach is 
to extract, first, a measured FRF G(Qk), k = 1, ..., F of the systems' transfer function at a 
set of well-chosen frequencies (see Chapter 2 for a detailed discussion). Next, these measure-
ments are approximated by a parametric model G(£lh Θ) that explains the measurements as 
much as possible. As explained in Chapter 1, the quality of the match between measurements 
and model is measured by the cost function. The parameters are then tuned to minimize the 
cost function so that a best match is obtained. There is no unique choice for the cost function, 
and because each cost leads to an estimator, it is possible to find different estimators for the 
same problem. An intuitive choice of the cost function is 

1 F |Ο(Ω,)-Ο(Ω»«50ΐ' í g n 
VFWZ) ~ ~ρ\__χ - ρ (8-D 

The weighted least squares distance between the measurement and the model is minimized. 
Measurements with a small uncertainty (a^(k) is small) are more important than those with a 
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Ng(k) 

G0(Q) 

W) 

X±>-r> 
Mv(k) ψ MY(k) ± 

—-XÍ) ~ ^ r 
J, £/(£) j> Y(k) 

Figure 8-1. Frequency domain representation of the measurement process. Ng9 N, Mv, 
and MY are, respectively, the generator noise, the process noise, and the input/ 
output measurement errors. Note that the system can be captured in a feedback loop. 

large uncertainty (a^(k) is large). Although this method works amazingly well in many 
cases, it suffers from a major drawback. It is not always that easy to get a good measurement 
of G0 due to the presence of the noise Mv(k) on the input. If the classical correlation meth-
ods (Hj method) are used, a bias appears (see Chapter 2). The measured transfer function 
converges for an increasing number of averages to: 

lim G(Qk) = 
SYU(Q,k) v -

M- SuuyQ/J 
G0(^k) 

1 
Ι + 5 Μ „ Μ , ( Ω * ) / 5 ™ ( Ω * ) 

(8-2) 

It is then easy to show that the parametric approximation will also be biased. When periodic 
excitations are used, alternative methods based on the direct division of output and input 
spectrum are available: G(Qk) = Y(k)/U(k). Although this method is less sensitive to the bias 
problem (see Chapter 2) for sufficiently large SNR at the input (better than 6 dB), it can be 
shown that in general its variance a^(k) does not exist. (Guillaume et al., 1996a; Broersen, 
1995). Especially for a low SNR at the input, large spikes frequently appear in the estimate, thus 
the variance estimate does not converge anymore. For larger SNRs the risk of encountering this 
problem becomes negligible in practice. However, this puts the user in a situation where he has 
to decide himself whether the method is applicable or not. For that reason a more robust alterna-
tive is formulated in the next section. Although it looks, at a glance, more complicated, it turns 
out that the computational complexity is not higher than that of the intuitive approach if 
periodic excitations are used. The major advantage for the less experienced user is that a check 
is no longer needed to verify whether the operational conditions on the intuitive technique are 
met or not. The algorithm can be automated fully and included in a general purpose package 
for public usage by laymen in the identification domain. 

THE ERRORS-IN-VARIABLES FORMULATION 

The intuitive methods of the previous section run into problems due to the presence of a division 
Y(k)/U(k) that is a highly nonlinear operator. The denominator can become almost zero (the 
noise cancels the input) at some frequencies and this creates outliers. The errors-in-variables ap-
proach avoids a direct division of both measured spectra. Instead, the input and output spectra are 
considered as unknown parameters, connected by the parametric transfer function model: 

Y(k) 

U(k) 

Y0(k) + NY(k) 

U^ + N^k) 
(8-3) 
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with Y0(k) = Giflh9)U0{k) and where NY(k) and Nv{k) include the generator noise, the pro-
cess noise, and the measurement noise. Because the exact Fourier coefficients Y0(k) and U0(k) 
are unknown, they are replaced by the parameters Yp(k) and Up(k), which are estimated by min-
imizing the distance between the measurements and the parameters (| U(k) - U (k)\, 
\Y(k) - Yp(k)\), leading to a new constraint optimization problem. If the input and output mea-
surements are uncorrelated with each other, the following least squares cost function can be used: 

W Z ) = I v|tW-t/p(*)|2J*W-W 
k= 1 

F r 

-Σ 

<ήβ) a¡{k) 

Y(k)-Yp(k) "^ 

U(k)-Up(k); 
aj(k) 0 

0 afrk) 
m-YPfá) 

{U{k)-UJk\ 

(8-4) 

to be minimized under the constraints 

Yp(k) = G(nh 0)up(k) k= l,2,...,F (8-5) 

In reality, the noise Nv(k) and NY{k) is correlated {σγυ{^ *■ 0), and the full weighted least 
squares cost function should be considered: 

vFw,Z) = i Σ 
k= 1 

Y(k)-Yp(k)^ 

U(k)-Up(k)J 

H 
a%(k) ajy(k) 

a2
m{k) a2

v(k) 

-1 
Y(k)-Yp{k)' 

U(k)-Up(k\ 
(8-6) 

where συγ(Κ) = σγυ(Κ). This cost function should be minimized with respect to the model pa-
rameters Θ and also to the Fourier coefficients Up(k), Yp(k), k = 1, . . . ,F . As F can be very 
large, this appears to be a very hard task. However, this cost function can be simplified further. It is 
possible to eliminate Up(k), Yp(k) explicitly from the problem, simplifying the cost function to: 

WZ) = i l 
\Y{k)-G{ilh0)U{kf 

F ~ , <#*) + <fyk)\G{Cih θ)\2 - 2Re(CTy
2
l/(£)G(n„ θ)) 

(8-7) 

Some of the advantages and properties of this formulation are discussed below. 

8.2.1.1 Robustness with Respect to Bad Measurements. Compared with (8-1), divi-
sion of the measured Fourier coefficients is no longer needed. The cost function does not de-
generate, even if the measured input equaled zero at some frequencies. The user should not 
bother anymore with the selection of an appropriate method to measure the FRF. 

8.2.1.2 Symmetric Formulation. By replacing in the cost function G(Qk, Θ) = 
B(Qh 0)/A(Qk, Θ) and multiplying the numerator and denominator with \A(Clh #)|2, a com-
plete symmetric formulation is found. The input and output have exactly the same role in the 
problem: 
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ν(ΘΖ) = Ιγ fra^m-m^m2
 (88) 

F ' F ^ a¿{k)\A{tlh θ)γ + afrkpiCl» 0f - 2 R e « ( * ) ¿ ( Q J l , 0)5(Ω„ θ)) 

8.2.1.3 Measuring the Noise Model. The cost function depends on the exact values 
σ^(&), σ^(&), and σγν{^). In practice, these should be obtained from measured data. Sec-
tion 2.5.1 shows how the sample covariance matrix can easily be extracted from repeated 
measurements and, later on, it will be shown that it is sufficient to use only four or six repeti-
tions to guarantee that the properties of the estimator are not lost. This means, again, that a 
fully identifiability procedure can be set up. If the user can apply a periodic excitation, all 
other information can be extracted automatically without worrying about determining the 
noise model. If interested, however, the user can use this information to evaluate the quality 
of the experiments before starting the actual identification. For example, by examining the 
measured FRF together with its uncertainty, the complexity of the problem and the quality of 
the measurements can be revealed. 

8.2.1.4 Dealing with Exactly Known Inputs. In some applications (e.g., control 
problems) a model that links the output of the process directly to the digital controller output 
is built. In these cases the input signal is exactly known because it is stored in the memory of 
a computer. The errors-in-variables approach is automatically adapted to this situation by 
putting a^(k) and a^k) equal to zero. 

8.2.1.5 Starting from Measured FRF. Sometimes the user has only the measured 
FRF available. In that case it is still possible to use the previous approach by putting 
Y(k) = G(Qk), and a*(k) = a*(k), the input is set to U(k) = 1, with σ*β) = 0. The 
variance a^(k) can be obtained directly from the coherence as explained in Section 2.5.4. 

8.2.1.6 Properties. The properties of the estimator are studied in detail in the next 
chapter, and it is shown that under weak conditions the estimates converge (for an increas-
ing number of data points) to the parameters Θ* that would be found in the noiseless case. 
The uncertainty on the estimates approaches the smallest possible level for estimates with-
out systematic errors. The covariance matrix Cov(#) can be calculated at the end of the 
identification process. Starting from Cov(#), it is easy to generate uncertainty bounds on 
other Θ- dependent quantities; for example, for the FRF of the transfer function we get that 

«(^^.(ss^fljc^M^a)* (8-9) 
Θ = Έ.{Θ) 

(see Section 16.2). In practice the derivatives are evaluated in the estimated value Θ. Also, 
the uncertainty bounds on the poles and zeros (see Section 11.2.3) or on the residuals (differ-
ence between measured and modeled FRF) (Section 11.2.2) can be obtained. 

GENERATING STARTING VALUES 

The cost function (8-8) is highly nonlinear in the parameters Θ because they appear in the nu-
merator and denominator. As a result, the minimization of the cost becomes quite difficult. It 
is possible to solve the problem analytically only in extremely simple cases. In all other situ-
ations a numerical search procedure is needed. The convergence of these methods depends 
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strongly on the generation of good starting values for the model parameters Θ. In general, it is 
impossible to get this information from physical principles because the link between the coef-
ficients of the transfer function and the underlying physical systems is very nonlinear, espe-
cially for higher order systems. Moreover, often the user does not want to make the effort to 
collect all the required knowledge because the goal of the experiment is to generate a black 
box model that describes the input-output behavior. For that reason we need self-starting al-
gorithms that generate the starting values from the measured data and not from unavailable 
prior knowledge. 

A possibility to make the optimization self-starting is to change the cost function in the 
first step so that its global minimum can be calculated directly. There are a number of possi-
bilities to reach this goal. The simplest solution is just to remove the denominator in (8-8) so 
that the problem becomes linear-in-the-parameters and the minimum is found by solving a 
linear set of equations (see Section 9.8.2). The disadvantage of this straightforward approach 
is that the solution becomes extremely noise sensitive. For that reason attempts were made to 
make a parameter-independent reconstruction of the denominator of (8-8) using measure-
ment information only (Section 9.12.4). This results in significantly improved starting values. 
A second possibility to generate starting values is to continue with the nonlinear cost function 
but to modify it such that the global minimum can easily be found using advanced, but 
widely available, numerical techniques such as singular value decomposition. This leads to 
the generalized, total least squares type of solutions (see Section 9.10.3) that minimize a cost 
function of the form 

F 

VF(0,Z)= — (8-10) 
F 

Σ σ^)\Α(ΩΙί9 0)|* + <%fi)\B{ah Of - 2Κ β (σ^(£μ(Ω„ 0)B(nh θ)) 
k= 1 

Although the efficiency of this method is lower than that of the original MLE, it provides 
good candidate starting values. Again, it is possible to improve the quality by adding a non-
parametric frequency weighting as explained in the next chapter. A third possibility to get 
starting values is to use subspace methods (see Section 9.14) that are based on state space 
models. Compared with the previous algorithms, this method is less flexible because it is not 
possible to choose the number of poles different from the numbered zeros; but despite this 
disadvantage, good quality starting values are generated. A major advantage of subspace 
methods is that they are very well suited to multiinput, multioutput (MIMO) problems. 

As a general procedure, we advise the reader to combine these techniques by calculat-
ing two or three candidate starting values and to select, out of these, the solution that results 
in the smallest MLE cost (8-8). 

8.4 COMPARISON WITH THE "CLASSICAL" TIME DOMAIN 
IDENTIFICATION FRAMEWORK 

Identification has a long tradition. Over the years, the attention shifted almost completely to 
the use of discrete-time models that were identified starting from arbitrary (no periodicity re-
quired) excitations. The major difference with the preceding approach is that a parametric 
noise model is used (Ljung, 1999; see also Section 10.9). Ljung (1999) gives a frequency do-
main interpretation of the cost function that is minimized with these techniques. By neglect-
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ing the leakage effects, the following equivalent frequency domain representation of the time 
domain cost is found: 

WZ)~N£o , ^ , ^ (8-11) 

where \H(z~l
9 θ)\2 is a parametric model for the power spectrum of the process noise. These 

methods work well if the measurement noise {Mv{k), MY{k)) is negligible, otherwise the re-
sults will be prone to systematic errors. The major advantage of this approach is that no peri-
odic signals are needed. Its major disadvantage is the need to estimate an additional model 
H(z~l, Θ). A more detailed discussion is given in Section 10.9. 

EXTENSIONS OF THE MODEL: DEALING WITH 
UNKNOWN DELAYS AND TRANSIENTS 

In the previous sections, the simplest model was used. The results can be generalized to sys-
tems with an unknown delay r. To do so, the model is extended to G(Q, &)e~TS for continu-
ous-time systems or to ζ~τ/Τχ G(z~l, Θ) for discrete-time systems (see Section 6.2). The reader 
has to realize that the corresponding optimization problem is much more difficult to solve be-
cause it is very sensitive to local minima. Consequently, a good starting value of the delay is 
needed. 

Another generalization is the extension of the model to include transients (before the 
system reaches its steady-state behavior) or to cover, also, the situation with arbitrary (nonpe-
riodic) excitations. Again, this is simply solved by adding an additional rational term to the 
model (Section 6.3.2): 

0(Ω,Θ) + Ϊ^3- (8-12) 
A(L¿9 θ) 

Because the additional rational term has the same denominator, the complexity of the numer-
ical optimization process is almost not affected by this generalization. A similar extension 
can be used to process experiments with missing data (Section 6.3.3). 



Estimation with 
Known Noise Model 

Abstract: This chapter gives an overview of frequency domain identification methods for 
single input, single output systems. Estimators such as the (weighted) linear least squares, the 
weighted nonlinear least squares, the maximum likelihood, the (weighted) total least squares, 
the instrumental variables, and the subspace algorithms are discussed in detail. The interrela-
tions between the different approaches are highlighted through a study of the (equivalent) 
cost functions. Special attention is also paid to global minimizers that try to approximate the 
maximum likelihood estimator. The properties of the different approaches are illustrated by 
means of an "on-line" simulation example. The chapter ends with an overview of the proper-
ties of the estimators and a brief discussion of the particularities of estimating high-order sys-
tems, systems with time delay, systems in feedback, systems with missing data, multivariable 
systems, and transfer function models with complex coefficients. 

9.1 INTRODUCTION 

In this chapter we handle the identification of the plant model assuming that the noise model 
is known exactly. We give an overview of frequency domain identification methods for single 
input, single output systems (Sections 9.8 to 9.15). Afterward, the particularities of high-
order systems (Section 9.16), systems with time delay (Section 9.17), systems in feedback 
(Section 9.18), the missing data problem (Section 9.20), and multivariable systems 
(Section 9.21) are discussed. A second-order system G(s, Θ) = 1/(1 + s + s2) is used as an 
"on-line" illustration through Sections 9.8 to 9.14. Figure 9-1 shows the true transfer function 
and the simulated noisy frequency response data (see Appendix 9.A for more information 
concerning the generation of the simulation data). Readers who want only a quick taste of the 
basics of frequency domain estimation (and accept the claimed properties as they are) may 
skip the last paragraph of Section 9.4 and Sections 9.5 to 9.7 but should still go through Sec-
tions 9.2 and 9.3 before tackling the description of the estimators (Sections 9.8 to 9.15). 

Before starting with the overview, we discuss the type of data (experiments) we can 
handle (Section 9.2), introduce some notations for the parametric plant models (Section 9.3), 
and present the general form of the identification algorithms (Section 9.4). Section 9.5, quick 
tools to analyze estimators, is intended for readers who are not interested in the technical 
details of the proofs but still want to get some insight into the derivation of some basic prop-
erties. Combined with Section 9.7, which discusses the general asymptotic properties of esti-
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Figure 9-1. Second-order example G(s, Θ) = 1/(1 +s + s2): true transfer function 
(solid line) and simulated noisy data (dots). 

mators minimizing a cost function that is quadratic-in-the-measurements, it will allow them 
to easily verify and understand the properties of the different estimators described in Sections 
9.8 to 9.14. Those who are interested in the technical details will find a comprehensive list of 
the basic assumptions needed to prove the asymptotic properties of the estimators (Section 
9.6). The proofs of the theorems are given in the Appendix and rely completely on the results 
of Chapters 17, 18, and 19. The reader is referred to these chapters for more background in-
formation concerning the way properties are proved. 

9.2 FREQUENCY DOMAIN DATA 

The identification starts from measured input-output discrete Fourier transform (DFT) spec-
tra £/(*), Y(k), 

Y(k) = Y0(k) + NY(k) 

U(k) = UoW + NuQc) 
(9-1) 

with U0(k), Y0(k) the true unknown values, or from a measured frequency response function 

G(Qk) = G0(nk) + NG(k) (9-2) 

with G0(Qk) the true unknown value, at a set of F frequencies Qk, k = 1, 2, . . . ,F , which 
may be a (sub)set of the DFT frequencies. Note that (9-2) is a special case of (9-1) with 
Y{k) = G(Qk) and U(k) = 1. The 2F complex-valued vector Z contains the measured 
input-output (DFT) spectra 

ZT = [ZT(l) ZT(2) ... ZT(F)] with ZT(k) = [Y(k) U(k)] (9-3) 

where k = 1, 2, ..., F. It is related to the true values by Z = Z0 + Nz, where the disturbing 
noise Nz has zero mean and is independent of Z0. 

The frequency domain data (9-1), (9-2) can be obtained via time domain or frequency 
domain experiments. In a time domain experiment a broadband random or normalized peri-
odic (see Definition 3.4) excitation is applied to the plant and TV samples of the input and 
output signals are measured (see Figure 9-2). For the periodic signals the steady-state re-
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Figure 9-3. Frequency domain experiment: a single sine excitation u Jt) = As'm(2nfkt + φ) 
is applied to the plant and the input-output spectra of the steady-state response are 
measured at frequency fk. This experiment is repeated at F different 
frequencies. N Jk) is the generator noise, Mjj{k) and My(k) are the input and 
output measurement errors, and NJk) is the process noise. 

sponse is observed over an integer number of periods. These N input-output samples are 
transformed to the frequency domain using the discrete Fourier transform. F < N/2 + 1 DFT 
frequencies of the input and output DFT spectra are used for the identification. For arbitrary 
signals ug{t) the generator noise ng{t) is a part of the excitation, u0(t) = ug(i) + ng{t), so 
that the frequency domain errors Νν{Κ) and NY{k) in (9-1) are related to the disturbing noise 
sources in Figure 9-2 as 

NY(k) = DFT(^(0 + V 0 ) 
Nv{k) = DFTK(O) 

(9-4) 

For periodic signals the generator noise ng(t) is a disturbing noise source, u0(t) = ug(t), 
which causes a correlation between the input and output errors. Indeed, the frequency domain 
errors Nv{k) and NY(k) in (9-1) are then related to the disturbing noise sources in Figure 9-2 
as 

NY(k) = OFT(ng(t)*g0(t) + np(t) + m¿t)) 

Nv(k) = OFT(ng(t) + mu(t)) 
(9-5) 

with * the convolution operator and g0(/) the impulse response of the plant. In & frequency 
domain experiment, a single sine excitation is applied to the plant and the input-output spec-
tra of the steady-state response are measured at the excited frequency. This experiment is re-

Figure 9-2. 

uSt) 

Time domain experiment: a broadband excitation u Jt) is applied to the 
plant. The DFT spectra of TV observed input-output samples are calculated. 
F = 0(N) DFT frequencies of the input-output DFT spectra are retained. 
n At) is the generator noise, mu{t) and m (t) are the input and output 
measurement errors, and n Jt) is the process noise. 
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peated at F different frequencies. For example, high-frequency network analyzers 
(microwave measurements) and impedance analyzers follow this measurement procedure. 
Also, most dynamic signal analyzers have such a measurement mode. The frequency domain 
errors Nv(k) and NY(k) in (9-1) are related to the noise sources in Figure 9-3 as 

NY(k) - Ng(k)G0(Qk) + MY{k) + NP(k) 

Nv(k) = Ng{k) + M¿k) ( 9"6 ) 

with G0(D,k) the plant transfer function. 
Due to the imperfections of the measurement devices, it is recommended not to use 

measurements at DC and in the neighborhood of the Nyquist frequency. Indeed, acquisition 
units mostly introduce DC offset errors and anti-alias protection is mostly guaranteed only up 
to about 80% of the Nyquist frequency. The measurements can also be the result of a linear-
ization of a nonlinear system at an operating point. This will introduce DC values in the input 
and output signals that are not compatible with the linear model and, hence, should be re-
moved. 

An important question asked when (re)designing an experiment is: "What will happen 
with the estimates (uncertainty, bias, ...) if one gathered, for example, four times more data?" 
Ideally, we would like to answer this question for each finite value of F. Except for the 
(weighted) linear least squares, this is possible only for "sufficiently large" values of F. To 
analyze the stochastic properties of the estimators for F "sufficiently large" we will make a 
mental experiment where the number of frequencies F tends to infinity. For a frequency do-
main experiment this implies that the number of single sine measurements F tends to infin-
ity, while for a time domain experiment this implies that the number of measured time do-
main samples N tends to infinity. Note that we do not consider time domain experiments 
(N->co) with periodic signals containing a fixed number (independent of N) of frequencies 
F. Indeed, for such experiments the signal-to-noise ratio tends to infinity as N -» oo at the 
excited DFT frequencies (see Appendix 9.C), and, hence, all the estimators considered in this 
chapter would be consistent in a trivial manner. For random and normalized multisine 
(F = 0(N), see Definition 3.2) excitations the signal-to-noise ratio per spectral line remains 
an 0(N°) (see Appendices 9.B and 9.C) so that consistency is a nontrivial issue. 

PLANT MODEL 

Unless mentioned otherwise, we will assume in this chapter that the parameterization of the 
plant model is identifiable (see Definition 6.8). It implies that the parameter vector Θ con-
tains only the free parameters of the model, for example, all the numerator and denominator 
coefficients of the rational form G(Q, Θ) = £(Ω, Θ)/Α(Ω, Θ) except a0 = 1. Note, how-
ever, that from a numerical point of view it is often better to use the full overparameterized 
form in combination with dedicated numerical methods. Chapter 20 discusses this issue in 
detail. 

For any parameterization of Sections 6.2 and 6.3 (rational form, partial fraction ex-
pansion, and state space representation) we can use the output error, which is the difference 
between the observed output Y(k) and the modeled output Y(Q-h Θ). From transfer function 
models (6-32), and (6-34) we get 

Y(Qh0) = G(ah&)U{k) (9-7) 

for periodic signals (Ω = z_1, s, 4~s or t anh^s ) ) and 
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7(Ω„ Θ) = G(Qk, 0)U{k) + TG(Qh Θ) (9-8) 

for arbitrary excitations (Ω = z_1, s, or Vs). 
For the rational forms, (6-20), (6-25), (6-35), and (6-38), it is convenient also to intro-

duce the equation error e(Qh θ9 Z(k)), which is the difference between the left- and right-
hand sides of transfer function models (6-32) and (6-34), after multiplication by ^(Ω^, Θ). 
We get 

e(Qh Θ, Z(k)) = A(Qk, 0)Y(k)-B(Qh 0)U{k) (9-9) 

for periodic signals (Ω = z_1, s, *fs or t anh^s ) ) and 

e(Qki Θ, Z(k)) = A(Qh Θ)Υ{Κ) -B(ah 0)U(k)-I(Qh Θ) (9-10) 

for arbitrary excitations (Ω = z_1, s, or J~s). The equation error e(ilh Θ, Z(k)) is not ex-
actly zero because the observations Y(k) and U(k) are disturbed by noise and Θ does not 
equal the true value θ0 (if it exists). 

Note that (9-8) and (9-10) are valid only at a (sub)set of the DFT frequencies but (9-7) 
and (9-9) are also valid at arbitrary (not related to a DFT grid) frequencies. For concatenated 
data sets, (9-8) and (9-10) are extended with terms of the form ζ ^ ' Τ ^ (Ω^, Θ) and 
zkNiI[i](dfr &)> respectively (see (6-48) and Exercise 6.8). 

9.4 ESTIMATION ALGORITHMS 

Most algorithms discussed in this chapter minimize (in each step) a "quadratic-like" cost 
function V(0,Z) 

¥(Θ,Ζ) = εΗ(θ,Ζ)ε(θ,Ζ) = Σζ= χ \<Φ* θ, Z(k))\2 (9 -" ) 

where ε{θ9Ζ) Ε CF is some kind of measure of the difference between the measurements 
and the model. The residual ε(θ,Ζ) e CF is a (non)linear vector function of the model pa-
rameters Θ and the measurements Z. Note that ε^{θ9Ζ) = ε(£1^ Θ, Z(k)) depends only on 
the measurements at frequency Ω^. 

A first important subclass of (9-11) consists of the cost functions V(0,Z), which are 
quadratic-in-the-measurements Z. For these cost functions the residual ε(θ9Ζ) is linear in 
Z and can be written as 

ε(θ, Z) = ε{θ9 Z0) + Α(θ, Νζ) (9-12) 

with A[k](0,Nz) = A(Qk, 09Nz(k)) and A(£lh Θ, 0) = 0. Hence, (9-11) becomes 

V(0, Z) = m Z0) + v(0, Nz) + 2Re(*"(0, Ζ0)Α(Θ, Νζ)) 

ν(θ9Νζ) = ΑΗ{Θ9ΝΖ)Α{Θ9ΝΖ) 

where v(#, Nz) represents that part of the cost function depending on Nz only. 
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A second important subclass of (9-11) consists of the cost functions V(0,Z) = 
/(#, η(Ζ),Ζ), which depend on an initial guess η(Ζ) of the model parameters, 

¥(θ, Z) = ε*(θ9 Ζ)ε(θ, Ζ) = Σζ= {\<Φ» θ9 η(Ζ), Z(k))\¿ (9-14) 

and which are quadratic-in-the-measurements Z when η(Ζ) in (9-14) is replaced by a non-
random vector η. 

Often, a Newton-Gauss type of algorithm is used to find the minimizer 9(Z) of (9-11). 
Rewriting (9-11) as V(09Z) = ε^(θ,Ζ)ετ&(θ,Ζ), where ( )re stacks the real and imaginary 
parts on top of each other (see Section 15.8), 

εκ(θ,Ζ) = Re(43Z)) 
Im(4 6>Z))_ 

(9-15) 

the zth iteration step of this algorithm is given by (see also Section 1.5.1) 

Jg(W-i\Z) ./„(#'-υ,Ζ)Δ0Ο = -Jl{e^\Z)sVQ{9^\Z) (9-16) 

with Δ#ω = 0(O_0('"-i) and J(%Z) = δε(θ,Ζ)/δθ the Jacobian of the vector ε(θ,Ζ). 
Using complex numbers, (9-16) can be written as 

ReG/"(0C-1\ Ζ)3(θ^~1\ Ζ))ΑΘ^ = - R e ( y ^ ' - 1 \ Ζ)ε{θ^~ ι\ Z)) (9-17) 

If the algorithm converges to the global minimum, then Θ{Ζ) = #(°°). When identifying 
continuous-time systems in the s- and Js- domains, it is indispensable to scale the frequency 
axis (and, hence, also the parameters) to guarantee the numerical stability of the normal equa-
tions (9-16). Without scaling, identification in the s- and *Js- domains is often impossible 
with the available computing precision, even for modest orders of the transfer function. 
Although the scale factor that minimizes the condition number of ./re(#(/_ l\Z) is plant and 
model dependent, a good compromise is to use the median of the set of angular frequencies in 
the frequency band of interest: coscale = medianía^, ω2, ..., coF} (see Pintelon and Kollár, 
2005). For example, the term amsm becomes 0^™ale(,s/cDscale)m after scaling and flffl(ofcale 

is estimated. For any domain (s, Js, z), the numerical stability of the calculations is im-
proved significantly by solving the overdetermined set of equations 

Jn(0V-l\Z)Afr» = -εχ^~χ\Ζ) (9-18) 

instead of (9-16), for example, using the singular value decomposition or a QR factorization 
(see Section 15.13). Finally, the condition number of the Jacobian matrix J r e (^ / _ 1) ,Z) in 
(9-18) is reduced by scaling each column by its 2-norm: JTe(0^~l\Z)-^JT = 
Jr^-X\Z)T-X andA#O->A0 r = ΤΑΘ^ where 

T = diag(||Jre[ :5 l ](^-i),Z)||2, |J r e [ : ? 2 ] (^-i) ,Z) | | 2 , ..., | J r e [ : 5 ^ ( ^ - i ) ,Z ) | 2 ) (9-19) 

(Van Huffel and Vandewalle, 1991). The transformed equation JTA6T = -érre(<9(/-1),Z) is 
then solved via an SVD or QR decomposition of JT, and the actual parameter variation is 
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found as Αθ^ = Τ~ιΑθτ. Note that the convergence region of the Newton-Gauss algorithm 
can be enlarged by using a Levenberg-Marquardt version of (9-16) and (9-18) (see Fletcher, 
1991 and Section 9.L.4 of Appendix 9.L). 

To study the asymptotic behavior of the identification algorithms, it is convenient to 
scale the cost function with the number of frequencies, VF{0,Z) = V(0,Z)/F, 
vF(0,Nz) = v(09Nz)/F, and^(<9, η(Ζ),Ζ) = j[0^(Z),Z)/F. The expected values of the 
cost function VF(0) = E{VF(0,Z)} and its minimizer θ(Ζ0) play an important role in the 
convergence analysis of the estimate Θ(Ζ). All the asymptotic properties (F-> oo) of the 
estimate Θ(Ζ) will be formulated w.r.t. the minimizer Θ(Ζ0) of the expected value of the 
cost function. The conditions under which Θ(Ζ) converges to Θ(Ζ0) will be studied. This 
is a stochastic convergence problem that mainly depends on the disturbing noise properties. 
When model errors are present, Θ(Ζ0) will vary as the number of frequencies F increases. 
We may wonder then whether Θ(Ζ0) converges to some limit value Θ* = lim <9(Z0) which is 
the minimizer of the limit cost function ν*(θ) = limj^ify. This is a deterministic convergence 
problem that depends on the way data (frequencies) are added in the time or frequency do-
main experiment. The notations introduced are summarized in Table 9-1. 

TABLE 9-1 Overview of Notations Frequently Used: η{Ζ) Is an (Initial) 
Estimate of the Model Parameters and 7* Is Its Limit Value 

VF(fi,Z), νΡ(θ)=Ε{νΡ(θ,Ζ)}, 
Cost function 

fF(0, η(Ζ),Ζ) VF(fi) = E {fF(0, η*,Ζ)} 

Minimizer Θ{Ζ) Θ(Ζ0) 

9.5 QUICK TOOLS TO ANALYZE ESTIMATORS 

The minimum we can expect from a "sound" estimator is that in the noiseless case we get the 
true answer (correctness property). In the noisy case we should get asymptotically (F -> 00) 
the true answer (consistency property) and hopefully a "small" uncertainty (efficiency prop-
erty). We may also wonder whether the estimates depend on the particular parameter con-
straint chosen (a0 = 1, or \\θ\\% = 1, or ...), how fast the estimates converge, and what 
happens with the estimates if the true model does not belong to the considered model set. All 
these questions are thoroughly studied in this chapter. 

Some of the previously raised questions can easily be analyzed using the following 
quick tools. The first step in the analysis consists of calculating the (equivalent) cost function 
¥(θ, Ζ) of the identification method. Next we verify the following: 

1. (Asymptotic) correctness: assuming that the true model belongs to the model 
set, the identification algorithm is (asymptotically) correct if it produces the 
true model for an (in)finite amount of noiseless (Nz = 0) data. This is true if 
VF(0,Z0) ()^n

vF(^zo)) is minimal in the true model parameters θ0. All the 
identification algorithms of this chapter are correct for transfer function models 
(9-7) with Ω = z 1 , s, Vs, or t anh^s ) and (9-8) with Ω = z-1, where 
G(Q, Θ) and Γ(Ω, Θ) can take any parameterization of Sections 6.2 and 6.3. 
They are asymptotically correct for continuous-time models using arbitrary ex-
citations, model (9-8) with Ω = s. 

ν*φ) = lim vF(0) 
F->oo 
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2. Consistency: the (equivalent) cost function minimized by most identification 
methods in this chapter is a quadratic function of the measurements Z. The ex-
pected value of such cost functions can be written as 

VF{9) = E { VF(0, Z)} = E {VF{6, Z0)} + E {vF{9, Nz)} (9-20) 

(see (9-13), Z0 and Nz are independent). A necessary condition for consistency 
is that the limit of the expected value of the cost function v*(0) = Hm VF{9) is min-
imal in θ0 (Theorem 17.15). It follows from (9-20) that this condition is satisfied 
if E{vF(0,Nz)} is a 0-independent constant. Hence, for correct methods we 
have Θ(Ζ0) = θ0, while for asymptotically correct methods Θ* = θ0. For cost 
functions of the form (9-14), we replace η(Ζ) by its limit value η* before taking 
the expected value of the cost function. The same analysis is then performed on 
VF(0) =Ε{ΜΘ,η.9Ζ)}. 

3. Convergence to the noiseless solution: if model errors exist, for example, because 
of a wrong choice of the order of the numerator and/or denominator polynomials, 
or because a true linear lumped model simply does not exist, then Θ(Ζ) converges 
to Θ(Ζ0) * θ0. Under some conditions, the value #(Z0) is independent of the 
noise level of the measurements. To verify this, we replace CN by V2CNZ in the 
cost function (9-20), with υ a real number. If this transforms E{VF(09Zo)} into 
f[u2)í{VF(0, Z0)} and if E{vF(#, NZ)} is a 0-independent constant then 
#(Z0), and, hence, also & = lim Θ(Ζ0) (if it exists), is independent of the noise 
level υ. This is true for any υ and, hence, also for L>-> 0, which defines, as-
ymptotically, the noiseless solution. Note, however, that the noiseless solution 
#(Z0) defined in this way may still depend on the noise coloring and the noise 
covariance matrix CNZ, for example, the ratio of the output variance ay(k) to the 
input variance σ (̂&) (see Section 9.11). For cost functions of the form (9-14), the 
analysis is performed on VF(6) = E {fF{0, η*, Ζ)} and the same conclusions hold 
if 77*, the limit value of η(Ζ), is independent of υ. 

4. Dependence on the parameter constraint: from a numerical point of view it is also 
handy that the estimate of the plant transfer function G(Qh Θ{Ζ)) is independent 
of the particular parameter constraint chosen, for example, at = 1, oré- = 1, or 
||0||| = 1 ... Indeed, if we fix a zero coefficient to one, then the normal equations 
(9-16) become ill conditioned. To avoid this problem, it is better to use the con-
straint ||0||| = 1 (see also Chapter 20). The estimated plant model G(Q, Θ(Ζ)) is 
independent of the parameter constraint chosen if, for any A ^ 0 , 
VF(A0,Z) = VF(e,Z), with Θ the full overparameterized form (proof: see Chap-
ter 20). 

5. Numerical reliability of the normal equations: the Hessian of the expected value 
of the cost function has full rank in the true parameter values: 
rank(^"(#0)) = dim(#) = number of free model parameters (' is the derivative 
w.r.t. Θ). If the Hessian is not of full rank, then the cost function cannot be ap-
proximated by a quadratic function in the neighborhood of the solution θ0. This 
is problematic for most of the nonlinear minimization algorithms. 

6. Influence of the noise level and the model errors: to study the influence of small 
measurement errors, we replace Nz by uNz and CNZ by O2CNZ and analyze the 
expression for υ -> 0. Model errors are present if βφ(Ζ0), Ζ0) Φ 0. To study the 
influence of small model errors we replace e(§(Z0), Z0) by //e(#(Z0), Z0) and an-
alyze the expressions for / / -» 0. 
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9.6 ASSUMPTIONS 

In this section we give an overview of all the assumptions required to analyze the asymptotic 
(F-> oo) behavior of the estimate Θ(Ζ). They are grouped per property in increasing order 
of complexity: stochastic convergence, stochastic convergence rate, systematic and stochastic 
errors, consistency, asymptotic bias, asymptotic normality, and asymptotic efficiency. 
Hereby, we make the distinction between a time and a frequency domain experiment because 
the signal and disturbing noise properties are easiest to describe in the respective domains. It 
allows the reader to verify, easily, what kind of assumptions are required for a particular 
property and experiment in each theorem of this chapter. For theoretical convenience, the dis-
turbing noise in the time domain experiment is modeled as discrete-time filtered white noise. 
Physical interpretation of these noise models should, however, be done with care (see Section 
6.7.3 for more details). 

The cost function (9-11) and its higher order derivatives w.r.t. Θ may not exist for some 
values of the model parameters Θ. To avoid the resulting technical difficulties in the proof of 
the theorems, a regular set P r of #-values is constructed where VF(0,Z) and its higher or-
der derivatives exist and are finite. By construction, we make this set closed and bounded 
compact. The minimizer of (9-11) is then defined as 

Θ(Ζ) = arg min VF(0,Z) (9-21) 

(for the maximum likelihood estimation of ARMAX models the compactness assumption of 
the parameter space can be avoided, see Hannan and Deistler (1988)). 

The properties of (9-21) will be studied using the results of Chapter 17 for Sections 
9.8.2, 9.9, and 9.10; of Chapter 18 for Sections 9.8.3, 9.12, and 9.14; and of Chapter 19 for 
Section 9.11. The reader is referred to these chapters for detailed background information 
concerning the proof of the theorems. There she or he will also find answers to questions 
such as "Why do we need a particular assumption and what is it used for?" and "What is the 
main philosophy behind the proof of a particular property?" Other basic questions such as 
"Which statistical tools are available?" and "How should they be used?" are tackled in Chap-
ter 16. 

9.6.1 Stochastic Convergence 

To show the convergence (F->oo) of the estimator Θ(Ζ) (9-21) to Θ(Ζ0) we need 
conditions on the excitation signal, the disturbing noise, and the cost function. For example, 
the persistence of excitation Assumption 9.7 requires that the excitation signal satisfies, at 
least, the identifiability conditions of Section 6.5. Note that we do not require the existence of 
a true model. 

Assumption 9.1 (Excitation Signal—Time Domain Experiment): The excitation 
u(t) either is a normalized periodic signal (see Definitions 3.2, 3.3, and 3.4) or can be written 
at the sampling instances as filtered white noise u(i) = Hu(q)eu(t), where Hu(z~l) is a stable 
rational filter. eu(t) is independently distributed and has stationary first- and second-order 
moments and uniformly bounded fourth-order moments. For periodic excitations the input-
output signals of the steady-state response are observed over an integer number of periods. N 
samples of the input and output signals are transformed to the frequency domain using the 
DFT. F < N/2 + 1 DFT frequencies of the input-output DFT spectra are used for the identi-
fication. The number of selected frequencies F is proportional to N: F = 0(N). 
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In classical time domain system identification the excitation signal u(t) should be 
quasi-stationary (Ljung, 1999), which means that 

E{u(t)} = Mu(t) 

E{u(t)u(r)}=Ruu(t,r) 

RUU(T)= lim ^ Σ ^ Λ ^ ' - Ο 
N —> oo iV ' l 

| / / M ( 0 | < Cj < 00 

\Ruu(t,r)\<c2< co (9-22) 

should be satisfied for any t, r, and r, withcj, c2 constants independent of t, r. The class 
of excitation signals defined by Assumption 9.1 forms a subset of the class of quasi-station-
ary signals (9-22) and, hence, is less general (see Exercise 9.1). This restriction is the price to 
pay to allow noncausal filtering (removal of DFT frequencies) of the input and output DFT 
spectra. Note that Assumption 9.1 is easily met if the excitation stems from an arbitrary 
waveform generator. 

Assumption 9.2 (Excitation Signal—Frequency Domain Experiment): The plant is 
measured in steady state with a single sine excitation. This experiment is repeated at F dif-
ferent frequencies / m i n <A</ m a x , k = 1,2, . . . ,F , with /min and (4α χ<οο), respectively, 
the minimum and maximum excitation frequencies. 

Assumption 9.3 (Disturbing Noise—Time Domain Experiment): At the sampling 
instances the disturbing time domain noise sources n (t), nu(t) are jointly correlated filtered 
white noise sequences 

ny{t) 

H2X{q) H22{q) 
*i(0 
e2(t) 

or njj) = H(q)e(t) (9-23) 

with ηξ(ί) = [ny(i) nu(t)], eT(t) = [ex(i) e2(i)] and where H(z~l) is a stable filter. e(t) is 
independently distributed (over / and over its entries) with continuous probability density 
function, has stationary first- and second-order moments, uniformly bounded fourth-order 
moments, and is independent of the true (unknown) excitation u0(t). The frequency domain 
errors NY(k), Νν(Ιή are related to the time domain errors ny(t)9 nu(t) by the discrete Fourier 
transform: NY(k) = O¥T(ny(t)) and N^k) = O¥T(nu(t)). 

Assumption 9.4 (Disturbing Noise—Frequency Domain Experiment): The fre-
quency domain errors NY(k), Νν{Κ) are independent (over &), jointly correlated, zero mean 
random variables with uniformly bounded absolute moments of order four. NY(k), Νν(φ are 
independent of the true (unknown) excitation U0(k). 

Assumption 9.5 (Frequency Domain Errors): The (co)variances <JY(k) = 
var(JVr(&)), Gy(k) = var^^A:)), and a^v{k) = covar(NY(k), N^k)) of the frequency do-
main errors NY(k), Nv(k) are known. 

Assumption 9.6 (Continuity Cost Function): The cost function ¥Γ(Θ, Ζ) is a contin-
uous function of Θ in the compact set Pr . 
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Assumption 9.7 (Persistence of Excitation): There exists an F0 such that for any 
F>F0, oo included, the expected value of the cost function VF(0) = E{^(0 ,Z)} has a 
unique global minimum #(Z0), which is an interior point of Pr . 

If VF{6) is not convex, then in the presence of model errors VF{6) can have more than 
one global minimum. An example of this can be found in Kabaila (1983). To handle these 
cases we restrict the compact set P r in Assumption 9.7 such that VF{0) contains a unique 
global minimum in Pr . 

9.6.2 Stochastic Convergence Rate 

When designing a new time or frequency domain experiment based on the results of a 
previous experiment, one must choose the number of frequencies F. To make a motivated 
choice it is important to know how fast the difference between the estimate and its limit value 
Θ(Ζ)-Θ(Ζ0) converges to zero as F-»oo. To establish the convergence rate of Θ(Ζ) to 
#(Z0), we need suitable assumptions concerning the first- and second-order derivatives of 
the cost function w.r.t. Θ. We also need a persistence-of-excitation condition that is stronger 
than Assumption 9.7. In addition to Assumptions 9.1 to 9.6, we require: 

Assumption 9.8 (Continuity First- and Second-Order Derivatives Cost 
Function): The cost function VF(09Z) has continuous first- and second-order derivatives 
w.r.t. Θ in P r for any value of F, oo included. 

Assumption 9.9 (Persistence of Excitation): There exists an F0 such that for any 
F>F0, oo included, the Hessian of the expected value of the cost function is regular at the 
unique global minimizer #(Z0), which is an interior point of Pr : cxIn < VF\0{Z^)) < c2In 

where 0 < cx < c2 < °° and cl9 c2 are F-independent constants. 

9.6.3 Systematic and Stochastic Errors 

A more profound analysis makes it possible to distinguish between the asymptotic be-
havior of the stochastic and the systematic deviations in the residual Θ(Ζ)-Θ(Ζ0). In addi-
tion to Assumptions 9.1 to 9.6, 9.8, and 9.9, we require: 

Assumption 9.10 (Continuity Third-Order Derivative Cost Function): The cost 
function has continuous third-order derivatives w.r.t. Θ in P r for any value of F, oo in-
cluded. 

9.6.4 Asymptotic Normality 

To calculate uncertainty regions with a given confidence level, we need the probability 
density function of the estimate Θ(Ζ). A good approximation can be found if the asymptotic 
distribution function of Θ{Ζ) is known. Whereas the consistency and convergence rate analy-
sis of Θ(Ζ) requires finite moments of order 4, the convergence and the convergence rate 
analysis of the distribution function of Θ(Ζ) needs the existence of the moments of any order 
for a time domain experiment and of order 6 for a frequency domain experiment. In addition 
to Assumptions 9.1 to 9.6 and 9.8 to 9.10, we require: 
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Assumption 9.11 (Excitation Signal—Time Domain Experiment): The excitation 
signals u(t) in Assumption 9.1 have finite moments of any order. The excitation noise eu{t) 
is independent and identically distributed. 

Assumption 9.12 (Disturbing Noise—Time Domain Experiment): The disturbing 
noise e(t) in Assumption 9.3 is independent and identically distributed with finite moments 
of any order. 

For a frequency domain experiment, these conditions can be relaxed because the suc-
cessive frequency measurements are independent (see Assumptions 9.2 and 9.4), whereas 
they are correlated for a time domain experiment (see Assumption 9.3). 

Assumption 9.13 (Disturbing Noise—Frequency Domain Experiment): (a) For the 
asymptotic normality: the disturbing noise Nz satisfies Σ£= χ Cov(Nz(k)) = 0(F) and has 
uniformly bounded absolute moments of order 4 + ε with ε>09 for example, 
E|iVy(A:)|4 + f} < cx < oo with cx independent of F. (b) For the convergence rate: in addition, 
the disturbing noise Nz has uniformly bounded absolute moments of order six, for example, 
E |Λ^(Α:)|6} < c2 < oo with c2 independent of F. 

9.6.5 Deterministic Convergence 

To study the deterministic convergence and the convergence rate of Θ(Ζ0) to θ*, we 
must define the strategy of adding new frequencies to the data. We need this information be-
cause the model errors depend on the power spectrum of the excitation. In addition to As-
sumptions 9.1 to 9.6, 9.8, and 9.9, we require: 

Assumption 9.14 (Strategy of Adding Frequencies): As F -> oo the frequencies fk 

cover the frequency interval [/min,/max] with a density function n{f) defined as 

- M - i » l i m W + A / ) - A W (9.24) 
A/->OF->oo FAJ 

where NF(f) is the number of frequencies in the interval [0 , / ] when the total number of 
frequencies is F. The density n(f) is continuous with bounded second-order derivative w.r.t. 
/ in [/min,/max] except at a finite number of frequencies. 

Special cases are a uniform («(/) independent o f / ) or a logarithmic (n(f) is propor-
tional to f~x) distribution of the number frequencies in [/min,/max]· 

Assumption 9.15 (Constraint on the Residual): The second-order derivatives w.r.t. 
the frequency / of the residual E {\ε(Ω(/), Θ, Z(/))|2} and its first- and second-order deriv-
atives w.r.t. Θ, are bounded in the frequency band [/min,/max], except at a finite number of 
frequencies (Ω(/) = j2nf9 eJ2nfr>9 Jjlnf or tanhfoy27c/)). 

Assumption 9.15 puts some conditions on the limit power spectrum |£/0(/)|2 or 
5,

ΜΜ0'ω) of the periodic or random excitation; it should be a continuous function of / with 
bounded second-order derivative. 
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9.6.6 Consistency 

Contrary to the stochastic convergence, consistency can be shown only if a true linear 
model exists and if it belongs to the considered model set. It also imposes some conditions on 
the expected value of the cost function, which should be verified for each estimator. To study, 
under these conditions, the stochastic convergence, the stochastic convergence rate, the im-
proved stochastic convergence rate, and the asymptotic normality, we require, in addition to 
the assumptions of Sections 9.6.1 to 9.6.4, the following: 

Assumption 9.16 (Existence of a True Linear Plant Model): There is an identifiable 
parameterization Θ0 e P r such that G(Qk, 90)U0(k), G(z¿\ 90)U0(k) + TG(z¿\ <90), or 
G(sh 9Q)U0(k) + TG(sh θ0) + S(sk) with G(s, θ0) stable represents the true output Y0(k). 

Assumption 9.17 (Consistency Condition on the Cost Function): The expected 
value of the cost function VF(9) = E{VF(9,Z)}, or its limit value V*(9) = lim VF(G), is 
minimal in the true model parameters θ0. "* °° 

9.6.7 Asymptotic Bias 

Speaking about systematic or bias errors makes sense only if a true model exists and if 
it belongs to the considered model set. Studying the bias is possible only if the expected value 
of the estimate 9{Z) exists. To ensure the existence of the expected value, we remove 
"large," "highly improbable" values of Θ(Ζ). This results in the truncated estimate 9(7), 
which is defined as 

to r*z> Vm-toA". (9.25) 
lo p(z)-e(z0)|2>¿ 

where L is an (arbitrarily) large number (0 < L < oo) independent of F. Lemma 17.27 guar-
antees that there exists an F 0 such that for any F>F0 Θ(Ζ) = Θ(Ζ) with probability one (in 
probability). We require that Assumptions 9.1 to 9.6, 9.8 to 9.10, 9.16, and 9.17 are valid. 

9.6.8 Asymptotic Efficiency 

A basic step in the analysis of the asymptotic efficiency of the estimate 9(Z) is the cal-
culation of the Fisher information matrix. It inherently assumes the existence of a true model 
and knowledge of the probability density function of the disturbing noise in the frequency do-
main. Therefore, in addition to Assumptions 9.1 to 9.6, 9.8 to 9.13, 9.16, and 9.17, we require: 

Assumption 9.18 (Circular Complex Frequency Domain Errors): The frequency 
domain errors NY(k), Nv(k) are independent (over k), jointly correlated, zero mean, circular 
complex distributed random variables. 

Assumption 9.19 (pdf Frequency Domain Errors): The observations Z0 are deter-
ministic and the frequency domain errors NY(k), Njj(k) are normally distributed random 
variables. 

Assumption 9.20 (Efficiency Condition Frequency Domain Errors): The number 
of noncoherent noise sources equals 1. This is true if and only if one of the three following 
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conditions is fulfilled for A: = 1,2, . . . ,F : (i) no input noise a^(k) = 0, (ii) no output noise 
ay(k) = 0, or (iii) totally correlated input-output errors |σγυ{Κ)\/{σγ{Κ)συ{Κ)) = 1. 

For example, Assumption 9.20 is fulfilled in feedback when only process noise is 
present (no measurement errors and no controller noise, see Section 9.18 and Exercise 9.2). 

9.7 ASYMPTOTIC PROPERTIES 

In this section we give an overview and an elaborated discussion of the asymptotic properties 
of the minimizer Θ(Ζ) of cost functions VF(0,Z) which are quadratic-in-the-measurements 
Z. The overview starts with general estimators, proceeds with consistent estimators, and 
ends with the maximum likelihood estimator. Afterward, the results are generalized to cost 
functions of the form (9-14) that are nonquadratic in Z. In a first reading, one may skip The-
orems 9.21 and 9.28 and go directly to the discussion of the properties. 

Theorem 9.21 (Asymptotic Properties Θ(Ζ)): Consider models (9-7) and (9-8) with 
any identifiable parameterization of Sections 6.2 and 6.3. Let Θ(Ζ) be the minimizer of a 
cost function VF(9,Z) of the form (9-11) that is quadratic-in-the-measurements Z. Under the 
assumptions of Section 9.6, the minimizer Θ(Ζ) has the following asymptotic (F —»<x>) 
properties, 

1. Stochastic convergence: 9(Z) converges strongly to #(Z0), the minimizer of 
VF{9) =E{FF(0,Z)} (assumptions Section9.6.1). 

2. Stochastic convergence rate: Θ(Ζ) converges in probability at the rate 0?(F~l/2) to 
Θ(Ζ0) (assumptions Section 9.6.2). 

3. Systematic and stochastic errors: Θ(Ζ) converges in probability to Θ(Ζ0) with 

θ(Ζ) = θ(Ζ0)+δθ(Ζ) + δθ(Ζ) 
(9~26) 

δθ(Ζ) = -VF"-\0(Zo))VF'T(0(Zo),Z) 

where δθ(Ζ) = Op(F~1/2), with Ε{δθ(Ζ)} = 0, is the dominating stochastic er-
ror and where b0(Z) = 0?(F~l) contains the contribution of the systematic errors 
(assumptions Section 9.6.3). 

4. Asymptotic normality: 4F(9(Z) - #(Z0)) converges in law at the rate 0(F~l/2) toa 
Gaussian random variable with zero mean and covariance matrix Cov(4Ψδθ{Ζ)) 

C O V ( 7 F ^ ( Z ) ) = VF-\0(ZO))QF0(ZOWF^O(ZO)) 

QF(d(Z0)) = FE{VF'T0(Zo),Z)VF'0(Zo)9Z)} 

(assumptions Section 9.6.4). 

5. Deterministic convergence: Θ(Ζ0) converges to Θ*, the minimizer of 

(9-27) 

(Jmax , , Λ 

¥,(θ) = ( Ε{\ε(Ω(/),θ,Ζ(/ψ }n(f)df (9-28) 
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with Ω(/) = jlnfi eJ'2n^Ts, Jj2nf, or tsmh(rRj2nf). The convergence rate is 
an 0(F~2) for frequency domain experiments and 0(F~l) for time domain exper-
iments (assumptions Section 9.6.5). 

If in addition VF{6,Z) satisfies the consistency conditions then, 

6. Consistency: Θ(Ζ) is strongly (weakly for model (9-8) with Ω = s) consistent; 
replace in properties 1 to 4 Θ(Ζ0) (lim 0(ZO) = ft for model (9-8) with Ω = s) 
by θ0 (assumptions Section 9.6.6). ~*°° 

7. Asymptotic bias: The asymptotic bias be = E{be(Z)}9 and its derivative w.r.t. 
6>0, dbe/d0o, of θ_(Ζ) are an 0(F~l) (0(F~l/2) for model (9-8) with Ω = s 
and random excitation) for all θ0 e PT (assumptions Section 9.6.7). 

If in addition VF(0,Z) is the maximum likelihood cost function then, 

8. Asymptotic efficiency: The Gaussian maximum likelihood estimate #ML(Z) is 
asymptotically efficient: Cov(^(Z)) = Frl(0o) with Fi(0o) = FVF"(0o) the 
Fisher information matrix. Moreover, we have 

lim (COV(7FI9(Z) ) -COV(7F(%(Z) ) ) = 0 (9-29) 
F->oo 

(assumptions Section 9.6.8). 

Proof. See Appendix 9.E. D 

Corollary 9.22 (Asymptotic Properties Θ(Ζ)—continued): Let Θ(Ζ) be the mini-
mizerofacost function VF{6,Z) = fF(0, η(Ζ),Z) oftheform(9-14) where/^(0, η,Ζ) isqua-
dratic-in-the-measurements Z. Assume that the cost function fF{9, η, Ζ) and its third-order de-
rivatives w.r.t. x = [θτ ητ]τ are continuous and that fF(0,77,Z) fulfills the assumptions of 
Section 9.6. Define, furthermore, gF(0, η(Ζ), Z) = VF

T(0, Z) and gF(0, η) = E {gF(0, η, Ζ)}. 
If Theorem 9.21 is valid for the (initial) estimate η(Ζ), then the minimizer Θ{Ζ) has the asymp-
totic properties of Theorem 9.21 with the following three modifications: 

(i) To calculate VF(9) and ν*(θ) we first replace η(Ζ) by its limit value 77* before 
taking the expected value, which gives 

(9-30) 
/•/max 

V. ψ) = j E {|4Ω(/), Θ, Z(f), i/.)|2} n{f)df 
/min 

(ii) E {δθ(Ζ)} is not necessarily zero or may not even exist. 
(iii) δθ(Ζ) in the expression of the covariance matrix (9-27) is replaced by de{Z) 

de{Z) = -VF"-\e{Z0))dF(Z) 

dgF(^oln),^ (9"31) 
dF(Z) = gF0(Zo), η.,Ζ)+ &"\\Ό/' "δη(Ζ) 

where δη(Ζ) is given by (9-26), and with de{Z) = Op(F"1/2), E{cfe(Z)} = 0. 

Proof. See Appendix 9.F. D 
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We are ready now to answer the question we posed in Section 9.2: "What will happen 
with one's estimates (uncertainty, bias ...) if one gathered, for example, four times more 
data?" Property 1 ensures that Θ(Ζ) is likely to be closer to the minimizer Θ(Ζ0) of the ex-
pected value of the cost function. Property 2 tells us that Θ(Ζ) is likely to be two times closer 
to Θ(Ζ0). From property 3 it follows that the systematic and stochastic errors in the residual 
Θ{Ζ) - Θ(Ζ0) are likely to decrease with a factor of 4 and 2, respectively. Finally, property 4 
ensures that the distribution function of Θ{Ζ) is likely to be two times closer to a normal dis-
tribution. Similar results are obtained when no model errors are present Θ(Ζ0) = θ0. 

Expression (9-27) allows a theoretical calculation of the covariance matrix of the esti-
mates in the presence of model errors. It requires, however, knowledge of the fourth-order 
moments of the noise and of the minimizer Θ(Ζ0) of the expected value of the cost function. 
Although Θ(Ζ0) can be approximated by the actual estimate #(Z), the fourth-order moments 
of the noise are mostly unknown. For the maximum likelihood estimator, the covariance ex-
pression (9-27) can be significantly simplified (only second-order moments of the noise are 
required) and a good approximation of the covariance matrix results as a by-product of the 
nonlinear minimization scheme (9-16) (see Section 9.11). Property 4 then makes it possible 
to calculate uncertainty regions around Θ(Ζ) that contain Θ(Ζ0) with some user-defined 
probability level. The same can be done for any model-related quantity (see Sections 16.2 
and 19.4.7). 

If model errors exist, then Θ(Ζ) converges to a value Θ(Ζ0) Φ θ0 (θ* Φ θ0) that still de-
pends on F. Property 5 guarantees that Θ(Ζ0) converges at the rate 0(F~l) or faster to its 
limit value Θ*, while according to property 2 the stochastic convergence rate of Θ(Ζ) to 
Θ(Ζ0) is an O (F_1/2). Therefore, #(Z0) can be replaced everywhere by Θ* in properties 1 to 
4. In case of model errors, we may also wonder whether Θ(Ζ) still converges to the same so-
lution if the same experiment is repeated with a higher signal-to-noise ratio (lower noise lev-
els). To verify this, we apply quick analysis tool number 3 (see Section 9.5) to the cost func-
tion. If so, then Θ(Ζ0) (#*) can be interpreted as the solution of the noiseless problem. 

Property 6 guarantees that the estimate Θ(Ζ) converges to the true model parameters 
θ0 for cost functions satisfying the consistency conditions 9.16 and 9.17. This does, how-
ever, not imply that the (equivalent) initial conditions in model (9-8) are consistently esti-
mated. Indeed, the part of θ0 corresponding to the (equivalent) initial conditions decreases to 
zero as F~l/2 (use Lemma 6.5 taking into account that F = 0(N) for a time domain experi-
ment), while the difference Θ(Ζ)-Θ0 is an (9p(F~1/2). Hence, the relative difference 

,-jl between the estimated and the true initial conditions does not de-
crease to zero as the number of frequencies F increases to infinity, which shows that the ini-
tial conditions are not consistently estimated. This result can easily be understood in the time 
domain. The (equivalent) initial conditions (transient term Γσ(Ω, Θ) in (9-8)) correspond to 
an exponentially decaying transient in the time domain. Observing the input and output sig-
nals during a longer period does not give more information about the transient, hence, it can-
not be estimated consistently. For the same reason, properties 7 and 8 do not imply that the 
estimated equivalent initial conditions are asymptotically efficient and have an 0(F~l) bias. 
Although they cannot be estimated consistently, we still include the initial conditions in 
model (9-8) because it turns out that they improve the finite sample behavior (F is not 
"large") of the estimated plant model G(Q, Θ{Ζ)). Note also that the influence of the tran-
sient term rG(Q, Θ) to the cost function VF{G,Z) is an Op(F~l) (see Appendix 9.D). 

The asymptotic efficiency of the maximum likelihood estimator (property 8 of Theo-
rem 9.21) has been shown under some restrictive noise assumptions (see Assumption 9.20); 
for example, the input must be known exactly. In general, the maximum likelihood solution is 
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not asymptotically efficient. This is not in contradiction with the general properties of maxi-
mum likelihood estimators (Section 1.5.3) because the number of estimated parameters in 
the errors-in-variables problem increases with F (see Section 9.11). 

For deterministic vectors η(Ζ) = η* the term dN(Z) in (9-31) reduces to 
gF(#(z0), 77*, Z). Therefore, modification number iii of Corollary 9.22 shows that in general 
the stochastic vector will increase the uncertainty of the estimates. If, however, 
dgF(§(z0), η)/θη* = o(F°), then there is no asymptotic increase in uncertainty (see, for 
example, Section 9.12.3). 

9.8 LINEAR LEAST SQUARES 

9.8.1 Introduction 

A reasonable measure of goodness of fit is to compare the observed output Y(k) with 
the modeled output Y(k, Θ) (9-7) or (9-8), where (7(Ω, Θ) (and Γ(Ω, Θ)) can take any param-
eterization of Section 6.2 (and Section 6.3). The plant model parameters are then obtained 
by minimizing the sum of the squared residuals 

W $ Z ) = Σ^ιΐη*)-1%0)Ι2 (9-32) 

w.r.t. to Θ. Because Y(k, Θ) is a nonlinear function of Θ, the cost function (9-32) is a non-
quadratic function of Θ. All the estimation methods presented in this section try to minimize 
(9-32) by (successive) linear least squares approximation(s). The key idea is to make (9-32) 
quadratic in Θ by parameterizing G(Q, Θ) (and Γ(Ω, Θ)) as a rational form 
Β(Ω, Θ)/Α(Ω9 Θ) (and /(Ω, Θ)/Α(Ω, θ)) and by multiplying each residual Y(k) - Y(k, Θ) in 
the cost function (9-32) by A(Qk, Θ). 

9.8.2 Linear Least Squares 

Multiplying each residual Y(k) - Y(k9 Θ) in the cost function (9-32) by A(Qh Θ) gives 
the linear least squares (LS) cost function 

VM Z) = Jfk_ , \e(nh Θ, Z(*))|2 (9-33) 

with e(Qh #, Z(k)) the equation error (9-9) or (9-10). The linear least squares (LS) estimate 
#LS(Z) is found by minimizing (9-33) w.r.t. Θ using the constraint at = 1 or bt = 1. In 
Levy (1959) the linear least squares approach was applied for the first time to identify contin-
uous-time models starting from transfer function measurements ((9-33) with equation error 
(9-9), Ω = s, Y(k) = G(sk)9 and U(k) = 1). The linearization of the output error 
Y(k) - Y{0.h Θ) has two major drawbacks when identifying continuous-time models 
(Ω = s, ΛΑ, and tanh(TRs)): the overemphasizing of high-frequency errors in (9-33) and 
the large dynamic range of the numbers in the normal equation (9-16). Indeed, e(Qk, 0, Z(k)) 
is a polynomial in Ω^ and, hence, the contribution of the disturbing noise at frequency Ω .̂ to 
the cost function increases with |ΩΑ:|2ηΐί1χ('ϊ*'Μ^. This may result in poor low-frequency fits 
(see Fig. 9-4) and ill-conditioned normal equations for identification problems with a large 
dynamic frequency range. Similar problems occur for discrete-time models (Ω = z_1) when 
identified on a "small" part of the unit circle. 
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Figure 9-4. Second-order simulation example G(s,6) = 1 / (1+5 + s2) defined in 
Appendix 9.A (see also Figure 9-1). Left: difference between the estimated 
amplitude in dB and the true amplitude in dB, and right: phase error in 
degrees, (a) Estimators requiring no noise information, (b) estimators 
requiring the noise covariance. 

0.3 

0.3 

Because KLS(#,Z) is quadratic-in-the-measurements Z, the asymptotic properties 
proved in Theorem 9.21, with VF(0,Z) = VLS(0,Z)/F9 are valid for 0Ls(Z). To reveal the 
major properties of #LS(Z) we use the quick analysis tools of Section 9.5. Taking the ex-
pected value of (9-33) gives (9-20) with 

E{vF(6Uz)} =ϊΣΐ : !<#"**) (9-34) 

(see Exercise 9.3). σ^Ω^, Θ) = var(e(Qk, Θ, Nz(k))) is the variance of the equation error 
where the measurements Z have been replaced by the noise on the measurements Nz 

o*(nh Θ) = a?(k)\A(Qh θ)\2 + a*(k)\B(Clh θψ - 2RQ(a^(k)A(nk9 0)B(Clh Θ)) (9-35) 

Applying quick tool 2 (see Section 9.5) to (9-34) shows that the linear least squares estimate 
$LS(Z) is, in general, inconsistent because (9-35) is, in general, Θ- dependent. It is consistent 
if σ^(Ω^ Θ) is independent of 0, for example, no input noise (a^(k) = 0, a^k) = 0) 
and a polynomial plant model (Α(Ω, Θ) = 1). Replacing CNz by v2CNz in the expected 
value of the cost function gives, taking into account (9-34), 
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Second-order simulation example G(s,0) = l/(\+s + s2) defined in 
Appendix 9.A (see also Figure 9-1). Comparison of the linear least squares 
estimates using the constraint a0 = 1 and the linear least squares estimates 
using the constraint bQ = 1. Left figure, true plant model (solid line) and 
magnitude of the complex error between the estimated and the true plant 
model. Right figure, difference between the estimated amplitude in dB and 
the true amplitude in dB. 

0.3 

VF(ff) = E{KF(0,Zo)} + u2E{vF(0,JVz)} (9-36) 

It shows that, in general, #LS(Z0) an(* #*LS depend on the disturbing noise level υ and, 
hence, cannot be considered as the noiseless solutions (see Section 9.5, quick tool 3). They 
are the noiseless solutions if of (Q¿, Θ) is independent of Θ. From (9-33) it follows directly 
that VLS(Á09Z) = Á2VLS(e,Z) so that #LS(Z) depends on the particular constraint chosen, 
for example, at = 1 or bx, = 1 (see Section 9.5, quick tool 4). This is illustrated in Figure 
9-5. Note that on the average the estimate with a0 = 1 is too small (underbiased), while the 
estimate with b0 = 1 is too large (overbiased). This is in agreement with the results of De 
Moor et al. (1994). See Table 9-5 for an overview of the properties of the LS estimator. 

9.8.3 Iterative Weighted Linear Least Squares 

To overcome the lack of sensitivity to low-frequency errors of the linear least squares 
estimator, the equation error e(Qh Θ, Z(k)) in (9-33) is divided by an initial guess of the de-
nominator polynomial A(ilh #(°)). The obtained weighted linear least squares estimate #(1) 

can be used to calculate a (hopefully) better estimate of the denominator polynomial 
A(Qh 00)), resulting in a (hopefully) better estimate &2\ and so on .... The zth step of the 
iterative procedure consists of minimizing 

y(Q (#0 z) = Y 
' i W L S ^ 7 ' ^ ^ / 

\e(nh0«\Z(k)f 
μ(Ω„0θ-υ)|2 (9-37) 

with e(Qh Θ, Z(k)) the equation error (9-9) or (9-10), w.r.t. Θ& using the constraint aj = 1 
or bj = 1. In most cases the linear least squares estimate is used as starting value 
0(0) = 0LS(Z), and when convergent the iterative weighted linear least squares (IWLS) esti-
mate is $IWLS(Z) = #(oo)· In Sanathanan and Koerner (1963) this iterative procedure was ap-
plied for the first time to identify continuous-time models starting from transfer function 
measurements ((9-37) with equation error (9-9), Ω = s, Y(k) = G(sk) and U(k) = 1). 
From Figure 9-4 it can be seen that the low-frequency errors of the IWLS fit are indeed 
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smaller than those of the LS fit. When convergent ( θ ^ = (ft- ^ for i sufficiently large) the 
IWLS cost (9-37) tends to the nonlinear least squares cost (9-32). Although this property is 
very appealing, it does not guarantee that the global minima of both cost functions are the 
same. Therefore, one requires that the derivatives of these cost functions w.r.t. Θ are 
asymptotically (z -» oo) the same. In general, this is not true and, hence, #IWLS(Z) * #NLS(Z). 
However, as the elementwise difference between the Jacobians is proportional to the equa-
tion error e(Qh 0^~l\Z(k)) (see Exercise 9.4), both estimates will coincide 
( #IWLS(Z) « #NLS(Z)) for "sufficiently high" signal-to-noise ratios and "sufficiently small" 
modeling errors, otherwise the difference may be large. This is illustrated by the "high noise" 
simulation example of Figure 9-4 (compare IWLS with NLS), and the "low noise" simulation 
example of Figure 9-8 (compare IWLS to NLS). 

Analysis of the statistical properties of the estimate 0(°°) is in general impossible. It is, 
however, feasible to analyze the properties of the first step of the iterative procedure (9-37). If 
the initial guess (ft*) is deterministic and independent of the number of frequencies F, then 
Theorem 9.21 is valid and #IWLS(Z) = θ^ has asymptotic (F—> oo) properties similar to 
those of #LS(Z) (see Section 9.8.2). If the choice ¿#°) = #LS(Z) is made, then the cost func-
tion (9-37) is no longer a quadratic function of the measurements Z. Indeed, #LS(Z) depends 
on Z and appears in the denominator of (9-37). Although this complicates the analysis, it 
turns out that Theorem 9.21 is still valid for #IWLS(Z) = #(1) with three minor modifications 
(see Corollary 9.22). Hence, #IWLS(Z) = #(1) has the same asymptotic (F^> oo) properties 
as #LS(Z)· We conclude that in general the estimate #IWLS(Z) is inconsistent, depends on the 
particular constraint chosen, and does not converge to a noiseless solution. 

Many modifications of and extensions to the original method of Sanathanan and 
Koerner (1963) have been published. Almost all of them fit within the following (iterative) 
weighted least squares framework: 

Σ [ = , W\ah έΧ<- ΐ))μ(Ω„ #0, Z(k)f (9-38) 

where W{Q.h fr'~ '>) is a well-chosen real weighting function (see Pintelon et al., 1994 for an 
overview). One particular weighting is interesting, namely 

W(Qh #<-')) = , * „ , with r € [0, oo) (9-39) 

Two special cases of (9-39) are the linear least squares method for r = 0 and the iterative 
weighted linear least squares method (9-37) for r = 1. Powers r, different from one, may 
result in smaller output errors Y(k) - Y(k, Θ); for example, if the iterative scheme (9-37) does 
not converge, then relaxation ( r< 1) is helpful. In 't Mannetje (1973), the relaxation idea 
was applied for the first time to identify continuous-time models starting from transfer func-
tion measurements ((9-37) with equation error (9-9), Ω = s, Y(k) = G(sk), and U(k) = 1 ) . 
The asymptotic (F—>co) properties of the minimizer of (9-38) are similar to those of 
^IWLS(Z) (9-37), so that in general the minimizers of (9-38) and (9-32) are different. See 
Table 9-5 for an overview of the properties of the IWLS estimator. 

9.8.4 A Simple Example 

Consider the identification of an integrator G(s, Θ) = bQ/{axs), starting from fre-
quency response data G(sk) = G0(sk) + NG(k), perturbed with independent (over the fre-
quency), zero mean, circular complex noise NG(k) with variance var(iVG(A:)) = σ2 and finite 
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fourth-order moments. The iterative weighted linear least squares estimate (9-38) is calcu-
lated using the weight (9-39) and the constraint b0 = 1 

( " l W s = -=p (9"4°) 
-ik= 1 

| ^ < ' - ' ) | G ( ^ 

Applying the strong law of large numbers (see Section 16.9, version 2) to the numerator and 
denominator of (9-40) and the interchangeability property of the almost sure limit and a con-
tinuous function (see Section 16.8, property 1), we find 

a.s.lim (a,)TWTq = (fl,)n — (9-41) 
F - ws

 ] + 1. Z-M-WFM2 

1 + hm 

with (aY)0 the true value. As predicted by the theory (apply quick tool number 2), it clearly 
follows from (9-41) that (#i)IWLS and, hence, also G(sk90wLs(Z)) are inconsistent esti-
mates. Taking, for example, F = 100 angular frequencies equally spaced between 0.1 and 2 
and σ2 = 0.5; the right-hand side of (9-41) is then equal to 0.587(0!)0 and 0.916(^)0 for, 
respectively, r = 0 (LS solution (9-33)) and r = 1 (IWLS solution (9-37)). It shows that 
weighting the linear least squares residual with an initial guess of the denominator polyno-
mial indeed improves the estimates. In this numerical example, values of r > 1 give even bet-
ter results compared with r = 1. 

Making the same calculations for the IWLS estimate with constraint ax = 1, we get 

, , , _ I f - , N " 2 r Re(i*GCs*)) 
(#o)lWLS ~ " 

¿*¡k = 1 
| -2r 

k\ 

1 ^ F (9-42) 
lim ¿ Σ Λ . i N " 2 r Re(^Go(Jik)) 

a.s.lim (6O)IWLS = - ^ -Λ = (A) 0 

F - > Q O f¿*k=\r*i sr2r 

with (60)0 the true value. As predicted by the theory (apply quick tool number 2) (¿>O)IWLS 
and, hence, also G{sh #IWLS(Z)) are consistent estimates. It illustrates nicely the dependence 
of G(sk9 #IWLS(Z)) on the parameter constraint used (quick tool number 4). 

Putting r = 0 in (9-40) to (9-42) shows that the same conclusions hold for the least 
squares estimate (O0)LS anc* (^O)LS· 

9.9 NONLINEAR LEAST SQUARES 

9.9.1 Output Error 

The nonlinear least squares (NLS) estimator #NLS(Z) minimizes the sum of the 
squared residuals between the observed output Y(k) and the modeled output Y(k, Θ) (9-7) or 
(9-8), where G(Q, Θ) (and TG(Q, Θ)) can take any parameterization of Section 6.2 (and Sec-
tion 6.3) 



306 Chapter 9 ■ Estimation with Known Noise Model 

WSZ) = Σ^ 1 \Y(k)- Y(k, θψ (9-43) 

The Newton-Gauss minimization scheme (9-18) is used to calculate #NLS(Z), and as with 
most nonlinear minimization problems, the method may converge to a local minimum of 
(9-43) (0(°°) Φ #NLS(Z)). Therefore, it is important to have starting values of "sufficiently 
high" quality. The (iterative) weighted linear least squares solution (9-37) can be used for this 
purpose. In Van den Enden et al. (1977) and Van den Enden and Leenknegt (1986) this 
scheme was used for the first time to identify, respectively, continuous-time and discrete-time 
models starting from transfer function measurements ((9-43) with output model (9-7), 
Ω = s o r z 1 , Y(k) = G(sk), and U(k) = 1). 

Because FNLS(#,Z) is quadratic-in-the-measurements Z, the asymptotic properties 
proved in Theorem 9.21, with VF(0,Z) = FNLS(#,Z)/F, are valid for #NLS(Z). We use the 
quick analysis tools of Section 9.5 to reveal the major properties of #NLS(Z). Taking the ex-
pected value of (9-43) gives (9-20) with 

E{vF(0, Nz)} = i Σ ^ 1 σ2(Ω„ θ) (9-44) 

(see Exercise 9.5). σ^Ώ^, Θ) is the variance of the output error where the measurements Z 
have been replaced by the noise on the measurements Nz 

σ2(Ω„ Θ) = a¡{h) + a¡j{k)\G(ílh θψ - 2R^v{k)G{ilh θ)) (9-45) 

Applying quick tool 2 (see Section 9.5) to (9-44) shows that in general the nonlinear least 
squares estimate #NLS(Z) is inconsistent. It is consistent if σ^Ω^, Θ) is independent of Θ, 
which is the case for transfer function measurements (9-2) (Y(k) = G(Qk), U(k) = 1, 
Gy(k) = 0, and σ 2 ^ ) = 0) or input-output measurements (9-1) with exactly known input 
(a^(k) = 0, σγν(Κ) = 0). Replacing CNZ by O2CNZ in the expected value of the cost func-
tion gives, taking into account (9-44), 

VF{0) = E { VF(9, Z0)} + υ* E {vF(0, Nz)} (9-46) 

It shows that in general $NLS(Z0) and #*NLS depend on the disturbing noise level υ and, 
hence, cannot be considered as the noiseless solutions (see Section 9.5, quick tool 3). They are 
the noiseless solutions for transfer function measurements and input-output measurements 
with exactly known input, because σ^(Ω^, Θ) and, hence, also E {vF(0, Nz)} are then inde-
pendent of Θ. From (9-43) it follows immediately that FNLS(/l#,Z) = KNLS(0,Z) so that 
^NLS(Z) is independent of the particular parameter constraint al·, = 1, b{ = 1 or \θ\\ = 1 
chosen (see Section 9.5, quick tool 4). 

We conclude from the previous discussion that the NLS estimator is inconsistent for 
noisy input-output measurements, while it is consistent for transfer function measurements. 
This suggests that for transfer function model (9-7) the bias in the estimates could be re-
moved if the input-output measurements (9-1) are transformed into a transfer function mea-
surement (9-2) with G(k) = Y(k)/ U(k). The nonlinear least squares estimate then minimizes 

^NLS(0) = Z L , I m/U(k) - G(Q„ Θψ (9-47) 
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w.r.t. Θ. From a theoretical point of view the minimizer of (9-47) is inconsistent because the 
mean value of the noise on Y(k)/U(k) is not zero, 

Y(k)/U(k) = G0(Qk) + NG(k) 

(9-48) 
NG(k) = Go(k)C+NY(kyUk)-l 

GKJ oyjy\+NTr(k)/ujk) 

with E {NG(k)} Φ 0. Moreover, the moments of order 2 and higher of NG(k) do not exist 
(Guillaume et al., 1996a). We first study the bias term as a function of the signal-to-noise ra-
tios and next tackle the nonexistence of the higher order moments. 

For zero mean, circular complex distributed errors NY{k), N^k) (Assumption 9.18) 
with even probability density function the bias E {NG(k)} is a function of the fourth-order 
moments of the noise (see Appendix 9.G). Assume now that the input-output errors are lin-
early correlated, 

NY(k) = N(k)+p(k) * Nv(k) 
OyQc) ' r v ' ' (9-49) 

Nv(k) = M(k) + Nv(k) 

where N(k), M(k), and Nv(k) are mutually independent random variables, and with 
p(k) = aYU{k)/{ajj{k)aY(k)) the correlation coefficient. Note that a correlation of the form 
(9-49) occurs, for example, in linear feedback systems (see Section 9.18). If NY(k), Nv{k) 
are, in addition, circular complex normally distributed (Assumptions 9.18 and 9.19), then an 
analytic expression can be found for the relative bias b(k) = E {NG(k)} /G0(Qk) (see Appen-
dix 9.G) 

b(k) = -Qxp(-\U0(k)^/a^k))[l -P^Y^yJ7^) fork*0,N/2 (9-50) 

For uncorrelated input-output errors, p(k) = 0, (9-50) reduces to a real number 

b(k) = -exp(- |£ / 0 (*) | 2 /^*)) (9-51) 

and, hence, the bias does not affect the phase. From (9-50) it follows that the relative bias 
\b(k)\ is maximal for totally correlated input-output errors, \p(k)\ = 1 and 
Zp(k) = n + ZG0(Qk), 

max| b(k)\ = exp(-|£/0(*)| V<#*) ) ( l + i y ^ K ^ ) (9-52) 
P(k) ' V \Y0(k)\/ aY(ky 

The relative bias \b(k)\ (9-51) is smaller than 5x10" for signal-to-noise ratios 
\U0(k)\ /a^k) larger than 10 dB, and the maximal relative bias (9-52) is smaller than 
1x10" if the worst case input and output signal-to-noise ratios | Í70(A:)| / cr̂ /CA:), 
| Yo (k)\ / aY(k) are larger than 10 dB. 

To ensure the existence of the higher order moments of NG(k) we exclude large, highly 
improbable values of G(Qk) = Y(k)/U(k). Define the truncated ratio G(Q¿) as 
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Second-order simulation example G{s,6) = 1/(1 + s + s2) defined in 
Appendix 9.A (see also Figure 9-1). Comparison of the nonlinear least 
squares estimates using the input-output spectra Y(k), U(k) (NLS-I/O) and 
the nonlinear least squares estimates using the frequency response function 
G(k) = Y(k)/U(k) (NLS-FRF). Left, true plant model (solid line) and 
magnitude of the complex error between the estimated and the true plant 
model. Right, difference between the estimated amplitude in dB and the true 
amplitude in dB. 

0.3 

aw - {m/
0

m \U(k)/U0(k)\>L 

\U(k)/U0(k)\<L 
(9-53) 

with L an arbitrarily small number. Note that this is exactly what we do in practice: if the ra-
tio Y(k)/U{k) is unacceptably large, then we reject it. For input signal-to-noise ratios larger 
than 10 dB and L = 1x10" the change in bias of G(D.k) w.r.t. G(Qk) is negligible and the 
variance of the truncated estimate is in good approximation given by the variance obtained 
via linearization (see (2-25) and Guillaume et al., 1996a) 

a*(k)= \G0(Qk)\
2[at(k)/\Y0(k)\i+ a¿(A:)/|^0(^)|2-2Re(aryA:)/(70(^)a)(A:)))] (9"54> 

Hence, from a practical point of view, we may say that NG(k) has zero mean with existing 
higher order moments and that Assumption 9.4 is valid for NG(k) if Νν(Κ), NY(k) satisfy 
Assumptions 9.18 and 9.19. Because the cost function (9-47) is quadratic-in-the-measure-
ments Y(k)/U(k), we conclude that Theorem 9.21 is "practically valid" for the estimate 
^NLS(Z) if the worst case input and output signal-to-noise ratio is at least 10 dB. Figure 9-6 
shows that the errors of the NLS-I/O estimate (9-43) based on the input-output spectra are 
larger than those of the NLS-FRF estimate based on the frequency response function (9-47). 
As predicted by the theory, the NLS-I/O estimate is biased while the NLS-FRF estimate is 
"practically" consistent (compare NLS-FRF of Figure 9-6 to ML of Figure 9-4). See 
Table 9-5 for an overview of the properties of the NLS-FRF and NLS-IO estimators. 

9.9.2 Logarithmic Least Squares 

For frequency response functions with a large dynamic range, the nonlinear least 
squares estimator (9-43) of rational transfer function model (9-7) parameterized in powers of 
Q¿ (see (6-20)) may become ill conditioned. The dynamic range of the frequency response 
function can be limited by taking the natural logarithm of the model equation 
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Y(k) = G{ilhG)U{k) giving \n(Y(k)/U(k)) = ln(G(Q¿, 0)). The logarithmic least squares 
(LOG) estimator then minimizes 

> W « Z ) = Σϊ= ! \HY(k)/U(k)) - ln(G(Q„ ff))\2 (9-55) 

w.r.t. Θ. Besides its improved numerical stability (Sidman et al., 1991), the logarithmic least 
squares estimate #LOG(Z) is particularly robust with respect to outliers in the measurements 
(Guillaume et al., 1995). Good starting values for the LOG estimator are the LS (9-33) and 
the IWLS (9-37) estimates. 

From a theoretical point of view the logarithmic least squares estimator is inconsistent 
because the noise on ln(Y(k)/U(k)) has no zero mean, 

ln(Y(k)/U(k)) = 1η(σ0(Ω,)) + N(k) 
(9-56) 

N(k) = ln(l +NY(k)/Y0(k))-ln{l +N^/U^k)) 

with E {N(k)}Φ0. The higher order moments of N(k), however, do exist (Guillaume et al., 
1996a). For zero mean, circular complex distributed errors NY{k), Νυ{Κ) (Assumption 9.18) 
with even probability density function, the bias b(k) = E {N(k)} is a function of the fourth-
order moments of the noise (see Appendix 9.G). If the errors are, in addition, normally dis-
tributed (Assumption 9.19), then an analytic expression can be found for b(k) (see Appendix 
9.G) 

b(k) = 1 E J ( - | Í / # ) | 2 ) - l E i ( - | y ° f ) | 2 ) for k* 0, N/2 (9-57) 
2 ο£(*Γ 2 <#*) 

with Ei(.) the exponential integral function (Gradshteyn and Ryzhik, 1980). Note that this 
expression is also valid for correlated input-output errors. It follows that the maximum bias 
error \b(k)\ is smaller than 2x10" for signal-to-noise-ratios |1ο(&)|/σ7(&) and 
| £/0(£)| / σν(Κ) larger than 10 dB (see also Figure 2-18 on page 53). Hence, from a practical 
point of view, we may say that N{k) has zero mean and that Assumption 9.4 is valid for 
N(k) if NY(k) and Njj(k) satisfy Assumptions 9.18 and 9.19. Because the cost function 
(9-55) is quadratic-in-the-measurements \n(Y(k)/U(k)), we conclude that Theorem 9.21, 
with νρ(θ,Ζ) = VLOG(0,Z)/F, is "practically valid" for the logarithmic LS estimate 
¿?LOG(Z) if the worst case signal-to-noise ratio is at least 10 dB. The expected value of (9-55) 
then equals (9-20) with 

E{vF(0,#z)} = £ Σ Γ = Ι Ε { Ν 1 + # Τ ( * ^ ^ (9"58) 

Because E{vF(#,Nz)} is independent of Θ, $LOG(Z) is "practically consistent" and 
^LOG(^O)' &LOG a r e "practically" the noiseless solutions in case model errors are present 
(apply quick tools number 2 and 3 of Section 9.5). From (9-55) it follows that 
VL0G(Ze,Z) = KL0G(#,Z), and, hence, $LOG(Z) is independent of the particular, chosen 
parameter constraint a¡ = 1, b¡ = 1, or ||0||| = 1 (see Section 9.5, quick tool 4). See 
Table 9-5 for an overview of the properties of the LOG estimator. 
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9.9.3 A Simple Example—Continued 

We use the example of Section 9.8.4 to calculate the nonlinear least squares estimate 
(9-43) of the integrator model G(s, Θ) = b0/(axs), using the constraint b0 = 1. Making 
similar calculations as in Section 9.8.4, we get 

^F 

(«,) 
Σ * I 1-2 

' l ' N L S ^ ρ 

I*=,Re(^*)/S*) 
iim ^ΣΓ-ιΝ-2 

a s . l i m ^ V s = ί^— = (βι)0 

lim ilL.Re(Go(**)/^) 
F->oo r 

which shows that the nonlinear least squares estimator (#i)NLS and, hence, G(sk, #NLS(Z)) 
are, indeed, consistent for transfer function measurements. It is easy to verify that the NLS 
estimate using the constraint a0 = 1 equals (&I)NLS = 1 / (^I)NLS· Hence, (¿I)NLS and 
G(sk, #NLS(Z)) are consistent estimates, which illustrates the independence of G(sh #NLS(Z)) 
on the parameter constraint used (quick tool number 4). 

9.10 TOTAL LEAST SQUARES 

9.10.1 Introduction 

The total least squares (TLS) approach requires a model equation that is linear in the 
model parameters Θ. Transfer function models (9-7) and (9-8), where G(Q, Θ) and TG(Q, Θ) 
are parameterized as rational forms (6-20), (6-25) and (6-35), (6-38), can be made linear in Θ 
by multiplication with the denominator polynomial v4(Q¿, Θ). This is not the case for the 
other parameterizations and, therefore, the TLS estimators can only be applied to rational 
forms without delay. Hence, the linear set of equations that needs to be solved in total least 
square sense is 

e{ah Θ, Z(k)) « 0 ¿fc = 1, 2, ..., F (9-59) 

with e(Qh Θ, Z(k)) the equation error (9-9) or (9-10). They can be written as 

J(Z)0 * 0 or JTe(Z)0 * 0 (9-60) 

with J{Z) = θβ(θ,Ζ)/δθ the Jacobian of the vector β(θ,Ζ) (e[k](0,Z) = e{ilh %Z(k))\ 
and where ( )re stacks the real and imaginary parts on top of each other 

UZ) = Re(J(Z)) 
Im(J(Z)) 

(9-61) 

(see Section 15.8). Operation (9-61) is necessary to ensure that the solution Θ is real. A left 
and a right weighting can be applied to (9-60) 



Section 9.10 ■ Total Least Squares 311 

(WJ(Z)C-i)(C0) * 0 or (WKeJJZ)C-l)(C0) * 0 (9-62) 

where W e CFxF and C e Rn*xne are regular matrices and where (WJ(Z))TG = WReJre(Z) 
with 

^Re = 
Re(W) -lm(W) 

lm(W) Re(W) 
(9-63) 

(see Lemma 15.4). A diagonal left weighting matrix W influences each row of J(Z) sepa-
rately and makes it possible to introduce a frequency-dependent weighting of the residuals 
e(Qh Θ, Z(k)). The right weighting matrix C influences each row of J(Z) in exactly the 
same way and, hence, will not introduce a frequency-dependent weighting of the residuals 
e(Qh 0,Z(k)). It can be used to influence the noise characteristics of J(Z) (see Section 
9.10.3). 

The total least squares solution of the weighted problem (9-62) tries to find a modified 
matrix Jre, which is as close as possible to JTQ(Z) (in Frobenius norm, see Section 15.3), and 
a vector Θ satisfying Jre Θ = 0. The unknown parameters in the total least squares problem 
are, hence, the matrix Jre (2Fne real parameters) and the model parameters θ (ηθ real num-
bers). These parameters are related to each other by the model equation Jre 0 = 0 (2F real 
equations), so that the total number of free parameters equals {IF + 1 )ne-2F. This should 
be compared with the measured matrix JTe(Z) (2Fne real numbers), which gives a redun-
dancy of 2F-ne. It shows that increasing F will (most probably) give more information 
about Θ, but not about Jre. Indeed, no additional information can be accumulated about 
2Fne real parameters starting from 2F real measurements. 

The matrix Jre and the vector Θ are the solution of 

a r g m i n l l ^ ^ i Z ) - ^ ) ^ 1 ! ! subject to Jre Θ = 0 and ||C0||| = 1 (9-64) 

(Van Huffel and Vandewalle, 1991). After elimination of Jre in (9-64), we get the following 
equivalences. 

Lemma 9.23 (Total Least Squares Solution—Equivalences): The total least squares 
problem (9-64) is equivalent to 

1. avgmm\\WJ(Z)e\\2
2/\\C0\\¡ 

2. argmm\\WJ(Z)0\\j subject to ||C6>||| = l 
θ 

3. finding the eigenvector Θ corresponding to the smallest generalized eigenvalue λ 
of the generalized eigenvalue problem (WRQJrQ(Z))T( WKQJVQ(Z)) θ = λ CTC0 

Proof See Appendix 9.H. D 

Although we have assumed, during the proof, that the matrices W and C are non-
singular, it follows from Lemma 9.23 that the TLS solution remains well defined for singu-
lar weighting matrices W and C. In these cases, we take Lemma 9.23 as a definition of the 
total least squares solution. Equivalences 1 and 2 of Lemma 9.23 (nonlinear minimization of 
a cost function) are used to analyze the asymptotic properties (F —» QO) of the TLS solution, 
while equivalence 3 is used to calculate the solution. The generalized eigenvalue problem 
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(equivalence 3 of Lemma 9.23) can be calculated in a numerically stable way, even when C 
is singular, through the generalized singular value decomposition (GSVD) of the matrix pair 
(WReJTQ(Z), C) (see Section 15.4.2). The TLS solution is then the generalized right singular 
vector corresponding to the smallest generalized singular value of (WReJrQ(Z), C). When 
C = Ι„θ then the generalized eigenvalue problem reduces to an ordinary eigenvalue prob-
lem, which is solved in a numerically stable way through the singular value decomposition 
(SVD) of the matrix WRe JTQ(Z) (see Section 15.4.2). The TLS solution is then the right singu-
lar vector corresponding to the smallest singular value of WReJre(Z). 

9.10.2 Total Least Squares 

Putting W = IF and C = In in (9-64) gives the total least squares estimate #TLS(Z)· 
According to equivalence 2 of Lemma 9.23, #TLS(Z) is the minimizer of 

VTL&W Z) = E L i ΗΩ*> Θ, Z(k))\2 subject to ||0||22 = 1 (9-65) 

with e(Cih Θ, Z{k)) the equation error (9-9) or (9-10) (proof: see Appendix 9.J). It shows that 
the total least squares solution (9-65) is nothing other than the linear least squares solution 
(9-33) with parameter constraint \\0\\j = 1. Hence, #TLS(Z) has the same asymptotic prop-
erties (F-> oo) as ¿?LSCZ)' in general, #TLS(Z) is inconsistent and #TLS(ZO)> ^*TLS depend 
on the signal-to-noise ratio. To reveal when #TLS(Z) is consistent, we use equivalence 1 of 
Lemma 9.23 

FTLS($Z) = \ν(Ζ)θ\\1/\Μ22 = ΣΓ_ i ΗΩ*> θ, Ζ{Κ))\>/\\Θ\\1 (9-66) 

Taking the expected value of (9-66) gives (9-20) with νΡ(θ) = E{KTLS(0,Z)}/F, and 

E {vF{0, Nz)} = I erCj9/\\e\\l = ± £ £ - , <χ2(Ω„ θ)/\\θ\\2
2 (9-67) 

where σ^Ω^, Θ) is defined in (9-35) and where 

Cj = E U£(Nzyn(Nz)} = E {Re(j»(Nz)j(Nz))} with j(Nz) = J(Z) - J(Z0) (9-68) 

is the column covariance matrix of jTG(Nz) (see Appendix 9.1). Note that j{Nz)*J{Nz) for 
model (9-10). Applying quick analysis tool number 2 (see Section 9.5) to (9-67) shows that 
the total least squares estimator #TLS(Z) is consistent if Cj is proportional to I„0: 
Cj = σ%6. 

Like the LS estimate, the total least squares solution can be improved by adding an ap-
propriate frequency-dependent weighting. The TLS version of (9-38) is found by making the 
choice C = Ι„θ and 

W = diag(^(Ql5 0O-1)), W(Q2, θ«-% ..., W(QF, 0Í'-1))) (9-69) 

with W(Q¿, 6*'-1)) e R, in (9-64) (proof: see Appendix 9.J). The weighted total least 
squares solution is calculated as the right singular vector corresponding to the smallest singu-
lar value of WRQ Jre(Z). 
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9.10.3 Generalized Total Least Squares 

The total least squares estimator (9-65) is inconsistent because the column covariance 
matrix Cj (9-68) is different from σ2Ι„θ (see Section 9.10.2). Taking as right weighting C a 
square root of Cj 

C = Clj/2 such that CTC = Cj (9-70) 

(see Section 15.4.4), then the column covariance matrix of jTQ(Nz)C~l, with 
j(Nz) = J(Z)-J(Z0), becomes 

HC-Tj£{Nz)UNz)C-^ = C-TCjC-t = I„e (9-71) 

It shows that the total least squares estimator can be made consistent by an appropriate choice 
of the right weighting matrix C. Note that the calculation of C requires knowledge of the 
noise (co)variances (Assumption 9.5). 

Putting W = IF and C = C)11 in (9-64) gives the generalized total least squares 
(GTLS) estimate #GTLS(Z). According to equivalence 1 of Lemma 9.23, #GTLS(Z) is the 
minimizer of 

ΣΓ Mnhe9z(k))\2 

^ W z) = C Í — — <9-72> 

with a2(Qh Θ) = var(e(Q¿, Θ, Nz(k))) (see (9-35)) and e(Qh 0, Z{k)) the equation error 
(9-9) or (9-10) (proof: see Appendix 9.J). In Swevers et al. (1992) the generalized total least 
squares method was applied for the first time to identify discrete-time models from noisy 
input-output measurements ((9-72) with equation error (9-9) and Ω = z*1). Due to the equal 
weighting of the residuals e(Qh Θ, Z(k)) over all frequencies in (9-72), the GTLS estimate 
suffers from the same problem as the LS and TLS estimates: it overemphasizes the high-
frequency errors. Although this effect is not apparent in the second-order simulation example 
(see Figure 9-4), it is visible on more complex systems (see Figure 9-8). 

Because KGTLS(0,Z) is quadratic-in-the-measurements Z, Theorem 9.21, with 
VF(0,Z) = VGTLS(0,Z), is valid for ^GTLS(Z). Due to the denominator in (9-72), the ex-
pression for the limit cost V*(0) in property 5 is somewhat more complicated (see Exercise 
9.6). Taking the expected value of (9-72) gives (9-20) with 

E{vF(0,Z)} = 1 (9-73) 

As E{vF(#,Z)} is independent of #, the generalized total least squares estimate ^GTLS(Z) is 
consistent, and ¿?GTLS(Z0), #*GTLS are the noiseless solutions when model errors are present 
(apply quick analysis tools number 2 and 3 of Section 9.5). From (9-72), it follows that 
VGTLS(Á9,Z) = KGTLS(0,Z) so that ^GTLS(Z) is independent of the particular, chosen con-
straint ai = 1, b¡ = 1, or ||0||| = 1 (quick tool number 4). See Table 9-5 for an overview 
of the properties of the GTLS estimator. 

To deemphasize the high frequency errors in (9-72), a left weighting matrix W should 
be added, and at the same time, to keep the consistency, the right weighting C should be 
adapted. For example, the choice, 
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W = d i a g ^ O ^ , W(Q2), ..., W(QF)) with W(Qk) e R (9-74) 

C = C#j such that CTC = CWJ = E{Re((Wj(Nz)nWj(Nz)))} (9-75) 

in (9-64), with CWJ the column covariance matrix of WRJK(NZ) (see (9-68)), gives the fol-
lowing weighted generalized total least squares cost function: 

YZ„xw\nMW*m2
 (9 m 

KWGTLS(-6'.Z) - — = ^ ; v*-it>) 

(see Appendix 9.J). Although the weight ^(Ω^) does not affect the consistency of the 
weighted generalized total least squares estimate #WGTLS(Z), it can seriously influence its 
uncertainty. A motivated choice will be presented in Section 9.12.3. Apart from this effect, 
#WGTLS(Z) has the same asymptotic properties as #GTLS(Z)· The estimate #WGTLS(2) is cal-
culated as the generalized right singular vector corresponding to the smallest generalized sin-
gular value of the matrix pair (WRQJK(Z), C\j^). Note that the column covariance matrix 
CWJ in (9-75) is singular under Assumption 9.20(i) or 9.20(ii) (see Appendix 9.K). 

9.11 MAXIMUM LIKELIHOOD 

9.11.1 The Maximum Likelihood Solution 

To construct the maximum likelihood solution, starting from the frequency domain data 
(9-1) or (9-2), we need the probability density function (pdf) of the frequency domain errors 
Nz(k) = [NY(k) Njj(k)Y, k = 1,2, . . . ,F . For a frequency domain experiment Nz(k) is 

independent over k (Assumption 9.4), while for a time domain experiment Nz(k) is asymp-
totically (F -> oo) independent over k and circular complex normally distributed (see Sec-
tions 9.6.1 and 16.16). Therefore, it is reasonable to construct the maximum likelihood (ML) 
solution under the assumption that Nz(k) is independent (over k) circular complex normally 
distributed with known covariance matrix (Assumptions 9.5, 9.18, and 9.19). We also assume 
that the true excitation U0(k) and, hence, also the true response Y0(k) are deterministic (As-
sumption 9.19). 

Because the true input U0(k) and output Y0(k) DFT spectra in (9-1) are unknown, they 
should be estimated and parameterized as Up(k), Yp(k). The unknown parameters in the 
errors-in-variables approach are, hence, the unknown input Up(k) and output Yp(k) DFT 
spectra (4F real numbers) and the model parameters θ {ηθ real numbers). These parameters 
are related to each other by the model equations 

β(Ω„ Θ, Zp(k)) = 0 * = 1, 2, ..., F (9-77) 

with e(Qh 9,Z(k)) the equation error (9-9) or (9-10) {IF real equations); thus, the total 
number of free parameters equals 2F+ne. This should be compared with the number of 
measured input U(k) and output Y(k) spectra (4F real numbers), which gives a redundancy 
of IF- ηθ. It shows that increasing F will (most probably) give more information about Θ 
but not about Up(k) and Yp(k). Indeed, four new real parameters are added for each fre-
quency. 

Under Assumptions 9.5, 9.18, and 9.19 the negative log-likelihood function is 
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-ln/„z(Z,Zp,0) = ( Z - Z p ) " Q z ( Z - Z p ) + c 

CNz = diag(Cov(iVz(l)), Cov(#z(2)),..., Cow(Nz(F))) ( 9 " ? 8 ) 

with + the Moore-Penrose pseudoinverse and c a constant, independent of Z and Θ (see 
Appendix 9.L). (9-78) should be minimized w.r.t. Zp and θ subject to the constraints (9-77). 
This constrained minimization problem can be solved using Lagrange multipliers ^ e C f 

(Z-Zp)»C+
Nz(Z-Zp) + Re(A"e(3 Zp)) (9-79) 

Elimination of Zp in (9-79) gives the maximum likelihood cost function 

ν^ζ) = τι:':1{ςϊ^
λ (9-80) 

(see Appendix 9.L) with e(£lh 0, Z(k)) the equation error (9-9) or (9-10) and σ^Ω^, Θ) the 
variance of the equation error where the measurements Z have been replaced by the noise on 
the measurements Nz; see (9-35). If DC (Ω0) and Nyquist (Ω^/ 2) are present in the data, 
then 

1 [<Ω0, Θ, Z(0))|2 + i \β(ΩΝ/2, θ, Ζ(Ν/2))\* 

2 σ2(Ω0, Θ) 2 σϋαΝ/29 θ) 

should be added to the cost function (9-80) (see Appendix 9.L). Dividing the numerator and 
denominator of each term in the sum (9-80) by ^(Ω^, θ)\2 gives 

^ 2 5 " 2 * " a¡(€lhff)
 (9"82) 

with Oy(ilh Θ) the variance of the output error, where the measurements Z have been re-
placed by the noise on the measurements Nz; see (9-45). Under this form, it is suitable for 
any parameterization of the transfer function model (see Sections 6.2 and 6.3). Cost functions 
(9-80) and (9-82) can also be written as 

>W«Z) = X L ! \*nh Θ, Z(k))\2 (9-83) 

where e(Qh Θ, Z(k)) are the respective weighted residuals, 

e(nh 0, Z(k)) = e(Qh Θ, Z(k))/ae{ilh Θ) (9-84) 

s{ilh Θ, Z(k)) = (Y(k) - 7(Ω„ Θ))/aY(Qh Θ) (9-85) 

with var(¿^¿, Θ, Nz(k))) = 1. The maximum likelihood estimate #ML(Z) is the minimizer 
of (9-83) (see Appendix 9.L, Section 9.L.4 for the numerical implementation). 
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Using #ML(Z), the maximum likelihood estimates C/ML(&) and ?ML(£) of the input 
and output DFT spectra can be calculated, namely 

Yuúk) = Y(k) - (a¡{h)A{Clh Θ) - a^(k)B(Clh Θ)) » : 

e(Qk,e,Z(k)) 
(9-86) 

UML(k) = [ / ( ^ - ( ^ ( ^ ( Ω , , ^ - σ ^ ^ ί Ω , , ^ ) ) 
of(n*,tf) 

with # = #ML(Z) (see Appendix 9.L). If the input is known (a¿(k) = 0 and σγν(Κ) = 0), 
then (9-86) reduces to 

Ymlk) = G(nkJML(Z))U0(k) (+TG(QkJML(Z))) 
(9-87) 

Uudk) = U0(k) 

and the ML estimate FML(£) is nothing other than the output predicted by the model. 

9.11.2 Discussion 

The maximum likelihood solution (9-83) weights the equation or output error at each 
frequency Ω^ with its measurement uncertainty, so that frequency bands with high-quality 
measurements (a^k) and σ^{Κ) are "small") contribute more to the ML cost than frequency 
bands with poor-quality measurements (afá) and σ^(Κ) are "large"). Hence, in a natural 
way, the ML cost gives much confidence to accurate measurements while it rejects noisy 
measurements. Inspection of the variance of the output error (9-45) leads to the following ob-
servations: 

(i) In the uncorrelated case (a^ik) = 0) the relative importance of the input distur-
bance w.r.t. the output disturbance is given by the model-dependent ratio 

\<KCi»0)\>o*(k) ( 9_g 8 ) 

tf(k) 
(ii) The significance of the correlation between the input and output disturbances is 

assessed by the model-dependent ratio 

= - 2 R e ( ^ ) G ( ^ ) 
cfik) + \G(ahQ\*o*{k) 

(iii) If the measurement errors MY{k) and Mv{k) in Figure 9-3 are uncorrelated, then 
the sign of p(k) in (9-89) determines the behavior of the generator noise Ng(k). If 
p(k) < 0, then the variance σ^Ω^, Θ) (see (9-45)) is decreased w.r.t. the uncorre-
lated case (ayjj(k) = 0), which means that N (k) contributes constructively to 
the excitation signal U0(k) + Ng(k) at frequency Ω^. If p(k) > 0, then the vari-
ance σγ(Ω^ Θ) is increased w.r.t. the uncorrelated case, which means that N (k) 
acts as a disturbing noise source at frequency Q¿. 

If the Assumptions 9.5, 9.18, and 9.19 made to construct (9-83) are not fulfilled, for ex-
ample, the errors Nz(k) are not normally distributed, then (9-83) is no longer the maximum 
likelihood solution of the problem. The same is true if the excitation is not deterministic. If 
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the errors Nz(k) are non-Gaussian, independent (over £), circular complex distributed ran-
dom variables, then (9-83) is a Markov estimator (see Section 19.2.2), for which all the 
results of Chapter 19 apply. If the errors are not circular complex distributed, 
i{Nz(k)Nz(k)} * 0 , then Co\(Nz(k)) does not contain all the information included in 
Cov((Nz(k))TQ), and (9-83) is no longer the Markov solution of the problem (see Exercise 
9.7, and Section 19.2). In that case (9-83) is just a weighted nonlinear least squares solution. 
With some misuse of terminology #ML(Z) will, independent of the true noise properties, de-
note the minimizer of (9-83). 

9.11.3 Asymptotic Properties 

The general maximum likelihood properties listed in Section 1.5.3 are not valid for the 
maximum likelihood solution (9-83) of the errors-in-variables problem. Indeed, they have 
been shown under the assumption that the number of estimated parameters does not increase 
with the amount of data, while the number of free parameters in the errors-in-variables prob-
lem is IF + ηθ and increases with the number of frequencies F. Therefore, even under the 
ideal Assumptions 9.5, 9.18, and 9.19, the consistency, asymptotic normality, and asymptotic 
efficiency still have to be proved, and it is not self-evident at all that the ML solution (9-83) 
will have nice asymptotic (F-> oo) properties. We will first study the properties of #ML(Z) 
under less restrictive noise assumptions than those made to construct the ML solution. 

Because KML(#,Z) is quadratic-in-the-measurements Z, Theorem 9.21, with 
VF(0,Z) = FML(#,Z)/F, is valid for #ML(Z)· Taking the expected value of (9-83) gives 
(9-20) with 

E{vF(0,Z)} = 1 (9-90) 

It shows that #ML(Z) is consistent and, if there are model errors, that 0ML(ZO)> &ML a r e m e 

noiseless solutions (apply quick analysis tools number 2 and 3 of Section 9.5). The noiseless 
solutions are obtained by decreasing the input and output noise levels simultaneously to zero 
while maintaining the ratios a$(k)/a¿(k) and a^k)/ a¿(k) constant (see quick tool num-
ber 3). Changing the ratios a$(k)/a¿(k) and σ^ν{Κ)/ σ^(Κ) introduces a frequency-depen-
dent modification of σ^Ω^, Θ) or σ^Ω^, Θ) in the cost function (9-83) and, hence, changes 
the noiseless solutions. We also have VML(ÁQZ) = VML(0,Z) (see (9-83)) so that #ML(Z) 
is independent of the particular constraint chosen, for example, a¡ = 1, bl: = 1, or 
\\e\\j = 1 (quick tool number 4). We conclude that #ML(Z) is, in general, consistent and 
asymptotically normally distributed. From property 8 of Theorem 9.21, it follows that 
#ML(Z) is, in general, inefficient. It is asymptotically efficient only if the input-output distur-
bances stem from one noncoherent noise source (see Assumption 9.20). 

It can be seen from (9-86) that the estimates £/ML(£) and 7ML(£) of the input and out-
put DFT spectra are in general inconsistent, even if OML(Z) is consistent. This can easily be 
understood as follows: making more measurements (increasing F) will not increase the 
knowledge of the input and output DFT spectra at one particular frequency (no noise averag-
ing effect occurs). Because they are inconsistent, it makes no sense to calculate, for example, 
an "improved" frequency response function estimate using Í/ML(£) and 7ML(£). If the input 
is known and #ML(Z) is consistent, then FML(£) is consistent (see (9-87)). Similarly, if the 
output is known and #ML(Z) is consistent, then £/ML(£) is consistent. 

As the properties of #ML(Z) are also valid under the more restrictive Assumptions 9.5, 
9.18, and 9.19, it follows from Theorem 9.21 that the maximum likelihood estimator ((9-83) 
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with Assumptions 9.5, 9.18, and 9.19) is consistent and asymptotically normally distributed 
but that it is not asymptotically efficient (note the difference from the general maximum like-
lihood properties of Section 1.5.3). An inefficiency term is present; it tends to zero as the 
noise level υ tends to zero 

Cov(^(Z)) = Fi-\do)(I„ff+0(u)) 

* * * > = 2Reii^H i^HJ 
with Fi(0o) the Fisher information matrix (see Appendix 9.E —asymptotic efficiency). For 
errors Nz with an even pdf, the deviation in (9-91) is an 0(υ2). An explicit expression for 
the inefficiency term can be found in Pintelon and Hong (2007), where it is shown that the 
deviation from the Cramér-Rao lower bound is important only if both the input and output 
SNRs are low (< 3 dB) in certain frequency bands, and if at those frequencies the input-out-
put errors are weakly correlated. Hence, in practice the inefficiency term will be neglected 
when calculating the covariance matrix of the estimates (see Section 9.11.4). The ML estima-
tor is asymptotically efficient if only one noncoherent disturbing noise source is present 
(Theorem 9.21). This corresponds to the case where the total number of estimated parameters 
does not increase with F (see Appendix 9.M), thus the general maximum likelihood proper-
ties of Section 1.5.3 are valid. Note that the consistency and asymptotic normality properties 
of the ML estimator ((9-83) with Assumptions 9.5, 9.18, and 9.19) have been shown in Theo-
rem 9.21 under much less restrictive noise assumptions than those made to construct the ML 
solution. The errors Nz(k) may be non-Gaussian, correlated over the frequencies k, and non-
circular complex Έ {Nz(k)N£(k)} Φ 0. It shows the robustness of the consistency and as-
ymptotic normality properties of the ML estimator w.r.t. Assumptions 9.5, 9.18, and 9.19. See 
Table 9-5 for an overview of the properties of the ML estimator. 

9.11.4 Calculation of Uncertainty Bounds 

According to property 3 of Theorem 9.21, the covariance matrix of the truncated esti-
mator &ML(Z) (see (9-25)) is asymptotically (F-> oo) given by expression (9-27) 

Cov(0ML(Z)) = Cov(^(Z))(/„9+0(F-i«)) (9-92) 

(see Theorem 17.30). Expression (9-27) for Cow(S0(Z)) is not really tractable because it re-
quires, for example, the third- and fourth-order moments of the noise, which are mostly un-
known. An approximation for "small" model errors (μ -> 0) and "large" signal-to-noise 
ratios (L>—» 0) can be calculated. Applying quick tool number 6 of Section 9.5 to (9-27) 
yields 

Cov(<yZ)) = €θ{Ιη+0{υ) + 0{μ) + 0{μ^υ^)λ{Ζϋ)) 

Ca = E·̂  2Re( 
δε(θ,Ζ0) 

θθΜι(Ζ0), 

δε(θ, Ζ0) 
<3#ML(Z0), 

(9-93) 
u20(F- ') 

where λ(Ζ0) = 1 for random Z0 and λ(Ζ0) = 0 for deterministic Z0 (see Exercise 19.10). 
If model errors are present (μφ 0), then the uncertainty of the estimated model parameters 
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(9-93) does not decrease to zero for random excitations (λ(Ζ0) = 1) as the noise level υ 
tends to zero. To calculate (9-93) we need the true observations Z0 and the minimizer 
^ML(ZQ) of the expected value of the cost function, which are not available. An approxima-
tion is calculated by replacing Z0 by Z and 6*ML(Z0) by #ML(Z), giving 

Cov(0ML(Z))« 2 R e ( f M ^ f i M ^ 
^ M L ( 2 T KSeuAZ)> 

(9-94) 

Note that the expression between brackets in (9-94) equals, within a factor of 2, the matrix of 
the normal equation in the last Newton-Gauss step (9-17). Together with property 4 of Theo-
rem 9.21 and the results of Section 16.2, (9-94) allows the calculation of uncertainty regions 
with a given confidence level for any model-related quantity (see also Section 19.4.7). 

9.12 APPROXIMATE MAXIMUM LIKELIHOOD 

9.12.1 Introduction 

Compared with the maximum likelihood solution, the iterative weighted linear least 
squares (IWLS) and weighted generalized total least squares (WGTLS) estimators have a big 
advantage as global minimizers. Their noise sensitivity can, however, be poor. The basic idea 
of this section is to construct estimators that combine the global minimization properties of 
the IWLS and WGTLS estimators with the good statistical properties of the ML estimator. 
The key to the solution of this problem is an appropriate choice of the frequency-dependent 
weighting. Comparing the IWLS and WGTLS cost functions (9-38) and (9-76) with the max-
imum likelihood solution (9-80) suggests that the "optimal" weighting is ^(Ω^) = 
a~l(Qk, Θ). Because Θ is unknown, it should be reconstructed iteratively as 

mnh #'-»)) = σ--'(Ω„ m~ ») (9-95) 

The weighting (9-95) can even be relaxed as in (9-39) 

W(£lh # ' - D) = σΤ(Ω^ 0C-D) with r e [0, 1 ] (9-96) 

Special cases are no weighting, r = 0, and "full" weighting, r = 1. 
Just as in Sections 9.8 and 9.10, the estimators of this section require that the plant 

transfer function G(Q,0) and the transient term Τα(Ω,θ) are parameterized as rational 
forms £(Ω, Θ)/Α(Ω, Θ) (see (6-20), (6-25)) and /(Ω, Θ)/Α(Ω, Θ) (see (6-35), (6-38)), re-
spectively. 

9.12.2 Iterative Quadratic Maximum Likelihood 

Making the choice (9-96) in the IWLS cost function (9-38) gives the iterative quadratic 
maximum likelihood method, 

W*-U) = E f J ^ ^ (9-97) 
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with e(Qh 0, Z(k)) the equation error (9-9) or (9-10). If convergent (00') = 00'- D for i suf-
ficiently large), the "full" IQML cost ((9-97) with r = 1) tends to the ML cost (9-80). This 
does not, however, imply that 0IQML(Z) = #ML(Z). Indeed, therefore, one needs that the de-
rivatives of both cost functions w.r.t. 0 are the same. This is not the case here so that 
#IQML(Z) ^ #ML(Z). However, because the elementwise difference between both Jacobians is 
proportional to the residual s{Cih 00-1)9 Z(k)) (9-84) (see Exercise 9.8), both estimates will 
coincide ( 0IQML(Z) « 0ML(Z)) for "sufficiently high" signal-to-noise ratios and "sufficiently 
small" modeling errors; otherwise the difference may be large. This is illustrated by the "high 
noise" simulation example of Figure 9-4 (compare IQML and ML) and the "low noise" sim-
ulation example of Figure 9-8 (compare IQML and ML). We conclude that the IQML estima-
tor (9-97) is related to the ML solution (9-80) as the IWLS estimator (9-37) to the nonlinear 
least squares solution (9-43). 

Because (9-97) is a special case of (9-38), the estimate 0IQML(Z) has the same asymp-
totic (F-»oo) properties as 0IWLS(Z) (see Section 9.8.3): 0IQML(2) is inconsistent, depends 
on the particular constraint chosen, and does not converge to a noiseless solution. See 
Table 9-5 for an overview of the properties of the IQML estimator. 

9.12.3 Bootstrapped Total Least Squares 

Making the choice (9-96) in the WGTLS estimator (9-76) gives the bootstrapped total 
least squares (BTLS) method 

F s \e(nk,0«\Z(k)f 

*Ws(0(/U) = e Vh " (9-98) 
BTLSV ) σ2(Ω^,0(Ο) ΣΙ σ^(Ω„0θ-ΐ)) 

with a2
e(£lh Θ) = var(é?(Q¿, 0, Nz(k))) (see (9-35)) and e(Qk, 0, Z(k)) the equation error 

(9-9) or (9-10). Relaxation of the weighting (r < 1) may be necessary if a lowly damped pole 
and zero are very close (relative to the spacing of the frequency grid) to each other. If conver-
gent ( # 0 = 0('~1) for i sufficiently large), the "full" BTLS cost ((9-98) with r = 1) tends 
to the ML cost (9-80). The Jacobians of both estimators are, however, different, even for 
/ —> oo, and therefore 0BTLS(Z) ^ #ML(Z)· Likewise, for IQML (see Section 9.12.2), the ele-
mentwise difference between both Jacobians is proportional to ML residual 
s(£lh 0( '- !), Z(k)) (9-84). In practice, it turns out that the difference is small for large signal-
to-noise ratios such that the bootstrapped total least squares estimate 0BTLS(Z) is mostly 
(very) close to the maximum likelihood estimate 0ML(2) (see Figure 9-4 and Section 9.15). 
The estimate 0BTLS(Z) is calculated numerically in exactly the same way as the weighted 
generalized total least squares in Section 9.10.3. 

The asymptotic (F-> oo) properties of the first step of the iterative procedure (9-98) 
can be analyzed using Theorem 9.21 and Corollary 9.22. If the initial guess 0<°) is determin-
istic, then Theorem 9.21 is valid and the bootstrapped total least squares estimate 
^BTLS(Z) = 0(1) has the same properties as 0WGTLS(Z) (see Section 9.10.3). If the choice 
0(°) = 0(Z) is made, then it is obvious that (9-98) is no longer a quadratic function of the 
measurements Z. Assuming that the initial guess 0(Z) satisfies the properties of Theorem 
9.21, for example, 0(Z) = áLS(Z) or 0(Z) = 0GTLS(Z), then Theorem 9.21 is still valid for 
^BTLS(Z) = 0(1) with three minor modifications (see Corollary 9.22). The first step of 
(9-98) can be written as 
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KBTLS(ftZ)=/F(ft0(°),Z) (9-99) 

Taking the expected value of the cost function (9-99), where 0*°) = Θ(Ζ) has been replaced 
by its limit (F->o>) value ft gives (9-20) with VF{0) = E{/F(ft ft,Z)} and 

r E{\e(Qhe,Z0(k))\i} 

^ = ^ϊο*' ̂  + l (9-100) 

Hence, the bootstrapped total least squares estimate #BTLS(Z) = #(1) is consistent, even if 
0(°) = #(Z) is inconsistent (apply quick analysis tool number 2 of Section 9.5). If the limit 
value ft does not depend on the noise level v, then #BTLS(Z0), ^*BTLS a r e m e noiseless 
solutions when there are model errors (quick analysis tool number 3). This is the case for 
0(0) = 0GTLS(Z) but not for 0(°) = 0LS(Z). From (9-98) it follows that 
KBTLS(AftZ) = FBTLS(ftZ) so that #BTLS(Z) is independent of the particular, chosen 
constraint at = 1, blf = 1, or ||0||| = 1 (quick tool number 4). Because ^ 1 ) = #BTLS(Z) 
satisfies Theorem 9.21, the same reasoning can be applied to θ^2\ and so on, showing that 
the estimates obtained in the successive iteration steps have exactly the same properties as 
#0). We conclude that the BTLS algorithm (9-98) generates consistent estimates in each 
iteration step. Hence, the iterative algorithm can be stopped at any iteration number (four iter-
ations are usually sufficient). Further iteration (hopefully) decreases the uncertainty in the 
nonasymptotic case (F^oo). In the absence of model errors, Θ(Ζ0) = θ0 or ft = θ0 for 
model (9-8) with Ω = s, it follows from Corollary 9.22 that the asymptotic (F -» oo) uncer-
tainty of ¿BTLS(Z) = #(1) with #°) = Θ(Ζ) equals that of #BTLS(Z) = #(1) with 
#(°) = ft (see Appendix 9.N). See Table 9-5 for an overview of the properties of the BTLS 
estimator. 

9.12.4 Weighted (Total) Least Squares 

The IQML and BTLS estimators need an initial guess of the model parameters to re-
construct the optimal ML weighting iteratively and, hence, are not self-starting. In this sec-
tion, a noniterative approximation of the optimal ML weighting is given that does not require 
explicit knowledge of the model parameters ft 

The approximation is constructed as follows. Taking out the factor \A(Qh θ)\ \B(Qh θ)\ 
in the ML weighting (9-35) yields 

σ^Ω,, Θ) = \A(Qh 0)\\B(Qh 0)\(a?(k)/\G(nh Θ)\ + a*(k)\G(Qh θ)\ 

-2RQ(a^(k)Qxip(-jZG(nk, Θ)))) 
(9-101) 

Replacing the unknown plant transfer function G(Qk, Θ) by the measured frequency re-
sponse function G(Qk) or Y(k)/U(k) and the factor \A(Qh θ)\ \B(Clh θ)\ by a #-indepen-
dent function f(Qk) in (9-101) gives the following approximation: 

W-\Qk) = /(Q,)[ay
2(A:)/|G(Q,)| + a¿(A:)|G(Q,)|-2Re(a7VWexp(-yZG(Q,)))] (9-102) 
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The explicit form of the function /(Ω) depends on the particular domain Ω and is given 
below (see (9-104) and (9-105)). The reader is referred to Rolain and Pintelon (1999) for the 
rationale behind the construction of/(Ω). To avoid problems of division by zero in (9-102), 
regularizaron is applied in the frequency bands where |G(Q^)| is of the order of the magni-
tude of the noise standard deviation aG(k): 

W;¡jnk) = \ k (9-103) 
regv v \w-2(Qk) otherwise 

where ε is of the order of the numerical precision of the computer. 
For continuous-time systems, Ω = s, Js9 or tmh(rRs), the function /(Ω) has the 

form 

mk) = 1(^(Ω,) |σ(Ω,) | +gnpk)/\G{ílk)\) 

gn(Q) = ( |Ω |«+ΐ -1) 2 / ( |Ω | -1 )2 

Recall that the frequency axis is scaled by coscale = median{cDl5 ω2, ..., (oF} when identify-
ing continuous-time systems (see Section 9.4), so that Ω in (9-104) represent the scaled fre-
quency (s -> s/coscale). 

For discrete-time systems, Ω = z 1 , the function/(Ω) has the form 

g(fk,J) = \cos(o>kTs) - οο5(ωΤ3)\ + ( H c o s M ) ! - 0.5| + ||cos(rot,rs)| - 0.5|)/2 

with n = max(«a, nb) + 1 and fL, fv the lower and upper frequencies of the "active" band 
of the plant. The active band [fL,fv] is defined as the largest segment of continuous fre-
quency points for which 

^ * = 1 (9-106) 
h{k) = \G(z-k>)\/ar+aT/\G(z-ki)\ 

with σ\ the mean (over the frequency) variance of the transfer function measurement G(zk
l) 

or Y(k)/U(k), 

<4 = ¿ΣΓ J ^ - 0 | < ^ + ^ - 2 R e ( - ^ ^ ) ) (9-107) 

The noise influence on h{k) in (9-106) is reduced by a running sum filter with a window 
length equal to 1% of the number of available frequency points. 
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The weighting (9-102) can be used to construct optimally weighted linear least squares 
(WLS) (9-38) or weighted generalized total least squares (WGTLS) (9-76) estimators. Be-
cause the weighting is a strong nonlinear function of the measurements Z, it is very difficult, 
if not impossible, to make precise statements about the asymptotic behavior of the WLS and 
WGTLS estimates obtained. They are inconsistent but (hopefully) lie within the attraction 
basin of the global minimum of the ML cost function. Although (9-102) may be a rough 
approximation due to the lack of knowledge about Θ, a sensible improvement of the esti-
mates w.r.t. to the unweighted case is obtained, even if the approximated and exact weight 
differ by as much as two orders of magnitudes. This low sensitivity is the key to the success 
of the proposed method. The power of the weighting is illustrated in Figure 9-9 on page 334 
for a sixth-order discrete-time system. 

9.13 INSTRUMENTAL VARIABLES 

If two or more periods of the measured time signals are available, the measurements can be 
split up into two time records, each of them containing an integer number of signal periods. 
The DFT spectra calculated using the second time record can then be used as instrumental se-
quences for the linear least squares identification, based on the DFT spectra of the first time 
record (Van den Bos, 1991). The instrumental sequences obtained are almost ideal because 
they are strongly correlated with the true unknown DFT spectra and practically uncorrelated 
with the noise of the first time record (in case of colored noise a small but nonzero correlation 
may exist between the noise of the successive signal periods). The classical instrumental 
variable equations are asymmetric in the measurements and the instrumental sequences (see 
(1-58)). They can be made symmetric if the roles of the measurements and the instrumental 
sequences are interchanged and added to the original equations. Proceeding in this way, full 
use of the complete data set (measurements and instrumental sequences) is achieved. The 
equivalent cost function of the resulting enhanced instrumental variables estimator is 

Vw(0, Z) = Σ ί _ , Re(e(Q„ Θ, ZU\k))e(Qk, Θ, Z^(k))) (9-108) 

where superscripts [1] and [2] indicate that the spectra are calculated using, respectively, 
the first and the second experiment (time record). Note that the cost function (9-108) can take 
negative values. Likewise, for the LS (9-33), TLS (9-65), and GTLS (9-72) cost functions, 
the high-frequency errors are overemphasized in (9-108). 

Although the cost function VlY(0,Z) cannot be written under the quadratic form 
(9-11), Theorem 9.21, with VF{9,Z) = Vw(0,Z)/F, is still valid for 6>w(Z) (see Appendix 
9.0). Assuming that the two experiments are independent, the expected value of (9-108) 
equals (9-20) with 

E{vF(0,Wz)} = 0 (9-109) 

Applying quick analysis tools number 2 and 3 of Section 9.5 shows that θ\γ(Ζ) is consistent 
and, when model errors are present θ\ν(Ζ0), #*IV are the noiseless solutions. From (9-108) it 
follows that Κιν(λ#,Ζ) = λ2νιγ(θ,Ζ) so that Θ\\(Ζ) depends on the particular constraint 
ai = 1 or ¿/ = 1 chosen (apply quick tool number 4). See Table 9-5 for an overview of the 
properties of the IV estimator. 

Note that the IV method lowers the bias of the corresponding LS estimates on the com-
plete data set (DFT spectra of the first and second time records put together) at the price of a 
higher variance. The mean square error of the IV estimates tends asymptotically (F -> ao) to 
zero, whereas that of the LS estimates tends asymptotically to the square of its bias. Hence, 
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the IV method will perform better than the LS method for F sufficiently large. Compare, for 
example, the IV with the LS estimates in Figure 9-4. 

9.14 SUBSPACE ALGORITHMS 

9.14.1 Model Equations 

Subspace identification methods estimate the state space representation of (9-7), 
namely 

0(ξ,Θ) = C{&H-A)-iB + D (9-110) 

where ξ = z for discrete-time systems and ξ = s for continuous-time systems. The identi-
fication procedure starts from a transformed version of the state space equations (6-18) and 
(6-19). These are constructed as follows. Assume that the input is periodic and that an integer 
number of periods of the steady-state response is observed. The discrete Fourier transform 
(DFT) of (6-18) and (6-19) then becomes 

ξΗΧ&) = AX(k) + BU(k) 

Y{k) = CX(k) + DU(k) 
(9-111) 

with X{k) the DFT of the state vector x(t). By recursive use of the second and the first equa-
tion of (9-111) we find that 

ξζΥ(Κ) = ^- ' (Ckfl;*)+ £>&£/(*)) 
= pp-y ξξ~ \CAX(k) + CBU(k) + D4kU{k)) 

(9-112) 

= CAPX(k) + (CAP-lB + CAP~2B4k + ... + CB¿%~l + D¿%)U(k) 

Writing the last equation of (9-112) for p = 0, 1, ..., r - 1 on top of each other gives 

Wr(k)Y(k) = OrX(k) + SrWr(k)U(k) (9-113) 

with 

Wr{k) = 

1 

4 

pr- 1 

,or = 

c 
CA 

CAr~\ 

and S„ 

D 0 
CB D 

CArlB CAr~3B . 

. 0 0 

. 0 0 

. CB D 

(9-114) 

Collecting (9-113) for k = 1,2, ...,F gives 

Y = O.X + S.V (9-115) 
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with 

Y = [wr(l)Y(l) Wr(2)Y(2) ... Wr{F)Y(F)\ 

U = |Vr(l) i /( l) Wr(2)U(2) ... Wr{F)U(F)\ (9-H6) 

X = [x(l) X(2) ... X(F)\ 

The complex data matrices Y and U have r rows and F columns. X is a complex na by F 
matrix, and Or and Sr are, respectively, real r by na and r by r matrices. Equation (9-115), 
with r larger than the model order na, is the basic model used in subspace identification. 

The extended observability matrix Or has the shift property 

0r[l :r-l , :]^=0r [2:r , :] (9"H7) 

which will be used in the identification procedure. Or is not unique because it depends on the 
choice of the state variables. Indeed, replacing (^, B, C, £>, X) by (TAT~l, TB, CT~l

9 

D, TX), with T an invertible matrix, in the state space equations (9-111) does not change 
the input-output transfer function (9-110) but does change Or 

Or-*OrT-x (9-118) 

Note that OrX and Sr in model equation (9-115) are invariant w.r.t. the invertible transfor-
mation T. 

For identifiability purposes we will assume that the state space realization (9-111) is 
observable, rank((9r) = na for any r > na, and controllable, 

rank([£ AB ... A«-lB]) = na (9-119) 

for any q>na. 
For noisy input-output DFT spectra, Nv{k) Φ 0 and NY{k) * 0, model (9-115) becomes 

Y = OrX + SrU + NY - SrNv (9-120) 

where NY and Nv have the same structure as Y and U in (9-116). 

9.14.2 Subspace Identification Algorithms 

Subspace identification algorithms are basically a three-step procedure. First, an esti-
mate Or of the extended observability matrix is obtained using model (9-120). This is the 
most difficult step and consists mainly of eliminating the term depending on the input and 
reducing the noise influence. Next, A and C are found as the least squares solution of the 
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overdetermined set of equations (9-117) and as the first row of Or (see (9-114)), respectively. 
Finally, B and D are found as the linear least squares solution of 

Vsm(B,D, A, C,Z) = Σ [ = , W\4k)\Y(k)-{CtfkIna-ÁyxB + D)U{kf (9-121) 

where W(£k) is a well-chosen real weighting function. 
We present two algorithms, one for discrete-time systems (ξ = z), based on McKelvey 

et al. (1996), and one for continuous-time system (ξ= s), based on Van Overschee and 
DeMoor (1996a). The numerically efficient implementation of these algorithms is due to 
Verhaegen(1994). 

Algorithm 9.24 (Subspace Algorithm for Discrete-Time Systems) 

1. Estimate Or given the data Y(k), U(k) and the noise (co)variances aY(k), 

la. Initialization: 
(i) If σ^(&)*0, replace Y(k), U(k), and aj{k) by, respectively, 

Y(k)/U(k)9 l,and a*(k) (9-54). 
(ii) If the required transfer function model is improper, na<nb, inter-

change the role of the input and output. 
(iii) Choose a value of r > na and form the matrices 

Z = Re(U) Im(U) 
Re(Y) Im(Y) 

and CY = ReiCC^) 

with C = [Wr(\)aY(\) Wr(2)aY(2) ... Wr(F)aY(F)] and where U and 
Y are defined in (9-116), and Wr(k) as in (9-114) with ξ = z. 

lb. Elimination of the input term in (9-120): calculate the QR factorization of 
ZT, ZT = QR, or Z = RTQT, 

Z = 
A 1 2 A 2 2 

QV 

Ql\ 

where Rtj are r by r blocks of the upper triangular matrix R. 

lc. Reduction of the noise influence in (9-120): calculate the singular value de-
composition of CY1/2^22> 

C-l/2R¡2 = UIV7 

where C| / 2 is a square root of CY (see Section 15.4.4), and estimate Or as 
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2. Estimate A and C, given the estimate Or\ solve the shift property (9-117) in 
least squares sense and select the first row of Or 

A = Or[l:r-\,:]Or[2:r,:] a n d C = 0 r [ l , : ] 

with + the Moore-Penrose pseudoinverse (see Section 15.5). 
3. Estimated and D, given the estimates A and C: minimize (9-121) w.r.t. B and 

D with W(zk) = l/aY(k). 

Proof. See Appendix 9.R. D 

One could use Algorithm 9.24 with ξ = s for continuous-time systems. This works 
reasonably well for small values of r. However, for larger values, the matrix Z in Algorithm 
9.24 becomes ill conditioned, resulting in poor estimates. This problem is solved by introduc-
ing two scalar orthogonal polynomial bases that orthogonalize, respectively, the first r rows 
of Z and the last r rows of Z. It can be shown that there are no other two scalar polynomial 
bases that result in a smaller condition number of Z (Rolain et al., 1995). The final algorithm 
is also a three-step procedure. First, a generalized extended observability matrix Or± is esti-
mated. This matrix has a generalized shift structure that is used to estimate A. Next, A and 
C are estimated using Or±. Finally, B and D are the linear least squares solution of 
(9-121). 

Algorithm 9.25 (Subspace Algorithm for Continuous-Time Systems) 

1. Estimate Orl given the data Y(k), U(k) and the noise (co)variances aj{k), 
o%(k), tfvik): 
la. Initialization: 

(i) If σ^(£)*0, replace Y(k), U(k), and ay(k) by, respectively, 
Y(k)/U(k), l,and a£(k) (9-54). 

(ii) If the required transfer function model is improper na<nb, interchange 
the role of the input and output. 

(iii) Choose a value of r > na and normalize the frequencies sk with 
^ c a l e = m e d i a n { C O ΐ 5 ω 2 , . . . , < D F } ( ^ - > ^ / ω s c a l e ) ' 

lb. Orthogonalization of the output data: calculate the r by F matrix Y± as follows: 
initialization: 

Χΐ[1,:] = Y [ 1 , : ] / « 1 w i t h al = ||Y[1,:] ||2 

Υ±[2,:]=Υ±[1,:]β/α2 W Í t h a2 = | Y 1 [ 1 , : ] D s \ \ 2 

recursion: for n = 3 to r 

Y±[n,:] = ( Υ 1 [ Λ - 1 , : ] ^ + αι.-1Υ1[»-2,:])/«!. W Í t h 

an = | Υ 1 [ « - 1 , : ] ^ + αη-\Υ±[η-2,:]\\2 
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where 7 [ 1 : ] = [7(1) 7(2) ... Y(F)] and Ds = d i a g ^ , ^ , ...,sF). 
lc. Orthogonalization of the input data: perform the same calculation as in step 

lb, but starting from U[1?:] = [U(l) U{2) ... U(F)]. The result is an r 
by F matrix U± and numbers βη, n = 1, 2, ..., r. 

Id. Form the following matrices: 

Z± = 
Re(U±) Im(U±) 
Re(Y±) Im(Y±) 

andCY± = Re(C±Cf) 

where C± is calculated by starting from Ct l :] = [σγ(1) oy(2) ... aY{F)], 
initialization: 

C l [ l , : ] = C[\,:]/al a n d C - L [ 2 , : ] = C l [ l , :]Ds/a2 

recursion: for n = 3 to r 

Cj-[/i,:] = ^l[n-\t:]^s^an + an-\/anC±[n-2,:] 

le. Elimination of the input term: calculate the QR factorization of Z j , 
Z[ = QR or, 

RT
n 0 

A12 A22 

fill 

where 7?̂  are r by r blocks of the upper triangular matrix /?. 
If. Reduction of the noise influence: calculate the singular value decomposition 

of Cy i?22» 

where CY
/2 is a square root of CY (see Section 15.4.4), and estimate Or± as 

Or± = C]/*U[:tl:na] 

2. Estimated and C given the estimate Or±: solve the generalized shift property in 
least squares sense and select the first row of Or± 

A = [JD1Óri[i:r_i,:]]+[Ór_L[2:r,:]-¿>] and C = axÓri\\t<\ 

with + the Moore-Penrose pseudoinverse (see Section 15.5) and 

b = 
0 

D,Ox 2^r_L[l:r-2,:] 

Dx = diag(l/or2, 1/#3> ···> l / # r ) 
D2 = dmg(a2/a3, a3/a4, ..., ar_l/ar) 
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3. Estimate B and D, given the estimates A and C: minimize (9-121) w.r.t. B and 
D with W(sk) = 1/σΓ(£). 

4. Denormalization of the estimates: multiply A and C by ooscale. 

Proof. See Appendix 9.S. D 

Algorithm 9.25 differs in three ways from that described in Van Overschee and 
De Moor (1996a). First, the recursions in steps lb and lc are performed on rows with unit 2-
norm. Next, the orthogonal projection is calculated via a QR factorization (see step le of Al-
gorithm 9.25). Finally, one additional equation is used to estimate A (see step 2 of Algorithm 
9.25). While the first two modifications improve the numerical stability of the algorithm, the 
third modification decreases the estimation error. 

9.14.3 Stochastic Properties 

The persistence-of-excitation condition is somewhat different for subspace algorithms 
compared with algorithms minimizing a cost function of the form (9-11). Therefore, we must 
add the following assumptions to Section 9.6.1. 

Assumption 9.26 (Persistence of Excitation): There exists an F0 such that for any 
F>F0, oo included, Re(\J\JH/F) > clr with 0 < c < oo and c independent of F. 

Assumption 9.27 (Identifiability Condition): There exists an F0 such that for any 
F> F0, oo included, rank(Y0

reIT) > na. 

Note that under Assumptions 9.14 (distinct frequencies) and 9.16 (no model errors), 
Assumption 9.7 for (9-121) and Assumption 9.27 are fulfilled, if and only if {A, C) and 
{A, B) in (9-110) are, respectively, observable and controllable (see Appendix 9.R). 

Theorem 9.28 (Asymptotic Properties 0SUB(£)): Consider model (9-110), 
parameterized in its state space representation, and assume that the input-output data stem 
from the steady-state response of a system to a periodic excitation, observed during an integer 
number of periods (time or frequency domain experiment). The estimate #SUB(Z) obtained 
via Algorithm 9.24 or Algorithm 9.25 has the following asymptotic (F -> oo) properties: 

1. Stochastic convergence: #SUB(Z) converges strongly to the noiseless solution 
&SUB (assumptions of Sections 9.6.1 and 9.6.5 and Assumptions 9.26 and 9.27). 

2. Stochastic convergence rate: #SUB(Z) converges in probability at the rate 
O (F~1/2) to #*SUB (assumptions of Sections 9.6.2 and 9.6.5 and Assumptions 
9.26 and 9.27). 

3. Consistency: #SUB(Z) converges strongly to the true solution θ0 (assumptions of 
Sections 9.6.5 and 9.6.6 and Assumptions 9.26 and 9.27). 

Proof. See Appendix 9.R and Appendix 9.S. D 

Although the subspace (SUB) estimates are strongly consistent (F—»oo) for any 
r > na + 1, with r independent of F, the finite sample properties of #SUB(Z) strongly de-
pend on the choice of r. For example, values of r close to na + 1 usually result in poor esti-
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mates. An appropriate choice of r is therefore recommended. We propose to choose r such 
that 

\Y(k)-G(QkJsvB(Z))U(k)\2 

is minimal. This optimization requires an exhaustive search for all r > na + 1 values (the cost 
function (9-122) is a craggy function of r, with many peaks and dips). In practice, we limit 
the search to the interval [1.5wfl, 6na]. However, sometimes it may be necessary to go be-
yond the upper limit 6na to find the optimum (see Section 9.15.3, modeling of a synchronous 
motor). It also turns out that the optimal value of r strongly depends on the plant and the 
noise characteristics. 

The results of the SUB estimates (Algorithm 9.25 with r = 5) on the second-order 
simulation example are shown in Figure 9-4. Note that the SUB method estimates five free 
model parameters while the other methods estimate only three free model parameters. This is 
due to the fact that the subspace algorithms cannot impose the order of the numerator polyno-
mial. See Table 9-5 for an overview of the properties of the SUB estimator. 

9.15 ILLUSTRATION AND OVERVIEW OF THE 
PROPERTIES 

The NLS-FRF (9-47), LOG (9-55), GTLS (9-72), ML (9-80), BTLS (9-98), IV (9-108), and 
SUB (see Section 9.14) estimators perform equally well on the second-order example (see 
Fig. 9-4 and Fig. 9-6). This is due to the very simple nature (low order, low amplitude dy-
namics, low frequency range, no model errors) of the simulation example. The differences 
are more apparent in the two simulation examples of this section. Two real measurement ex-
amples are also shown to illustrate an aspect that is not shown by the simulation examples: 
sensitivity to (small) model errors like unmodeled dynamics and nonlinearities. For all the 
simulation and real measurement examples, the optimal value of r in the SUB Algorithms 
9.24 and 9.25 has been selected by an exhaustive search in the interval [ 1.5n, 6n], except for 
the modeling of the electrical machine, where the search has been done in the interval 
[1.5/1, 18w]. 

9.15.1 Simulation Example 1 

The simulated plant is a fifth-order continuous-time Butterworth filter with an extra 
transmission zero at ω = 3 rad/s. The coefficients of the transfer function are given in Table 
9-2 and the amplitude and phase characteristics are shown in Figure 9-7. A data set of 
F = 100 equally distributed frequencies is generated in the band [0.05 Hz, 5 Hz] 

Y(k) = G0(sk) + NY(k) 

U{k)=\+Nu{k) 

w i t h A ^ ) and Nv{k), k = 1,2, . . . ,F , independent, zero mean, circular complex Gaussian-
distributed random variables with variance 2x10" . One hundred data sets of the type 
(9-123) are generated. For each set the LS, "full" IWLS, NLS, LOG, GTLS, ML, "full" 
IQML, and "full" BTLS estimates of model (6-20) with na = 5 and nb = 2, and the SUB 
estimate (Algorithm 9.25 with r = 20) of model (6-26) with na = 5 are calculated. Note 
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TABLE 9-2 Coefficients of the Transfer Function of the Fifth-Order 
Butterworth Filter with a Transmission Zero 

¿0 
1 

a0 

1 

0 

0.449941 

b2 

1/9 

a2 

0.101223 
a3 

1.40740e-2 
a4 

1.20939e-3 

■ ■ ¡ ¡ ^ ■ ■ ■ ■ ■ ■ ■ a 

a5 

5.19623e-5 

that the SUB estimate of model (6-26) is equivalent to that of model (6-20) with 
na = nb = 5. All estimators use the constraint bx = 0 (the zero is forced to lie on the /ω 
axis) and ||0||f = 1, except the LS, "full" IWLS, and SUB estimators. The LS and "full" 
IWLS use b0 = 1 and b{ = 0, and the SUB estimator uses no constraint at all. To perform 
a bias test, the normalized squared residuals of the mean parameter estimates are calculated 
for each set of 100 estimates of the model parameters, 

b = ((é(Z))-e0)
T(Q/R)+((¿(Z))-e0) (9-124) 

with θ0 the trae model parameters, (Θ(Ζ)) and Cg the sample mean and sample covariance 
matrix of the data set, 

Φ{Ζ)) = ^=γθ
[\Ζ) 

Ce = ^Σ^χΦ^-Ψ^Φ^-ΦΜ))1 
(9-125) 

and R the number of elements in the data set (R = 100). If Θ(Ζ) is an unbiased Gaussian 
estimate, then b is a Hotelling T2- statistic that is 

"«m^f^*-^ (9-126) 
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Figure 9-7. Fifth-order Butterworth filter with transmission zero (see Table 9-2): true 
transfer function. 
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TABLE 9-3 Bias Test on the Parameter Estimates: Unbiased if b < 15.7 (b < 23.2 for SUB) 

Estimator ¿(9-124) Result Bias Test 

biased 
unbiased 
unbiased 
unbiased 
unbiased 
unbiased 
unbiased 
unbiased 
unbiased 

distributed with ηθ = 7, the number of free model parameters, and R = 100 (see Section 
16.3). Because Θ(Ζ) is asymptotically (F-»oo) normally distributed (see Theorem 9.21, 
property 4), it is possible to perform a bias test on the estimates with a given confidence level. 
For example, the 95% percentile of (9-126) equals 15.7 for ηθ = 7 (all estimates except 
SUB) and R = 100 and 23.2 for ηθ = 11 (SUB) and R = 100. Hence, with 95% confi-
dence, the estimates are unbiased if b < 15.7 (b < 23.2 for SUB), otherwise they are biased. 
According to Table 9-3, all the estimates, except the LS, are unbiased. 

Using each set of 100 estimates of the model parameters, we can also calculate the rel-
ative mean square error of the transfer function estimate 

RMSE(G(5„ Θ{Ζ))) * I ¿ _ , \(G{Sk, ¿[r](Z)) - G0(^))/G0(5,) |2 (9-127) 

within an error of 1 dB and compare it with the Cramér-Rao lower bound on the relative 
transfer function error (G(sk, Θ{Ζ)) - G0(sk))/G0(sk). The results are shown in Figure 9-8. It 
follows that BTLS has ML efficiency and that both estimators reach the Cramér-Rao lower 
bound. Both LS and GTLS estimators perform equally well; however, the mean square error 
(MSE) of the LS estimates is due to the bias (see Table 9-3) whereas that of the GTLS esti-
mates is due to the variance (see Table 9-3). The bad performance of the LS and GTLS esti-
mates is due to their inappropriate frequency weighting. The LOG, NLS, and SUB estimators 
deteriorate somewhat in efficiency w.r.t. the ML and BTLS estimates, but their efficiency is 
still much better than that of the GTLS method. Because of the high signal-to-noise ratio and 
the absence of model errors, the IWLS estimator performs as well as the NLS estimator, and 
the IQML and BTLS estimates coincide with the ML estimates. 

9.15.2 Simulation Example 2 

The goal of this simulation example is to compare different candidate starting value al-
gorithms: LS (9-33), GTLS (9-72), WLS (9-38), and WGTLS (9-76) with weighting (9-102) 
and SUB (Algorithm 9.24 with r = 32). A sixth-order inverse Chebyshev discrete-time fil-
ter with a stopband attenuation of 40 dB and a cutoff frequency of 0.05 is selected as test ex-
ample (see Figure 9-9a). The discrete-time system is excited at F = 300 equally spaced fre-
quencies in the band [0, 0.5]^, with unit amplitude. Next, independent (over the frequency), 
zero mean, mutually uncorrelated (covar(Nr(&), Nv{k)) = 0), circular complex uniformly 
distributed noise is added to both the input and output spectra with variances 
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Figure 9-8. Fifth-order simulation example (see Figure 9-7 and Table 9-2): comparison 
of the (relative) mean square error (R)MSE of the transfer function estimate 
with the corresponding Cramér-Rao lower bound. 

var(AV(¿)) = 1 xlO 6 + 9x10 4|G0 varCiVjXit)) = 0.161 (9-128) 

The noisy frequency response function G(z^1) = Y(k)/U(k) is shown in Figure 9-9(b). The 
GTLS, WGTLS, and ML estimates are calculated using the constraint ||0||| = 1, while the 
LS and WLS estimates use the constraint a0 = 1. No constraint is used in the SUB estimate. 
Figure 9-9(c) and (d) show the estimated transfer functions in the band [0,0.25]^, and 
Table 9-4 gives the value of the maximum likelihood cost function for the different solutions. 
Starting from the LS and GTLS solutions (see Figure 9-9(c)) the ML estimate gets stuck in a 
local minimum (see Figure 9-9(d) and Table 9-4). This is due to the fact that the LS and 
GTLS solutions place a transmission zero, completely out of the frequency band of interest. 
The two ML solutions are almost indistinguishable in the band [0, 0.25]^ but differ some-
what outside that band. Starting from the WLS, WGTLS, and SUB solutions (see Figure 
9-9(c)), we find the global minimum of the ML cost function (see Figure 9-9(d) and Table 
9-4). Although the WLS solution has a higher ML cost than the GTLS solution, it lies within 
the attraction basin of the global minimum of the ML estimator. This shows that it may be un-
safe to select starting values based on the value of the ML cost. 

TABLE 9-4 Maximum Likelihood (ML) Cost Function of the Starting Value Algorithms and 
the Corresponding ML Solution. Least squares: LS and ML (LS); generalized total 
least squares: GTLS and ML (GTLS); weighted least squares: WLS and ML 
(WLS); and weighted generalized total least squares: WGTLS and ML (WGTLS). 

Estimator 
ML cost function 
Estimator (starting value) 

ML cost function 

LS 
2140 
ML 
(LS) 
436 

GTLS 
497 
ML 

(GTLS) 
431 

WLS 
1770 
ML 

(WLS) 
317 

WGTLS 
354 
ML 

(WGTLS) 
317 

SUB 
333 
ML 

(SUB) 
317 
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Figure 9-9. Second simulation example, (a) True frequency response function (bold line), 
maximum likelihood weighting (9-35) evaluated in θ0 (solid line), and weighting 
(9-102) (dots); (b) noisy frequency response function; (c) LS, GTLS, WLS, WGTLS, 
and SUB solutions; (d) ML estimates starting from the solutions shown in (c). 

9.15.3 Real Measurement Examples 

Two measurement examples that illustrate the properties of the estimators particularly 
well are shown here. The norm constraint ||#||| = 1 has been used in both examples for the 
NLS-FRF, LOG, GTLS, ML, IQML, and "full" BTLS estimators, and for the LS and IV esti-
mators ¿0 = 1 in the #-axis impedance model and a0 = 1 in the flight flutter data model. 
No constraint is used in the SUB estimates. Because in both examples an improper model 
(nb > na) is selected, the SUB estimates of model (6-26) are calculated using l/G(sk) in-
stead of G(sk). The optimal value of r in the SUB Algorithm 9.25 is 61 and 35 for, respec-
tively, the first and second examples. In the first measurement example the "full" IQML 
method was used, while in the second example it was necessary to relax the weighting of the 
IQML method (r = 0.5). For each measurement example, two sets of measured input and 
output spectra were available. 

In the first measurement example (see Figures 9-10 and 9-11), the g-axis impedance of 
a 3.4 MW synchronous motor is modeled with a rational form in s of order nb = 4 over 
na = 3. The measurements were carried out using a multisine excitation of 1000 A consist-
ing of F = 100 frequencies logarithmically spaced in the band [12 mHz, 12 Hz]. The non-
parametric noise model was obtained by analyzing M = 30 periods of the input and output 
signals. Note the particularly large dynamic range in both the amplitude and frequency band. 
All estimators use the averaged input-output spectra, X(k) = M~lY^= x)6-m\k) with X = U 
and 7, except the IV estimator, which uses the two sets, Xx(k) = lAt^^J^^k) and 
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X2(k) = 2M-^=M/2 + \^m](k) with X = U and Y. As expected, the LS, GTLS, and IV 
estimates are poor in the low-frequency range. The difference between the IQML (norm 
constraint), NLS-FRF, LOG, and ML estimates is almost indistinguishable. Referring to the 
large amplitude dynamics, the performance of the NLS-FRF estimator is remarkable. Figure 
9-11 also shows the IQML solution using the constraint b0 = 1. It illustrates, again, the in-
fluence of the parameter constraint on the estimates for cost functions that are not scale 
invariant. 

^ /(Hz) 
100 

/(Hz) 
10 100 

/(Hz) 
0.01 0.1 10 100 

^ / (Hz) 
100 0.01 0.1 

80 

/ (Hz) 

/ (Hz) 

/ (Hz) 

/(Hz) 
0.01 0.1 10 100 

Figure 9-10. Comparison of the measurements (dots) and the estimates requiring no noise information (solid line) of the 
g-axis impedance of a synchronous machine (model na = 3, nb - 4). Left: amplitude, and right: phase. 
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Figure 9-11. Comparison of the measurements (dots) and the estimates requiring noise information (solid line) of the q-
axis impedance of a synchronous machine (model na = 3, nb = 4). From left to right, amplitude and 
phase. For IQML, the estimates used the constraint | 1 (solid line) and b0 = 1 (dashed line). 
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In the second measurement example (see Figures 9-12 and 9-13), the vibrations of 
the wings of an airplane are modeled with a rational form in s of order nb = 11 over 
na = 10. LMS International (Belgium) have provided us with the experimental data. The 
measurements were carried out using a burst swept-sine excitation. Three sets of input-
output signals of equal length are available. It is impossible to average the three measure-
ments because they are not synchronized. 144 frequencies lie in the frequency band of in-
terest [4 Hz, 11 Hz], giving three sets of 144 input-output DFT lines: {Y^m\k\ lAm\k)9 

150-

4 5 6 7 8 9 10 11 

Figure 9-12. Comparison of the measurements (dots) and the estimates requiring no noise information (solid line) 
of the flight flutter data (model na = 10, nb = 11). From left to right, amplitude and phase. 
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Figure 9-13. Comparison of the measurements (dots) and the estimates requiring noise information (solid line) of 
the flight flutter data (model na = 10, nb = 11). From left to right, amplitude and phase. 
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k= 1,2, ..., 144}, m = 1,2, 3. These F = 3 x 144 input-output DFT lines are used for 
all the estimators except the IV and SUB estimators. The IV method uses one set as in-
strumental sequence, while the SUB algorithm uses the FRF measurement, averaged over 
the three sets 3-l^tlt = lY^m\k)/lAm\k), k= 1,2, ...,144. The nonparametric noise 
model was obtained by analyzing the disturbing noise during the dead time in between 
consecutive bursts. Although the NLS, LOG, ML, and SUB estimates explain the mea-
surements very well, a careful analysis of the ML cost reveals the presence of small plant 
model errors (a few tenths of a dB on the amplitude of the transfer function). These small 
modeling errors account for the better performance of the LS estimates w.r.t. the GTLS es-
timates. The poor quality of the LS and IV fits is due to the bad weighting of the residuals 
in their cost functions. Because of its more appropriate weighting of the residuals, the 
IQML estimator performs better than the GTLS in both measurement examples. 

9.15.4 Overview of the Properties 

Even if an identification method is based on sound theoretical principles, it can be put 
into practice only if the normal equations (9-16) or (9-18) are numerically stable and the cor-
responding cost function can easily be minimized. A global minimization property of the pro-
cedure or easy generation of reliable starting values is highly desirable. As constraint inde-
pendence of the estimates allows the use of overparameterized models (see Chapter 20), it is 
important that the (equivalent) cost function of the identification method is scale invariant. 
Consistency and efficiency are important properties to assure that small stochastic deviations 
in the data do not result in, respectively, large systematic and large stochastic errors on the pa-
rameter estimates. Because in practice the true plant model does not often belong to the 
model set, it is desirable that the estimates are not sensitive to (small) plant modeling errors 
and that they converge to the noiseless solution. It is also important that the estimates are not 
sensitive to noise model errors, for example, incorrect noise (co)variances or noncircular 
complex noise. Table 9-5 gives an overview of these properties for some of the estimators 
discussed in the previous sections. 

(i) If the noise is circular complex and if the worst case input and output signal-to-
noise ratios are larger than 10 dB (see Section 9.9), then the nonlinear least 
squares estimator, based on frequency response function measurements (NLS-
FRF), as well as the logarithmic least squares (LOG) estimator and the subspace 
algorithms (SUB) are "practically consistent," and when there are model errors 
they converge to the "practically noiseless solution." For circular complex noise 
Nz{k) with even pdf, the biases of the NLS-FRF and LOG estimates are a func-
tion of the fourth-order moments of the noise (co)covariances. However, if the 
noise is not circular complex, then the bias is a function of the second-order mo-
ments of the noise (co)variances (see Appendix 9.T). If the input is exactly 
known, then the NLS-FRF and SUB estimators are consistent or converge to the 
noiseless solution without any approximation. 

(ii) The maximum likelihood (ML), generalized total least squares (GTLS), boot-
strapped total least squares (BTLS), and subspace (SUB) estimates cannot be con-
sistent if the wrong noise (co)variances are used. The resulting bias of the ML, 
GTLS, and BTLS estimates is proportional to the difference between the true and 
the actual noise (co)variances (see Appendix 9.T). To have a consistent ML esti-
mate, it is sufficient that the actual noise covariance matrix CVZ(*) equals the true 
noise covariance matrix CN (A:) = Cov(Nz(k)) within a frequency-dependent scal-
ing factor 
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CNz{k) =f(k)CNz(k) (9-129) 

(see Appendix 9.T). Note that the consistency proofs of the ML, GTLS, BTLS, 
and SUB estimates do not require that the noise is circular complex (see Sections 
9.10.3, 9.11, 9.12.3, and 9.14.3). Hence, the consistency property of the ML, 
GTLS, BTLS, and SUB estimates is robust w.r.t. to the circular complex noise as-
sumption. 

(iii) The efficiency of the iterative quadratic maximum likelihood (IQML) estimator 
strongly depends on the signal-to-noise ratio and on the presence of model errors. 
Its sensitivity to plant model errors is good if the parameter constraint \\θ\\1 = 1 
is used. 

(iv) BTLS converges to the noiseless solution if the limit value Θ* of the starting 
value #(°) is independent of the noise level v. 

(v) If the disturbing noise on the instrumental sequences is independent of the dis-
turbing noise on the measurements, then the instrumental variables (IV) estimator 
is consistent and, when there are plant model errors, converges to the noiseless so-
lution, irrespective of the true noise model. Otherwise, the estimate depends on 
the correlation between the disturbing noise on the instrumental sequences and the 
disturbing noise on the measurements. 

9.16 HIGH-ORDER SYSTEMS 

When identifying higher order transfer function models (9-7), (9-8) (typical ηω nb > 30) 
with the rational forms (6-20), (6-35), the condition number of the normal equations (9-18) 
can become so large that it is impossible to calculate a reliable solution within the available 
arithmetic precision. Therefore, to tackle high-order systems the numerator and denominator 
polynomials of the plant and transient models are expanded in scalar or vector orthogonal 
polynomials (6-25), (6-38), which are chosen such that they minimize (improve) the condi-
tion number. The polynomials are orthogonal w.r.t. to some inner product defined by the cost 
function and, hence, dependent on the estimator used. The whole process will be explained 
for the IWLS estimator (9-38) in Sections 9.16.1 and 9.16.2 and afterward generalized to the 
other estimators in Section 9.16.3. In what follows, we assume that the parameter constraint 
an = 1 is used. In order to simplify the notations, we will limit the discussion to transfer 
function model (9-7). Generalization of the results to model (9-8) is straightforward. 

9.16.1 Scalar Orthogonal Polynomials 

The IWLS cost function (9-38) can be written as the sum of three terms 

X _̂ w\ahea-v)\Y(k)\2\A(nk,6K»)|2 + ΣΪ-xw\ah&-ιψκ®\2\*<&*Θ°Ψ 
(9-130) 

-2Re(X^= 1 W\ah &-V)Y(k)U{k)A{ah &»)B(Clh #'>)) 

Under the identifiability conditions of Theorem 6.9 the Jacobian matrix corresponding to the 
IWLS cost function (9-38), 

J[K r](6K0, Z) = W(Qh Θ0- V)de(Qh Θ, Z{k))/d0^ (9-131) 
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where e(Qk, 99Z(k)) is given by (9-9) and θτ = [a0a{...an _lb0bl...bn ] with an = 1, 
has full rank: rank(./re) = na + nb + 1. Hence, each of the first two terms in (9-130) defines 
an inner product of scalar polynomials 

(/(Ω),ζ(Ω)), = R^=lW\nh^-^m(k)\2K^)m)) 
(9-132) 

with χ(Ω), y(Q) polynomials of order smaller than or equal to na and ¿(Ω), ζ(Ω) polyno-
mials of order smaller than or equal to nb (proof: see Lemma 15.6). Using definitions 
(9-132) and 

Α(Ω,Θ) = Σ";=ο^ΡΑΩ), Β(Ω,Θ) = ΣΙίο^Χ^) (9-133) 

the matrix M = Re{JH(^9 Z)J{0^\ Z)) of the normal equation (9-17) becomes 

M[r + na + 2^s + na + 2] = (qs(Q)9qr(Q))b r,s = 0,...,nb 

(9-134) 

The polynomials pr(ü)9 r = 0, 1, ...9na9 and qr(0.)9 r = 0, 1, ...,nb, are calculated via a 
Gram-Schmidt orthogonalization (see Section 15.11) using inner products ( , )a9 and 
( , )b9 respectively. Hence, (ps(Q)9 pr(Q)) a = S(s-r)9 (qs(Q)9 qr(Q))b = S(s-r) and 

Re(/"(6K0 Z)./(<9(0Z)) = 
CT I 

(9-135) 

It can be shown that (9-135) is best conditioned: no other scalar polynomial bases for the nu-
merator and denominator of the rational transfer function model can be found resulting in a 
better conditioned form Re(JH(^9 Z)J{0^9 Z)) (Forsythe and Strauss, 1955; Rolain et al., 
1995). The IWLS solution is calculated by not using the special structure (9-135) but by solv-
ing the overdetermined set of equations (9-18). Proceeding in this way, the solution is insen-
sitive to a loss of orthogonality among the computed basis polynomials. In Richardson and 
Formenti (1982), the scalar orthogonal polynomials were applied for the first time to improve 
the numerical conditioning of the linear least squares method ((9-130) with 
W(Qk90^~1^) = 1) in modal analysis problems ((9-33) with equation error (9-9) and 
Ω = s). 

9.16.2 Vector Orthogonal Polynomials 

It is easy to verify that the IWLS cost function (9-38) can also be written as 

k= 1 

Λ(ΩΑ, #0) 
ΊΗ 

I W -?{k)U{k) 
\_-Y(k)Ü{k) |C/(*)P _ 

A(Qk, 6K0) 
(9-136) 
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Under the identifiability conditions of Theorem 6.9, the Jacobian matrix corresponding to the 
IWLS cost function (9-38) is 

J{Kr{*%z) = w$ihw-v)de{ahe,mvdd$ [r] (9-137) 

where e(Qh 0,Z(k)) is given by (9-9) and ΘΤ = [Λ0«Ι · · ·*«, + «*] w i t h ana + nb+\ = 1 has 
full rank: rank(Jre) = na + nb + 1. Hence, the cost function (9-136) defines an inner product 
of vector polynomials 

<Χ(Ω),ΧΩ)> = R e ( X W\tlhW-V)yH{tl¿ 
k= 1 

\Y(k)\2 -Y(k)U(k) 

-Y(k)D(k) \U(k)\i J 
χ(Ω)) (9-138) 

where χ(Ω) and y(Q) are 2 by 1 vector polynomials of order smaller than or equal to 
na + nb+ 1 (proof: see Lemma 15.7). The vector polynomials χ?(Ω) = [pr(Q) £Γ(Ω)], 
r = 0, 1, ..., na + nb + 1, are calculated via a Gram-Schmidt orthogonalization (see Section 
15.11) using inner product (9-138). Hence we have 

<χ,(Ω),χΓ(Ω)> =S(s-r) (9-139) 

R e ( y ^ ( 0 , Z ) J ( ^ U ) ) =In+nh + 1 (9-140) 

Clearly, (9-140) has the smallest possible condition number: K(RQ(JHJ)) = 1. The IWLS 
solution is given by 

σ(Ω, 0IWLS(Z)) = q„a + nh + ι(Ω)//ν + „ A + ^Ω) (9-141) 

(see Appendix 9.U). Note that solution (9-141) explicitly makes use of the orthogonality of 
the polynomial basis and, hence, is sensitive to a loss of orthogonality among the computed 
basis polynomials. A numerically stable and time-efficient implementation of the orthogonal-
ization procedure can be found in Van Barel and Bultheel (1994) for discrete-time models 
(Ω = z"1). Following the same lines of Bultheel and Van Barel (1995), the time efficient im-
plementation of the orthogonalization procedure has been extended in Bultheel et al. (2005) 
to multivariable continuous-time models (Ω = s). 

9.16.3 Application to the Estimators 

Because the LS (9-33), IWLS (9-37), IQML (9-97), and WLS (9-102) estimators are 
special cases of the general IWLS estimator (9-38), the calculation of the orthogonal polyno-
mials follows the same lines as in Sections 9.16.1 and 9.16.2. They are chosen such that they 
minimize the condition number of the normal equation (9-18). 

For all the estimators whose (equivalent) cost function is a nonquadratic function of the 
model parameters, it is impossible to generate, in each iteration step of the Newton-Gauss 
procedure, a set of orthogonal polynomials that minimize the condition number of the normal 
equation (9-18). Indeed, the big difference between the IWLS solution and the nonlinear min-
imization scheme is that the former generates a solution in each iteration step, eventually 
based on an initial guess, and the latter generates an increment w.r.t. the initial guess. Because 
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the initial guess and the increment should be calculated in the same polynomial basis, it is im-
possible to minimize the condition number of (9-18). However, it is still possible to make the 
solution well conditioned. This is done in the following way. 

As already emphasized in Section 9.10, the solution of the total least squares estima-
tors, GTLS (9-72), WGTLS (9-76), and BTLS (9-98), is not calculated via the nonlinear min-
imization scheme (9-18), but via the GSVD of the matrix pair (WReJK(Z), C). Compared 
with the IWLS cost function (9-38), J(Z) is the Jacobian of the error vector 
J(Z) = θβ(θ9Ζ)/δ^9 W is a diagonal matrix with W[Kk] = W(Qk, é*'"1)), and C is a 
square root of the column covariance matrix of WRQ jTQ(Nz), with j(Nz) = J(Z)-J(ZQ). The 
orthogonal polynomial basis minimizing the condition number of the IWLS estimator is used 
for the corresponding TLS estimator with W = IF for GTLS, W[Kk] = W{ilh fl*1'"1)) for 
WGTLS, and W[ktk] = cr¿\ílh #( / - 1 )) for BTLS. This choice minimizes the condition num-
ber of WReJre. 

For the NLS-IO (9-43), NLS-FRF (9-47), LOG (9-55), and ML (9-80) estimators we 
use the orthogonal basis of the starting value algorithm. This choice leads to well, but not 
best, conditioned normal equations. 

9.16.4 Notes 

The IWLS solution calculated in the vector orthogonal polynomial basis is given by the 
highest order vector polynomial (9-141): a0 = ax = ··· = ana + nb

 = 0 a n d ana + nb + \ = 1· 
If this solution is already of high quality, then the other estimators, (W)GTLS, BTLS, NLS-
IO, NLS-FRF, LOG, and ML, calculated in the same basis, will only marginally perturb the 
solution: \a0\, \ax\, ..., \a„a + „b\ « 1 and a„a + nb+l = 1. 

Because the inner products (9-132) and (9-138) depend on the measurements, the or-
thogonal basis depends on the disturbing noise. Therefore, the estimated numerator and de-
nominator orthogonal polynomial coefficients of different experiments cannot be compared. 
Also, the properties of Theorem 9.21 cannot be applied to the estimated numerator and de-
nominator coefficients. However, because the proof of Theorem 9.21 is independent of the 
parameterization, its properties are still valid for the invariants of the model, for example, the 
poles and the zeros. 

Evaluating orthogonal polynomials at a particular frequency, or calculating the roots, 
should always be done through the recursion formula used to construct the orthogonal basis 
AND NOT via the expansion in powers of Ω, which is numerically ill conditioned for high or-
ders (see Sections 15.11 and 15.12 and Exercise 1.14.). To preserve the numerical stability, 
the calculations for continuous-time systems (Ω = s or *fs) should be performed using the 
normalized frequencies (see Section 9.4). 

9.17 SYSTEMS WITH TIME DELAY 

The main difficulty of estimating systems with an unknown time delay (plant model (6-29) or 
(6-30)) is that the corresponding NLS-IO (9-43), NLS-FRF (9-47), LOG (9-55), and ML 
(9-80) cost functions teem with local minima. A "sufficiently high" quality starting value for 
the delay is necessary to avoid the local minima. In time domain reflectometry, the time dif-
ference between the edges of the excitation pulse and the reflected (transmitted) pulse is a 
good initial guess of the delay (Pintelon and Van Biesen, 1990). This approach is no longer 
possible for overlapping pulses, periodic and random excitations. In these cases, a starting 
value can be obtained via the sample cross-correlation Ryu(T) between the output and the in-
put signals, 
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τ = arg max|^w(r)| = arg max - — £f_ [y(t)ü(t-A (9-142) 

where x(t) = χ(ή-Ν-ιΥ^=^χ(ή with x = y, u, or via the mean slope of the unwrapped 
phase of the measured frequency response function 

= I _ γ * 2 - ι ZG(Qk+l)-ZG(Qk) 

ω k+\ ω, 
(9-143) 

where [ω^, co¿2] defines the passband of the system. In both cases, the delay is an estimate 
of the sum of the true delay of the plant and the slope of the linearized phase of the rational 
part of the plant. Using the initial guess (9-142) or (9-143) as fixed value in the plant model 
(6-29) or (6-30), we can calculate starting values for the numerator and denominator coeffi-
cients in (6-29) or (6-30), for example, through the IWLS, WGTLS, or SUB estimates (see 
Sections 9.12.4 and 9.14). 

9.18 IDENTIFICATION IN FEEDBACK 

Figure 9-14 shows a block diagram of a basic linear feedback experiment. According to the 
nature of the reference signal r{t), there is a subtle difference between what is considered as 
the true excitation of the plant and the disturbing noise. If the reference signal is periodic, 
then any deviation from the periodic behavior is considered as noise. The true input-output 
DFT spectra in (9-1) are then given by 

u0(k) 

σ0(Ω*) 
i + G0(nk)M0(nk) 

i 
1 + £0(Ω,)Λ/0(ΩΑ) 

R(k) 

R(ic) 

(9-144) 

with R(k) the DFT spectrum of the reference signal, where C70(Q), Λ/0(Ω) are the true plant 
and controller transfer functions, respectively. The frequency domain errors Nv(k) and 
Ny(k) in (9-1) are related to the DFT spectra of the disturbing noise sources in Figure 9-14 as 

M 
<t) ψ "i(0 

^ > 
+ 

mu(t) ψ 

Controller 
Μ0(Ω) 

Plant 
σ0(Ω) 

np{t) 

y¿t) 

ψ U(t) 

™y(f) JL 

Figure 9-14. Feedback experiment with r{i) the reference signal, mu(t) , my(t) the measurement noise sources, 
n (t) the process noise, nc(i) the controller noise, and ux(t), yx(t) the input and output of the plant. 
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r W γΚ) 1 + £0(Ω,)Μ0(Ω,) 
(9-145) 

N^k) = Mv{k) 
Nc(k) + C0(Qk)Np(k) 

1 + G0(Qk)M0(Qk) 

Clearly, the disturbances Nv{k) and NY(k) are mutually correlated and are independent of 
the true input U0(k). Assumption 9.3 or 9.4 is fulfilled and, hence, Theorem 9.21 is valid for 
periodic excitations and systems in feedback. If the reference signal is arbitrary, then the 
controller noise nc{t) and the feedback part of the process noise n (t) are indistinguishable 
from the contribution of the reference signal r{t) to the excitation ux(f). Hence, the true 
input-output signals are u0(t) = uY(t) mdy0(t) = yx(t). The technical difficulty arising, es-
pecially if the noise model is unknown (see Chapter 10), is that the true input signal u0(t) is 
correlated with the process noise np(i) and, hence, also with the disturbing error at the 
output. 

9.19 MODELING IN THE PRESENCE 
OF NONLINEAR DISTORTIONS 

The goal of a linear identification experiment in the presence of nonlinear distortions can be 
the identification of the true underlying linear system, or the best linear approximation of the 
overall system, including the nonlinearities. The first case is useful for physical modeling 
and, if the system behaves linearly for small inputs, then crest factor optimized excitation sig-
nals are most suited for the identification experiment (see Chapter 5). The second case is use-
ful if a linear input-output description is required for a certain class of excitation signals. In 
this section, we handle the second case. The validity (utility) of the linear model is applica-
tion dependent and should be established in practice. 

The identification starts from measured input-output DFT spectra of a time domain ex-
periment with a random phase multisine (see Figure 9-15). Assuming that an integer number 
of periods of the steady-state response are observed, we have 

Y(k) = GBLA(sk)U0(k) + NY(k) 
(9-146) 

£/(*) = UoM + Nuik) 

with GBLA(s) the best linear approximation (see Section 6.8), NjJJc) = M^k), and 
NY(k) = Np(k) + Ys(k) + MY(k). The properties of the stochastic nonlinear contributions 
Ys(k) are quite similar to those of the measurement and process noise in a time domain ex-
periment (see Sections 6.8 and 9.6). Therefore, Theorem 9.21, where G0(s) is replaced by 
GBLA(s), remains valid (proof: see Appendix 9.V). 

9.20 MISSING DATA 

The form of the output 7(Ω, #), predicted by the model, basically changes if input and/or 
output samples are missing. Instead of (9-7) and (9-8), we get the following from transfer 
function model (6-46): 

Ym(Qk,0) = G(nk,e)U^(k)+TG(nk,ff) + z-k
K'G(Qk,ff)Iu(z-kKV)-zfyIJz^^) (9-147) 
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uM) Nonlinear 
plant 

CO 'BLA' 

»p{t)+ys(t) 

*®-r> 

| u(t) 

mY{t) ψ 

xo 
Figure 9-15. Time domain experiment: a random phase multisine is applied to a 

nonlinear plant y(t) = G [«(/)]· The DFT spectra of JV observed input-
output samples are calculated. F = 0(N) DFT frequencies of the input-
output spectra are retained. mu{t) and mAt) are the input and output 
measurement errors, n (t) is the process noise, and ys(t) is the stochastic 
nonlinear contribution having the same periodicity as the excitation u0(t). 

with Θτ = [θτψτ], ψ the vector containing the Mu missing input samples and M miss-
ing output samples, Ym(£lh Θ) the output predicted by the model, Um(k) the DFT spectrum 
of the missing input data set, and Ω = z~x or s (see Section 6.3.3). Inspired by the maxi-
mum likelihood solution (9-82), we can construct the following weighted nonlinear least 
squares (WNLS) estimator: 

v (ez")-rN-l\Ym{k)-YmiQk>e)\2 
^ W N L S ^ > Z ; Z ^ = o σΓ

2(Ω„ θ) 
(9-148) 

with Zm the missing data set and Ym(k) the DFT spectrum of the missing output data set. 
ay(Qh Θ) is the variance of the output error (9-45) calculated by using the (co)variances 
of the complete disturbing noise sequence (no missing samples), for example, 
c%(k) = y a r ^ f c ) ) and σ*(Κ)* var(A^(A:)). Minimizing (9-148) w.r.t. Θ gives the WNLS 
estimate <9wNLs(Zm) of the plant model parameters Θ and the Mu + My missing input and/or 
output samples ψ. To obtain starting values for the plant model parameters Θ, the missing 
data are put equal to zero ( ψ = 0 in (9-147)). If the number of consecutive missing samples 
is small, then better starting values for ψ can be obtained via linear interpolation of the 
known samples. This reduces the risk of being trapped in local minima (cost function (9-148) 
has more local minima than the problem without missing data). 

The properties of ¿?WNLS (Zm) can be studied, assuming that the fraction of the missing 
samples does not increase with the amount of data 

IN 
= 0(N°) (9-149) 

To show the consistency of ¿?wNLs(Zm), more restrictive assumptions are required than for 
the problem without missing data. In addition to the assumptions of Section 9.6.6 it is neces-
sary that Assumptions 9.18, 9.19 and condition (9-149) are fulfilled (see Appendix 9.W). 
Note that the consistency proof relies entirely on the knowledge of the noise (co)variances. 
If the noise model is unknown and a parametric noise model is identified, then the estimates 
are no longer consistent. Hence, getting a consistent noise model is the key to the solution of 
the missing data problem. 
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More information about the missing output data problem in discrete-time modeling can 
be found in the literature on time series analysis (see, for example, Little and Rubin, 1987) 
and system identification (see, for example, Isaksson, 1993; Goodwin and Adams, 1994; 
Albertos et al., 1999). By considering the missing inputs as unknown parameters, the missing 
input data problem in discrete-time modeling can be solved by classical prediction error 
methods (Ljung, 1999). 

9.21 MULTIVARIABLE SYSTEMS 

Plant models (9-7) and (9-8) remain valid for multivariable systems. Y(Clk, Θ) is then the 
modeled ny by 1 output vector, G{Q.h Θ) the ny by nu transfer function matrix, U(k) the 
nu by 1 vector of the input DFT spectra, and TG(Qk,0) the ny by 1 vector of the plant tran-
sients. 

Following the lines of the scalar case, the multivariable versions of the IWLS (9-37), 
NLS-IO (9-43), NLS-FRF (9-47), LOG (9-55), and ML (9-80) estimators can be constructed 
for any of the multivariable parameterizations of G(Q.k, Θ) and TG(Q,h Θ) described in Sec-
tion 6.6. For example, the IWLS estimator using a common denominator (Bayard, 1994a; 
Verboven et al., 2005), a left and right matrix fraction (de Callafon et al., 1996; Gaikwad and 
Rivera, 1997), or a state space (Bayard, 1994b) parameterization; the GTLS estimator using a 
common denominator (Verboven et al., 2004), or a left matrix fraction (Pintelon et al., 1998) 
parameterization; and the ML estimator using a common denominator (Guillaume et al., 
1992a, 1996b; Peeters et al., 2000), a left matrix fraction (Pintelon et al , 1998), or a state 
space (Wills et al., 2009) parameterization. The numerical minimization of the cost function 
using the Newton-Gauss scheme (9-18) is somewhat more subtle for the multivariable esti-
mators than for the scalar case (see Section 12.3.3 and Guillaume and Pintelon, 1996 for 
more details). 

The IWLS (9-38), WGTLS (9-76), IQML (9-97), BTLS (9-98), and IV (9-108) estima-
tors need a parameterization leading to an equation error that is linear in the model parame-
ters. If the identification starts from measured input-output DFT spectra, then the common 
denominator model (6-53) and left matrix fraction description (6-54) are suitable. The equa-
tion errors (9-9) and (9-10) remain valid with A(Qk, Θ) the denominator polynomial (com-
mon denominator model (6-53)) or the ny by ny denominator matrix polynomial (left matrix 
fraction description (6-54)), Y(k) the ny by 1 vector of the output DFT spectra, ^(Ω^, Θ) the 
ny by nu numerator matrix polynomial, and I{0.h Θ) the ny by 1 vector of the plant equiv-
alent initial conditions. If the identification starts from the measured frequency response ma-
trix (see Section 2.7) then, besides the common denominator model and left matrix fraction 
description, we can also use the right matrix fraction description (6-55). The corresponding 
nynu x 1 equation error vectors are 

e(Qk, 0, Z(k)) = vec04(Q„ 0)G(Q,) - B(Qh Θ)) (9-150) 

for the common denominator model and the left matrix fraction description, and 

e(Qh Θ, Z{k)) = vec(G(Q,M(Q„ Θ) -B(Qh Θ)) (9-151) 

for the right matrix fraction description, where vec(X) puts the columns of X on top of each 
other. Note that constructing an appropriate frequency weighting of the equation errors is 
somewhat more subtle for the multivariable WGTLS and BTLS estimators than for the scalar 
case (see Pintelon et al., 1998 for more details). 
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The subspace algorithms (see Section 9.14) require a multivariable version of model 
equation (9-120). It is easy to verify that (9-120) remains valid if Y and U in (9-116) are re-
placed by 

Y = |V r ( l )®y( l ) Wr(2)®Y(2) ... Wr(F)®Y(F)\ 
(9-152) 

U = [»Fr(l)®£/(l) Wr(2)®U(2) ... Wr(F)®U(F)\ 

with ® the Kronecker product (see Section 15.7), and similarly for NY and N D . The multi-
variable versions of Algorithms 9.24 and 9.25 can be found in McKelvey et al. (1996) and 
Van Overschee and De Moor (1996a). 

9.22 TRANSFER FUNCTION MODELS WITH COMPLEX 
COEFFICIENTS 

Typical applications of transfer function modeling with complex coefficients can be found in 
nuclear magnetic resonance modeling (see Kumaresan et al., 1990 and Section 6.4) and the 
identification of rotor bearing systems (see Lee, 1993; Peeters et al., 2000). Because the cost 
functions of all the estimators for rational transfer function models have been developed 
without using the fact that Θ is real, they remain valid for complex parameters Θ. Also, the 
properties of the estimators remain the same. Indeed, to see this, it is sufficient to replace 
Θ G Cn* by 0re G R2ne and to note that Theorem 9.21 is valid, independent of the particular 
parameterization chosen. 

If Θ G Cn& is replaced by #re e R2n°, then all the formulas for the real case apply to 
the complex case, except that the real part in the definition of the inner products (9-132), 
(9-138), and (9-249) should be removed. The modification of the inner product changes only 
the recursion formula used to calculate the orthogonal polynomial basis (see Section 15.11). 
For example, the normal equation (9-18) becomes 

Jn(0&-l\Z)Aea> = -ετΜ~λ\Ζ) (9-153) 

with Jre(#re,Z) = δεΤ&(θΤς,Ζ)/δθκ. If the weighted residual ε(θ,Ζ) is an analytic function 
of Θ, then (9-153) is equivalent to 

· / ( # ' - ^ A f l W = -ε(θ^-ι\Ζ) (9-154) 

with J(0,Z) = δε(θ9Ζ)/δθ (see Appendix 9.X). This is the case for IWLS (9-38), NLS-IO 
(9-43), NLS-FRF (9-47), LOG (9-55), IQML (9-97), and IV (9-108) estimators. This is not 
true for the ML estimator because σβ(Ω, Θ) in (9-84) and σ7(Ω, Θ) in (9-85) are not analytic 
functions of Θ. Hence, the ML normal equation (9-153) cannot be simplified to (9-154). 

The solution of the WGTLS (9-76) and BTLS (9-98) estimators is calculated as the 
right generalized singular vector corresponding to the smallest generalized singular value of 
the matrix pair (WReJre(Z), C), with W the diagonal weighting matrix (9-74), 
J(Z) = δβ{θ,Ζ)/δθ, and C a square root of the column covariance matrix of WRe jK(Nz), 
with j(Nz) = J(Z)-J(Z0). Because β(θ,Ζ) is an analytic function of Θ, the solution can 
also be calculated as the right generalized singular vector corresponding to the smallest gen-
eralized singular value of the matrix pair (WJ(Z), Cc) with Cc a square root of the column 
covariance matrix of Wj(Nz) (see Appendix 9.Y). 
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9.23 EXERCISES 

9.1. Show that the signals defined in Assumption 9.11 are quasi-stationary (9-22) (hint: as-
sume that an integer number of periods is observed for periodic signals and use 
u{f) = IDFT(C/(/c)) with U(N-k) = £/(*)). 

9.2. Consider the setup shown in Figure 9-14 with r{t) a periodic signal and mu(f) = 0, 
m (f) = 0 (no measurement errors). Show that Assumption 9.20(iii) is fulfilled (hint: use 
(9-145)). 

9.3. Show that the contribution of the disturbing noise to the expected value of the linear 
least squares cost function is given by (9-34) (hint: use (9-12) with 
Α(Ω^ %Nz(k)) = A(Qk, 0)NY(k)-B(Qk, 0)Nv{k)). 

9.4. Show that the difference between the Jacobians of the nonlinear least squares cost (9-32) 
and the iterative weighted least squares cost (9-37) is given by 

W'11^-'^= >n,"<-">P ' 4-.) ' 

(hint: compare the z'th Newton-Gauss step (9-17) applied to the nonlinear least squares 
cost (9-32) with the z'th normal equation of the IWLS cost function (9-37)). 

9.5. Show that the contribution of the disturbing noise to the expected value of the nonlinear 
least squares cost function is given by (9-44) (hint: use (9-12) with 
Δ(Ω^ Θ, Nz(k)) = Ny(k) - G(Qk, e)Nu(k)). 

9.6. Consider the weighted generalized total least squares estimator (9-76). Show that prop-
erty 5 of Theorem 9.21 is still valid to 

(Jmax Λ , . ̂  

j ^ 2 ( Ω ( / ) ) Ε { | < Ω ( / ) , e9Z¿f))\*}n(f)df 

^♦WGTLS(^) = -^—7 + 1 

f" W\Q(f))a¡(Q(f), 0)n{f)df 
Tmin 

(hint: divide the numerator and denominator of (9-76) by F and follow the lines of 
Appendix 9.E, Section 9.E.3). 

9.7. Assume that the errors NY(k), Νν(Κ) on the measured input and output spectra Y(k), 
U(k) are independent (over k) random variables that are not circular complex distributed 
(E {N%(k) } * 0, X = U,Y). Show that the Markov estimator of model (6-32) minimizes 

1 F ejjk, θ)σ\{Κ Θ) + e*(k, 0)oj{K 0) - 2eR(k, G)ejK fl <»&(*, Θ) 

with eR(k, θ) = Re(e(Q¿, Θ,Ζ)), efa Q) = Im(e(% Θ,Ζ)), σ2(/ς Θ) =var(eR(A;, θ)), 
σ2(£, θ) = var(eT(A:, θ)), σ 2 ^ , θ) = covar(eR(£, θ\ e¿k, θ)), and e(D.k, Θ,Ζ) given 
by (9-9) (hint: use (19-12) with ek(% zk) = (e(D.k, θ,Ζ))η and ( )re defined in (15-48)). 

9.8. Show that the difference between the Jacobians of the ML cost (9-80) and the IQML cost 
(9-97) is given by 
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(hint: compare the /th Newton-Gauss step (9-17) applied to the ML cost (9-80) with the 
zth normal equation of the IQML cost function (9-97)). 

9.9. Assume that the wrong noise (co)variances are used in the GTLS estimator (9-72). Show 
under Assumptions 9.16 and 9.17 that the bias Θ(Ζ0) - θ0 is given by (9-278) with 

^F , , dln(G(Q,,0)) 

W ) = 2 — _ -1 
Xk={\Yo(Q\2(Vu(k)+VY(k)) 

w(k) = VümvuW+Mw-vumvum+VyW) 

where Vv(k), VY(k), Vu(k), and VY{k) are defined in Appendix 9.T. Show that the bias 
is not zero if the noise covariance matrix used, CVz(fc), satisfies (9-129). Note that the 
bias expression for the BTLS estimator (9-98) is similar to that of the GTLS estimator. 
(hint: follow the lines of Appendix 9.T; use VY(k) =f(k)VY(k), Vu(k) =f(k)Vu(k) to 
show that the bias is not zero under condition (9-129)). 

9.24 APPENDIXES 

Appendix 9.A A Second-Order Simulation Example 

The second-order system G(s,0) = 1/(1 + s + s2) is excited at F = 100 frequen-
cies, equally distributed in the band [0.1, 10]/(2π)2 Hz. The true input U0(k) = 1 and out-
put Y0(k) spectra are disturbed by independent, zero mean, circular complex Gaussian noise 
with variance 0.04: ΝυΟή,ΝγΟή e Nc(0, 0.04) (see Section 16.1). Two sets of noisy simu-
lated data {lAl\k)9 Y^2\k), k= 1, 2, ..., 100} and {lA2\k)9 tf2\k), k= 1,2, .. . ,100} 
are generated. The noisy frequency response function G(sk)9 shown in Figure 9-1, is the ratio 
of the averaged output Y(k) = (Y^l\k) + Y^2\k))/2 to the averaged input U(k) = 
(lAl\k) + LA2\k))/2 spectra and is used as simulation data for the least squares (LS), itera-
tive weighted least squares (IWLS), nonlinear least squares based on frequency response 
function (NLS-FRF), total least squares (TLS), logarithmic least squares (LOG), and sub-
space (SUB) estimators. The nonlinear least squares based on input-output data (NLS, NLS-
IO), generalized total least squares (GTLS), maximum likelihood (ML), iterative quadratic 
maximum likelihood (IQML), and bootstrapped total least squares (BTLS) estimators use the 
averaged input U(k) and output Y(k) spectra as simulation data, and the instrumental vari-
ables (IV) method uses the two original noisy data sets separately. The constraint ||#|| \ = 1 
is used to calculate all the estimates except for the SUB algorithm, which uses no constraint, 
and for the LS, IWLS, IQML, and IV methods, which use a0 = 1. 

Appendix 9.B Signal-to-Noise Ratio of DFT Spectra 
Measurements of Random Excitations 

Consider a random excitation x(t)9 which is mixing of order 2 (the mixing condition 
limits the span of dependence of x(t)9 see Section 16.4) and with var(x(f)) > 0 for any /, in-
finity included. The variance of its DFT spectrum X(k) = N'1*2^!^*)2? equals 
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vaitfí*)) = i Σ ^ 2 ' = o c o v a r W . ) ' ^ ) ) ^ ' 1 + '2 (9-155) 

Because x(t) is mixing of order 2, we have that (see (15-38) with cum(x,j) = covar(x,j/)) 

X ^ L o l c o v a r W i , ) , ^ ) ) ! = 0(N) 

and, hence, (9-155) can be bounded above by 

var(X(¿)) < i X ^ 2 ' = 0 IcovarWiO, x('2))| = W ) (9-156) 

The same reasoning holds for disturbing noise v(i) satisfying the same conditions as x(t), so 
that the signal-to-noise ratio std(X(£))/std(K(A:)) is an 0(N°). 

Appendix 9.C Signal-to-Noise Ratio of DFT Spectra 
Measurements of Periodic Excitations 

Consider a multisine x(t) with finite power, N~1^~QX2(ÍTS) = 0(N°), and consisting 
of F harmonically related frequencies 

*(0 = ΣΓ= lArsin(2nmrf0t+ (pk) (9-157) 

where mr G N, r = 1, 2, ..., F and mx < m2 < ··■ < wF. Assume that we observe the multi-
sine during an integer number of periods, NTS/T0 = Nf0/fs e N, and that we respect the 
Nyquist condition mFf0<fs/2. Assume, furthermore, that the disturbing noise v(f) is mix-
ing of order 2 with var(v(/)) > 0 for any /, infinity included. Here, we handle two cases: F 
is independent of N, F = 0(N°), and F increases with N, F = 0(N). 

9.C.1 F Is Independent of N. Because F is independent of N and x{t) has finite 
power, we have Ar = 0(N°), r = 1,2, . . . ,F . Using sin(x) = (eJ'x-e~J'x)/(2j), 
Σ"=οχί = O - ^ / O - * ) , and z% = 1, the DFT spectrum X{k) = N^'^llxijT^ 
equals 

X{k) = 
§Ar^ 4 = "'SO 

J V (9-158) 
0 kjj*mrf0 

for k = 0, 1 JV/2 with X(N-k) = X(k) for k = N/2 + 1, ...,7V- 1. Because 
Ar = 0(N°), we have X(k) = 0(Nl/2) at the excited DFT frequencies. For disturbing noise 
v(i), which is mixing of order 2, we have var(V(k)) = 0(N°) (see Appendix 9.B) so that the 
signal-to-noise ratio \X(k)\/std(V(k)) of the multisine at the excited DFT frequencies in-
creases as 0(NXI2). 
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9.C.2 F Increases as 0(N). Because F = 0(N) and x(t) has finite power, we 
have Ar = 0(N-l/2), r = 1, 2, . . . ,F , and, hence, \X(k)\ = 0(N°) at the excited frequen-
cies (see (9-158)). Combining this result with var(F(&)) = 0(N°) (see Appendix 9.B) gives 
\X(k)\/std(V(k)) = 0(N°). 

Appendix 9.D Asymptotic Behavior Cost Function for 
a Time Domain Experiment 

The cost functions that can handle time domain experiments can be written as 

VFWZ) = l Σ W\ah 0)\Y(k) - G(Qh 6)U{k) - TG(Ctk, θ)\2 (9-159) 

with F a subset of the DFT frequencies {0, 1, ..., N- 1} and W{Ci, Θ) the absolute value of 
a rational function of Ω. We will show that 

VFWZ) = l Σ W2(Qhe)\Y(k)-G(Qhe)U(k)\2+R(e) (9-160) 

Elaborating (9-159) gives (9-160) with 
with R{9) = Ov(F~x) uniformly in Pr 

m = i Σ ^ 2 ( Ω „ ^ ) | ^ ( Ω „ 0 | 2 
Γ ke¥ 

_ (9-161) 
- 2 R e d Σ W\QhO)(Y(k)-G(nhe)U(k))TG(nhe) 

The first term in (9-161) is an Op(F~l) because the numerator coefficients of TG(Q, Θ) tend 
to zero as OJF~l/2) (Theorem 6.7). The second term in (9-161) can be written as the sum of 
two terms of the form 

R < ¿ Σ*(*)*χη**>) (9"162) 

with X = Y or U and F(Q, Θ) a noncausal, rational filter of finite order (independent of F). 
The additional factor F~{/2 stems from the numerator coefficients of TG(Q, Θ). We now ex-
tend the sum in (9-162) to all the DFT frequencies 

2Re(¿ Σ mm* Θ)) = ¿ Σ?:ί*ι(*)^«* *> (9-163) 

with 

1 o elsewhere 
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Using Xf(k) = Xx{k)F(Q.he) and F = 0(N), (9-163) becomes 

¿ Σ ? : ; W = jm¥<» = O(F-i)xf(0) (9-165) 

where Xf(t) = IDFT(Xj{k)) is, within some transient effects, the response of xx(t) to the 
noncausal rational filter F(Q, Θ). The original noisy signal x{f) consists of the sum of a 
signal term x0(t) and a noise term nx{t) that satisfy, respectively, Assumptions 9.1 and 9.3. 
Therefore, the second-order moments of x0(t) and njj) are uniformly bounded. This is also 
valid for xx(t) = \OVT(Xx{k)) because it is obtained by replacing the original DFT spectrum 
X(k) by zeros at some DFT frequencies (see (9-164) with F c: {0, 1, ..., JV- 1}). Finally, 
the second-order moments of xfo) are uniformly bounded because it is, within some 
transient effects, the response of xx(t) to the noncausal rational filter F(Q, Θ). Hence, 
jy(0) = Op(F°) so that R(6) = Op(F~l) uniformly in θΓ, which concludes the proof. Note 
that using Lemma 16.23 exactly the same reasoning can be followed for the noise transient 
terms in NY(k) and N^k). D 

Appendix 9.E Asymptotic Properties of Frequency 
Domain Estimators with Deterministic 
Weighting (Theorem 9.21) 

If the frequency domain errors of the time and frequency domain experiments were 
mixing of order four (infinity), then Theorem 9.21 (except property 5) would follow immedi-
ately from the results of Chapters 17 and 19 (then the assumptions of Section 9.6 fulfill all the 
necessary conditions). For the frequency domain experiment the frequency domain errors are 
mixing of order four (Assumption 9.4) but not of order infinity (moments of order higher 
than 4 + ε do not necessarily exist, see Assumption 9.13). Hence, properties 1, 2, 3, 6, and 7 
are valid but properties 4 and 8 still remain to be proved. Because after a DFT the noise is not 
mixing of order four (infinity) (see Section 16.16), all the properties of Theorem 9.21 remain 
to be proved for the time domain experiment. Fortunately, the resulting technical difficulties 
in the proofs can easily be solved using the results of Section 16.16. To understand fully the 
proofs of this appendix, we advise reading Chapter 17 first. 

9.E.1 Stochastic Convergence (Properties 1, 2, 3, 6, and 7). For the frequency do-
main experiment, properties 1, 2, 3, 6, and 7 follow directly from Theorems 17.6, 17.19, 
17.21, 17.11, and 17.28, respectively. To show that the properties are valid for the time do-
main experiment, it is sufficient to show that the cost function and its higher order derivatives 
w.r.t. Θ still converge strongly (weakly) and uniformly in P r to their expected values when 
the mixing assumption of order four (Assumption 17.1 with P = 4) is replaced by Assump-
tion 9.3. We will prove this for the cost function; the proof for its higher order derivatives 
w.r.t. Θ follows exactly the same lines. 

Because A(Clh <9, Nz(k)) is linear in Nz(k) with A(Qh 0, 0) = 0 (see (9-12)) we have 
A(Qh Θ, Nz(k)) = Mx{£lh 0)Nz(k) with Mx(£lh Θ) e C1 X 2. It facilitates rewriting (9-13) as 

VF(09Z) = ^(0,Ζο) + Ι ΣΓ-ιΙ^ι ί^^ζί*)!2 

(9-166) 
+ 2Re(i£L xM2{ah0)Nz(k)) 
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with M2(Clh θ) = s(Qh Θ, Z0(k))Mx(Qk, Θ). VF(0, Z0), Mx(Qh ff), and M2(Qh Θ) are con-
tinuous in Pr (Assumption 9.6) and, therefore, also uniformly bounded in P r . If the input is 
random, then VF(0, Z0) and M2(ilh Θ) have uniformly bounded second-order moments (see 
Assumption 9.1). Hence, under Assumptions 9.1, 9.3, and 9.6, the sums in (9-166), 

W > zo)> f E L ! \M¿nh θ)Νζ(ψ and 2Re(I Σζ= x ^ 2 ( Ω * W * ) ) (9-167) 

satisfy the conditions of Theorems 16.28 and 16.32 (strong laws of large numbers) and, there-
fore, converge uniformly w.p. 1 to their expected value at the rate Op(F_1/2) in the compact 
set Pr . We conclude that VF(0,Z) converges uniformly w.p. 1 to its expected value VF{9) at 
the rate Op(F~l/2) in Pr . 

For the consistency and the bias (properties 6 and 7), we have to make a distinction be-
tween correct models ((9-7) with Ω = z_1, s, Js, or t a n h ^ s ) and (9-8) with Ω = z_1) 
and asymptotically correct models ((9-8) with Ω = s9 *fs). For the correct models we have 
Θ(Ζ0) = θ0 and for the asymptotically correct model, #♦ = lim Θ(Ζ0) = θ0 (Assumption 
9.17). Note that for the signals defined in the time domain experiment (Assumption 9.1), the 
model error S(sk) of (9-8) with Ω = s, *fs converges weakly to zero at the rate O (F~l/2) 
(Lemma 6.6, with F = 0(N) for a time domain experiment). Hence, Θ(Ζ) is weakly (and 
not strongly) consistent for model (9-8) with Ω = s, *Js. The convergence rate of the bias 
be{Z) remains an 0(N~l) because E{S(sk)U(k)} = 0(N~l) (see Theorem 6.17). 

9.E.2 Asymptotic Normality (Properties 4 and 6). F1/2(#(Z)-#(Z0)) is asymptoti-
cally normally distributed if and only if jFSe{Z), and, hence, the vector FU2VF

T(<9(Z0)9Z) 
is asymptotically normally distributed (see (9-26)). Taking the derivative of (9-11) w.r.t. Θ 
gives for Fl/2VF'T(§(Z0),Z) 

jFVF<\e(Z0\Z) = -L χ ; 2 R e ( i ^ % ^ ^ | e(Qh 0(ZO), Z(k))) 
JF V οθ(Ζ0) ) 

(9-168) 

■τ,Χ-*» 

where x(k) depends on zero, first, and second order powers of Nz(k). We will show here that 
(9-168) is asymptotically normally distributed for a frequency domain experiment (Assump-
tion 9.13) and for a time domain experiment (Assumption 9.12). 

Under Assumption 9.13 (frequency domain experiment) x{k) is independently distrib-
uted (over the frequency k) with bounded absolute moments of order 2 + ε and 3 and with 
Yfk= j var(jt(&)) = 0{F). Hence, /^1/2ΣΓ= \x(k) converges in law to a normal distribution at 
the rate 0(F~l/2) (see Section 16.10, version 2 of the central limit theorem). 

Each entry of x(k) in (9-168) can be written as the sum of terms of the form X(k) V(k) 
where V(k) and X(k) depend either on the disturbing noise or on the true input-output DFT 
spectra. We now study the sum 

^1/2ZLi^)^) (9-169> 

under Assumptions 9.1, 9.11, and 9.12 for each combination of X(k), V(k) giving a random 
term X{k)V{k). If V(k) and X(k) depend on the DFT spectrum of one of the following sig-
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nals, filtered iid noise, a normalized nonrandom periodic excitation (see Definition 3.4), a 
normalized random multisine (see Definition 3.2), or normalized periodic noise (see Defini-
tion 3.4), then (9-169) converges in law to a normal distribution at the rate 0(F~l/2) (proof: 
apply Theorems 16.29 and 16.33). We conclude that F~1/2Xf = \x(k) converges in law to a 
normal distribution at the rate 0(F~l/2). 

9.E.3 Deterministic Convergence (Property 5). Theorem 17.24 is valid if Assump-
tions 17.4, 17.22, and 17.23 are fulfilled. We will show that the expected value of the cost 
function VF{6) converges uniformly in P r to V+ψ) at the rate 0{F~2). The proof for VF\6) 
and VF"{0) follows the same lines. The expected value of the cost function equals (see 
(9-11)) 

νΡ(θ) = j ΣΓ- , Ε{ ΗΩ„ Θ, Z(k)f) (9-170) 

Note that for a time domain experiment the influence of the transient term TG(Qh Θ) in the 
cost function VF{6, Z) can be neglected in the convergence rate analysis (see Appendix 9.D). 
Let Ε{ΚΩ(/) , 6> Z(/))|2} be the limit value (F->oo) of Ε{|4Ω*, <9,Ζ(λ))|2}. We have 

Ε{|*(Ω„ 0,Ζ(*))|2} = Ε{|*(Ω(/), θ,Ζ(/))\2}\/=Λ (9-171) 

for a frequency domain experiment, whereas due to the leakage errors in the DFT spectra of 
the true input-output signals Z0 and/or the disturbing noise Nz(k) 

Ε{|*(Ω*, 0,Z{k)f} = Ε{|*(Ω(/), 0 ,Z( / ) )P} | / = A + O(F-') (9-172) 

for a time domain experiment (see Section 2.2 and Appendix 6.F with F = 0(N)). Under 
Assumptions 9.14 and 9.15 the Riemann sum 

ΧρΣ[=ΜUWf), Θ,Z(/))|2}\f_A (9-173) 

converges to 

V4ñ = f" E{kíX/), e,Z{f))\2)n{f)df (9-174) 
/min 

at the rate 0(F~2) (see Ralston and Rabinowitz, 1984; midpoint rule (4.10-10)). Hence, the 
convergence rate of VF{0) to V*(0) is an 0(F~2) for a frequency domain experiment and an 
0(F~l) for a time domain experiment. Under Assumption 9.6 E{|f(0¿, Θ, Z(k))\2} is a con-
tinuous function of Θ e Pr , and, hence, also uniformly bounded in Pr . Therefore, the con-
vergence of VF{6) to ¥*ψ) is uniform in Pr . Note that the integrand in (9-174) may be zero 
in some subintervals of [/min,/max]· In that case, the integral can be written as the sum of in-
tegrals. We conclude that Theorem 17.24 is valid with K = 2 for a frequency domain exper-
iment and K = 1 for a time domain experiment. 
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9.E.4 Asymptotic Efficiency (Property 8). In the efficiency study, the covariance 
matrix of the limiting random variable δθ(Ζ) or the truncated estimate Θ_(Ζ) is compared 
with the Cramér-Rao lower bound (16-88). As the bias be and the derivative of the bias w.r.t. 
0O of the truncated estimate Θ(Ζ) tend to zero as 0(F~l) (property 7) and Co\(Se(Z)) 
(Cov(0(Z))) tends to zero as 0(F~X) (Assumption 9.9), it is sufficient to compare 
Cov(^(Z)) orCov(0(Z)) with Fi~\0Q) in (16-88). 

Under Assumptions 9.18 and 9.19 the Fisher information matrix of the model parame-
ters is given by 

(see Section 19.3, formula (19-22)). 
Under Assumption 9.18, (9-83) is a Markov estimator. For such an estimator the ex-

pression of the covariance matrix (9-27) can be elaborated. The cost function V{9, Z) can be 
written as 

mZ) = εΗ(θ,Ζ)ε(θ,Ζ) = i(V2*re(0,Z))r( J2<U09 Z)) 

and similarly for ν(θ,Ζ) in (9-13). Therefore, Theorem 19.3 is still valid when ε(θ,ζ) and 
Δ(θ, ηζ) are replaced by +/2ετ&(θ,Ζ) and */2Δκ(θ,Νζ), respectively (compare (9-11) and 
(9-13) with (19-8)). Applying Lemmas 15.3 and 15.4 to expression (19-32) of Theorem 19.3, 
we get 

Cow(jFS,(Z)) = V/-\e0)+VF"-\e,)qF{9Q)V^e¿ 

qF(0o) = F HVFT(^NZ)VF\0O,NZ)} ( 5 M 7 6 ) 

+ 2Re(2herm(E{[ V
g¿ °;j } E{A(0O9Nz)vF\eo,Nz)})) 

where vF(0, Nz) = ΔΗ(Θ, ΝΖ)Δ(Θ, Nz)/F is defined in (9-13) and where the expected values 
are taken w.r.t. to the disturbing noise Nz and the observations Z0. 

Under Assumptions 9.18 and 9.19, (9-83) is the maximum likelihood solution. Com-
paring (9-176) with (9-175) for deterministic Z0 and Gaussian errors Nz (Assumptions 9.18 
and 9.19) shows that in general the maximum likelihood solution is asymptotically ineffi-
cient, qF(0o) Φ 0. Under Assumption 9.20 the rank of the IF by IF matrix CNz equals F. 
Applying Theorem 19.4 with r = 1 and t = 2 shows, then, that vF(09Nz) is independent 
of 0, so that qF(e0) = 0. We conclude that the maximum likelihood estimate is asymptoti-
cally efficient under Assumption 9.20. 

To analyze the influence of the noise level υ on the inefficiency term in (9-176), we 
apply quick tool number 6 of Section 9.5. It follows that ^"_1(#o) = 0(u2) and 
qF(0o) = 0(υ~ι), which gives (9-91). If the pdf of Nz is even, then the second term in the 
expression of qF(90) is zero, so that qF(90) = Ο(υ0). D 
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Appendix 9.F Asymptotic Properties of Frequency 
Domain Estimators with Stochastic 
Weighting (Corollary 9.22) 

To understand fully the proof of this appendix, we advise reading Chapters 17 and 18 
first. To prove the corollary, it is sufficient to verify that all the conditions of the 
theorems in Chapter 18 are fulfilled. The cost function V(0,Z)/F (9-14), where the 
stochastic vector η(Ζ) has been replaced by the deterministic vector 77, is denoted by 
fF(6, 7,Z). Clearly, fF{0,77, Z) satisfies the assumptions of Section 9.6. Therefore the 
cost function fF(09 77, Z) and its higher order derivatives w.r.t. Θ converge w.p. 1 to their 
expected values (proof: follow the same lines as in Appendix 9.E). By assumption, the 
stochastic vector η(Ζ) satisfies all the properties of Theorem 9.21, and the cost function 
fF(0, η,Ζ) has continuous third-order derivatives w.r.t. x = [θτητ]τ. We conclude that 
all the assumptions of Chapter 18 are fulfilled. From Theorems 18.5 and 18.6, it follows 
that Θ(Ζ0) and Θ* are the minimizers of, respectively, VF{0) = Ε{/Ρ(θ, 7*, Z)} and 
K*(/9) = lim E{fF(e, 77*, Z)}. The expected value of δθ(Ζ) may not exist because the 
moments of η(Ζ) in VF0(Zo),Z) = fF(0, η(Ζ),Ζ) do not necessarily exist. Moreover, if 
it exists, we will have, in general, ί{δθ(Ζ)} * 0 . Equation (9-31) follows from Theorem 
18.25. Because η(Ζ) satisfies, by assumption, Theorem 9.21, it follows directly that 
ή(Ζ)-η* is given by δη(Ζ) (9-26) in Theorem 18.25. 

Appendix 9.G Expected Value of an Analytic Function 

Consider an analytic function f(z) that has the property /(0) = 0. Its Taylor series ex-
pansion at the origin is then given by 

/(*) = ΣΓ- r~r z r for any izi < R (9-177) 

with R the convergence radius. For zero mean circular complex errors z (see Assumption 
9.18), we have E{z} = 0 and E{z2} = 0. If, in addition, the errors have an even pdf, then 
E{z2r + 1 } = 0. Hence, for uniformly bounded random variables \z\ < R the expected value 
of (9-177) becomes 

£{/·(*» = Σ Γ = 2
/ - ^ E { z 2 r } = w * 4 » <9-178) 

For circular complex normally distributed z we also have E{zr} = 0 (see Exercise 
16.8) and, hence, E{/(z)} = 0 if R = 00. 

The two functions of interest are f(z) = 1 / ( 1 + z ) - l and f(z) = ln(l +z ) . Both 
functions have the property /(0) = 0 and the convergence radius of their Taylor series ex-
pansion at the origin is R = 1. Hence, for circular complex uniformly bounded noise \z\ < 1 
with even pdf we have 

E { l / ( l + z ) - l } = 0(E{z4}) and E{ln(l+z)} = 6>(E{z4}) (9-179) 

For unbounded noise, the Taylor series expansion (9-177) diverges for all realizations \z\ > 1 
and (9-179) is no longer valid. However, for sufficiently large signal-to-noise ratios 
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E {z2} « 1, the probability to "hit" a value \z\ > 1 is small and (9-178) is a very good approx-
imation. For example, for Gaussian noise the right-hand sides of (9-179) would be zero, 
while the expected value is a very small number, given by 

E{1/(1 + z ) - 1} = -exp(-l/<72) and E{ln(l + z)} = ~Ei(-l/a2) (9-180) 

with σ2 = E{|z|2} and Ei( ) the exponential integral function (Guillaume et al., 1992b). 
Applying (9-180) to (9-56) with z = NY(k)/Y0(k) and z = N^kyU^k) gives (9-57). Us-
ing (9-49), the expected value of NG(k)/G0(Qk) (9-48) can be written as 

1+z Ί " v " a2(k) Y0(k) " Ί ΐ + ζ 
E{NG(k)/G0(Qk)} = Ê  - p i - - 1 \+p(k) * v ° ; 7 ; Ê  ^ \ (9-181) 

with z = N^kyUoik) and v = Nv(k)/U0(k). Using z = w + v with m = M(k)/UQ(k) 
we find 

_J1_ = __L +
 1 + * = r__L + 0 + f 1 - i 

1+z 1+z 1+w + v V 1+z y V l + m / ( l + v ) 
(9-182) 

The expected value of the second term in (9-182) is further elaborated. Because m and v are 
mutually independent, we have 

U = E^E ,̂ L r - l | v 
l + m / ( l + v ) I I l l + m / ( l + v ) 

(9-183) 
= E{-exp(-|l+v|2/<72)} 

= -βχρ( -1 /σ 2 )σ 2 /σ 2 

with σ2 = σ^ + σ2. The second equality uses (9-180) and the third equality uses the circu-
lar complex normality of v. Collecting (9-180), (9-182), and (9-183) gives 

E { r T z l = β χ Ρ ( - 1 / σ ζ Κ / ^ (9-184) 

Putting (9-184), with σ2 = a2(k)/\U0(k)\2 and σ2 = a2(k)/\U0(k)\2, into (9-181) gives 
(9-50). □ 

Appendix 9.H Total Least Squares Solution -
Equivalences (Lemma 9.23) 

To simplify the notations, we put A = WRe JrQ(Z)C~l and x = CO. This facilitates 
writing (9-62) and (9-64) as Ax « 0 and 
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argmin | ,4- i | | 2 subject to Ax = 0 and ||x||2 = 1, (9-185) 
A,x 

respectively. Using the method of the Lagrange multipliers, the constrained minimization 
problem (9-185) can be reformulated as follows: 

arg min trace((^ -A)(A -A)7) + μτΑχ subject to \\x\\\ = 1 (9-186) 
Α,χ, μ 

where /i 6 R2F is a Lagrange multiplier vector. Expressing the stationarity of the preceding 
cost function w.r.t. A yields 

-2(Α-Α)+μχτ = 0 οτ2(Α-Α) = μχτ (9-187) 

(use derivative rule (15-62) of Section 15.9.2 and μτΑχ = trace(//r^4x)). Right multiplica-
tion of (9-187) by x, taking into account that Áx = 0 (stationary cost function w.r.t. μ), 
gives μ = 2,4χ/||χ||2. Elimination of μ in (9-187) gives the following expression: 
A-A = ^xxr/| |jc| | | . Replacing A-A in (9-186) by this expression and taking into ac-
count the constraint Ax = 0 results in 

argmin|Mx||2/||x||2 subject to ||x||2 = 1 (9-188) 
X 

We will show that the constrained minimization problem (9-188) is equivalent to 

1. argmmMx||22/||x||22 

2. argminll^xll2 subject to ||x||| = 1 
3. Finding the eigenvector x corresponding to the smallest eigenvalue λ of the 

eigenvalue problem A TAx = λχ. 

In equivalent form number 1 the norm constraint is already included in the cost function, there-
fore the constraint \\x\\j = 1 in (9-188) can be removed. Equivalence 2 follows directly from 
equivalence 1. To prove equivalent form number 3, we reformulate equivalence 2 using a 
Lagrange multiplier λ 

argminMx| |2
2-^(W2

2-1) (9-189) 
JC, λ 

Expressing the stationarity of the preceding cost function w.r.t. x yields 

χτΑτΑ-λχτ = 0 or ATAx = λχ (9-190) 

subject to ||x||2 = 1 (stationarity cost function w.r.t. λ), which is an eigenvalue problem. 
Putting the solutions (xh Zk), k = 1,2,...,% of (9-190) in (9-189) taking into account the 
constraint ||x||2 = 1 gives 

a r g m i n ^ k = 1,2, ..., ηθ, (9-191) 
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It shows that the eigenvector xk corresponding to the smallest eigenvalue Xk οϊΑ minimizes 
(9-189). 

Substituting Λ = WReJrQ(Z)C-{ and x = CΘ into equivalence 3 of (9-188) gives 

C-T(WRQJrQ(Z)V(WReJrQ(Z))e = λθθ (9-192) 

Left multiplication of (9-192) by CT gives equivalence 3 of the lemma. Making the same 
substitution in equivalences 1 and 2 of (9-188), and taking into account that 

WM\l = \\WRAÁZ)e\\l = \\(WJ(Z)0\¿{\2
2 = WJ{Z)d\\l (9-193) 

(see Lemma 15.4), proves equivalences 1 and 2 of the lemma. D 

Appendix 9.1 Expected Value Total Least Squares 
Cost Function 

Because 11/0̂ )̂ 112 *s a rea* n u mber, we have 

tiWzWl} = *ε(Πθψ{Νζ)ΑΧζ)θ}) = θτ Ε{^υ»(Νζ);\Νζ))}θ (9-194) 

with Re(jH(Nz)j(Nz)) = jJe(Nz)jK(Nz) (Lemma 15.4), which proves the first equality in 
(9-67). Using j{Nz)Θ = (J(Z) - J(Z0))Θ = e{0, Z) - e(0, Z0) we find 

E{\\J(NzW\\22 } = Σ Γ - i <#"*» Q (9"195> 

which proves the second equality in (9-67). D 

Appendix 9. J Explicit Form of the Total Least Squares 
Cost Function 

9.J.1 Total Least Squares. Using (9-60), the cost function appearing in equivalence 
number 2 of Lemma 9.23, with C = In and W = IF, can be written as 

\\J(Z)e\\¡ = \ΗΘ,Ζ)\\2
2 = Σ ί - 1 \e(Qh Θ, Z(k))\> (9-196) 

which is exactly (9-65). For the TLS with weight (9-69) we have 

|| WJ{Z)0^\\l = || We(0d\ Z)\\2 = Σ ί = ! W2(flh &- D)|e(Q„ 0«), Z(k))\* (9-197) 

which is exactly (9-38). 

9.J.2 Generalized Total Least Squares. According to equivalence number 1 of 
Lemma 9.23, with W = IF, the GTLS cost function equals 
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VQJI&WZ) = \\J(Z)<J\\2
2/\\Ce\\2

2 (9-198) 

Using CTC = l{Re(jH(Nz)j(Nz))} and (9-195) we can rewrite \\C0\\¡ as 

\\Ce\\¡ = Πθτ^ϋΗ{Νζ)ΚΝζ))θ} = E{|^z)^|22} = Σ Γ = 1 ^ ( Ω „ θ) (9-199) 

Division of (9-196) by (9-199) gives (9-72). 
For the WGTLS estimator with left and right weighting (9-74) and (9-75), we have 

>WGTLS(¿U) = \WAZ)e\\/\Ce\\ (9-200) 

(see Lemma 9.23, equivalence number 1). Following the same lines as for (9-199), we find 
UC0||22 = ^{\Wj(Nz)0\\2}. Applying(9-197)to ||WJ(Z)0\\¡ and(9-195)to Í {\\Wj(Nz)0\\2

2 } 
gives (9-76) after division. D 

Appendix 9.K Rank of the Column Covariance Matrix 

We will show that the rank of the column covariance matrix CWJ (9-75) is rank defi-
cient under Assumption 9.20(i) or 9.20(ii). For the diagonal weighting (9-74), the Ath row of 
Wj(Nz), with/(Λ^) = J(Z)-J(Z0), can be written as 

W(tfz))[*,:] = W{ak)N¡{k)S\k) (9-201) 

with N¡(k) = [NY(k) Nu(k)], 

(9-202) 

and P[(n) = | l Q¿ ... Ω?|· The column covariance matrix CWJ (9-75) then becomes 

CWJ = E {Re(( Wj(Nz))»{ Wj(Nz)))} = Re(£f = , W2(Qk)S(k)Cov(Nz(k))S»(k)) (9-203) 

Under Assumption 9.20, Cov(Nz(k)) has rank one for k = 1, 2,..., F, so that 

Co\(Nz(k)) = c(fc)c"(jt) (9-204) 

with c(k) e C2 (see the SVD expansion (15-18)). Using (9-204), (9-203) can be written as 
CWJ = Re(BHB) = BfeBK where the k throw of B is given by 

B[K:] = W(.nk)c"(k)S»(k) = W{ak)[cw{k)P^na) -c[2](k)Pj?(nb)] (9-205) 

ST(k) = 
0 -P¡(nb) 

and where the rank of Bre determines the rank of CWJ. According to Assumption 9.20, we 
can distinguish three cases. Under Assumption 9.20(i), there is no input noise and 
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c[x](k)*0, c[2](k) = 0 for any k, so that rank(£re) = na+l. Under Assumption 9.20(ii), 
there is no output noise, and c[Xjk) = 0, c[2](k) Φ 0 for any k, so that rank(2?re) = nb + 1. 
Under Assumption 9.20(iii), the input-output errors are totally correlated and c[x](k)^0, 
C[2](k) * 0 for any k, so that in general Bre is of full rank. It is rank deficient only if, in addi-
tion, C[i](£)/C[2](£) is real and independent of k. This is, for example, the case for totally 
correlated white noise errors n(t), nu(i) (Cov(Nz(k)) is then independent of A:). D 

Appendix 9.L Calculation of the Gaussian Maximum 
Likelihood Estimate 

9.L.1 Gaussian Log-Likelihood Function. Under Assumptions 9.5, 9.18, and 9.19, 
the pdf of Nz is given by 

w>= w¿¡¡c^-^N* (9"206) 

(see (16-14)) with CNz = Cov(Nz), 

C„ = dizg(Cov(Nz(l)),Cov(Nz(2)),...,Cov(Nz(F))) 

Cov(Nz(k)) 
aftk) «*(*) 
dfak) o¿(*) 

(9-207) 

If CN is singular, then Cj¡1 and det(CN) are replaced by C^z and the product of the non-
zero eigenvalues of CN , respectively. Replacing Nz by Z-Zp in (9-206) and taking the 
negative of the natural logarithm gives the negative log-likelihood function 

-In fNz(Z, Zp, Θ) = (Z-ZvrC+
Nz(Z-Zp) + c (9-208) 

with c = F\n(n) + ln(det(Qz)). 

9.L.2 Elimination of the Unknown Input-Output DFTSpectra in the Cost 
Function. Using Lemmas 15.3 and 15.4, Example 15.5 and Exercise 16.4, (9-79) can be 
written as 

(Zre - Z^YCi{Zn - Zpre) + Λ£βη{θ9 Ζρ) (9-209) 

where CNzn = Co\(NZre) = 0.5(C^z)Re with CN = Cov(Nz). Because ere(#, Zp) is linear 
in Zpre, minimization problem (9-209) is exactly equivalent to (19-6), and, hence, all the re-
sults of Section 19.2 are valid. Elimination of Zpre in (9-209) gives (19-8) 

*ML(« Z ) = 5*£(« Z)C-l(0)erQ(O, Z) (9-210) 
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with Ce (Θ) = Cov(erQ(0,Nz)). Because the noise residual e(69Nz) is linear in NZ, it is 
complex circular 

Ε{ΜΘ,Νζ)-Ε{β(θ9Νζ)})(β(θ,Νζ)-ΐ{€(θ9Νζ)})Τ} = 0 (9-211) 

and CeJ0) = 0.5(Ce(6>))Re (see Exercise 16.4). Note that E{e(%Nz)}*0 for model 
(9-10). Applying the result of 15.5 to (9-210) under Assumption 9.18 gives 

VML(%Z) = eH{e9Z)C-\e)e{e9Z) 

Ce(0) = Cov(e(%Nz)) = d i a g i o ^ , Θ), a¡(Q2, θ), ..., σ*(Ω„ θ)) 
(9-212) 

which is exactly (9-80). 
In the derivation of (9-212), we implicitly assumed that no DC (Ω0) and no Nyquist 

(ΩΝ/2) components were present in the data. Indeed, expressions (9-78) and (9-79) are valid 
only if all the elements of Z are complex, which is not the case for the DC and Nyquist com-
ponents (real numbers). If DC and Nyquist are present, then under Assumption 9.18 the terms 

Í7Vj(0)(Cov(7Vz(0)))-^J(0) + \N¡(N/2){Cov{Nz{N/2)))-^NT
z{N/2) 

+ λ0β(Ω0, θ9 ZJO)) + λΝ/2β(ΩΝ/2, θ9 ZJN/2)) 
(9-213) 

where Νζ(0), Νζ(Ν/2)9 λθ9 λΝ/29 β(Ωθ9 θ9 Ζρ(0)), and β(ΩΝ/2, θ9 Ζρ(Ν/2)) are real num-
bers, should be added to (9-79) and (9-209). Their contribution to (9-210) equals 

1 β\Ωθ9 θ9 2(0)) + 1 β\ΩΝ/29 θ9 ZjN/2)) 

2 σΙ{Ω0,θ) 2 σΙ{ΩΝ/29θ) 
(9-214) 

Because β(Ω0, θ9 Ζ(0)) and β{ΩΝ/29 θ9 Ζ(Ν/2)) are real numbers, the terms (9-214) remain 
unchanged in the transformation from (9-210) to (9-212). 

9.L.3 Maximum Likelihood Estimate of the Input and Output DFT Spectra. In the 
previous section, it was shown that all the results of Section 19.2 are valid for Zre. Hence, the 
ML estimate Zre of the true DFT spectra Z0re equals (19-11) 

CNC+
NL· = CNC+

NZte-CNMl(e)C-\0)ere0,Z) 
vZre l Vre 

(9-215) 

with Θ = #ML(Z) and 

Mm 
deK{0,Z) 

5Z„ 

6Re(e(<9,Z)) dRe(e(0,Z)) 
5Re(Z) dlm(Z) 

glm(g(Θ,Ζ)) aim(e((9,Z)) 
5Re(Z) d!m(Z) 

(9-216) 

Because e(0, Z) is an analytic function of Z, it satisfies the Cauchy-Riemann equations 
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c>Re(e(6>Z)) = dlm(e(9,Z)) 
5Re(Z) dlm(Z) 

dRe(e(6>Z)) = dIm(g(6>Z)) 
5Im(Z) dRe(Z) 

(9-217) 

(Henrici, 1974). Applying (9-217) to (9-216) gives 

Μ,(έ?) = 
dRe(e(6>Z)) dlm(e( <9,Z)) 

5Re(Z) 5Re(Z) 
aim(e((9,Z)) gRe(e( 6>Z)) 

5Re(Z) 5Re(Z) 

fge(6>,ZJ 
I 5Z Re 

(9-218) 

Using (9-218), ϋββ) = O.5(Ce(0))Re, C 
(9-215) becomes 

0.5(C^ ) , and Lemmas 15.3 and 15.4, 

CNC+
NZ = CNC+

NZ-CNzM
H{e)C-\e)e0^Z) 

Μ{θ) = ^ S = d i a g U ^ , 0) -5(Ω 1 ,60] , . . . ,Μ(Ω^60 -5(Q F ,0) ] ) 
(9-219) 

Putting (9-207) and (9-212) in (9-219) assuming that CNz is regular (CNZCNZ = IF) gives 
(9-86). Note that the solution (9-86) remains well defined if CN is singular. 

9.L.4 Minimization of the Maximum Likelihood Cost Function. The maximum 
likelihood cost function (9-83) is minimized using the Newton-Gauss algorithm (9-18). It re-
quires the calculation of the Jacobian matrix J(0,Z) = δε(θ,Ζ)/3θ, where ε(θ,Ζ) is given 
by (9-84) or (9-85). In this appendix an explicit expression of the Jacobian matrix J(0, Z) is 
given for rational transfer function models (cost function (9-83) with weighted residual 
(9-84)). The calculation of J(0, Z) for the other transfer function models (partial fraction ex-
pansion and state space representation) follows exactly the same lines (cost function (9-83) 
with weighted residual (9-85)). 

Using (9-10), (9-35), and (9-84) we find for k = 1,2,. . . ,F, 

J[k,r+\](%Z) 
δε(Ω^ Θ, Z(k)) 

δαν 

Re(Ql[a?(k)A(Qk, Θ) - a^(k)B(Qk, Θ)]) 

with r = 0, 1,..., na, 

J[k,na + r + 2](&>Z) 
dsjD.^ Θ, Z(k)) 

-ilr
kU(k) e(nk,e,Z(k)) 

with r = 0, 1, ..., nb, and 

Re(nr
k[a^(k)B(ilh Θ) - σ^)Α(Ω,, Θ)]) 
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J[k,na + nb + r+3](0>Z) 
de(nk, Θ, Z{k)) -Ωί 

°J&h0) 

with r = 0, 1, ...,«,·. If a constraint of the form θ^ = 1 is used, then the corresponding 
column in J(0,Z) must be eliminated. If the constraint \\θ\\% = 1 is used, then (9-18) is 
solved using the pseudoinverse (see Section 15.5) and θ^ = #('_1) + Αθ^ is normalized 
(0W -> θ(ί)/\\θ{0\\2) before making a new iteration step (i:^> i + 1). 

The Levenberg-Marquardt version of (9-16) with constraint θ^ = 1 is 

(J£(#'-1\Z)Jn(&-»,Z) + λΠη )ΑΘ(0 = -JT(W-V9Ζ)ετ,φ^\Z) (9-220) 

(see Fletcher, 1991). The numerical stability of (9-220) is improved by solving the overdeter-
mined set of equations 

Δ#0 = 
0 

(9-221) 

using a QR factorization (see Section 15.4.3). If the constraint ||0||2 = 1 is used, then the 
Levenberg-Marquardt version of (9-18) is calculated as 

Δ6Κ0 = -VAUT£XQ{0^-x\Z) (9-222) 

with ./re(0(<-D,Z) = t / d i a g ^ , σ29 ..., an,9 0)VT 

A = diag( 
Jna-\ 

, 0 ) 

and ^ > σ2 > ... > ση _χ. The initial value of λ in (9-221) and (9-222) is chosen propor-
tional to the largest singular value of Jre(0(°\ Z), for example, λ = CTJ/100. If the iteration 
step θ^ = 0θ-ΐ) + Δ^Ο) is successful (the ML cost function decreases), then λ is de-
creased as Λ-+0ΑΑ; otherwise (the ML cost function increases) λ is increased as 
λ -> 10A and the iteration is restarted from θ^~ ι \ 

Appendix 9.M Number of Free Parameters 
in an Errors-in-Variables Problem 

The total number of free parameters in an errors-in-variables problem (9-1) equals the 
sum of the number of free parameters in ¿ore and the number of free model parameters in Θ. 
According to Section 19.3, the number of free parameters in Zore equals rank(CV )-2F. 
Using CVZre = 0.5(CVz)Re and rank((CVz)Re) = 2rank(CVz) (Lemma 15.3) the total num-
ber of free parameters becomes 

2rank(CV)-2F+>%> (9-223) 

Under Assumption 9.20 we have rank(C;v2) = F and (9-223) reduces to ηθ. We conclude 
that under Assumption 9.20 the total number of free parameters is independent of F. D 
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Appendix 9.N Uncertainty of the BTLS Estimator 
in the Absence of Model Errors 

Cost function (9-100), where Θ* is replaced by η, equals fF(0,77, Z). The expected value 
of the derivative of fF(0, η,Ζ) w.r.t Θ is denoted as gF(0, η) = E{/Jr'(#, 7,Z)}. In the 
absence of model errors, we have #BTLS(Z0) = θ0 ( #*BTLS = #o f°r model (9-8) with 
Ω = s), so that e(Qh 0OiZo(k)) = 0 (e(Qki Θ0,Ζ0(Κ)) = 0(F"1/2), see Theorem 6.7), 
independently of η. Hence, from (9-100) and the definition of gF(0, η) it follows that 
gF(e0, η) = 0 (gF(0o, η) = 0(F*)) for any η, so that dgF(00, η)/δη = 0 
(dgF(0o, η)/δη= 0(F~1)). We conclude that the second term in the right-hand side of 
(9-31) is zero (vanishes asymptotically w.r.t. the first term). It shows that the stochastic 
weighting does not increase the asymptotic uncertainty of the consistent BTLS estimate. D 

Appendix 9.0 Asymptotic Properties 
of the Instrumental Variables Method 

The basic step in the proof of properties 1, 2, 3, 6, and 7 of Theorem 9.21 (see Appendix 9.E) 
is the strong convergence of the cost function KIV(#,Z) and its (higher order) derivatives 
w.r.t. Θ to their expected values. It is easy to verify that the strong laws of large numbers used 
to prove the strong convergence can also be applied to cost functions that are bilinear in the 
measurements Z^ and Zl2l. To prove the asymptotic normality (properties 4 and 6) it is 
sufficient to note that the central limit theorems used in Appendix 9.E also apply to cost 
functions that are bilinear in the measurements Z^J and Zl2l. The deterministic convergence 
(property 5) follows the same lines of Appendix 9.E exactly. D 

Appendix 9.P Equivalences between Range Spaces 

In this appendix we show the following equivalences between the range spaces: 
(i) range(O.X) = range(Or), and(ii) range(OrXreII) = range(Or). 

9.P.1 Proof of the First Equivalence, To prove the first equivalence, it is sufficient 
to show that X has full rank. The na by F matrix X in (9-116) is rank deficient if and only 
if there exists a (complex) row vector C Φ 0 such that CX = 0. From (9-111) it follows that 
X(k) = ^kIna-A)-xBU(k). Assuming that £/(*)* 0 it is possible to rewrite CX = 0 as 

CtfkIna-A)-lB = 0 for * = 1,2, . . . ,F (9-224) 

Because, by assumption, at least na + 1 frequencies are distinct (Assumption 9.14) and the 
strictly proper system G(£) = 0(ξΙη-Α)-χΒ can, at most, have na- 1 zeros, (9-224) can 
only be true if and only if G(£) = 0. Assuming that the state space realization (9-111) is 
controllable, G(£) = 0 can only be true if and only if C = 0 (Kailath, 1980). D 

9.P.2 Proof of the Second Equivalence. The range space of <9rXren equals the 
range space of Or, unless rank cancellation occurs in ΧΓ6Π. The rank cancellation does not 
occur if the intersection between the row spaces of Xre and Ure is empty. This is true if the 
r + na by F matrix 
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Z = U (9-225) 
[_x| 

has rank r + na. Z is rank deficient if and only if there exists a row vector L Φ 0 such that 
UL = 0. Putting L = [Dlxl2...lr_xC[, and using X(k) = (ξ^-Α^Βϋψ) (see 
(9-111)), LZ = 0 can be written as 

G(4) = 0 for k = 1, 2, . . . ,F (9-226) 

with G © = (D + C(^/„ - ^ ) - 1 5 ) + ^ " j i / m ^ w . Because, by assumption, at least 
r + na+ 1 frequencies are distinct (Assumption 9.14) and G(£) has, at most, na + r- 1 
zeros, (9-226) can only be true if and only if G(¿) = 0. G(£) = 0 is true if and only if 
D = 0, /w = 0 for m = 1,2, . . . , r - l , and C ^ - ^ ^ ^ O . Assuming that the state 
space realization (9-111) is controllable, 0{ξΙη -A)~lB = 0 is true if and only if C = 0 
(Kailath, 1980). ° D 

Appendix 9.Q Estimation of the Range Space 

The range space of a matrix equals the span of its left singular vectors corresponding to 
the nonzero singular values. In the first part of this appendix we study the estimation of the 
left singular vectors of a noisy r by F matrix A for F -> oo. In the second part these results 
are applied to estimation of the range space of Or. 

9.Q.1 Asymptotic Properties of the Left Singular Vectors. Consider the real r by F 
matrix A = A0 + N9 where A0 is the deterministic part and Af is the zero mean noise contri-
bution. The left singular vectors of A are equal to the eigenvectors x of AAT (see Exercise 
15.16) 

(AAT/F)x = λχ (9-227) 

If NNT/F and A0N
T/F converge w.p. 1 to, respectively, CN and 0, then AAT/F con-

verges w.p. 1 to 

A0A£ + CN with A0Aj = lim A^A\/F (9-228) 

Hence, (9-227) converges w.p. 1 to 

(A0Al+CN)x* = λ*χ* (9-229) 

where x* and 2* are the limit values of, respectively, Jc and λ. 

If CN = a2Ir then (9-229) becomes A0AQJC* = (/l*- σ2)χ*. Clearly, x* = x0, with 
x0 the left singular vector of A0. This proves the strong convergence of Jc to x0. 

If CN* G2lr then we form the matrix B = C^I2A, where CjJ2 is a square root of 
CN, C¡J2CJJ2 = CN. Because C^/2(NNT/F)C^T/2 converges w.p. 1 to 7r, the equation 
(BBT/F)y = juy converges w.p. 1 to 
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B0BJ>, = (μ*- l)y. with B0 = C"1/2A0 (9-230) 

Clearly y* = y0, with y0 the left singular vector of B0 = C^1/2A0. It follows that 
y0 = C^1/2x0, which proves the strong convergence of C^/2y to x0. 

Note that we have shown the strong convergence of the estimate x to the solution x0 of 
the noiseless problem A0, without requiring the existence of a true model. If a true model ex-
ists and if it belongs to the considered model set, then x0 equals the true value. 

9.Q.2 Estimation of the Range Space of Or. The results of the first part of this ap-
pendix are applicable to ΥΓ6Π if N N r / F and X r e I l N r / F converge w.p. 1 to, respectively, 
some CN and 0. We will show that this is true under the assumptions of Section 9.6.1 and 
assuming that Nv(k) = 0. 

Using (9-238) with NjJ = 0 we find 

NN r = N^N^e7,-N^Urer(UreUre: r)-1UreN^7, 

= Re(NYN?)-Re(NYU//)(Re(UU//))"1Re(UNf) (9-231) 

X r e n N r = Re(XN?)-Re(XU//)(Re(UU/i))-1Re(UNf) 

with 

uu» = Xi-,|tfo(*)WW(*) 

xu" = ii-i^*)i7o(*)»;(W(*) 
and 

N Y N?/F = I Σϊ= ! \NY{k)\iWr(k)Wr
H(k) 

NYU"/F = I Σζ= xNY{k)Ü,(k)Wr{k)Wrm (9-232) 

X N ? / F = I Σζ= xX{k)ÑY{k)Wr{k)W»(k) 

By assumption Re(UU/ /)/F> clr, with 0 < c < oo and c independent of F, for any F, oo 
included, and, hence, (Re(UU^))-1 = 0(F~l). For a frequency domain experiment, NY(k) 
is independently distributed over k, while for a time domain experiment, |Nr(£)|2 and NY(k) 
converge w.p. 1 to random variables that are mixing of order 2 (see Section 16.16). Hence, 
the sums in (9-232) converge w.p. 1 to their expected values (see Section 16.9, versions 2 and 
3 of the law of large numbers) 

E{NYN^/F} 

E{NYU"/F} 

E{XNY/F} 

Hence, N N r / F converges w.p. 1 to 

= 0 (9-233) 

= 0 
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CY/F = E{Re(NYN# }/F = I R e £ ¡ L , a¡{k)Wr{k)W?{k)) (9-234) 

and Xr enN7VF converges w.p. 1 to 0. 
We conclude that range(Cj/2£/[: l:n j) converges strongly to range(OrXreIl), which is 

equal to range(Or) (Appendix 9.P). Hence, we have established the strong consistency of 
Or. From versions 2 and 3 of the law of large numbers (see Section 16.9), it follows that 
N N V F and X r e n N r / F converge in probability at the rate Op(F~l/2) to their limit value. 
Hence, this is also valid for Υ^Π and C^2U^x.n j (9-242) so that Or converges in proba-
bility at the rate Op{F~112) to Or. In case of model errors Assumption 9.27 guarantees that 
the results of the first part of this appendix can be applied to equation (9-242) showing the 
strong convergence of Or = range(Cj/2£/[: l:n j) to the solution <9r* of the noiseless prob-
lem (N = 0 in (9-238)). The convergence rate is also an Op(F~l/2). 

Appendix 9.R Subspace Algorithm for Discrete-Time 
Systems (Algorithm 9.24) 

We first discuss the three basic steps of the subspace algorithm in more details. Next, 
we present a numerically efficient implementation. 

9.R.1 Basic Subspace Algorithm. The three basic steps of the subspace algorithm 
are (i) estimation of the range space of Or, (ii) estimation of A and C given ¿)r, and (iii) es-
timation of B and D given A and C. 

FIRST STEP. AS Or is known only within a right invertible transformation matrix T, 
see (9-118), it is sufficient to estimate the range space of Or. If the F>na frequencies are 
distinct, then the matrix X has rank na (see Appendix 9.P), and range(OrX) = range(Or). 
Hence, we can estimate the range of Or using (9-120) if we can eliminate Sr\J and suppress 
the influence of the noise NY -SrNv. 

Because Or is a real matrix, we are interested in a real range space. Therefore, we con-
vert (9-120) into a set of real equations as 

Yre = OrX
re + ¿;Ure + N£ - SrN* (9-235) 

where ( )re locates the real and imaginary parts beside each other, for example, 

Yre = [Re(Y) Im(Y)] (9-236) 

The operator ( )re should not be confused with ( )re, which stacks the real and imaginary 
parts on top of each other. Both operators are related by Xre = ((X7)^)7. 

The term SrV
Te in (9-235) is eliminated by right multiplication of (9-235) with an or-

thogonal projection Π 

Π = /2 F-Ur e : r (Ur eUr e r)-1Ur e (9-237) 

which has the property Ur en = 0. We get 
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Yr en = OrXr en + N 
(9-238) 

N = ( N £ - S r N £ ) n 

If UreUre77F> clr with 0 < c < oo and where c is independent of F, for any F, oo in-
cluded, the frequencies are distinct, and F>na + r, then range(OrXren) = range(<9r) for 
any F, oo included (see Appendix 9.P). 

From (9-238) it follows that the range of Or can be estimated as range(YreEI). Since 
the range of a matrix equals the span of the left singular vectors corresponding to the nonzero 
singular values (see Section 15.4.1), range(Yren) is calculated via a singular value decom-
position (SVD) of Yr en. The left singular vectors of ΥΓ€Π are consistently estimated if 

a.s.lim X r e n N V F = 0 and a.s.lim N N V F = CN with CN = a2L (9-239) 

(see Appendix 9.Q). The second condition in (9-239) is in general not satisfied and, therefore, 
the noise N in (9-238) is whitened by left multiplication of (9-238) with C~1/2, 

c - i / 2 Y r e n = cN
1 / 2OrXr en + C"1/2N (9-240) 

where C¿/2 is a square root of CN (see Section 15.4.4 for the calculation of the square root 
of a positive (semi-)definite matrix). Because E{C^1/2(NNr/F)CÑr/2 } ->Ir for F - » oo, 
the left singular vectors of CÑ1/2Yren are consistently estimated. From the SVD 

C - l /2 Y re n = υΣγΤ (9-241) 

we estimate the extended observability matrix Or as 

C S
1 / 2 d = U[:<,:nJ or Or = Ci/ 2I/ [ : , , : n J (9-242) 

The problem with the proposed algorithm is that N is a function of the unknown state space 
parameters, via Sr (see (9-114) and (9-238)), and, hence, CN cannot be calculated. If the in-
put is exactly known, Nv - 0 , then N is independent of Sr and CN can be calculated. If 
the input observations are disturbed by noise, Ν 0 Φ 0, then we replace U(k), Y(k), a¿(k), 
and σ2(Α;) everywhere by, respectively, 1, G(Qk) = Y{k)/U{k), 0, and σ2 (9-54). If the 
worst case input and output signal-to-noise ratio is larger than 10 dB, then the bias on 
E{ Y(k)/U(k)} can be neglected and the variance of the truncated ratio G(Qk) is given by 
(9-54) (see Section 9.9 for an elaborated discussion). We conclude that from a practical point 
of view Y(k)/U(k) acts as a zero mean random variable with variance (9-54). From now on, 
we will assume that Nv = 0. The matrix CN is then asymptotically (F -> oo) given by 

CN = lim CY/F with CY = E{N^N£r} = Re(£^ = a$(k)Wr(k)Wr
H(k)) (9-243) 

(see Appendix 9.Q). We conclude that the estimate Or converges w.p. 1 to the true solution 
Or0 under the assumptions of Section 9.6.6 and Assumption 9.14 and that it convergences 
w.p. 1 to the noiseless solution Or* under the assumptions of Section 9.6.1 and Assumption 
9.14. Moreover, the convergence rate is an Op(F~1/2) (see Appendix 9.Q). 
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SECOND STEP. Using the estimate Or we calculate from (9-117) and (9-114), 

A = Ó r [ l : r - l , : ] Ó r [ 2 : r f : ] and C = O r [ i , : ] (9-244) 

Note that A, C, and their derivatives w.r.t. Or are continuous functions of Or in a closed 
and bounded neighborhood of the true value Or0 or the noiseless solution Or*. Because Or 

converges w.p. 1 to the true solution or to the noiseless solution, the estimates A and C also 
converge w.p. 1 to the true solution or to the noiseless solution (Lemma 17.31). Since the 
convergence rate of Or is an Op(F_1/2), the convergence rate of A and C is also an 
0p(F-1/2) (Lemma 17.34). 

THIRD STEP. We choose W^k) = Oy\k) in the cost function KS U B(£,D,i, C,Z) 
(9-121). If JV7X*)*0 then we replace Y(k), U(k) by Y(k)/U(k), 1 (see first step) and put 
W(£k) = OQl(k) (see (9-54)). This choice would give the smallest uncertainty on the esti-
mates B and D if A and C were nonrandom. Under Assumptions 9.14 and 9.16 the linear 
least squares problem (9-121) is identifiable if and only if the state space realization (9-111) 
is observable (McKelvey et al., 1996). 

Under the assumptions of Sections 9.6.5 and 9.6.6, the estimates B and D are strongly 
consistent because A and C are strongly consistent. To prove this statement, it is sufficient 
to apply Theorem 18.7 with w(<9, η(Ζ)9Ζ) = 0, η(Ζ) = [(vec(i)) r CTf, and 
η* = [(vec(A0))

T C%]T, and to verify that E{ FSUB(Z?, D, A0, C0,Z)} is minimal in the true 
parameters C0, D0. This last condition is satisfied because for Ψ{ξ1ί) = Oyl(k), 

E{Vsm(B, A A09 C0, Z)} = Vsm(B, D, A0, C0, Z0) + F (9-245) 

with VslJB(B0i D0, A0, C0, ZQ) = 0. Similarly, under the assumptions of Sections 9.6.1 and 
9.6.5, the estimates B and D converge w.p. 1 the noiseless solution (see Theorem 18.5). 

Under the assumptions of Section 9.6.2 and 9.6.5 the estimates B and D converge in 
probability at the rate Op(F_1/2) to their limit value. To prove this, it is sufficient to note that 
the convergence rate of A and C is an Op(F-1 /2) and to verify that all the conditions of 
Theorem 18.16 are satisfied. 

9.R.2 Numerically Efficient Implementation. The matrix Y r e n can be calculated 
without forming the huge IF by IF matrix Π. This is done as follows. Form the matrix 
Z = [VreT YrGT]T and calculate the QR factorization (see Section 15.4.3) ZT = QR with 
QTQ = I4F and R a 2r by 2r upper triangular matrix. This factorization can be written as 

ur e 

yre 
= 

RT
U θ " 

A12 A22_ 

with Rn a regular r by r matrix. Using the property QlQ\ = 0, it is easy to verify that 
Yr en = Rl2Ql. The left singular vectors of Yr en are the eigenvectors of ΥπΉ(ΥΙβΠ)7' 
(see Exercise 15.16). Using Q¡Q2 = I2F we find that Y r e n ( Y r e n ) r = Rl2R22 is indepen-
dent of Q2. It follows that the left singular vectors of ΥΓ6Π and the (asymptotic) covariance 
matrices CN and CY (9-243) are not influenced by Q2. Hence, we can calculate (9-241) as 

C~l/2R¡2 = UEV7 (9-247) 

Ql\ 

QT1 

(9-246) 
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Appendix 9.S Subspace Algorithm for Continuous-
Time Systems (Algorithm 9.25) 

The algorithm is a three-step procedure. The main differences from Algorithm 9.24 for 
discrete-time systems are (i) the orthogonalization of the input and output data, (ii) the esti-
mation of a generalized extended observability matrix Orl in the first step, and (iii) the esti-
mation of A from a generalized shift property of Orl in the second step. The third step re-
mains exactly the same. We first explain the orthogonalization, next we discuss the impact of 
the orthogonalization on the model equation (9-120), and finally we prove the generalized 
shift property of OrL. The appendix is concluded with a discussion of the stochastic proper-
ties and the numerical implementation. 

9.S.1 Orthogonalization Procedure. The data matrices Y and U in (9-116) depend 
on the scalar polynomial basis sn, n = 0, 1, ..., r - 1. We will construct two scalar orthogo-
nal polynomial bases pn (s), n = 0, l , . . . , r - l and qn(s), n = 0, 1, ..., r— 1 such that the 
data matrices Y±, constructed using pn (s), and U±, constructed using qn(s), satisfy, respec-
tively, Re(Y±Yf) = lr and Re(U±Uf) = Ir The matrix ZL = [Ufr Y?T]T, where 
( )re locates the real and imaginary parts of the matrix beside each other (see (9-236)), thus 
has the property 

T _ Z±Z[ = 
I, C1 

C\lr 

(9-248) 

In Rolain et al. (1995) it has been shown that no other two scalar polynomial bases resulting 
in a smaller condition number of Z±Z^_ can be found. Hence, Z± is best conditioned for sca-
lar bases. 

The matrices RetYY77) and ReiUU77) each define an inner product, 

Re(YY»)^(x(sly(s))Y = R e ( ^ = ^ X ^ I W ) 

Re(UU")=> < χ ( 5 ) , Χ ^ = R e ( Z r = 1 ^ ) K ^ ) l ^ ) l 2 ) 
(9-249) 

that is used to calculate, respectively, the bases pn(s), n = 0, 1, . . . , r - 1, and qn(s), 
n = 0, 1, ..., r- 1, via a Gram-Schmidt orthogonalization procedure (see Section 15.11). 
Applying this procedure with inner product ( , ) Y gives 

1. Initialization: 

p0(s) = \/ax with ax = || 1|| 

P\(s) = sp0(s)/a2 with a2 = \\sp0(s)\\ 

2. Recursion: for n = 2 to r- 1 

Pn^) = ^pn_x{s) + anPn_2{s))/an+x with 

«, ι+l = \sPn-\(S) + anPn-l{S)\ 

where \\t(s)\\2 = {t(s),t(s))Y. The resulting polynomial basis has the property 

{pn{s\pJs))Y= S(n-m) (9-252) 
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(see Section 15.11). Now define the vector WY{k) 

Wr(k) = [p0(sk) Pl(sk) ...pr_¿s,)]* (9-253) 

and construct Y± as 

Y± = [WY(\)Y(l) WY(2)Y(2) ... WY(F)Y(F)] (9-254) 

Using (9-252), it is easy to verify that 

Re(Y±Y[) = Re(Xf= x \Y(k)\2WY(k)W?(k)) = Ir (9-255) 

Making the same calculations with the inner product ( , ) w gives the scalar or-
thogonal polynomial basis qn(s) and the numbers J3n, n = 0, 1, . . . , r - 1. Simi-
lar to (9-253) and (9-254), we define 

Wv(k) = [q0(sk) qx(sk) ... qr.x{sk)Y (9-256) 

U± = [0^,(1)1/(1) WV{2)U{2) ... WV{F)U{F)} (9-257) 

where Re(U±Uf) = Ir. 

9.S.2 Impact of the Orthogonalization on the Model Equation. From the Gram-
Schmidt procedure it follows that the orthogonal polynomial bases pn(s)9 

n = 0, 1, . . . , r - 1, and qn(s), n = 0, 1, ..., r- 1, are related to the basis sn, 
n = 0, 1, ..., r - 1, via a lower triangular r by r matrix 

WY{k) = LYWr(k), Wv(k) = LvWr(k) with LY9LV e R'*'" (9-258) 

Applying (9-258) to (9-254) and (9-257) gives, using (9-116), 

Y, = LYY Y,re = LYYTQ 

(9-259) 
U± = ¿^U U£ = LvV

n 

Left multiplication of (9-235) with Νυ = 0, by LY, gives, using (9-259), 

Y[e = OrlX
rG +LYSrL¡}\]rl + LYN* (9-260) 

with Orl = LYOr the generalized extended observability matrix. Constructing the orthogo-
nal projection Π± as in (9-237), where Ure is replaced by U^e, makes it possible to elimi-
nate the input term in (9-260) 

Y[en± = O r l X r e n x + N± (9-261) 

with N± = ZryNyrijL. Using the results of Appendix 9.R and (9-254) it follows that 
N ± N j / F converges w.p. 1 to 
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j , CY± = i E{Re(NYiN?±)} = I Re(£[= , a}{k)WY{k)W»{k)) (9-262) 

The range space of <9r± is estimated as in Appendix 9.R: from CY1/2Y[enl = UEV7 we get 
<o , = rl/2u 1 

9.S.3 Generalized Shift Property. Because Orl = LYOr and Y± = LYY, it follows 
that the rows of OrL and Y± can be derived from the respective rows of Or and Y, using 
the same linear combinations 

Y±[«,:] Lm=\ymY[m,:] 
(9-263) 

°r±[n,:] = Σ « = 1 Ym°r\m,:] 

First, we establish the relationship between the rows of Y±. Next, using (9-263), we show 
that a similar relationship exists between the rows of Orl. 

Multiplying (9-250) and (9-251), evaluated at sk, by Y{k) for k = 1, 2, . . . ,F , gives 
the following relationship between the rows of Y± 

1. Initialization: 

XL[1.:] = Y[l,:]/«!» XL[2, :] = Y±[1,:]¿V«2 C«64) 

with r[1>:] = [7(1) 7(2) ... Y(F)] mdDs = dmg(Sl,s2, ...,sF). 

2. Recursion: for n = 3 to r 

Y±t„,:] = (Υ±[„-1,:]^+αΒ-ΐΥΐ[»-2.:])/«» (9-265) 

Using the definition (9-249) of ( , ) Y, it follows that 

«l = lY[l,:]ll2» «2=|Υΐ[1,:]β. | |2."» = ΙΙΥ1[»-1,:]£>
ί
 + «»-1Υ±[»-2,:]|2 (9"266> 

Using (9-263) we can rewrite (9-265) as 

Y±[«,:] = (Σϋ,-1
17'»Υ[».:]£>

ί
 + "»-ΐΣϋΙ".2ιΛ.Υ[Μ,:])/«» 

(9-267) 
= (ΣΓ=Ί y«Y[» + 1.:] + »» - ΐ Σ Γ Λ Η»Υ[«,:] )/«» 

where the last equality is due to the property Y[m + ¡ :] = Y [ m > : ] Ds (see (9-116)). The second 
equation of (9-267) is just another way of writing the first equation of (9-263). Hence, the 
rows of OrL should satisfy the same expression 

Or±ln,:] = ( Σ Γ Λ ^ 0 φ Η + 1,:]+α»-ΐΣΓ=ν™0<-[»>,:])/0;« 
(9-268) 

= ( Σ Γ - 1 r*>0nm, :)A + an- ΐΣΓΛ ^ Κ :])/«„ 
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where the last equality is due to the shift property Or*m + x .-, = Or, ,A (see (9-114)). Using 
(9-263), the last equation of (9-268) becomes 

Orl[n,:] = {Orl_{n_h:]A + an_xOrl_[n_2])/an (9-269) 

for n = 3, 4, ..., r. Following the same lines we get from (9-264) 

°ri[2,:] = °n.lU:]A/a2 ( 9 ' 2 7 1 ) 

From (9-270) it follows that C = a, Orl[l :]. Writing (9-269) and (9-271) under matrix no-
tation gives the generalized shift property of OrL 

[Di°r±[v,-U:]U=lOrl[2,r¡.]-b] (9-272) 

with 
Dx = diag(l/a2, l/a3, ..., \/ar) 

' D2 = diag(a2/a3, a3/a4, ..., ar_l/ar) 

9.S.4 Discussion. The range space estimation of Orl follows exactly the same lines 
as the range space estimation of Or. Therefore, Or± has the same asymptotic (F-»oo) 
properties as Or in Appendix 9.R. Because A and t are continuous, differentiable functions 
of Or_L, they have the same asymptotic (F—> oo) properties as A and C in Appendix 9.R. 
The third step of both algorithms is identical and, therefore, the properties of B and D also 
remain the same. 

To orthogonalize the data matrices, we use formulas (9-264) to (9-266) instead of 
(9-250) and (9-251). Note that the orthogonalization is done without calculating, explicitly, 
the matrices LY and Lv in (9-258). Because YreYre^ = (L$LYyl and UreUrer = 
(L^L^)-1, the matrices LY and Lv have the same condition numbers as Yre and Ure, re-
spectively. Therefore, LY and Lv should never be computed. They are used for theoretical 
derivations only. As WY(k) is not explicitly calculated in (9-264) to (9-265), the covariance 
matrix CY± cannot be calculated using (9-262). This is done as follows. Using NY = Z,7NY 

we find 

CY± = LYCYLT
Y = LY RetCC") LT

Y = Re(C±Cf) (9-273) 

where C = [Wr(\)aY(\)Wr{2)σ^Ί)... Wr(F)aY(F)] and C± = LYC. Because C has the 
shift property C[n + 1 :] = C[n:]Ds and C± = LYC, the relationship between the rows of 
C± is given by (9-264), (9-265). 

1. Initialization: 

Cm,:] = C [ 1 > : ] /«! , CX[2>:] = C1[U:]Ds/a2 (9-274) 

2. Recursion: for n = 3 to r 

[/^2^r±[l:r-2,:l] 
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C±[„,:] = (CUn_lt:]Ds + aH^C1[n_29l])/aH (9-275) 

The proof follows exactly the same lines as for OrL in Section 9.S.3 of this appendix. 
The matrix Y[en± is calculated using a QR decomposition of Z[ = [U]67 Y[er] as 

explained in Section 9.R.2 of Appendix 9.R. 

Appendix 9.T Sensitivity Estimates to Noise 
Model Errors 

We study the influence of noise model errors on the bias of the GTLS, ML, and BTLS 
estimates assuming that a true plant model exists and that it belongs to the considered model 
set (Assumptions 9.16 and 9.17). 

9.T.1 Bias of the ML, GTLS, and BTLS Estimators. If the wrong noise (^var i -
ances are used, then Theorem 9.21, except properties 6 to 8 (consistency, bias, and effi-
ciency), is still valid for the GTLS, ML, and BTLS estimates. The estimates are no longer 
consistent, Θ(Ζ0)Φ θ0 (Θ*Φ #0), because Ε{νΓ(θ9 Νζ)} is no longer Θ independent (use 
quick analysis tool number 2 of Section 9.5). 

An explicit expression of the bias Θ(Ζ0) - θ0 can be found for models (9-7) (Ω = z_1, 
s, *fs9 and tanh(r^^)) and (9-8) (Ω = z_1) through a Taylor series expansion of the ex-
pected value of the cost function at θ0 

VF'W = VF'W¿) + νρ«(θ){θ- θ0) (9-276) 

with ? = ίθ+(\ -ί)θ0 and / e [0, 1]. Because VF'T0(Zo)) = 0, it follows from (9-276) 
that 

Θ(Ζ0) -θ0 = -νΡ«-\θ )VF'Tm (9-277) 

Under Assumptions 9.16 and 9.17 we have E{ VF\0O9 Z0)} = 0 even if the wrong noise 
(co)variances are used (see (9-72), (9-80), and (9-98)). Together with (9-20), it facilitates re-
writing (9-277) as 

Θ(Ζ0) -θ0 = -VF"-\6 ) E{vF'(é?0, Nz)} (9-278) 

The GTLS, ML, and BTLS estimates are inconsistent because E{vF(0o,N£}*O if the 
wrong noise (co)variances are used. The bias term (9-278) will be calculated explicitly for 
the ML estimator. From the ML cost (9-80) it follows that 

E{v F (0 ,Ν Ζ )}=-Σ^ Χ ,2(0 -j¡>Lk=i ,2(0 (9"279) 

where G2
e(Q.h 0), afclh Θ), and cr2(Qh θ), cr2(Q.h Θ) are calculated as in (9-35), (9-45) 

using, respectively, the true and wrong noise (co)variances. The second equality in (9-279) is 
obtained via o*(Qh0) = \A(Qh 0)\2a2(Qk, Θ). Using 
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G{€lh θ0) = G0(Qk) = Y0(k)/U0(k) 

Retook)—^ ) = Re^^G^) ^ ) 

we get 

t^dt - 2|roWRe(W~^) 
o00

 deo (9-280) 

^ ( * ) = a¿(k)/\U0(k)\2- a^/ifoikWoik)) 

Using (9-280) and 

σΓ
2(Ω„ έ?0) = |r0(*)|2(»W*)+ W ) 

*V(*) = a^k)/\U0(kf-a^/(Y0(k)Uo(k)) 

the derivative of (9-279) w.r.t. Θ at #0 equals 

(9-281) 

F ^ln(G(Q„ 0 ) ̂ ( * ) fy(*) - £,(*) VY(kY 
δθο (Vu(k)+VY(k)f 

(9-282) 

where Vu(k), Vy(k) equal ^(A:), Fy(&) evaluated with the wrong noise (co)variances. 
From (9-278) and (9-282), it follows that the bias is a function of the difference be-

tween the actual and the true noise (co)variances. The same is true for the GTLS and BTLS 
estimators (see Exercise 9.9). If the noise covariance matrix used CVZ(*) satisfies (9-129), 
then VY(k) =f(k)VY(k), Vu(k) =f(k)Vu(k) and the bias (9-278) is zero. 

For model (9-8) with Ω = s9 the bias ft - θ0 is calculated via a Taylor series expan-
sion of V*\0) at θ0. Following the same lines as in the previous paragraph, we find 

ft - θ0 = -V*"~\0 ) lim E{vF'(0o, NZ)} (9-283) 
F->oo 

with θ = /ft + (1 - t)0o and t e [0, 1]. Comparing this expression with (9-278), it fol-
lows that the conclusions of the previous paragraph also apply to the bias ft - θ0 of model 
(9-8) with Ω = s. 

9.T.2 Bias ofthe NLS-FRF and LOG Estimators. The NLS-FRF (9-47) and LOG 
estimators (9-55) apply to model (9-7). The bias Θ(Ζ0) - θ0 calculation follows the same 
lines as in the previous section. Therefore, expression (9-277) for the bias is valid with 

2 ^ F <31n(G(Q,,0))-
W Q ) = ~f Z L i R e ( 3Θ Kk)g(k)) (9-284) 



Section 9.24 ■ Appendixes 379 

where g(k) = 1, b(k) = E{N(k)} and N(k) is defined in (9-56) for the LOG estimator, and 
g(k) = |G0(Q^)|2, b(k) = E{NG(k)}/G0(Qk) and NG(k) is defined in (9-48) for the NLS-
FRF estimator. For circular complex normally distributed input-output errors, the bias b(k) is 
given by (9-50) and (9-57). For circular complex noise with even pdf, the bias is a function of 
the fourth-order moments of the noise (see Appendix 9.G). If the noise is not circular 
complex then b(k) is a function of the second-order moments of the noise (put E{z2} * 0 in 
(9-178)). D 

Appendix 9.U IWLS Solution in Case of Vector 
Orthogonal Polynomials 

Using the inner product (9-138), the orthogonality condition (9-139), and 

Λ(Ω, 0(0) 
£(Ω, #0) Σ *. 

r = 0 

prm 
9,(Ω) 

(9-285) 

with an +„ +ι = 1, the cost function (9-136) can be written as 

( 
Α(Ω, fr») 

£(Ω, 0*0) 
Λ(Ω, #0) 1 + Σ « ? (9-286) 

It follows directly that (9-286) is minimal for a0 = ax = ... = an +n = 0 . D 

Appendix 9.V Asymptotic Properties in the Presence 
of Nonlinear Distortions 

Consider the errors-in-variables model (9-146) where Mv(k), MY(k), and NP(k) sat-
isfy the noise assumptions of a time-domain experiment in Section 9.6. Multiplying (9-146) 
by e -J¿U0(k) gives 

Y(k)e-JZU*k) = GBask)\U0(k)\+NY(k)e-Jzu^ 

U(k)e-jZU°ik) = | t / 0 (*) | + ^ tX*K y Z t / # ) 
(9-287) 

for k = 1,2, . . . ,F . Note that this phase shift, applied to model (9-7) or (9-9), does not 
change any of the cost functions of Sections 9.8 to 9.14. To prove that Theorem 9.21, with 
G0(s) replaced by GBLA(s), is valid, it is sufficient to show that the noisy part Nz(k)e~jzu^k) 

of (9-287) satisfies all the assumptions of Section 9.6. First, note that Nz{k)e~jZU^k) is 
independent of the true unknown excitation |£/0(&)|. Because Mv(k), MY(k) and NP(k) are 
independent of Ys(k) and U0(k), it follows that M ^ É T ^ O W , My(k)e-J¿u¿k\ and 
NP{k)e~jZU^k) satisfy the noise assumptions of Section 9.6. Ys(k)e~jZU^k) has the same 
phase as Gs(k) and, therefore, has the same stochastic properties as Gs(k) in Theorems 3.10 
(mixing of order infinity) and 3.11 (asymptotic normality). As Y^k^e'-1^^ is mixing of 
order four (infinity), all properties of Theorem 9.21 remain valid (proof: see introduction of 
Appendix 9.E). D 
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Appendix 9.W Consistency of the Missing Data 
Problem 

The consistency proof follows the lines of the proof of Theorem 9.21 (Appendix 9.E). 
We first show the result for discrete-time systems ((6-46) with Ω = z_1) and afterward for 
continuous-time systems ((6-46) with Ω = s9 *fs). Because the output error 
Ym(k) - Ym(Q.k, Θ) is linear in the missing samples ψ, we can rewrite the cost function 
(9-148) as 

}\θ9 ψ, Z") = 1(^(0, Z») + ε2(θ)ψ)τ{εχ{θ, Ζ") + ε2ψ)ψ) (9-288) 

where εχ(θ, Zm) e R^ is a linear function of the missing data set Zm, and 
ε2(θ) G R^x <<Mu+MJ is independent of Zm. Elimination of ψ in (9-288) gives 

ψ(θ9 Zm) = -(εϊ(θ)ε2(θ))-ι ετ
2(θ)εχ{θ, Z*) (9-289) 

F(0,Zm) = \ετ
λ(θ,Ζ™)Ρφ)εχ{Θ,Ζ™) (9-290) 

with Ρ(θ) = ΙΝ- ε2(θ)(ε2(θ)ε2(θ))~ιε2(θ) a symmetric idempotent matrix of rank 
N-Mu-My. As ε2(θ) lies in the null space of Ρ(θ), (9-290) can be written as 

K(0, Z») = \{ελ(θ, Z») + ε2{θ)φζ)
τΡφ){εχφ, Ζ") + ε2(θ)φζ) (9-291) 

with <pz the vector ψ (6-45) where the missing input and output samples are replaced 
by the disturbing noise on these samples. To simplify the notations, we will assume 
without any loss of generality that the excitation is deterministic. Because the noisy 
part of ελ(θ, Zm) + ε2(β)φζ contains the DFT spectra of the complete disturbing noise 
sequences (no missing samples) and the output error Ym(k)- Ym(Clh &) in (9-148) is 
divided by σ7(Ω^ Θ) (9-45), which contains the (co)variances of the complete noise 
sequences, we have Cov^tf , Zm) + ε2{θ)φζ) = IN. Using this result together with 
trace(P(#)) = N-Mu- My, the expected value of (9-291) equals (see Exercise 17.2) 

E W # , Z - ) } = \£
T

x(e,Z$)P{0)£x{e,Zf) + \(N-Mu-My) (9-292) 

with Zg1 the true (noiseless) missing data set. Under Assumption 9.16 we have 

Ρ(θ0)ελ{θ^ Z0
m) = ει(θ09 Z0

m) + ε2(Θ0)ψ(θ09 Z0
m) = ε{{θ^ Zf) + ε2(θ0) ψ0 = 0 (9-293) 

so that θ0 minimizes the expected value of the cost function (9-292). Since Ρ(θ) = VIV1\ 
with V an orthogonal matrix and 

^N-Mu-My 0 
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(see Exercise 15.19), the cost function (9-291) can be written as 

2 (9-294) 
ε3(θ,Ζ™) = [ΙΝ_Μν_Μγ0]ν^(ε,(θ,Ζ^ + ε2(θ)φζ) 

Under Assumptions 9.18 and 9.19, the entries of the vector ε3(θ, Zm) are independent Gauss-
ian random variables with variance 1, so that V{6,Zm)/N converges (N—» oo) w.p. 1 to its 
expected value (see Section 16.9, version 2 of the strong law of large numbers). Under 
Assumption 9.6, applied to K(#, Zm) (9-294), this convergence is uniform in a closed and 
bounded neighborhood of θ0. Under Assumption 9.7, applied to ¥(θ, Zm) (9-294), this im-
plies the strong convergence of the minimizer 0wNLs(Zm) of (9-294) to the minimizer, Θ0, of 
(9-292) (see Appendix 17.B). The true coefficients of the TG(Q, Θ) polynomial in (9-147) are 
asymptotically zero (Lemma 6.5), thus only the plant model parameters α0αλ ...αη bQbx ...bn 

in Θ are consistently estimated. Note also that the estimate of the missing data 
^WNLS = <H¿wNLs(Zm)> Zm) (See (9-289)) is inconsistent. 

The proof for continuous-time systems (6-46) follows exactly the same lines. The only 
differences are that #0 minimizes the limit cost function lim E{F(<9, Zm)}/N instead of 

N-»oo 

(9-292) and that V(09 Z
m)/N convergences weakly, instead of strongly, to its expected 

value. This is due to the presence of the alias term S(sk) in the true output observations (see 
model (6-46)) which is only in probability (N -» QO) zero (Lemma 6.6). D 

Appendix 9.X Normal Equation for Complex 
Parameters and Analytic Residuals 

Because ε(θ, Ζ) is an analytic function of Θ we have 

δε(θ,Ζ) = δε(θ,Ζ) , δε(θ,Ζ) = δε(θ,Ζ) . 
5Re(0) δθ Slm(0) J δθ 

so that 

5Re(g(flZ)) = ^¿(ftzy 
SRe(0) V δθ 

δ!χη(ε{θ,Ζ)) = lm(S<^Zy 
dRe(<9) v δθ > 

V ; (9-296) 

δΚε(ε(θ,Ζ)) _ (δε(θ,Ζ)Λ = (δε{θ9Ζ)\ 

δ!τα(ε(θ,Ζ)) = lm(M0,ZÍ) = RefMMÍ 

Equations (9-296) are known as the Cauchy-Riemann conditions of an analytic function 
(Henrici, 1974). Using (9-296) and definition (15-40), we find 
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3Θ„ 

9Re(g(<9,Z)) aRe(g((9,Z)) 
5Re(<9) 5Im(6>) 

c>Im(g(<9,Z)) d!m(g(<9,Z)) 
SRe(<9) dlm(<9) 

= (θε(θ,Ζ)Λ 
\ δθ ) Re 

(9-297) 

Applying (9-297) and Lemma 15.4 to the right-hand side of (9-153) gives 

(9-298) 

(9-298) together with ¿>re(<9r(r ̂ ,Ζ) = « f l O ' - ^ z ) ^ shows that (9-153) is equivalent with 
(9-154). D 

Appendix 9.Y Total Least Squares for Complex 
Parameters 

From Appendix 9.X, it follows that 

r (Z) _ 5εκ{θκ,Ζ) _ ίθε(θ,Ζ)\ = 
JteiZ) δθ„ ^ δθ ) R e

 ( J ( Z ) ) R e (9-299) 

Using (9-299) and Lemma 15.4 we find 

w**Jn(Z) = W Z ) ) R e 

C?C = E{W{jl(Nz)UNz)WRe} = {HWHjH(Nz)j(NzW)\Q = (C?CC)RQ 

(9-300) 

with j(Nz) = J(Z)-J(Z0), and a possible choice for C is C = (Cc)Re. The total least 
squares solution is calculated via the GSVD of the real matrix pair (WRGJTQ(Z), C) (see 
Section 9.10). Because WRQJTQ(Z) = (WJ(Z))Re and C = (Cc)Re, it can also be calculated 
via the GSVD of the complex matrix pair (WJ(Z), Cc) (see Section 15.8). D 



Estimation with Unknown Noise 
Model - Standard Solutions 

Abstract: In the identification schemes that were presented in the previous chapters, it was 
assumed that the covariance matrix of the noise is known a priori. In practice this information 
should also be extracted from the experimental data. In this chapter, it is shown that a utiliz-
able nonparametric frequency domain noise model can be obtained from a very small number 
M of independent repeated experiments. Under these conditions the consistency of the esti-
mates is maintained, while the loss in efficiency is small. In practice, M> 4 consecutive pe-
riods of the steady-state response to a periodic excitation are taken as independent repeated 
experiments. As such it is assumed that the correlation length of the disturbing noise is small 
compared with the period length of the excitation. Also the classical solution for identifying a 
parametric noise model together with the plant model is discussed. Both the discrete-time and 
continuous-time cases are handled. 

10.1 INTRODUCTION 

In Chapter 9 a large variety of estimators were discussed, ranging from unweighted linear 
least squares methods to maximum likelihood estimators. The more advanced estimators 
such as Markov, GTLS, BTLS, and ML estimators require knowledge of the covariance ma-
trix with the disturbing noise as a function of the frequency. For example, the ML estimator 
was given as the minimizer of (9-80), which reduces to (10-1) if no transients are added to the 
model: 

vu¿* * - ΣΙ,ΗΩ:^2 - ΣΙ, μα> 4 z W (lo-i) 

with e(Qh Θ, Z(k)) = A(Qh 6)Y{k) -B(Qk, e)U(k), a¡(Qk, Θ) = var(e(Q„ Θ, Nz(k))), 

σ2(Ω„ Θ) = σ ^ ) μ ( Ω „ θ)\2 + c$(k)\B(Clh θ)\2 - 2Rt{a^{k)A{ah 0)β(Ω^ β)) (10-2) 

and eXCihe,Z(k)) = ε(Ω^ 9,Z{k))/ae{Clh Θ). The noise (co)variances a¿(k), a$(k), and 
σ^υ(Κ) were assumed to be known exactly, and under these conditions the properties of the es-
timators were studied. In practice, this information is not available but should be extracted 
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from the experimental data. In this chapter we will replace the exact noise (co)variances by 
their sample values. This is possible only if independent, repeated experiments are available. 
A practical solution consists of applying periodic excitations to the plant and observing M 
consecutive periods of the steady-state response. Therefore, the simple plant model (9-7) will 
be used throughout this chapter 

Y{ah0) = G(Qh0)U(k) (10-3) 

with Ω = z"1, s, */s, or t anh^s ) . The M experiments are processed and their DFT spectra 

lAl\k)9 YV\k), I = 1, . . . ,M and k = 1, . . . ,F (10-4) 

are calculated as explained in Chapter 2. The sample (co)variances are obtained directly from 
these measurements, e.g., 

W = ¿ i Σϋ i l^w - ̂ )l2-with ¿to) = ¿ Σϋ i W ) (10-5) 

(see (2-36) and (2-37)). The underlying assumption made here is that the correlation length of 
the input-output noise is small compared with the period length of the excitation; otherwise 
the DFT spectra of the consecutive periods cannot be considered to be independently distrib-
uted. The values (10-5) are used in (10-1) and (10-2) instead of the exact values. 

To compare this approach with the classical framework that deals with arbitrary excita-
tions (Ljung, 1999), we have to simplify the errors-in-variables framework to a weighted out-
put error problem. This means that only process (open and closed loop setup) and output 
measurement (open loop only) noise is considered; the input measurement noise is assumed 
to be zero (a^(k) = 0 and also σ^ν{Κ) = 0) so that the cost function (10-1) reduces to 

ν^β,ζ) = Σ 
#(Ω*, θ) 

F \Y{h)-G{Clhe)U{kf 

am >_, W) ( } 

Because in this classical framework no repeated measurements are imposed, the sample vari-
ance cry(k) cannot be calculated. Instead a parametric noise model a$(k) = σ2\Η(ζ]~ι, θ)\2 is 
used and the additional noise model parameters are estimated together with the plant model 
parameters (Ljung, 1999). This poses the question of what approach should be preferred: the 
parametric or the nonparametric (sample (co)variances) noise modeling approach? 

The major advantages of the parametric modeling approach are its applicability to arbi-
trary excitations, the ability to identify the plant dynamics from output observations only 
(ARMA models), and the fact that the noise model helps to identify the plant poles for some 
model structures (ARX, ARM AX). Its major disadvantages are the need for a double model 
selection problem (plant and noise models), the more complex optimization problem, and the 
fact that the identified noise model is inconsistent in the presence of plant model errors. The 
reader is referred to Ljung (1999) for a comprehensive discussion of these techniques. A fre-
quency domain solution to this problem is also given in Section 10.9 of this chapter. Both the 
discrete-time and continuous-time cases are handled. 
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The major disadvantages of the nonparametric approach presented in this chapter are 
the restriction to periodic excitations under steady-state conditions, the loss in frequency res-
olution of a factor M> 4 w.r.t. the parametric approach, and the (weak) correlation over the 
consecutive periods of the DFT spectra due to the coloring of the disturbing noise. However, 
whenever periodic excitations can be applied, significant advantages appear: the nonparamet-
ric model is generated automatically, without any user interaction; the errors-in-variables 
problem can be solved straightforwardly (no equivalent solution is available in the classical 
approach); the cost function is absolutely interpretable, which simplifies the validation pro-
cess significantly (see Chapter 11); and the quality of the nonparametric noise model is inde-
pendent of the identified parametric plant model. For these reasons, we prefer to use the non-
parametric noise models whenever it is possible to apply periodic excitations, independent of 
the fact that a time or frequency domain method will be used later on. 

Note that the major disadvantages of the nonparametric approach presented here are 
tackled in Chapter 12 via a local polynomial approximation of the frequency response func-
tion and the (noise) transient (leakage) errors: the correlation between consecutive signal pe-
riods is suppressed by removing nonparametrically the noise transients in the input-output 
data; the frequency resolution is increased by handling the first two periods of the transient 
response of the plant to a periodic excitation; and the nonparametric noise analysis is general-
ized to arbitrary excitations. 

10.2 DISCUSSION OF THE DISTURBING 
NOISE ASSUMPTIONS 

10.2.1 Assuming Independent Normally Distributed 
Noise for Time Domain Experiments 

Actually, we will prove the theorems under the frequency domain experiment Assump-
tion 9.18 and Assumption 9.19 (assuming independently normally distributed noise in the 
frequency domain) while in practice the data are obtained from a time domain experiment. In 
the latter it is assumed that the disturbing noise is described by a filtered white noise source, 
which introduces a (weak) correlation over the oberserved signal periods. Switching to the 
idealized frequency domain assumptions makes it possible to set up a formal theory to ana-
lyze the replacement of the exact variances by their sample values. Moreover, this mixed use 
of both assumptions is supported by Theorem 16.25 and will be further discussed later. 

The following assumptions are necessary to study the asymptotic behavior (F -> oo) of 
the estimators. First, we require that M independent repeated experiments are available. 
Next, we make an assumption about the disturbing errors of the /th experiment. 

Assumption 10.1 (M Independent Repeated Experiments): The measured input-
output DFT spectra lAl\k), ni\k), k = 1,2, . . . ,F and / = 1,2, . . . ,M, satisfy 

YV\k) = Y0(k) + NV\k) 

W\k) = U0(k) + N[¿\k) 

where the true unknown deterministic values U0(k), Y0(k) are independent of / and where 
the disturbing input-output errors N[¿\k), Νψ(Ιή are independent over /. 

Following the lines of Chapter 9 we introduce the data vector ZM (see (9-3)) 
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ZU]T = [ZV]T(i)ZV]T(2)...ZWT(F)] with Z^T{k) = [yM(it) W\k)} (10-8) 

and similarly for Νψ. It is related to the true values by ZW = Z0 + Νψ. 

Assumption 10.2 (Zero Mean Normally Distributed Errors): The noise N¿\k) is 
independent over the frequency k, has zero mean, and is circular complex normally distrib-
uted with covariance matrix 

CNz(k)=E{N^(k)(Nl
z'Kk))H} = 

In the theory that is set up below, the normal distribution of the noise will be a kernel 
property. It is asymptotically guaranteed by Theorem 16.25. It is assumed that the noise is in-
dependent from one frequency to the other. Again, this property is only asymptotically met in 
practice, so that in principle a full covariance matrix should be used, including the covariance 
over different frequencies. However, this would make the nonparametric approach very in-
tractable because the large full matrix has to be inverted to calculate the cost function. It is 
shown that under the time domain experiment Assumption 9.3, the nondiagonal terms can be 
omitted without affecting the asymptotic properties of the estimates, so that the cost function 
(10-1) still can be used (Schoukens et al., 1999a). 

10.2.2 Considering Successive Periods 
as Independent Realizations 

The noise behavior is characterized using the sample mean and sample variance, ob-
tained from a set of repeated measurements. In practice we often obtain these repeated mea-
surements by measuring M successive periods in one record. For each period, we calculate 
the Fourier coefficients and consider them as independent experiments from one period to the 
other as formalized in Assumption 10.1. Again, this is only approximately met in practice be-
cause some correlation exists between neighboring periods. Because the correlation of fil-
tered white noise (time domain experiment assumption) decays exponentially, the correlation 
between two neighboring periods disappears in inverse proportion to the length of the period. 
In practice it can be neglected if the period length is large compared with the correlation 
length of the noise. 

10.3 PROPERTIES OF THE ML ESTIMATOR USING 
A SAMPLE COVARIANCE MATRIX 

10.3.1 The Sample Maximum Likelihood Estimator: 
Definition of the Cost Function 

A new cost function is defined putting U(k), Y(k) and σ (̂Α:), crfá), σγυ(^ as the 
measurements and the variances, respectively, into the cost function (10-1): 

aj{k) yW vYU(k) 

6*,(*) o*(*) 
(10-9) 
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w r \é(Qh ft Z(k))\¿ w r . Λ ,, 

with ¿(Q¿, ft Z(t)) = é(Qh ft Z(¿))/á¿(Q¿, 0 and 

é(ah ft Z(¿)) = A(ah G)Y{k)~B{ílh 0)Ü(k) 

cr¡{ílh0) = σ?(Ω,,θ)/Μ (10-11) 

¿&Clh0) = σ ^ ) μ ( Ω , , ^ | 2 + < ^ 

cr¡{ahe) = var(é(Q¿, %N[
z
l\k))) stands for the variance of the equation error of one exper-

iment, while or^Clh Θ) = var(e(Q.h ft Nz(k))) is the variance of the sample mean of the 
equation error. 

10.3.2 Properties of the Sample Maximum 
Likelihood Estimator 

The most important concern, when replacing the exact noise (co)variances by their sam-
ple values, is the loss in quality of the new estimator #SML(Z) with respect to the original esti-
mate ¿?ML(Z) due to this change. It turns out that this loss is small, even for a very small num-
ber of periods, typically 4 or 7. It will be shown that the sample estimate #SML(Z) converges 
asymptotically (F->oo) to 0ML(Z) (the estimate obtained with the exact noise (co)-vari-
ances). Also the loss in efficiency is small. The covariance matrix of the estimates grows with 
a factor (M- 2)/(M- 3). These results are formulated precisely in the next two theorems. 
The first theorem gives a precise formulation of the properties of the sample estimate. The sec-
ond describes the relationship between the "sample" estimate and the "exact" estimate. 

Theorem 10.3 (Asymptotic Properties #SML(^) ) : Consider model (10-3) with any 
identifiable parameterization of Section 6.2. Under the assumptions of Section 9.6, 
Assumptions 10.1 (M>4) , and Assumption 10.2 the minimizer #SML(Z) of (10-10) has the 
asymptotic properties of Theorem 9.21 with VF(0,Z) = VSML(0,Z)/F. For 

1. M> 4 the stochastic and the deterministic convergence (properties 1,5, and 6 of 
Theorem 9.21) are valid. 

2. M> 6 the stochastic convergence rate (properties 2 and 6 of Theorem 9.21) are 
valid. 

3. M> 7 the systematic and stochastic errors, the asymptotic normality, and the 
asymptotic bias (properties 3,4, 6 and 7 of Theorem 9.21) are valid. 

Proof. Apply Theorem 9.21 to (10-10), using the results of Appendix 10.D (which 
guarantees that all moments that appear in the proof exist). D 

Theorem 10.4 (Relationship between ^SML(^) and # M L ( ^ ) ) : Under the conditions 
of Theorem 10.3, the estimates based on the true (10-1) and the sample (10-10) noise 
(co)variances are related to each other by: 

1. For M> 3 , the expected value of the cost functions, 
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*W*) = ^νΜΙ(θ), (10-12) 

2. For M> 4 , the asymptotic value of the cost functions, 

F*SML(0) = J ^ n a í ñ (10-13) 

the minimizer of the expected value of the cost functions, 

^SML(ZO) = <?ML(Z0) (10-14) 

and the minimizer of the asymptotic value of the cost functions, 

ASML = &ML (10-15) 

3. For M > 7 , the parameter uncertainty in the absence of modeling errors, 
#SML(Z0) = 0O, 

C o v ( < W Z ) ) * ̂ 5 lCov(^ M L (Z) ) , (10-16) 

where Θ(Ζ) = θ0 + δθ{Ζ) + Op(F~l) with Έ{δθ(Ζ)} = 0 and δθ(Ζ) = 
Op(F"1/2), and where *]Ψδθ(Ζ) is asymptotically normally distributed. 

Proof. See the proof of Theorem 10.3 and Appendices 10.B, 10.F. D 

The full proofs of both theorems are in the appendices, but the basic idea is easy to 
grasp. Consider 

w r \e(Qk, Θ, Z(k))\2 w r 

(10-17) 
c0) = σϋ^θνσϋΩ,,θ) 

dk(e) = \é(Clk,0,Z(k))\2/a¡(nk,e) 

Observe that ck(0) and dk{6) are independently distributed: the first depends on the sample 
variance, while the second depends on the sample mean. It is well known that these are inde-
pendent random variables for normally distributed noise (Stuart and Ord, 1987). In Appendix 
10.B it is shown that E{ck(0)} = ( M - l ) / ( M - 2 ) , for any 0e P r , so that 

E{FSML(0,Z)} = E{c,(0)} E{FML(0,Z)} = g z l E{KML(0,Z)} (10-18) 

This shows that the minimizer of the expected value of the cost is not changed by introducing 
the sample variance, and this result is the kernel of the classical consistency proof. 
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10.3.3 Discussion 

From Theorem 10.3, it follows that the estimate #SML(Z) is consistent and that 
#SML(Z0), #*S M L are the noiseless solutions when model errors are present (apply quick 
analysis tools number 2 and 3 of Section 9.5). 

Because VSML(A0,Z) = KSML(#,Z), the estimate #SML(Z) is independent of the par-
ticular constraint at = 1, bi = 1, or ||0||| = 1 chosen (quick tool number 4). 

If the input and output measurements are noisy, the sample covariance cr^k) must be 
calculated, even if it is known that the input and output errors are uncorrelated σ$ν(Κ) = 0. 
Otherwise the properties of Theorems 10.3 and 10.4 are no longer valid (see the proof of The-
orem 10.3). Both theorems show that in practice the unknown exact noise (co)variances can 
be replaced by the sample noise (co)variances without any problem. 

It is not necessary to make a precise measurement, M = 4 independent repeated mea-
surements suffice to get consistency, and M = 1 independent repeated measurements are 
enough to guarantee the existence of the covariance matrix of the limiting parameter distribution. 

The loss in efficiency is not large (below 12% for M = 7) so that this is a very accept-
able solution. 

In practice it can sometimes be a problem to measure seven periods, especially when 
the period length becomes very long as is necessary to access very low frequencies. In that 
case the number of periods can be restricted to M = 2, but at that moment the variances 
should be averaged over seven neighboring frequency lines. 

10.3.4 Estimation of Covariance Matrix 
of the Model Parameters 

Equation (10-16) quantifies the loss in efficiency due to the use of the sample vari-
ances. However, it does not give an answer about how to calculate £y from the available in-
formation. CQ is approximated by 

Cov(0ML(Z)) * [2Re((^ M L (Z) ,Z)) / / (^ M L (Z) ,Z)) ) ] - 1 

(see Section 9.11.4) and in practice, during the calculations of the covariance matrix, the ex-
act variances in ε" are again replaced by the sample variances, and only έ' is available. Us-
ing similar calculations as in (10-18), it turns out that 

[2Re((*'(0ML(Z), Ζ))\ε\θΜΙβ\ Z)))]"1 * 
Μ-Λ (10-19) 
g - i [2Re((£-(^ML(Z), Z)f(e<(Í9mL(Z), Z)))]"1 

so that (10-16) is replaced by 

Cd * ^ [ 2 R e ( ( ^ ^ s M L ( z ) ^ ) ) ^ ^ S M L ( z ) ^ ) ) ) ] _ 1 (10-2°) 

10.3.5 Properties of the Cost Function in Its 
Global Minimum 

Due to the availability of the nonparametric noise model it is possible to give a predic-
tion of the value of the cost function that is expected to be observed at the end of the identifi-
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cation process if no model errors are present. To judge the difference between the actual, ob-
served value and the expected cost, the variance of the cost should also be known. 
Consequently, this information can be used as an undermodeling detection tool during the 
model selection and validation process by comparing the actual value of the cost function 
with its expected value (see also Chapter 11). Undermodeling occurs if the orders of the nu-
merator and/or denominator polynomials of the transfer function model are too small (un-
modeled dynamics), or if a true linear time-invariant model simply does not exist (for exam-
ple, nonlinear distortions). 

Theorem 10.5 (Mean and Variance of the Global Minimum of the Cost Function): 
Under the conditions of Theorem 10.3, and for M> 6, the mean and variance of the global 
minimum of the cost function var(FSML(#sML(Z), Z)) are given by 

E{F S M L (0SML(Z) ,Z) } * g ^ l E { F M L ( 0 M L ( Z ) , Z ) } - ( A / _ f ) ( ¿ _ 2 ) w » / 2 

var(FSML(áSML(Z), Z)) * {Μ%~$_ 3)var(FML(^ML(Z0), Z)) (10-21) 

+ ( ^ ( Μ - 3 ) Σ ί - . < E{N^ML(Z 0 ) ,Z W ) | 2 } ) 2 

in the presence of model errors (#ML(ZO) * θ0), and 

E{VSML0SML(Z),Z)} * K-l(F-ne/2) 

var(KSML(¿sML(Z),Z)) * [M_^f F 

(10-22) 

if no model errors are present (#ML(Z0) = θ0). 

Proof. See Appendix 10.G. □ 

10.4 PROPERTIES OF THE GTLS ESTIMATOR USING 
A SAMPLE COVARIANCE MATRIX 

The general form of the cost function of the GTLS estimator is given by (9-72): 

ΣΓ . \e(ak, Θ, Z(k))\2 

* W 4 2 ) = ^ (10-23) 
Σ£-,<#"*>*> 

Replacing Z(k) in this expression by the sample mean Z(k) and the exact noise (co)variances 
by the sample noise (co)variances gives the sample GTLS (SGTLS) cost function 

y f Aé{cik,e,z(k))\2 

V*mA<*. Q = k = r — (10-24) 
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where e(Qh 0,Z(k)), and cr¡{ílh Θ) are defined in (10-11). The minimizer 0SGTLS(Z) of 
(10-24) is not calculated using the iterative Newton-Gauss scheme (9-16) or (9-18) but via 
the generalized singular value decomposition of the matrix pair (JTQ(Z),C) with 
J(Z) = δέ(θ9Ζ)/δθ and C a square root of the column covariance matrix of jTe(Nz), with 
j(Nz) - J(Z)-J(Z0), calculated using the sample noise (co)variances (see Section 9.10). 
Just like the GTLS estimate, #SGTLS(Z) suffers from the amplification of the high-frequency 
errors (see Section 9.10.3). To cope with this problem weighted SGTLS versions can be con-
structed as in Sections 9.10.3 and 9.12.4. 

Theorem 10.6 (Asymptotic Properties ^SGTLS(^)) : Consider model (10-3) with 
any identifiable parameterization of Section 6.2. Under the assumptions of Section 9.6 and 
Assumption 10.1 (M>2) the minimizer #SGTLS(Z) of (10-24) has the asymptotic properties 
of Theorem 9.21 with VF(6,Z) = VSGTLS(09Z), where 

1. VF(0) and V+ψ) are given by 

-/max, 

Vp{ff) = ^ = l 1 ' + 1, V.(ff) = l*s—f + 1 (10-25) 
]jjIf-, <#«*.*> ¿ J ""οΚΩ(/), 0)n{f)df 

/min 

2. E {δθ{Ζ)} in (9-26) is not necessarily zero or even may not exist. 
3. δθ{Ζ) in the expression of the covariance matrix (9-27) is replaced by de(Z) as in 

Theorem 18.25. 

Proof. See Appendix 10.H. D 

From Theorem 10.6 it follows that the estimate #SGTLS(Z) is consistent and 
#SGTLS(Z0), & SGTLS a r e m e noiseless solutions in case model errors are present (apply 
quick analysis tools number 2 and 3 of Section 9.5 to V{9) and V+ψ) in (10-25)). Because 
VSGTLS(Z0,Z) = VSGjLS(0,Z) the estimate #SGTLS(Z) is independent of the particular con-
straint chosen, for example, a¡ = 1, bl,= 1, or ||0||| = 1 (quick tool number 4). The rela-
tionship between the asymptotic behavior of the estimates, based on the true (10-23) and the 
sample (10-24) noise (co)variances, is established in the following theorem. 

Theorem 10.7 (Relationship between ¿ S G T L S ^ ) and #GTLS(Z)): Under the 
conditions of Theorem 10.6, the estimates based on the true (10-23) and the sample (10-24) 
noise (co)variances are related to each other by 

^SGTLS(^) = *GTLS(0) a n d ^SGTLSÍ*) = ^GTLs(^) ( « « ó ) 

#SGTLs(Zo) ~ ^GTLs(^o) a n d &SGTLS " &GTLS (10-27) 

In the absence of model errors, #SGTLS(Z0)
 = ô> we have 



392 Chapter 10 ■ Estimation with Unknown Noise Model - Standard Solutions 

Cov(^SGTLS(Z)) = Cov(^GTLS(Z)) (10-28) 

where Θ(Ζ) = θ0 + δθ(Ζ) + Op(F~l) with E{<%(Z)} = 0 and δθ(Ζ) = O p (F 1 / 2 ) , and 
where JFS0(Z) is asymptotically normally distributed. 

Proof See Appendix 10.1. D 

Contrary to the SML solution, it is not necessary to calculate the sample covariance 
σ"γυ(Κ) if it is known that the input and output errors are uncorrelated &Yjj(k) = 0. From 
both theorems it follows that #SGTLS(Z) has asymptotic {F -> oo) properties similar to those 
of #GTLS(Z), even if the sample (co)variances are calculated using only M = 2 independent 
repeated experiments. For example, in the absence of model errors, the asymptotic uncer-
tainty of the SGTLS equals that of the GTLS. This is no longer true if model errors are 
present. The basic reason for the similar asymptotic behavior of #SGTLS(Z) and #GTLS(Z) is 
that the "poor quality" sample (co)variances are averaged over the frequency in the cost func-
tion (10-24), resulting in a "high quality" estimate of the denominator of the cost function. 

10.5 PROPERTIES OF THE BTLS ESTIMATOR USING 
A SAMPLE COVARIANCE MATRIX 

The general form of the cost function of the BTLS estimator is given by (9-98) 

F \e(Qh0O\Z(k))\i 
¿~>k=\ rrlriC) /Q(i'-1)\ 

FBTLS(0(Í)> Z) = G< ^ " } (10-29) 

^ = 1 σ ^ ( Ω „ ^ - ΐ ) ) 

We recall that of Γ(Ω^ #0-0) and σ^Ω^, #0)) stem, respectively, from the left W and right 
C weighting matrices in the total least squares problem (see Sections 9.10 and 9.12.3). 
Following along the lines of Section 10.4, one could think of replacing the true noise 
(co)variances everywhere in (10-29) by the sample noise (co)variances 

ΣΙ 
|έ(Ω^, <?('>, Z(fc))|2 

eK h ' (10-30) 

¿La 

Proceeding in that way, we violate the assumptions of the framework developed in Chapter 18. 
Indeed, the theorems of Chapter 18 (strong consistency, convergence rate, asymptotic bias, and 
asymptotic normality) are valid only if the number of stochastic parameters in the weighting re-
mains finite for finite M and F —> oo, and if these parameters converge strongly (F -» oo) to a 
nonrandom limit value. This is certainly not the case for the left weighting a^r(Qh #0-0) in 
(10-30). Therefore, to preserve the strong consistency, the noise (co)variances in the left 
weighting matrix W (σ/Γ(Ω^ 00-0)) in (10-30) should be modeled over the frequency using 
a finite (F- independent) number of parameters a. The estimates ά(Ζ) should strongly con-
verge to some nonrandom value a*. As it is the case for the SGTLS estimator, the right weight-
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ing C (cr¡(Q.heW)) in (10-30) must still be calculated using the original sample noise 
(co)variances. 

For computational reasons, only noise models that are linear in the parameters are con-
sidered. For example, 

o*(k9 a) = X ; i 1 anrhnr(Qk) n = 1,2, 3 (10-31) 

with σ\ = σ^, σ2 = σ2, and σ3
2 = σ2^ and where λ„Γ(Ω), r = 1, 2, ...,/?„, are linear 

independent basis functions with pn independent of F. The choice of the parametric noise 
model is not critical because it does not influence the consistency property. It, however, influ-
ences the uncertainty of the estimated plant model parameters. Under Assumption 9.3 or 9.4 
and Assumption 10.1 the linear least squares estimate aT(Z) = [af(Z) al{Z) άί(Ζ)] 

άη(Ζ) = {ΗΐΗη)-^Ηΐ[σ2
η{\\ ..., <r2(F)f n = 1,2,3 (10-32) 

with Hn[k^ = hnr(Q,k) and a„(k) the sample noise (co)variances (σ 2 = σ^, σ2
2 = σ^, 

and σ3
2 = σγν) converges strongly (F—»oo) to a nonrandom value a*. Note that the 

estimated parametric noise models σ2(&, ά(Ζ)), η = 1,2,3, represent a linear projection of 
an F- dimensional space onto a pn- dimensional space. 

Replacing the true noise (co)variances á*(k) in (10-29) by the estimated parametric 
noise model a*(k, a(Z)) in the left weighting W, σ2(Α:) by the sample noise (co)variances 
cr„(k) in the right weighting C, and the measurements Z by the sample mean Z gives the 
sample BTLS (SBTLS) cost function 

F \é(Qk,e(i\Z(k))\2 

W*,.Z> . ' " W ^ f » (.0-33, 
F σ2(Ω„ #'>) 

^ = 1 σ ^ ( Ω „ ^ - ΐ ) , ά ( Ζ ) ) 

where é(Qk, 0, Z(k)) and cr¡(Q.h Θ) are defined in (10-11) and 

σ2(Ω„ θ, ά(Ζ)) = σ2(Ω„ θ, ά(Ζ))/Μ 

<τ2(Ω„ θ, ά(Ζ)) = σ2(*, ά(Ζ))μ(Ω„ έ?)|2 + σ2(£, ά(Ζ))|£(Ω„ 0)|2 (10-34) 
-2Re(a2

c/(A:, ά(Ζ))Λ(Ω„ 0)£(Ω„ θ)) 

Likewise, the SGTLS estimator the minimizer #SBTLS(Z) of (10-33) is calculated via the gen-
eralized singular value decomposition of the matrix pair ( WRQJTe(Z), C) with 
J(Z) = dé(%Z)/dO, W a diagonal matrix with W[k,k] = <T7r(Qk, θ^~ι\ a(Z))9 má C a 
square root of the column covariance matrix of WRQJXQ{NZ), with ](NZ) = J(Z)-J(Z0), cal-
culated using the sample noise (co)variances (see Section 9.10). The asymptotic properties of 
the first step of the iterative procedure (10-33) are analyzed in the following theorem. 

Theorem 10.8 (Asymptotic Properties 0SBTLS(Z)): Consider model (10-3) with any 
identifiable parameterization of Section 6.2. Under the assumptions of Section 9.6 and 
Assumption 10.1 (M>2) the minimizer #SBTLS(Z) = 0(1) of (10-33), with parametric noise 
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model (10-31) and initial guess #°) = Θ(Ζ) satisfying Theorem 9.21, has the asymptotic 
properties of Theorem 9.21 with VF{6,Z) = VsmLS(0,Z) and where 

1. VF{0) and F*(<9) are given by 

,F \e(Qk,0,Zo(k))\i J~\e(P(f),e,Z<W)\2 
yF \e(Qh0,Zo(k))\i J. 

n{f)df 

*y*>+i, vm. V ^ w ^ +1 <1 0-3 5> 

2. E {δθ(Ζ) } in (9-26) is not necessarily zero or even may not exist, 
3. δθ(Ζ) in the expression of the covariance matrix (9-27) is replaced by d0(Z) as in 

Theorem 18.25. 

Proof. See Appendix 10.J. D 

From Theorem 10.8 it follows that the estimate #SBTLS(Z) is consistent and 
#SBTLS(Z0), 0*SBTLS a r e m e noiseless solutions in case model errors are present (apply quick 
analysis tools number 2 and 3 of Section 9.5 to ¥(θ) and V*(0) in (10-35)). Because 
FSBTLS(A#,Z) = ^SBTLS($Z)> the estimate #SBTLS(Z) is independent of the particular con-
straint chosen, for example, ai; = 1, bf = 1 or \\θ\\% = 1 (quick tool number 4). The rela-
tionship between the asymptotic behavior of #SBTLS(Z) and #BTLS(Z) is established in the 
following theorem. 

Theorem 10.9 (Relationship between #SBTLS(Z) and 0BTLS(2O)2 Under the 
conditions of Theorem 10.8, and assuming that the parametric noise models (10-31), 
a%(k, a(Z)) with n = 1, 2, 3, are consistent estimates of the true noise (co)variances, aftk) 
with n = 1,2,3, the estimates based on the true (10-29) and the sample (10-33) noise 
(co)variances are related to each other by 

* W s ( 0 ) = ^BTLS(#) and F*SBTLS(0) = K*BTLS(0) (10-36) 

#SBTLs(Z0) = #BTLs(Z0) a n ( * &SBTLS = &BTLS (10-37) 

In the absence of model errors, #SBTLS(Z0) = ^o> w e n a v e 

Cov(^SBTLS(Z)) = Cov(^BTLS(Z)) (10-38) 

where Θ(Ζ) = θ0 + δθ(Ζ) + Op(F~l) with Ε{δθ(Ζ)} = 0 and δθ(Ζ) = Op(F~1/2), and 
where 4Ρδ£Ζ) is asymptotically normally distributed. 

Proof. See Appendix 10.K. D 

As with the SGTLS solution, it is not necessary to calculate the sample covariance 
cr^jjik) if it is known that σ\]βί) = 0. From both theorems it follows that #SBTLS(Z) has 
asymptotic (F —» oo) properties similar to those of #BTLS(Z), even for M = 2. The price to 
be paid is the construction of a consistent parametric model for the noise (co)variances in the 
left weighting. If the parametric noise model is a poor approximation of the true noise model, 
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then the estimated plant model parameters are still strongly consistent (Theorem 10.8 is still 
valid), but their uncertainty may increase (Theorem 10.9 is no longer valid). 

10.6 PROPERTIES OF THE SUB ESTIMATOR USING 
A SAMPLE COVARIANCE MATRIX 

Subspace Algorithms 9.24 and 9.25 identify model (10-3) where G(Q, Θ) is parameterized in 
the state space parameters (A,B,C,D) 

G(£ θ) = 0{ξΙη-Αγ^Β + Ώ (10-39) 

with ξ = z for discrete-time systems and ξ = s for continuous-time systems. This is done 
in three steps: (i) estimation of the (generalized) extended observability matrix Or or Orl 

using the input-output spectra, (ii) estimation of A and C using Or or 6ru and (iii) estima-
tion of B and D using A, C, and the input-output spectra. The procedure has been devel-
oped for problems where the input is exactly known, Nv{k) = 0. If the input observations 
are noisy, Njj(k)*Q, then the errors-in-variables problem (10-7) is transformed into an 
equivalent frequency response function measurement problem 

Y(k)/U(k) = G0{ak) + N{¿\k) with E{N[¿\k)} = 0 (10-40) 

where var(7V¿](A:)) = a¿(k) is related to the input-output noise (co)variances by (9-54). For 
worst case input and output signal-to-noise ratios | U0(k)\ / %(&) and | Y0(k)\ / σ7(&) larger than 
10 dB, (10-40) is a very good approximation (see Section 9.9 for an elaborated discussion). 

Knowledge of the noise variance a$(k) or a£(k) is required in the first and third steps 
of the subspace algorithms. In the first step we need the covariance matrix CY or CY for, re-
spectively, discrete-time or continuous-time modeling, 

c v = R e d * - , <r}(kWr(k)W»(k)) with Wr{k) = [1 zk ... zr
k~

lY 
(10-41) 

CyL = R e d i - , c$k)Wr(k)W?(k)) with WY(k) = [p0(sk) Pl(sk) ... pr_x{sk)V \T 

where p„(s) are scalar orthogonal polynomials of order n = 0, 1,..., r - 1 (see Appendix 
9.S). In the third step the estimates B and D are obtained by minimizing 

. . w r \Y(k)-(C(4I„ -ÁyxB + D)U{k)\2 

Vsm(B, D, A,C,Z) = ΣΓ- ,' \Jk) - ^ (10-42) 

w.r.t. B and D. Replacing Z{k) by the sample mean Z(k), and the exact (co)variances by the 
sample (co)variances, in the first and the third step of Algorithms 9.24 and 9.25, defines the 
sample subspace (SSUB) algorithms. Expressions (10-41) and (10-42) then become 

CY = Re&F
k=lM-itf(k)Wr(k)Wr»(k)) 

¿YX = Re(lL , M-1 ̂ (*) WY{k) W»(k)) 

ν^Β,ο,ΑΛ^ - Z \^-^^B + D)ú{kf 
SSUBV ^ t _ , aY(k)/M 
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For noisy inputs, Y(k), U(k), and cr£(k) are replaced by Y(k)/Ü(k), 1, and c%(k). 

Theorem 10.10 (Asymptotic Properties ^ S S U B ^ ) ) : Consider transfer function 
model (10-39), parameterized in its state space representation, and Algorithms 9.24 and 9.25, 
where the input-output spectra are replaced by their sample mean, and the exact noise 
(co)variances by the sample noise (co)variances. The resulting estimate #SSUB(Z) has the 
asymptotic (F-> oo) properties of Theorem 9.28, where 

1. M> 2 for the stochastic convergence and stochastic convergence rate (properties 
1, 2, and 3 of Theorem 9.28) of A and C (assumptions of Sections 9.6.1 and 
9.6.5 and Assumptions 9.26, 9.27 and 10.1). 

2. M> 4 for the stochastic convergence and the stochastic convergence rate (prop-
erties 1, 2, and 3 of Theorem 9.28) of B and D (assumptions of Sections 9.6.1 
and 9.6.5, and Assumptions 9.26, 9.27, 10.1, and 10.2). 

Proof. See Appendix 10.L. D 

From Theorem 10.10, it follows that #SSUB(Z) is consistent and that #*SSUB is the 
noiseless solution in case model errors are present. Note that estimation of the poles, which 
depend on A only, has a fundamentally different stochastic behavior than the estimation of 
the zeros, which depend on A, B, C, and D. Indeed, the poles can be estimated consis-
tently under the same noise assumptions as those when the noise (co)variances are known, 
while consistent estimation of the zeros requires that the disturbing noise is independent 
(over the frequency) and normally distributed (Assumption 10.2). The relationship between 
the asymptotic behavior of #SSUB(Z) and #SUB(Z) is established in the following theorem. 

Theorem 10.11 (Relationship between #SSUB(Z) and 0SVB(Z)): Under the 
conditions of Theorem 10.10, the estimates based on the true (10-41), (10-42), and the sample 
(10-43) noise (co)variances are related to each other by 

1. F o r M > 2 , ^*SSUB = ^*SUB anc* ^*SSUB = ^*SUB 

2. F o r M > 4 , £*SSUB = £*SUB a n d Z)*SSUB = D*SUB 

Proof. See Appendix 10.L. D 

10.7 IDENTIFICATION IN THE PRESENCE 
OF NONLINEAR DISTORTIONS 

We recall that the steady-state response of the nonlinear system y(f) = G[u0(t)] to a random 
phase multisine (see Definition 3.2) w0(/) is given by 

m = GBLA(sk)U0(k) + Ys(k) (10-44) 

with Ys{k) the stochastic nonlinear contributions (see Section 6.8) and where 
ys(i) = lD¥T(Ys(k)) has the same periodicity as the input signal u0(t). Calculating the sam-
ple (co)variances over several periods of the output signal y{t) will, hence, give no informa-
tion about the stochastic nonlinear contributions Ys(k). Experiments with different 
realizations of the random phases (pk = ZU0(k) of the input signal are necessary to get the 
contribution of Ys(k) to the sample (co)variances. To distinguish between the signal part 
GBLA(sk)U0(k) and the noise part Ys(k) in (10-44), the input and output DFT spectra of each 
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experiment must be turned back with the corresponding phases <pk = ZU0(k) of the input. 
Because the observations of the input are in general corrupted by measurement noise, a refer-
ence signal r(t) is required to perform this operation (see Figure 10-1). This leads to the fol-
lowing robust measurement strategy (see also Section 4.3.1): 

1. Choose the amplitude spectrum of the random phase multisine (see Definition 
3.2). 

2. Make a random choice of the phases <pk of the random phase multisine (see Defi-
nition 3.2) and calculate the corresponding time signal r{t). 

3. Apply the excitation to the plant and measure P > 1 periods of the steady-state re-
sponse u(t), y(t). 

4. Repeat steps 2 and 3 M>4 times. 
5. Calculate the DFT spectra of the input u(t), output y(t), and reference r(t) sig-

nals for each experiment at the excited DFT frequencies. This gives M sets of the 
reference R\m\k), the noisy input lAm\k), and the noisy output Y^m\k) spectra, 
k = 1, 2, . . . ,F and m = 1, 2, ..., M. 

6. Divide the input and output spectra by eJZR[m]^ 

X^\k) = Xi>»\k)/eJZRlm]W 

and finally calculate the sample mean and sample (co)variances 

*&(*) M — Zi=1(^)-4HW)(^)-4W]W) 

(10-45) 

(10-46) 

(10-47) 

where X, L = 7, U. 
Using the sample means (10-46) and sample (co)variances (10-47), we can calculate the 
SML (10-11), SGTLS (10-24), and SBTLS (10-33) estimates of the best linear approximation 
GBLA(s). Because Assumption 10.2 is asymptotically valid (F-> oo) for Ys(k) (see Section 
6.8 and Theorems 3.10 and 3.11) it is tempting to study the properties of #SML(Z) under the 
idealized assumptions of Theorems 10.3 and 10.4, where G0(s) is replaced by GBLA(s). 
However, one should not forget that Ys(k) is uncorrelated with - but not independent of- the 
input DFT spectrum U(k) (see Chapter 3). It follows that Theorems 10.3 and 10.4 remain 
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Figure 10-1. Measurement of the best linear approximation GBLA(s) of a nonlinear device: w0(/), 
y0(t) are the true input/output signals, mu(t), my(t) are the input-output measurement 
errors, ys(t) is the zero mean stochastic nonlinear contribution, and r(t) is the 
reference signal (typically the waveform stored in the arbitrary waveform generator). 
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Figure 10-2. Schematic representation of a nonlinear device loading nonlinearly the generator: the 
input u(i) of the device is nonlinearly related to the reference signal r(t). The 
overall system from the reference rit) to the output of the plant is denoted by T [.]. 

valid except that the covariance expression (10-16) underestimates the true covariance (see 
Section 12.4 or Schoukens and Pintelon, 2010b, for a detailed explanation). Because Ys(k) 
has similar second order properties as the measurement and process noise in a time domain 
experiment (see Sections 3.4.4 and 9.6), Theorems 10.6 and 10.7 and Theorems 10.8 and 
10.9, where G0(s) is replaced by GBLA(s), remain valid for, respectively, #SGTLS(Z) and 
#SBTLS(Z) (proof: similar to Appendix 9.V; see also Section 12.4). Similar conclusions hold 
for the SSUB algorithms of Section 10.6. 

It may happen that the nonlinear plant loads the generator nonlinearly or that the ac-
tuator itself is nonlinear, creating nonlinear distortions at the input of the plant. Figure 10-2 
shows the corresponding block diagram. Applying the measurement strategy to this situa-
tion gives an estimate GBLAC?A) = Y(k)/U(k) that converges strongly (M—»oo) to 
í{YR(k)}/í{UR(k)} = TR(sk)/AR(sk) where TR(sk) and AR(sk) are the best linear approxi-
mations of the nonlinear systems T[.] and A[.]9 respectively (see Appendix 10.M). Note 
that in general TR(sk)/AR(sk) ψ GBLA(sk); however, if the nonlinear distortions at the input 
are small, \ai(Us(k)) « \AR(sk)R(k)\2, or if the best linear approximation GBLA(sk) is not 
very sensitive to (small) variations of the input power spectrum, then TR(sk)/AR(sk)& 
GBLA(sk). The same is true for the parametric estimate G(s, Θ) because it converges strongly 
(F -> oo) to the best linear approximation. 

10.8 ILLUSTRATION AND OVERVIEW OF THE 
PROPERTIES 

10.8.1 Real Measurement Example 

We illustrate the SML (10-10), SGTLS (10-24), "fall" (r = 1) SBTLS (10-33), and 
SSUB (Algorithm 9.25 with (Ty(k) and r = 70) estimators on the second measurement ex-
ample (flight flutter data) of Section 9.15.3. The sample noise (co)variances are calculated 
using three independent burst swept-sine experiments (see Figure 10-3). Because the three 
experiments were not synchronized, a postsynchronization was first executed before calculat-
ing the sample noise (co)variances. The postsynchronization consists of estimating the delay 
of the second and third experiments with respect to the first experiment and adding a corre-
sponding phase shift eJ^l\ I = 1, 2, to DFT spectra of the second and the third experi-
ment. Although M = 3 independent repeated experiments are not sufficient to use the sam-
ple noise (co)variances within the SML and SSUB framework (see Theorem 10.3 and 
Theorem 10.10), we still calculated the SML and SSUB estimates to show that they are rather 
robust w.r.t. to this condition. For SBTLS the noise (co)variances in the left weighting are 
modeled by a constant: put hnr(Q) = 1 and pn = 1, n = 1, 2, 3, in (10-31). Figure 10-4 
shows the estimation results for a rational form in s of order nb = \\ over na = 10. It can 
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Figure 10-3. Input and output signals of the flight flutter data showing the three 
independent burst swept-sine experiments. 

be seen that the SBTLS and SSUB estimates have SML quality. The SGTLS estimate misses 
the second resonance peak, which can be explained by its inappropriate frequency weighting 
(see also Section 9.10.3). Comparing Figure 9-13 on page 338 and Figure 10-4, it follows 
that SGTLS, SBTLS, and SSUB perform (much) better than GTLS, BTLS, and SUB. The ba-
sic reason for this is that in Figure 9-13 the three burst swept-sine excitations were treated as 
independent nonsynchronized experiments, whereas in Figure 10-4 the set of three postsyn-
chronized input-output DFT spectra have been averaged (see also Section 14.3.5.5). The av-
eraging improves the signal-to-noise ratio (compare the measured frequency response func-
tions in both figures), which explains the better behavior of SGTLS, SBTLS, and SSUB. 

10.8.2 Overview of the Properties 

The SML, SGTLS, SBTLS, and SSUB estimators have the same basic properties as the 
ML, GTLS, BTLS, and SUB estimators (see Table 9-5 on page 340), except that no prior 
noise information is required. Table 10-1 gives an overview of the differences and the simi-
larities between the estimates using the sample and the true noise (co)variances 

TABLE 10-1 Comparison of the Estimates Using the Sample (Subscript S) and the 
True Noise (Co) Variances in the General Case of Input-Output Errors 

Estimator 

SML 

SGTLS 

SBTLS 

SSUB 

As = A? 

Yes(ü> 

Yes(ü> 

Yes<ü> 

Yes<ü> 

R = var(/(¿s)) (i) 

var(/(0)) 

M - 2 ..... 
57=3 (111) 

¡(iü) 

l(iii) 

— 

Same Noise 
Assumption 

No<iv> 

Yes<iv> 

Yes<iv> 

YesWiv) 

Estimation 

ifaYU = 

Yes<v> 

No 

No 

0 

No/yes( v ) 

Sensitivity 
to Noise 

Model Errors 

Excellent(vi ) 

Excellent(vi ) 

Very g o o d ^ 

Excellent(vi ) 

See Table 9-5 on page 340 for an overview of the basic properties of ML, GTLS, BTLS, and SUB. The roman 
numbers in the table refer to the property numbers in the text. 

(i) /(.) represents any invariant of the model G(Q, Θ), for example, the frequency 
response function, the poles, or the zeros. In order to ensure the existence of the 
variance, the function /(.) is truncated as Θ(Ζ) in (9-25). 
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Figure 10-4. Comparison between the measurements (dots) and the estimates using the 
sample noise (co)variances (solid line) of the flight flutter data (model 
na = 10, nb = 11). From left to right amplitude and phase. 
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(ii) The required number of independent repeated experiments is M> 4 for SML and 
M> 2 for SGTLS and SBTLS. The SSUB estimator requires M> 2 for the poles 
and M> 4 for the zeros. If the input is observed with errors, then SSUB uses 
G(Qk) = Y(k)/U(k) as primary data, and #*s = Θ* is "practically valid" if the 
worst case input-output signal-to-noise ratio is larger than 10 dB (see Section 9.9). 

(iii) The ratio R is equal to 1 if no model errors are present, otherwise the it is larger. 
For SBTLS the parametric noise model in the left weighting should be a consis-
tent estimate of the true noise model. The required number of independent re-
peated experiments is M> 6 for SML and M> 2 for SGTLS and SBTLS. 

(iv) SML requires M> 6 and independent (over the frequency &), normally distrib-
uted errors Nz(k), whereas SGTLS and SBTLS require M> 2 and the noise as-
sumptions are exactly the same as when the noise model is known. The picture is 
somewhat more complicated for SSUB: the estimation of the poles requires 
M> 2 and the noise assumptions are the same as when the noise model is known, 
while the estimation of the zeros requires M> 4 and independent (over the fre-
quency k)9 normally distributed errors Nz(k). 

(v) Even if it is known that the input-output errors are uncorrelated, the sample noise 
(co)variance must be estimated, otherwise SML is no longer consistent. This is 
also the case for the SSUB estimates of the zeros, but not of the poles. 

(vi) All the estimates are sensitive to the assumption that the repeated experiments are 
independent. On top of that, the uncertainty of the SBTLS estimate is sensitive to 
the quality of the parametric noise model in the left weighting. 

If the sample noise (co)variances are regularized for M = 2, 3, then the estimate #SML(Z) 
satisfies Theorem 9.21 and is "practically consistent." The same can be done for the SSUB 
estimates of B and D. 

10.9 IDENTIFICATION OF PARAMETRIC NOISE MODELS 

Without an additional piece of information, it is impossible to identify (non)parametric noise 
models within an errors-in-variables stochastic framework. There are four possibilities: 

1. The unknown excitation signal is periodic (see Sections 10.1 to 10.8). 
2. A noiseless reference signal (typically the signal stored in the arbitrary waveform 

generator) is available (see Chapter 12). 
3. The unknown excitation can be written as filtered white noise, and parametric 

transfer function models for the plant, the input noise, the output noise, and the 
excitation signal are identified simultaneously (see, for example, Sóderstróm, 
2007, and Pintelon and Schoukens, 2007). 

4. The arbitrary input is exactly known (see, for example, Ljung, 1999, and 
Sóderstróm and Stoica, 1981). 

In this section we discuss the fourth possibility, which is often applicable in control applica-
tions. It also includes problems where the plant dynamics are identified from output observa-
tions only (the unobserved input is assumed to be white). We first present the classical time 
domain approach (prediction error framework), and next develop a frequency domain maxi-
mum likelihood solution to the problem. The properties of the frequency domain estimator 
are studied in detail and an in-depth comparison with the prediction error approach is made. 
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10.9.1 Generalized Output Error Stochastic Framework 

Within a generalized output error stochastic framework the input is exactly known 
u{i) = H0(0, and the output is disturbed by filtered (band-limited) white noise 
ny(t) = np(t) + my(f) (see Figure 10-5). A parametric plant model and output noise model 
are identified simultaneously from known input, noisy output samples u(t) and y(t), 
ΐ = 0, 1, ..., JV- 1. The classical time domain solution to this problem assumes that the in-
put is piecewise constant, and a discrete-time plant and noise model are estimated by mini-
mizing the prediction error (PE) cost function 

ν?ΜΖ) = Χ:Ιε2^θ) (10-48) 

w.r.t. the plant and noise model parameters #, where ε(ί, Θ) is the one-step-ahead prediction 
error 

</, Θ) = H-\q, 0){y{t) - G(q, 0)u(t)) (10-49) 

with q the backward shift operator qx{t) = x(t- 1). A comprehensive study of the proper-
ties of the minimizer #PE(Z) of (10-48) can be found in Ljung (1999) and Soderstrom and 
Stoica(1981). 

Applying Parceval's equality to (10-48) gives a frequency domain interpretation of the 
prediction error method 

VMZ) = ΣΓ-Ό1 '̂̂  = Σ^ίΐΦ*1.' (10-50) 

where ε(ζ^λ, θ) = DFT(£(?, Θ)) is related to the input-output DFT spectra as 

Φι\ Θ) = H-\z~k\ 0)(Y(k)- G(z~k\ 9)U{k)- TG(z-k\ Θ) - TH(z~k\ Θ)) (10-51) 

with TG(zk
l,0) and TH(zk

l,&), respectively, the plant (6-35) and noise (6-66) transient 
terms (proof: solve the combined plant-noise transfer function model (6-69) for E(k)). It fol-
lows that \Η{ζιχ, θ)\2 plays the role of the nonparametric noise weighting a^(k) in the ML 
solution (10-6). 

u(t) 
Plant 

«P(0 

»®-r> 
™y(i) ± 

ÁÚ 

Figure 10-5. General output error framework: the 
arbitrary input is exactly known, u(t) = uQ(t), and 
the output is disturbed by process noise n (/) and 
measurement noise mAt). 
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• Controller' 
1 Μ0(Ω) * " 

r{t) - ψ u(t) 

& 
Plant 
<?0(Ω) 

Figure 10-6. Plant operating in open (solid lines 
only) or closed (solid and dashed lines) loop. G0(Q), 
Η0(Ω), and Μ0(Ω) are, respectively, the plant, the 
noise, and the controller transfer functions. The noise 
v(/) is the sum of the process noise (open and closed 
loop) and the measurement noise (open loop only). 

10.9.2 A Frequency Domain Solution 

, y(t) 

* v ( 0 

Noise 
HQ(Q) 

e{t) 

In this section we present a frequency domain solution to the parametric noise model-
ing problem within a generalized output error stochastic framework. The plant may operate 
in open or closed loop (see Figure 10-6), and both the discrete-time (DT) and continuous-
time (CT) cases are handled. First, the input-output DFT spectra U(k) and Y(k) of the ex-
actly known input and noisy output samples u(t) and y(t), t = 0, 1, . . . , Ν - 1, are calcu-
lated. Next, the DFT frequencies in the frequency band(s) of interest are selected: fk = 
kfs/N with k G IK and where 

K c { 0 , l,...,7VY2} (10-52) 

Finally, starting from U(k) and Y(k), k e K, a Gaussian maximum likelihood estimator for 
the plant G(Q, Θ) and noise Η(Ω, Θ) models is constructed. It requires the following as-
sumptions. 

Since the plant, noise, and controller transient terms decrease as an 0{N~XI2) in the re-
lationship between the input-output DFT spectra (see Section 6.3.2), the Gaussian maximum 
likelihood (ML) estimator is constructed assuming that the transient terms are zero. After-
wards the finite sample behavior of the ML estimator is improved by adding the plant and 
noise transient terms in the ML cost function. 

Assumption 10.12 (Generalized Output Error Framework): The input u{t) is ob-
served without measurement errors mu(i) = 0. The output is disturbed by process noise 
n (t) (open and closed loop) and measurement noise my(t) (open loop only). 

Assumption 10.13 (Relationship Input-Output DFT Spectra): The input-output 
DFT spectra U(k) and Y(k) are related to the DFT spectrum of the reference signal R(k) and 
the driving (band-limited) white noise source E(k) as 

Y(k) = G0{ak)U{k)+v{k) 

V(k) = H0(Qk)E(k) 
(10-53) 

where U(k) = R(k) for the open loop setup and 

U(k) = R(k)-M0(Qk)Y(k) (10-54) 
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for the closed loop setup. G0(Q), //0(Ω), and Μ0(Ω) are rational functions of Ω. 

Assumption 10.14 (Excitation Signal): The reference signal r{t) satisfies Assump-
tions 9.1 and 9.11 (r(t) = u(t) in open loop). 

Assumption 10.15 (Noise Moments of Order m): E(k) in (10-53) is independent 
(over k)9 circular complex distributed noise (E{£2(&)} = 0), with zero mean, variance λ, 
and finite moments of order m. E(k) is independent of the input U(k) (open loop, 
Μ0(Ω) = 0) or the reference signal R(k) (closed loop, Μ0(Ω) Φ 0). 

Assumption 10.16 (Noise Probability Density Function): E(k) in (10-53) is nor-
mally distributed. 

Assumption 10.17 (Known Controller): The controller transfer function Μ0(Ω) is 
known. 

Note that Assumptions 10.13-10.16 are asymptotically (N->co) valid (see Sections 
6.3.2 and 16.16, respectively). Note also that under Assumption 10.12 the controller is known 
(Assumption 10.17) if and only if the reference signal is known. 

Theorem 10.18 (Gaussian Log-Likelihood Function): Under Assumptions 10.12-
10.14, 10.15 (m = 2 ) , 10.16, and 10.17 the negative Gaussian log-likelihood function is, 
within a constant, given by 

with IK defined in (10-52), λ = var(£(£)), Ξ(Ω,Θ) the following rational function of Ω 

£(Ω, Θ) = ^ Ω > ^ (10-56) 

and ε(Ω^ Θ) the prediction error 

< Ω „ Θ) = H-\ílh 0)(Y(k) - G(Qh θ)ϋ{Κ)) (10-57) 

At DC (it = 0) and Nyquist (¿fc = N/2) the sums in (10-55) are multiplied by 1 / 2 . 

Proof. See Appendix 10.O. D 

For Μ0(Ω) = 0, the log-likelihood function (10-55) reduces to the open loop result in 
Ljung (1999, p. 230). By eliminating λ, log-likelihood function (10-55) can be simplified to 
a quadratic form. 

Corollary 10.19 (Gaussian Maximum Likelihood Cost Function): Under the as-
sumptions of Theorem 10.18 the Gaussian maximum likelihood (ML) cost function 
VF{0, Z), where Z represents the data, is given by 

VF{09Z) = F-^k&K\8{ahe)gF{G)\\ (10-58) 
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with IK defined in (10-52), F the number of frequencies in the set IK (DC, k = 0, and 
Nyquist, k = N/2, count for 1/2), s(Qh Θ) defined in (10-57), and 

8Á0) = (UkeKS(^0))l/F = e x p ( F - % G K l n S ( O , , 0 ) ) , (10-59) 

where S(Q, Θ) is defined in (10-56). The variance of the driving white noise source equals 

m = F-^kEKHnh0)\i (10-60) 

At DC (k = 0) and Nyquist (k = N/2) the sums in (10-58) to (10-60) are multiplied by 
1/2. 

Proof. See Appendix 10.P. D 

As a result the minimizer of (10-58) can be calculated in a numerical stable way via the 
iterative Newton-Gauss and Levenberg-Marquardt (see Pintelon et al., 2006a, for the details). 
To improve the finite sample behavior of the ML estimator (10-58), the plant TG(£lk, Θ) 
(6-35) and noise TH(Qk, Θ) (6-66) transient terms are added in the prediction error (10-58), 
giving 

*(Ω„ Θ) = H-\Clh 0)(Y(k) - G(Qh 0)U{k) - TG(Qh Θ) - TH(Qh Θ)) (10-61) 

Note, however, that the numerator coefficients of TG(Qk, Θ) and TH(Qk, Θ) are not consis-
tently estimated. For discrete-time models and frequency sets covering uniformly the unit cir-
cle, (10-58) can be simplified further. 

Corollary 10.20 (Gaussian Maximum Likelihood Cost Function for Discrete-Time 
Models over the Full Unit Circle): If the frequencies cover uniformly the whole unit circle 
(zk = exp(j2nk/N) with k e IK = {0, 1, ...,N/2}), and if S(z~\ Θ) (10-56) and 
S~l(z~l, Θ) are stable and satisfy 

lim S(z~\ Θ) = 1, (10-62) 
z-»oo 

then the ML cost function (10-58) simplifies to 

Ν-λΣΐ:ΧΜ^^\2 + 0{\λ^/Ν) (10-63) 

where Amax is the dominant pole of lnS(z-1, Θ). 

Proof. See Appendix 10.Q. D 

It can be concluded that under the assumptions of Corollary 10.20, the ML cost func-
tion (10-58) converges (N-> oo) at the rate 0(\Amax\

N/N) to the classical prediction error 
cost function (10-50). However, they are different in all other cases: discrete-time models 
with non-monic noise model (c0 Φ 1 or d0 Φ 1 in (6-59)), discrete-time models with non-uni-
form frequency grid, or continuous-time models. 

Condition (10-62) is fulfilled if cQ = d0 = 1 in (6-59) (monic noise model) and if the 
plant and/or controller transfer functions have a delay of at least one sample, for example, 
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b0 = 0, a0 = 1 in (6-20) (G(0, Θ) = 0) andM0(0)*oo. Note that the step-invariant trans-
fer function model G(z~\0) = (1 -z~l)Z{G(s)/s} (see Example 6.3 on page 179) of most 
physical continuous-time plants G(s) satisfies G(0,O) = 0. 

10.9.3 Asymptotic Properties of the Gaussian 
Maximum Likelihood Estimator 

To study the asymptotic (F = 0(N) -» co) behavior of the minimizer of the maximum 
likelihood cost function (10-58), we need an identifiable parameterization of the model struc-
ture 

Y(k, Θ) = G(Q„ 0)U(k) + H(nh 0)E{k) + TG(Qh Θ) + TH(Qh Θ) (10-64) 

with G(Q, Θ) and TG(Qh Θ) defined in, respectively, (6-20) and (6-35), and //(Ω, Θ) and 
TH(Qh Θ) defined in, respectively, and (6-59), (6-62) and (6-66). Model structure (10-64) is 
overparameterized: multiplying the numerator b and denominator a coefficients of the plant 
model by the same non-zero real number leaves G(Q, Θ) unchanged, and similarly for the 
noise model Η(Ω, Θ). Further, the fact that E(k) in (10-64) is not observed, and that the term 
H(Qh 9)E(k) remains the same when multiplying H(Qh Θ) and dividing E(k) by the same 
non-zero real number, imposes an additional constraint on the noise model parameters. 
Hence, according to the particular model structure, one (OE), two (ARMA, ARMAX), or 
three (BJ, hybrid BJ) parameter constraints are needed (see Table 10-2). For example, in dis-
crete-time BJ modeling usually the choice a0 = cQ = d0 = 1 is made in (6-20) and (6-59). 
Other choices are, however, possible (see Pintelon et al., 2006a). The cost function VF(0, Z) 
(10-58) contains exactly the same parameter ambiguities as model structure (10-64) and, 
therefore, the estimated models G(Q,<9ML(Z)) and λι/2Η(Ω,θΜ^Ζ))9 with <9ML(¿) the 
minimizer of (10-58) and λ = >Í(#ML(Z)) (10-60), are independent of the particular parame-
ter constraint(s) chosen (see Chapter 20). 

Since cost function (10-58) only depends on the magnitude of the noise model there is 
a global identifiability problem. For BJ model structures it is avoided by restricting the allow-
able poles/zeros positions of the noise model to the stable region of the Ω- domain. This is 
not necessary for the poles of ARMAX model structures (the plant and noise models have the 
same poles) that are determined by the plant dynamics. Both observations lead to the follow-
ing standard assumption. 

Assumption 10.21 (Constraint on the Noise Model): Η~ι(Ω, Θ) is a stable transfer 
function. The poles of //(Ω, Θ) that are not in common with G(Q, Θ) are stable. 

TABLE 10-2 Possible Model Parameter Constraints (for Continuous-Time Models the 
Constraints Are Imposed on the Normalized Parameters) 

Constraints on Θ for Constraints on Θ for 
Model Structure Discrete-Time Models Continuous-Time Models 

ARMA ((10-64) with G = 0 and TG = 0) 
OE ((10-64) with H = 1 and TH = 0) 

ARMAX ((10-64) with D = A)(a) 

BJ 

a. For ARMAX models T = TG + TH represents the sum of the plant and the noise transient terms. 

a, = 1 

c„ = d„ = 1 

a„ = 1 

an = cn = 1 

a0 = c0 = d0 = 1 ana = Cnc = dnd = l 
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These results are summarized in the following theorem. 

Theorem 10.22 (Gaussian Maximum Likelihood Estimator #ML(Z)) : Under the 
assumptions of Theorem 10.18 and Assumption 10.21, the Gaussian maximum likelihood 
estimator #ML(Z) of the plant and noise model parameters minimizes (10-58) subject to the 
constraints in Table 10-2. 

To study the asymptotic (F = 0(N) —» oo) behavior of the Gaussian maximum likeli-
hood estimator #ML(Z) defined in Theorem 10.22, we need an assumption concerning the 
true plant and noise models. 

Assumption 10.23 (Existence of a True Plant/Noise Model): The true plant G0(Q) 
and noise Η0(Ω) transfer functions belong to the considered model set. The common poles 
of G0 and HQ are not common zeros of G0 and H0, the private poles of G0 are not zeros of 
G0, and the private poles of H0 are not zeros of H0. 

Under the assumptions of Theorem 10.22, Assumption 10.23, and Assumptions 9.6-
9.10, the Gaussian maximum likelihood (ML) estimator #ML(Z) satisfies the standard condi-
tions, among others, (i) the likelihood function is based on independent and identically dis-
tributed random variables E(k), k = (1,2, ..., F) , and (ii) the number of model parameters 
dim(#) does not increase with the amount of data F. Therefore, #ML(Z) is strongly consis-
tent (#ML(Z) -> θ0 with probability one as F -» oo), asymptotically efficient (the asymptotic 
covariance matrix equals the Cramér-Rao lower bound), and asymptotically normally distrib-
uted (Caines, 1988). One may wonder now how sensitive these asymptotic properties are 
w.r.t. the basic assumptions made to construct the Gaussian ML estimator. For example, what 
if the errors are not normally distributed (Assumption 10.16), what if the true model does not 
belong to the considered model set (Assumption 10.23), or what if the independence assump-
tion is violated (Assumption 10.15)? To analyze the robustness of the asymptotic properties 
of ΘΜΙ(Ζ) the standard assumptions of Section 9.6 are made. In addition Assumption 10.15 
is replaced by the following mixing condition. 

Assumption 10.24 (Noise Mixing Condition of Order P): The process noise V(k) 
satisfies (10-53) where E(k) is circular complex distributed (E{E2(k)} = 0), with zero 
mean and variance λ. E(k) is independent of the input U(k) (open loop, Μ0(Ω) = 0) or the 
reference signal R(k) (closed loop, Μ0(Ω) Φ 0). V(k) is mixing over k of order P. 

Note that the stochastic nonlinear contributions generated by a nonlinear system ex-
cited by Gaussian noise is mixing over the frequency of order infinity (Theorem 3.16 on 
page 86). This is a quite important example since the process noise in a linear identification 
framework is mostly dominated by the stochastic nonlinear distortions (Schoukens et al., 
2005). The following theorem proves the asymptotic properties of the Gaussian ML estimate 
0uú7) under non-standard conditions. 

Theorem 10.25 (Asymptotic Properties 6ML(Z))' Consider model structure (10-64) 
where G(Q, θ), Γσ(Ω, 0), //(Ω, 0), and ΤΗ(Ω, Θ) are subject to the constraints of Table 
10-2. Consider the assumptions of Section 9.6, where Assumptions 9.1-9.5 are replaced by 
Assumptions 10.12-10.14, 10.17, 10.21, and 10.15 (m = 4) or 10.24 (stochastic 
convergence); Assumptions 9.11-9.13 by Assumptions 10.14, and 10.15 (m = 4+S) or 
10.24 (asymptotic normality); Assumption 9.16 by Assumption 10.23 (consistency); and 
Assumptions 9.18-9.20 by Assumptions 10.15 (m = 2) and 10.16 (asymptotic efficiency). 
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Under these conditions the minimizer #ML(Z) of (10-58) has the asymptotic (F = 0(N) -> 
oo) properties of Theorem 9.21 on page 298 with the following modifications: 

1. The asymptotic covariance matrix in property 4 of Theorem 9.21 is given by 

Cov(̂ (Z)) = (Fl+F2)-i(Fl+(k°-l)F2)(Fl+F2)-i (10-65) 

with k^ = (ku + l ) / 2 and ku the kurtosis factor of the real and imaginary parts 
of the noise (e.g., k^ = 2 for Gaussian noise), 

Fi = Σ^κ{Χ„-Ρ-ιΣΐ= xXk)T{%k-F-^x%k) (10-66) 

where IK and 5(Ω, Θ) are defined in, respectively, (10-52) and (10-56), and with 
F the number of frequencies in the set IK (DC, k = 0, and Nyquist, k = N/29 

count for 1/2). At DC and Nyquist the sums in (10-66) are multiplied by 1/2. For 
BJ model structures (independently parameterized G and H) identified in open 
loop (M0 = 0), (10-66) simplifies to 

Cov(^c(Z)) = F? and Cov(^(Z)) = ( * j - \)F? (10-67) 

with 9G the plant model parameters, for example, 6Q = [aT, bT], and 9H the 
noise model parameters, for example, θ^ = [cT, dT]. 

2. ν*ψ) in property 5 of Theorem 9.21 is replaced by (Ξ(Ω,Θ) is defined in 
(10-56)) 

. _ f •'max , . ^ 

V.(ff) = \g*(0)\21 E {\ε(Ω{/), θ)\2} n(f)df 
/mi° (10-68) 

» /max 
g.(<9) = exp(| ln(S(Q(/), £))«(/)<#) 

/min 

3. #ML(Z) in property 6 of Theorem 9.21 is replaced by #ML(Z) and ÍML = 
¿(0ML(Z)), where λψ) is defined in (10-60). 

4. Under the constraints of Table 10-2, the Cramér-Rao lower bound in property 8 of 
Theorem 9.21 equals 

Cov($CZ)) = (F ,+F 2 ) - i (10-69) 

with Fx + F2 the Fisher information matrix. 

Proof. See Appendix 10.R. D 
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10.9.4 Discussion 

■ A surprising consequence of Theorem 10.18 is that the knowledge of the controller 
contributes to the knowledge of the plant and noise models (Μ(Ω) Φ Μ0(Ω) in 
(10-58) implies S(Q, θ0) Φ 50(Ω) giving biased estimates: see Appendix 10.R), 
which is not the case for the time domain prediction error method (see Ljung, 1999, 
and Corollary 10.20). This has been mentioned for the first time in McKelvey 
(2000). The apparent contradiction is explained by the fact that cutting out a part of 
the unit circle corresponds to non-causal filtering in the time domain (e.g., convolu-
tion with a sine-function). The latter invalidates the classical construction of the 
likelihood function based on time domain data captured in feedback (Caines, 1988). 

■ Cost function (10-58), with zero transient terms (see (10-57)), is called the condi-
tional maximum likelihood function in the literature (Soderstrom and Stoica, 1989). 
By adding a posteriori the plant and noise transient terms to the maximum likelihood 
cost function as in (10-61), we assume that the numerator coefficients of Τ0(Ω, Θ) 
and ΤΗ(Ω, Θ) are deterministic parameters. This is called the approximate maxi-
mum likelihood solution in the statistics literature. If we construct the likelihood 
function assuming that the numerator coefficients of TG(Q, Θ) and ΤΗ(Ω, Θ) are 
random parameters that are correlated with the excitation u(t) and the driving (band-
limited) white noise source e(t), then we get the exact maximum likelihood solution 
(Soderstrom and Stoica, 1989; Agüero et al., 2010). Note that similar (conditional, 
approximate, and exact) time domain maximum likelihood (ML) solutions can be 
constructed. While the equivalence of the time and frequency domain solutions is 
asymptotic in the data length N for the conditional and approximate ML estimators 
(see Corollary 10.20), the exact time and frequency domain ML estimates are equal 
for finite values of N (Agüero et al., 2010). 

■ In contrast to the time domain prediction error method, consistent estimation of the 
plant model parameters in open loop ALWAYS requires the correct noise model struc-
ture (if//(Ω, ft) * //0(Ω), with ft the minimizer of Υ*(θ) (10-68), then 5(Ω, ft) * 
£0(Ω), and, hence, the estimates are biased: see Appendix 10.R). 

■ The asymptotic uncertainty (10-69) of the time domain prediction error method is 
also valid for non-Gaussian errors e(t) (see Ljung, 1999). This is not in contradic-
tion with (10-65), showing that (F{ + F2)~

l is valid for Gaussian frequency domain 
noise only (&£ = 2). Indeed, the DFT of filtered iid noise with existing moments of 
any order is asymptotically (number of time domain samples N—> oo) independent, 
circular complex normally distributed (see Theorem 16.25). 

■ Theorem 10.25 is valid for any other identifiable parameterization of the plant and 
noise transfer function models: ratio (orthogonal) polynomials where c0 (DT) or cn 

(CT) is not constrained (A is not estimated), partial fraction expansion, and state 
space representation. However, the particular expression of the asymptotic covari-
ance matrix (10-65) and the Cramér-Rao lower bound (10-69) can change. For ex-
ample, the constraint c0 = 1 (DT) or c„c = 1 (CT) can be replaced by λ = 1, 
which eases the uncertainty calculation of the estimated noise model. The expres-
sions for Fx and F2 in (10-66) then become 

F> - 2^.Kppg-4E<^2K-Séír-J Η Ν Η > (10.70) 
F2 = £t e K**** 
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where Xk is defined in (10-66) (proof: see Pintelon et al., 2007a). 
■ Theorem 10.25 is also valid for hybrid Box-Jenkins (BJ) models (6-75) identified in 

open loop or closed loop (proof: replace everywhere H(Qh Θ) by Η(ζιχ, Θ) in Ap-
pendix 10.R). Note that the limit of gF(9) (10-59) for F - > oo is always different 
from 1 for hybrid BJ models identified in closed loop, even if the frequencies cover 
uniformly the unit circle. 

■ Since the identified transfer function models G(Q, #ML(Z)) and 7/(Ω, #ML(Z)) are 
independent of the particular constraint chosen, the minimizer of the cost function 
(10-58) is in practice not calculated using the constraints of Table 10-2. Instead, all 
parameters are left free and the pseudo-inverse of the Jacobian matrix is calculated 
taking into account its rank (= dim(#) - the number of constraints in Table 10-2). 
The reader is referred to Pintelon et al. (2006a) and Appendix 9.L.4 for the algorith-
mic details. 

■ If the reference signal or the controller is unknown (Assumption 10.17 is violated), 
then the estimated plant and noise models are biased (Theorem 10.25). This bias can 
be avoided at the cost of modeling simultaneously the plant, the noise, the controller, 
and the reference signal transfer functions (see Pintelon and Schoukens, 2006). In 
the time domain the latter is known as the joint input-output method (Ljung, 1999; 
Soderstrom and Stoica, 1989). 

■ The results of Sections 10.9.2 and 10.9.3 can be extended to multivariable systems 
(see Pintelon et al., 2007a). 

■ A disadvantage of the parametric noise model is that its quality (strongly) depends 
on quality of the estimated plant model (the noise model tries to follow every sys-
tematic deviation from the true plant model). This is not the case for the sample 
noise (co)variances because they are independent of the estimated plant model. 

10.9.5 Experimental Illustration 

The nonlinear electrical circuit of Figure 10-7 simulates a second order nonlinear me-
chanical system with a hardening spring (see (3-25)). Using normally distributed excitations, 
the main error source within a linear system identification framework is the stochastic nonlin-
ear contribution that satisfies the mixing condition of Assumption 10.24. Two experiments 
have been performed, the first with a white band-limited normally distributed signal and the 
second with a white band-limited periodic signal with random phases. Both signals have the 
same power (16 mV rms) and bandwidth (200 Hz). For both experiments the sampling fre-
quency equals fs = 20 MHz/215 « 600 Hz, and the input/output signals are lowpass filtered 
before sampling. The random excitation data is used for identifying the Box-Jenkins models, 
while the periodic excitation data is used for cross-validation. 

Starting from N = 10400 input-output samples of the random excitation experiment 
the following three model structures are identified: (i) hybrid Box-Jenkins (CT plant and DT 
noise model (6-75)) over the full unit circle without DC and Nyquist (F = 5199), (ii) hybrid 
Box-Jenkins in the band (0 Hz, 200 Hz ] (F = 3406), and (iii) continuous-time Box-Jenkins 

R C 

u{i) té 
»(+)-Λ/\Μ—H| 

ay\t) 
At) Figure 10-7. Block diagram of the nonlinear 

electrical circuit with R = 16 Ω, C = 9.4 μΡ, 
L = 1H, and α~ 1000 V"2. 
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(CT plant and CT noise model) in the band (0 Hz, 200 Hz ] (F = 3406). From the valida-
tion tests in Figures 10-8 and 10-9 it can be concluded that the random excitation measure-
ments are explained very well by a second-order CT plant model (na = 2, nb = 0) com-
bined with, respectively, the following noise models: (i) eight-order DT noise model 
(nc = nd = 8, rij = 7, and nt = 4 ) , (ii) sixth-order DT noise model (nc = 6, nd = 5, 
rij = 5, and ni = 2), and (iii) fifth-order CT noise (nc = 4, nd = 5, rij = 0, and 
ni = 2). Since the quality of the identified plant model is identical for the three model struc-
tures, only the result for the CT-BJ model structure is shown in Figure 10-8. In the cross-val-
idation tests of Figures 10-8 and 10-9 the estimated BJ models are compared with the mea-
sured frequency response function (FRF) G(j(ük) and the measured (variance of the) output 
residual V(k) obtained from the periodic data. It follows that the BJ models also explain the 
periodic excitation data very well. Note that the reduced order noise models perform some-
what less in the neighborhood of 200 Hz (see Figure 10-9, right column, middle and bottom 
rows). This is due to the resonance peak around 210 Hz in the noise power spectrum (see Fig-
ure 10-9, top left figure), which cannot be identified from the data in the band 
(0 Hz, 200 H z ] . 

The measured FRF G(yco¿) and measured (variance of the) output residual V(k) in 
Figures 10-8 and 10-9 are calculated as 

GO'%) = (Y(k)-TG(nkJML(Z))-TH(nkJML(Z)))/u(k) 
(10-71) 

V(k) = Y(k)-G(nheML(Z))U(k)-TG(QkJML(Z))-TH(QkJML(Z)) 

for the random excitation, and as 

G(j(ok) = Y(k)/Ü(k) and tf{k) = a?(k)\Ü(k)\2 (10-72) 

for the periodic excitation. In (10-72) G(j(£>k) and cr^{k) are, respectively, the sample mean 
and sample variance obtained by analyzing consecutive periods of the input-output signals. 
The uncertainty of ÁU20ML(Z))\H(Qh #ML(Z))| and G(j(ok, 0ML(Z)) is calculated using, re-
spectively, (16-23) and (16-24), where COV(0ML(Z)) is given by (10-67) with k* = 2 . 

Figure 10-9 nicely illustrates the benefit of modeling the process noise in the frequency 
band of interest: in the band (0 Hz, 200 Hz ] a DT noise model of order 6/5 is sufficient to 
describe the noise power spectrum, while over the full unit circle an order 8/8 is needed. It 
also shows that the CT noise model (order 4/5) is a valid alternative for the classical DT de-
scription (order 6/5). 

10.10 IDENTIFICATION IN FEEDBACK 

Consider the linear feedback experiment of Figure 9-14 on page 345. For periodic reference 
signals r(0, the SML (10-10), SGTLS (10-23), SBTLS (10-33), and SSUB (Section 10.6) es-
timates remain strongly consistent (see Theorems 10.3, 10.6, 10.8, and 10.10). The basic rea-
son for this is that the sample mean and sample (co)variance calculation makes a natural 
separation between the random and the periodic parts of the input u(t) and output y(t) sig-
nals without requiring knowledge of r(t). 

For arbitrary reference signals r(t), the technical difficulty is that the input is corre-
lated with the process noise (Ljung, 1999; Soderstrom and Stoica, 1989). The prediction error 
estimate (10-48) of the plant model parameters is consistent if the input and output signals are 
observed without errors (mu(t) = 0, my(t) = 0), and if the true noise model belongs to the 
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Figure 10-8. (Cross-)validation of the identified CT plant models - nonlinear electrical circuit. Left: validation 
with the random excitation measurement. Right: cross-validation with the periodic excitation 
measurement. Dots: measured FRF G(/co¿). Gray line: complex difference between the 
measured and modeled FRF. Dashed line: standard deviation of the model (left) or the 
measurement (right). 
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Figure 10-9. (Cross-)validation of the identified noise models - nonlinear electrical circuit. Left column: 
validation with the output residuals V(k) of the random excitation measurement. Right column: 
cross-validation with variance dy(k) of the output residuals of the periodic excitation 
measurement. Top row: DT model of order 8/8 over the full unit circle. Middle row: DT model of 
order 6/5 in the band (0 Hz, 200 Hz] . Bottom row: CT model of order 4/5 in the band 
(0 Hz, 200 Hz], Dots: measured output residuals. Solid line: noise model times standard 
deviation driving white noise source. Dashed line: standard deviation model. 
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considered model set. For the frequency domain ML solution (10-58) in addition the control-
ler or reference signal should be known (see Theorem 10.25). This additional requirement is 
the price to be paid for modeling the plant and the process noise in the relevant frequency 
band(s). 

Other solutions have been developed that do not require the construction of a consistent 
parametric noise model: see Forssell and Ljung (1999) and Van den Hof and Schrama (1995) 
for an overview of the classical time domain methods, which all require that the input and 
output signals are observed without errors (mu(t) = 0, my(t) = 0), and see Chapter 12 for 
the full errors-in-variables problem (mu(t) Φ 0, my(t) Φ 0). Several of the solutions assume 
that the reference signal is exactly known and consider the controller and process noise as 
disturbing errors. The influence of these errors is eliminated by projection of the input and 
output signals on the reference signal. Note that in the periodic case the distinction between 
the signal originating from r{t) and the disturbing noise can be made without explicit knowl-
edge of the reference signal. 

10.11 APPENDIXES 

Appendix 10.A Expected Value and Variance of the 
Inverse of Chi-Square Random Variable 

Let x be a χ\ή) distributed random variable. Starting from the results of an F- distri-
bution, it is found that 

U*-1} = - ^ and var(x-i) = -L γ (10-73) 
n-2 (n-2)2(n-4) 

Appendix 10.B First and Second Moments of the Ratio 
of the True and the Sample Variance 
of the Equation Error 

Consider ck{ff) defined in (10-17). Under Assumptions 10.1 and 10.2, the expected 
value E{ck(0)} is independent of Θ and equals: 

E{c,(0)} = g ^ i , fo rM>2 and va r (c^ ) ) = ( M ^ ( ^ _ 3 ) . for M> 3 (10-74) 

Proof. Consider 

2(M-l)/ck(0) = 2(M-l)crKQk, Θ)/a\{Q.h Θ) 

J ^ z T J * » » * * « - « " » ***>>l2 (10.75) 
( > σΚΩ,,θγΜ 

= ΣΓ= , (Re(4'](#)))2 + (lm(zl'](0)))2 

with ζ\ι\θ) = {e(nk,e,Z^k))-é{€lk,e,Z(k)))/{j2ae(Q.he)). It follows that (10-75) 
consist of the sum of two independent central χ1 -distributed variables with M- 1 degrees of 
freedom resulting in a χ1 -distribution with 2M- 2 degrees of freedom. Using the results of 
Appendix 10.A, we find 
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E{ck(9)} = IL·! and var(c*(0)) = (M~1)2 (10-76) 
*v M-2 kK (M-2)2(M-3) v ' 

Note that the moments of ck(0) are Θ- independent due to the fact that Re(z[/](0)) and 
Im(z[/](#)) have a Θ- independent distribution. 

Corollary 10.26: σ2/σ2 has a Z2(2M-2) distribution. The moments Ε{1/σ/} are 
finiteifM>i/2 + 2. 

Proof. The X2{2M- 2) distributions follows directly from (10-75). The second claim 
is a direct result of the Z2(v) distribution: 

1 ν ' 2 - ι 2 
X2(y)~[^2) e-*/2 (10-77) 

Appendix 10.C Calculation of Some First- and Second-
Order Moments 

The results in this appendix depend strongly on the number of degrees of freedom that 
appear in the χ1 of the sample variance. M measured periods result in M observations of the 
Fourier coefficient at a given frequency. After subtracting the mean value, this results in 
M- 1 degrees of freedom for the sample variance on real or imaginary parts, and those are 
quadratically combined so that finally the sample variance has 2(M- 1) degrees of freedom. 

For notational simplicity, the dependence of ck(6) and cré(ílk, Θ) on Θ, k, and Qk is 
omitted. 

(i) c has finite first- and second-order moments for M> 3. From (10-74): 

M - l 
He} = 

M-2 

Μ-\γ^ (M-l)2
 = (M-l)2 

E{c2} = (E{c})2 + var(c) = ( ^ - i ) + . 
(M- 2)\M- 3) (M- 2)(M- 3) 

(ii) d has finite first- and second-order moments for M > 5. 

Because E{c} is independent of Θ, it follows directly that E{c'} = 0. 
E{(dc/de{l])

2} = Ε{[σ^2δσ2/δθ[1]-(σ
2/σέ

4)δσ2/δθ[1]]
2} with θ{1] the fth ele-

ment of Θ. This is an expression of the form E{(a-b)2}. Applying the inequality 
- E{a2} - E{b2} < 2 E{ab) < E{a2} + E{b2} shows that it is sufficient to prove that the 
second-order moments of a and b are finite. This is obvious for a because ck has finite mo-
ments. Bounding E{b2} is more involved. Calculating the derivative of of w.r.t. θ^, a pa-
rameter of the numerator Β(Ω, #), gives 

δσ2/δθ{1] = ^((Βσ'-Ασ^Ω1) 

and 



SectionlO.il «Appendixes 415 

(δσ2/δθ{1])
2 = 4[Re(5a-¿-^o^[ / )Q/]2 /M2 

<4|Ω| 2 / |5σ2-^σ·2 ί / | 2 /Μ 2 

< 4 |Ω|2 /σ2( |£ | 2σ2 + \Α\2\σ2
ν\

2 / σ2 - 2Re(ABσ2
ν))/'Μ

2 

< 4 | Ω | 2 / σ 2 σ 2 / Μ 

where the last inequality is due to | σ ^ | 2 < σ^σγ and (10-11). Following the same lines, we 
find (δσ2/δθ{1])

2 < 4\Ω\21σ$σ2/Μ if θι is a parameter of the denominator Α(Ω, Θ). With-
out loss of generality, the first situation will be considered here and it will be shown that the 
second moment of 

V = σ4(1/σΙ)\δσΐ/Βθν])
2<±σ2\Ω\νσ5/(σϊΫ 

is bounded. For notational simplicity, the dependence on k will be omitted. 
The sample variances (ofj, of) have a Wishart distribution that also depends on the 

cross-correlation σ^έ and is noticed as dF(a¿, erf p) with p = ofy& / J'σ^σ\ (Kendall and 
Stuart, 1979). The domain of the integral to calculate the expected value of b2 can be split 
into two parts: with respect to the variable of: Όε = {cf\ of < ε) and Dr = {of\ of > ε}. 
The integral over Dr will be finite because σ^ has finite moments and the denominator is 
bounded. It can be shown after some calculations that on D£ the marginal density function 
dH(or^ of) = jD dF(a¿, of, p) is bounded by 

dH(a2, σ2) < C(v)eW(7^£){v+ l)/2dG(v, a2)dG(v, of) (10-78) 

Here dG(v, cr¿) is a χ2 distribution with respect to a¿ with v degrees of freedom and sim-
ilarly for G(v, of), and C(v) a constant with respect to (ó¿, σ2), depending on v. Because 
the density function dG(v, of) of a χ2 distribution is proportional to {of/2)v/2~xe~aé/2 it 
is clear that the expected value of b2 over D£ will be bounded if M> 5 (Corollary 10.26). 

Remark To obtain (10-78), it had to be assumed that \p\ < 1 - δ, with δ> 0. For the 
singular case that \p\ = 1, it is straightforwardly shown that ck becomes Θ- independent 
and, hence, the derivatives are zero. 

(iii) c" = of /σ2-{σ»τσ» + of σ2:)/a¡- σ ^ has fi-
nite first- and second-order moments for M > 6. 

The proof is completely similar to the previous one, noticing that (δσϊ/(δθ^δθ^)) = 
2<r2Re(Q'fr), 2σ2^(Ω'Ω*) or 2σ£Re(Q'Q5), and \σ^\2 < (d¿ + σ})/2. This time 
contributions of (1 /of)4 should be bounded, requiring that M>6 (Corollary 10.26). 

Appendix 10.D Proof of Theorem 10.3 

Because the noise is, by assumption, independent over the frequency (Assumption 
10.2), the proof of Theorem 9.21 for a frequency domain experiment can be applied to the 
cost function (10-10) provided that the necessary moments of the cost function and its deriv-
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atives w.r.t. Θ are finite in Pr . We need the first- and second-order moments of VSML(6,Z) 
for properties 1, 5, and 6 of Theorem 9.21; in addition, the first- and second-order moments 
of KSML'(#, Z) and KSML"(#, Z) for properties 2 and 6 of Theorem 9.21; in addition, the first-
and second-order moments of FSML"'(#, Z) for properties 3, 6, and 7 of Theorem 9.21; and in 
addition, the third-order moments of KSML(^,Z) and ν$Μ^(θ,Ζ) for property 4 of Theorem 
9.21 (the moment 2 + δ in Assumption 9.13 is bounded above by a third-order moment). The 
moments of the cost function VSML(0,Z) and its derivatives w.r.t. Θ exist, if the moments of 
\i(Qh Θ, Z(k))\2 and its derivatives w.r.t. Θ exist. These moments are calculated in the fol-
lowing. For notational simplicity, we dropped the arguments of |£|2, \e\2 and σ2. 

1. The moments Ε{|έ|2/} are finite with / = l , A f > 3 ; 1 = 2, M>4; 
I = 3 , M > 5 . 
Proof: It follows directly from Corollary 10.26 in Appendix 10.B. 

2. The moments E {(d\é2\ / d θ[κ])
1} are finite with / = l ,Af>4; / = 2, M > 5 ; 

/ = 3 ,M>6 . 
Proof: 

In this expression, it is the last term that is critical in bounding its expected value. 
Using the same technique as in Appendix 10.C, and noticing that é is indepen-
dent of σέ, it turns out that it is enough to bound E {1 / σ]1}. The claim then fol-
lows directly from Corollary 10.26. 

3. The moments E{[d2\¿2\/(d0[r]de[s])]
1} are finite with / = l , M > 4 ; 

/ = 2 , M > 6 . 
Proof: This time the term that is critical in bounding the expected value becomes: 

M±.J$.§f do-so) 
Its /th order moment is again bounded if E {l/<ré

4/} is finite. The claim then fol-
lows again from Corollary 10.26. 

4. The moments E{(d3\s2\/(d0[r]de[s]de[t]))
1} are finite with / = l , M > 5 ; 

/ = 2 , M > 7 . 

Proof This time the critical term in bounding the expected value becomes: 

l̂ liMMM (10-81) 

Its /th order moment is again bounded if E {1 / <J¡1 } is finite. The claim then fol-
lows again from Corollary 10.26. 

Appendix 10.E Approximation of the Derivative 
of the Cost Function 

Replacing Nz by υΝζ (CNz by u2CNz) and e(£lh 0(ZO), Z0(k)) by 
μέ(ΩΙς9θ(Ζ0),Ζο(^) makes it possible to analyze VSML\e,Z) for small noise levels υ->0 
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(large signal-to-noise ratios) and small model errors μ-> 0 (see Section 9.5, quick analysis 
tool 6) 

W W z) * Σ ^ = 1 ck0(ZQ))d¿0(Zo)) (10-82) 

Proof Using (10-17), VSML\09Z) can be written as 

fVsML0(Zo%Z) = I Σ Γ = ! c ¿ W ¿ ñ d k W ú ) + 1 Z L iCMZúWWú) (10-83) 

Because ^(0(ZO)) = <9(<,°//°), ^ ' ( f e > ) = O(^V0), ¿*(0(ZO)) = » - 2 W + / /u+u 2 ) , 
and dk(<9(Z0)) = υ~20(μ+ ΰ), it follows that for small model errors / /-> 0 and large sig-
nal-to-noise ratios L > ^ 0 , the term ck(§(Z0))dkX§(Z0)) in (10-83) dominates over 
ck0(Zo))dk(<9(Zo)). Summing over the frequencies will not change this behavior because the 
two sums in the right-hand side of (10-83) are both an <9p(F_1/2). The last statement follows 
from the fact that the terms in both sums are independent zero mean random variables with 
bounded first- and second-order moments (see Section 16.9, version 2 of the law of large 
numbers). 

Appendix 10.F Loss in Efficiency of the Sample 
Estimator 

In both sections we use the following properties: (i) FML(#,Z) = X¿=1¿4(¿?) and 
(ii) ck{6) and dk{0) are mutually independent random variables (see (10-17)). Property 
(i) follows directly from the fact that dk{6) contains the true noise (co)variances (see 
(10-17)). Property (ii) is shown as follows: ck{6) depends on the sample variance, while 
dk{0) depends on the sample mean. It is well known that the sample variance and the 
sample mean are independent random variables for normally distributed noise (Stuart and 
Ord, 1987). Hence, this is also the case for ck{6) and dk(0). 

10.E1 Approximate Expression for the Parameter Deviations. Under the assump-
tions of Theorem 10.3, formula (9-26) of Theorem 9.21 is valid for M> 1 (Theorem 10.3) 

¿SML(Z) = ¿SML(Z0) + W ( Z ) + tfptf7-1) 
(10-84) 

W < Z ) = -KSML"-1(^SML(Z0))FSML
f^SML(Z0),Z) 

Using notation (10-17), the Hessian VSML"(0) can be written as 

W ( # ) = Z L i Ucmdtf) + 2herm(c¿ W * ' ( # ) ) + c0)d¿\e)} (10-85) 

with herm(jc) = (x + xH)/2. Because dk(0) is independent of ck(0), E{ck(0)} = 
( M - l ) / ( M - 2 ) , E{c¿(0)} = 0 and E{c¿\0)} = 0 (see Appendix 10.C), and 
F M L ( 3 Z ) = Σ ί=Λ(0)> (10-85) becomes 

W « ) = ^ Σ ^ i E(W } = F ^ F M L " ( 0 ) (10"86) 
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Using ^SML(Z0) = #ML(Z0) (Theorem 10.4), approximation (10-82) (see Appendix 10.E), 
we finally get 

W ( Z ) * - ^ ^ M L - K ^ M L Í Z ^ S T . ^ ^ M L Í Z o J K ' ^ M L Í Z o ) ) 
(10-87) 

Note that (10-87) is also valid in the presence of model errors. 

10.E2 An Approximate Expression for the Covariance Matrix. Using 
(10-87), E{c¡(0)} = ( M - l ) 2 / ( ( M - 2 ) ( M - 3 ) ) f o r M > 6 (see Appendix 10.C), and the 
fact that ck(6) and dk{0) are mutually independent and independent over the frequency k, 
the following asymptotic (F-> oo) expression is found: 

(10-88) 

Λ T7 

Ce = E{^SML(Z)^SML(Z)} 

M J A: = 1 

For independent (over the frequency) distributed errors, (9-27) reduces to 

Q = E{4>ML(Z)<%ML(Z)} 

F (10-89) 
= KML"-1(<9ML(Z0)) X E{4'r(¿ML(Z0M'(<?ML(Zo))} ^ML'- '^MLÍZO)) 

* = 1 

where VML(0,Z) = jfk=ldk(0). Hence, from (10-88) and (10-89) it follows that 

Ce« j ^ C e (10-90) 

for M> 7 ((10-87) is valid for M>1\ with Ce the covariance matrix of the parameters 
when the noise (co)variances are exactly known. 

Appendix 10.G Mean and Variance of the Sample Cost 
in Its Global Minimum 

Some precautions should be taken when calculating the expected value and the vari-
ance of KSML(<9SML(Z), Z) since ck0sMh(Z)) and ¿4(<9SML(Z)) (see (10-17)) are no longer in-
dependent because they both depend on #SML(Z). TO get around this problem, a Taylor series 
expansion is made around the asymptotic value #SML(Z0) = #ML(Z0) (Theorem 10.4), 
which is denoted as Θ for simplicity of notation 

W W Z ) , Z ) * VSUL0,Z) + VSM¿(§,Ζ)δ+ \¿rVSM¿'0,Ζ)δ (10-91) 
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with δ = #SML(Z)-#ML(Z 0 ) . Under the assumptions of Theorem 10.3, the Hessian 
VSM¿'(§,Z)/F converges w.p. 1 at the rate Op(F-1/2) to its expected value KSML"(0)/F 

(proof: apply version 2 of the strong law of large numbers (16-69)). Hence, using (10-86), 
(10-91) can be written as 

FS M L(0SML(Z),Z) « FSML(0,Z) + ν^φ9Ζ)δ+^^6*ν^φ)δ (10-92) 

Substituting approximation (10-87) for δ in (10-92) gives, using (10-86), 

KSML(0SML(Z),Z) * VSML&Z)-AV&Z) 

1 £ ~ ~ M-l ~ £ ~ ~ (10"93) 

ΔΚ(̂ ,Ζ) = ^ Σ ^ Η ^ ^ ^ ' - ^ ^ Σ ^ Η ' ^ ) 

10.G1 Calculation of the Mean Value. Using E{c£(0)}=(Af- l ) 2 / ((M-2)(M-3)) for 
M> 6 (see Appendix 10.C), and the fact that ck{6) and dk0) are mutually independent 
over the frequency k, the expected value of the second term in the right-hand side of (10-93) 
equals 

(10-94) 
= 5 ^ t r a c e ( F M L " - i ( < ? ) Z L , í{d¿T(ff)d¿(&)}) 

For small model errors (// -» 0) and large signal-to-noise ratios ( υ -» 0) we have 

^ML"(¿) * Ε{ΣΓ= ¿¿τΦ)<*ίΦ)) =>*WZ) * \^\"θ (10-95) 

with ηθ the number of free model parameters (apply quick analysis tool 6 of Section 9.5). 
Collecting (10-93) and (10-95), using E{ck(0)} = ( M - l ) / ( M - 2 ) (see Appendix 10.C), 
gives 

E{VSML(éSML(Z),Z)} * g ^ i E{VML(é,Z)} - ^\ηθ/2 (10-96) 

Because E{VMh0,Z)} = E{VMh(§,Z0)} + F, Θ = 0ML(ZO) and 

E{VML0ML(Z),Z)} * E { F M L ( ^ M L ( Z 0 ) , Z 0 ) } + F - V 2 (10-97) 

(see Theorem 19.12), (10-96) can be written as 

E { >W«?SML(Z), Z)} * JJÍ5I E { KML(¿ML(Z), Z)} - ^ - ^ L _ _ „ e / 2 (10-98) 
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If no model errors are present (0 M L(Z O ) = 0O), then E { F M L (^ M L(Z) , Z)} = F-ne/2 (see 
Theorem 19.12). 

10.G2 Calculation of the Variance. For the variance, it is mostly sufficient to have a 
rough estimate, which can be obtained by neglecting the influence of δ and calculating 

var(KSML(0SML(Z),Z)) * var(FSML(0SML(Zo),Z)) (10-99) 

Using var(xy) = σ% σ^ + σ%(Ε {y} )2 + (E {x} )2 oh, we find after some calculations 

var(FSML(iW(Z),Z)) * (_^ X?_ var(FML(gML(Z0),Z)) 
2 (10-100) 

+ (Μ-^(Μ-3)Σ* = ' ( E { ^ ^M L ( Z o ) ' i W ) ' 2 } ) 2 

In the absence of model errors, we have #ML(Z0) = #0> ^{[¿(Ω^, #0, Z(&))|2} = 1 and 
var(FML(0o,Z)) = F, so that (10-100) reduces to (10-22). 

Appendix 10.H Asymptotic Properties of the SGTLS 
Estimator (Theorem 10.6) 

Following the same lines as in the proof of Theorem 9.21 (see Appendix 9.E), it is suf-
ficient to verify that all the conditions of the theorems in Chapter 18 are fulfilled. The cost 
function (10-24) is of the form 

VSGTLSWZ) = fA% <^Z\Z) (10-101) 

where w{QZ) = F-lY^={o-¡{Qk,6f), Because w(#,Z) is quadratic in the measurements Z and 
quadratic in the model parameters Θ, the theorems of Chapter 17 are valid under the as-
sumptions of Section 9.6: w^k\0,Z)9 k = 0, 1, 2, converge uniformly w.p. 1 (in prob.) to 
their expected value at the rate Ov(F~l/2) in Pr ; and \ν^\θ,Ζ), k = 0 ,1 , converge in law 
to a Gaussian random variable at the rate F~1/2. Hence, \ν(θ, Ζ) satisfies all the assumptions 
of Chapter 18. The cost function fF(0, \νψ\Ζ), with w(0) = E{w(6>Z)}, is quadratic in Z 
and also satisfies all the assumptions of Chapter 18. We conclude that all the theorems of 
Chapter 18 apply to the SGTLS cost function (10-24). From Theorems 18.5 and 18.6 follows 
that ^SGTLS(ZQ) and #*SGTLS are the minimizers of VF(0) = E{fF(0, w(0),Z)} and 
ν*(θ)= \imE{fF(0,w(0),Z)}, respectively. Therefore, Theorem 9.21 is valid with three modi-
fications: (i) to calculate VF(0) and V*(0) we first replace \ν(θ,Ζ) by its expected value 
w(0) = F~lY% = j a%(nk,0)/M before taking the expected value of the cost function; (ii) the ex-
pected value Ε{δθ(Ζ)} is, in general, not zero as #SGTLS(Z0) is not the minimizer of 
E{^(#> w(0,Z),Z)} (see Theorem 18.18); and (iii) δθ(Ζ) is replaced by de(Z) in the ex-

pression (9-27) of the covariance matrix 
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άθ{Ζ) = -VF"~\9)dF(Z) 

dF{Z) = gF0, w(0), W0X Z) + ^ ' W(°X W m 

dx 

(10-102) 
(x(Z)-x*) 

with*7, = [w0) w'(0)], xi = [w0) w'(<9)], xT(Z) = |>(£,Z) w'(0,Z)], 

gF(0, w(0, Z), w'(0, Z), Z) = /F'(0, w(0, Z), Z) 
(10-103) 

gF(0, w, w{) = E{gF(#, w, wl5Z)} 

and # = ¿?SGTLS(Z0), and where w and wx are deterministic variables that replace the 
random variables w(0,Z) and w'(#,Z), respectively (see Theorem 18.25). D 

Appendix 10.1 Relationship between the GTLS 
and the SGTLS Estimates (Theorem 
10.7) 

Formulas (10-26) and (10-27) follow directly from (10-25), (9-72), Exercise 9.6 and 
the fact that the (co)variances of the mean value equal the (co)variances of one realization di-
vided by M. 

In the absence of model errors, Θ(Ζ0) = #0, we have e(Qh #0, Z0(k)) = 0. Calculat-
ing (10-103), where fF{0, w(6> Z), Z) and w(0, Z) are defined in (10-101), gives 

gF(9, w, W l) = ϊΜγζ={ Re(e'(Q„ Θ, Z0(k))e(Qh Θ, Z0(*))) 

Mwx ^F 

(10-104) 
Σ : \e(Qk90,Zo(k))\i 

It follows that gF(90, w,wx) = 0 for any w and w{. Hence, the derivatives of gF(0o, w, wx) 
w.r.t. w and wx are zero, so that the second term in the right-hand side of (10-102) is zero. 
The remaining term in dF(Z) is the term one would have if the true noise (co)variances were 
used instead of the sample noise (co)variances. This concludes the proof of (10-28). D 

Appendix 10.J Asymptotic Properties of SBTLS 
Estimator (Theorem 10.8) 

The proof is similar to that of Theorem 10.6 (see Appendix 10.H). The cost function 
(10-33), with 0(°) = Θ(Ζ) and Θ = 00), is of the form 

^Sim-sift z ) = fM ^ "<4 1(Z)> z )> z ) ( 1 ( M 0 5 ) 

where 
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η\Ζ) = \Θ\Ζ) άτ(Ζ)} 

,a ί7Λ7Λ l v f ^¡{€lk, θ) (10-106) 
\ν(θ, η(Ζ), Ζ) = - V _ — s : 

satisfy all the conditions of the theorems in Chapter 18. D 

Appendix 10.K Relationship between the BTLS 
and the SBTLS Estimates (Theorem 
10.9) 

The proof is similar to that of Theorem 10.7 (see Appendix 10.1). Because a%(k, a(Z)), 
n = 1, 2, 3, is a consistent estimate of the true noise model o%(k), n = 1, 2, 3, we have 
that a^(Qh A, a·) = c%(tlh A), which proves (10-36) and (10-37). 

In the absence of model errors, Θ(Ζ0) = #0, we have e(Qh θ0,Ζ0(Ιή) = 0. Calculating 

gF(0, η(Ζ), w(0, η(Ζ),Ζ), w'(0, η(Ζ\Ζ\Ζ) = fF\09 η(Ζ), w(0, η{Ζ\Ζ\Ζ) 
(10-107) 

gF(0, η, w, wx) = E{gF(#, η, w, wl9 Z)} 

where fF(.), η(Ζ), and w{69 η(Ζ),Ζ) are defined in (10-105) and where η, w, and w{ are 
deterministic variables that replace the random variables η(Ζ)9 \ν(θ,η(Ζ),Ζ), and 
w\0, η(Ζ\Ζ), respectively (see Lemma 18.14), gives 

Mv^Wx) = -Yk__x ^ — -
' (10-108) 

_Mw, F \e(nhe9Z¿k))\2 

It follows that g F (% ^ w> wi) = 0 for any 77, w, and wx. Hence, the derivatives of 
gF(#0, η, w, Wj) w.r.t. 77, w, and Wj are zero, so that the second term in dF(Z) (18-17) is 
zero. Because σ^(Ω^ A, tf*) = o^(Qh A), the remaining term in ¿/F(Z) is the term one 
would have if the true noise (co)variances were used instead of the sample noise 
(co)variances. This concludes the proof of (10-38). D 

Appendix 10.L Asymptotic Properties of SSUB 
Algorithms (Theorem 10.10) 

Because the second step of the subspace Algorithms 9.24 and 9.25 does not require any 
noise information, it is sufficient to analyze the first and the third steps only. 

10.L.1 Step 1: Estimation of the Extended Observability Matrix. The results of Ap-
pendix 9.Q, estimation of the extended observability matrix Or, remain valid if we can show 
that Cy/F converges w.p. 1 to its expected value CY/F and if the convergence rate is an 
0p(F~1/2). From this result it follows directly that the limit value Or*, calculated with the 
sample variance σ^(&), equals that calculated with the true variance a£(k). 
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Under the assumptions of Section 9.6.1, |Nr(&)|2 *S independently distributed for a fre-
quency domain experiment and converges for F -» QO to a random variable that is mixing of 
order 2 for time domain experiment. This is also valid for 

)̂ = ¿zrj^)-^ = ¿z: Ν^^Σ:=ΑΜ (10-109) 

and, therefore, Cy/F 

F^=\M-CY/F = Re ±£ = ±d*(k) Wr{k)W?{k) (10-110) 

converges w.p. 1 to its expected value at the rate <9p(F_1/2) (see Section 16.9, versions 2 and 
3 of the law of large numbers). Because Ε{σ^(λ:)} = aj(k), the expected value of ¿V 
equals CY. 

The proof for Cy± is somewhat more complicated because the scalar orthogonal basis 
pn(s), n = 0, 1, ..., r- 1 depends on the measurements Y(k), k = 1, 2, ..., F. Indeed, the 
orthogonal basis is calculated using the inner product (see Appendix 9.S) 

(x(s),y(s)h = R e ( l L , M 2 ^ * M % > ) (10-111) 

which clearly depends on Y(k). Under the assumptions of Section 9.6.1, the inner product 
{x(s),yis))Y/F converges w.p. 1 at the rate Op(F_1/2) to its expected value 

E{(x(s),y(,s))Y/F} = Re ( i Σ^= , (l W | 2 + ^Y(k))x(sk)y(^)) (10-112) 

Hence, the polynomials pn(s) also converge w.p. 1 at the rate Op(F~1/2) to its limit value 
pn{s) (see recursion formulas (9-250) and (9-251)). We conclude that W^k) converges 
w.p. 1 at the rate Op(F"1/2) to WY(k). Applying Corollary 17.35 to 

Cy/F = Re(i Σΐ= x^(kWY(k)W»{k) (10-113) 

shows that CyJF converges w.p. 1 at the rate Op(F~1/2) to 

Re(p Z L i ^^)WY{k)W?{k) (10-114) 

This concludes the proof because (10-114) is the asymptotic expression of the covariance ma-
trix when the noise variance is known. 

10.L.2 Step 3: Estimation of B and D. From step 1 it follows that A and C con-
verge w.p. 1 at the rate Op(F~l/2) to their limit values A0, C0 or, in case of model errors, to 
A*, C* (see Appendix 9.R). The cost function 
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r,F 17(Λ) - (C, (&/„ - Λ, )_1 # + £>) Ü(k)\2 

σγ(κ)/Μ 

where Ax and Cx are deterministic and where, by assumption, the input is known 
(Ü{k) = U0(k)\ has exactly the same stochastic structure as the SML cost function (10-10). 
Therefore, under the same assumptions FSSUB(i?, D, Al5 C{,Z) has the same asymptotic 
properties as VSML( Θ, Z). The only difference is that the denominator in (10-115) is indepen-
dent of Θ, which decreases the value of M from 6 to 4 for the convergence rate (see 
Appendix 10.D). Hence, for M> 4, (10-115) converges w.p. 1 at the rate O (F~l/2) to its ex-
pected value (see proof of Theorem 10.3). We conclude that ^SSUB(^> A ^, C, Z) satisfies 
all the assumptions of Theorems 18.5, 18.7, and 18.16. Hence, for M > 4 , B and D con-
verge w.p. 1 to their limit values B0, D0 (Theorem 18.7) or, in case of model errors, to 2?*, 
£)* (Theorem 18.5), and the convergence rate is an Op(F~l/2) (Theorem 18.16). Note that 
the limit values A*, C*, 5*, and/)*, calculated with the sample variance óy(£), equal those 
calculated with the true variance a^(k) since this is also the case for Or*. 

Appendix 10.M Best Linear Approximation 
of a Cascade of Nonlinear Systems 

Applying (10-44) to the nonlinear operators T[.] and A[.] gives, taking into account 
the measurement errors Mv{k), MY(k) and the process noise NP(k), 

Y(k) = TR(sk)R(k) + NY(k) 
(10-116) 

U(k) = AR(sk)R(k) + Nu(k) 

with NY(k) = NP{k) + Ys{k) + MY{k), Nv{k) = Us(k) + Mv(k), and Ys(k), Us(k) the zero 
mean nonlinear distortions, which are independent of R(k). Dividing both sides of (10-116) 
by R(k) and taking the expected value w.r.t. to the measurement noise and the random phase 
<pk of R(k) shows that E{YR(k)}/E{UR(k)} = TR(sk)/AR(sk), where YR(k), UR(k) are 
defined as in (10-45). D 

Appendix 10.N Sum of Analytic Function Values over a 
Uniform Grid of the Unit Circle 

Lemma 10.27 (Sum of Analytic Function Values over the Unit Circle): Let F(z_1) 
be a rational function of z~l that is analytic outside the unit circle (|z| > 1) and zero at 
z = oo (F(0) = 0). Consider a uniform grid zk = exp(j2nk/N), k = 0, 1, ..., JV- 1, on 
the unit circle. The sum ΣΓ= o^2*"1) c o n v e r g e s (N-+ oo) then to zero at exponential rate 

Σ ί : ί * ΐ Μ = tfWmaxD with |Amax| < 1 (10-117) 

and where Amax is the dominant pole of F{z~x) (= the pole of F(z~l) closest to the unit cir-
cle). 

Proof. The Taylor series of F(z~l) w.r.t. z~l at z~x = 0 equals 
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Ρ(Τι) = ΣΓ= Mr for any \z\ > 1 (10-118) 

Using 

w v - i 0 for r^nN 

Σ . - Ή » tar-■y-*"-Μ·- ( 1 0 · Π 9 ) 

the sum of F(z~l) over can be written as 

Since | / r | < AT|/lmax|r, with z = Amax the pole of F(z~l) closest to the unit circle 
(|Amax| < 1) and K a constant, the absolute value of (10-120) can be bounded above as 

P : W)| * * ΣΓ- ,^Ι^Γ* OW.J") (10-121) 
which proves (10-117). D 

Lemma 10.28 (Sum of the Logarithm of Analytic Function Values over the Unit 
Circle): Let H(zrx) be a stable and inversely stable monic rational form in z_1. Consider a 
uniform grid zk = exp(j2nk/N), k = 0, 1, ...,N- 1, on the unit circle. The sum 
^kZ0\n(H(z^1)) converges (TV—» oo) then to zero at exponential rate 

Σ^>( / / ( ζ , -> ) ) = 0( |Am a xH with |Amax| < 1 (10-122) 

and where >tmax is the dominant pole of d\n(H(z~1))/dz (= pole or zero of H(z~l) closest to 
the unit circle). 

Proof. The natural logarithm of H(z~x) equals 

ln(//(z-')) = Σ > 0 -A*-1) - Σ,1η(1 - «/^') (10-123) 

with a/? Pr the poles and zeros of H{z~x) satisfying \a¡\ < 1 and \/3r\ < 1. Using (10-119) 
and the Taylor series expansion 

ln(l -λζ~χ) = -Υ^=χ{λζ-χγ/ν, (10-124) 

the sum of ln(l-/Lz_1) over a uniform grid on the unit circle zk = Qxp(j2nk/N), 
k = 0, 1, ..., N- 1, can be written as 

Σ::>(ΐ-^) = -Tr=^lW = -"ΣΓ.,^ (io-i25) 
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The absolute value of (10-125) can be bounded above as 

P:>(l-Az^II=,^iW) (10-126) 

Collecting (10-123) and (10-126) gives 

\Σΐ:ΐΗΗ(ζ?))\ * 0(μ,™Τ) (10-127) 

where z = Amax is the pole or zero of H(z~l) closest to the unit circle (|Amax| < 1). D 

Appendix 10.O Gaussian Log-likelihood Function 
(Theorem 10.18) 

Under Assumptions 10.12-10.16 Y(k) (10-53) is independent (over k), circular com-
plex normally distributed. To construct the likelihood function (U(k) is exactly known) it is 
sufficient to calculate the mean and variance of Y(k) given the plant and noise model param-
eters Θ and the variance λ of the driving (band-limited) white noise source. In closed loop 
the process noise V(k) is correlated with the input of the plant U(k) (Assumption 10.13), and 
is independent of the reference signal R(k) (Assumption 10.15). Therefore, the expected val-
ues in the mean and variance calculation of Y(k) should be conditioned on R(k). The latter is 
known since the controller Μ0(Ω) is known (Assumption 10.17) and since Y(k) and U(k) 
are observed without errors (Assumption 10.12). Using (10-53), where G0(Q) and Η0(Ω) 
are replaced by, respectively, G(Q, Θ) and //(Ω, #), we find 

E' mm «x) - 1 + G g " C o ( n / w ■ w . * (10.128) 

\ar(Y(k)\R(k), θ, λ) = Á\S(nk, θ)\2 

where 5(Ω, Θ) is defined in (10-56). Hence, the probability density function of Y(k) equals 

fY(k)(Y(k)\R(k), θ, λ) 

i -^-lmrYo(tT) ^ο,ξ nÁ\S(nk, θ)\2 *\ Λ Ι ^ Ω ^ Ι 2 ) '2 
(10-129) 

1 ( \Y{k)-Yo{k,0)\\ . ηΝ 

^ π Α ^ Ω * θ)\* V 2Λ|3(Ω„ θ)\* ) '2 

because Y(k) is real at DC (k = 0) and Nyquist (k = N/1) and circular complex elsewhere 
(see (16-14) on page 569). Using the independence of Y{k) over k we get 

fY(Y\R, θ, λ) = Y\k e Kfm(Y(k)\m, θ, λ) (10-130) 

with fY the likelihood of the output data Y(k), k e IK. Elaborating the exponent in (10-129), 
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s-\nh 0){Y{k) - y0(t, Θ)) = H-\nh e)(Y{k) - G(Qh e)U{k)) (10-131) 

finally proves (10-55). The factor 1/2 at DC and Nyquist in the sums of (10-55) stems from 
(10-129). D 

Appendix 10.P Proof of Corollary 10.19 

Minimizing (10-55) w.r.t. λ gives (10-60). Using (10-60) λ is eliminated in (10-55) 

Σ , ^ 1 η | ^ ( Ω „ 0 ρ + ̂ 1η(^Σ^κμ(Ω„^)|2) + ̂  (10-132) 

Dividing (10-132) by F, subtracting one, and taking the exponential function finally gives 
(10-58). D 

Appendix 10.Q Proof of Corollary 10.20 

For frequency sets covering uniformly the unit circle, zk = Qxp(j2nk/N) with 
IK = {0, 1, ..., N/2}, the sums in (10-58) and (10-59) are replaced by 

Σ^.··=0.5ΣΓ:;... (10-133) 

where the additional factor 1/2 accounts for DC (k = 0) , Nyquist (k = N/2), and the fact 
that each frequency k = 1,2,..., N/2 - 1 appears twice in the sum (zk = z^Tk). In the se-
quel of the appendix we study the sum in the exponent of gN{6) for N -> oo. 

Since by assumption 5(0, Θ) = 1, and S(z~l
9 Θ) and S~l(z~l, Θ) are stable, it follows 

from Lemma 10.28 of Appendix 10.N that 

\Σ":1 InSfe', 0)\ < 0(\Zmia\») (10-134) 

where z = Ámax is the pole or zero of S(z_1, Θ) closest to the unit circle (= dominant pole of 
ln^z-1, θ)\ Since |Amax| < 1 we conclude from (10-59), (10-133), (10-134), and N = 2F 
that gN{9) = (1 + 0(\Amflx\

N/N)), which proves the corollary. D 

Appendix 10.R Proof of Theorem 10.25 

The stochastic convergence, stochastic convergence rate, systematic and stochastic er-
rors, asymptotic normality, deterministic convergence, and asymptotic bias are proven in, re-
spectively, properties 1-5 and 7 of Theorem 9.21, for the independent frequency domain 
noise (Assumption 10.15), and in Chapter 17 for the mixing frequency domain noise (As-
sumption 10.24), while the asymptotic efficiency immediately follows from the ML proper-
ties under standard conditions (Caines, 1988). Only the consistency (Theorem 9.21, property 
6), and the particular form of the asymptotic covariance matrix (Theorem 9.21, property 4), 
the limit cost function V*(0) (Theorem 9.21, property 5), and the Cramér-Rao bound (Theo-
rem 9.21, property 8) remain to be proven. 
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10.R.1 Limit cost function. Eq. (10-68) is the result of the convergence of the Rie-
mann sum (10-58) to the corresponding Riemann integral (see Theorem 7.21, property 5), 
and only the particular expression for g*(#) should be clarified. The latter follows immedi-
ately from the convergence of the Riemann sum in the exponent of gF{0) (10-59). 

10.R.2 Consistency. To prove the strong consistency of # M L ( Z ) it is sufficient to 
show that θ0 minimizes the expected value of VF(0,Z) (10-58), with e(Qk, Θ) defined in 
(10-57). The strong consistency of A = A(#ML(Z) ) follows then from λ0 = λ(θ0). Since the 
minimizers of (10-55) and (10-58) are by construction exactly the same (see Appendix 10.P), 
the expected value of (10-58) is minimal in θ = θ0 if and only if the expected value of 
(10-55), K(#, /I), is minimal in θ = θ0 and λ = λ0. Under Assumptions 10.15 (m = 2) 
and 10.23, V(0, X) equals 

wx> = Σ*ΕΚΗ*Ω*«Ι2 + 7 Σ * € Κ 
Soi^k) 

H(Qh Θ) 

i\AG(Qh0)\2mR(kr} 

|#ο(Ω*)|2 

+ ^ A + T % e K W k ) 
S(Qh Θ) 

(10-135) 

where £(Ω, Θ) is defined in (10-56), S0 = H0/(l + G0M0), and AG(Qh Θ) = 
G0(Qk) - G(Qk9 Θ). Calculating the derivative of (10-135) w.r.t. Θ and λ gives 

δν(θ, λ) = 

δθ 
1 

;μ>(Ω„0ρ de 
3¡SM_2

+1 y 
keK 

S0(^k) 
H(nh Θ) 

1 y \S0(Clk)\i\AG(nk, 0)\iE{\R(kr}d\H(Qh Θ)\ 

λ £ κ \H(Qk,e)\*\H0(nk)\i ΘΘ 

E{\R(k)\2}d\AG(nhff)\i 

|Η0(Ω,)|2 3Θ 

2 

dV(0, λ) = F_\_ 
ΘΑ λ λ1 

£0 \S0(Qkf d\S(Qh θ)γ 
λάκ\^θ)\* Βθ 

50(Ω4) Σ 
Vie K 

H(Clk, θ) 

2\AG{ak,0fH\R(k)\2} ^ , ν 

/ t e K 

50(Ω,) 
5(Ω„ θ) 

(10-136) 

Evaluating (10-136) in θ = θ0 and λ = λ0, using H(D.k, θ0) = H0(Qk), Αβ(Ω^ θ0) = 0, 
and 

muster __ 2M^gi^4G(ñ^) 
δθ δθ 

where x denotes the complex conjugate of x, gives dV{6, λ0)/θθ0 = 0 and 
dV(0Q, λ)/θλ0 = 0 which concludes the proof. 

10.R.3 Cramér-Rao lower bound. Evaluating the derivatives of (10-136) w.r.t. θ, λ 
in θ0, λ0 gives 

'22 
θ — 0Q, A — AQ An 
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11 δθ2 

Μ„ = δ2ΜΑ 

= Σ i (d\s{ahe)\Y(d\s{^hef 
θ = θ0, λ = Λ0 ke 

'Κ|50(Ω,)|Α δθ0 ) V δθ0 

|^ο(Ω,)|2Ε{|^)Ρ}^[ΔΟ(Ω^ θ)γ 

'12 δθδλ θ - θα, λ - λη 

J_ y I fd\S(flhff)\*T 

δθ% 

Using the inverse of a 2-by-2 block matrix (see Exercise 15.10), the inverse of the Cramér-
Rao lower bound CR(0o) of the model parameters Θ is given by CR~l(eo) = 
(Mn -MX1M.2\M\1). After some straightforward calculations one finds CK_1(#0) = 
Fx + F2 with F l 9 F2 given in (10-66). 

10.R.4 Asymptotic covariance matrix. Using (10-53) and (10-54), cost function 
(10-58) can be written as 

FVF(0,Z) = \gF{9)Y Σ 
ke K 

AG(Qh Θ) 

H(ilh0) 
^ο(Ω,) 
#ο(Ω*) 

Ί*(*)Ι2 + ^ο(ΩΑ) 

S{Clh0) 
-\E{k)V 

+ 2R fG^e)\SéVk)\2R{k)E{k\ 
K H(Qh θ) 5(Ω„ θ) #ο(Ω*)' 

(10-137) 

After some calculations we find 

FVF'\0o) = X0\gF{eo)\\Fx+F2) 

FVF\0o,Z) = -2|gF«?o)l2I,£K
Re( \ζ H¡(Qk)

mm) (10-138) 

with VF(9) = 1{VF(0,Z)}, and where Fu F2 and xk are defined in (10-66). Using 

E{|£(*)|2|£(/)P} = 
KK k = / 

and E ^ e ^ R e ^ ) } = ÍRe(E{ZfZ,}) (10-139) 

with E(k) independent over k (Assumption 10.15), Ar£ the kurtosis factor 
E{|£(Jfc)|4}/(E{|£(Jfc)|2})2, and Z, zero mean circular complex noise E{ZfZ,} = 0, to-
gether with E{R(k)} = 0 (under Assumption 10.14, R(k) has zero mean: use 
R(k) = Hu(zix)Eu(k) and apply Lemma 16.24), it can be verified that 

E { ^ ( 0 o , Z ) ^ ' ( 0 o , Z ) } = Xl\gF{0,)\\Fx + ( * S - l ) F 2 ) / / * (10-140) 

Combining (9-27), (10-138), and (10-140) proves (10-65). 



Model Selection 
and Validation 

Abstract: A critical step in the identification process is the quality assessment of the identi-
fied model. A model without error bounds has no value. For this reason, we need tools to 
check whether all linear dynamics in the raw data are captured and tools to quantify the re-
maining model errors. Also, the presence of nonlinear distortions should be detected, quali-
fied, and quantified. Finally, the validity of the disturbing noise models should be tested. 

This chapter provides dedicated tools to test for over- and undermodeling. This infor-
mation is used not only to validate the final model but also to guide the model selection pro-
cess during the identification. The methods vary from a simple visual inspection (does the 
transfer function fit the FRF measurements well enough for the intended application?) to an 
advanced statistical analysis of the residuals. In the case of undermodeling, the remaining 
model error is quantified so that the user can decide whether the final model is acceptable for 
his/her application. 

11.1 INTRODUCTION 

At the end of an identification run, two important questions remain to be answered. What is 
the quality of the model? Can this model be used to solve my problem? Whereas the first 
question is an absolute one, the second question shows that, in practice, the applicability of an 
identified model strongly depends on the intended application. Each model is only an approx-
imation of reality, and often the existence of a "true" model is only a fiction, in the mind of 
the experimenter. The deviations between the model and the system that generated the mea-
surements are partitioned in two parts following their nature: systematic errors and stochastic 
errors. If the experiment is repeated under the same conditions, the systematic errors will be 
the same, but the stochastic errors vary from one realization to the other. Model validation is 
directed toward the quantification of the remaining model errors. Once the level of the sys-
tematic errors is known, the user should decide whether or not they are acceptable. It is not 
evident at all that one is looking for the lowest error level; often it is sufficient to push them 
below a given upper bound. In order to decide whether the errors are systematic, it is neces-
sary to know the uncertainty on the estimated model. In this book we use probabilistic uncer-
tainty bounds (e.g., 95% bounds) that describe how the individual realizations are scattered 
around their mean values. Errors that are outside this bound are considered to be unlikely, so 
that they are most probably due to systematic deviations. 
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This short discussion shows, clearly, that model validation starts with the generation of 
good uncertainty bounds. These bounds can be used in a second step to check for the pres-
ence of significant (from a statistical point of view) systematic errors. This two-step approach 
is developed in the course of this chapter. First, it is shown how error bounds on the transfer 
function and the poles can be generated starting from the covariance matrix of the parameters 
CQ (generated by the estimation algorithm). Next, it will be explained how the presence of 
systematic errors can be detected. This information will be used to develop an automatized 
model selection procedure. 

Note that using the measured frequency response function (FRF) in the validation step 
is theoretically not the best choice in an errors-in-variables concept (noise on the input and 
output measurements). However, as shown in Chapter 2, the FRF measurements are very us-
able for sufficient high signal-to-noise ratios (SNRs). Although we still prefer to do the iden-
tification from the measured input-output data (no user decision needed to check whether the 
measurements are good enough to jump to the FRF; no increase in complexity for the user; 
nonincreased computation time), using the FRF simplifies the validation process signifi-
cantly because it is much easier to interpret, allows a simple visual inspection, and is often 
one of the major results that is needed. 

11.2 ASSESSING THE MODEL QUALITY: QUANTIFYING THE 
STOCHASTIC ERRORS 

As mentioned in the introduction, the first step in the validation process is the partitioning 
into stochastic and systematic errors. The stochastic error bounds are not only a tool to detect 
systematic errors, they are also intensively used to describe the overall quality of the model 
once it is known that systematic errors are no longer dominating. The basic "uncertainty" in-
formation is delivered under the form of the covariance matrix on the estimated parameters. 
The actual covariance matrix is mostly too difficult to calculate. But in most cases the 
Cramér-Rao lower bound (see Sections 1.3.2 and 16.12) can be used for asymptotically effi-
cient estimators. Also, for weighted least squares estimators, approximative expressions to 
calculate the covariance matrix are available (see, for example, Theorem 9.21). An approxi-
mation of both expressions can be calculated easily at the end of the identification process. 
However, in many applications the user is not interested in the estimated parameters and their 
uncertainty but wants to calculate from these parameters other system characteristics such as 
the transfer function or the pole positions. In Section 16.12 it is shown that the Cramér-Rao 
lower bound of these derived quantities is generated by simple transformation laws, obtained 
from the first-order derivatives of the actual transformation. Remark that the same laws also 
apply to the approximated covariance matrices such as those obtained in Theorem 9.21: 

Cov{f{x))J-&? 

In practice, this works very well as long as the transformations are not heavily nonlinear (e.g., 
transfer function calculation), but sometimes it fails. A typical example of such a failure is the 
generation of the uncertainty regions on the estimated poles/zeros. Although the Cramér-Rao 
bounds (or the approximate covariance matrix) are correct, the actual uncertainties can signif-
icantly differ due to the fact that the asymptotic properties on these estimates are not yet 
reached for practical signal-to-noise ratios. For this case, we present a more precise numerical 
method to generate these bounds. In the following, the uncertainty on the transfer function, 
the transfer function residuals (difference between the measured and the estimated transfer 

Cov(x)l df(x)\ 
dx 

(11-1) 
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function), and the poles are studied in detail. It is shown how to calculate these quantities, 
starting from the covariance matrix on the parameters Ce. To evaluate the expression in prac-
tice, CQ is replaced by the covariance matrix estimate, delivered by the identification algo-
rithm, and the estimated parameter values are used instead of the limiting values parameters. 

11.2.1 Uncertainty Bounds on the Calculated 
Transfer Functions 

The transfer function interpretation of an identified model (7(Ω, Θ) is used very inten-
sively. It is also important to know the reliability of the estimated transfer function as a func-
tion of the frequency. Applying (11-1) gives the variance of the transfer function due to the 
noise sensitivity of the parameter estimates (C9 = Cov(#)): 

««^¿«.(Mga r fdG(Q, Θ) 

θ=θ 

(11-2) 
Θ = Θ 

11.2.2 Uncertainty Bounds on the Residuals 

A very simple, but popular, validation test is to compare the differences between the 
measured FRF, G(Qk), and the modeled transfer function, G{ilh0). In order to decide 
whether these residuals G(Qk) - G(Qh Θ) are significantly different from zero, their variance 
should be calculated. Equation (11-2) of the previous section cannot be applied here directly 
because G(Qk) - G(Qk, Θ) depends now not only on Θ but also on the raw data G(Qk). Note 
that Θ and G(Qk) are correlated stochastic variables because they both depend on the same 
noise distortions Nz. The extended expression (19-37) is repeated here for the readers' con-
venience for complex-valued f(Z, Θ) and Z, and real-valued Θ: 

+ 2herm «mm COV(NZ, § - ef-imr] o i-3> 
Cov(NzJ-§) . - C „ 2 ( ^ ) " p g % o v é 

(proof: see Appendix 11.A). We apply this to the residual G(Qk) - G(Qh Θ), for determinis-
tic excitations (the expected value with respect to a random input disappears), assuming that 
there is no input noise, and Θ = ¿?ML(Z) considering G(Qk) as the raw data (see 8-1). The 
following expression is obtained: 

var(G(Q¿)-G(Q¿,0)) = var(G(Q¿)) + Í—LJ2-JjCov@) 
(dG{nh0)\^^(dG(ah 

δθ J ~ v δθ 

■Μ^<^Π-Τ: 
(11-4) 

δθ J ~ κ θθ 

(proof: see Appendix ll.B). Using herm(;tC;c//) = xCxH for Hermitian matrices C 
(CH = C), (11-4) can be simplified as 
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v a r ( G ^ ) - G(Qk, Θ)) = a*(k) - σ^Ω,, Θ) (11-5) 

where 

alik) = var(G(QA)) and a^ClJ) = ( ^ ^ ) c o v ( ¿ ) ( ^ | ^ ) " (11-6) 

Practical Application. In general, a£(Qh0) « a£(k) so that the compensation in 
(11-5) can be neglected. σ^(Ω^ Θ) can become of the same order as a^(k) only at those fre-
quencies where the model is very flexible and depends only on a few data points (e.g., very 
sharp resonances). Because in this situation both terms in (11-5) cancel each other, the result 
becomes extremely sensitive to model errors. Expression (11-5) can even become negative! 
Hence, if a£(Qh0) « cr^(k) the user should accept that in that region the presence of 
model errors cannot be detected because there is no reliable estimate of the residual uncer-
tainty to decide whether or not they are significantly different from zero. 

Example 11.1 (Calculation of the Uncertainty of Transfer Function Residuals): A 
very popular validation test is to compare the estimated transfer function G(Q, #ML(Z)) with 
the measured transfer function, obtained directly from the measured input-output spectra: 
G(Qk) = Y(k)/U(k). In order to decide whether the errors G(Qk)-G(Qh0ML(Z)) are sig-
nificantly different from zero, the variance of these residuals is calculated. Although the raw 
data were U and 7, we still use expression (11-5) with σ^ calculated from the (^var i -
ances σ τ̂, σ£, and σ\υ with (2-25). A simulation is made on the system: 

G(z_X) = 5.619xl0~3 H- 2.248xl0~2z-1 + 3.371 x lO 'V 2 + 2.248xlO"V3 + 5.619xlO"V4 

1-1.585Z-1 + 2.124z-2 - 1.544z"3 + 0.9034z"4 

It is excited at the frequencies kfs/128, k = 1,2, . . . ,44, with \U(k)\ = 1, and 
ajik) = 0.01 Λ/2, aY(k) = 0.005 Jl. The number of frequencies was kept very small in 
order to illustrate the effect of model errors on the uncertainty bounds. A thousand 
simulations are made and processed for a model order of G(Q, Θ) equal to 4/4, 3/4, and 2/4. 
The results are given in Figure 11-1. The figures in the upper row compare the predicted 
uncertainly on the transfer function with the actual observed uncertainty. As can be seen, very 
good agreement is obtained as long as the model errors are small (models 3/4 and 4/4), while 
deviations become visible for model 2/4 at the second resonance peak. In this case, 
significant model errors are present. Observe that the uncertainty std(G(Q, Θ)) on the 
estimated parametric model can become even larger than the measurement uncertainty 
σσ(&). The lower row shows the uncertainty on the residuals. For models 3/4 and 4/4 the 
theoretical values (11-5) and the observations are again in very good agreement. Note also 
that at most frequencies the standard deviation of the residual is almost equal to the 
measurement uncertainty (compare aG(k) of the upper plot with std(G(Q¿) - (/(Ω^, Θ)) of 
the lower plot). Only at the second resonance peak (most important frequency band!) is there 
a significant drop. This is due to the fact that only two data points are put at the resonance 
peak so that the model can follow the raw data almost completely, leading to small residuals. 
Because of the errors for model 2/4, the predicted residual variance even becomes negative 
(the compensation in (11-5) fails), so that it loses all value. □ 
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Figure 11-1. Study of the uncertainty bounds of the residuals for different levels of the model 
error. 1: G0(zk

l), 2: model error, 3: measurement uncertainty aG(k), 4: 
theoretic value of std(G(zj^,^)), 5: sample value of sta(G(zk

l,0)), 6: sample 
value of std(G(Qk)-G(Qk,d)), 7: theoretic value of std(G(Qk) - G(nk, Θ)). 

11.2.3 Uncertainty Bounds on the Poles/Zeros 

The dispersion of the estimated parameters θ around their mean value is given by the 
covariance matrix Ce. Assuming that the estimates are normally distributed, the most com-
pact uncertainty regions are ellipses. Practice has shown that this is a very usable description 
for realistic signal-to-noise ratios if Θ are the coefficients of the numerator and denominator 
polynomials of the transfer function model. In the previous section it was shown how to cal-
culate the covariance matrix of related system characteristics using linear approximations. 
However, if the user is interested in the uncertainty of the poles/zeros of the estimated sys-
tem, it turns out that this linearization may fail. Even for high signal-to-noise ratios, the un-
certainty ellipses calculated for the poles and zeros may not cover the true uncertainty re-
gions. This is illustrated in the following simulation example. Consider the system G(s) with 
zeros -1.4355 ±y4.0401 and poles - 1.3010 ±y4.8553, -3.5543 ±73.5543, -4.8553 ± 
yT.3010. The system has one dominating pole-zero pair and two pole pairs that have a 
smaller impact on the system. The transfer function is measured in 101 equidistant points be-
tween 0 and 1.25 rad/s with a signal-to-noise ratio of 40 dB (aG(k) = |G(/o>¿)|/100). 
Although we specified all characteristics in the frequency domain, the results are completely 
independent of the method that is used to identify the system (time or frequency domain iden-
tification). The only important information that is used are the model parameters and their co-
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variance matrix. Ten thousand realizations were generated and for each of them the poles/ze-
ros were calculated and are shown in Figure 11-2. Also, the "classical" 95% confidence 
ellipsoids calculated using (11-1) are shown (see Guillaume et al., 1989). In this figure it is 
clearly seen that the shape of the uncertainty regions differs significantly from the ellipsoids 
(for the nondominating poles); and that even for the dominating pole/zeros the uncertainties 
are significantly underestimated. This is an unacceptable result because it is used as an input 
to many design procedures. Consequently, there is a need for more precise techniques to pro-
duce reliable uncertainty regions. The basic idea behind the improved technique is explained 
in the next section, and the precise mathematical description is given in Appendix 11 .D. 

11.2.3.1 Improved Method—Practical Calculation. The basic idea is to consider one 
pole (or zero) as a parameter and to move it away from its estimated position. The position of 
the remaining poles/zeros is shifted such that the total impact of the movement on the cost func-
tion is minimized. This step is the major difference from the method presented by Walter and 
Pronzato (1997). In Appendix 11 .D it is shown that it is sufficient to observe the quadratic form 

ΑθτΟβ1ΑΘ eAsZHne) (11-7) 

Once this form reaches its maximum acceptable level given by the p% percentile χΙ{ηθ), 
the border of the confidence region is found. The subsequent steps will follow that border so 
that the boundary is constructed (Vuerinckx et al., 1998). 

11.2.3.2 Example. The improved method is applied to the previous example and the 
results are shown in Figure 11-3. It can be observed that there is now a very good match be-
tween the observed and the calculated uncertainty regions. In order to show how the confi-
dence regions start to deviate from an ellipsoidal form, the 95% bounds are drawn in 
Figure 11-4 for increasing SNR. Starting from the same conditions as in the previous simula-
tion (SNR = 40 dB), the signal-to-noise ratio is increased in steps of 6 dB to 64 dB. Note that 
even for a high SNR the ellipsoidal form is not followed 
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Figure 11-3. 95% confidence regions of the test system, calculated by perturbing the 
zeros and poles, using the coefficient covariance matrix. 
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Figure 11-4. Evolution of the confidence regions as a function of 
the SNR (40 dB, 46 dB, 52 dB, 58 dB, 64 dB). 

11.3 AVOIDING OVERMODELING 

11.3.1 Introduction: Impact of an Increasing Number of 
Parameters on the Uncertainty 

In this section we look into the dependence of the model variability on the model com-
plexity. During the modeling process it is often quite difficult to decide whether or not the 
introduction of a new parameter is meaningful. A simple strategy would be to fit all the 
parameters that could be of possible interest, but this is not a good idea because the uncer-
tainty on the estimates will then be increased. Consider a model with a partitioned set of pa-
rameters Θ — (#l5 θ2). What is the impact on the model uncertainty if the simple model 
G(6X) is extended to the more complex one G{0X, Θ^Ί In Example 1.5, it was illustrated that 
the uncertainty will increase. Here it is shown that this is a general result. Consider the infor-
mation matrix of the full model: 
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ίϊ(0„ θ2) 
Fin Fil2 

Fi2l Fi22 

(11-8) 

The covariance matrix of the simple model is 0{θχ) = Fi\\, while the covariance matrix of 
the complete model is C(#1? θ2) = Frl. The covariance matrix Ce of the subset θχ is re-
lated to the covariance matrix C(6X) of the complete set by 

CA = Fix\+Fi^Fin{Fi22-FinFi^Fi^ = C(0x) + A (11-9) 

(see (15-8)). Because Δ > 0 it is clear that adding additional parameters to a model increases 
its uncertainty. A similar result is available for transfer function estimation. Ljung (1985) has 
shown that in case of output noise only, the asymptotic expression (for the order increasing to 
oo) for the variance σ^(Ω, Θ(Ζ)) on the estimated transfer function becomes 

^(ato-^SNR-1^) N 
(11-10) 

This expression gives a great deal of insight: the uncertainty on the parametric model is pro-
portional to that of the nonparametric estimate, but due to the averaging effect (over the fre-
quency) of the parametric model an additional noise reduction of ηθ/Ν appears. The 
dependence on ηθ is illustrated in Figure 11-5. A 5th-order FIR system is identified, the first 
time using a 5th-order model (ηθ = 5) and the second time with a 50th-order model 
(ηθ = 50). From (11-10) it is expected that the standard deviation should increase about 
9 dB, which is in agreement with the simulation results. 

Figure 11-5. Dependence of σ0(Ω, Θ(Ζ)) on the 
model order. G0(z^), — σ0(Ω, Θ(Ζ)) of 5th-
order system,... σσ(Ω, Θ(Ζ)) of50th-ordersystem. 
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11.3.2 Balancing the Model Complexity versus 
the Model Variability 

In the previous section it was illustrated that the systematic errors decrease with in-
creasing model complexity. However, at the same time the model variability increases as 
shown in (11-9) and (11-10). In practice, the optimal complexity should be selected from the 
available information. Usually this choice is based on the evolution of the cost function. As 
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explained in Sections 19.6 and 19.7, it is not a good idea to select the model with the smallest 
cost function because it will continue to decrease if additional parameters are added. From a 
given complexity, the additional parameters no longer reduce the systematic errors but are 
used only to follow the actual noise realization on the data. As these vary from measurement 
to measurement, they increase only the model variability. Many techniques were proposed to 
avoid this unwanted behavior. These are based on extending the cost function with a model 
complexity term that estimates and compensates for the unwanted increasing model variabil-
ity. Two popular methods are actually in use, the AIC (Akaike information criterion) and the 
MDL (minimum description length): 

AIC: KM L(^M L(Z),Z)(l+^) 
(11-11) 

MDL: VML0ML(Z\ Z)(l + g ; ln (2aF) ) 

with ηθ the number of identifiable (free) model parameters (= total number of parameters 
minus the number of constraints), and F the number of frequencies (see Section 19.7 and 
Schoukens et al., 2002). a = 1 for output error problems, and a = 2 for the errors-in-vari-
ables problem. AIC minimizes the prediction error (Shibata, 1980), while MDL is best suited 
for physical modeling. The latter is illustrated in the following simulations. 

11.3.2.1 Simulation of a Second-Order System. In the first simulation, a discrete-
time second-order system (na = nb = 2) with independently uniformly distributed coeffi-
cients, ar, br e [0, 1] for r = 0, 1, 2, was considered. Because the estimation is performed 
in the frequency domain, the stability of the system was not an issue, and we also kept the un-
stable systems in the simulation. The system is excited over the full frequency band ( 0 , ^ / 2 ) 
with 200 equidistantly distributed frequencies, U0(k) = 1 and Y0(k) = G0(z¿1). The output 
is disturbed with zero mean white Gaussian noise with variance a$(k) = 2x10 . Then 
1,000 random realizations of the random system were generated and identified. Each time all 
the models between 1/1 to 3/3 were tested and the best one was selected following the AIC 
and MDL rule (11-11). The results are shown in Table 11-1, giving how many times each 
model is selected. The MDL rule selects the correct model almost every time, while the AIC 
rule has a strong tendency to select models that are too complex. 

11.3.2.2 Simulation of a Sixth-Order System. In the second simulation, a system 
with well-separated resonances is identified (see Figure 11-6, thin black line), namely a sixth-
order discrete-time Chebyshev filter (na = nb = 6) with a passband ripple of 6 dB, a cutoff 
frequency of 0.225 Hz, and fs = 1 Hz. The user is actually interested only in a model for 
the middle resonance. Therefore, most input power is focused around this resonance (see Fig-

TABLE 11-1 Selection of the Model Order Using the AIC (left columns) and the MDL 
(right columns) Model Selection Rules - Thousand Monte Carlo Runs 

na 

1 
2 
3 

1 

1 
1 
10 

2 

1 
633 
66 

3 

11 
74 
203 

nb 

H= 1 
"6 = 2 
nb = 3 

1 

2 
3 
11 

2 

5 
942 
8 

3 

15 
4 
10 

AIC MDL 
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ure 11-6, black dashed line): F = 200 frequencies are equidistantly distributed in the band 
(0 Hz, 0.3 Hz) with \U(k)\ = 1 in the band [0.145 Hz, 0.225 Hz] and \U(k)\ = 0.02 else-
where. Noise was only added to the output (a^(k) = 1x10" ). All models with 
4 < na, nb < 8 are scanned, and the best one is selected following the AIC-rule (11-11), the 
MDL-rule (11-11), and the cost function-based rule (select the model corresponding to the 
smallest value of FML(#ML(Z), Z)). This is repeated for 1,000 independent output noise re-
alizations. The results are given in Tables 11-2 and 11-3. It can be seen that none of the meth-
ods is able to select the correct 6/6 model. For AIC and MDL this is mainly due to the fact 
that only a part of the band is properly excited so that the concept "exact model" loses its 
value as is commonly experienced in practice. In order to get a better appreciation of the re-
sults, we plotted the rms errors of the 1,000 AIC, MDL, and cost function selected models 
(Figure 11-6). It can be seen that the rms errors on the MDL models are the smallest, and 
that those of the AIC and cost function-based models almost coincide. Note also that the rms 
errors are small inside the frequency band of interest (band with the highest input power). 
This suggests that the additional model flexibility, used to model out-of-band effects, does 
not have a great impact on the in-band uncertainty. This is further analyzed in Section 11.4.1. 

TABLE 11-2 Selection of the Model Order Using the AIC (left columns) and the MDL 
(right columns) Model Selection Rules - Thousand Monte Carlo Runs 

na 

4 
5 
6 
7 
8 

4 

0 
0 
0 
0 
0 

5 

0 
0 
0 
0 
0 

6 

0 
97 
13 
36 
3 

7 

127 
20 
20 
31 
15 

8 

46 
28 
70 
291 
203 

«Λ 
4 
5 
6 
7 
8 

4 

0 
0 
0 
0 
0 

5 

0 
0 
0 
0 
0 

6 

15 
352 
4 
64 
0 

7 

404 
24 
2 
4 
0 

8 

94 
11 
5 
17 
4 

AIC MDL 

Remarks 

(i) Although the cost function-based model selection rule should always select the 
most complex model 8/8, it can be seen from Table 11-3 that this is not the case 
here. This is due to the overmodeling, which increases the probability that the 
search algorithm gets stuck in a local minimum. Nevertheless, it can still be ob-
served that without an additional model complexity term, there is a strong ten-
dency to select too complex models. Although this is not really a disaster from a 
model variability point of view (the uncertainty on the transfer function does not 
really explode), it still represents a lot of wasted work. 

(ii) Although the selection of the model complexity is not that critical, it is important 
not to exaggerate the order (e.g., just doubling it), in order to avoid the appearance 
of coinciding pole-zero pairs that can create sharp resonances between two fre-
quency points, resulting in a locally increased variance of the model. 

Conclusions. Using the MDL rule, it is possible to balance the model complexity ver-
sus the model variability without requiring prior knowledge that would not be available in 
practice. The major contribution of the MDL rule is to give a data-based restriction on the 
maximum complexity of the models that need to be checked. As it is precisely these too com-
plex models that require a lot of computation time, it can be concluded that the MDL rule es-
sentially helps to save time. 
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TABLE 11-3 Cost Function-Based Model Selection 
- Thousand Monte Carlo Runs 

na 

nb 4 5 6 7 8 
4 0 0 0 0 0 
5 0 0 0 0 2 
6 0 0 0 0 39 
7 0 0 1 17 315 
8 0 0 2 39 585 

0 

ω 
S - 2 0 
0 
13 

"a. 
E -40 Figure 11-6. Comparison of the rms error of < 

AIC (light gray), MDL (dark gray), and cost 
function-based (black) selected models. Thin 
black line: true FRF G0(z¿1), and black Q 0.05 0.1 0.15 0.2 0.25 0.3 
dashed line: input DFT spectrum | U(k)\. Frequency (Hz) 

Using the MDL rule, it is possible to go for the best model making an exhaustive scan 
over all possible models in a predefined set (e.g., nmin < na, nb < «max) and picking out the 
model with the smallest MDL cost function (11-11). The major disadvantage of this approach 
is that many models should be evaluated, and fine tuning is very time consuming. Conse-
quently, a top-down approach will be presented in Section 11.5, where initially a model that 
is too complex is estimated and, next, the complexity is reduced by stripping off the superflu-
ous parts, using the MDL rule again as a decision criterion. Special actions will be needed to 
avoid the numerical conditioning problems and to guarantee good convergence. 

To solve the general model selection problem, it is also necessary to detect the presence 
of model errors so that unmodeled dynamics or nonlinear distortions can be detected. This 
will be discussed in the next section. 

11.4 DETECTION OF UNDERMODELING 

In the previous section we were mainly concerned to restrict the model complexity in order to 
avoid a noise sensitivity of the model that is too large. This might suggest that it is a good 
idea to select too simple models deliberately, hoping for a significant reduction of the noise 
sensitivity. This idea is checked by means of a simple simulation. Next we will analyze how 
can we detect, qualify, and quantify systematic errors. The detection step should indicate the 
presence of model errors. In the qualification step, it is checked whether the model error is ei-
ther due to too low a model order, so that there remain unmodeled dynamics, or due to non-
linear distortions. Finally, an idea is given about the average level of the model errors. 

11.4.1 Undermodeling: A Good Idea? 

In some applications, the users are not interested in a complete model covering the full 
frequency band. They want only a good description in the frequency band of interest, which 
might be covered by a low-order model. Equation (11-10) suggests that a high-order model 
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would suffer from a larger variance than the low-order model. A simulation is set up to ana-
lyze this problem. The same setup as in Section 11.3.2, simulation 11.3.2.2, is used. A hun-
dred runs were made, and the results are shown in Figure 11-7. From the left side it is seen 
that in the frequency band of interest (where the input amplitude \U(k)\ is high) the standard 
deviations are about the same. However, on the right side it is seen that for the simple model, 
there remain significant model errors, even in the frequency band of interest. This shows that 
it is seemingly better to go for a sufficiently complex model that pushes the systematic model 
errors down to the noise level. This result conflicts with the previous asymptotic result where 
the model variability increased proportionally with ηθ. Note here also that the model vari-
ability is increased, but only outside the frequency band of interest, where the simple model 
is actually not applicable. 

This brings the model complexity question to a mature level: how should the model 
complexity be chosen to balance the model variability versus its systematic errors? We advise 
the reader to increase the model complexity in the identification step until model errors can 
no longer be detected. If this model is too complex for a user's final goal, a model reduction 
step can be applied next. This offers the advantage that users know exactly what model errors 
they introduced themselves. 

11.4.2 Detecting Model Errors 

In "classical" identification (Ljung, 1999), two tests are very popular to detect model 
errors. Both are based on the residuals that are given as the difference between the model-
based predicted output and the actual measured output. In the most general case, a plant 
model and a noise model are estimated. If the "true models" are reached, it is shown that the 
residuals should be white. If one of both is wrong, correlation will be detected. In practice, 
the plant model is more important than the noise model. Many times the user is not really in-
terested in modeling the noise characteristics. Some methods, such as the output-error 
method (Ljung, 1999), do not even estimate the noise model at the price of a poorer effi-
ciency, but they are still consistent in open loop identification without input noise. In that 
case, the residuals will basically mimic the colored process noise, and, hence, they should not 
be white. Consequently, a whiteness test loses its applicability for these frequently occurring 
situations. 
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Figure 11-7. Impact of undermodeling on CTG(Z^1, #(Z)). Left: σβ(ζ^1, #(Ζ)) for a second-
order (aG (z^1, #(Z))) and a sixth-order (aG (z^1, #(Z))) system, and right: th 
mean model error of the transfer function estimate E {| G{z^1, Θ(Ζ)) - G0(z^l)\}. 
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The other test checks for the presence of unmodeled dynamics by looking for cross-
correlations between the residuals and the input. If all linear relations are modeled, the cross-
correlation should not be significantly different from zero and this leads to a statistical valida-
tion test. 

It is essential to note that in both tests no check of the absolute level of the residuals is 
made. This is intrinsically due to the fact that the variance of the disturbing noise is not esti-
mated a priori from the raw data; it is estimated together with the plant and noise model. This 
is the major difference from the framework that is set up in this book. As explained before, 
periodic excitations make it possible to separate the signal and the noise before starting the 
identification process. So, an estimate of the noise model is obtained using the sample (co) 
variances cr^(k)9 cr$(k), and cry^k) as explained in Section 2.5.1. The knowledge of this 
noise model, which is obtained directly from the raw data independent of the identification 
process and the selected model, opens completely new possibilities. It will become possible 
to check for the amplitude of the residuals, which is a more direct measure of remaining 
model errors. Because the cost function is nothing other than the sum of the squared ampli-
tudes of the normalized residuals, we will use its value as the primary check for the detection 
of model errors. The properties of the cost function are studied in detail in Section 19.6. It is 
shown that the expected value of the cost function (based on a nonparametric noise model) 
can be split in two parts, the first one accounting for the noise contributions and the second 
one being due to modeling errors (Theorem 19.12). Consider the cost function evaluated in 
the estimated parameters: KML(#ML(Z), Z) (see Section 9.11); then the following result holds: 

Theorem 11.2 (Properties Global Minimum ML Cost Function): The global 
minimum VML(0ML(Z)9 Z) of the maximum likelihood cost function (9-83) has the following 
properties: 

1. In the presence of model errors, deterministic inputs (Z0 is deterministic), and cir-
cular complex normally distributed noise Nz, KML(#ML(Z), Z) is asymptotically 
(F -> oo) normally distributed with mean and variance 

E{FML(0ML(Z),Z)}*Fnc 

)ise * mo< 

' noise ^ ' model 

model (11-12) 

(assumptions of Section 9.6.4), 
2. In the absence of model errors, deterministic or random inputs (Z0 is determinis-

tic or random), and circular complex normally distributed noise Nz, 
FM L(#ML(Z), Z) is asymptotically (F-> oo) normally distributed with mean and 
variance 

E { K M L ( 0 M L ( Z ) , Z ) } « Knoise 
yi1-1J) 

var(FML(¿ML(Z),Z)) * Fnoise 

(assumptions of Sections 9.6.4 and 9.6.6), 
with Knoise = F-ne/2 and Fmodel = ^(0ML(Z O ) , Z0M<?ML(Z0), Z0). 

Proof. See Appendix ll.C. D 
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This result gives an extremely simple test to check for model errors. If the actual cost 
function is significantly larger than the expected value, model errors are present. Otherwise, 
it can be decided that no significant model errors are detected. This conclusion cannot be 
made within the "classical" identification schemes because those algorithms estimate the 
noise model and its variance. They cannot recognize the presence of white residuals that are 
too large. Here, these errors are detected because the noise (co)variances are known a priori. 

The impact of replacing the exact variance by its sampling value is studied in Theorem 
10.5, where it is shown that similar rules still apply. If no model errors nor nonlinear distor-
tions are present, then (11-13) becomes 

E{KSML(0SML(Z),Z)} * f ^ F n o i s e 

var(FSML(¿sML(Z),Z)) « ( Μ ^ ( ^ _ 3 ) ^ 

(see Theorem 10.5). If the sample noise (co)variances in the cost function (10-10) are re-
placed by the sum of the sample noise (co)variances and the sample (co)variances of the sto-
chastic nonlinear distortions, then (11-14) remains valid in the presence of nonlinear 
distortions. The reader is referred to Section 12.4 for a detailed discussion. 

11.4.3 Qualifying and Quantifying the Model Errors 

In this section we will develop the theory explicitly using the output error framework 
instead of the errors-in-variables viewpoint. The major reason for the choice is that we per-
form the analysis on the FRF residuals. In practice, we first do the identification in the errors-
in-variables framework and next make the validation on the measured transfer function 
G(Q.k) obtained from the raw data by (2-17) and the estimator G(Qk, #ML(Z)), assuming that 
the following assumptions are valid: 

Assumption 11.3 (pdf FRF Measurement Errors): The noise NG(k) on the FRF 
measurement is independent (over k), circular complex normally distributed. 

Assumption 11.4 (FRF Estimate): The estimate Θ(Ζ) « 0ML(Z) , with 

Λί7Λ · ^\G(nk)-G(nk90)\2 

Θ(Ζ) = a rgminX _ (11-15) 
k=i G W 

The residuals are the difference between the measured and the modeled transfer function, 
weighted by the standard deviation on the FRF measurement: 

s{ilh Θ(Ζ)) = (G(Qk) - G(Qh 0(Z)))/aG(k) (11-16) 

These residuals will be used to qualify the nature of the error, once model errors are detected 
(the cost function is too large). Because we also want to include nonlinear distortions in this 
analysis, we have to obey the assumptions and restrictions put forward in Chapter 3: normal-
ized excitations xF e EF (Definition 3.2); the class of systems from Definition 3.5; and the 
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noise properties of a frequency domain experiment with σ (̂&) = 0 (see Section 9.6). The 
measured FRF can then be written as the sum of three parts: 

Gink) = GBLA(Qt) + Gs(Qk) + NG(k) (11-17) 

with GBLA(Qk) the best linear approximation to the overall system, Gs(Qk) the stochastic 
nonlinear contributions, and NG(k) the errors due to the output noise. The related dynamic 
system GBLAC^) consists of two parts: 

GBLA(Í \ ) = G0(Qk) + GB(Qk) (11-18) 

with G0(Qk) the underlying linear system and GB(Qk) the bias or systematic errors due to 
the nonlinear distortions. Gs(Qk) is called a stochastic contribution; it behaves as uncorre-
lated (over the frequencies) noise, although the reader should be aware that it is not really a 
noise component. Its properties were explicitly stated in Theorem 3.9. Due to this noisy be-
havior, the presence of nonlinear distortions is often not recognized, although it is exactly this 
noisy behavior that will make it possible to detect their presence. The linear model will con-
verge to the best linear approximation GBLA(Qk) if the model complexity is high enough. So, 
depending on the nonlinear distortion and the nature of the excitation, but opposed to the 
classical validation techniques, the user gets a warning about their presence. 

The model errors can be written as: 

G(nk)-G(QkJ(Z)) = GE(Qk)-Gv(QkJ(Z)) + qk 

GE(Qk) = GBLA(Qk) - G(Qh Θ.) (11-19) 

Gv(Qhá(Z)) = G(QkJ(Z))-G(Qh0*) 

GE(Qk) is the bias error due to undermodeling (unmodeled dynamics and approximation of 
the nonlinear system), Gv(Qk, Θ{Ζ)) is the model uncertainty contribution (the estimated pa-
rameters Θ(Ζ) are different from Θ* due to the noise), and qk = NG(k) + GS(Q¿) are the sto-
chastic errors (see Chapter 3). 

The basic idea to qualify the model errors is based on the sample correlation analysis of 
the transfer function residuals. Consider Re£(m)\ 

Ree(m) = , ■ Y γγτ (11-20) 
F ~ I m\ k=i σ ^ aG^k + W ) 

In the following theorem it is shown that the R££(m) converges to zero, except at the origin 
(m = 0), if the selected model includes the BLA model structure (GE(Qk) = 0). 

Theorem 11.5 (Properties Sample Correlation in the Absence of Unmodeled 
Dynamics): Consider a system belonging to the set S (see Definition 3.5), excited with a 
random multisine uF e EF. If no unmodeled dynamics are present (GE(j(ok) = 0), then 
under Assumption 11.3, 
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1 F a2(k) 

var(R££(m)) * 
F-\m\ (F-\m\)2 

'F^ml\GsO'^WsU^ + m)\2
 { 

tx og(*)og(*+iii) l " j 

tx °g(*) tx og(* + ") 

where a2(k) = varfe) = vav(NG(k) + Gs(Qk)) = a2(k)+a2
s(k). 

Proof. See, respectively, Appendices 11 .E, 11 .F, and 11 .G. D 

Note that this theorem gives an alternative interpretation of the cost function: 
E{^ML(^ML(Z),Z) } « FR££(0). It also allows us to check whether modeling errors are 
present or not: if 100 xp% of the R££(m) samples are below the 100 xp% confidence 
bound V-ln(l -p)std(R££(m)), then the hypothesis GE(j(dk) = 0 (no unmodeled dynam-
ics) is not rejected; otherwise it is. 

In order to separate the stochastic nonlinear distortions from the unmodeled linear dy-
namics, it is assumed that the latter have a smooth behavior. For a fixed bandwidth of the ex-
periments, the density of the frequency grid increases in proportion to F. The neighboring 
model errors will be almost equal, for F large enough. Moreover, we assume that the model 
errors are bounded and that the derivative with respect to the parameters behaves well. This 
leads to the following formal assumptions: 

Assumption 11.6 (Smooth Errors): For F sufficiently large 

(i) Smooth unmodeled dynamics: GE{ilk)GE{ak+x) = \GE(Qk)\
2 + 0(Fl). 

(ii) Smooth model variability: E{GV(Q¿)G^(Q¿+1)} = E{|GV(Q¿)|2}. 
(iii) Smooth disturbing noise spectrum: aG(k) « aG(k +1). 
(iv) The normalized model errors GE(£lk)/ aG(k) are bounded. 

Under these assumptions, it can be shown that R££(m) is significantly different from zero for 
m Φ 0 in the presence of unmodeled linear dynamics, and a hypothesis test is set up to check 
this. Under Assumption 11.6 it is also possible to bound the unmodeled dynamics. A similar 
attempt has already been made, starting from the value of the cost function (Schoukens and 
Pintelon, 1991), but this idea cannot be applied directly in this nonlinear context because the 
cost function is too large not only due to the model errors of the related dynamic system but 
also due to the stochastic nonlinear contributions. In order to separate both effects, R££{\) is 
considered here. 

Theorem 11.7 (Properties Sample Correlation at Lag One): Consider a system 
belonging to the system set § , excited with a random multisine xF e EF. Under 
Assumptions 11.3 and 11.6, R££{\) depends only on the unmodeled dynamics: 

Res(\) = jr^ Σΐί! \GE{€lk)\yal{k) + Op(F-^) (11-22) 

Proof. See Appendix 11 .H. D 
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A stochastic bound on the bias error can be given starting from the sample value: 

Prob(^iT ΣΪΙ ¡ | G ^ 2 * l*"0)l + «std(^(l») = Pa (11-23) 

(proof: see Appendix ll.G). In this expression the norm of R££{\) is considered because in 
general it is a complex value. Hence, chi-square tables should be used to determine the value 
Pa, because R££(l) is asymptotically circular complex normally distributed (see Section 
19.5.2). For example, the 95% level is given by the bound V3std(^( l ) ) (see Appendix 
ll.G for an explicit expression of std(R££(l))). The reader should be aware that a hypothesis 
test does not guarantee that no model errors are present. It only makes a statement on the 
probability that there are no significant (with respect to the noise level aG(k)) model errors 
left. 

Conclusion. The following qualification rules can be used: 

1. The cost function equals the noise value within the uncertainty bounds, for exam-
ple, with 95% confidence 

FML(0ML(Z),Z) e [ Vmise -2Vl£ e > VB0ise + 2Vl£e] (11-24) 

with Fnoise = F-ne/2 (see (11-13)). If the sample (co)variances are used, then 
(11-24) should be adapted according to (11-14). No model errors are detected. 
This test should be confirmed by the fact that R££(m) « 0. If this is not the case, 
another error source, not discussed in this section, should be present. 

2. The cost function is significantly larger than the noise value, for example, with 
95% confidence 

νΜίφΜαΖ),Ζ)>νηο^ + 2ν^ (11-25) 

(see (11-13)). If the sample (co)variances are used, then (11-25) should be adapted 
according to (11-14). Model errors are present. These can then be qualified by 
checking the correlation between the transfer function residuals: 
2a. R££(m) Φ0 for m * 0: there are still unmodeled dynamics. 
2b. R££(m) « 0 for m Φ 0: no unmodeled dynamics can be detected. This behav-

ior can be explained, assuming the presence of nonlinear distortions. 
In order to test whether R££(m) « 0, a percentile test can be used. In such a test 
it is checked if, e.g., 100 xp % of the R££(m) samples have an amplitude below 
the predicted 100 xp% confidence bound J-In(1 -p)std(R££(m)), where 
std(R££(m)) can be calculated from the variance expression given in (11-21). It 
turned out from our experience that this is a very sensitive test to indicate the 
presence of unmodeled dynamics. 

3. If nonlinear distortions are detected, a new experiment can be set up to measure 
the variances of the nonlinear distortions and use them in a slightly modified 
estimation procedure (see Section 10.7 for a detailed description of the proce-
dure). This will result in a model with a smaller variance. 
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In practice, the sample correlation is calculated using not the exact variances but the 
sample variances (see (10-10), Section 10.3.1), giving 

ax{m) ^\(G(Qk) - G(Qk, 0(Z)))(G(nk+J - G(Qk+m, θ{Ζ))) 
Rdm) = jFZM Σ u , K * , i ^ ( 1 1 " 2 6 ) 

k= 1 
crG(Jc)cTG(k+ m) 

where ax(m) 

a ,(0) = ^ 1 and «,(«)( - Mz^L. (11-27) 
M-\ 'w^o M-11/12 

corrects for the bias introduced by the sample variances (proof: see Appendix 11.1). In the ab-
sence of model errors (GE(Qk) = 0) and nonlinear distortions (Gs(j^k) = 0), the standard 
deviation of (11-26) is related to that of (11-20) as 

std(iym)) = a2(m)std(R££(™)) = a2(m)/jF-\m\ (11-28) 

where a2(m) 

^ = "'(0) (M-M2)(M-l)^ 3nd "^Lo = «·(*) M (11"29) 

accounts for the increase in uncertainty introduced by the sample variances (proof: see Ap-
pendix ll.J). If the sample noise variance a¿(k) in (11-26) is replaced by the sum of the 
sample noise variance and the sample variance of the stochastic nonlinear distortions 
cr¿(k) + ó¿ (k), then (11-26)—(11-29) remain valid in the presence of nonlinear distortions 
(GE(Qk) Φ 0). The reader is referred to Section 12.4 for a detailed discussion. 

11.4.4 Illustration on a Mechanical System 

The previous ideas are illustrated on a vibrating robot arm. Jan Swevers and Dirk Torfs 
(Department PMA of the Katholieke Universiteit Leuven, Belgium) have provided us with 
the experimental data (Torfs et al., 1998). As the input, the driving couple is measured, while 
the output is the acceleration at the tip of the robot arm. Ten periods are measured, each pe-
riod consisting of 4096 points sampled at a frequency of 500 Hz. Only the odd harmonics 
(1, 3,..., 199) are excited. The identification results are shown in Figure 11-8 for models of 
order 4/4 and 6/6. Although the model 4/4 already gives quite a good fit, the correlation 
analysis clearly indicates that there are still significant (with respect to the noise level) 
unmodeled dynamics. Hence, it makes sense to increase the model order. The cost function is 
4964.8 while a value of 95.5 is expected. A closer inspection of Figure 9-8(a) shows that the 
errors are, indeed, larger than the measurement uncertainty. Increasing the model order to 6/6 
reduces the cost function to 220.5 (compared with an expected value of 93.5), still pointing to 
significant model errors. However, the correlation analysis cannot detect any more unmod-
eled dynamics. 58% of the correlation results are above the 50% percentile (98% for the 4/4 
model) and 4% above the 95% percentile (92% for the 4/4 model). From this, we conclude 
that it makes no sense to increase the model order further, and most probably there are non-
linear distortions present. This was confirmed by more detailed tests. 
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Figure 11-8. Illustration of model error detection and qualification on a vibrating robot arm. (a) The 
identified transfer function, dots: measurements, — model, — model errors, x measurement 
uncertainty aG; (b) Ree(m), dots: measure-ment, - 50% bound, — 95% bound. 

Remarks 

(i) In practice, it is advisable not to use the correlation results at all the lags. The un-
certainty on it increases very fast for the extreme lag numbers due to the small 
number of points that add to the sum. It is better to restrict the analysis to lag num-
bers that are smaller than half the number of frequencies. 

(ii) The model validation is extremely simplified due to the presence of high-quality 
FRF measurements, so that even small model errors on the transfer function be-
come visible. 

11.5 MODEL SELECTION 

In this section a "new" model selection procedure is proposed. In the classical approach 
(Stoica et al., 1986), a first guess of the model order is made directly from the raw data. A 
typical example is to plot the nonparametric frequency response function to get an initial 
idea about the required model complexity. A first trial is made and then the complexity is 
adapted to the results of the validation test. Usually, the model order is increased step-by-
step until the point where acceptable validation results are obtained. The major reason for 
this cautious approach is the sensitivity of most algorithms to overmodeling. It usually 
results in very poor conditioning of the normal equations and convergence problems of the 
iterative schemes, so that the complexity can only be increased gradually. However, or-
thogonal parameterizations (see Section 9.16) guarantee good numerical conditioning, 
even in the case of extreme overmodeling, so that it becomes possible to reverse the previ-
ous sketched procedure (Rolain et al., 1997). This is the approach that we will explain here. 
It consists basically of three steps: 
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1. Make an initial guess of the maximum order based on a rank decision of a raw 
data matrix. This choice should be conservative (biased toward a too high model 
order) so that the best order is below this selection. 

2. The parameters of this high-order model are estimated. 
3. A model reduction is performed by eliminating poles, zeros, or pole-zero pairs 

that do not significantly contribute to the model. The validity of each reduction is 
checked. If no further reduction is possible, a new estimate with the reduced order 
is made and the model reduction procedure is restarted. 

A more detailed description of each step is given in the following. The whole procedure can 
be automated, and from our experience it turns out that it results in reasonable and sometimes 
even better models than those selected by human operators. 

11.5.1 Model Structure Selection Based on Preliminary 
Data Processing: Initial Guess 

In order to start the model selection procedure automatically, an initial guess for the 
order is needed that is generated directly from the raw data. To do so, the user should specify 
an initial order ((«fl)init, (nb)mit) ^ a t *s definitely too high, so that the best model order is 
guaranteed to be included. Next, the number of possible pole/zero cancellations is estimated. 
An identification method that is linear in the parameters is used. So, an improved order selec-
tion boils down to a rank detection problem on the raw data matrices. Consider the following 
equation error formulation (Section 9.8.2): 

e(Qk9 Θ, Z(k)) = A(Clk, 0)Y(k)-B(£lh G)U{k) (11-30) 

where A and B are polynomials of order («a)init and («¿)init, respectively. The Jacobian 
matrix J(Z) = ΰβ(θ,Ζ)/δθ is parameter independent and its rank is, at most, 
(Omit + (nb\mt + 1 *n ^ e n ° i s e l e s s c a s e a nd n o model errors present. In case of model er-
rors, the rank is at most («Jin i t + (w¿>)mit + 1 · If there are common pole-zero pairs in the sys-
tem, for the given model orders, degenerations will appear. Their number equals the 
dimension of the null space of J(Z) minus 1 (to account for the structural degeneration of a 
transfer function model). The initial estimate of the model order is then given by 

K = (Oinit + 1 -dim(null(J(Z))), nb = (nh)MX + 1 - dim(null(J(Z))) (11-31) 

In practice, only noisy data are available and this simple principle fails to work because the 
noise and model errors increase the rank of J(Z). To reduce the noise sensitivity, the follow-
ing extensions are made 

■ Add a frequency weighting to (11-30) to get as close as possible to the maximum 
likelihood weighting. This is exactly the problem that is solved in the starting values 
generating methods (see Section 9.12.4 on starting values) where J(Z)-+ WJ{Z) 
with the diagonal matrix (9-69). 

■ The column space of WRQJre(Z) (see Section 9.10.3) is weighted with a square root 
of the column covariance matrix CWJ (9-75) of ^Reyre(^z)> w i t n 

j(Nz) = J(Z) -J(Z0) (see (9-68)). The whitened Jacobian is given by 
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W^UZ)C~^2 (H-32) 

For deterministic weighting matrices W it is shown in Rolain et al. (1997) that the 
"noise" singular values σ^ converge strongly to those of the noiseless matrix + 1: 

a.s.lim σ\ = o£0 + 1 (11-33) 
F->oo 

The variance of the noise singular values can be calculated (Rolain et al., 1997), but this re-
quires unacceptably long computation time. Consequently, the dimension of the null space of 
WRQJTQ(Z)CWJ2 is estimated by the number of singular values between zero and one, 
#{ ak\0 < ak < 1}. This results in an overestimate of the rank of W^JVQ(Z)C^j2. This is a 
desirable property because the initial estimate of the model order should be high enough so 
that the peeling process can be started. 

Remarks 

(i) In practice, the whitening (11-32) is not explicitly calculated as it is not guaran-
teed that CWJ is of full rank (see Assumption 9.20(i) or (ii) and Appendix 9.K). 
Instead, the generalized singular value decomposition (GSVD) is used (Section 
15.4.2; Paige, 1986; Bai and Demmel, 1993) to calculate the singular values of the 
whitened matrix directly from the matrix pair (WReJTQ(Z), C]¿]) without calculat-
ing the inverse C^j2. 

(ii) As we are dealing here with extremely high orders, the numerical conditioning 
can be cumbersome. In order to avoid these problems, an orthogonal parameter-
ization is used. 

11.5.2 "Postidentification" Model Structure Updating 

The input to this second step consists of an initial guess of both the model parameters 
and the model order as obtained, for example, in the coarse step. The methods discussed be-
low are in principle applicable to any estimator, as long as the cost function is absolutely in-
terpretable (this means that it should be possible to predict and calculate its expected value in 
case there are no model errors). This facilitates validating the intermediate models that are 
obtained when we reduce the model complexity. 

The model reduction procedure consists of the following steps: 

■ A full identification is performed starting from the initial parameters and it is 
checked whether the resulting model passes the validation test. After a positive vali-
dation, the reduction step can be started, otherwise the order should be increased un-
til the validation test is successful. 

■ The poles, zeros, and pole-zero pairs are ranked with respect to their impact on the 
transfer function in the frequency band of interest. Possible candidates for elimina-
tion are poles or zeros that are far away from the modeled frequency band or almost 
coinciding pole-zero pairs. Next, these roots are eliminated one after another without 
changing the remaining poles and zeros. Each time it is checked whether the remain-
ing model is still acceptable, using a simplified validation test. For example, the 
MDL test is a good method to compensate for the reduced order. 
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■ Once it is no longer possible to continue the peeling process without violating the 
validation test, a new estimate is calculated, starting from the last accepted model. 
This optimizes the positions of the remaining poles and zeros, again reducing the 
cost function. Before starting a new peeling step, a full validation is performed (for 
example, a cost function test and a whiteness test of the residuals). 

■ Repeating these steps a few times results eventually in a "simple" model that still 
passes the validation tests. Often, this model is too complex for practical use. If the 
user can specify an acceptable level of model errors, a further reduction can be made 
until the user-imposed restrictions are violated. 

Remarks 

(i) This procedure does not guarantee that the optimal model is found. However, 
from our experience, it turned out that the in most cases the resulting model is 
very reasonable. 

(ii) Because the procedure is controlled by a series of mechanical rules, it is very 
suited for a fully automatized model selection. The only required user interaction 
is the definition of the maximum, acceptable level of model errors. 

(iii) In practice, it is never guaranteed that the global minimum of the nonlinear cost 
function is reached, especially when dealing with more complex systems. Mostly 
a "good" local minimum is reached. We observed that with the top-down ap-
proach we sometimes ended in a better local minimum than the one obtained by a 
bottom-up approach on the same model order. 

GUIDELINES FOR THE USER 

In Table 11-4, we summarize the actions to be followed during the model selection process. 
This will help the less experienced reader to select a good model. We strongly advise compar-
ing the estimated model with the nonparametric FRF at the end of the process to look for un-
detected anomalies (e.g., large errors in some frequency bands), strange behavior of the 
residuals (e.g., strong correlation in a subband), or undesired behavior of the model in fre-
quency bands that were not well excited. 

TABLE 11-4 Recommendations for the Model Selection Process 

White Residuals Colored Residuals 

The cost function weighted with 
the noise (co)variances is too 
large 

The cost function weighted with 
the noise (co)variances is not 
significantly different from the 
expected value 

The cost function weighted with 
the noise (co)variances is too 
small 

Best linear approximation 
Nonlinear distortions present 
It makes no sense to increase 
the model order 
This is the ideal situation 
Best linear model 
No unmodeled dynamics detectable 

■ There are still unmodeled 
dynamics (model errors). Increase 
the model order to reduce them 

■ Good linear approximation 
■ Check the noise analysis 

■ Good linear approximation ■ Good linear approximation 
■ Check the noise analysis or ■ Check the noise analysis 

reduce the model order 
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11.7 EXERCISES 

11.1. Consider a polynomial model: 

*o(*) = Σρ-ι*/^*) (n-34) 

that is identified from a set of measurements y(k) = y0(k) + n (k), with 
w(£) = [-N:N]/N and n(k) zero mean iid distributed noise with variance c&. Setup 
the least squares estimator for this problem, and calculate the covariance matrix Ca, and 
the uncertainty of the model output ay(u). 

11.2. Check the previous results on simulations. 
11.3. Set up a weighted least squares estimator to identify a parametric transfer function mode 

G(Q, Θ) from measured values G(Qk) = G0(Qk) + nG(k) with nG(k) zero mean iid dis-
tributed noise with variance σ^. 

11.4. Apply the estimator of Exercise 11.3 to simulation data. Select a second-order system to 
generate the data. Repeat the simulation 100 times, and compare the mean value with the 
exact system G0(Qk). 

11.5. Use the results of Exercise 11.4 to calculate the covariance matrix of the transfer function 
parameter C0, and predict from these results the uncertainty on the transfer function 
var(G(Q, #)). Compare the predicted variance with the simulation results. 

11.6. Calculate var(G(Q, Θ)) after putting the nondiagonal terms in the covariance matrix to 
zero, and discuss your results. Start from the results of Exercise 11.5. 

11.7. Make a residual analysis on the results of Exercise 11.4 (use only one simulation), and 
discuss the results as a function of the selected model order. 

11.8. Select a fourth-order system with two well-separated resonances, and identify this system 
(use, for example, the estimator of Exercise 11.3). Apply the AIC and MDL model selec-
tion rules. Do this first for a simulation using a broadband excitation that covers the com-
plete passband of the system, and then repeat the exercise with an excitation that concen-
trates most of its power on one of both resonances. Analyze the results. 

11.9. Set up a simulation, using a Wiener-Hammerstein system as plant. Use an FIR structure 
for the linear dynamic parts and a third-order polynomial for the static nonlinearities. 
Scale the excitation signals so that the energy of the second-degree nonlinearity is 10% of 
that of the linear part, and the third-degree nonlinearity contributes about 1% to the output 
energy. For this structure determine the underlying linear system and the best linear ap-
proximation (see also Chapter 3). 

11.10. Identify the best linear approximation of Exercise 11.9, and make a full model validation 
using the tools developed in this chapter. 

11.11. Study the impact of the excitation signal on the quality of the identified model of Exercise 
11.10 (cost function, residue analysis, model uncertainty). Analyze 10 realizations in each 
run. 

11.8 APPENDIXES 

Appendix 11.A Proof of Equation (11-3) 

Eq. (19-31) remains valid for complex-valued measurements Z and real-valued esti-
mates Θ = #ML(Z) if ¿*, Z, and Nz are replaced by, respectively, £re, Zre, and {Nz)xQ\ 
where *re puts the real and imaginary parts of x on top of each other (see (15-48)). Using 
Lemma 15.4, (19-31) can be rewritten as 
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ΛΘ{Ζ) = -
'3ε(θ,Ζ^δε(θ,Ζύ 

δθ δθ 
\4δ^β)Η(94β)Νζ) 8Θ ν δζ 

(11-35) 

with θ = Θ(Ζ0) and where 

Cov(0) * 2Μ^β]Η(^β)) 
δθ δθ 

(11-36) 

(see (19-22)). Hence, the covariance between the complex-valued noise Nz on the measure-
ments and the real-valued noise ΔΘ{Ζ) on the model parameters is given by 

E W 4 Í W ) - " t k 2 R e < * « ( ^ ) Y ^ > } c o v < 0 > 

-c^m"i^^> 
(11-37) 

where the last equality uses 2Re(x) = x + x and ί{Νζ Νχ) = 0 (Nz is circular complex 
distributed, see (16-12)). Finally, ΔΘ(Ζ)*Θ-Θ (see Theorem 19.2), Z*Z0, and Θ * 0, 
which concludes the proof. D 

Appendix 11.B Proof of Equation (11-4) 

Since f(Zj) = G(ak)-G(QkJ), em0,Z) = (G(Qk)- G(QkJ))/aG(k), and 
Z[¿] = G(Qk), the partial derivatives in (11-3) equal 

df(Z,0) 
dZt [r] 

= 0 and 2 2 ^ - 1 
dZ. [*] 

a/(z,g) dG(nh Θ) 
δθ δθ 

M | 2 = diag(a¿\l)...a-\k)...a¿\F)) 

ds[k](e,Z) 1 dG(Clh0) 

δθ σσ(*) δ<9 

(11-38) 

where 0 = (XZ). Combining (11-38) with CNz = diag((T(|(l)..^¿(A:)...CT¿(F)), it can eas-
ily be verified that 

v δΖ J V na J V ;}# ) - \ p,fí J δθ δθ δθ 

which concludes the proof. D 
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Appendix 11.C Properties of the Global Minimum 
of the Maximum Likelihood Cost 
Function (Theorem 11.2) 

Theorem 11.2 would follow directly from Theorem 19.12 if the frequency domain er-
rors of the time and frequency domain experiment (see Section 9.6) were mixing of order 
four (infinity). For the frequency domain experiment the frequency domain errors are mixing 
of order four (Assumption 9.4) but not of order infinity (moments of order higher than 4 + ε 
do not necessarily exist, see Assumption 9.13). Hence, Lemma 19.11 is valid and only the as-
ymptotic normality of VML(0ML(Z), Z) in Theorem 19.12 remains to be proved. Because af-
ter a DFT the noise is not mixing of order four (infinity) (see Section 16.16), all the properties 
°f ^ML(^ML(Z), Z) in Theorem 19.12 remain to be proved for the time domain experiment. 
Fortunately, following the same lines as in the proof of Theorem 9.21 (see Appendix 9.E and 
Appendix 9.D), the resulting technical difficulties in the proofs can easily be solved using the 
results of Section 16.16. D 

Appendix 11.D Calculation of Improved Uncertainty 
Bounds for the Estimated Poles 
and Zeros 

This appendix gives the theoretical foundation of the method explained in Section 
11.2.3. In order to keep the application field as general as possible, we emphasize that this re-
sult is independent of the specific identification scheme that is used as long as it meets some 
minimum requirements. 

Consider an identification scheme that extracts the model parameters Θ e W*9 from the 
measurements Z G R ^ (note that we no longer specify that it is time or frequency domain 
measurements), 

θ(ζ) = argmin^(0,z) (11-39) 

VN(6, z) = V(0, z)/N is a well-designed cost function, such that 

1. V "(#(z0), z0) = C#\ with 0(zo) = argminE{^(#, z)} and z0 the noiseless 
data. * e p

r 

2. a.s.lim θ(ζ) = §(z0), and ΑΘ = θ(ζ)-θ(ζ0) e AsN(0, C0). 
N-+co 

Note that these assumptions are met for maximum likelihood and Markov estimators. Even 
linear least squares estimators can be used if, in a second step, a correct estimation of Ce is 
made. 

Note that 

AeTC¿lA0 e AsZ2{ne) (11-40) 

This result is also valid in the presence of model errors. At that moment (11-40) describes, un-
der well-known conditions, the behavior of θ(ζ) around the parameters that would be obtained 
in the noiseless case. The p -percentages uncertainty ellipsoids on θ(ζ) are then given by 
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S,= {θ\ΑΘ^ΑΘ<χ2(ηθ)} (11-41) 

with ζΙ(ηθ) the p -percentile of a χ2 distribution with ηθ degrees of freedom. Starting from 
(11-41), an uncertainty set for the poles/zeros p = ρ{θ) + Ap around ρ(θ) is defined, where 
ρφ) are the poles and zeros corresponding to the parameters Θ. 

Sp = {p\([Ae(Ap)YC-e
x[A9{Ap)]<xj{n9))} (11-42) 

where ΑΘ{Αρ) is the parameter variation due to the variation of the poles/zeros. Because the 
transformation θ-*ρ is highly nonlinear, linear approximations fail and an alternative 
method is formulated. In the following, we discuss the individual steps of the method that 
was explained in Section 11.2.3 in more detail. The basic idea was to move a pole (or zero) 
and to minimize the impact of this movement on the quality of the fit. First, a reparameteriza-
tion is described to introduce a pole or zero as a parameter. For generality, a complex pair is 
considered but the results can be reduced without any problem to the situation of a real pole 
or zero. Next it is shown how the impact of a movement is minimized. Finally, the criterion 
[ΑΘ(Αρ)]τΟβ1[ΑΘ(Αρ)] <zj(ne) in (11-42) is used to accept or reject the movement. Re-
mark that the poles and zeros do not fully determine Θ because variation of the gain of the 
transfer function does not change the pole/zero positions. This additional free parameter will 
be set such that the impact of a pole or zero movement on the criterion is minimized. 

ll.D.l Reparameterization. To focus the ideas, we consider a complex pole pair 
π1? π2 = ñ\ as parameter. The original transfer function G(Q, Θ) is partitioned into two sub-
systems: 

G(Q,0) = ^ = — l and 0(Ω,0) = / = 0 '' (11-43) 
~V '~7 ( Ω - π ι ) ( Ω - π 2 ) α ^ + α,Ω+Ι y"*-* 

such that G(Q, Θ) = G(Q, 0G(Q, Θ). 

Remarks 

G(Q, Θ) includes the gain variations that were mentioned before. 
Note that there exists a bilinear relationship between the old and the new parameteriza-
tion: 

(9= Τ(θ)θ (11-44) 

with 
A similar transformation can be set up when a complex zero pair or a real pole or zero 
is selected as parameter. 

11.D.2 Minimizing the Impact of a Movement, Accepting or Rejecting a 
Movevement The impact of pole (zero) movement on the cost function is minimized by 
changing the remaining parameters Θ. This is done by minimizing 
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[ΑΘ{Αρ)γ^{ΑΘ{Αρ)] = [Τ(0θ-θ(ζο)]'€-θ
ι[Τ(0θ-θ(ζο)] 

with respect to Θ. The solution is found by solving 

Τ\Θ)^Τ{Θ)Θ^ Τ\θ)ϋ-Θ
χθ{ζ,) 

(11-45) 

(11-46) 

Plugging this solution back into (11-42) allows us to verify whether p e § , using relation 
(11-42). The corresponding pole/zero positions can be calculated from this "improved" pa-
rameter set and be used to construct all uncertainty regions at once, instead of looking for the 
extreme positions for all pole-zero pairs. In practice, it might be necessary to repeat the whole 
process for a few poles/zeros in order to get a precise description of the uncertainty regions as 
there is no guarantee that all pole/zeros reach their extreme positions at the same time. 

Remark. In practice, the following approximations are made to evaluate the solutions: 
θ(ζ0) -> θ{ζ) and C^1 -» V"(0(z)9 z), as the exact values are unknown. 

Appendix 11.E Sample Correlation at Lags Different 
from Zero (Proof of Theorem 11.5) 

Consider a system belonging to the set § (see Definition 3.5), excited with a random 
multisine xF e EF. If no unmodeled dynamics are present (GE(Qk) = 0), then under the as-
sumptions of Section 9.6.5 (frequency domain experiment with σ^{Κ) = 0) 

RUm) = OJF-"2) m*0 (11-47) 

Proof In this proof we use the more compact notation Gvk = Gv(Clh Θ(Ζ)). From 
(11-19) it follows that in the absence of model errors (GE(Qk) = 0) 

F-\m\ 

R£e(rn) = 
F~\m\k% 

(ak-Gvk)(ak + m-Gv(k+m)) 

aG(k)aG(k + m) 
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i F - ' m ' n ñ i F ~ M r r 
Y QkQk + m + 1 Y ^vk^vik + m) 

F ~ 'W' it = i ° G ( * ) σ ο ^ + π ι ) F~\™\ k
JTl <rG(k)aG(k + m) 

(11-48) 
Λ F-\m\ r, Γ* Λ F-\m\ _ 7̂  

_ 1 y (Jk^vik + m) 1 _ y qk + m(jvk 
F~\m\ * = i ° G W a c ( k +™) F~m

 k=i σο(^σσ(* + m ) 

Each of these terms converges for m Φ 0 to zero, at least, as an O (F_ 1 / 2). Essential in the 
proof is that w does not tend to F: we require that F-\m\ = 0(F) so that the results are 
also valid for a constant fraction m = aF with a < 1. 

1 y F - | m | gfcgjH 

> | ^ = ι σσ(*)σσ0 

Using var(5j) <E {s^ }, we show the mean square convergence of s l 

» *· " F=W ̂ "^:j,m) "" O^F-HY>") 

Λ F-\m\ F-\m\ , _ = = 
1 V V ic QkHk + m VlVn p r i m _ 1 y y ir j *ik*ik + m HlHl + m [ • « « ¿ Q X 

1 |J l1 > ( F - N ) 2 ^ £ \σσ(*)σ0(* + «)σ6(/)σσ(/ + ι»ι)/ l " ) 

By careful examination of the right side and using the results of Theorem 3.9 and 
the noise assumptions of a frequency domain experiment (see Section 9.6.5), it 
can be shown that the double sum contains the following contributions: 

■ k * 1: 0((F- \m\ )2) contributions of 0(F~2) 

m k = I: 0((F-\m\)) contributions of O(F0) 

Hence, E{\sx\
2} = 0((F-\m\)-1) and ^ = Oms((F- \m\)~l/2). 

,..Λ 1 \-F-\m\ GvkGv{k + m) . . 
(n) s? = ——r-τΛ,, , —77T—TÍ x is an (9n(F_1). v } 2 F - | H * = 1 aG(k)aG(k + m) pV J 

G(Qk, Θ{Ζ)) is a consistent estimate obtained under the standard conditions for out-
put error estimates, which is a special case of the errors-in-variables formulation. 
For this class of estimators it is known that Θ{Ζ)- Θ* is an Op(F~x/2) (Theorem 
9.21, properties 2 and 5). Applying the mean value theorem to G(Qh Θ{Ζ)) gives 

δθ 

with ¿Γ = (l-t)0*+t0(Z), and / e [0, 1]. Under Assumption 9.8, the deriva-
tives of G are uniformly bounded, so that Gvk is 0p(F~1/2). Hence, s2 is an 
Op(F-i). 

1 V F - | m | qkGv(k + m) 1 v F - | w | <ik + nfivk 
(1U) *3 F^H ^ * = i σσ(£)σσ(λ:+/Η) ° F ^ R ^ * " ' σ0(*)<70(* + m) 

O p ( F - i / 2 ) . 

We prove the result for the first sum; that of the second sum follows exactly the 
same lines. Taking the absolute value of s3 gives 
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N ^ F - N 2 - * - » σσ(*)σσ(* + « Γ F-\m\ ^ - ' ^ ( H 51 ) 

Because ^ is an 0m-s-(F°), the conclusion follows directly. D 

Appendix 11.F Sample Correlation at Lag Zero 
(Proof of Theorem 11.5) 

Uo) = ^?1|p)+ 0 '< ' l · , / ^ , 

Proof Putting m = 0 in (11-48) gives 

The proof of convergence of the second and third terms at the right-hand side in (11-52) is 
similar to that of the previous appendix. The first sum can be written as: 

1 y t o ü - 1 Y$V+
l v N 2 - ° ^ Π153) 

1 f a # ) F
k=^m F£X ogw * " ; 

From Theorem 3.9(iv) and the noise assumptions of a frequency domain experiment (see 
Section 9.6), it follows directly that the last sum in (11-53) is of order Oms(F~W2), which 
concludes the proof. D 

Appendix 11.G Variance of the Sample Correlation 
(Proof of Theorem 11.5) 

In this section the variance of R££(m) is calculated under Assumptions 1 and 2 and put-
ting Gv = 0. The variance of R££(m) will be calculated assuming that there are no unmod-
eled dynamics left (GE = 0). Hence, this result can be used to check whether or not this 
hypothesis is valid. Because E{R££(m)} = 0((F-m)~l) for m*0, we have 
var(i^(m)) * E{\Ree(m)\2} so that 

^ ^ ( ^ α ^ Σ ^ Ι ^ Ο ^ , ) ) (ιι-54) 

for m*0 and F-»oo. Replacing qk = NG(k) + Gs(ja)k) and using the properties of 
Gs(j(ük), we find asymptotically (F- \m\ —» oo) the variance expression in (11-21). A de-
tailed analysis shows that this expression is also valid for m = 0. 
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Remarks 

(i) Expression (11-21) cannot be calculated directly because only q is available and 
not Gs. Replacing Gs(J(ok) by q results in an overestimate of the uncertainty 
bounds. This can be compensated by substituting \Gs(j(ok)\

2/a2(k) in the vari-
ance expressions by \qk\

2/a£(k) - 1. 

(ii) During the validation tests, graphical representations of the amplitude of R££(m) 
are used. Hence, the complex variance should be transferred into a bound on the 
amplitude. Because the variance dominates the bias error, it follows that R££(m) is 
asymptotically zero mean complex normally distributed (The real and imaginary 
parts of the individual contributions to the R££(m) are uncorrelated and have 
equal variance). So the amplitude is chi-squared distributed with two degrees of 
freedom. The ax 100% confidence bound is given by */-ln(l - a)std(R££(m)) 
(proof: see Appendix 2.A). For example, for a = 0.95 we get *j3std(R££(m)). 

(iii) If Gv is not zero in the previous calculations, the variance expression is still valid 
but only a weaker statement about convergence in distribution can be made be-
cause the expected value E {GvkGvl} is not guaranteed to exist. The sample cor-
relation R££{m) converges in distribution to a random variable with zero mean 
and variance var(^(w)) . 

(iv) In Section 10.7 it is shown how to identify the best linear approximation for sys-
tems that are disturbed by nonlinear distortions. In that case not only the measure-
ment noise but also the stochastic nonlinearities are considered as disturbing 
noise. The proposed procedure accounts for both effects during the extraction of 
the (co)variances from the raw data. As a consequence, the presence of nonlinear 
distortions will not be detected during the validation tests because under these 
conditions, it just acts as an additional noise source. In this case var(R££(m)) 
(11-21) reduces to \/{F~\m\). 

Appendix 11.H Study of the Sample Correlation at Lag 
One (Proof of Theorem 11.7) 

Proof. In this proof we use the more compact notation GEk = GE(Qk). 

A m = 1 y 1 lGEk + 4h-Gvk][GE(k+1) + Qk+1 ~ Gy(k+1)1 
F~lk=i aG(k)aG(k+l) 

(11-55) 
= 1 Fy [GEk~dk]\-GE(k+\)-dk+\] 

F-\ k% aG(k)aG(k+\) 

with dk = Gvk - qk. Compared with Appendix ll.E, a new term GEk appeared, raising new 
contributions of the type 
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y GEkdk+\ = 1 y GEQIC+I ]__ y ^Ek^v(k+\) 
lk% aG{k)aG{k+ 1) F- lk% aG(k)aG(k+ 1) ~ F^l k% ^G(k)aG(k+ 1) 

The last sum at the right-hand side is an Op(F~l/2) because Gv(k+1) is an 0p(F~1/2). Using 
var(x) < E {x2 }, the mean square convergence of the first sum is shown 

1 y y ^ ° Ε / Μ ? * + ι 0 / + ι ) < n(F-u Π ι ^ 
(^-itó^i^W^^+^^CO^z+i)- l ] K ' j 

The last inequality follows from the fact that GEk/aG(k) is uniformly bounded by 
assumption and because E{qk+lql+l} = 0(F~l) fork^l, and E { | ^ + 1 | 2 } = a2(k) for 
k = /. D 

Appendix 11.1 Expected Value Sample Correlation 

The scaling factor ax(m) in the sample correlation R¿¿(m) (11-26) accounts for the bias in-
troduced by the sample variance in de denominator. The expected value of the sample corre-
lation requires the knowledge of E {σ~2} (m = 0) and ( E {σ- 1})2 (m Φ 0). In Appendix 
10.B it has been shown that 

E { O V < 7 2 } = ^ 1 (11-57) 

Extensive MATLAB® simulations for different values of M indicate that 

( Ε { σ / σ } ) 2 = Μ - ! ^ (11.58) 
M-5/3 

Using (11-57) and (11-58) it can easily be shown that E {R^(m)} = E {R££(m)}. 

Appendix 11 .J Standard Deviation Sample Correlation 

For m Φ 0 and in the absence of model errors E {R^(m)} = 0 and, hence, the variance of 
the sample correlation R¿¿(m) (11-26) requires the knowledge of (Ejcr 2 /σ 2 }) , which is 
given by the square of (11-57). For m = 0, the variance of one term of the sum in (11-26) 
equals the variance of the cost function KSML(#SML(Z), Z) divided by F. In the absence of 
model errors the latter is given by (11-14) . Taking the square root of both results concludes 
the proof. 



Estimation with Unknown 
Noise Model - The Local 

Polynomial Approach 

Abstract: The identification methods of Chapter 10 using standard nonparametric estimates 
of the input-output noise models suffer from the following shortcomings: due to the noise 
coloring consecutive signal periods are not independently distributed, the non-steady state 
part of the input-output signals should be removed, arbitrary excitations cannot be handled, 
and the frequency resolution is limited by the required minimal number of consecutive peri-
ods (at least four periods for the single-input, single output case). This chapter describes fre-
quency domain estimators for parametric plant transfer function models of multivariable nu 

input, ny output systems excited by periodic or random signals. The aforementioned prob-
lems are solved by using nonparametric noise models estimated via the local polynomial ap-
proach of Chapter 7. The key idea is to calculate a generalized sample mean and sample 
covariance of the input-output DFT spectra via the local polynomial approximation of the 
frequency response matrix. 

12.1 INTRODUCTION 

The nonparametric noise models used in Chapter 10 are obtained by calculating the sample 
mean and the sample covariances over the DFT spectra of consecutive periods of the steady 
state response to a periodic input. The basic property needed to prove the consistency of the 
SGTLS, SBTLS, and SML estimators is that the sample mean and sample covariances are in-
dependently distributed (see Section 10.3.2 on page 387). Due to the noise coloring the con-
secutive signal periods are (weakly) correlated and, hence, the independence property of the 
sample mean and sample covariances is only approximately true. Moreover, transient data 
and random excitations cannot be handled. These problems are solved via the local polyno-
mial approach of Chapter 7: it suppresses the plant and noise transient (leakage) errors in the 
nonparametric estimates of the frequency response matrix (FRM) and the noise covariances 
and, as such, decorrelates consecutive signal periods (suppression of the noise transients), 
eliminates the non-steady state part in the transient response to periodic inputs (suppression 
of the plant transients), and allows for non-periodic excitations (suppression of the plant tran-
sients). The key idea consists of calculating generalized sample means and sample covari-
ances of the input-output DFT spectra via the nonparametric local polynomial estimates of 
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the FRM and the noise covariances. Since at most two signal periods are needed, the fre-
quency resolution of the presented approach is at least two times larger than the standard so-
lution. 

Using the generalized sample means and sample covariances we develop in this chapter 
a multivariable version of the sample maximum likelihood (SML) estimator (10-10). There 
are two major technical differences with the standard solution (10-10). The first difference is 
that the generalized sample means and sample covariances - by construction - are correlated 
over the frequency with a finite correlation length, while the standard sample means and sam-
ple covariances - if the noise transients are neglected - are uncorrelated over the frequency. 
This has implications on the calculation of the covariance of the estimated model parameters, 
and on the model validation and model selection tools. The second difference is that the gen-
eralized sample means and sample covariances are asymptotically (7V-» oo) independently 
distributed for normally distributed input-output errors, while the standard sample means and 
sample covariances - if the noise transients are neglected - are independently distributed. 

Since the nonparametric noise covariance estimates are obtained by averaging squared 
residuals over the frequency rather than over independent experiments, the variability of the 
covariance estimates will be characterized by the degrees of freedom dof of the local polyno-
mial approximations. For example, q in (7-13) for arbitrary excitations within an output error 
framework; dof^^x and dofwbust in (7-91) for the robust method using full random orthogo-
nal multisines; and dof£™SG and dofiast in (7-103) for the fast method using uncorrelated ran-
dom phase multisines. Finally, the number of independent repeated experiments M (in prac-
tice: the number of consecutive periods) in the standard solution (10-10) is related to the 
degrees of freedom as dof = M- 1. 

Replacing everywhere the noise covariances by the total covariances (= sum noise co-
variance and covariance of the stochastic nonlinear distortions), it is shown in this chapter 
that all results for the identification of linear systems - except one - are also valid for the 
identification of the best linear approximation (BLA) of a nonlinear system. The difference 
with the linear case is that only the order of magnitude of the covariance matrix of the esti-
mated model parameters of the BLA can be given. The reason for this is that the stochastic 
nonlinear distortions are uncorrelated with - but not independent of - the input (open loop 
case) or the reference signal (closed loop case). 

Finally, notice that the quality (bias, variance) of the nonparametric noise models in 
Chapter 7 is solely determined by the frequency width In + 1, the degrees of freedom q, 
and the degree R of the local polynomial approximation. Since these noise models are ob-
tained in a preprocessing step prior to the parametric plant modeling, there is no link between 
the plant modeling errors and the estimated noise models. This is a major advantage w.r.t. the 
prediction error framework. 

12.2 GENERALIZED SAMPLE MEAN AND SAMPLE 
COVARIANCE 

In Chapter 10 the input-output signals are separated from the noise by calculating the sample 
means and sample (co)variances of the DFT spectra over consecutive signal periods (linear 
plants) and/or independent experiments (nonlinear plants). The sample (co)variances are then 
used as weighting in the sample maximum likelihood cost function. This idea is generalized 
to random excitations via nonparametric local polynomial estimates of the input-output spec-
tra and the (noise) covariances. 

In this section we consider the setup of Figure 7-4 on page 240 for measuring/identify-
ing the frequency response matrix (FRM) of a linear multivariable system operating in open 
or closed loop. We assume that both the actuator and controller are linear. Since the plant be-
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haves linearly, the total sample covariances of the robust and fast methods and the sample co-
variance of the local polynomial method for random excitations depend on the disturbing 
noise only. For nonlinear plants, or linear plants and nonlinear actuators or controllers, these 
sample covariances depend on the disturbing noise as well as the stochastic nonlinear distor-
tions. These cases are handled in Section 12.4. 

12.2.1 Arbitrary Excitations 

12.2.1.1 Generalized Output Error Framework. Starting from one experiment with 
nu uncorrelated random excitations the local polynomial method of Section 7.2.2 on 
page 228 estimates the frequency response function, and the noise sample covariance Cv(k). 
At first glance a natural solution would be to combine the known input U(k) and noisy out-
put Y(k) DFT spectra with Cy(k) (7-13). However, the resulting parametric transfer function 
estimate is inconsistent because for normally distributed output noise v{i) (see Figure 7-1 on 
page 227), Y(k) and Cy(k) are uncorrelated - but not independently distributed - random 
variables. A better solution consists in combining the known input U(k), with the local poly-
nomial estimate of the output DFT spectrum Y(k) (= generalized sample mean) and its corre-
sponding covariance (= generalized sample covariance), because these will be shown to be 
asymptotically (N^>co) independent. The generalized sample mean Y(k) of Y(k) is calcu-
lated as 

Y(k) = G(nk)U(k) + f(Qk) (12-1) 

with G(Qk) = Θ[:, i:/ij (7-16) and f(Qk) = Θ[:,«Μ(/?+ΐ) + ΐ] the local polynomial estimates 
of, respectively, the frequency response matrix and the transient term, and where Θ is given 
in (7-10). We define the generalized sample covariance of Y(k) as 

Cm = Qn[n+hn+1]Cv(k) with Qn = K%(K„K»yK„, (12-2) 

and where Kn is defined in (7-7) to (7-9). The asymptotic (N-> oo) properties of the gener-
alized sample mean (12-1) and the generalized sample covariance (12-2) are established in 
the following lemmas. 

Lemma 12.1 (Sample Covariance Sample Mean): The generalized sample 
covariance Cf(k) (12-2) is the asymptotic (N-*co) sample covariance of the generalized 
sample mean Y(k) (12-1). The expected values of (12-1) and (12-2) equal 

E{Y(k)} = Y0(k) + O((n/N)(R+V) 
(12-3) 

E{Cy(k)} = Cf(k) + 0(n/N) 

with Y0(k) the noiseless output DFT spectrum, and n, R, respectively, the frequency width 
and the order of the local polynomial approximation. 

Proof. See Appendix 12.A. D 

Lemma 12.2 (Independence Sample Mean and Sample Covariance): For normally 
distributed output noise v(¿) (see Figure 7-1 on page 227), the generalized sample mean Y(k) 
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(12-1) and sample covariance Cf(k) (12-2) are asymptotically (7V-»oo) independently 
distributed, and 

UFx{Y{k))F2{CY(k))} = E{F{(Y(k))}E{F2(CY(k))} + 0(n/N) (12-4) 

where Fx and F2 are (non)linear functions. For non-Gaussian noise v(t) satisfying Theorem 
16.25, (12-4), where 0(n/N) is replaced by 0(Ν~ν2), remains valid. 

Proof. See Appendix 12.B. D 

These two properties are crucial for proving the consistency of the sample maximum likeli-
hood estimator (see Section 12.3.2). 

Removing the transient term in the sample mean (12-1) is mostly beneficial for the 
parametric transfer function estimate (see Section 12.3.1 for a detailed discussion). The gen-
eralized sample mean and sample covariance are then calculated as 

Y(k) = G(nk)U(k) (12-5) 

Cy(k) = \\q„\\2
2CV(k) With q„ = K»(K„K»)-1 

and where Kn is defined in (7-7) to (7-9). As shown in the following lemmas, they have the 
same asymptotic (7V-> oo) properties as the generalized sample mean and sample covariance 
without transient removal (Lemmas 12.1 and 12.2). 

Lemma 12.3 (Sample Covariance Sample Mean - Transient Removed): The 
generalized sample covariance Cf(k) (12-6) is the asymptotic (N->cc) sample covariance 
of the generalized sample mean Y(k) (12-5). The expected values of (12-5) and (12-6) satisfy 
(12-3). 

Proof. See Appendix 12.C. D 

Lemma 12.4 (Independence Sample Mean Sample Covariance - Transient 
Removed): For normally distributed output noise v(/) (see Figure 7-1 on page 227), the 
generalized sample mean Y(k) (12-5) and sample covariance Cf(k) (12-6) are 
asymptotically (7V->oo) independently distributed, and satisfy (12-4). For non-Gaussian 
noise v(t) satisfying Theorem 16.25, (12-4), where 0(n/N) is replaced by 0(N~l/2), 
remains valid. 

Proof. See Appendix 12.D. D 

Remarks 

(i) The results for the generalized sample mean and sample covariance with transient 
removal (Lemmas 12.3 and 12.4) can easily be extended to concatenated data 
records. Instead of removing one transient term, as many transient terms as con-
catenated records are removed in the output DFT spectrum (see Section 7.2.9 on 

U{k) 

0 
(12-6) 
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page 243 for the details). The generalized sample mean i(k) is calculated as in 
(12-5), while the corresponding generalized sample covariance is obtained as 

Qc(*) = bn\lCv(k) with q% = KH(K„Kf*)- U%k) 
0 

(12-7) 

with Uc(k) the input DFT spectrum of the concatenated data records, and with 
Kn the matrix defined in (7-7) to (7-9) where U(k) is replaced by Ü\k) (7-58) 
(proof: see Appendix 12.E). 

(ii) The numerically stable implementation of Qn in (12-2), qn in (12-6), and qz
n in 

(12-7) uses the singular value decomposition K*j = 1/κΣκν^, giving, respec-
tively, 

Qn[n + 1, n + 1 ] UK[n + 1, :] ^K[n + 1, :] 

q„ = UKZK
lV«[Un^U{k) 

q% = UK£K
lV»[l:„w:]U%k) 

(iii) Since the local polynomial estimate of the frequency response matrix is correlated 
over the frequency (finite correlation length of ±2n; see Section 7.2.2 on 
page 228), this is also the case for the sample means Y(k) (12-1) and (12-5), and 
the sample covariances Cf(k) (12-2) and (12-6). Hence, some information is lost 
as the sample covariances (12-2) and (12-6) do not contain the correlation infor-
mation over the frequency of the sample means (12-1) and (12-5). 

(iv) Formulas (12-1) to (12-6) assume that n frequencies are available at the left- and 
right-hand sides of the DFT frequency k, which is not the case at the left and right 
borders of the frequency band. At those borders, k+r with r = -n, . . . ,« in 
(12-1) to (12-6) is replaced by the r- values defined in (7-29), and n/N in the 
bias error (12-3) and (12-4) is replaced by (n + \p\)/N9 p = ±1, ±2, ..., ±n. 

(v) If the transient term T(Qk) = TG(Qk) + TH(Qk) in (7-1) is smaller than the noise 
term V(k) = H(Qk)E(k) (||7Τ(Ω*)||2 < \\H(Qk)E(k)\\2), then the transient (leakage) 
removal in the sample mean (12-5) will slightly increase the covariance of the es-
timate (12-6 is typically 1 dB larger than 12-2). However, if ||Γ(Ω^)||2 > 
||//(Ω^)Ε(Α:)||2, then the transient removal results in a (significant) reduction of 
the output covariance. 

12.2.1.2 Errors-in-Variables Framework. If both the input u(i) and output y(t) sig-
nals are noisy (see Figure 7-4 on page 240), then the reference signal r(t) should be known. 
The known reference r(t) is taken as input and the noisy outputs y(t) and inputs u(t) stacked 
on top of each other z(t) = [yT{t) uT(t)]T as noisy output. Proceeding in this way the original 
errors-in-variables problem with nu noisy inputs and n noisy outputs is transformed into a 
generalized output error problem with nu known inputs and ny + nu noisy outputs (see Sec-
tion 7.2.7 on page 240 for the details). Following the same lines of Section 12.2.1.1 we obtain 
then the generalized sample mean Z(k) of the input-output DFT spectra and the correspond-
ing generalized sample covariance matrix C%(k); both with or without transient removal. 
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12.2.2 Periodic Excitations 

12.2.2.1 Robust Method. The robust procedure of Section 7.3.6 on page 254 delivers 
the (ny + nu) x nu sample means ZR(kP) (7-87) of the input-output DFT spectra of P > 2 
periods of nu experiments with (full) random orthogonal multisines, repeated for M> 2 ran-
dom phase realizations; and the corresponding nu noise CfR

ise[e\kP) (7-89) and nu total 
C^(kP) (7-88) sample covariances 

Z[e\k) = (ZR(kP)\,e] (12-8) 

cfSQ[e\k) = Cf™[e\kP) and C[¡\k) = C[¡R\kP) (12-9) 

(e = 1, 2, ..., nu). Note that the robust procedure of Section 7.3.3 on page 252 only provides 
the noise sample covariance. The sample means and sample covariances have the following 
properties. 

Lemma 12.5 (Properties Sample Mean and Sample Covariance-Robust Method): 
The sample covariances C™ (k) and C% (k) in (12-9) are the asymptotic (N-^oo) noise 
and total sample covariances of the sample mean Z^e\k) (12-8), e = 1, 2, ..., nu. The 
expected values of (12-8) and (12-9) equal 

E{$e\k)} = Z\f\k) 

E{C|oise[e](A:)} = Cf[^e\k) + 0((r„/(PN))2) (12-10) 

E{C£](*)} = C2(k) + 0{{rn/N)«) 

with a = 1,2 for, respectively, non-uniformly and uniformly distributed excited harmonics. 
For normally distributed input-output errors (see Figure 7-4 on page 240), the sample means 
(12-8) and the sample noise and total covariances (12-9) are asymptotically (N-> oo) inde-
pendently distributed, and satisfy (12-4). For non-Gaussian input-output errors satisfying 
Theorem 16.25, (12-4), where 0(n/N) is replaced by 0(N~l/2)9 remains valid. 

Proof. See Appendix 12.F. D 

12.2.2.2 Fast Method. Starting from P> 2 periods of one experiment with nu un-
correlated random phase multisines, the fast method of Section 7.3.7 estimates the frequency 
response function, and the noise and total sample covariances. The noise information is ob-
tained via an analysis over the periods, while the total covariance is obtained via an analysis 
over the excited frequencies. Therefore, two different sample means are defined: the first be-
ing the average over the periods, and the second the average over both the periods and neigh-
boring excited frequencies. 

The sample mean over the periods and the corresponding noise sample covariance are 
given by, respectively, Z(kP) (7-73) and Cfis\kP) (7-74) 

Z(k) = Z(kP) (12-11) 
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Cfs\k) = Ófs\kP) (12-12) 

They satisfy the properties of Lemma 12.5 since the first (noise analysis) step of the robust 
method is exactly the same as the first (noise analysis) step of the fast method. 

The sample mean over both the periods and the neighboring excited frequencies is 
based on the local polynomial estimate of the frequency response function Grz(Qk) from ref-
erence to both input and output 

Z(k) = Grz(Qk)R(k) (12-13) 

with Grz(Qk) = Ψ[:, i:nu] (7-99) and R(k) the DFT spectrum of the known reference signal. 
The corresponding total sample covariance is calculated as 

Czik) = Tn[n + Un + nCjükP) with Tn = LHE{LnLHyL„E, (12-14) 

with Ln defined in (7-100) to (7-101). Note that Tn can be calculated in a numerically stable 
way via the singular value decomposition of Ln (see Remark ii of Section 12.2.1.1). The 
sample mean (12-13) and total sample covariance (12-14) satisfy the properties of Lemmas 
12.1, 12.2, and 12.5 because the same local polynomial algorithms are used, except that the 
transient term is not estimated in Ψ (7-99) (it has been removed in the first step of the fast 
method, which is equal to the first step of the robust method). Summarized we have proven 
the following properties: 

Lemma 12.6 (Properties Sample Mean and Sample Covariance - Fast Method): 
The covariances C|01se(&) (12-12) and C%(k) (12-14) are the asymptotic (N—»oo) noise and 
total sample covariances of the sample means Z(k) (12-11) and (12-13), respectively. The 
expected values of (12-11) and (12-12) satisfy (12-10), while the expected values of (12-13) 
and (12-14) are given by (12-3) where n is replaced by rn . For normally distributed input-
output errors (see Figure 7-4 on page 240), the sample means (12-11) and (12-13) are 
asymptotically (JV-»oo) independently distributed of the noise (12-12) and total (12-14) 
sample covariances, respectively, and they satisfy (12-4), where n is replaced by nE for the 
total covariance. For non-Gaussian input-output errors satisfying Theorem 16.25, (12-4), 
where 0(n/N) is replaced by 0(N~l/2), remains valid. 

12.2.3 Choice Frequency Width of the Local Polynomial 
Approach 

At each frequency k, the frequency width parameter n and/or nE of the local polyno-
mial method can be chosen such that an optimal bias-variance trade-off is made for the fre-
quency response matrix estimate G(Qk) (see Section 7.2.6). As such, the degrees of freedom 
of the noise and the total sample covariance estimates of G(Qk) will depend on the frequency 
k. 

Another choice is made for the generalized sample means and the generalized noise 
and total sample covariances of the input-output DFT spectra defined in Sections 12.2.1 and 
12.2.2. Since the generalized sample covariances are used as weighting in the sample maxi-
mum likelihood cost function (see Section 12.3.1), the frequency width parameter n and/or 
nE in (7-13), (7-75), (7-91), and (7-103) is chosen to be frequency independent and such that 
a given minimum number of degrees of freedom is obtained for the sample covariance esti-
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mates. The required minimum number of degrees of freedom is dictated by the asymptotic 
(N->co) properties of the sample maximum likelihood estimator (see Section 12.3.2). 
Keeping the frequency width parameter n and/or nE as small as possible has the following 
consequences on the generalized sample means and sample covariances: it (i) minimizes the 
bias error (see, for example, (12-3)), (ii) maximizes the variance, and (iii) minimizes the cor-
relation length over the frequency. Since the variance increase goes along with a correlation 
length decrease, the information content for the parametric estimate remains the same (see 
Appendix 12.H, second step). Therefore, the minimum width solution is optimal for the para-
metric transfer function estimate. 

12.2.4 Overview of the Properties 

The generalized sample means and sample covariances have similar properties for arbi-
trary (arb method) and periodic (robust and fast methods) excitations: they are asymptotically 
(N->co) independently distributed and are asymptotically (JV-> oo) unbiased. Table 12-1 
gives an overview of the rate at which the bias converges to zero. The reader is referred to 
Table 7-1 on page 249 for an overview of the experimental conditions and the approxima-
tions made. 

TABLE 12-1 Asymptotic Bias of the Generalized Sample Means and 
Sample Covariances for Arbitrary (Arb) and Periodic (Robust, 
Fast) Excitations (R is the Degree of the Local Polynomial 
Approximation, In + 1 the Frequency Width, and where rn 

and rn are Defined in, Respectively, (7-72) and (7-93)) 

Algorithm Bias Total Sample Bias Noise Sample Bias Sample Mean 
Covariance Covariance 

Arb 0(n/N) — 0((n/N)R+l) 

Robust CWr^/JV)*)00 0(rn/(PN)2) ° 

Fast 0(rn/N) 0{rn/{PN)2) 0((rn/N)R+l) 

a. a = 1,2 for, respectively, non-uniformly and uniformly distributed excited harmonics. 

12.3 SAMPLE MAXIMUM LIKELIHOOD ESTIMATOR 

12.3.1 Sample Maximum Likelihood Cost Function 

We start from the generalized sample means tFC/fc), P\k) and noise or total sample 
covariances C$(k), Οψ(Κ), and ΟψΑΚ) (/ = 1 , 2 , . . . , «exp), where the transient (leakage) 
errors have been suppressed. They originate from a single experiment («exp = 1) with nu 

uncorrelated random excitations ("arb" method: see Section 12.2.1) or nu uncorrelated ran-
dom phase multisines ("fast" method: see Section 12.2.2.2); or from multiple experiments 
(«exp = nu) with orthogonal or (full) random orthogonal multisines ("robust" method: see 
Section 12.2.2.1). Since the sample means Z^l\k) (12-8) are either uncorrelated (robust pro-
cedure of Section 7.3.6: see Appendix 7.K) or independently distributed (robust procedure of 
Section 7.3.3) over the experiments /, a natural multivariable extension of the sample maxi-
mum likelihood (SML) cost function (10-10) is given by 
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^SMiXft 2) = Σ Σ *" («* θ9 zV\k))(C¡l\Qk, e)yle(Qh Θ, %\k)) (12-15) 
/ = IkeK 

with K the set of F = 0(N) excited DFT frequencies lying in the frequency band(s) of in-
terest, Z the vector of the input-output DFT spectra at all frequencies, «exp the number of ex-
periments (flexp = 1 for the "arb" and "fast" methods, and n = nu for the "robust" 
method), e(Clh Θ, ^l\k)) the n x 1 equation error of experiment / 

e(€lk, Θ, %l\k)) = P'Xk) - G(nk, Θ)&'\Κ) = \l„y -0(β,,θψ'\Κ) (12-16) 

and c\ \Qh0) the corresponding ny x ny noise or total sample covariance matrix 

c¡l\nk,d) = [iny -G{ahe^cf{k)\iny -G(cik,0)\H (12-17) 

The rational transfer function model G(Q, Θ) can be parameterized as a left or right matrix 
fraction, as a common denominator model, or as a function of the state space matrices (see 
Section 6.6 on page 193). Minimizing (12-15) w.r.t. Θ gives the SML estimate ^SML(Z) (see 
Section 12.3.3 for the computational details). 

Remarks 

(i) Since the local polynomial estimates of the frequency response matrix (FRM), the 
transient (leakage) error, and the noise covariance matrix are correlated over the 
frequency with a finite correlation length (see Chapter 7), this is also the case for 
the generalized sample means and sample covariances of Section 12.2. Hence, re-
placing in (12-15) the sample covariances by the true noise covariances does not 
give the true maximum likelihood (ML) cost function because the correlation over 
the frequency has not been accounted for in the weighting of the residuals. This is 
a major technical difference with the standard SML solution (10-10). 

(ii) The sample maximum likelihood (SML) solution (12-15) assumes that the tran-
sient (leakage) errors have been suppressed nonparametrically in the input-output 
DFT spectra and their covariances. This is the recommended default choice. If at 
all frequencies the transient (leakage) error term is smaller than the noise contri-
bution (e.g., ||Γ(Ω^)||2 < ||//(ΩΛ)^(Λ:)||2 in (7-1)), then the nonparametric transient 
removal will slightly increase the noise standard deviation (typically 1 dB) of the 
generalized sample means and, hence, also that of the estimated transfer function 
model G(Q.,ásuL(Z)). To avoid this potential increase in uncertainty one can 
omit the nonparametric transient suppression (e.g., use (12-1) and (12-2) instead 
of (12-5) and (12-6)) add a parametric transient term in (12-16) 

e(Qh Θ, Z[l\k)) = P\k) - G(Qh Θ^ΧΚ) - TG(Qh Θ) (12-18) 

where TG{ilh6) has the same poles (denominator) as ^(Ω^ Θ) (see Section 6.3 
on page 184). This works well so long as the system transient TG is dominant 
over the noise transient TH, or if the system and noise transients have the same 
poles (e.g., ARX and ARMAX models, see Section 6.7.3.5 on page 200). In all 
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the other cases one would need to add explicitly a noise transient term TH(Qh0) 
to (12-18), which complicates the minimization and the model selection. 

(iii) A similar discussion as in (ii) can be made for concatenated data sets. The recom-
mended default choice is to combine (12-15) with the generalized sample mean 
(12-5) and sample covariance (12-7) where the transient (leakage) errors due to 
the concatenation have been suppressed nonparametrically. An alternative ap-
proach consists in omitting the nonparametric transient suppression and to add de-
layed parametric transient terms to the equation error (12-18) (see (6-48)). This 
works well if ||7^||2 > | | ^ | 2 J o r if TG and TH have the same poles. 

(iv) If the identification starts from frequency response matrix measurements G(Qk), 
then we can still use (12-15) with nE = 1, ^(k) = vec(G(Q¿)), &-l\k) = 1, 
C¡l\nhe) = Cyccó(k), and where G(Q¿,0) is replaced by vec(G(Q¿,<9)). 

(v) If the arbitrary input is exactly known, then the SML estimator (12-15) using the 
"arb" method is a valid alternative for MIMO Box-Jenkins modeling. The advan-
tages of (12-15) are: (i) no parametric noise model must be estimated (simplified 
minimization cost function and simplified model selection), and (ii) no symbolic 
calculation is needed for calculating the matrix inverse of the noise model. 

12.3.2 Asymptotic Properties 

Compared with the standard sample maximum likelihood (SML) solution (10-10), 
there are three additional technical difficulties in the analysis of the asymptotic (N-> oo) 
properties of the SML estimator (12-15): the generalized sample means and sample covari-
ances are (i) correlated over the frequency with a finite correlation length, (ii) asymptotically 
(N-> oo) independently distributed, and (iii) asymptotically (TV—> oo) unbiased. Neverthe-
less, it is shown that the asymptotic properties of #SML(Z) remain the same for the class of 
excitations considered in Section 12.2. Since we handle the multivariable case, the required 
minimal values of the degrees of freedom dof of the sample covariances depend here on the 
number of outputs ny. Finally, we compare the SML estimate (12-15) with the true maxi-
mum likelihood (ML) solution ((12-15) with the exact noise covariances and the original in-
put-output DFT spectra U{k) and Y(k) of u(t) and >>(/)). 

Theorem 12.7 (Asymptotic Properties #SMLCZ)): Consider the transfer function 
model G(Q, Θ) with any identifiable parameterization of Section 6.6. Under the assumptions 
of Sections 9.6 and 12.2 the minimizer <9SML(Z) of (12-15) has the asymptotic (F = 0(N) 
->ao) properties of Theorem 9.21 on page 298 with VF(%Z) = KSML(0,Z)/F: 

1. For dof >ny + 2, the stochastic and the deterministic convergence (properties 1, 
5, and 6 of Theorem 9.21) are valid. 

2. For dof >ny + 7, the stochastic convergence rate (properties 2 and 6 of Theorem 
9.21) are valid. 

3. For dof > ny + 8, the systematic and stochastic errors, the asymptotic normality, 
and the asymptotic bias (properties 3,4, 6 and 7 of Theorem 9.21) are valid. In the 
absence of modeling errors the bias b0(Z) is an 0(F~U2) for non-Gaussian noise 
satisfying Theorem 16.25. 

Proof See Appendix 12.G. D 



Section 12.3 ■ Sample Maximum Likelihood Estimator 473 

Theorem 12.8 (Relationship between #SMLCZ) and ΘΜΙΑΖ))'* Under the conditions 
of Theorem 12.8, the sample maximum likelihood estimate #SML(Z) (minimizer of (12-15)) 
and the maximum likelihood estimate #ML(Z) (minimizer of (12-15) with the exact noise 
covariances and the original input-output DFT spectra U(k) and Y(k)) are related to each 
other by: 

1. For dof >ny+\, the expected value of the cost functions, 

FSML(#) = dof VMLW) Q ( F _ „ , ( n m 

F dof-ny F K } vm) 

with a = 1 for normally distributed input-output errors, and a = 0.5 for non-
Gaussian noise satisfying Theorem 16.25. 

2. For dof >ny + 2, the asymptotic value of the cost functions, 

r*SML(*) = J^V*ML(0) (12-20) 

the minimizer of the expected value of the cost functions, 

¿SML(Z0) = 0ML(ZO) + 0{F~") (12-21) 

with a defined in (12-19), and the minimizer of the asymptotic value of the cost 
functions, 

&SML = AML (12-22) 

3. For dof > ny + 8, the parameter uncertainty in the absence of modeling errors, 
#SML(Z0) = ô> 

C°v(^SML(Z)) > X¿dof) Cov(^ML(Z)) 

¿i(dof) 
dof (dof- ny) (12-23) 

(dof-ny+l)(dof-ny-l) 

where Θ(Ζ) = θ0 + δθ(Ζ) + Ov(F
l) with E{^(Z)} = 0 and δθ(Ζ) = 

Op(F~1/2), and where JFS0(Z) is asymptotically normally distributed. For non-
Gaussian input-output noise satisfying Theorem 16.25 the bias b0(Z) is an 
O (F~1/2). The robust method reaches the equality in (12-23). 

with dof the degrees of freedom of the sample covariances (see Chapter 7); 
νχ(θ) = Ε{νχ(θ)}, with X = SML or ML; and Κχ(θ) = lim Vx(0)/F. 

F —>oo 

Proof See Appendix 12.H. D 

Remarks 

(i) The randomness of the excitation (filtered white noise or random phase multi-
sines) is explicitly needed for the "arb" (see Section 12.2.1) and "fast" (see Sec-
tion 12.2.2.2) local polynomial estimates of the generalized sample means and 
sample covariances (see Section 7.2). It is also explicitly used to establish 
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(12-23). This is a difference with the standard SML method where the random-
ness of the input over the frequency is not required at all (see Assumption 10.1). 

(ii) For single output systems (ny= 1) a tighter lower bound on the degrees of free-
dom dof can be derived for properties 2 and 3 in Theorem 12.7, and property 3 in 
Theorem 12.8 (see Theorems 10.3 and 10.4). For example, in the single output 
case, dof > 6 instead of dof > 9 is enough for properties 3. 

(iii) Via regularization of the matrix inverse (C¡l\nh0)yl in (12-15) (a positive 
number is added to the smallest eigenvalues of C^\ilh Θ) such that their inverse 
cannot exceed a certain user-defined threshold), the conditions on the degrees of 
freedom in Theorems 12.7 and 12.8 can be relaxed to dof >ny + 2. 

(iv) The asymptotic properties of the SML estimator remain valid for noisy input-out-
put observations of systems operating in closed loop (see Figure 7-4 on 
page 240), provided the reference signal r{t) is available (only the robust method 
of Section 7.3.3 does not require the knowledge of r(t)). An asymptotically 
(F = 0(N) -> oo) unbiased estimate of the generalized sample means and sample 
covariances is then obtained via the indirect method of Section 7.2.7. 

(v) Even if it is known that the input-output errors are uncorrelated, it is necessary to 
estimate the input-output noise covariance; otherwise Ó\ (Ω^, Θ) is no longer the 
(asymptotic) sample covariance of e(Qk, Θ, Z[l\k)) and the SML estimate (12-15) 
is inconsistent. 

12.3.3 Computational Issues 

M'L· Although analytic calculation of the derivative of a square root of ( Q J(Q¿, θ))~ w.r.t. 
Θ is practically impossible, an iterative Gauss-Newton minimization scheme to compute the 
minimizer of (12-15) can still be constructed via a pseudo-Jacobian matrix J+(0, Z) 

JÁbZ) = 

jv\e,z) 

J{"^\0,Z) 

with JV\0,Z) = 

ψ\θ,Ζ) 
J{}2\e,z) 

JV]^,Z) 

(12-24) 

and 

^ΐμζ) = (c¡!i(Qk,e)) -1/2 (de$ik,e,%l\k)) 

M 

^5
{^θ\όψ^θ)γ^{^θ,Ζ%)) 

(12-25) 

with X¡. r ] the rth column of X, and C1/2 a square root of the positive definite matrix C 
(see Section 15.4.4 on page 550) 

c = cl/2cH/2 => c-1 = c-W2c-x n (12-26) 
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(proof: see Appendix 12.1 and Guillaume and Pintelon, 1996). The parameter update in the it-
erative algorithm is found by solving the overdetermined set of equations 

J + r e ( 0 , Z ) A 0 = - ^ ( 0 , Z ) (12-27) 

using the singular value decomposition (SVD) of J+rQ(0,Z), where Xre puts the real and 
imaginary parts of X on top of each other, and where ε(θ,Ζ) has the same structure as 
J+(0,Z) in (12-24) with 

¿'.*](0,Z) = (CE/](Q„ 0))-xl2eiflh Θ, Z[l\k)) (12-28) 

for / = 1,2,..., «exp and k = 1, 2, ..., F. To increase the numerical stability of the calcula-
tions, the angular frequencies are normalized by their median for continuous-time models 
(Ω = s, */s), and each column of the pseudo-Jacobian matrix (12-24) is divided by its 2-
norm (see Section 9.4 on page 289 for the details). 

To avoid switching from one identifiable parameterization to another during the mini-
mization procedure (Gevers and Wertz, 1984), all parameters in the transfer function model 
(e.g., common denominator, left matrix fraction, state space description, ...) are left free. 
Since the pseudo-Jacobian matrix of the overparameterized model is rank deficient, (12-27) 
is solved by calculating the pseudo-inverse of J+re(0, Z) (the number of zero singular values 
depends on the overparameterization and is known beforehand). Next, the parameter con-
straint is imposed on the updated parameter vector θ+ ΑΘ (see, for example, Section 9.L.4 
on page 365 for the single-input, single-output case using the 2-norm constraint). The justifi-
cation of this procedure can be found in Pintelon et al. (1999), McKelvey et al. (2004), and 
Wills and Ninness (2008). 

12.3.4 Calculation of the Asymptotic Covariance Matrix 

Inequality (12-25) shows that an estimate of the asymptotic (F-> 0(N) -> oo) covari-
ance matrix of #SML(Z) is obtained via COV(#ML(Z)) which can be approximated as 

COV(¿ML(Z)) * ( 2 R e ( ^ L + J M L J ) " 1 (12-29) 

with JML+ the pseudo-Jacobian (12-24) evaluated at Θ = #ML(Z), and where the generalized 
sample mean Z(k) and sample covariance C¿(k) are replaced by the original input-output 
DFT spectra Z(k) and the corresponding true noise covariance C™x*\k) (proof of (12-29): 
follow the same lines of Section 9.11.4 on page 318). Since the ML estimate #ML(Z) and the 
true noise covariance Cz

01s%k) are unknown, we replace them by, respectively, the SML esti-
mate ¿?SML(Z) and the sample noise covariance Cz°lse(A:) of the original input-output DFT 
spectra Z(k) ((7-13) and (7-71) for, respectively, the "arb" and "fast" methods; and (7-77) for 
the "robust" method). Using the singular value decomposition UjEjV] of the pseudo-Jaco-
bian ΛΓε(̂ δΜΐΧΖ), Z) (12-24), where Z(k) and C¿(k) are replaced by Z(k) and Cz°lse(k), we 
finally get 

COV(¿SML(Z)) * 0.5X2(dof)(VjZ;)(VjZ;y 

i(dn= dofl ( 1 2 " 3 0 ) 

21 °J) (dof-ny+\){dof-ny-\) 
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with Ij the pseudo-inverse of 2}, and where A2(dof) accounts for the fact that the pseudo-
Jacobian is calculated using the sample noise covariance instead of the true noise covariance 
(proof: see Appendix 12.J). 

12.3.5 Generation of Starting Values 

For transfer function matrices G(Q, Θ) parameterized as a common denominator model 
or a left matrix fraction description (see (6-53) and (6-54)), an equation error that is linear in 
the transfer function coefficients can be obtained by multiplying (12-16) with the denomina-
tor (matrix) polynomial A(Qk, Θ) 

A(Qhe)Y[l\k)-B(Qk,e)Ü[l\k)^0 I = 1,2, . . . ,«e x p and A: = 1,2, . . . ,F (12-31) 

Eq. (12-31) can be written as 

JLS(Z)0*O (12-32) 

where JLS(Z) is an nynQxpF x ηθ matrix, and 

Θ = [vec^o) v e c 7 ^ ) ... v e c 7 ^ ) wecT(B0) ... wecT(Bn^
T (12-33) 

with Br the ny x nu numerator matrix coefficients, and Ar the np x np denominator (matrix) 
coefficients, with n — 1 or nu for, respectively, the common denominator model and the 
left matrix fraction description. 

Since (12-32) is similar to the scalar case (9-60), it can be used to construct (iterative) 
weighted linear least squares (Bayard, 1994a; Verboven et al., 2005; de Callafon et al., 1996; 
Gaikwad and Rivera, 1997), sample weighted generalized total least squares (Verboven et al., 
2004; Pintelon et al , 1998), and sample bootstrapped total least squares (Pintelon et al., 
1998) estimators (follow the same lines of Sections 9.8, 9.10, and 9.12.3). However, there is a 
subtle technical difference for the left matrix fraction description. Indeed, since the numera-
tor Br and denominator Ar matrix coefficients can be multiplied with a regular matrix 
A e Unyx ny without changing the transfer function G(Q, Θ) (6-54), the one-dimensional 
constraint ||#||2 = 1 is not sufficient to remove the parameter redundancy (n^ constraints 
are needed). Therefore, one denominator matrix coefficient should be fixed (for example, 
A0 = In) leading to a parameter vector Θ of reduced dimension. Consequently, contrary to 
the scalar case, the one-dimensional weighted generalized and bootstrapped total least 
squares solutions will depend on this particular choice. Notice that a multi-dimensional (gen-
eralized) total least squares solution can be constructed that does not suffer from this problem 
(see Pintelon et al., 1998 for the details). 

For a state space parameterization of G(Q, Θ) (see (6-26) and (6-27)) starting values 
can be generated via multivariate subspace algorithms (see McKelvey et al., 1996 and Van 
Overschee and De Moor, 1996b for the details). 

If the identification starts from measured frequency response data then a right matrix 
fraction description of G(Q, Θ) (see (6-55)) can also be used for generating initial estimates 
(see, for example, de Callafon et al., 1996). Similar to the left matrix fraction description, 
one- and multi-dimensional (generalized) total least squares solutions can be constructed. 
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12.3.6 Model Selection and Validation 

This section provides tools for answering the following two questions: "Is the identi-
fied model complex enough?" and "Is the identified model not too complex?". To handle the 
first question (detection of undermodeling) we perform three tests: (i) comparison of the 
identified transfer function model G(Qk,ésMh(Z)) with the nonparametric frequency re-
sponse matrix (FRM) estimate G(Qk), (ii) comparison of the minimum of the SML cost 
function with its expected value assuming that no modeling errors are present, and (iii) a 
whiteness test on the FRM residuals G(Qk) - G(Qk, #SML(Z)). The second question (detec-
tion of overmodeling) is tackled by adding a penalty term for the model complexity to the 
cost function. The tools discussed here are the same as those in Chapter 11 but modified 
where necessary to handle the multivariable SML estimates. 

12.3.6.1 Comparison with the Nonparametric FRM Estimate. As a straightfor-
ward extension of the single-input, single-output case, each entry of the identified transfer 
function model G[r ^(Ω^, #SML(Z)) is compared with the nonparametric FRM estimate 
G[r,s](Qk) taking into account its uncertainty. If no modeling errors are present, then the ine-
quality 

\G^s](nh ¿SML(Z)) - G[r,s](Qk)\ < jFp(2, 2dof) aó[Jk) (12-34) 

should be satisfied for about 100 xp % of the F frequencies, where dof are the degrees of 
freedom of the estimated variance σλ (k) of the FRM G[ns](Qk), and with Fp(2, 2dof) 
the 100 xp % percentile of an F(2, 2dof) -distributed random variable (proof: use (2-40) on 
page 51 with M = dof+ 1). 

A multivariate extension of (12-34) is given by 

vec»(Gé(nk) - ¿ ( Q ^ C ^ W v e c C G ^ Q , ) - <?(Ω,)) < ^Fp(n„ n2) (12-35) 

with G^(Qk) = G(Qh #SML(Z)), dof the degrees of freedom of the covariance estimate esti-
mate £vec6(£) of G(Qk), n{ = 2nuny, n2 = 2dof-2nuny + 2, and F^n^n^) the 
100x/>% percentile of a F(nx, n2) -distributed random variable (proof: use (7-44) on 
page 237 with X = G¿(Qk)). 

To test whether modeling errors are present or not for the "arb" (Section 12.2.1) and 
"fast" (Section 12.2.2) methods, one cannot just compare p with the fraction of the F fre-
quencies satisfying (12-34) or (12-35). Indeed, the "arb" and "fast" FRM estimates G(Qk) 
are correlated over the frequency with a finite correlation length nCL of, respectively, ±2n 
and ±2nE. Therefore, the fraction should be counted on a subset of (K, for example, 

kr = ( r - l ) ( n C L + l ) + l (12-36) 

with r = 1,2, ...,Fl9 Fx = \_(F- 1 ) / ( « C L + O j 4 " U and nCL = 2n or 2nE (\_x\ is the 
largest integer number smaller than or equal to x). 

12.3.6.2 Analysis SML Cost Function. A second test for detecting modeling errors 
consists in comparing the global minimum of the SML cost function KSML(¿?SML(Z), Z) to the 
expected value assuming that no modeling errors are present. To decide whether the actual 
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value of the cost function coincides with this expected value, we also need the variance of the 
cost function in the absence of modeling errors. While the correlation over the frequency of 
the generalized sample means does not affect the expected value of the cost function, it does 
influence its variance. This is the major technical difference with the standard SML result in 
(11-14). 

Theorem 12.9 (Properties Global Minimum SML Cost Function): Under the 
conditions of Theorem 12.7 and assuming that no modeling errors are present, the global 
minimum KSML(#SML(Z), Z) of the sample maximum likelihood (SML) cost function (12-15) 
is asymptotically (F = 0(N) -» oo) normally distributed with mean and variance given by: 

1. For dof >ny + 2 the expected value of the global minimum of (12-15) equals 

E{F S M L (¿SML(Z) ,Z)} ^^M-(n^nyF-ne/2) (12-37) 

with ne the number of free model parameters, and where n = 1 for the "arb" 
(Section 12.2.1) and "fast" (Section 12.2.2.2) methods and nexp = nu for the "ro-
bust" (Section 12.2.2.1) method. 

2. For dof > ny + 4 the variance of the global minimum of (12-15) lies in the inter-
val 

^<var(FSML(^SML(Z),Z))<3a2 ■2 

2 doP _ ηΛ (12-38) 
σ> = {dof-nyY{dof-ny-xin^F-n^ 

where the upper bound is reached for the "arb" and "fast" methods (strongly cor-
related over the excited frequencies), and the lower bound for the "robust" 
method (weakly correlated over the excited frequencies). 

Proof. See Appendix 12.K. D 

Remark. The upper bound in (12-38) is supported by MATLAB® simulations. How-
ever, since no formal proof is given, it should be used as an order of magnitude. 

12.3.6.3 Whiteness Test of the Residuals. If no modeling errors are present, then the 
weighted residuals 

SG (*)= g [ ^ ] ( » * ) - g M ] ( M s M L ( Z ) ) 
Gr (k) 

with a¿ (k) the sample variance of G[r,s](Qk), should be uncorrelated over the frequen-
cies k for the "robust" method and the subset of frequencies (12-36) for the "arb' and "fast" 
methods. This is tested via the sample correlation (11-26) and its standard deviation (11-28) 
at all frequencies k e K for the "robust" method, and at the subset (12-36) for the "arb" and 
"fast" methods 
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, x F , - \m\ , v 

R ^ ^ = π ^ ί Σ ¿G[rs]{kr)sG[rs]{kr + m) andstd(%,5](m))* J l l (12-40) 
^1 'ml r=l ' ' V F 1 - I m ' 

where ¿^(w) and fir2(w) are defined in, respectively, (11-27) and (11-29) with 
M = dof+ 1. Since R[r,5](w) is asymptotically circular complex normally distributed (see 
Section 19.5.2), a \00xp% confidence bound on R[ns](m) is given by 
V-ln(l -p) sta{R[r,s](m)) (proof: see Appendix 2.A). 

12.3.6.4 Detection of Overmodeling. If the identified model passes the three valida-
tion tests (comparison with the nonparametric FRM, analysis of the SML cost function, and 
whiteness test of the FRM residuals), then one should verify whether the model is not too 
complex. This can be done via the AIC (minimizes the prediction error) or MDL (selects the 
true model order) model selection criteria of Section 19.7.2 

AIC: KSML(6»SML(Z),Z) 1 + 
p y (12-41) 

MDL: FSML(0SML(Z),Z) I 1 + —-?=-ln(2ane x pF) 
znexprriy 

with a = n for output error problems, and a = n + nu for an errors-in-variable problem. 

12.4 IDENTIFICATION IN THE PRESENCE OF NONLINEAR 
DISTORTIONS 

In this section we consider the setup of Figure 7-5 on page 242 for measuring the best linear 
approximation (BLA) of a nonlinear system operating in open or closed loop. Replacing the 
nonlinear plant in Figure 7-5 with its BLA plus an additive output source representing the 
stochastic nonlinear distortions ys{t) (see Section 6.8), gives the input-output relationship 
(7-53) where ys(t) is independent of the input-output measurement noise mu{t), my(t) (open 
and closed loop) and the process noise n At) (open loop only). If generator noise (open and 
closed loop) or process noise (closed loop only) is present in the setup, then ys(t) depends on 
the input-output disturbances. We explicitly exclude this situation. 

Due to the nonlinear behavior of the plant, the generalized sample covariance of the 
"arb" method (Section 12.2.1) and the generalized total sample covariances of the "robust" 
(Section 12.2.2.1) and "fast" (Section 12.2.2.2) methods depend on the disturbing input-out-
put noise and the stochastic nonlinear distortions. To estimate a parametric model for the 
BLA of the nonlinear plant, we replace the sample noise covariances in the SML cost func-
tion (12-15) by the sample total covariances. This is a natural choice because the noise cova-
riances describe only a part of the total variability of the nonparametric BLA measurement. 

Since the properties of the stochastic nonlinear distortions Ys(k), are similar to those of 
the disturbing noise (compare Theorems 3.16, 3.17, 3.20 and 3.22 to Theorem 16.25) it can 
easily be shown that Lemma's 12.1 to 12.6 are still correct for the setup of Figure 7-5, except 
that C% (X= Y,Z) in the expected values of the sample covariances (12-3) and (12-10) 
should be replaced by 

Cx= Cf™(k) + Cxs{k) (12-42) 
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with C™ls%k) and Cxs(k) the contribution of the disturbing noise and the stochastic nonlin-
ear distortions (proof: see Appendix 12.L). Therefore, Theorems 12.7 to 12.9 and the white-
ness test on the residuals (12-40) remain valid except that the covariance expressions (12-23) 
and (12-30) are approximations (see Appendix 12.M) that underestimate the true covariance 
(see Schoukens and Pintelon, 2010b). The technical reason for this difference with the linear 
case is that - contrary to the disturbing noise - Ys(k) is not independently distributed of 
U0(k) (open loop) or R(k) (closed loop). If the degree of the nonlinearity is known as well as 
the contribution of the stochastic nonlinear distortions to the sample total covariances, then a 
scaling factor compensating for the underestimation can be calculated (see Schoukens and 
Pintelon, 2010b, for the details). This scaling factor on the covariance (12-30) can be as large 
as 7 (8.5 dB) or more depending on the type of excitation (Gaussian noise or random phase 
multisine) and the degree of the nonlinearity. 

Remark. As a special case we can also consider the setup of Figure 7-4 on page 240 
where either the actuator or the controller is nonlinear. Although the plant behaves linearly, 
the input-output relationship (7-51) depends on the nonlinear distortions of either the actuator 
or the controller (see Section 7.2.7.3). Therefore, the covariances of the measured input-out-
put DFT spectra depend on both the disturbing noise and the nonlinear distortions. All results 
of Section 12.3 remain valid, the covariance expressions (12-23) and (12-30) included (proof: 
see Appendix 12.N). 

12.5 EXPERIMENTAL ILLUSTRATION 

In this section we illustrate the parametric transfer function modeling on the measurement ex-
ample of Section 7.4.2 (aluminum tooling plate excited by two mini-shakers). Starting from 
two consecutive periods of the transient response to one set of nu = 2 uncorrelated random 
phase multisines, the "fast" local polynomial estimates of the generalized sample means 
(12-13) and sample total covariances (12-14) of the input-output DFT spectra are calculated. 
The "fast" local polynomial method (see Section 7.3.7.1) uses here an R = 4 th order local 
polynomial approximation of the frequency response matrix (FRM) over 2nE+ 1 neighbor-
ing excited frequencies, where nE is chosen such that dof{ast = 9 (see (7-103)). Hence, the 
theoretical correlation length nCL of the generalized sample means (12-13) and sample total 
covariances (12-14) is ±18. 

Figure 7-15 on page 265 shows the "fast" nonparametric FRM estimate at all excited 
frequencies. In this section we model the 2 x 2 FRM in the band [247 Hz, 254 Hz] 
(F = 188 excited frequencies) using a common denominator transfer function (6-53). Since 
the aluminum plate behaves nonlinearly (see Figure 7-17 on page 267), the sample total co-
variances are used in the SML cost function (12-15) and in the model validation/selection 
tools of Section 12.3.6. The orders na and nb of, respectively, the denominator polynomial 
and the numerator 2 x 2 matrix polynomial are obtained via the model validation/selection 
tools of Section 12.3.6. Since two resonances and one anti-resonance are visible in the band 
[247 Hz, 254 Hz] (see Figure 7-17), and two anti-resonances are adjacent to the band [247 
Hz, 254 Hz] (see Figure 7-15), it is reasonable to start with a minimal model order nb/na of 
6/4. Table 12-2 shows the SML cost function and the value of the MDL and AIC criteria for 
increasing model complexity. It can be seen that for model orders nb/na equal to 6/4 and 6/6 
the actual value of the SML cost function VSML = FSML(#SML(Z), Z) is much larger than its 
expected value E{ VSML} in the absence of modeling errors, while for model orders 6/6 to 8/ 
7 the actual value KSML equals the expected value E {KSML} within its 95% uncertainty 
bound (±2std(FSML)). To decide whether the differences between the cost function values of 
models 6/6 to 8/7 are significant or not, we look at the corresponding MDL and AIC criteria 
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TABLE 12-2 SML Cost Function and the AIC and MDL Rules for Increasing Order 
na, nb of the Common Denominator Transfer Function Model 

njn„ 
(12-37) 

std(^ML) 
(12-38) 

MDL 
(12-41) 

AIC 

(12-41) 

6/4 
6/5 
6/6 
7/6 
8/6 
8/7 

9855 
9828 
527.4 
394.4 
365.2 
363.0 

462.5 
462.2 
461.6 
459.0 
456.4 
455.8 

[29.9,51.7] 
[29.9,51.7] 
[29.8,51.7] 
[29.7,51.5] 
[29.7,51.4] 
[29.6,51.4] 

12920 
12980 

701.9 
540.3 
514.5 
515.0 

10690 
10690 

575.1 
434.4 
406.0 
404.6 
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Figure 12-1. Comparison between the nonparametric FRM G(Qk) (black line) and the parametric 
transfer function model G(Qk,0sML(Z)) of order 8/6 (black dashed line; coincides 
with the black line) - aluminum plate. Dark gray line: var(G(Q^)), and light gray 
\mQ\G(Qk)-G(Qk,áSML(Z))\. 
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Figure 12-2. Phase of the nonparametric FRM G(Qk) (gray line; coincides with the black line) and 
the parametric transfer function model G(Qk, #SML(Z)) of order 8/6 (black line). 
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(see Table 12-2). While AIC decreases monotonically for increasing model complexity, MDL 
is minimal for model order 8/6. Hence, according to MDL, model 8/6 is the best choice. 

Figures 12-1 and 12-2 compare the "fast" nonparametric FRJVI estimate G(Qk) to the 
estimated transfer function model G(Qk, #SML(Z)) of order 8/6. It can be seen that the differ-
ence G(Qk) - G(Qk, ¿?SML(Z)) between both estimates is at the level of the standard deviation 
of the nonparametric estimate. Finally, a whiteness test on the FRM residuals is performed. 
Although the theoretical correlation length over the frequency of the FRM estimate G(Qk) is 
±18, the observed correlation length is ±7. Therefore, the sample correlation (12-40) is cal-
culated over the frequency set (12-36) with nCL = 7. Figure 12-3 shows the result: about 
42% and 2.2% of the sample correlation values lie outside, respectively, the 50% and 95% 
uncertainty bounds. We conclude that model 8/6 passes the model validation/selection tests 
of Section 12.3.6. Table 12-3 shows the identified resonance frequencies and damping ratios 
of the two visible resonances in Figure 12-1. The standard deviations are calculated via a lin-
earization (16-22) and (16-23), where x = <9SML(Z) and Cov(x) = COV(<9SML(Z)) (12-30) 
(see Pintelon et al., 2007b, for the details). 

Since the MDL value of model 7/6 is quite close to that of model 8/6 (see Table 12-2), 
we could - using the parsimonious principle - also select model 7/6. Indeed, model 7/6 
passes all the other model selection/validation tests: (i) the actual value of the cost function 
equals the expected value in the absence of modeling errors within its uncertainly (see Table 
12-2), (ii) the identified parametric model equals the nonparametric FRM estimate within its 
uncertainty (not shown here), and (iii) about 45% and 2.2% of the sample correlation values 
(12-40) lie outside, respectively, the 50% and 95%> uncertainty bounds (not shown here). 
Table 12-3 compares the identified resonance frequencies and damping ratios of model 7/6 to 
that of model 8/6. It can be seen that the estimates of both models agree fairly well: the damp-
ing ratios coincide within their standard deviation, while the differences between the reso-
nance frequencies (a few hundred μΗζ) are a factor 10 larger than their standard deviation. 

Figure 12-3. Sample correlation of the FRM residuals ('*') for the estimated transfer 
function model of order 8/6. Solid line: 50% confidence bound, and 
dashed line: 95% confidence bound. 
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TABLE 12-3 Identified Resonance Frequencies f0 and Damping Ratios ζ. 

Difference 
Estimates 

/0±std(/o) (Hz) 

¿r±std(# 

/0±std(/o) (Hz) 

¿r±std(o 

250.8552 ± 2.0xl0~5 

2.96xl0"4±3.2xl0- 6 

251.7844 ± 3.8xlO-5 

9.0xl0"5±6.0xl0~6 

250.8550 ± 2.0xl0~5 

2.97xl0~4±3.1xl0-6 

251.7840 ± 3.7xlO-5 

9.2xl0"5±5.9xl0~6 

2.0xl0-4 

-1 .4xl0 - 6 

4.0 xlO-4 

-1 .5xl0 - 6 

12.6 GUIDELINES FOR PARAMETRIC TRANSFER 
FUNCTION MODELING 

■ Guideline 1: Select the Smallest Bandwidth for the Local Polynomial Approxima-
tion. The frequency width n (or nE) of the local polynomial approximation can be 
tuned as a function of the frequency to minimize the mean square error (optimal 
bias-variance trade-off) of the nonparametric frequency response matrix estimate 
(see Section 7.2.6). A totally different choice is made when calculating the general-
ized sample means and sample covariances used in the SML cost function. Indeed, 
for parametric transfer function modeling the bias error in the generalized sample 
means and sample covariances should be minimized, because it cannot be reduced 
by the parametric step. Therefore, the frequency width n (or nE) is chosen as small 
as possible such that the minimum requirement on the degrees of freedom dof of the 
sample covariance estimate (see Theorems 12.7 and 12.8) is satisfied. Although this 
choice maximizes the variance of the generalized sample means, it also minimizes 
the correlation length over the frequency of the nonparametric estimates and, hence, 
it does not affect the variability of the estimated transfer function model. 

■ Guideline 2: Suppress Nonparametrically the Transient (Leakage) Errors in the 
Generalized Sample Means. It is strongly recommended to suppress nonparametri-
cally the leakage (transient) errors in the generalized sample means, because it de-
creases significantly the sensitivity of the parametric transfer function estimate w.r.t. 
(unexpected) plant and/or noise transients in the data. However, if the leakage errors 
can be neglected over the whole frequency band, then the nonparametric transient 
suppression increases the variability of the estimated parametric transfer function 
model by about 1 dB. Only if it is known beforehand that either the noise and plant 
models have the same poles (ARMAX model structure), or the noise transient can be 
neglected w.r.t. the plant transient, one can combine the generalized sample means 
without transient removal (e.g., (12-1)) with the SML cost function where a plant 
transient term is added to the parametric model (see (12-18)). 

■ Guideline 3: Use the Sample Total Covariances in the SML Cost Function. Since 
most real-life systems behave to some extent nonlinearly, the best linear approxima-
tion is estimated rather than the true underlying linear system. Therefore, it is more 
natural/appropriate to use the sample total covariances instead of the sample noise 
covariances in the SML cost function (12-15), and in the model validation/selection 
tools of Section 12.3.6. 
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Concluding remarks. The required frequency resolution (measurement time) of the 
identification experiment increases linearly with the number of inputs nu and outputs ny. In-
deed, to keep the bias errors of the generalized sample means and sample covariances small, 
the ratio n/N, with In + 1 the bandwidth of the local polynomial approximation and N the 
number of time domain samples, should remain small (see, for example, (12-3)). Further, 
from the lower bound on the degrees of freedom of the sample covariance estimate, for ex-
ample, dof >ny + S (see Theorems 12.7 and 12.8), and dof = 2n+l-(nu + l)(R + 1), 
with R the order of the local polynomial approximation (see (7-13)), it follows that n in-
creases linearly with nu and ny 

2w+l>/ i J , + 8 + ( / i I I + l ) ( /?+l ) 

Hence, to keep n/N small, N should also increase linearly with nu and ny. 

12.7 APPENDICES 

Following the lines of Chapter 7, Γ(Ω) represents for continuous-time systems the sum of 
the transient (leakage) term and the residual alias term. This is permitted since the transient 
and the residual alias terms have exactly the same properties (see Lemmas 6.5 and 6.6 and 
Theorems 6.15 and 6.16). 

Appendix 12.A Proof of Lemma 12.1 

Defining Qn = Κ^(ΚηΚ^)~ιΚη, we deduce from (7-10) that (12-1) can be written as 

f t*) - (éKnh.n + 1] = WnQnh.n+U 0 2 " 4 3 ) 

Using Yn = ΘΚη+νη (7-8) and KnQn = Kn, we find YnQn = ®Kn+VnQn. Combining 
this result with (12-43) gives 

Y{k) = &K„ln + l + V„Qnln + 1 (12-44) 

with \m a vector containing everywhere zeroes except at entry m where it is one. From 
(12-44) and QH = Qn it follows that entry [i,j] of the covariance matrix of Y(k), given the 
input and the initial and final conditions, equals 

( C o v T O ) ) ^ ] = l{Vn[,:]Qnln + l^+lQ^b,:]} 

= trace(2„l„+, 1J+, Q„U V%t:] VH[U:]}) (12-45) 

= trace(2„l„ + 1 l J + 1 e„C„) 

where the diagonal matrix C„ is defined in (7-114). Combining (7-114), (7-115), and (12-45) 
gives, using Ql = Qn, 

(Cov(r(¿)))[;J] = (C^)) [ . / ] t race(l J+ xQn\n + x) + {C^\k)\iñOMH(n/N) (12-46) 

where trace(l„r
+ig„l„ + i) = βη[Β + ι,Β+1]. From (7-17), (12-2), and (12-46) we deduce that 
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lim Cov(Y(k)) = lim l{CY(k)} (12-47) 
N->ao N-+OD 

It proves that Cf(k) (12-2) is the asymptotic (N-> oo) sample covariance of Y(k) (12-1). 
Combining (7-17) with (12-1) and (12-46) proves immediately the expected value of 

the generalized sample covariance (12-3). First note that the expected value of the estimated 
transient term T(Q.k) satisfies 

Ε{Γ(Ω,)} = Γ(Ω,) + OintG((n/N)(«+ D) (12-48) 

(proof: combine (7-6) and (7-124)). Collecting (7-18), (12-1), and (12-48) proves the 
expected value of the generalized sample mean. D 

Appendix 12.B Proof of Lemma 12.2 

If v(i) in Figure 7-1 on page 227 is normally distributed, then, V(k) (7-2) is circular 
complex normally distributed. In this appendix we will show that the generalized sample 
mean Y(k) (12-1) and the generalized sample covariance Cf{k) (12-2) are asymptotically 
(N->oo) independently distributed for circular complex normally distributed noise V(k) 
(7-2). Therefore, it is sufficient to show that Yn = YnQn in (12-43) is asymptotically 
(TV—» oo) independently distributed of the noise residual Vn = VnPn (7-12). Indeed, if Yn 

and Vn are asymptotically (7V->oo) independently distributed, then F^Yn) and F2(Vn), 
with Fx and F2 (non)linear functions, are also asymptotically (7V-> oo) independently dis-
tributed (Stuart and Ord, 1987). Taking as a special case of Fl and F2 the sample mean Y(k) 
(12-1) and the sample covariance Cf(k) (12-2) proves the result. 

Note that Y(k) and Vn are jointly circular complex normally distributed because they 
are both analytic functions of Vn. Hence, it is sufficient to show that vec(f„) and vec(F„) 
are asymptotically (N->co) uncorrelated. Using Yn = SKn+Vn (7-8), vec(ABQ = 
(CT®A)vec(B), (A®B)H = AH®BH, and P** = Pn, we find 

E{vec(7>ec"(K„)} = ( β ^ ® /Λ )E{vec(K>ec^(FJ}(^(8) / n ) 
y (12-49) 

= {Ql®ln)Dn{Pl%ln) 

with Dn the following (2n + 1 )ny x (2« + 1 )ny block diagonal matrix 

D„ = blockdiag(CF(A: - « ) , . . . , Cv(k + «)) (12-50) 

Combining (7-114), (12-49), and (12-50), using (A<S)B)(C®D) = (AC®BD), gives 

E{vec(y„)vec^(F„)} = (P„Qn)
T9Cy(k) + 0-mH{n/N) (12-51) 

Using Ql = Q„ (Qn = Kff(K„K»ylK„) and Pn = I2n + l-Q„, it can easily be verified 
thatP„(g„ = 0. Hence, 

E{vec(f„)vec^(F„)} = OmH(n/N) (12-52) 
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which proves the asymptotic (JV-> oo) independence of the sample mean Y(k) and sample 
covariance Cf{k). From (12-52) it follows that 

E{Fl(Yn)F2(Vn)} = E{Fl(Yn)}E{F2(Vn)} + 0(n/N) (12-53) 

where Fx and F2 are (non)linear functions, which proves (12-4) because it is a special case 
of(12-53). 

If v(/) in Figure 7-1 satisfies the conditions of Theorem 16.25, then V(k) (7-2) is as-
ymptotically (TV—» oo) circular complex normally distributed (convergence in law at the rate 
0(N~l/2)). Since (12-52) has been derived without using the actual distribution of V(k), 
(12-53), where 0(n/N) is replaced by 0(N~l/2), remains valid for filtered white noise satis-
fying Theorem 16.25. 

Appendix 12.C Proof of Lemma 12.3 

Using Yn = ΘΚη + Vn (7-8) and Θ = YnSn (7-10), with Sn = K%(KnK")-\ we find 
Θ = ®+VnSn. Hence, the local polynomial estimate T(Q.k) of the transient (leakage error) 
term can be written as 

mk) = ®\p+VnSn\p (12-54) 

with p = nu(R + 1) + 1, and where lp is a vector containing everywhere zeroes except at 
entry p where it is one. Subtracting the estimated transient (12-54) from the estimated output 
DFT spectrum (12-44) gives an expression for the sample mean (12-5) without transient 

Y(k) = @(Knln+l-lp)+Vnq„ (12-55) 

where q„ = Q„ln+l-K^(KnK^ \p = K»(K„K»y(K„l„ + i - \p). Using (7-7) to (7-9) 
and the definition of \p it can easily be verified that 

^«1« + ι ~ l p 
U(k) 

0 
(12-56) 

which proves the expression for qn in (12-6). The rest of the proof follows the same lines of 
Appendix 12.A, where Qnln+l is replaced by qn, and trace(g„lw + 1 l j + 1 ^ ) by | |^η| | . D 

Appendix 12.D Proof of Lemma 12.4 

The proof follows the same lines of Appendix 12.B, where Qn\n + \ is replaced by 
?„= Qnh + i-S„lp9 with Sn = K»(KnK»)-i map = nu(R+l)+l (compare (12-44) 
and (12-55)). The asymptotic (N-> oo) independence of the sample mean (12-1) and sample 
covariance (12-2) without transient removal is a consequence of the property that 
PnQn = 0, where Pn = I2n + l-Qn and Qn = Κ»(ΚηΚ»)-*Κη (see Appendix 12.B). 
Hence, to prove the asymptotic (N-^co) independence of the sample mean (12-5) and 
sample covariance (12-6) with transient removal it is sufficient to note that also PnSn = 0. D 
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Appendix 12.E Proof of Equation (12-7) 

Using Y(k) = vec(f(¿)) = vec(G(Qt)U%k)) = (UcT(k)®I„)vec(G(nk)) we get 

Cov(f(¿)) = (U*T(k) ® /„ )Cov(vec(G(Q,)))(t/~'(*) ® /„ ) (12-57) 

Replacing Cov(vec(G(Q¿))) in (12-57) by its sample estimate gives 

CY(k) = (U'T(k) ® In)C^G(k){Tf%k) <g> /„ ) (12-58) 

where CvecGW is the upper n nu x nynu block of the estimated covariance (7-21) of G(Qk) 
defined in (7-58). CyQCG(k) can be elaborated as 

CvecGÍ*) = ( ^ ( 8 ) C K ^ ) ) [ 1 : V M , 1 : V J = ( ^ [ 1 :»„ 1:*J ® CK*) (12-59) 

with S the matrix defined in (7-20) where U(k) and In are replaced by, respectively, (^(k) 
(7-58)and/„ + Λ / - 1 . Combining (12-58) and (12-59) using (A ®B)(C <g> D) = AC®BD, 

(SHSh:nu,Unu] = S?SX With 5χ = K»(K„K»y 

and SxU
c(k) = qc

n, gives C>(£) = UcH(k)S?SxU
c(k)® Cv(k) = \\qZ\\jCv(k), which proves 

(12-7). D 

Appendix 12.F Proof of Lemma 12.5 

In Appendix 7.H it is shown that the sample noise covariance C¿° (k) is the asymp-
totic (TV—»oo) noise covariance of the sample mean Z^e\k)9 while the sample covariance 
c]f\k) is by construction the total sample covariance of Z^e\k) (see (7-87) and (7-88)). 

To prove the asymptotic (7V-»oo) independence of the sample mean ¿fie\k) (12-8) 
and the noise sample covariance C^0lse[e\k) (12-9), it is sufficient to show that the estimated 
noise transient THz(QkP) (7-71) is asymptotically (N~-> oo) independently distributed of the 
noise residual 

V„ = Z„-®K„ = ZnPn with P„ = I2„-K»(KnK»)->K„ (12-60) 

Since the estimated noise transient fHz(QkP) is related to the true value TH (0.kP) and the 
noise Vn as 

tHz(akP) = THz(cikP) + vn sn i, with sn = κ»(κηκ»)-< (12-6I) 

and where 1 j is a vector containing everywhere zeroes except at the first entry where it is 
one (see (7-137) and (7-138)). Since Pn Sn = 0, it can be concluded that fHz(QkP) and Vn 

are asymptotically (N-> oo) independently distributed for normally distributed input-output 
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errors (follow the same lines of Appendix 12.B). Hence, C¡oise[e\k) and Z[e\k) are asymp-
totically (W-»oo) independently distributed. 

The only difference between the total sample covariance C¡e](k) (7-88) and the stan-
dard sample covariance is the averaging of the squared residuals over neighboring frequen-
cies. This introduces a bias error in the covariance estimate that is asymptotically (N —» oo) 
zero (see (7-93)). Hence, for normally distributed input-output errors, Z[e](A) and c\'\k) are 
asymptotically (TV—»oo) independently distributed. 

The expected values (12-10) follow immediately from (7-76) (sample mean) and (7-93) 
(sample covariances). 

Appendix 12.G Proof of Theorem 12.7 

The proof follows the same lines of the proof of Theorem 10.3, but extended to handle 
the three technical differences of the generalized sample means and sample covariances w.r.t. 
the standard solution: (i) the finite correlation length over the frequency, (ii) the asymptotic 
(N-> QO) normality and unbiasedness, and (iii) the multiple-output case. 

(i) Correlation over the frequency: the (strong) laws of large numbers, and the central 
limit theorems all remain valid for random variables with a finite correlation 
length over the frequency. 

(ii) Asymptotic normality and unbiasedness: the expected value of the product of a 
(non)linear function of the generalized sample mean and a (non)linear function of 
the generalized sample covariance equals 

E{F,(Z(A:))F2(C¿(*))} = E{F,(Z(k))}E{F2(C¿(k))} + 0{N~«) (12-62) 

with a = 1 for normally distributed input-output errors, and a = 0.5 for non-
Gaussian input-output noise satisfying Theorem 16.25. Since the bias errors of 
Z(k) and C^(k) are an 0(N~l) or smaller, they will not increase the 0(N~a) term 
in the expected value (12-62). 

(iii) Multiple-outputs: Because the input-output noise is (asymptotically) circular com-
plex normally distributed, the sample covariance C¿(k) (and hence also 
C\l\Qhe) (12-17)) is (asymptotically) complex Wishart distributed of dimen-
sion ny and degrees of freedom dof (Goodman, 1963, Brillinger, 1981). To guar-
antee the existence of the wth order moment of the SML cost function (12-15), 
the mth order moment of {CV\Cih6))~x should be finite. This puts a lower 
bound on the degrees of freedom of the sample covariance (Maiwald and Kraus, 
2000). For example, if S, with E{S} = S, is complex Wishart distributed of di-
mension ny and degrees of freedom dof, then the first two moments of T = S~l 

(T = S~l) are given by 

-h - d°f c-l E{S } = -TT^—S (12-63) 
dof- ny 

for dof > n + 1, and 

E^An) = ( d ^ J w ^ + ̂ W t A y J (12-64> 
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for dof >ny + 2. In general, the m th order moment of f exists if dof >ny + m 
(Maiwald and Kraus, 2000). Following the same lines of Appendix 10.D and 
Mahata et al. (2006) we find then the lower bounds on dof in Theorem 12.7. 

Appendix 12.H Proof of Theorem 12.8 

The proof follows exactly the same lines of Appendix 12.G, and only the particular ex-
pression of the covariance matrix of the model parameters (12-23) must be shown. This is 
done in two steps. First, for filtered white noise and random phase multisine excitations it is 
shown that the correlation over the frequency does not affect the covariance expression of the 
estimated model parameters. Next, the link with the maximum likelihood (ML) estimate is 
established. 

FIRST STEP. The asymptotic (F = 0(N) -> oo) covariance matrix of #SML(Z) is ex-
actly given by 

COV(VF<W(Z)) = vF"-lmQAW-lm 02-65) 

with VF = VSML/F, VF"(0) the second order derivative of VF{0) = E{VF(0,Z)} w.r.t. Θ, 

QF(00) = FE{ VF'T(0o,Z)VFX0o,Z)} (12-66) 

and VF\9,Z) the derivative of VF(0,Z) w.r.t. Θ (see Theorem 9.21 on page 298). Assume 
for simplicity of notation that «exp = 1 in the SML cost function (12-15). The equation error 
can then be written as 

e(Ph Θ, Z(k)) = e0(Qh Θ) + Νβ(Ω„ θ) + 0(ΛΜ* + ») (12-67) 

w i t h e ^ * ) = Y0(k)-G(nhe)U0(k), Ne(nhe) = νγ{Κ)-0{^θ)νν{Κ), 0(ΛΗ* + ι>) 
the bias of the generalized sample mean (zero for the robust method), R the order of the local 
polynomial approximation, and where the input-output noise contributions VV{K), VY(k) are 
defined in (7-48). If the transient (leakage) error has not been suppressed nonparametrically, 
then the equation error is extended with a parametric transient term. 

The derivative of the cost function VF\0o,Z) depends on the equation error (12-67) 
and its derivative evaluated at the true parameter value θ0 

e(nk, θ0, Z(k)) = Ne(nh θ0) + 0(N-(«+») 
(12-68) 

é- %ah % z{k)) = - σ· '(Ω„ e0)u0(k)+N;· %ah Θ0) + o(N-(*+») 

with e0(D,k, θ0) = 0, and where x'> r{9) is the derivative of χ(θ) w.r.t. θ^. Neglecting the 
terms in VF(0O, Z) depending on the product of two noise contributions we find 

VF'-%θ0,Z)4l -2Rc(N?(nh e0)C;\£lk, 0O)G' . \ah 0o)Uo(k)) + 0{N<R + D) (12-69) 
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For filtered white noise and random phase multisine excitations the noiseless input DFT 
spectrum is asymptotically (F = 0(N) -> QO) uncorrelated over the frequency 

0(N~(R + 3/2)) transient suppressed 
l{U0(k)U0(l)} = . . for**/ (12-70) 

[ 0(N~l) no transient suppression 

and similarly for E {U0(k) U0(l)} (proof: use (12-48) and Theorem 6.17). Using (12-69), 
(12-70), and the finite correlation length over the frequency of Ne{ilh #0), it follows that the 
double sum over the frequency in QF(00) (12-66) reduces to a single sum 

QF[r,s]W = i Σ E{Re(^(Q¿, e0)C¡\Clh e0)G'>%nh e0)U0(k)) ... 
* e K . . (12-71) 

Re(N?(Clh 0o)C¡\nh 0 Ο )^ (Ω* , 0o)Uo(k))} + 0(Ν~η 

with β = R + 3/2 if the transient has been suppressed nonparametrically, and β = 1 other-
wise. Eq. (12-71) shows that the correlation over the frequency of the generalized sample 
mean Z(k) and sample covariance C^(k) does not influence the asymptotic (F = 0(N) —» 
oo) expression of the covariance matrix of the model parameters (12-65). 

SECOND STEP. We have to distinguish here between on the one hand the "robust" 
method (Section 12.2.2.1) and the other hand the "fast" method (Section 12.2.2.2) and the lo-
cal polynomial method for arbitrary excitations (= "arb" method, see Section 12.2.1). Indeed, 
in both the "fast" and "arb" methods a local polynomial approximation of the frequency re-
sponse matrix is made which is not the case for the "robust" method. As a consequence, the 
correlation over the frequency of the generalized sample mean in the "robust" method is only 
due to the transient suppression. Since we study the asymptotic (F = 0(N) -> oo) covariance 
of the model parameters, the correlation over the frequency of the generalized sample mean 
is asymptotically zero for the "robust" method, which is not the case for the "fast" and "arb" 
methods. Although this result is not valid for the generalized sample covariance of the "ro-
bust" method (it remains correlated due to the averaging over neighboring frequencies, see 
(7-88)), we conclude that (12-23) is the multi-output extension of the single-output case 
(10-16) where M = dof+ 1 

COV(¿SML(Z)) = Xx{dof)Cov0uúZ)) (12-72) 

The proof of the particular expression (12-72) follows the same lines of Appendix 10.F, using 
the first (12-63) and second (12-64) order moments of a complex inverse Wishart distribution 
(see Mahata et al., 2006 for a detailed derivation within a generalized output error frame-
work). 

The reasoning is somewhat more complicated for the "arb" and "fast" methods. Since 
we study the asymptotic (F = 0(N) -» oo) covariance of the model parameters, we neglect 
the transient (leakage) errors in the analysis. The "arb" and "fast" methods both define a lin-
ear transformation between the F(n + nu) x 1 vector Z of the measured input-output DFT 
spectra, which are uncorrelated over the frequency, and the F(ny + nu) x 1 vector Z of the 
generalized sample means of the input-output DFT spectra (see (12-5) and (12-13)), which 
are correlated over the frequency with a correlation width of ±2n ("arb" method) or ±2nE 

("fast" method). Hence, within a Gaussian stochastic framework, the information content of 
(Z, C¿), with C¿ the F(n + nu) x F(ny + nu) sample covariance of Z, is exactly the same 
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as (Z, Cz), with Cz the F(ny + nu) x F(ny + nu) sample covariance of Z (the sample mean 
and sample covariances are sufficient statistics for the parameters of a normal distribution 
Kendall and Stuart, 1979). Hence, the covariance matrices of the corresponding sample max-
imum likelihood estimators θζ and θζ are the same 

Cov(^) = Cov(<9z) (12-73) 

Since the correlation over the frequency has been neglected in the SML cost function 
(12-15), the covariance matrix of the minimizer #SML(Z) of (12-15) is larger than that of the 
SML estimate θζ using the correlation over the frequency 

COV(0SML(Z)) > Cov(0¿) (12-74) 

Combining (12-73) and (12-74) gives 

COV(¿SML(Z)) > Cov(¿z) = Xx{dof)Cow0uúZ)) (12-75) 

with Áx(dof) defined in (12-23), and #ML(Z) the maximum likelihood estimator using the 
original data Z and its true covariance Cov(Z). The equality in (12-75) follows from 
(12-72). 

Appendix 12.1 Proof of the Pseudo-Jacobian (12-25) 

To simplify the notations we take a cost function of the form 

νψ) = eH(e)C-\e)e(0) (12-76) 

with corresponding pseudo-Jacobian matrix J+(9) 

J+[,4
6) = Cem^ÍjP-l2^C^)e(e)) forr = 1,2,...,», (12-77) 

and where C\12 is a square root of Ce (Ce = C] / 2Cf / 2) . In the sequel of this appendix we 
will show that the derivative of the cost function (12-76) w.r.t. Θ is given by 

V'T(0) = 2RQ(jmm) = 27£e(0Ke(0) with ε{θ) = Cf'Hfletf) (12-78) 

It shows that the pseudo-Jacobian matrix (12-77) can be used to construct a Gauss-Newton 
like iterative scheme 

Μΐκφν+Κ{Θ)ΑΘ = -υΐκ{θ)εκ{θ) (12-79) 

where 2J£refó)J+re(0) is an approximation of the second order derivative V"(6). 
Using dC~l/d0[r] = -C~xdCe/de[r]C-\ the derivative of the cost function Υ(Θ) 

w.r.t. #rri can be elaborated as 
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*J® = 2RjmH^mO)-\e"(0)C;KO)d4f1C-eKO)e(0)) 
ΒΘ[Λ \dfaJ « w w 2 w β w d0[r] 

= 2Re((|^)V^-^W^W^C^/^)^·^^) (12"80) 

Putting the contributions (12-80), r = 1, 2, ..., ηθ, on top of each other gives (12-78). D 

Appendix 12.J Proof of (12-30) 

Retaining the dominant term in the pseudo-Jacobian fihk\Á9, Z) (12-25) 

(C¡l\Qh 0 ) ) - 1 / 2 - ^ ^ L » , (12-81) 

entry [r, s] of Jf*J+ can be approximated as 

(de(£lk, θ, Ζ^%))Λ
Η

ίΜη ñ^-x(de{ak, θ, # ' ] (*» 
(•^V..,- Σ l a¿, W/J ( ^ J « W [ ; , ' W/J (12-82) 

with ord(IK) = F, and where the sum over / runs from 1 to «exp. Since (JtfJ+)[r^/F con-
verges to its expected value (law of large numbers), (12-82) can be elaborated as 

k e K, I t in is\ J 

*6K,( l [r] [ í] J (12-83) 

_ dof J(de(nk,e,zV\k))Y (de(nk,e,zv\k^ 

~ d°f (JH J \ 
~dof-ny

{JML+JuL+)^sl 

where the second equality uses the asymptotic (F = 0(N) -> oo) independence of the gener-
alized sample mean and sample covariance (Lemmas 12.2, and 12.4-12.6), and the third 
equality (12-63). 

Eq. (12-83) shows that Á{(dof) in (12-23) must be multiplied by dof/{dof- ny) when 
evaluating the right-hand side in the generalized sample covariances. This explains the factor 
Á2(dof) in (12-30). Using Re(JfJ+) = J?TeJ+TQ (see Lemma 15.4) and J+re = UjIjVf 
explains the other factor (V3 2}+) (V, 2}+)T. D 
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Appendix 12.K Proof of Theorem 12.9 

We first assume that the generalized sample mean Z(k) and sample covariance C%(k) 
are not correlated over the frequency. Although this assumption does not influence the ex-
pected value of the global minimum of the cost function it has an impact on the variance. Af-
terwards, a rationale for the influence of the correlation over the frequency on the variance of 
the cost function is given. The analysis is made for " F sufficiently large" such that (i) the 
bias of the generalized sample means and sample covariances can be neglected, (ii) the gen-
eralized sample means and sample covariances are independently distributed (mutually and 
over the frequency), and (iii) the noise influence on the estimated model parameters #SML(Z) 
can be quantified via a linear approximation. 

Let Xr denote one term in the double sum of the global minimum of (12-15), and as-
sume first that the noise on #SML(Z) can be neglected. For " F sufficiently large" it is ap-
proximately complex Hotelling's Γ2- distributed 

Xr e d0f
yd°f

+ /(2»?> 2(d°f- "y + ] )> (12"84) 

((16-32b) with R = dof+ 1, and n = ny). Using the mean value and variance of an 
F(n{, n2) -distributed random variable Y 

E{Y) = JH- and var(I0 = 2 * X £ ' \ (12-85) 
n 2 - 2 « 1 ( n 2 - 2 ) 2 ( n 2 - 4 ) 

we obtain the mean and variance of Xr (12-84) 

E W = J¡£L and var(Zr) = "gf (12-86) 
dof- ny (dof- ny)

2(dof- ny-\) 

Neglecting the correlation over the frequency, the mean value and the variance of the sum of 
the nexpF terms Xr equal 

E J i ; : P f x r j = nexpF E{Xr} and vu^^Xr) * »expF var(^) (12-87) 

Combining (12-86) and (12-87) gives 

E{*W<W(Z),Z)}* „ "txpFnyd°f 
dof- ny 

var(FSML(4ML(Z),Z))« 
n
expFny<toP 

(12-88) 

(dof-ny)Hdqf-ny-\) 

The noise on the estimated model parameters $SML(Z) introduces a correlation among the 
2nexpFny real residuals that decreases the real degrees of freedom to 2nexpnyF- ηθ (proof: 
follow the same lines of Appendix 19.1). Hence, replacing nexpFny by nQxpFny-ne/2 in 
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(12-88) finally proves (12-37) for the "arb", "fast" and "robust" methods and the lower 
bound of (12-38) for the "robust" method. 

For the "arb" and "fast" methods the correlation of the generalized sample means over 
±nCL neighboring frequencies increases the variance. If we concentrate the correlation over 
the two nearest frequencies with a correlation coefficient equal to 1, then we get the upper 
bound σ\ in (12-38). Numerous MATLAB® simulations confirm this bound. 

To prove the asymptotic normality of KSML(#SML(Z), Z) using version 2 of the central 
limit theorem (see Section 16.10), it is sufficient to note that (i) each term Xr of the cost 
function converges for F = 0{N)-*co to a complex Hotelling's T2- distribution (12-84) 
whose third order moments are finite if dof >ny + 2, and (ii) the finite correlation length 
over the frequency does not affect the central limit theorem. D 

Appendix 12.L Properties Generalized Sample Means 
and Sample Covariances in the 
Presence of Nonlinear Distortions 

The major differences between the stochastic nonlinear distortions Ys(k) and the dis-
turbing noise is that (i) Ys(k) is uncorrelated with - but not independent of- the input U0(k) 
(open loop) or the reference signal R{k)_ (closed loop), and (ii) Ys(k) is mixing of order infin-
ity over the frequency with i{Ys{k)Ys{l)} = 0{N~l) for k*l (compare Theorems 3.16, 
3.17, 3.20 and 3.22 to Theorem 16.25). Hence, the proofs in Appendices 12.A to 12.D and 
12.F remain valid in the presence of stochastic nonlinear distortions, except that the matrices 
Cn and Dn in (12-45) and (12-49) are no longer (block) diagonal 

Cn = dmg{Cv{k-n) ..., Cy(k+n)U]) + 0¿N-i) 
Li,7J UJ\ (12-89) 

Dn = blockdiag(CF(£-rc), ..., Cv(k+n)) + 02{N~l) 

with Cv{k) = Cov{H{Qk)E{k)) + Cow{Ys{k)), and where O^N1) and 02{N~l) are full ma-
trices of size {In + 1) x {In + 1) and {In + \)ny x {In + l)n , respectively, whose ele-
ments decrease as an 0{N~l). Moreover, due to the mixing property of Ys{k) over k, the 
correlation of Ys{k) over k satisfies (16-36) with K = F, so that 

ZKA\0¡[r.s^-l)\ = 0(n/N) for « = 1,2 (12-90) 

where a^ rj is independent of n and N. 

Combining (7-115), (12-45), (12-89), and (12-90) shows that an additional bias error 
term 0{n/N) appears in (12-46) originating from (^(AH) in (12-89). It proves already 
(12-3) with Cf{k) defined in (12-42) for the "arb" and "fast" methods. The proof of (12-10) 
with C^{k) defined in (12-42) for the "robust" method follows immediately from Appendix 
7.L. 

Combining (7-115), (12-49), (12-89), and (12-90) shows that an additional bias error 
term 0{n/N) appears in (12-51) originating from 02{N~x) in (12-89). Hence, (12-51) and 
(12-52) remain valid in the presence of nonlinear distortions. 
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Appendix 12.M Covariance Model Parameters and 
Variance SML Cost Function in the 
Presence of Nonlinear Distortions 

In this appendix we use the properties of the stochastic nonlinear distortions Ys(k) de-
scribed in Theorems 3.16, 3.17, 3.20, and 3.22. In the sequel of this appendix we denote by 
U0(k) that part of the input DFT spectrum that depends on the reference signal R(k) only. 

12.M.1 Asymptotic Covariance of the Model Parameters. For simplicity of notation 
we assume here that only the output is affected by the nonlinear distortions. Eqs. (12-65) to 
(12-70), where the true linear system G0(Q) is replaced by the BLA C/BLA(Q), and 
Ne(Qk, Θ) by Ne(£lh Θ) + Ys(k), remain valid in the presence of nonlinear distortions. What 
changes is the expression for Qf[r>s^(00) (12-71). Indeed, the double sum over the frequen-
cies in (12-66) contains contributions of the form ^{U0[r](k)Ys^(k)Ys[q](l)U0[s](l)} that can 
be elaborated as 

"Ε{^ο[Γ](*)^ω(*)ΐ5[,](0£/ο[,](0} = E{YS[p](k)YS[q](k)}E{U0[r](k)U0[s]([)}S(k-l)^2_9^ 
+ 0[Kl](N-^) 

with S(k -1) the Kronecker delta, and where the 0^k η(Ν~ι) term accounts for the weak de-
pendency between Ys(k) and U0(k) (see Appendix3.Land Schoukens andPintelon, 2010b). 
The double sum over the first term in (12-91) reduces to a single sum of the form (12-71), 
while the double sum over the second term in (12-91) gives an 0(F°) contribution to 
QF[r,s](@o) m a t cannot be neglected w.r.t. the first contribution. Therefore, (12-23) and 
(12-30) only indicate the order of magnitude of the asymptotic covariance of the model pa-
rameters. 

12.M.2 Mean Value of the SML Cost Function. To prove (12-37) in the presence of 
nonlinear distortions it is sufficient to note that Ys(k) and U0(k) are uncorrelated. 

12.M.3 Variance of the SML Cost Function. The noise on the estimate OSML(Z) is 
for F = 0(N) -^oo a second order effect in the variance of the SML cost function (12-15) 
and, therefore, it will be neglected here. To prove (12-38) it is sufficient to note that (i) 
VSML(0Q, Z) is independent of U0(k), and (ii) due to the mixing of order oo property of 
Ys(k) and property (iv) of Theorem 3.9, where Gs is replaced by Ys, the correlation over the 
frequency of Ys (k) has an O(F0) contribution to var(FSML(0o,Z)). 

12.M.4 Whiteness Test of the Residuals. To simplify the notations we consider the 
single-input, single-output case. Using Theorems 3.9 and 3.25 and property (12-4) we will 
show that the expected value and the variance of the sample correlation R{m) (12-40) is as-
ymptotically (F = 0(N) -> oo) not affected by the correlation of Gs(k) over the frequency. 
For N sufficiently large the numerator of the residual (12-39) can be approximated by 
Gs(k) + NG(k), where NG(k) quantifies the noise on the BLA estimate G(Qk). Using prop-
erty (ii) of Theorem 3.9 and (12-4), and taking into account that NG(k) satisfies Assumption 
3.6, the expected value of R(m), m*0, is given by 

E{R(m)} = -ArA Σ E{i<¿k)i(¿k+m)} 
r — \tfi\ 
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¿*iO) 
F-\m\ 

F-\m\ 

Σ (E{e<¿k)}E{i(¿k+m)} + 0(N-1)) 
k = 1 (12-92) 

0(N-i) 

(to simplify the notations we use all frequencies and neglect the finite correlation length over 
the frequency). The variance of R(m), m^O, can be elaborated as 

var(R(m)) = 
a\(m) (F-\m\ 

(F-\m\r 
Σ E{\éG(k)\2\éG(k + m)\2} + 

\k-

F-\m\ 

X E {sG(k) ¿G(k + m) sG(l) sG{l + m)} 
k,l=l,k*l 

(12-93) 

where 

E{\sG(k)\2\éG(k+m)\2} = E{\éG(k)\2}E{\éG(k + m)\2} + 0(N~i) (12-94) 

(use property (iv) of Theorem 3.9 and (12-4)), and 

í{éG(k)sG(k + m)éG(l)éG(l + m)} = 0(N~2) (12-95) 

(use property 5 of Theorem 3.25 and (12-4)). We conclude from (12-94) and (12-95) that the 
contributions of the correlation of Gs(k) over the frequency to (12-93) are, respectively, an 
0(l/(N(F- \m\))) and 0(N~2), while the main contribution (the first term in (12-94)) is an 
0(\/(F-\m\)). 

Appendix 12.N Linear Plant and Nonlinear Actuator or 
Controller 

The stochastic nonlinear distortions produced by either the actuator or the controller 
satisfy Theorems 3.16, 3.17, 3.20 and 3.22 and, therefore, the proofs of Appendices 12.L and 
12.M remain valid, except that the covariance expression (12-23) and (12-30) are still correct 
as in the linear case. The latter is proven as follows. For a linear plant and a nonlinear actua-
tor or controller, Ne(Qh Θ) in (12-67) equals 

Ne(Qh Θ) = VY(k) - G(Qh Θ) Vv{k) + Ys(k) - G(nh e)Us(k) (12-96) 

where Ys(k) and Us(k) satisfy (7-52). Hence, evaluating (12-96) at θ = θ0 using (7-52) 
shows that Ne(Qh θ0) = VY(k) - G(Qk, O^V^k) is independent of the nonlinear distortions. 
Therefore, Ne{Q.h θ0) in (12-69) is independent of U0(k), which is the basic property used 
to obtain (12-71). 



Basic Choices in System 
Identification 

Abstract: In this chapter we discuss five fundamental questions regarding very basic aspects 
of the identification process. The first one deals with the signal assumption that is made to re-
construct the intersample behavior. Two possibilities are considered: zero-order-hold recon-
struction and band-limited reconstruction. The second question handles the choice between 
nonparametric and parametric noise models. The third question looks into the selection of the 
excitation signal, dealing mainly with the choice between periodic or nonperiodic excitations. 
The choice between time domain or frequency domain identification is the topic of the fourth 
part of this chapter. Finally, the fifth and final part discusses the issue of imposing physical 
constraints on the identified model such as stability, reciprocity, and passivity. 

13.1 INTRODUCTION 

At the beginning of the 1970s, the identification field gave a quite disordered impression. 
Many methods were proposed to identify linear dynamic systems. However, due to the lack 
of integration, the whole field looked more like a "bag of tricks" than a consistent scientific 
discipline. In the 1980s the field became well ordered, pointing out the relations and the dif-
ferences between the widely scattered methods (Eykhoff, 1974; Ljung, 1999; Norton, 1986; 
Soderstrom and Stoica, 1989). The major part of this work was done in the time domain, 
leading to a complete dominance of these methods over frequency domain techniques. Since 
then, new methods have popped up, some of them being applicable to time domain or fre-
quency domain identification (for example, subspace methods: McKelvey et al., 1996; Van 
Overschee and De Moor, 1994 and 1996b; Verhaegen, 1994; Viberg et al , 1997), others be-
ing completely focused on frequency domain identification. This does not lead us back to 
chaos, because the clear insight of the 1980s still applies to the new situations. Rather, these 
reviving approaches just complete the puzzle, making the picture better balanced. As ex-
plained in Chapter 1, the identification process is mainly determined by the answers to three 
basic questions: (i) what data will be used (experiment design), (ii) what model will be used 
(model selection), and (iii) how will the model be matched to the data (choice of a cost func-
tion)? These questions have to be answered, independent of the user's intention to work in the 
time domain or in the frequency domain. Perpendicular to these questions, two other impor-
tant choices have to be made, (i) Choice of the intersample behavior. As identification starts 
mostly from discrete data, an assumption is needed to make precise what is going on between 
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the samples. This choice has a major impact on the experimental setup, the model choice, and 
the selection of the cost function, (ii) Periodic versus arbitrary excitation. This question is not 
linked to the choice between time or frequency domain identification. Periodic excitations of-
fer significant advantages whenever they can be applied, and this is almost independent of 
the domain (time or frequency) that is selected to process the measurements. 

In this chapter we analyze the consequences of these two basic choices that have to be 
made. Too often, no conscious selection is made, although the consequences maintain their 
full impact on the users' result. Therefore, it is important to make a well-considered selec-
tion, at the beginning of the process, to avoid undesired surprises at the end. The discussions 
are made without any prejudices to a specific application, so that for some fields the risk ex-
ists that some parts of this chapter are not relevant. For that reason we separated the objective 
facts, which are true without any discussion, from the interpretation of these facts, where we 
look for their (un)importance for specific fields. The latter is much more subjective as it is 
strongly influenced by our personal experiences. Hence, we strongly advise readers to test 
these sections according to their own experiences and to draw their own conclusions. 

Finally we also deal with the choice between time and frequency domain methods. Too 
often this selection is presented as conflicting options. To address this, we first point to the 
(sometimes even unexpected) equivalences between time and frequency domain methods. 
Eventually, we zoom in on the differences so that at the end of the chapter the user should be 
able to select the most dedicated method for his/her problem. 

13.2 INTERSAMPLE ASSUMPTIONS: FACTS 

Nowadays, almost every identification scheme is applied to sampled data. In a first step, the 
continuous-time signals are sampled in time and stored in the computer. The discrete samples 
do not carry all information contained in the original signals, unless additional assumptions 
are made on the intersample behavior. What is going on between the samples? As we did not 
measure this information, we do not know. We can only make a guess, formalized as an as-
sumption, and hope that in practice the real behavior is close to the assumed one. Two as-
sumptions are very popular. The zero-order-hold (ZOH) assumption considers the signal to 
be constant between consecutive samples, while under the band-limited (BL) assumption we 
suppose that the power spectrum of the signal is zero above half the sampling frequency 
/max <fs/^" We discuss, in detail, the impact of this choice on the experimental setup, the 
model, and the identification process. We also analyze what happens if the wrong assumption 
is applied to a given set of data, for example, band-limited data are processed under the ZOH 
assumption. 

13.2.1 Formal Description of the Zero-Order-Hold and 
Band-Limited Assumptions 

Consider a discrete-time signal ud(kTs). Notice that in this section we will sometimes, 
explicitly, mention the sampling period Ts. This is to indicate that these samples are gener-
ated at the time instances kTs and that the spectrum of this signal is periodic with period 
fs = \/Ts as shown in Figure 13-1. 

Assumption 13.1 (Zero-Order-Hold Assumption): The zero-order-hold (ZOH) re-
construction of a discrete-time signal uá(kTs) is 

«ZOH(') = i r= -oo"d(^ )zoh( í - ¿7 ; ) (13-1) 
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Figure 13-l.A discrete-time signal and part of its periodic spectrum. 

with zoh(/) = 1 for 0 < t < Ts and 0 elsewhere. The spectrum, after a ZOH reconstruction, 
is (see Exercise 13.1) 

^ζοΗθ'ω) = Ε/άΟ'ω)ΖΟΗ(ω/ω,) (13-2) 

withZOH(x) = Tse-Jnxsm(nx)/(nx). 

Assumption 13.2 (Band-Limited Assumption): A signal u{t) with power spectrum 
Φ(ω) is called band-limited (BL) if there exists a value comax such that Φ(ω) = 0 for 
V|a>|>comax. 

In Figure 13-2(a), both reconstructions are illustrated. The reconstructed signals and 
their spectra differ considerably. The steps in a ZOH reconstruction create high-frequency 
components far above the sampling frequency, but this is not the case for the BL reconstruc-
tion. 

i Time (s) 

Figure 13-2. Reconstruction of a discrete-time signal under the BL and ZOH assumptions. 
(a) The time signals: x samples, — BL, ZOH; (b) spectrum of the BL 
reconstruction; and (c) part of the spectrum of the ZOH reconstruction. 
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13.2.2 Relation between the Intersample Behavior 
and the Model 

13.2.2.1 Zero-Order-Hold Assumption. In this setup, the transfer function between 
the discrete-time signal ud(k) and the output y(k) is measured (Figure 13-3). This means that 
besides the linear system itself, the actuator and measurement channel are also modeled as in-
dicated by the gray area in Figure 13-3. Assume, for simplicity, that the disturbing noise 
sources are zero. The overall continuous-time system transfer function Gc(jco) comprises the 
actuator Gact(y*G)), the process G(ya>), and the data acquisition G (j(o) transfer function. 
Under the ZOH setup, it is modeled as a discrete-time system with impulse response gzoui^) 
that links the discrete-time input ud(k) to the discrete-time output y(k) (Ljung, 1999): 

kTs 

y(m) = Z r = i g z o H W w d ( w - £ ) withgZ0H(A;) = f gc(r)dT (13-3) 
K l J(k-l)Ts 

where gc(r) is the impulse response of the continuous-time system, between uZ0H(t) and the 
continuous-time output yAA(t). 

GZ0H(z_1) and Gc(s) are linked by the step-invariant transformation for ZOH excita-
tions (Middleton and Goodwin, 1990; see also Example 6.3): 

GZOH(^) = {\-Z-')Z{GC{S)/S} (13-4) 

If fs/2 > Im(poles)/(27c), then the original continuous-time parameters can be retrieved 
from the discrete-time model, using an inverse transformation (Ljung, 1999). The poles are 
found using the impulse invariant transformation, but the transformation of the zeros is much 
more complex (Ástrom et al., 1984). The influence of Gy(s) in (13-4) can be eliminated via 
an absolute amplitude and phase calibration of the data acquisition channel. While the ampli-
tude characteristic |G (/ω)| can easily be measured using a calibrated power meter, the mea-
surement of the phase characteristic ZGy(j(o) requires a phase calibrated excitation signal. 
No standard (commercial) solutions are available for the latter. 

GZOHO 

Figure 13-3. Basic setup for the ZOH assumption, interpretation of the continuous-time 
(Gc(s)) and the equivalent discrete-time (GZ0H(z~1)) sYs t e m· 



Section 13.2 ■ Intersample Assumptions: Facts 501 

For |ω| < ω5/2, the final relation between the discrete input spectrum and the spec-
trum of the sampled output signal is given by (see Exercise 13.2) 

ινω70 = u^T^=^G{jak)A{jak)Gy{jak)zo\i{€ik/&s)\^a_k^ (13-5) 

where A(j($) represents the actuator dynamics. The sum in (13-5) is due to the repeated 
spectra, as they appear in the spectrum of uZ0H(k) (see Figure 13-2). 

At the sampling instances the output noise ny(t) = np(t) + my(t) can be modeled ex-
actly as discrete-time filtered white noise if the unobserved continuous-time driving noise 
source is either a Wiener stochastic process or zero-order-hold noise (see Theorem 6.11). 
Since the prediction error (10-50) and maximum likelihood (10-58) cost functions do not de-
pend on the phase of the noise filter, an absolute amplitude calibration is sufficient to elimi-
nate the influence of the data acquisition transfer function Gy(s) on the identified parametric 
noise model. 

13.2.2.2 Band-Limited Assumption. The BL setup is given in Figure 13-4. Only the 
gray box is directly involved in the identification process. Starting from the spectra of the 
continuous-time signals Ux{j(ü) = F{ux(t)} and J^C/co) = F{yl(t)}, it can easily be 
shown that the following relations exist between the spectra of the sampled signals 
£/(*/*'.) = F{u(k)}, 7(^ ω / 0 = F{u(k)}\ 

G B L ( » 
Y(ei<S>Ts) _ k = -°°,k*0 

U(eJa>T°) 

ΩΛ. = ω - &ως 

G„(yco)t/,0-co)+ Σ G«C/*W,(W|n = t0_t<0 
Ir = —nr\ ¡r ■+ f\ ^ S 
k = -GO, k Φ 0 

(13-6) 

(see Exercise 13.3). 
The sum terms in this expression are due to the alias effect of the sampling process (see 

Section 2.2.1). If the measurement channels are provided with good anti-alias filters with a 
cutoff frequency below ω5/2, the band-limited assumption holds and (13-6) becomes 

Generator 
« # ) 

ZOH 

M7oh(0 
Actuator 

Figure 13-4. BL measurement setup. 
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GBL(7CO) = y f f ( / m > = G ( » ^ H S for |ω| < ̂ 2 ^ 
^ΜΟω)ί/1Οω) ^ Ο ω ) 

which shows that GBL(jco) = G(JG>) for |ω| < ω5/2 if Gy(jG>) = GM(yco) in this fre-
quency band. The influence of the data acquisition channels in (13-7) is eliminated via a rel-
ative calibration: a periodic signal exciting the frequency band ( 0 , ^ / 2 ] is applied 
simultaneously to both acquisition channels and the frequency response function from the in-
put channel to the output channel is measured, giving Gy(j(ú)/Gu(j(ü). 

Note that the model GBL(ya)) = G(j(o) is the continuous-time representation of the 
plant. So the model equations are given by differential equations in the time domain and alge-
braic equations in the frequency domain. The latter are given by the transfer function model 
formulated in the Laplace domain (s = yco is used as frequency variable in the transfer func-
tion). 

If the input is known then a continuous-time parametric noise can be identified for the 
output ny(t) noise if the unobserved driving noise source is continuous-time band-limited 
white noise with a bandwidth of at least fs/2 (see Theorem 6.14). Since the maximum likeli-
hood (10-58) cost function does not depend on the phase of the noise filter, an absolute am-
plitude calibration is sufficient to eliminate the influence of the data acquisition transfer func-
tion G (s) on the identified parametric noise model. 

13.2.2.3 Conclusion. The ZOH assumption imposes an experimental condition on 
the excitation signal; it is generated from a discrete-time sequence using a piecewise constant 
interpolation. Under these conditions, a discrete-time model is obtained between the discrete-
time input and the sampled output. 

The BL assumption is a condition on the observation of the signals and does not impose 
constraints on the applied excitation (e.g., BL observations of ZOH signals can be made). It 
results in a continuous-time model of the plant in the observed frequency band. 

13.2.3 Mixing the Intersample Behavior and the Model 

In the previous section it was found that the ZOH assumption leads, naturally, to a dis-
crete-time model, and the BL assumption results in a continuous-time model. If a discrete-
time model is combined with non-ZOH inputs, or continuous-time models are identified 
under the ZOH assumption (without applying anti-alias filters so that the BL condition is vio-
lated), systematic errors appear. In practice, these wrong combinations are often made (con-
sciously or unconsciously). Hence, it is important to understand the impact of violating the 
basic assumption. 

13.2.3.1 Violation of the ZOH Assumption. Consider the generalized setup of 
Figure 13-5 (the disturbing noise sources are not shown for simplicity). Instead of using the 
known input ud(k), a discrete-time model is built between the measured input u(kTs) and 

«i(0, , yx(t) 
Generator 

«#) 
ZOH 

«W) 
^ L(M \ ] - p » | GQco) U-»> 

( ( 
u(kTs) y(kTs) 

Figure 13-5. Violation of the ZOH assumption. 
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output y(kTs). Because the excitation signal passed through a first subsystem L(j(£>), the sig-
nal ux(t) is no longer ZOH. The discrete-time transfer function GL(z~l) that relates the input 
samples u(kTs) to the output samples y(kTs) is found directly, applying (13-4) twice 

G , u = (\-z-l)Z{L(s)G(s)/s} = Z{L(s)G(s)/s} m „ 
LK ' (l-r')Z{I(i)/i} Z{L(s)/s} K ' 

(see Example 6.3 on pages 179-180). Assuming that the sums converge, GL(e~JmT') can also 
be written as 

GL(e-J0>T·) = m,-ω- ta , ( 1 3_9 ) 

ΣΓ=_^(^)ΖΟΗ(Ω,/ωί)|Ω^ 
(Ú-k(Q, 

for |ω| < ω5/2. Note that the result is still independent of the input Ud(e
JG)Ts), but it depends 

on the preceding system L(s). If the same subsystem G(jco) is measured in another environ-
ment (l(yco) -» Ζ(7'ω)), the resulting model will change. Under these conditions, the model 
is no longer independent of the measurement environment, and the results cannot be trans-
ferred from one setup to the other. However, as long as the setup is not changed, a good de-
scription of the measurements is given. If L(J(o) = 1, Vco, the original ZOH setup is 
retrieved (see Exercise 13.4). If L is chosen as a perfect reconstruction filter, L(j®¡) = 1 for 
|ω| <ω 5 /2 and ¿(yco) = 0 elsewhere, the BL setup is retrieved and GL(e~J(úTs) (13-9) 
equals G(yct)) instead of Gzon(e'J(üTs). Assume now that a discrete-time model G(z~l, Θ) is 
fitted to these BL measurements such that G(e~Jtí>Ts,0) = G(j\o) for |ω| < ω 5 / 2 . If the 
model G(z~\ Θ), based on BL measurements, is used later under ZOH conditions, the ratio 
y(jco) between the predicted and the actual output is 

Η/ω) = 
G(e-JtoT'90)Ul(e

i<DT·) 

G(j(0) (13-10) 
Gzou(e-J^) 

GU(»-kj<os) N-1 

G(/co) = ίΖΟΗ(ω/ω5) + Σ Γ = _ ^ 0
 U

rjJ ' ' ζ θ Η ( ω / ω , - k) 

for |ω |<ω 5 /2 . χθ'ω) will be close to 1 only if in the frequency band of interest 
\G(j(ü-kj(üs)\ « |G(ycG)|, k*0 and |ω/ω5| « 1. 

13.2.3.2 Applying Continuous Models to ZOH Measurements. The second possibil-
ity is to fit a continuous-time model G{s,6) to the ZOH measurements such that 
G(yco,<9) = GZOH(e~J(oT*) for |co| < c o / 2 . If the model G(s,0), based on ZOH measure-
ments, is used under BL conditions, then the ratio between the predicted and the actual output is 

G(Mfl)£/iO-co) = GZOH(e-^) = _ j _ 
ί?(/ω)£/,0·ω) GU<o) Κ/ω) 

where χ(/ω) is defined in (13-10). Again, the same conclusions can be drawn. 
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13.2.3.3 Conclusion. In the previous sections it was shown that a continuous-time 
system can be modeled, without systematic errors, by selecting the proper experimental con-
ditions so that the assumptions that describe the intersample behavior are met. If they are vio-
lated, it is still possible to get a good model for the observations, but this model is no longer 
independent of the measurement environment. The intersample behavior becomes an intrin-
sic part of the model (see Exercise 13.6 for a feedback example). 

13.2.4 Experimental Illustration 

The goal of the measurement example is to illustrate the consequences of mixing the 
intersample behavior and the model. To make the errors (13-10) and (13-11) apparent, a first 
order continuous-time system is chosen such that the magnitude of the first term in the infi-
nite sum, |G(jro-y'o)5)/G(/cü)|, is not much smaller than one. For higher order systems 
where the sampling frequency is chosen to be at least ten times the bandwidth of the plant, 
the factor χθ'ω) is close to one for all frequencies within the system bandwidth. 

13.2.4.1 Measurement Setup. Figure 13-6 shows the block schematic of an RC- cir-
cuit. This first order continuous-time plant has been measured using the zero-order-hold 
(ZOH) and band-limited (BL) setups of Figures 13-3 (ZOH) and 13-4 (BL), where the actua-
tor dynamics satisfies Gact(/a>) = 1, and where the input-output acquisition channels have 
been calibrated (GM(/co) = Gy(j(£>)). The continuous-time transfer function and the corre-
sponding step-invariant transformation (13-4) are given by 

BL setup: G(s) = 1 
1+RCs 

ZOH setup: ^ΖΟΗΟ" 1 ) 
= (l_e-^(RC))z_x (13-12) 

x_e-TsaRC)z_x 

where RC = 142.7 μ8±0.4 μ8. For both measurements the same Schroeder multisine 
(5-10) has been downloaded under digital form in a 12 bit arbitrary waveform generator 

i/d(/) = YÍ^xAún(lKkt/N+ (¡)k) (13-13) 

with t = 0,l,...,N-l, N = 1048, and φ1ί the Schroeder phases (5-10). The signal 
(13-13) is generated at the clock frequency fc = 10 kHz, and the acquisition channels are 
synchronized with the generator (fs =fc). 

The steady state response to the periodic excitation (13-13) is measured. For the BL 
setup the modeling starts from the noisy input-output DFT spectra U(k), Y(k)9 

k = 1, 2, ..., 20, while for the ZOH setup it starts from the DFT Uá(k) of the signal ud(t) 
stored in the arbitrary waveform generator and the noisy output DFT spectrum Y(k). To com-
pensate for the gain from the digital samples to the analog output of the waveform generator 
and the delay between the start of the acquisition and the zero time reference of the generator, 

o V W 1 

í s4\ Figure 13-6. Electrical circuit consisting 
9 I of a series resistor and a parallel capacitor. 
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the input spectrum of the ZOH measurements is divided by 5.56 and delayed over 31.40 sam-
ples (multiplication of Ud(k) by e-3LAO*J2lik/N/5.56). 

13.2.4.2 Band-limited Measurements - Continuous-Time Model Using the prior 
knowledge (13-12) about the continuous-time plant, the band-limited (BL) measurements are 
modeled with a first order continuous-time (CT) transfer function of the form 

G(s, Θ) = 
a^ + axs 

(13-14) 

The results are shown in Figure 13-7. It follows that the first order CT-model (13-14) ex-
plains very well the BL-measurements (amplitude and phase errors of about 0.1%). The 

coefficients equals 142.6 μβ. RC- time constant calculated from the estimated a0 and a 
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Figure 13-7. Band-limited (BL) measurements modeled with a first order continuous-time 
(CT) transfer function (13-14). Top row: measured ('+') and modeled (black 
line) FRF. Bottom row: difference between measurement and estimate. 

13.2.4.3 Zero-Order-Hold Measurements - Discrete-Time Model Using the prior 
knowledge (13-12) about the zero-order-hold (ZOH) setup, the ZOH-measurements are mod-
eled with the following first order discrete-time (DT) transfer function 

G(z, Θ) = 
bxz~x 

a0 + axz~x 
(13-15) 

The results are shown in Figure 13-8. It can be seen that the first order DT-model (13-15) ex-
plains very well the ZOH-measurements (amplitude and phase errors of about 0.1%). Note 
that the phase error at the first two frequencies is much higher than in Figure 13-7. This indi-
cates that it more difficult to realize a perfect ZOH-setup than a perfect BL-setup. The 
RC- time constant calculated from the estimated a0 and ax coefficients equals 142.9 μβ. 
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Figure 13-8. Zero-order-hold (ZOH) measurements modeled with a first order discrete-time 
(DT) transfer function (13-15). Top row: measured ('+') and modeled (black 
line) FRF. Bottom row: difference between measurement and estimate. 

13.2.4.4 Mixing the Intersample Behavior and the Model. What happens if we mix 
the intersample behavior and the model is shown in Figure 13-10: the band-limited (BL) 
measurements are modeled with the first order discrete-time (DT) model (13-15), and the 
zero-order-hold (ZOH) measurements are modeled with the first order continuous-time (CT) 
model (13-14). It can be seen that in both cases the model is unable to explain the measure-
ments. The corresponding i?C-time constants are 60 μβ (DT-model (13-15)) and 228 μ8 
(CT-model (13-14)). The mismatch between measurements and model and the large bias in 
the estimated RC- time constant are due to the discrepancy between the true intersample be-

BL-DT BL-DT 
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Q. 
E < 

CO 

CL 
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ZOH-CT 

-100 
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Figure 13-10. Mixing the intersample behavior and the model. Top row: band-limited (BL) measurements 
('+') modeled with the first order discrete-time (DT) transfer function (black line) of 
(13-15). Bottom row: zero-order-hold (ZOH) measurements ('+') modeled with the first 
order continuous-time (CT) transfer function (black lines) of (13-14). 



Section 13.2 ■ Intersample Assumptions: Facts 507 

γ(/ω)&γ 1(/ω) 

Figure 13-11. 

0.5 1 1.5 
Frequency (kHz) 

0.5 1 1.5 
Frequency (kHz) 

Mixing the intersample behavior and the model: ratio of the predicted to the 
actual output of the system. Black lines: /Ο'ω) (13-10) of the first order DT 
model identified using the BL measurements (see Figure 13-10, top row). Light 
gray lines: γ~\](ΰ) (13-11) of the first order CT model identified using the 
ZOH measurements (see Figure 13-10, bottom row). 

havior of the measurements (BL and ZOH) and the one assumed by the model (ZOH and BL 
for, respectively, the DT and CT models). Figure 13-11 shows the y(j(o) (13-10) and 
y~l(j(£>) (13-11) factors of the identified first order models. As predicted by the theory, the 
mismatch between the DT-model and the BL-measurements is - in good approximation - one 
over the mismatch between the CT-model and the ZOH-measurements. 

If we increase the model complexity of the DT-model to a second order rational form 
with fractional sample delay r, 

G(z, θ) = ζ~τ 
bQ + bxz-x + b2z~2 

<3n + fliZ-1 + αΊζ~2 
(13-16) 

then the difference between the BL-measurements and the DT-model is at the noise level 
(compare the top row of Figure 13-12 with the bottom row of Figure 13-7). Similarly, a sec-
ond order CT-model with time delay 

G(s, Θ) = e~TS 
¿>0 + bxs + b2s

2 

a0 + axs + a2s
2 

(13-17) 

explains the ZOH-measurements as well as a first order discrete-time model (compare the 
bottom row of Figure 13-12 with the bottom row of Figure 13-8). 

Note that the additional poles and zeroes and time delay in models (13-16) and (13-17) 
model the difference between the actual intersample behavior, and the one assumed by the 
model. One of the poles of each transfer function model can be linked to the physical pole of 
the RC- circuit shown in Figure 13-6. The corresponding estimated i?C-time constants are 
142.5 μβ (DT-model (13-16)) and 137.1 με (CT-model (13-17)). Although these values are 
much closer to the true value (142.7 μ8 ± 0.4 μβ) than those of the first order models in 
Figure 13-10 (60 μ8 and 228 μ8), the physical interpretation of the identified models re-
quires prior knowledge to separate the physical plant poles and zeroes from the mathematical 
poles and zeroes introduced by the missmatch between the actual and the assumed intersam-
ple behavior. Hence, it should be done with (great) care. However, the identified models 
(13-16) and (13-17) are well suited to predict the output of the system at the sampling in-
stances for a new input signal, so long as the intersample behavior of the new input matches 
that of the input in the identification experiment. 
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Figure 13-12. Mixing the intersample behavior and the model. Top row: difference between the 
band-limited (BL) measurements and the estimated second order discrete-time 
(DT) model (13-16). Bottom row: difference between the zero-order-hold (ZOH) 
measurements estimated the second order continuous-time (CT) model (13-17). 

Finally, the DT-model (13-15) with fs = 100 kHz instead of fs = 10 kHz has been 
identified using the BL-measurements (no new measurements were performed; only the sam-
pling frequency of the discrete-time model has been changed). The estimated RC- time con-
stant equals now 142.6 μ8. This can be explained by the fact that at the higher sampling fre-
quency the corresponding mismatch factor y(jco) (13-10) is much closer to one. 

13.2.4.5 Summary. The estimated RC- time constant of the different CT- and DT-
models are given in Table 13-1. The estimates obtained with the exact approach (Sections 
13.2.4.2 and 13.2.4.3) equal the true value within its measurement uncertainty. When mixing 
the intersample behavior and the plant model (Section 13.2.4.4) the errors on the estimates 
are very large. These errors are significantly reduced by increasing the model complexity. As 
could be expected the estimate at fs = 100 kHz equals the true value. 

TABLE 13-1 Estimation Results RC- time constant (true value = 142.8 μβ ± 0.4 μβ) 

Measurement 

BL 

ZOH 

BL 

ZOH 

BL 

ZOH 

BL 

setup Plant model 

CT (13-14) 

DT (13-15) 

DT (13-15) 

CT (13-14) 

DT (13-16) 

CT (13-17) 

DT (13-15) 

RC (μ$) 

142.6 

142.9 

60 

228 

142.5 

137.1 

142.6 

Remarks 

exact approach 

exact approach 

-
-

unstable model 

non-minimum phase model 

fs = 100 kHz 
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13.3 THE INTERSAMPLE ASSUMPTION: 
APPRECIATION OF THE FACTS 

In Sections 13.2.1 to 13.2.3 we have given objective facts. These are true without any discus-
sion. However, the importance of these facts can be very different from one application field 
to another. As mentioned before, it is the responsibility of the reader to judge their impact on 
his/her application. Here, we give some thoughts on possible implications, but it should be 
clear that these are influenced by personal experiences. As such, we advise the reader to con-
sider them critically. 

13.3.1 Intended Use of the Model 

Although from an information point of view there is no fundamental difference be-
tween the BL and the ZOH assumption (besides the fact that the ZOH setup provides more 
high-frequency information), it is still advisable to match the choice for the basic assumption 
with the intended use of the model. In theory, it is possible to relate a discrete-time and a con-
tinuous-time model, using (13-4), if the basic assumption is met, but in practice, additional 
errors are added due to the nonideal experimental conditions. For some applications, the sig-
nal choice is not really critical, but for others, the application leads to a natural choice. The 
following applications are discussed in more detail next: controller design, physical interpre-
tation, simulation, and modeling of subsystems. 

13.3.1.1 Controller Design. In model-based control design, a mathematical model of 
the device under test is required. For discrete controllers, it is clear that a discrete-time model 
is the best choice. The digital controller generates a ZOH excitation that is exactly known (it 
is available in the memory of the controller). Everything between the controller output and 
the observed system output (including the actuator and the noise reduction filters) should be 
modeled because it is part of the control problem. This is the standard setup for ZOH model-
ing; in fact, the whole ZOH theory originated from this problem. Even if the ZOH reconstruc-
tion is poor, the behavior can still be included in the characteristic by increasing the model 
order. The drawback of this approach is that the models are not portable from one setup to the 
other because plant model and signal reconstruction are mixed up in one single model. An-
other nonideal ZOH characteristic results in another model. 

Conclusion: for digital control design the ZOH assumption is well suited. Even if the 
ideal ZOH reconstruction is not closely matched, the nonideal ZOH characteristic can be in-
cluded in the model. 

13.3.1.2 Physical Interpretation. In some applications, users are not really inter-
ested in the identified model but use it only as an intermediate step to get deeper physical in-
sight into a problem. They want to measure model parameters that are not directly accessible 
with classical instruments, for example, time constants, diffusion constants, or the values of 
some components in an electrical circuit. Mostly, it is not a good idea to try to identify these 
parameters directly as they are linked to the measurements through highly nonlinear rela-
tions, complicating the identification significantly, and they may not even be uniquely identi-
fiable. It is easier to identify, first, an intermediate model, and to extract the physical 
parameters from this result. Usually, the coefficients of the differential equations are closer 
linked to these parameters than those of the approximating difference equations, so that 
continuous-time models are preferably used. 

Although it is possible to identify continuous-time models under the ZOH conditions 
using a direct continuous-time parameterization (Ljung, 1999) or using dedicated prepro-
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(a) 

Figure 13-13. Illustration of the cascading 
error of ZOH models, (a) Transfer function of 
the original systems L{j(a) (1) and G(j(a) 
(2) and (b) comparison of the ZOH model of 
the cascaded system (solid line) with the 
cascade of the ZOH models (dots). 

cessing methods based on block-pulse functions (Sinha and Rao, 1991) or delta operators 
(Ninness and Goodwin, 1991), we advise starting from BL measurements. These techniques 
can be applied in the time domain (Van hamme et al., 1991) or in the frequency domain, even 
for arbitrary excitations, using the extended models as explained in Section 6.3.2. The pref-
erence for the BL setup might be surprising because there is a formal relation (13-4) between 
both approaches. However, this relation is valid only if the experimental conditions were in 
perfect agreement with the underlying assumptions (perfect ZOH, perfect BL), and this can 
be very hard to realize, especially for broadband ZOH excitations. In many cases the ZOH 
reconstruction is disturbed due to the load of the output impedance Ζοι1ί(/ω) of the ZOH re-
constructor by the input impedance of the actuator Zin(ya>), so that the actual generated 
spectrum differs from the theoretical one by Zin(yco)/(Zin(y'(D) + Zout(ya>)). On the other 
hand, it is quite easy to get a set of two identical, good anti-aliasing filters, so that the BL as-
sumption is matched well. 

13.3.1.3 Simulation and Modeling of Subsystems. Building a model for a very 
complex system is a tedious task. Instead of catching the system in one extreme complex 
model, it is much more feasible to split the problem into a series of subtasks, each modeling a 
subsystem. In principle, for each of these subsystems we can build a discrete-time model un-
der the ZOH assumption. However, even if these submodels are perfect, they will not de-
scribe the actual signals in the cascaded system because the subsystems are not excited by 
ZOH excitations. This is very similar to the setup given in Figure 13-5. Assume that perfect 
ZOH models LZOH(Z_1) = (l-z-l)Z{L(s)/s} and GZ0li(z-1) = (I-z~l)Z{G(s)/s} are 
available for L(J(6) and G(jco); then the cascaded system L(ya>)G(yco) is described not by 
^zoH^'O^zoH^'Obutby (1 -z~x)Z{L{s)G{s)/s), so that an error appears: 

(l-z-i)Z{L(s)/s}(l-z-i)Z{G(s)/s} 
(l-z-l)Z{L(s)G(s)/s} V } 

Note that this error is independent of the order of cascading. In Figure 13-13, the error due to 
this wrong combination is shown for the cascade of two first-order systems: 

Us) = 1/(1+5/(0.6π)) and G(s) = 1/(1 + J / ( 0 . 8 T C ) ) (13-19) 

In this case severe errors appear because we considered systems with a bandwidth that is 
large compared with the sampling frequency, so that the repeated spectra of the ZOH excita-
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tion (see Figure 13-2) are not filtered out by the plant. If this were the case, the errors would 
be much lower. However, for a general approach this is an undesired restriction. 

A first possibility would be to transform the ZOH models to continuous-time models, 
using the inverse relation, and next apply (13-4) again to the cascaded continuous-time mod-
els (assuming that fs/2 > Im(poles)/(27i)). As mentioned before, this approach relies 
heavily on the ideal ZOH behavior, which may be difficult to obtain. The sound approach is 
to select the BL assumption and combine it with discrete-time models. Although the resulting 
models lose their physical interpretation, they are perfectly suited for simulation. By increas-
ing the complexity, an arbitrary precision can be obtained. Moreover, cascading of these 
models is allowed as long as the signals in the simulator obey the BL assumption. 

Note that by using the same arguments, it is also possible to identify continuous or 
discrete-time models of an arbitrary subsystem of a complex system. Hooking the probes of 
the measurement device at the input and output of the subsystem makes it possible to zoom in 
on each accessible part of the overall system, as shown in Figure 13-4. The BL assumption is 
realized using good anti-alias filters. Because it is almost impossible to impose a ZOH excita-
tion in the middle of a complex process, the ZOH assumption is not well suited to solve this 
kind of problem. 

Conclusion: under the BL assumption it is possible to build continuous or discrete-time 
models of subsystems of a complex plant, even if they are preceded by nonlinear systems. 
These can be used, for example, as portable building blocks for simulators. 

13.3.2 Impact of the Intersample Assumption 
on the Setup 

The intersample assumption has a significant impact on the experimental aspects and 
the actual quality of the measurements. In each measurement setup it is important to reduce 
the errors. The identification methods take care of the stochastic errors but cannot cope with 
systematic errors. These should be removed in an appropriate calibration procedure. This is 
relevant only if accuracy is important, but why bother about consistency and efficiency if the 
systematic instrumentation errors dominate? Therefore, it is always necessary to check the 
quality of the measurement setup and to verify its impact on the quality of the final models. 
Typical errors that appear in many data acquisition channels are DC offsets and dynamic dis-
tortions due to the measurement channel characteristics Gu(j(ü) and G (Jay). The offset er-
rors can often be eliminated by excluding the DC information, while the compensation of the 
channel characteristics requires a calibration. 

13.3.2.1 Perfect BL Setup. Under the BL assumption, two channels measuring the 
input and the output are needed. Because in (13-7) only the ratio Gy(j(o)/Gu(j(ü) appears, a 
relative calibration that measures this ratio will do, and this for |ω| < ω5/2 . In order to guar-
antee that the BL assumption is met, the acquisition channels should be equipped with Anti-
alias filters. An alternative is to filter the excitation signal so that no power is injected above 
ω5/2. If the plant is guaranteed to be linear, the measured input and output also obey the BL 
assumption. The advantage of this approach is that only one filter is required, so it is easier to 
get two identical measurement channels. 

13.3.2.2 Perfect ZOH Setup. Under the ZOH assumption, the situation changes 
drastically. In this case, only the output is measured. From (13-5) it is seen that the acquisi-
tion channel should have a transfer function Gy{jti) = 1 in a frequency band that covers oos 
many times in order to pass the high-frequency components created in the ZOH reconstruc-
tion. This is a difficult constraint. An absolute calibration is required in this case to measure 
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and compensate the channel characteristics. This will be a tedious task, especially if arbitrary 
excitations are used, since in that case the compensation should be done in the time domain 
using inverse filtering techniques (Pintelon et al., 1990; Kollár et al., 1991). The alternative is 
to select an instrument with a very large bandwidth compared with the sampling frequency 
and hope that the roll off and phase distortion will be small in the frequency band of interest. 
Notice that in this setup it is NOT allowed to use an anti-alias filter as this would eliminate all 
the repeated spectral contributions of the ZOH. These results are grouped in Table 13-2. 
From this table we conclude that it is easier to approach the ideal measurement setup for the 
BL assumption compared with the ZOH requirements. This suggests that, due to the experi-
mental constraints, the BL setup is best suited for accurate measurements of the system. 

TABLE 13-2 Implications of the BL Assumption and the ZOH Assumption 
for the Ideal Measurement Setup 

BL ZOH 

Two-channel measurement Single-channel measurement 

Relative amplitude and phase calibration^ Absolute amplitude and phase calibration^ 

No flat amplitude/linear phase required Flat amplitude/linear phase required 

Instrument bandwidth ^ ω5/2 Instrument bandwidth ^ many times ω3 

Anti-alias filters required Anti-alias filtering not allowed 

a. Parametric noise models only require an absolute amplitude calibration. 

13.3.2.3 ZOH Setup for Control. For many control applications the situation is, 
luckily, not that bad. Often, the bandwidth of the plant is not very large (for example a few 
kHz or lower) and the sample frequency is typically chosen 10 times larger. This makes it 
possible to filter the output before feeding it back to the controller in order to reduce the out-
of-band process noise without adding too much delay to the system. Under these conditions, 
the previously mentioned problems with the ZOH setup become less pronounced. Moreover, 
in this field, the desired accuracy is also much lower than the accuracy that is typically re-
quired in many measurement applications. This leads to the conclusion that the ZOH setup is 
the natural choice for digital prediction/control design, where the actuator is an intrinsic part 
of the modeling problem and high accuracy is not the first requirement. 

13.3.3 Impact of the Intersample Behavior Assumption 
on the Identification Methods 

In the stochastic approach to system identification, the cost function is completely set 
by the noise model. From Figures 13-3 and 13-4, it is seen that under the ZOH setup, the in-
put is assumed to be known, whereas under the BL assumption the input is measured. As 
each measurement is disturbed by noise, two (correlated) noise sources are needed for the 
stochastic model under the BL assumption, whereas only one noise source on the output mea-
surements is needed under the ZOH assumption. This has a significant impact on the general 
structure of the identification scheme: the BL assumption leads to the errors-in-variables ap-
proach (see Chapter 9), while the ZOH assumption is the basis for the prediction error meth-
ods (see Ljung, 1999 and Sections 10.9 and 10.10). 
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13.4 NONPARAMETRIC NOISE MODELS: FACTS 

In the next section we study the impact of selecting a nonparametric or a parametric noise 
model. Here, we give an enumeration of the facts connected to nonparametric noise models 
estimated from experiments with periodic or random excitation signals. In the next section, 
we give a more detailed discussion, including the appreciation, of these facts. The most im-
portant facts about nonparametric noise models are: 

1. The quality of the noise model is independent of the parametric plant model 
2. Improved/simplified model validation 
3. Simplified model selection/minimization cost function 
4. Errors-in-variables identification and identification in feedback are as easy as the 

generalized output error problem 
5. Increased uncertainty of the parametric plant model 
6. Not suitable for output data only 

Facts 5 and 6 are a drawbacks of nonparametric noise models compared with parametric 
noise models. 

13.5 NONPARAMETRIC NOISE MODELS: DETAILED 
DISCUSSION AND APPRECIATION OF THE FACTS 

The choice between nonparametric and parametric noise models is one of the most important 
selections to be made when designing a system identification experiment. Nonparametric 
noise models simplify considerably the identification of parametric plant models, for exam-
ple, identification in feedback and errors-in-variables problems become as easy as general-
ized output error problems. 

13.5.1 The Quality of the Noise Model 

With periodic excitations, all nonperiodic variations are assigned to the disturbing 
noise (Schoukens et al., 1997b; Pintelon et al., 2011a) because the signal repeats itself from 
period to period. This is a very general technique that can separate the noise contribution 
from the nonlinear distortions. It fails in two situations: 

■ In the presence of periodic noise that is synchronous with the periodic excitation. 
■ In the presence of chaos, where a periodic input does not necessarily result in a peri-

odic output. 

Note that measuring two periods of the transient response to a periodic excitation is sufficient 
to fully characterize the nonparametric frequency response function estimate (noise level and 
level nonlinear distortions), even for multivariable systems (see Section 7.3, and Pintelon et 
al., 2011a, b). 

With random excitations it is also possible to extract nonparametric noise models from 
the data under the conditions that the input is known and that the plant transfer function can 
locally be approximated by a polynomial (see Section 7.2, and Pintelon et al., 2010a). If the 
input is also noisy then a known reference signal (typically the signal stored in the arbitrary 
waveform generator) is needed (see Section 7.2, and Pintelon et al., 2010b). While the noise 
cannot be distinguished from the nonlinear distortions for stationary random excitations, the 
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nonlinear behavior can be detected and an upper bound on the noise level can be estimated 
using nonstationary random inputs (Zhang et al., 2010). 

In practice, the signal is separated from the noise by calculating (generalized) sample 
means and (generalized) sample (co)variances (see Section 4.3 for the classical methods and 
Section 12.2 for the local polynomial methods). The sample mean carries the signal informa-
tion, while the sample (co)variances can be used as a nonparametric noise model. This analy-
sis is done before starting the identification process; for example, no parametric plant model 
is selected yet. Consequently, the nonparametric noise model is independent of the plant 
model errors. This noise model can be used as a weighting in the estimation step, even during 
the generation of starting values. 

Example 13.3. Figure 13-14 shows the results of a nonparametric noise analysis of 
electrical machine measurements. It not only gives the noise levels but also makes it possible 
to make a quality check of the measurements (e.g., What is the SNR? Is the system well ex-
cited in the frequency band of interest?) before starting the identification procedure. D 

-20 

CD 

Current 

o. 
E 
< 

-60 

■80H 

-100 

1 

\ 

J «w* 

- | — | — n i | — r -

""\ 

0.01 0.1 1 10 100 
Frequency (Hz) 

CD 

CD 

=3 

"Q. 
E < 

■20-

40: 

6o; 

8Cl· 

no-

Voltage 

0.01 0.1 1 10 100 
Frequency (Hz) 

Figure 13-14. Separation of the 
signal and the noise using 10 
repeated experiments on an electrical 
machine. — the raw measurements, + 
the nonparametric noise model. 

13.5.2 Improved/Simplified Model Validation 

The independent nonparametric noise characterization (see Section 13.5.1) allows an 
absolute interpretation of the cost function, leading to significant advantages during the 
model selection and validation process. Not only is it possible to make an absolute detection 
of model errors, starting from the value of the cost function, but also the presence of unmod-
eled dynamics (and nonlinear distortions) can be checked (see Chapter 11 for the classical 
methods and Chapter 12 for the local polynomials methods). 

Besides these global qualifications, the direct comparison of the measured FRF (see 
Section 13.7.3) with the modeled transfer function shows in which frequency bands the 
model fails, as illustrated next on a mechanical system (Figure 13-15). Using M = 34 mea-
sured periods, the mean value and the standard deviation (complex error) of the FRF were 
measured and compared with a parametric model. From this simple test we can conclude that 
the errors mainly appear at the resonance frequencies. 

13.5.3 Simplified Model Selection/Minimization 
Cost Function 

Within the prediction error framework the model orders and the coefficients of the 
plant and the noise transfer functions must be estimated (see Section 10.9, and Ljung, 1999). 
For nonparametric noise models this reduces to the identification of the plant transfer func-
tion (model order + coefficients) only. This simplification also decreases the risk of getting 
trapped in a local minimum of the cost function (Schoukens et al., 2011). 
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13.5.4 Errors-in-Variables Identification and 
Identification in Feedback 

The errors-in-variables problem (all observations are noisy) can be solved using para-
metric input-output noise models provided (i) the system operates in open loop, and (ii) the 
unknown excitation can be written as filtered white noise. The solution requires the simulta-
neous identification of the plant, the input noise, the output noise, and the excitation signal 
transfer functions (see, for example, Soderstrom, 2007, and Pintelon and Schoukens, 2007). 
Beside some identifiability conditions (Agüero and Goodwin, 2008), the major difficulties 
are (i) the generation of (high quality) starting values for all transfer functions, (ii) the model 
order selection, and (iii) the model validation. 

Using nonparametric noise models, the identification of a plant operating in feedback 
from noisy input-output data (= most general errors-in-variables problem, see Figure 7-4 on 
page 240) has exactly the same complexity as the identification of a system operating in open 
loop from known input, noisy output data (see Chapters 10 and 12). If the best linear approx-
imation of a nonlinear system is identified and/or the excitation is arbitrary, then, besides the 
noisy input-output data, also a known reference signal should be available. 

13.5.5 Increased Uncertainty of the Plant Model 

The uncertainty of the estimated parametric plant model using a nonparametric noise 
model is larger than that using a parametric noise model because, 

1. Replacing in the maximum likelihood cost function the true input-output noise 
(co)variances factor by their (generalized) sample estimates increases the uncer-
tainty of the estimates by the factors given in (10-16) and (12-23). 

2. For ARX and ARM AX model structures (see (6-70) and (6-71)), the disturbing 
noise contributes to the identification of the plant poles via the common denomi-
nator in the plant and noise models. This information is lost when using a non-
parametric noise model. 

3. The (generalized) sample mean (see Sections 4.3 and 12.2) captures that part of 
the plant input and output that is correlated with the reference signal. Hence, it 
suppresses that part of the excitation that is not correlated with the reference sig-
nal, for example, the generator noise (open and closed loop) and/or the process 
noise (closed loop only). This results in some loss of information. 

While it is easy to quantify the increase in uncertainty due to the variability of the sample 
noise (co)variances (cause 1), the increase due to causes 2 and 3 is strongly case dependent. 
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13.5.6 Not Suitable for Output Data Only 

In some applications neither the plant can be excited nor is it possible to measure the 
operational perturbations. Think, for example, of the operational modal analysis of civil engi-
neering structures like bridges, buildings, and windmills. In those cases the plant dynamics 
should be identified from output data only. Assuming that the unobserved operational pertur-
bation is white in the frequency band of interest, the problem can be solved by estimating a 
parametric noise model (see Section 10.9, and Ljung, 1999). Nonparametric noise models do 
not offer a solution here. 

13.6 PERIODIC EXCITATIONS: FACTS 

In the next sections, we study the impact of selecting periodic or arbitrary excitations. The 
impact of this choice is less dependent on the application field than the selection of the inter-
sample assumption. Here, we give an enumeration of the facts connected to periodic excita-
tions. In the next section, we give a more detailed discussion, including the appreciation, of 
these facts. Finally, we look into some user aspects of periodic excitations. The most impor-
tant facts about periodic excitations are: 

1. Data reduction linked to an improved signal-to-noise ratio of the raw data 
2. Elimination of nonexcited frequencies 
3. Improved frequency response function measurements 
4. Detection, qualification, and quantification of nonlinear distortions 
5. Detection and removal of trends 
6. Reduced frequency resolution 
7. Increased uncertainty if the nonlinear distortions dominate over the noise 

Facts 6 and 7 are drawbacks of periodic signals compared with random noise excitations. 

13.7 PERIODIC EXCITATIONS: DETAILED DISCUSSION 
AND APPRECIATION OF THE FACTS 

The choice between periodic and nonperiodic excitations is an important selection to be made 
during the experiment design. Many times, it is incorrectly linked to the selection between 
time and frequency domain identification. Periodic excitations open up a number of possibil-
ities that are not accessible with arbitrary excitations and this for time and frequency domain 
identification. 

13.7.1 Data Reduction Linked to an Improved 
Signal-to-Noise Ratio of the Raw Data 

When periodic excitations are applied, it is possible to collect P successive periods 
(with length N ) and to average the measurements in the time domain over these repeated 
periods, for example, for the output measurement (Figure 13-16): 

Kk) = ¿Zf= ,X* + ( /- 1 )NP) = pZf= ^[ / ]W (13-20) 
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Figure 13-16. Making use of the periodic 
nature to improve the SNR. 
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with yV\k) = y(k + ( / - 1 )N). It is clear that due to the averaging process, the noise is re-
duced in P~l/2 under very weak conditions (the total measurement time should be much 
larger than the correlation length of the noise), and lim y{k) = y0(k) w.p. 1. Many dynamic sig-
nal analyzers offer this measurement option; for example, P = 128 averages are made over 
Np = 2048 data points. As this reduces the record length at a very low computational cost, it 
is strongly advised to make full use of this option. Why should we restrict ourselves to 2048 
data samples if we can get 128 x 2048 data samples almost for free? In practice, P is deter-
mined by the maximum measurement time T and the minimum required frequency resolu-
tion f0: P = f0T. Note that for a fixed experiment time, the frequency resolution dropped by 
a factor P. Another interpretation of using consecutive periods is given in Section 13.7.2. 

13.7.2 Elimination of Nonexcited Frequencies 

When a periodic excitation is applied, the user knows mostly what spectral lines are 
present. Often, not all lines are excited and it is possible to eliminate the "zero lines." This op-
eration offers many new possibilities: generation of improved starting values and data reduc-
tion. 

13.7.2.1 Improved Starting Values. Eliminating nonexcited lines does not change 
the asymptotic properties of well-designed estimators because the information matrix is not 
affected by removing zero lines. However, during the generation of starting values, simplified 
schemes such as ARX (linear least squares) methods are used. These are sensitive to the 
noise on the zero lines, so their elimination results in improved starting values (Schoukens et 
al., 1994). The risk of getting stuck in a local minimum is much larger if all spectral lines are 
retained, including the nonexcited lines. 

13.7.2.2 Data Reduction. If a very wide frequency band has to be covered, fine reso-
lution is needed at the low frequencies, whereas in the higher frequency bands the resolution 
can be reduced. For this reason, many systems are shown on a logarithmic frequency axis in a 
Bode plot. In these situations, it is advisable to excite the system with a semilogarithmic mul-
tisine, exciting the system at logarithmically spaced frequencies (on an equidistant grid of a 
DFT), so that a constant relative frequency resolution is obtained. This results in a sparsely 
filled spectrum, where only a small fraction of all lines is excited, for example, 200 out of 
8192 lines. Only these frequencies should be retained so that the amount of raw data to be 
stored can be reduced further. 

13.7.2.3 Special Case: Measuring P Consecutive Periods. In Section 2.2.3, it was 
shown that the spectrum of a signal consisting of P measured periods is sparse with nonzero 
lines at the multiples of P. The other lines are different from zero only due to the presence of 
noise. By putting them to zero, the spectrum of the averaged signal (e.g., y(k) in (13-20)) re-
peated over P periods is obtained. 



518 Chapter 13 ■ Basic Choices in System Identification 

00 

ω 
Ό 
D 

"5. 
E < 

70-j 

60-j 

50: 
ACil 

3Cl· 

■ · . . 

■■■■1 ' ■"'"I ■ 

"-._ 

10 

S- -10 

S -30 
CO 

^ -50· 

τ- i - O O O O O 
«-; i- o o o o " -r- o o o 

i - O O 
i - O 

Frequency (Hz) 

-70- I Ml., ■ IIHIH ΜΙ.ΙΜ, ■ ■■■■IU| . ΙΜΙ.ΙΙ) 

o o o o o 
T- O O O O 

T- O O O 
T- O O 

T- O 

Frequency (Hz) 

Figure 13-17. Measurement of the impedance of an electrochemical reaction in a wide 
frequency range on a semilogarithmic frequency grid. 

13.7.2.4 Examples 

Example 13.4. In Figure 13-17 the measured impedance of an electrochemical reac-
tion Fe3+ + e~ —> Fe2+ is shown in a frequency band from 0.123 Hz to 64 kHz. Using a semi-
logarithmic multisine, this very wide frequency range is covered with a small number of fre-
quency points. D 

Example 13.5. The effect of removing the nonexcited lines on the noise level is illus-
trated in Figure 13-18 , where the impact of averaging and filtering (removing the zero lines) 
is shown on a signal with a semilogarithmic spectrum. D 

Remark. In some special cases such as ARX modeling, the disturbing noise also con-
tributes to the plant knowledge through the common denominator of the noise model and the 
plant model. Some modifications are needed to restore the information lost during the aver-
aging (Gustafsson and Schoukens, 1998). 

13.7.3 Improved Frequency Response Function 
Measurements 

When an integer number of periods is measured in steady-state conditions, the spectra 
of the signals calculated using the DFT are free of leakage errors due to the plant dynamics. 
High-quality FRF measurements are obtained by first averaging the output and input spectra 
and next making the division (see Chapter 2). From the nonparametric noise analysis, the un-
certainty on this estimate is obtained directly. The availability of the FRF measurements not 
only simplifies the model validation significantly (compare the FRF of the estimated transfer 
function with the measured one), it also gives a prior view of the required model complexity 
so that the model selection process is speeded up. 

In some applications (e.g., vibrating mechanical structures) the leakage error due to the 
noise dynamics cannot be neglected in the steady state response of the plant to a periodic ex-
citation. Using the smooth frequency behavior of the leakage error, it can be suppressed non-
parameterically in the FRF estimate via a local polynomial approximation (see Section 7.3). 

Under the condition that the FRF and the leakage error due to the plant and noise dy-
namics can locally be approximated by a polynomial, high quality FRF estimates can also be 
obtained using random excitations (see Section 7.2). 
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Figure 13-18. Impact of averaging and filtering of the noise. 

13.7.4 Detection, Qualification, and Quantification of 
Nonlinear Distortions 

Using, for example, an odd random phase multisine with random harmonic grid gives a 
great deal of insight into the nonlinear behavior of the plant (see Section 4.3.2). The even 
nonlinearities become visible at the even frequencies, while the odd nonexcited frequencies 
can be used to detect and quantity the level of the odd nonlinear distortions. Again, this is a 
nonparametric test that can be applied directly to the raw data before starting the identifica-
tion process. These methods are extensively discussed in Chapter 4. 

Using stationary excitations the noise cannot be distinghuished from the nonlinear dis-
tortions in FRF measurements. If nonstationary random inputs are used, then it is possible to 
detect the presence of nonlinear distortions and to estimate un upper bound on the noise level 
(see Zhang et al., 2010). Classification in even and odd nonlinear distortions is, however, im-
possible. 
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13.7.5 Detection and Removal of Trends 

In this book, we consider time-invariant systems. Periodic excitations facilitate testing 
for this assumption by calculating the sample mean of each period 

Vy(0 = Σ"= xy
{l\k)/N, 

and checking that it does not vary systematically from one period to the other. This test 
makes it possible to detect very small variations of the mean value revealing the presence of a 
(weak) trend. The trend can be removed by fitting the sum of sinewaves and a polynomial to 
the data. A time efficient implementation of this linear least squares problem can be found in 
Peirlinckxetal. (1996). 

Similarly, for random excitations polynomials or curve segments can be fitted to de-
trend the data. 

13.7.6 Reduced Frequency Resolution 

To distinguish the noise from the nonlinear distortions, at least two periods of the input-
output signals should be measured (see Sections 4.3 and 7.3). Therefore, the frequency reso-
lution of the frequency response function measurement is at least two times smaller than that 
using random excitations (see Section 7.2). 

13.7.7 Increased Uncertainty if the Nonlinear 
Distortions Dominate over the Noise 

If the nonlinear distortions are the dominant error source, then the averaging of the sto-
chastic nonlinear distortions should be maximized for a given measurement time T. Since 
the stochastic nonlinear distortions have the same periodicity as the excitation, their contribi-
tion is not decreased by averaging the input-output signals over the P periods. Therefore, the 
optimal choice is one experiment with a random excitation, or one experiment with a random 
phase multisine with period length Γ, or M experiments with random phase multisines with 
period length T/M (the frequency resolution and the variance of the stochastic nonlinear dis-
tortions of the latter are M times smaller than those of the single experiments and, therefore, 
the Fisher information matrices of these three measurements are the same). The variance of 
the estimated parametric plant model is then P times smaller than that of the periodic exper-
iment with P measured periods. 

13.8 PERIODIC VERSUS RANDOM EXCITATIONS: 
USER ASPECTS 

Three aspects are discussed in detail: how difficult it is to design a signal; what about the fre-
quency resolution; and finally, how flexible the signal characteristics can be set. 

13.8.1 Design Aspects: Required User Interaction 

Although periodic excitations offer a number of extended possibilities, they are still not 
very popular. One of the basic reasons for the unpopularity of periodic signals might be the 
user interaction required to design them. The user should specify the power spectrum (what 
frequencies are excited) and the period T0 (determining the frequency resolution f0 = l/TQ 

that is obtained in the frequency domain) before the periodic signal can be generated. For ar-
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bitrary signals, this information is seemingly not required. For example, the user can decide 
to generate a random sequence of length T0 = NTS without even bothering about all these 
boring questions. However, this is a misleading impression. Also, in the latter case users 
should realize that even if they do not select a power spectrum and a frequency resolution 
consciously, their choices fix (unconsciously) these parameters, as shown below. 

13.8.1.1 Frequency Resolution. A periodic signal, with period T0, probes the plant 
only at frequencies kfQ with f0 = l/T0, and it is completely insensitive to what happens be-
tween these frequencies, so that very narrow (compared with /0) resonance peaks can be 
missed. However, although arbitrary excitations have a continuous spectrum, they do not of-
fer an unrestricted resolution. As the signals are measured only in a finite time interval T0, 
the windowing (or leakage) effect smears the spectra so that details below a resolution f0 are 
also lost. 

13.8.1.2 Imposing the Power Spectrum. A good excitation signal should excite the 
process in the frequency band of interest. For periodic excitations, the user has full control 
over the power spectrum, so it is easy to inject all the available power in this band. Moreover, 
because these are deterministic signals, it is guaranteed that after one period this power spec-
trum is realized exactly. The situation is completely different for arbitrary excitations. Only 
indirect control, using digital filters, is possible. Starting from a white noise generator, a col-
ored noise process is generated. Because this is a stochastic signal, its power spectrum is 
reached only asymptotically, and for short data records significant differences between the 
actual power spectrum and the desired one can appear (see Section 2.6). 

Example 13.6. In Figure 13-19 a typical example of an arbitrary (white uniform noise) 
and a periodic (a flat multisine with 31 components, period 64 samples) ZOH excitation is 
shown. Both signals have a flat power spectrum filling the complete frequency band. They 
were generated in 64 samples. It can be seen that a perfect realization of the flat power spec-
trum is obtained for the multisine, but the spectrum of the considered noise realization is not 
flat at all. The spectrum drops at some frequencies more than 10 dB, resulting in a poor SNR 
at those frequencies. D 

13.8.1.3 Small Crest Factors. A second important aspect is the crest factor, measur-
ing the ratio between the peak value and the rms value. Signals with a low crest factor make 
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Figure 13-19. Comparison of an arbitrary (white noise) excitation with a periodic (flat 
multisine) excitation in the time and frequency domain. 
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it possible to inject more power into the system for a restricted peak value of the excitation, 
resulting in a better SNR. Algorithms are available to minimize the crest factor of periodic 
signals for a specified power spectrum. Also for arbitrary excitations, the crest factor can be 
reduced, but at the cost of a distorted power spectrum: the user does not have full control over 
the power spectrum and the crest factor at the same time (see Chapter 5). 

13.9 TIME AND FREQUENCY DOMAIN IDENTIFICATION 

Time and frequency domain identification were considered as competing methods for a long 
time. However, in most cases, the frequency domain data are obtained by a DFT from the raw 
time domain data. Note that there is a one-to-one relation between the time and the frequency 
domain. The only difference is that some information is more easily accessible in one domain 
than in the other. This is also reflected in the methods themselves. Assuming that all tran-
sients have died out, it can be shown by Parseval's relation that the least squares cost func-
tions are identical (Ljung, 1993). Moreover, it is shown in Section 6.3.2 that the leakage 
effect on transfer function modeling in the frequency domain data is described by exactly the 
same transient model structure as in the time domain, where it is used to include the initial 
conditions. So there is full equivalence between time and frequency domain identification. 
The only difference is how the available information is formulated, but even here mixed algo-
rithms popped up that combine the time and frequency domain representation in one algo-
rithm, for example, the use of a nonparametric noise model in the time domain (Gustafsson 
and Schoukens, 1998) or mixed implementations of ARX methods (Schoukens et al., 1998b). 
This results in the (surprising) conclusion that it is not possible to give a clear formal defini-
tion of what time and frequency domain identification schemes are. Nevertheless, we still 
like to use the term time domain identification for algorithms that mainly operate on time do-
main data and frequency domain identification for algorithms that work on frequency domain 
data. 

Many advantages that are often claimed for frequency domain identification are intrin-
sically due to the periodic nature of the excitation. So, the prime question is not to choose 
time or frequency domain methods but to select periodic or nonperiodic excitations! As ex-
plained before, many of the advantages of periodic excitations can be used in both domains. 
Some of the equivalences between both domains are not directly visible and are discussed in 
more detail later. Next, we also deal with some important differences between time and fre-
quency domain identification. 

Again, the text is organized along the same lines. First, a series of facts is stated, in this 
case equivalences and differences. Next, a more personal interpretation of the methods is 
given in the section on the natural choices in identification. 

13.10 TIME AND FREQUENCY DOMAIN IDENTIFICATION: 
EQUIVALENCES 

13.10.1 Initial Conditions: Transient versus 
Leakage Errors 

Two situations are considered: the nonparametric measurements (impulse response or 
frequency response) and the parametric transfer function model. 

13.10.1.1 Nonparametric Measurement. Usually, the frequency domain is cursed 
because the time-frequency transform is prone to leakage errors, so that the frequency re-
sponse function obtained by dividing these spectra will also be wrong. In the time domain, 
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the standard nonparametric impulse response measurements are based on a correlation analy-
sis; for example, for discrete-time systems we have 

V ) = 8®*Ru«(t) (13-21) 

with Ryu(t) and Ruu(t) the cross- and the autocorrelation (Bendat and Piersol, 1980). These 
have to be estimated from the finite set of available data, e.g., 

Ryu(k) = Yl¡:ly<I)u{l-k)/N9 

where the data outside the window are put equal to zero. This shows that in the time domain 
windowing problems occur also, hence we can conclude that nonparametric measurements 
are prone to window errors in both domains. In the frequency domain these appear as leakage 
errors. 

Remark. The Wiener-Hopf equations (13-21) are usually solved in the frequency do-
main (see (2-51)), emphasizing even more the time-frequency equivalence (Bendat and Pier-
sol, 1980). 

13.10.1.2 Parametric Models. For parametric system identification the time and fre-
quency domain problem (initial conditions versus leakage) is cured in exactly the same way 
for both domains: the model is extended with a transient term that is linear-in-the-parameters 
(see Chapter 6) so that the additional computational cost is low. This solves the problem com-
pletely. 

13.10.1.3 Impact on Whiteness Tests. At the end of the identification process the 
model is validated. A very popular test is to check the whiteness of the residuals using a cor-
relation analysis. It turns out that this test is very sensitive to unmodeled initial conditions be-
cause these appear as model errors. If they are not recognized as such, the test leads to a too 
complex model structure. For that reason it is strongly advised to add an initial conditions es-
timate (keeping the model parameters fixed) for the validation data at the beginning of the 
validation process or to wait until the transients have died out. 

13.10.2 Windowing in the Frequency Domain, 
(Noncausal) Filtering in the Time Domain 

Sometimes we want to emphasize or deemphasize some spectral bands, expressing our 
belief in the quality of these measurements. Eliminating frequency lines, as explained in Sec-
tion 13.7.2, is an extreme example of this method. Weighting in the frequency domain (multi-
plication with a frequency weighting W(Q)) corresponds to a filter operation in the time do-
main (convolution of the measured input and output with the impulse response w(t) = 
F~x{W(Cl)}). Removing some frequencies from the data set corresponds to a rectangular 
window. This is a noncausal filter with an impulse response of the form sin(at)/(at), 
t e ]-oo, oo [. Its absolute value is not summable, as should be for a stable system, so there 
are no simple alternative formulations in the time domain. Moreover, the maximum likeli-
hood interpretation of the classical prediction error scheme is also lost because the transfor-
mation matrix, as it is introduced in Soderstrom and Stoica (1989, pp. 251), is no longer trian-
gular due to the noncausal filter operation. The filtered output depends not only on the past 
but also on the future data. 
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Remarks 

(i) Prefiltering the raw data is somehow cheating because it also changes the noise 
model. For Box-Jenkins methods, prefiltering does not change anything because it 
is completely compensated by a similar change in the noise model. However, in 
practice, the identification process is continued with the simple noise model, so 
that the efficiency can be affected, or a bias can even appear in closed loop identi-
fication. 

(ii) Removing undesired frequencies (non-causal filtering) is possible within the pre-
diction error framework at the cost of an additional term in the cost function (see 
Sections 10.9.2 and 13.10.3.1). 

13.10.3 Cost Function Interpretation 

The cost function that measures the goodness of the fit can be expressed in the time do-
main or in the frequency domain. It is clear that there should again be a full equivalence. 
However, a detailed study reveals some small differences depending on the practical imple-
mentation. 

13.10.3.1 Extra Term in the Frequency Domain. If not only the plant model 
G(z~l, Θ) but also the noise model //(z_1, Θ) is identified, an additional term appears in the 
frequency domain interpretation of the cost function that was seemingly missing in the time 
domain expressions. Consider the maximum likelihood formulation for the generalized out-
put error situation of a system operating in open loop, assuming normally distributed noise 
and neglecting the plant and noise transient terms (see Ljung, 1993 and Theorem 10.18 with 
Ω = z~x and M0 = 0), 

\lZ:lw\ml> Φ+(f wx)+¿ Σΐ:\\^> νή 03-22) 
with ε(ζι\θ) = H~\zi\0){Y(k)-G{z-k\e)U{k)) and λ = var(e(í)) = var(£(£)). The 
first term in (13-22) does not appear explicitly in the frequency domain interpretation (10-50) 
of the classical time domain expressions. However, if the frequencies zk are equidistantly 
distributed on the unit circle and if H(z~l, Θ) is monic (c0 = d0= 1), then this extra term 
converges for N -» oo to zero at exponential rate (see Corollary 10.20), and the difference be-
tween the time and frequency domain cost function disappears. This also reveals an addi-
tional condition on time domain identification: to get consistent noise models, it is not 
allowed to eliminate some frequency lines, nor is it allowed to restrict the identification to a 
subband on the unit circle. 

The previous discussion is irrelevant if a prior known noise model is used; for example, 
the nonparametric model obtained from independent repeated measurements (λ\Η(ζ^1, θ)\2 

in the third term of (13-22) is then replaced by the sample variance όγ(k) (2-37)). At that 
moment the noise model is fixed, and the additional term only adds a parameter-independent 
constant to the cost. 

Remark. If the exact time and frequency domain maximum likelihood estimators are 
constructed (the exact likelihoods consider the initial and final conditions as random parame-
ters that are correlated with the input and the disturbing noise), then both estimates are equal 
for finite values of the data length N (Agüero et al., 2010). 
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13.10.3.2 Optimization Aspects. When time and frequency domain identification 
lead to the same cost function, the only remaining difference is the optimization technique 
that is used to minimize the cost function. This can sometimes lead to tricky situations. Con-
sider, for example, the generalized output error problem in the frequency domain formulation 
as discussed in Chapter 9 (see (9-83) with Ω = z_1, σ (̂&) = 0 and σ^ν(Κ) = 0): 

Σ^ ί ΐΦϊ 1 .^*) ) ! 2 (13-23) 

where ε(ζ^1, Θ, Z(k)) can be written as 

V * ' aY{k)\A(z-k\9)\ Kk aY(k)A(zk\0) 

with e(zi\ 0, Z(k)) = A(zi\ 0)Y(k) -B(z~k\ 0)U(k) (see (9-84)). Although both expressions 
in (13-24) lead to the same cost function (13-23), it turns out that the first form creates less 
problems with local minima. It also has a wider convergence region if a Gauss-Newton opti-
mization method is used. In this method, the second-order derivatives are approximated from 
the first-order derivatives, and, seemingly, this approximation is better for the first expression 
(where some phase dependence is eliminated) than for the second. The disadvantage is that 
more calculations are needed to deal with the derivative of the absolute value, and slower 
convergence is obtained in the close neighborhood of the solution. 

13.11 TIME AND FREQUENCY DOMAIN IDENTIFICATION: 
DIFFERENCES 

13.11.1 Choice of the Model 

Discrete-time models are the natural model class to be used in combination with time 
domain methods. Generalizing to other classes such as continuous-time models is not com-
pletely excluded, but it turns out from the literature that it is quite a complicated task (Sinha 
and Rao, 1991), and unexpected problems can appear (Soderstrom et al., 1997a, 1997b; 
Sóderstróm and Mossberg, 2000). 

In the frequency domain, the choice is more general. This is basically due to the fact 
that the differential (or difference) equations are replaced by algebraic equations in the re-
lated frequency variable. For continuous-time systems, the Laplace representation (transfer 
function) is used and evaluated on the imaginary axis (s = y'co). For discrete-time systems, 
z-domain models are used and evaluated along the unit circle (z = eJ(úTs). Also, other fre-
quency variables can be chosen; for example, +/]ω is the natural representation for diffusion 
phenomena (e.g., used to model electrochemical processes) and tanh^yco) is the logical 
choice to model commensurate microwave structures. 

13.11.2 Unstable Plants 

Prediction error techniques are mostly used to identify discrete-time models. These, 
typically, consider the following model structure: 

y(t) = G(q, G)u(t) + H(q, G)e(t) (13-25) 
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with q, the unit delay operator (qu(t) = u(t- 1)). The plant G(z~l
90) and the noise 

Η(ζ~ι,θ) models are rational functions of z_1, parameterized in Θ. e{t) is white noise, and 
\H(z~l, θ)\2 models the power spectrum of the disturbing noise. The parameters Θ are esti-
mated by minimizing the prediction errors 

ε(ί, Θ) = H~\q, 6){y{t) - G(q, 6)u{t)) (13-26) 

in least squares sense. It is clear that H~l(z~l
9 Θ) and H~l(z~l, 6)G{z~x, Θ) and their deriva-

tives with respect to Θ should be stable in order to be able to calculate (13-26). A stable plant 
and noise model is a sufficient condition to guarantee stability. Recently, a less restrictive so-
lution was proposed for this problem (Forssell and Ljung, 2000a) by adding an all-pass sec-
tion to the noise filter that cancels the unstable plant poles. 

In the frequency domain, there is no problem to model unstable plants because these 
methods calculate the transfer function only at a discrete grid on the unit circle (or imaginary 
axis). As long as a pole does not coincide with one of these grid points, the cost function re-
mains well defined; otherwise, regularization procedures can be used. 

13.11.3 Noise Models: Parametric or Nonparametric 

The efficiency of the estimates is improved using a well-chosen weighting function. 
The best option is to choose it inversely proportional to the power spectrum of the disturbing 
noise. Time domain methods apply filtering techniques to realize this weighting. Without 
these, the full covariance matrix of the noise should be inverted and next used in each itera-
tion step, leading to more calculation work. For prediction error methods (time domain), 
these noise filters are an intrinsic part of the method (see (13-26)), and the noise model 
H(z~l, Θ) is estimated together with the plant model G(z_1, Θ). The obvious advantage is that 
no constraints are imposed on the excitation at a cost of a second model selection problem. 
Moreover, the convergence is significantly slowed down. 

A nonparametric noise model can be generated automatically without user interaction 
for periodic and random excitations, leaving the complexity of the methods unaffected (see 
Section 13.5.1). 

13.11.4 Extended Frequency Range: Combination of 
Different Experiments 

The number of measured data points N in an experiment is directly linked to the record 
length T and the sample frequency fs, as N = Tfs. The minimum record length is mainly 
imposed by the lowest frequency of interest (or the spectral resolution) T = 1 / / 0 . The sam-
ple frequency is imposed by the highest frequencies, which have to be chosen so that the fre-
quency band of interest of the plant is covered fs > 2/max. Hence, the minimum number of 
samples that should be measured and processed is N>2fmax/f0. It is obvious that the num-
ber of measurements increases drastically if a large frequency range should be covered. This 
leads to impractical situations if TV becomes very large, for example, 1 million points. 

If periodic excitations are applied and combined with frequency domain identification, 
two significant simplifications can be made, the first being the data compression, as ex-
plained in Section 13.7.1, and the second consisting of a simplification of the experimental 
conditions. The latter is obtained by splitting the experiment into a number of subexperi-
ments, each covering another frequency range. For each of these subexperiments a much 
shorter record length can be used while it is still possible to measure all the required Fourier 
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coefficients. A similar approach cannot be applied to the ZOH models because they strongly 
depend on the sample frequency and, hence, combination of the different records is much 
more complicated. An alternative might be to use multirate systems (Crochiere and Rabiner, 
1983). 

Example 13.7. In the measurement of the electrochemical process (Figure 13-17) a 
wide frequency band [0.123 Hz, 64 kHz] had to be covered. To do this in one experiment, at 
least 1 million points are needed. The actual measurements were obtained in two experiments 
covering [0.123 Hz, 100 Hz] and [100 Hz, 64 kHz], using 4096 points each time. D 

13.11.5 The Errors-in-Variables Problem 

The errors-in-variables concept is a more general approach than the classical feedback 
situation as shown in Figure 13-20. The basic structure is captured in the gray area and it can 
be part of a larger structure, for example, a feedback system. However, this additional infor-
mation is not used in the algorithms developed in this book. Starting from the measured input 
u(t) and output y(t)9 the plant model G(Q, Θ) is identified. The noise sources can be corre-
lated with each other but are assumed to be independent of the driving signal r(f). In general, 
this is an unidentifiable problem (Anderson and Deistler, 1984; Bohlin, 1971) unless addi-
tional constraints are imposed on the excitation, and/or the noise models, and/or the plant 
model (Sóderstróm, 2007; Agüero and Goodwin, 2008). The following four situations can be 
solved: (i) the input is known exactly and the plant and output noise transfer function models 
are identified simultaneously (Ljung, 1999); or (ii) the excitation signal can be written as fil-
tered white noise and the plant, signal, input noise, and output noise transfer function models 
are identified simultaneously (Sóderstróm, 2007; Pintelon and Schoukens, 2007); or (iii) the 
signals are known to be periodic (Schoukens et al., 1997b); or (iv) an exactly known external 
reference signal is available (Forssell and Ljung, 2000c; Pintelon et al., 2010b). The first sit-
uation is the classical setup for time domain identification; while the second is the most diffi-
cult linear system identification problem concerning the generation of "high quality" starting 
values, the minimization of the cost function, and the model selection/validation. Solutions 
(iii) and (iv) are very attractive in combination with frequency domain identification and non-
parametric noise models. Actually, this is the standard setup we consider in this book (see 
Chapters 10 and 12). 

Note that the major difference between this setup and the ZOH setup is the information 
that is used to get the input signal ux{t). In the ZOH setup, the user relies on the validity of 
the ZOH assumption and the exact knowledge of the generator signal ud(k), whereas in this 
framework the assumption is replaced by a BL measurement. 

Actuator 

Figure 13-20. The errors-in-variables concept. 
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13.12 IMPOSING CONSTRAINTS ON THE 
IDENTIFIED MODEL 

In applications like prediction and simulation (finite element programs, network simulation, 
virtual prototyping) the identified transfer function model should satisfy some constraints 
like, for example, reciprocity, (strict) stability, (strict) passivity (positive real), or bounded 
real (see Table 13-3). While the reciprocity constraint is linear in the transfer function model 
parameters #, the others are strongly nonlinear functions of Θ. For example, the matrix ine-
quality constraint Γ(/ω) > O in Table 13-3 imposes the quadrant symmetry of the zeroes of 
det(T(s, θ))\ if s0 e C, σ0 e R, and ;ω 0 ejU are, respectively, complex, real, and imagi-
nary zeroes of det(T(s, Θ)), then s0, -sQ, -s0, -σ 0 , and -yco0 are also zeroes of 
det(T(s9 Θ)), and /co0 has an even multiplicity (for the discrete-time case s0, -s0,j(o0 are re-
placed by z 0 , z ^ eya)()70. 

TABLE 13-3 Possible Properties of an nu x nu Transfer Function Model G(Q, Θ). 

Property s-domain z-domain 

Reciprocity GT(s, Θ) = G(s,0) GT(z~\0) = G(z~\0) 

Strictly stable poles G(s, Θ) in Re(» < 0 poles G(z~\ Θ) in \z\ < 1 

Strictly passive G(s> θ) strictly stable and V c o e i : G(z~\ Θ) strictly stable and Vco e U: 

(positive real)<a> Γ ( Μ θ) = G(y«, Θ) + GT(-ja, 0)>O T(e~J^ ̂  θ) = G{e-j<»Ts ̂  θ) + GT(ej<oTs θ)>{) 

G(s, Θ) strictly stable and V w e R : G(z~\ Θ) strictly stable and V(oeR: 
Bounded real^ Γ ( Μ θ) = ^ _ GT(_M e)G(M θ) > 0 T(e-JcoTs ,0) = In- GT(e^, e)G{e~^ ,0)>O 

a. The matrix inequality constraint is equivalent with: the zeroes of det(7(Q, Θ)) are quadrant symmetric 
and there exists at least one ω such that T(jω, Θ) > 0 (s- domain) or T(e~J(úTs, Θ) > 0 (z- domain). 

The constraints mentioned in Table 13-3 are often imposed during the estimation of the 
transfer function model from noisy data (Baratchard et al., 1997; Van Gestel et al., 2001; 
Goethals et al., 2003; Grivet-Talocia and Bandinu, 2006). The disadvantage of this approach 
is that conflicting demands are imposed, which results in noncontrollable bias errors. Indeed, 
to suppress the noise on the data, the cost function should be weighted with the inverse of the 
noise variance. Imposing a constraint of Table 13-3 might introduce model errors because, 
for example, there is no a priori reason why the best linear approximation of a nonlinear sys-
tem should satisfy the properties of Table 13-3. These model errors should be distributed over 
the frequency band of interest according to some user-defined criteria. Since the correspond-
ing frequency weighting will be different from the inverse of the noise variance, optimal 
noise removal and stability (reciprocity, passivity, ...) are contradictory demands. 

Another approach consists in imposing the constraints in a post-processing step 
(D'haene et al., 2006; D'haene and Pintelon, 2008; Grivet-Talocia and Ubolli, 2007; 
Gustavsen, 2008). In a first step an unconstrained (high-order) model is estimated G(Q, ψ), 
which passes the validation tests (e.g., analysis of the cost function, whiteness test residuals). 
This step suppresses in an optimal way the noise without introducing bias errors. In a second 
step the validated model G(Q, ψ) is approximated by a constrained one GC(Q, Θ) satisfying 
one or more properties of Table 13-3. This is done by minimizing the following cost function 

Σ , e KwÍ¡G(Q, ψ) - Gc{a, θ)\\ (13-27) 
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w.r.t. Θ in a user-specified frequency band IK, and with user-defined weights wk. To keep 
the approximation error of the constrained model below a user-imposed level, the order of the 
constrained model might be larger than that of the validated model (D'haene et al., 2006; 
D'haene and Pintelon, 2008). The big advantage of this two-step procedure is that it provides 
models with uncertainty bounds (in the first step) and bias error bounds (in the second step), 
which is not the case when the constraints are imposed during the noise removal. 

13.13 CONCLUSIONS 

In this chapter we have refined the order in the identification field by putting forward four ba-
sic questions that should be answered before starting the identification process: (i) What sig-
nal assumption should be used, zero-order-hold (ZOH) or band-limited (BL)?; (ii) What 
excitation should be preferred, arbitrary or periodic excitations?; (iii) What kind of noise model 
should be used, parametric or nonparametric? and (iv) Finally, a last choice that should be 
made is the criterion to match the model and the data, a generalized output error or an errors-
in-variables cost. This leads to the following major (interrelated) steps in the design of the 
identification process: 

1. Experiment design 

la. Select the ZOH or BL signal assumption 

lb. Choose between arbitrary or periodic excitations 

2. Model: discrete- or continuous-time model? 

2a. ZOH -> discrete-time models 

2b. BL -^ continuous-time models 
If the signal assumption is violated, the choice is free but a more complex model 
is needed to describe the measurements. This model can be sued for prediction 
purposes so long as the setup is not changed. 

3. Cost function 

3a. Noise on input and output: errors-in-variables method using nonparametric 
noise models 

3b. Noise on the input negligible: generalized output error method using a non-
parametric noise model (default choice) or a parametric noise model (ARX 
and ARMAX model structures) if the output is disturbed by unobserved ran-
dom inputs 

3c. Output observations only: prediction error or maximum likelihood estimation 
of a parametric noise model 

And what about time or frequency domain identification? For some selections among the pre-
ceding choices, frequency domain identification methods seem to be preferred, for example, 
nonparametric noise models, very wide frequency ranges, continuous-time models, modeling 
subsystems for simulation, and errors-in-variables with periodic or random excitations. For 
online identification (Ljung and Soderstrom, 1983), or identification in the presence of non-
stationary noise, time domain identification is the natural choice. For the other situations, 
both domains are equivalent, and the user can make the choice by using other criteria such as 
familiarity with one domain. 
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13.14 EXERCISES 

13.1. The ZOH reconstruction of a discrete-time signal ud(kTs) is 

W ) = ^^=^ud(kTs)zoh(t-kTs) 

with zoh(/) = 1 for 0 < / < Ts and zoh(/) = 0 elsewhere. Show that the spectrum after a 
ZOH reconstruction is ^ζοΗ(ω) = υά(β^τήΖΟΗ(ω/ω3) with ZOH(JC) = 
Ts sm(nx)/(nx)e~Jnx. 

13.2. Consider the setup in Figure 13-3 and prove relation (13-5) (hint: first calculate the spec-
trum of uzoh(t), and y(t). Next, apply the sampling theorem). 

13.3. Consider the setup in Figure 13-4 and prove relation (13-6) (hint: first calculate the spec-
trum of wzoh(0, and u(t),y(t). Next, apply the sampling theorem). 

13.4. Consider the setup in Figure 13-5 and show that (13-8) reduces to (13-5) for L(yco) = 1. 
Note that this result is different from what would be found starting directly from (13-9) 
using a Taylor series expansion of cosec(x) (hint: check the convergence of the series ex-
pansions carefully). 

13.5. Reproduce the transfer characteristics of Figure 13-13 for the systems given in (13-19). 
13.6. Consider the continuous-time system of Figure 13-21, with Gact(s), G(s), and M(s) the 

continuous-time actuator, plant and controller characteristics, respectively, and with 
rzoh(t) a zero-order-hold reference signal. Prove that the response of all signals p(t), 
H(/), y(t), and w(t) in the continuous-time system to the ZOH reference rzoh(t), at the 
sampling instances, can exactly be calculated via the discrete-time equivalent in 
Figure 13-21, where 

Gítí*"1) = O -z-l)Z{Gact(s)/s} G\z-') = 
Z{Gact(s)G(s)/(s(\ + Gaci(s)M(s)))} 

Z{Gact(s)/(s(l + Gact(s)M(s)))} 

^ ( z - 1 ) = 
Z{Gact(s)G(s)M(s)/(s(\ + Gact(s)M(s)))} 

Z{(Gact(s)G(s))/(s(l + Gact(s)M(s)))} 

What do you conclude? Is physical interpretation of the identified discrete-time plant 
model Gd(z~l) possible? (hint: apply (13-4) from the reference signal to each internal 
signal, and calculate the appropriate ratios) 
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Figure 13-21. Continuous-time system (top) excited by a zero-order-hold signal rzoh(t), 
and its exact discrete-time equivalent (bottom). 



Guidelines for the User 

Abstract: A guideline for the user is provided in this chapter. It not only gives an overview 
of the complete identification process, but also discusses the decisions that should be made 
at each stage. So, inexperienced users have a road map that reduces the risk of getting 
trapped and increases their chances of arriving at a good model for their problem. 

14.1 INTRODUCTION 

From the previous chapters, it became clear that identification is a complex task, bringing to-
gether many different skills. It is not enough to know the specific application field well (e.g., 
automotive, acoustics, electrochemistry), but the user is also expected to be familiar with 
measurement techniques, statistical theories, and numerical methods. As it is quite unlikely 
that all these skills are found in one person, the risk of making a serious mistake during one 
of the identification steps is always present. The aim of this chapter is not to turn all readers 
into absolute specialists but to offer some guidance to inexperienced users in order to in-
crease their chances of a successful identification. To do so, we present two tools for readers 
to select the best solution for their problem. First, we provide a table that will guide readers to 
a good identification scheme (experiment setup, noise model, estimator) for their problem, 
starting from a few simple questions. Second, we provide some rules of thumb that may help 
the reader to avoid frequently appearing problems and pitfalls. 

14.2 SELECTION OF AN IDENTIFICATION SCHEME 

The aim of this section is to make a proper selection among possible identification 
schemes. By answering two questions, we will guide users to a good choice of the mea-
surement setup, the noise and the plant model, and the identification method that can solve 
their problem. Of course, these guidelines are strongly influenced by our personal back-
ground and experiences. For these reasons, we strongly urge readers to judge them criti-
cally and combine our advice with their own experience. 

14.2.1 Questions - Proposed Solutions 

There are basically two questions that set the complete identification scheme: the sto-
chastic framework and the particular application. In the sequel we discuss in detail these 
questions and the proposed solutions. 
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TABLE 14-1 Selection of the Noise Model and the Identification Method 

Stochastic Framework? Output Observations only/ Other^ 
Known Input - Output Disturbed by Unobserved Input(s) 

Noise Model Parametric Nonparametric 
Identification Method Prediction error/Frequency domain maximum likelihood Sample maximum likelihood 

a. Generalized output error with independent plant and noise dynamics, and errors-in-variables. 

14.2.1.1 Stochastic Framework? How does the disturbing noise sneak into the pro-
cess: As process noise? On the output measurements? Or on the input and output measure-
ments? Is the output perturbed by unobserved random inputs? Can the input be observed? For 
some methods, this is not important at all, but for other methods it is a critical issue. Identifi-
cation in feedback is a more tedious problem in control design than solving the same problem 
in open loop. The most general situation is that we consider (correlated) noise on the input 
and output measurements, which also includes the feedback problem. In these cases nonpara-
metric noise models combined with the sample maximum likelihood estimator (see Sections 
10.3 and 12.3) is the prime choice. However, the case where the identification starts from out-
put observations only can only be solved using parametric noise models. If the input is 
known and the output is disturbed by unobserved random plant inputs, then parametric noise 
models where (some of) the poles are common to the plant model (e.g., ARJVIAX model 
structure) give the best results. Either a time domain prediction error method (Ljung, 1999) or 
a frequency domain maximum likelihood estimator can be used (see Section 10.9). 

14.2.1.2 Application? What is the problem to be solved? For what reason do I need a 
model? We consider three possible answers. A first possibility is that a model-based digital 
controller will be designed on the basis of the identified model. In this case a discrete-time 
model combined with a zero-order-hold setup is optimal. Another possibility is modeling for 
physical interpretation (for example, estimation of the resonance frequencies, damping ratios, 
and mode shapes of a vibrating structure) or for analog simulation (for example, identifica-
tion of an equivalent electrical scheme for use in an electrical network simulator such as 
SPICE). For these applications a continuous-time model combined with a band-limited setup 
is the prime choice. A final possibility is the modeling of analog (sub)structures for imple-
mentation in a digital simulator. In that case it is most suited to describe the analog character-
istics by discrete-time models identified from band-limited data. 

14.2.1.3 Proposed Solutions. The optimal choices of the experimental setup, the 
noise model, the domain of the parametric model, and the identification method are summa-
rized in Tables 14-1 and 14-2. While most calculations can be done either in the time domain 
or in the frequency domain, some are easier performed in the time domain, others in the fre-
quency domain. Therefore, the continuous-time models and the nonparametric noise models 
are solely handled in the frequency domain. Focusing the identification in a particular fre-
quency band is also easier in the frequency domain than in the time domain. 

TABLE 14-2 Selection of the Setup and the Domain of the Parametric Model 

Application? Digital Control Physical Interpretation/ Digital Simulation 
Analog Simulation 

Experimental Setup Zero-order-hold Band-limited Band-limited 
Domain Discrete-time Continuous-time Discrete-time 
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14.3 IDENTIFICATION STEP-BY-STEP 

In this section, a series of general advice is formulated covering the different phases of the 
identification process as listed: 

Check and selection of the experimental setup 
Design of an experiment 
Choice noise model 
Preprocessing of the data 
The identification step 
Validation of the results 

Each of these topics will be visited shortly, resulting sometimes in an overlap with earlier or 
later material in this book. However, we chose to bring it all together here in order to opti-
mize the global overview and insight of the reader, to minimize the risk of making bad deci-
sions. 

14.3.1 Check and Selection of the Experimental Setup 

In many cases, an identification run starts from data that were made available at some 
place. From our experience, it is definitely no loss of time to inspect the experimental setup 
and to check how the data were collected. Quite often, significant improvements can be ob-
tained by very simple changes in the setup. Are the amplifiers properly set? What preprocess-
ing is done on the raw data? What are the properties of the sensors that are used to get the raw 
data? Is the process operating under stationary conditions? ... Each of these aspects can have 
a considerable impact on the overall quality of the data. A short visit to the experimental site 
is very informative in revealing unexpected complications that would be detected only after 
wasting a lot of time and effort. For example, the data can be collected with a specific goal in 
mind (e.g., quality control), paying no attention to disturbing effects or bad settings that even-
tually make the data useless for the intended modeling purposes. 

When looking at a measurement setup, two levels can be distinguished. A typical in-
strumentation configuration consists of a signal generator, a data acquisition arrangement, 
and a data-processing part, which extracts the parameters of interest from the raw data. Un-
derstandably, the sensor and actuator technology of the setup are closely connected to the ap-
plication, whereas the actual data acquisition (amplification, attenuation, filtering, sampling, 
and quantization) is only loosely coupled to a specific application. 

It is not easy to give general rules on the sensor or actuator part, although it is always 
worthwhile to check for the linearity, offsets, and drifts of these devices. These questions are 
closely linked to the calibration of the setup. A good identification scheme makes it possible 
to reduce the impact of stochastic errors, but systematic errors should be eliminated, either by 
a proper calibration procedure that minimizes these errors or by extending the model to in-
clude them as unknown parameters. What choice is optimal depends strongly on the effort 
that is needed to go for one of these solutions. In general, the quality of the model improves 
with the quality of the measurements. Identification should be no excuse to do sloppy mea-
surements, although it can open new possibilities to extract the desired information under 
worse operational conditions. 

Because the acquisition part is quite similar for many instruments, more general advice 
can be formulated. A first general choice is to select between the ZOH and the BL setup. 
Although it is not critical in every situation, it is better to match this choice with the applica-
tion in mind (discrete-time versus continuous-time model, digital simulation versus physical 
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model, control application, etc.). The BL setup is assured to be valid by putting proper anti-
alias filters in place before sampling the signals (check for the cutoff frequency, the stopband 
rejection, the linearity). 

A second, very important, aspect is the synchronization between the generator and the 
acquisition. If periodic signals will be applied and explicit advantage will be taken of the pe-
riodic nature (averaging, plant leakage suppression, etc.), it is extremely important that the 
generator is synchronized with the acquisition. Otherwise, it is more complicated to use the 
redundancy induced by the periodic behavior. 

For critical applications, it is also necessary to check the stability of the master clock 
and the triggering in order to assure the best quality. Jitter (see Section 2.5.2) decreases the 
signal-to-noise ratio of the measurements, and clock instabilities (Schoukens et al., 1996a) 
can induce systematic errors. 

Finally, the signal stored in the arbitrary waveform generator (= known reference sig-
nal) should always be saved together with the input-output data, because it can significantly 
simplify the system identification task. Indeed, if a known reference signal is available then, 
for example, (i) the noisy input, noisy output problem can be solved for arbitrary excitations 
using nonparametric noise models (see Section 7.2.7); (ii) exact filtering of the input-output 
signals becomes possible within a frequency domain prediction error framework (see Section 
10.9); and (iii) the noise can be separated from the nonlinear distortions in the transient re-
sponse of a plant to a periodic excitation (see Section 7.3.8). 

Advice 

Visit the site of the experimental setup and talk to the operators to learn from their ex-
perience. 
Check the systematic errors of the complete data acquisition - calibrate the setup. 
Check the validity of the signal assumptions (ZOH or BL, anti-alias filters). 
Pay attention to the synchronization of the setup. 
Always save the signal stored in the arbitrary waveform generator together with the 
noisy input-output data. 

14.3.2 Design of an Experiment 

The second phase of the identification process is the design of the excitation signals. 
Sometimes the user cannot influence the process at all. But even then, it should be checked 
whether the natural fluctuations (operational perturbations) carry enough information to give, 
at least, a chance of a successful identification. In all the other cases an excitation signal 
should be selected. This raises a series of questions immediately: what excitation level should 
be applied? What frequency band should be excited? In the initial phase of the identification 
process, we can only use prior information to set these values. For operator-controlled pro-
cesses, the operators should have good knowledge of acceptable values. For other devices the 
nominal values given in the user manual might give some indications. And if none of this in-
formation is available, initial tests should give the required information. In this case we can 
only hope that our experience will help us to protect the device under test against dangerous 
overloads. 

A second question is the linearity of the device. In this book we deal with methods to 
model linear systems or the best linear approximation of nonlinear systems. So it is important 
to know whether or not the linearity assumption is met. If the user is very confident, it is not 
necessary to check for nonlinear distortions; otherwise it is better to use excitations that make 
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it possible to detect their presence. According to the available prior knowledge, some precise 
guidelines can be given: 

■ If it is known that the odd (even) nonlinear distortions are dominant over the even (odd) 
distortions, then the optimal choice is measuring (at least) two periods of the response to 
a full (odd) random phase multisine. 

■ If it is known beforehand that the nonlinear distortions are dominant over the disturbing 
noise, then one period of a full random phase multisine or a random noise excitation 
should be used. 

■ If nothing is known at all, then the recommended default choice is measuring (at least) 
two periods of the response to an odd random phase multisine. 

If significant nonlinearities are detected, it is also important to reflect carefully on the goal of the 
modeling process. Do you intend to extract the underlying linear system or are you interested in a 
best linear approximation? An appropriate excitation design in agreement with the previous selec-
tion should be made. In the first case, the amplitude should be made as small as possible (although 
some nonlinearities such as stick slip are pronounced in that case). In the latter case, the excitation 
should be representative for the class of excitations that will be applied later on to the device (e.g., 
same amplitude distribution and same power spectrum; see Chapters 3 and 4). 

Next, it is necessary to check whether the experiments have to be done under feedback con-
ditions. These can be explicitly visible (a controller is in place) or can be implicitly present (e.g., 
loading of the non-ideal actuator by the plant). An example of the latter is a mechanical device 
that interacts with the output of the shaker. In these cases, additional care is needed because many 
identification methods fail when proper action is not taken (see Section 10.10). 

Finally, the question of the required frequency resolution should be answered. For lightly 
damped systems (e.g., mechanical vibrating systems) one should minimize the risk of missing a 
resonance and, hence, maximize the frequency resolution for a given measurement time T: use 
random noise excitations (or P = 1 period of a full random phase multisine) if the nonlinear dis-
tortions are dominant (see Section 7.2.8); otherwise measure P = 2 periods of the transient re-
sponse to a full random phase multisine (see Section 7.3.7). If the required frequency resolution 
f0 is smaller than that of the total experiment time T (f0 > 1 / Γ ) , then one can maximize the sig-
nal-to-noise and signal-to-distortion ratios of the FRF measurement using random phase multi-
sines: perform M = [/o^J (L*J is the largest integer smaller than or equal to x) experiments 
and measure P = 1 period if the nonlinear distortions are dominant (see Section 7.3.6); other-
wise perform M = |_/07Y2 J experiments and measure P = 2 periods (see Section 7.3.6). 

Advice 

Choose the excitation (random or periodic) that best fits your specific needs. 

Select the amplitude range and frequency band of the excitation signal to cover the fre-
quency band of interest. 

Check for the presence of nonlinear distortions. 

Check whether the device is captured in a feedback loop. 

Keep your application in mind. 
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14.3.3 Choice Noise Model 

A third important decision to be made concerns the choice between a parametric or a 
nonparametric noise model. As will become clear from the discussion, the choice of the noise 
model has an important impact on the complexity of the parametric plant modeling step. 

If the identification starts from output observations only, then parametric noise models 
are the only option. This is known as time series analysis in econometrics, spectral analysis in 
signal processing, and operational modal analysis in mechanical and civil engineering. Para-
metric noise models are also very useful in all cases where the input is known, and where the 
output noise is solely due to unobserved random inputs filtered by the plant dynamics, be-
cause they help identifying the plant dynamics (e.g., ARMAX model structure). The major 
disadvantages of parametric noise models are: (i) the quality of the estimated noise model de-
pends on the quality of the estimated plant model, (ii) the increased complexity of the model 
selection/validation and minimization of the cost function, and (iii) they offer no practical so-
lution for errors-in-variables problems. 

Nonparametric noise models are obtained in a preprocessing step and, hence, their 
quality is independent of the quality of the estimated parametric plant model, and the minimi-
zation of the cost function is less complex. As such, they simplify the model selection/valida-
tion procedure. Moreover, errors-in-variables problems and identification in feedback be-
come as easy as a generalized output error problem of a system operating in open loop. A last 
advantage is that using periodic excitations the noise can be distinguished from the nonlinear 
distortions. The major drawbacks of nonparametric noise models are: (i) the increased vari-
ability of the identified plant model due to the variability of the noise model and the suppres-
sion of that part of the input that is uncorrelated with the reference signal, (ii) unobserved in-
puts do not contribute to the estimation of the plant model, and (iii) they offer no solution for 
output data only problems. 

Advice 

Default choice: nonparametric models. 
Use parametric noise models for output data only problems, and problems where the 
input is known and the output is disturbed by an unobserved random input. 

14.3.4 Preprocessing 

The raw data, collected during the experiment, need to be preprocessed before starting 
the more demanding identification step. This not only facilitates checking for anomalies in 
the data (e.g., outliers or missing data) and bad experiments (poor signal-to-noise ratio) in an 
early phase of the identification process but also provides more insight into the complexity of 
the problem (look to the FRF), and makes it possible to separate different side aspects (such 
as trends or sensor drift) from the main task, which is to extract a linear parametric model 
from the data. 

14.3.4.1 Removal of Trends, Drifts, and Offsets. In many problems, a linear model 
is used as a local linearization of a nonlinear system, around a given operating point, that 
might be slowly varying as a function of an uncontrolled input (e.g., temperature). If the user 
is not interested in building a full-blown nonlinear model that accounts for all these effects, 
it is important to eliminate their impact on the data as much as possible. A whole bunch of 
methods, ranging from very simple to complex procedures, can be used to eliminate these un-
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desired effects. The simplest technique is to eliminate the DC offset from the measurements. 
This can be done effectively, under periodic operating conditions, by putting the DC line to 
zero after the DFT (or just do not use the DC line during the identification). In that case it 
is also very simple to observe slow drifts of the offset signals: calculate the mean value for 
a series of successive periods and check for systematic variations as a function of the period 
number. Next, simple correction methods such as linear interpolation between the successive 
DC values can be used to remove the first-order effects of these variations. If the variations 
are large, then more sophisticated trend-removing algorithms are recommended (McCormack 
et al., 1994a; Peirlinckx et al., 1996). An alternative is to disregard the spectral contributions 
at the low frequencies that are well below the reverse of the dominating time constants of the 
system. These techniques are also applicable to reduce the impact of sensor drift. 

Advice 

Check for trends by calculating the mean value over the successive periods. 
Do not use the DC information during the identification. 

143.4.2 Dealing with Outliers and Missing Data. Sometimes the measurements are 
very disturbed during a short interval (e.g., the presence of spikes or loss of data in a trans-
mission link). This results in a few data that are very unreliable or even completely missing. 
In such a case the first advice is to repeat the experiment at a reasonable cost, if possible. 
Only if this is excluded do we advise restoring the data by trying to remove the artifacts. In 
case of missing data in highly oversampled signals, simple interpolation methods can help a 
lot (Rolain et al., 1998). In more complex cases, where the oversampling is low, the missing 
or heavily disturbed data can be replaced, considering them as missing data that also need to 
be identified (Pintelon and Schoukens, 2000; see also Section 9.20). This increases the com-
plexity of the algorithms considerably and should be regarded as a last resort. Another possi-
bility consists in concatenating the data records (see Section 14.3.5.5). 

Advice 

Perform new experiments. 
If this is not possible, use simple interpolation methods if /max < 0Afs. 
Last resort: estimate the missing data. 

14.3.4.3 Estimate the Nonparametric FRF. We strongly advise calculating, always, 
the nonparametric FRF estimate before starting the parametric modeling step. This additional 
effort is negligible (see Chapters 2-4, 7). Simple visual inspection of the FRF not only gives 
a first impression of the model complexity but also allows a first evaluation of the quality of 
the data (noise level + level nonlinear distortions) and reveals, in a very early phase of the 
process, many problems. Sensor failure, saturated amplifiers, and acquisition overloads all 
result in an unexpected but mostly conspicuous distortions of the FRF. Finally, the user can 
check whether the appropriate frequency band is excited. 

Advice 

Calculate the FRF, the noise level, and the level of the nonlinear distortions, and make 
a visual inspection. 
Select the frequency band of interest. 
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143A A Check Whether the System Is Time Invariant. Slow-varying trends and off-
sets not only disturb the measurements but also can change the linearized behavior of the sys-
tem intrinsically. Under these conditions, users should carefully reflect on the value of their 
models and the aim of the experiments. A useful idea for the variability is a necessary condi-
tion to make a ripe decision. In case of periodic excitations, the FRP can be calculated for 
each individual period and, again, a simple visual inspection will give good insight into the 
significance of the problem. 

Another way to detect slow time-variations of the system consists in taking the DFT of 
all output periods at once and checking whether or not skirts are present around the excited 
frequencies (Lataire and Pintelon, 2009). Before performing this test one should first verify 
that the acquisition and generator units are synchronized, and that the actuator(s) and sen-
sors) are time-invariant. This can be done by measuring with the same setup a dynamic sys-
tem that is known to be time-invariant. 

Advice 

Check the time invariance of the system by calculating the FRF over successive periods 
after trend removal (see 14.3.4.1); or by looking for the presence of skirts in the output 
DFT spectrum of all output samples at once. 

14.3A.5 Extract the Nonparametric Noise Model It is very easy to extract the non-
parametric noise model from periodic (Chapter 2-4, 7) or random (Chapter 7) records. 
Again, this information is very revealing. 

Observing the SNR of the input and output measurements not only gives a good im-
pression of the overall quality of the data but also shows where the noise sneaks into the mea-
surements. A low SNR at the input (or the output) points to high noise levels at the input (or 
output). Low SNR values at the input and the output in combination with a high input-output 
correlation indicate dominating generator noise or process noise that is turning around in a 
feedback loop. 

The noise levels are known as a function of frequency. So, the user can check whether 
or not the frequency band of interest is affected too much by the noise. It also gives feedback 
in an early stage of the identification process for the design of improved experiments, such as 
putting more power in the frequency bands with a too low SNR. Of course, the noise infor-
mation can also reveal problems in the measurement setup and alert the user to their pres-
ence. For example, bad grounding can be denoted by the presence of high disturbing compo-
nents at the harmonics of the mains frequency. 

Advice 

Make a nonparametric noise analysis. 
Check for anomalies. 
Judge the quality of the experiment. 
Improve the experiment if necessary and possible. 

14.3A.6 Check for the Presence of Nonlinear Distortions. A final, but important, 
check is to look for the presence of nonlinear distortions. From Chapter 3 it is known that 
such distortions can be masked completely as filtered white noise in the case of random exci-
tations. All classical validation tests at the end of the identification process will fail to indi-
cate their presence. This may lead to dangerous situations in which users erroneously believe 
they captured a good model. A significant change in the excitation signal, in a later phase of 
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the design process, would completely fool the quality of the predicted output. Moreover, the 
noisy behavior of the measurements is actually not due to the noise but should be attributed to 
the stochastic nonlinear distortions. For this reason, early detection of the presence and the 
level of nonlinear distortions is very valuable. It gives users, from the very beginning, an idea 
of the best quality that can be obtained through linear modeling. This makes it possible to 
make a conscious decision to go on or to stop with the modeling effort before wasting a lot of 
time in the identification step. 

If the goal is to maximize the nonlinear detection sensitivity of the measurement for a 
given excitation rms value, frequency resolution /0, and experiment time Γ, then one should 
measure P = [p/o^J or P = [_pf0T/2j (\_xj is the largest integer smaller than or equal to 
x) periods of the (transient) response to a full or odd random phase multisine with random 
harmonic grid where 100 xp % of the (odd) harmonics are excited. If the goal is to minimize 
the total uncertainty (noise + nonlinear distortions) on the modeled best linear approximation, 
while maintaining the ability to distinguish the noise from the nonlinear distortions, then one 
should measure P = 2 periods of the response to a full (the odd distortions are dominant 
over the even) or odd (the even distortions are larger than the odd) random phase multisine. 

Advice 

Use specially designed periodic excitation to check for the presence of nonlinear distor-
tions (see Sections 4.4 and 14.3.2). 
If the nonlinear distortions cannot be neglected, use the total (co)variances (sum noise 
(co)variances and (co)variances of the nonlinear distortions) for generating uncertainty 
bounds on the FRF, and for identifying the parametric plant model. 

14.3.5 Identification 

Only at the fifth step do we arrive, finally, at the kernel of the identification procedure 
where a parametric model is extracted from the (preprocessed) data. Just as for the previous 
phases, a number of user decisions have to be made. Among them, we will discuss the choice 
of a model class; the selection of the model complexity; the impact of initial conditions or 
transients; dealing with time delays; and finally, we spend a few moments on the problem of 
local minima. 

14.3.5.1 Choice of a Model Class. In a first step the desired model class should be 
selected: do you want to get a continuous-time model (e.g., physical interpretation of the re-
sults, or synthesis of an electrical network equivalent of the model for implementation in an 
electrical network simulator), a discrete-time model (e.g., for control design or to set up a 
simulator), or one of the special models such as Js to model diffusion processes or distrib-
uted systems. Remember that this choice should be matched with the selected experimental 
setup. Otherwise, more complex models will be needed to capture the difference between the 
actual intersample behavior and the one assumed by the model. 

Advice 

Select the model class that best fits your application. 

14.3.5.2 Selection of the Model Complexity. During the identification process, not 
only do the parameters need to be estimated but also the model order should be selected. There 
exist a series of simplified estimators, with increased noise sensitivity (e.g., linear least 
squares), that make it possible to estimate a whole bench of models in one step. This result can 
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be used to get an initial guess of the required complexity. An alternative is to calculate the FRF 
(for input-output data problems) or the power spectrum of the data (for output data only prob-
lems) to get an initial idea (e.g., counting the number of resonances for vibrating mechanical 
structures). Next, this guess should be refined using more advanced estimators. Two strategies 
are possible. The first one is conservative, starts from a simple model, and searches gradually 
for more complex models. The alternative is to go for a very complex model and check next 
what poles and zeros can be eliminated. This method can be used only if the estimator is ro-
bust for numerical singularities (common pole-zero pairs). In both cases, the cost function and 
a residue analysis are very valuable tools to guide one in the selection process (see Chapters 11 
and 12). 

Advice 

Calculate the FRF (input-output data) or power spectrum (output data only) to get an 
initial idea of the complexity of the problem. 
Check the phase of the FRF and the cross-correlation between the input and output sig-
nals to detect the presence of a delay. 
Analyze the value of the cost function. 
Perform a whiteness test of the residuals. 
Detect overmodeling via AIC (prediction) or MDL (physical interpretation). 

14.3.5.3 Impacto/Initial Conditions or Transients. During the identification and 
validation it is important to safeguard against the impact of initial conditions (time domain) 
or leakage effects (frequency domain) induced by the plant and noise dynamics on the data. 
While the leakage errors due to the plant dynamics can easily be included in the parametric 
plant model by adding an additional transient term (see Chapter 6), this is somewhat more 
tricky for the noise leakage errors because it is more difficult to generate starting values. The 
leakage/transient errors due to the plant and the noise dynamics can easily be suppressed non-
parametrically in the input-output data for both random and periodic excitations (see Chapter 
7). Using periodic excitations, the plant leakage errors can be avoided if an integer number of 
periods of the steady state response is observed. Note, however, that the noise leakage errors 
always remain present in these measurements. 

Even if these plant and noise leakage effects mostly have a second-order impact on the 
quality of the identified model, they become dominant during the analysis of the residuals. 
This can lead the user to very complex models because the correlation test of the residuals is 
very sensitive to these effects. For this reason, the user is advised to add these additional 
terms to his/her model or to suppress it nonparametrically in the data. 

For lightly damped systems (e.g., mechanical vibrating structures) the leakage errors 
cannot be neglected in the parametric plant modeling; even in the steady state response to a 
periodic excitation (noise leakage). Hence, nonparametric suppression of the leakage errors 
in the data is recommended here. It also allows us to handle the transient response to periodic 
excitations, which either significantly reduces the experiment time for a given frequency res-
olution, or increases the frequency resolution for a given experiment time. 

Advice 

Suppress nonparametrically the leakage errors in the input-output data (random and pe-
riodic excitations). 
If the transient time can be neglected, measure the steady-state response to a periodic 
input. 
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Always add a plant and noise transient term to the model structure when identifying 
parametric noise models. 
Suppress (non)parametrically the transient/leakage errors in the validation data set. 

14.3.5.4 Dealing with Time Delays. Some systems, such as transmission lines or 
transport phenomena, cannot be modeled as a lumped system. An additional delay term be-
comes explicitly visible and should be added to the model. The presence of such terms can be 
recognized from the impulse response (where a delay is explicitly visible) or from the FRF 
(by looking for a rapidly varying (linear) phase). When a delay is present, we advise that all 
information is used to get a good initial estimate. It reduces the risk of stumbling on a local 
minimum during the optimization. Delay systems have many local minima, and it is very 
hard to find the global minimum. 

Advice 

Add an explicit delay term to the model and use all prior information available to get an 
initial value. 
Restart the search, using different starting values, to make sure that you are not trapped 
in a poor local minimum. 

14.3.5.5 Combining Experiments. It may happen that data sets of different experi-
ments on the same plant are available. These data sets may originate from time domain ex-
periments, frequency domain experiments, or time and frequency domain experiments. The 
basic question that arises then is how to combine these data sets in an optimal way. The solu-
tion to this problem depends on the prior knowledge and the type of experiments performed. 
We distinguish between the following three cases. 

1. It is known only that the time and/or frequency domain experiments are indepen-
dent (the noise in one experiment has nothing to do with the noise in the other 
experiments). 

2. The independent time or frequency domain experiments are synchronized. 
3. The time domain experiments stem from one experiment where at several time in-

stances a (large) number of consecutive input and output samples are missing; or 
separate input-output data sets measured under the same operational conditions 
are available. 

The following solutions are recommended for each of these situations: 

1. To solve case 1 we apply the Gaussian maximum likelihood (ML) principle to in-
dependent experiments. The only thing to do is to extend the frequency domain 
data vector Z as ZT = [Z^T Z^T...Z^T] with ZM the input-output DFT 
spectra of the rth experiment (see (9-3)), and similarly for the noise (^var i -
ances. If no periodic excitations are used, the equivalent initial conditions are dif-
ferent for each experiment and they should be added to the model parameters. 

2. For synchronized experiments, the sample mean and sample (co)variance should 
be calculated, and these data are then considered as the raw input data for the 
identification process. Note that the improved signal-to-noise ratio also relaxes 
the starting value generating problem, resulting in a wider convergence rate of the 
search algorithms. The single experiment software can be used without any modi-
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fication to handle the synchronized experiments, even in case of arbitrary excita-
tions (see Appendix 14.B). 

3. A first possibility to tackle case 3 is to handle the complete input-output data sets 
as independent experiments. However, it is better to express that the data sets stem 
from the same experiment. The identification starts, then, from the DFT spectra of 
the concatenated data sets (the missing data points are just taken out). The recom-
mended default choice is to suppress nonparametrically the transient (leakage) er-
rors in the concatenated data sets and to use the steady state input-output model 
(see Section 12.3.1). An alternative approach consists of combining the concate-
nated data sets without nonparametric transient suppression with an extended 
parametric model (see Section 6.3.4, (6-48) for the concatenation of two data sets; 
and see Exercise 6.8, (6-81) for the general case). This works well so long as the 
noise leakage error can be neglected or if the plant and noise transient terms have 
the same poles. 

14.4 VALIDATION 

At the end of the identification process, it should be checked whether the identified model is 
a valid one. Ideally, the estimated model should be close to the exact one, but the reader 
should realize that the "exact" model is only an idealized concept. Most real-life systems can-
not be described exactly by a rational transfer function. Moreover, because the exact system 
will always be unknown, we will never be able to answer that question. For this reason, we 
should focus on more realistic questions such as: Does the model describe the data well? 
Does the model fit my needs? These questions can be properly answered. A set of tools is 
available to check whether all information is extracted from the data. We briefly repeat them 
here; for more details, the reader is referred to Chapters 11 and 12. 

A global test is based on the value of the cost function and a correlation test of the fre-
quency response function (FRF) residuals (difference between the nonparametric FRF esti-
mate and the identified transfer function model): 

(i) The cost is too small: check the noise and/or nonlinear distortion analysis, are the 
(co)variances correct? 

(ii) The value equals the expected value within the uncertainty bands: no information 
is left in the data (this should be confirmed by the residual analysis). If the noise 
(co)variances are used as weighting in the cost function, then the system behaves 
linearly and no unmodeled dynamics can be detected. If the total (co)variances 
(noise + nonlinear distortions) are used, then no unmodeled dynamics can be de-
tected in the best linear approximation. 

(iii) The value is too large: there are still model errors present. Their nature can be de-
termined from an analysis of the FRF residuals. Correlated residuals point to un-
modeled dynamics and demand increasing the model complexity. White residuals 
point to nonlinear distortions if noise (co)variances are used as weighting, and in-
creasing the model complexity will not help. 

Analyzing the cost function reveals the presence or absence of model errors, but gives no in-
dication about the frequency location of the unmodeled dynamics. A local test obtains this in-
formation by comparing the frequency response function (FRF) residuals to the uncertainty of 
the nonparametric FRF estimate: 
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(i) About 100 x p % of the FRF residuals lie within the 100 x p % noise uncertainty 
bound: the system behaves linearly and no unmodeled dynamics can be detected 
(to be confirmed by a correlation test on the FRF residuals). 

(ii) Too much (> 100(1 -p)%) of the FRF residuals lie outside the 100 xp % noise 
uncertainty bound: unmodeled dynamics (correlated FRF residuals) and/or non-
linear distortions (uncorrelated FRF residuals). 

(iii) About 100 xp% of the FRF residuals lie within the 100 xp % total uncertainty 
bound (noise + nonlinear distortions): the best linear approximation is identified 
and no unmodeled dynamics can be detected (to be confirmed by a correlation test 
on the FRF residuals). 

(iv) Too much (> 100(1 -p)%) of the FRF residuals lie outside the 100 xp% total 
uncertainty bound (noise + nonlinear distortions): unmodeled dynamics in the 
best linear approximation (correlated FRF residuals). 

Sometimes it is not necessary to extract all information from the data, especially when this 
would lead to very complex models. At that stage the reader should specify an acceptable er-
ror level (e.g., no model errors larger than 10%), and once this level is reached the model 
complexity is no longer increased. The choice between these options depends on the intended 
use of the model completely. 

In the classical identification approach (see, for example, Ljung, 1999), it is strongly 
advised to split the available data in two sets: an identification set, used to identify the model, 
and a validation set to check for the model. Although this is a very robust check of the quality 
of the model, we prefer to use all the available experimental time and data to identify the 
model. The availability of the nonparametric (high-quality) FRF and a nonparametric noise 
model turns out to be a good alternative for the validation set. Of course, it always makes 
sense to perform a second experiment with another excitation signal, but then we advise us-
ing this information also during the identification step. Before starting the parametric identi-
fication, the two nonparametric FRFs can be compared with each other to check whether one 
model can be used to describe both experiments. 

Advice 

Compare the parametric model with the nonparametric FRF and its noise (and total) 
uncertainty bounds. 
Check the value of the cost function. 
Perform a correlation test on FRF residuals. 

14.5 CONCLUSION 

The system identification task can be simplified significantly if the following two recommen-
dations are followed: 

■ Always save the signal stored in the arbitrary waveform generator together with the 
input-output signals. 

■ Use nonparametric noise models. 

It is also a good practice to make a nonlinearity test and to quantify the level of the nonlinear 
distortions, because it sets the limits of the linear system identification framework. 
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14.6 APPENDIXES 

Appendix 14.A Independent Experiments 

Because the Gaussian negative log-likelihood function (9-78) of the union of indepen-
dent experiments is the sum of the contributions of the individual experiments separately, it 
follows that the ML solution (9-83) equals the sum of the ML cost functions the data sets sep-
arately. The only thing to do is to extend the frequency domain data vector Z as 
ZT = [ZW Z t 2 ^ . . . ^ 7 ] with ZW the input-output DFT spectra of the rth experiment 

(see (9-3)), and similarly for the noise (co)variances. For arbitrary excitations the equivalent 
initial conditions are different for each experiment and they should be added to the model pa-
rameters. To see this it is sufficient to note that the weighted residual ε(θ, Z) of the ML solu-
tion (9-83) of the combined experiments can be written as 

ε\θ,Ζ) = [ε^τ(θ,ΖΜ) £[2]Τ(%ζΜ) . . . ^ ^ , Ζ ^ ) ] (14-1) 

with ε^\θ,Ζ^) the weighted residual vector of the rth experiment. 

Appendix 14.B Relationship between Averaged DFT 
Spectra and Transfer Function 
for Arbitrary Excitations 

The experiments are synchronized (case number 2) if the phases of the true input DFT 
spectra are the same 

ZU[
0
l\k) = ¿U¡2Xk) = ... = ZU™(k)9 k = 1,2, . . . ,F (14-2) 

The solution consists of averaging the data z = Μ~ΧΣ^= \Z[r] and changing the noise (^var i -
ances accordingly σ2 = Μ~2Σ^= i <¿r]2 with σ = σϋ9 σγ and σγυ. The input-output DFT 
spectra of each experiment satisfy 

A(sk, 6»W)yfl(*) = B(sh 0M)lAr](k) + I(*h 0 " ) + A^(sk) 
(14-3) 

with 0M = [a0 ax...ana b0 bv..b„b ψ jW . . . iW]r , r = 1,2, ...,M (see (6-33)). Aver-
aging (14-3) over all experiments gives 

A{sh 0)Y(k) = B{sh 0)U{k) + I(sh Θ) + A(sk) 
(14-4) 

A(zi\ 0)Y{k) = B(z~kK ff)U(k) + I(z~k\ Θ) 

where Θ = [a0 ax...ana b0 bx...bnb iQ ix..-in]
T with /, = Μ~ιΣ^= i*ír], s = 0, 1, ... n¿ 

X(k) = Μ~ιΣ^= x^
r\k) with X = Y and U; and A{sk) = Μ~ιΣ^= i¿[r](sk). Because the ex-

periments are synchronized, the averaged DFT spectra will not tend to zero as M-»oo. 



Some Linear Algebra 
Fundamentals 

Abstract: This chapter states and reviews linear algebra notations and basic concepts that are 
used throughout this book. In order to promote familiarity with these concepts, many exer-
cises are provided at the end of the chapter. Elaborated discussions and proofs on the topic 
can be found in Gantmacher (1990), Golub and Van Loan (1996), Lancaster and Tismenetsky 
(1985), and Wilkinson (1988). Elementary matrix operations such as the sum, the inverse, the 
transpose, and the determinant are assumed to be known. 

15.1 NOTATIONS AND DEFINITIONS 

The entries of a matrix A e Cn x m are denoted by A^^ 

A = 
^[1,1] · " ^[\,m] 

A[n, 1] · · · ^[n,m]¡ 

(15-1) 

¿[:,k] (̂ [A:,:]) stands for the kth column (row) of A. A[i:j,k:i]> with/> 2 and/>&, selects 
a ( / - / + 1) x (k- / + 1) block of A containing rows / to / and columns k to /. Superscript 
T (H) is for the matrix transpose (complex conjugate transpose) and superscript -T ( -H) 
denotes the transpose (complex conjugate transpose) of the inverse matrix. A matrix A is 
Hermitian (skew Hermitian) if AH = A (AH = -A) and it is symmetric (skew-symmetric) if 
AT = A (AT = -A). In (On) denotes the n x n identity (zero) matrix. 

The row (column) rank of a matrix is the maximum number of linearly independent 
rows (columns). A matrix A e Cnxm has a full row (column) rank if its row (column) rank is 
n (m). For any matrix the column rank equals the row rank (Lancaster and Tismenetsky, 
1985). This motivates the following definition of the rank of a matrix A: 

rank(>4) = column rank of A = row rank of A (15-2) 

A square matrix is called regular if it is of full rank. 
For A G Cnxm, rm\l(A) is the linear subspace of Cm defined by Ax = 0 
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rm\\(A) = {x e Cm\Ax = 0} (15-3) 

The range (column space) of a matrix A e Cnxm is the linear subspace of O that is ob-
tained by making all possible linear combinations of the columns of A 

ranged) = {y e Cn\y = Ax,xeCm} (15-4) 

Note that ranged) = mngQ(AAH) = (nul l^^)) 1 where superscript _L stands for the or-
thogonal complement of a subspace (proof: see Exercise 15.1). 

The span of m vectors ax, a2, ..., am e Cn is the linear subspace of Cn obtained by 
making all possible linear combinations of a{, a2, ..., am 

span{a1?a2, ...,am} = {x e C"\x = Σ™= ^α , - , a¡ e C} (15-5) 

The eigenvalues λ{Α) of a matrix A e Cnxn are the roots of the characteristic polynomial 
dQt(A-ÁIn) = 0, where det( ) denotes the determinant. The nonzero vectors ΧΦΟ that 
satisfy Ax = λχ are the corresponding eigenvectors. The eigenvalues are invariant with re-
spect to a regular transformation T e Cnxn (Golub and Van Loan, 1996): 

B = TAT-1 with det(7)*0 (15-6) 

whence, after ordering of the eigenvalues, Ák(B) = Ák(A), (k = 1 , 2 , . . . , n). We note that B 
and A are similar, and T is called a similarity transformation. Hermitian matrices have real 
eigenvalues (Wilkinson, 1988). 

By definition, a real matrix A eUnxn is positive (semi-)definite if for any x E Rg, the 
quadratic form xTAx is strictly positive (positive): xTAx > 0 {xTAx > 0). Similarly, a ma-
trix A G Cnxn is positive (semi-)definite if for any x e Cg, xHAx > 0 (xHAx > 0). These 
conditions are satisfied if and only if all the eigenvalues of A are real and Ák(A) > 0 
(Zk(A) > 0), k = 1, 2, ..., «. Note that no symmetry is required in the real case while in the 
complex case the positive (semi-)definite condition implies that A is Hermitian. We shall 
write A > 0 for positive definite and A > 0 for positive semidefinite matrices. 

The right singular vectors v (left singular vectors u) of a matrix A <E Cnxm are 
the eigenvectors of the matrix AHA (AAH). The singular values ak(A), k = 1,2, ... 
min(«, m), are the positive square roots of the eigenvalues of AHA (AAH) and are usually 
ordered from large to small values. 

A matrix UeUnxn (UeCnxn) is said to be orthogonal (unitary) if UTU = In 

(UHU = In). Orthogonal (unitary) matrices have the property det(t/) = ±1 (|det(C/)| = 1) 
and U~l = UT (U~l = UH). 

15.2 OPERATORS AND FUNCTIONS 

Let A¡ e Cnxm
9 i = 1, 2, ...,K, then diag(^1?^2, ...,AK) G CnKxmK is a block diagonal 

matrix 
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d\*g(Ax,A2, —,¿K) = 

Ax 0 ... 0 
0 A2 ... 0 

0 0 ... A 

(15-7) 

The Hermitian part (skew Hermitian part) of A e Cnxn is herm(yi) = (A+AH)/2 
((A-AH)/2). Any matrix can be written as the sum of a Hermitian and a skew Hermitian 
matrix: A = (A+AH)/2 +(A-AH)/2 

\A D\ Inverse of block matrices: if 
Ί - 1 

C B 

A Dl 

C B\ 

-1 

and A~l exist, then (Kailath, 1980) 

A~l+EA~lF -EA~l 

-AlF Δ"1 
(15-8) 

where Δ = B-CA~lD, E = A~lD, and F = CA~K 

The trace of A e Cnxn is defined as tr(/i) = ^ = \^[k,ky ^ *s circular shift invari-
ant: for any A e Cnxm, BE CmxP, and C <= d>x w, tr(ABQ = tr(BCA). 

For A G Cnxm, vec(^) e Cnm is a column vector obtained by stacking the columns of 
A on top of each other 

vec(^) = 

Λ [ Μ ] 

A[';2] 

H·;»*]· 

(15-9) 

15.3 NORMS 

|| is a matrix norm if the following properties are satisfied for all A,BeCnxm and a e C: 

1. 114 >0 and MU =0<=>Λ = 0 
2. M + 5|| ^ MU + Wl 
3. MU = |a| 

The following matrix norms (A e Cnxm) are used frequently: the Frobenius norm, 

\\A\\F = j ^ i ) = ^ Σ : = 1 Σ Γ = Ι Μ [ Μ ] | 2 (15-10) 

the 1-norm, 

\\Α\\Χ = max ΣΙ=ι\Α[ΚΙ]\ 
\<l<m 

(15-11) 
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the 2-norm, 

IU||2 = max ak(A) = σχ(Α) (15-12) 
l < A : < m 

and the °°-norm, 

MIL = m a x ΣΓ=ιΜ[Μ]Ι (15-13) 

The Frobenius, 1-, 2- and oo -norms satisfy the submultiplicative property 

\\AB\\ < \\A\\\\B\\ MA eCnxm,\/Be Cmxp (15-14) 

Note that not all matrix norms satisfy (15-14). We also have 

M M M I I F (15-15) 

Perturbations and the inverse (Theorem 2.3.4 of Golub and Van Loan, 1996): take 
A, E G O x *, if lU-^ll = r < 1, then det(^ +E) Φ 0 and 

\\(A + Ey -A~i\\ < M!á^£ (15-16) 

with || || any matrix norm that satisfies the submultiplicative property (15-14). 

15.4 DECOMPOSITIONS 

15.4.1 Singular Value Decomposition 

For any A e C" x m with n > m there exist UeCnxm and Σ, V e Cm x m such that 
(Golub and Van Loan, 1996) 

A = UZVH (15-17) 

where VHV = VVH = UHU = Im and Σ = diag(al5 σ2, ···, am) with σλ > σ2 > -
> om > 0. The nonnegative real numbers ak are the singular values of A, and the columns 
V[:tk] a n ( l ^[:,k] a r e m e corresponding right and left singular vectors. (15-17) is called the 
singular value decomposition (SVD) of the matrix A. It can be expanded as 

Λ = ΣΓ-ισ^[:,*]»β*] (15-18) 

Taking the Hermitian transpose of (15-17) covers the case n < m. A numerically stable cal-
culation of the singular value decomposition is available in standard mathematical software 
packages. 
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The singular value decomposition (15-17) contains a lot of information about the struc-
ture of the matrix. Indeed, if σχ > σ2 > ··· > σΓ > ar+ j = ... = am = 0, then 

rank(^4) = r 

null(i4) = span{F[:>r+1], K[:>r + 2 ] , . . . , V[:m]) (15-19) 
ranged) = span{£/[: n , i/[: 2], ..., U[:r]} 

If A e Cmxn with n>m, then it can be decomposed into singular values as 

A = KTÍ/" (15-20) 

with VeCmxm, Σ = diag(al9 ..., a j , and Ue Cnxm (proof: apply (15-17) to AH). If 
rank(^4) = r then 

null(¿) = (span{C/[:>1], £/[:,2], .... C / ^ } ) ^ _2 

ranged) = span{F[:1], F [ : 2 ] , ..., V[:r]} 

If rank(^) = n then null(^) = {x e Cn\x = U±y9y e Cn~m} with UL G C B X ( " - ' K ) the or-
thogonal complement of U: UHUL = 0 and UfU± = In_m. 

The condition number of a matrix A G Cnxm is defined as the ratio of the largest sin-
gular value to the smallest singular value κ{Α) = σχ/ση. For regular square matrices 
m = n it is a measure of the sensitivity of the solution of the linear system Ax = b, with 
b G Cn, to perturbations in A and b. It can be shown that (Golub and Van Loan, 1996) 

THT^WwJ ° 5 - 2 2 ) 

where Δ denotes the perturbation. For rectangular matrices m > n of full rank, it is a mea-
sure of the sensitivity of the least squares solution JCLS = (AHA)~lAHb of the overdeter-
mined set of equations Ax* b, with b e Cw, to perturbations in A and b (see Section 
15.13). For singular matrices κ{Α) = oo. If κ(Α) is large (log10(^(y4)) is of the order of the 
number of significant digits used in the calculations), then A is said to be ill-conditioned. 
Unitary (orthogonal) matrices are perfectly conditioned (tc = 1), while matrices with small 
condition number (κ ~ 1) are said to be well-conditioned. 

15.4.2 Generalized Singular Value Decomposition 

Let A e Cnxm with n>m, B G 0>xm with p>m and mnk([ATBT]T) = w then 
there exist UA eCnxm, UB eCpxm, and a regular I G C w x m such that (Golub and Van 
Loan, 1996; Paige, 1986) 

A = ϋΑΣΑΧ-χ B = L ^ X " 1 (15-23) 

where t /f [£ = [//££ = Im, ΣΑ = diag(al9 «2, ..., am), and 2^ = d i a g ^ , ^ , ...,/?m), 
with a ^ O , Pk^0, and a\+β\ = 1. The ratios ak(A,B) = tf¿//?¿ are the generalized 
singular values of the matrix pair (^4,5), and the columns A^.^ are the corresponding gen-
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eralized right singular vectors. If B e Cm x m is regular then the generalized singular values 
of (A, B) are equal to the singular values of AB~l: ak(A, E) = ak(AB~l). 

The generalized singular value decomposition (15-23) can be used to solve the general-
ized eigenvalue problem 

AHAx = ÁBHBx (15-24) 

without forming AHA and BHB. It is easy to verify that x = X[: k] and λ = a\/'β\, 
k = 1, 2, ..., m, are the solutions of (15-24) (see Exercise 13.18). Fortran and C versions of 
the generalized singular value decomposition are available in public domain software 
(Anderson et al., 1992; Bai and Demmel, 1993). For BHB = Im the generalized eigenvalue 
problem reduces to an ordinary eigenvalue problem that can be solved using the singular 
value decomposition (15-20) of A. x = V[: k^ and λ= σ\, k = 1,2, ...,/w, are then the 
solutions of (15-24) (see Exercise 15.16). 

15.4.3 The QR Factorization 

The QR factorization of A e Cnxm with n > m is given by 

A = QR (15-25) 

where Q e Cnxn satisfies QHQ = In, and R is an upper triangular matrix (Golub and Van 
Loan, 1996). If A is of full rank then the QR factorization has the following properties: Q 
and R are unique, the diagonal elements of R are positive, and ranged) = range(0. 

15.4.4 Square Root of a Positive (Semi-)Definite 
Matrix 

Any positive (semi-)definite matrix A G Cnxn can be decomposed as 

A = AHA or A = SSH (15-26) 

where ΛΗ, S e Cnxm and m > rank(v4). Λ, S are square roots of A that are not unique and 
often have no analytic solution. Numerical, nx n, solutions can be calculated using the sin-
gular value decomposition. For example, if A = VIVH then any A = TZX/1VH with 
T e £nxn a unitary matrix satisfies (15-26). Choosing T = V gives a Hermitian solution 
that motivates the following notation: 

A = Al/2Al/2 (15-27) 

with Ax/1 = VIX/2VH. In the real case, similar results apply to symmetric positive (semi-) 
definite matrices. 

MOORE-PENROSE PSEUDOINVERSE 

For any matrix A e Cnxm there exists a unique generalized inverse A+ e Cmx n, also called 
a Moore-Penrose pseudoinverse, that satisfies the four Moore-Penrose conditions (Ben-Israel 
andGreville, 1974) 
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1. AA+A = A 

2. A+AA+ = A+ 

3. (AA+)H = AA+ 

4. (A+A)H = A+A 

For regular square matrices it is clear that A+ = A~l. The pseudoinverse can be constructed 
using, for example, the singular value decomposition (Golub and Van Loan, 1996). If 
rank(A) = r then 

A+ = VI+UH with Σ+ = d i a g ^ 1 , σ^\ ..., σ;\ 0, ..., 0) (15-28) 

Using (15-28) it can easily be shown that for every matrix A, (A+)+ = A, (A+)H = (AH)+, 
mdA+ = (AHA)+AH = AH(AAH)+. 

Although the properties of the pseudoinverse very much resemble those of the inverse, 
in general (AB)+ * B+A+. If the matrices A e O x r and B e Cr x m with r < min(n, m) are 
of full rank then (AB)+ = B+A+ (Ben-Israel and Greville, 1974). 

Theorem 15.1: For any CeCnxm with n>m and rank(C) = m and any 
B G Cmxm with rank(£) = m we have CH(CBCH)+C = B~l. 

Proof. Apply condition 1 with A = CBCH 

CBCH(CBCH)+CBCH = CBCH (15-29) 

Left multiplication with CH and right multiplication with C of (15-29) results in 

CHCBCH(CBCH)+CBCHC = CHCBCHC (15-30) 

where CHC and B are, by assumption, regular matrices. Left division by CHCB and right 
division by BCHC of (15-30) proves the theorem. D 

15.6 IDEMPOTENT MATRICES 

By definition, an idempotent matrix P e O x n satisfies P2 = P. If P is an idempotent ma-
trix then (Lancaster and Tismenetsky, 1985) 

1. Ák(P) = 1, k = 1,2, ...,rank(P) and Ák(P) = 0, k = rank(P)+ 1, . . . ,« . 
2. In - P is also a idempotent matrix 
3. rangeC^-P) = null(P) and null(/„ - P) = range(P) 
4. null(,P) + range(P) = Cn and null(P)Pirange(P) = {0} 

where A + B = D means that for each element d e Ώ> there exist an element o e A and an 
element b e B such that d = a + b. 

An idempotent matrix P can be interpreted geometrically as a projection on range(P) 
along null(P). This projection is orthogonal for Hermitian idempotent matrices P: 
range(P) = (nul^P))1. Note that a Hermitian idempotent matrix is positive (semi-)definite. 
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Theorem 15.2: Let P,QeCnxn be Hermitian idempotent matrices with 
rank(P) = r and rank(0 = n-r, respectively. If QP = 0 then g + P = In. 

Proof. Because P and Q are Hermitian, it follows from QP = 0 that PQ = 0. Take 
any eigenvector vk ofP with Ák(P) = 1, k = 1,2, . . . ,r. Right multiplication of QP = 0 
by vk gives Qvk = 0 and, hence, Ák(Q) = 0, k = 1,2, . . . ,r . Using PQ = 0 it follows, 
similarly, that any eigenvector vk of Q with ¿ ¿ ( 0 = 1 is an eigenvector of P with 
λ^Ρ) = 0, A: = r + 1 , . . . , « . Because the eigenvectors of a Hermitian positive (semi-)defi-
nite matrix form an orthonormal basis (Exercise 15.19), we have 

/ r 0 
0 0 

VH and Q = V\ 0 0 

0 / ._ 
* * (15-31) 

where V = [v1v2...vw], so that Q + P = /„. 

KRONECKER ALGEBRA 

D 

This section gives some basic properties of the Kronecker product of matrices. A complete 
overview and elaborated proofs can be found in Brewer (1978) and Lancaster and Tis-
menetsky(1985). 

Consider the following matrices: A,HGCPX(¡, B e Csxt, C e C r x / , D G D X Í , 
G e Ctxu, N G O x n, and M e Cmxm. The Kronecker product of two matrices is defined as 

A®B 

^ [ 1 , 1 ] ^ ^ [ 1 , 2 ] ^ 

/W 

4ui* 
^ [ 2 , 1 ] ^ ^ [ 2 , 2 ] ^ · ' · ^[2iq]B 

- A\r,rtB_ 

QPS X #í (15-32) 

It has the following properties: 

04 (8) 5) (8) C = Λ ® (£ <8> C) 

(,4+#)<8>£ = A®B+H®B 

(A®B)T = AT®BT 

(A ® £)(D <8> G) = (ΛΖ)) (8) (£G) 

(N®M)~l = N-{®M~l 

VQC(ADB) = (BT®A)vec(D) 

IK® «II = 11411̂11 

where || || denotes the 1-, 2-, x-, and Frobenius norm. 

(15-33) 

(15-34) 

(15-35) 

(15-36) 

(15-37) 

(15-38) 

(15-39) 
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15.8 ISOMORPHISM BETWEEN COMPLEX 
AND REAL MATRICES 

Any complex matrix A e Cnxm can be transformed into a real matrix ARe e R(2n)x(2m) 
through 

^Re 
Re(^) -lm(A) 

lm(A) Re(A)_ 
(15-40) 

Lemma 15.3 

A=B + C<*ARe = BRe + CRe 

A=BC^ARe = BReCRe 

(15-41) 

(15-42) 

A=B~X<^A Re B Re (15-43) 

A=B+^ARe = B+e (15-44) 

A=B"oARe = Bl 

det(^Re) = |det(^)|2 

(15-45) 

(15-46) 

rank(^4Re) = 2rank(/4) (15-47) 

provided that the matrix dimensions are appropriate. Moreover, if A e Cn x n is unitary (pos-
itive definite) then ARe e M(2n>>x <2") is orthogonal (symmetric and positive definite) and vice 
versa. 

Proof Exercises 15.34 to 15.38. D 

Lemma 15.3 defines an isomorphism between the complex n x m matrices and the real 
(In) x (2m) matrices. Using (15-42), (15-43), and (15-45), the relationships between the 
eigenvectors, eigenvalues, singular values, and singular vectors of A and ARe are readily ob-
tained. For example, if the singular value decomposition of A is given by UIVH, then that 
of ARQ equals ^Re^Re^Re· Similarly, if the generalized singular value decomposition of the 
matrix pair (A,B) is given by A = ϋΑΣΑΧ~ι, B = υΒΣΒΧ~ι, then that of (ARe,BRe) is 
given by ^ R e = (UA ) R e ( ^ ) R e ^ , BRe = (UB)Re(IB)ReX£, and vice versa. 

Another transformation between complex (A eCnxm) and real (ATe e R(2«)xw) ma-
trices is given by 

AK = 
Re(A) 
Ιπι(Λ) 

(15-48) 
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It has the following properties. 

Lemma 15.4: Take any A e Cnxm, B e Cnxp
9 X e Cpxm, and YeRP*m 

A=BXoAre = BReXTe (15-49) 

A=BYoAn = BnY (15-50) 

Jts(AHB) = A*Bn (15-51) 

Proof. Exercise 15.39. D 

Lemmas 15.3 and 15.4 are very useful to generalize results obtained for the real-valued 
case to the complex-valued case. This is illustrated in the following example. 

Example 15.5: Consider the following expression: 

•xTC~lx (15-52) 

where x e Un is a real-valued random vector and Cx = Cov(x) e Rn x n is the corresponding 
covariance matrix. To obtain the result for the complex-valued case (x e Cn), x and Cx are 
replaced in (15-52) by xre and Cx , respectively. Assuming that x e Cn is a circular 
complex random vector (see Section 16.1), Cov(Re(x), Im(x)) = -Cov(Im(x), Re(x)) and 
Cov(Re(jc)) = Cov(Im(x)), and we have Cx = 0.5(Cx)Re. Using Lemmas 15.3 and 15.4, 
we find 

2Xre^xn
XK xre\^x /Re^re 

We conclude that -xJlC~lxrfi 2 re χκ re 

15.9 DERIVATIVES 

ΧτΛ^χ X)TQ 

= Re(xHC~lx) 

= x*C?x 

- xHCzlx. 

(property (15-43)) 

(property (15-49)) 

(property (15-51)) 

(Cx is positive definite) 

D 

15.9.1 Derivatives of Functions and Vectors 
w.r.t. a Vector 

The first- and second-order derivatives of an analytic function f(x) e C (vector func-
tion F(x) e O ) with respect to a vector x e Cm are defined as 

^ e C ' - w i t h ^ W ' 
dx v dx 

= dflx) 
[hk] dxi 

(15-53) 
■[*] 
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^Me C,„w i t hr^M) = p^_ ( 15.54) 
dx1 V dx1 s[kJ] dx[k]dx{l] 

meC-*-*to(m - ^ (15-55) 
dx V dx J[kJ] dx[t] 

Let g{x) e O be an analytic vector function of x e Cm and A e C"*m, B e Cm*m. Using 
definitions (15-53), (15-54), and (15-55) it can be verified that 

?ál = A p[m=xr(l±BL) jV^f).£±£ (15-56) 
δ* 5xV 2 7 V 2 ) Q¿\ 2 ) 2 

9 (gT(x)g(xf\ = „TMd§W 
a* i r^-w <15-57) 

The derivative of a real function fix, x) e U with respect to the real and imaginary parts of 
the vector x e Cm can be found using the chain rule and symbol derivation w.r.t. x and x 
(j(x, x) is not an analytic function of x) 

df(x, x) = df(x, x)dx df(x, x) dx = df(x, x) + df(x, x) 
5Re(x) dx 5Re(x) dx 5Re(;c) dx dx 

(15-59) 
df(x,x) = df(x,x)dx +df(x,x) dx = fdf(x,x) df(x,x) 
dlm(x) dx dlm(x) dx dlm(x) J\ dx dx 

Because f(x, x) is real, df(x,x)/dx = df(x,x)/dx, so that (15-59) can be written as 

(df(x,xj) 
v dxK 

γ. ψ%2Γ\ 
15.9.2 Derivative of a Function w.r.t. a Matrix 

The derivative of an analytic function f(A) e C with respect to a matrix A e Cn x m is 
defined as 

?meCn*m w i t h i n = M d > (15-61) 

dA y ΘΑ ) [ k J ] dA[kJ] 

Using definition (15-61) it can be verified that 

8HBA) = Br ( 1 5 . 6 2 ) 

dA 



556 Chapter 15 ■ Some Linear Algebra Fundamentals 

d\x{CABATCT) = CTCA(B + BT} (15-63) 
dA 

Staídet^) = A.T ( 1 5 _ 6 4 ) 
dA v J 

δΧτ^Λ~Χ) = -(Α-^ΒΑ-ψ (15-65) 

provided that the matrix dimensions are appropriate. 
Following the same procedure as in Section 15.9.1, the derivative of a real function 

f{A9A) G IR with respect to the real and imaginary parts of the matrix A G Cnxm can be 
found through symbolic derivation (f(A9 A) is not an analytic function of A) 

0ArQ v dA ; r e 

Take, for example, f(A,A) = tr(CABAHCH) with BH = B9 then 

dtr(CABAHCH) = 2(C
HCAB)TQ (15-67) 

dAK 

Note that the derivative of a function w.r.t. a vector in Section 15.9.1 corresponds to the de-
rivative of a function w.r.t. a row in Section 15.9.2. 

15.10 INNER PRODUCT 

Consider a finite-dimensional linear space L over the field F of real or complex numbers 
(F = IR or F = C), and let x9y G L. The function (x9y) from L x L to F is an inner 
product on the linear space L if the following properties are satisfied for all x9 y G L and 
a,/?G F: 

1. (x, JC> > 0 and <JC, JC) = 0 <̂> x = 0 
2. {ax+Py,z) = a(x,z) + p{y,z) 

3. (x,y) = (y,x) 

These properties are known as the positivity, linearity in the first argument, and Hermitian 
symmetry (F = C) or symmetry (F = R), respectively. The inner product also defines a 
norm on the space L : (JC, x)1 / 2 = ||JC|| (Lancaster and Tismenetsky, 1985). Two nonzero ele-
ments J C J G L are orthogonal if (x,y) = 0. 

Lemma 15.6: Let PW(R) be the linear space of real polynomials (= polynomials with 
real coefficients) of order smaller than or equal to m. Take any p(x)9 q(x) G P W ( R ) and 
define 

{p{x\q(x)) = Re(X^= ^ ^ ^ ( χ ^ + ^ ^ ^ Ι ^ ^ ^ χ ^ + ^ ^ ) ] ) (15-68) 
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where wlk, w2k e C are the weights and xke C the grid points. (15-68) defines an inner 
product if and only if the matrix J G C " X ^ + 1) with J[kr] = wxkx

r
k~

x + w2kx£-1, 
k = 1, 2, ..., n and r = 1, 2, ..., m + 1 satisfies the rank condition 

rank(Jre) = m+\ (15-69) 

Proof. The linearity (only real linear combinations are considered for real polynomi-
als) and symmetry of (15-68) follow directly. To show that the positivity condition is satis-
fied, we rewrite (15-68) using p(x) = Σ™= 0ρ^ and p = [p0 px... pm]T e R ^ 1 as 

(p(x),p(x)) = Re(pTJ"Jp) = pTRe(JHJ)p = pT^QJTGp (15-70) 

The last equivalence is due to property (15-51). Under rank condition (15-69), the matrix 
J^JK is positive definite and, hence, (p(x),p(x)) = 0 if and only if p = 0. D 

Lemma 15.7: Let P^(R) be the linear space of real 2 by 1 vector polynomials of 
order smaller than or equal to m. If p(x) e P2(R), then p^q(x) e Pm(U), i = 1, 2. Take 
any p(x\ q{x) e P^(R) and define 

{p{x\ q{x)) = R e ( £ L xq»{xk)W»Wkp(xk)) (15-71) 

with Wk e C2 the weighting matrices and xke C the grid points. Define the 2 by 1 vector 
polynomials E%r(x) = [xr 0] and E^r+l(x) = [0 xr], r = 0, 1, ...,m. (15-71) defines an 
inner product if and only if the matrix J e Cnx(2m + 2) w j m j [ 2 k _ { .lkr^ = WkEr_x(xk), 
k = 1, 2, ..., n and r = 1, 2, ..., 2m + 2 satisfies the rank condition 

rank(Jre) = 2m + 2 (15-72) 

Proof. The linearity (only real linear combinations are considered for real 
polynomials) and symmetry of (15-71) follow directly. The proof of the positivity condition 
is along the lines of Lemma 15.6. Using p(x) = X r = 0 prEr(x) and p = 
ÍPoPí'- Pim + iV e R2w + 2

? (15-71) becomes (p{x\p(x)) = pTJ?eJrep. Under the rank 
condition (15-72) J?eJTe is positive definite so that (p(x),p(x)) = 0 if and only if p = 0.D 

Lemma 15.8: Let PW(C) be the linear space of complex polynomials (= polynomials 
with complex coefficients) of order smaller than or equal to m. Take any p(x), q(x) e Pm(C) 
and define 

{p(x\ q(x)) =ΣΙ={ \wk\
2p{xk)q(xk) (15-73) 

with W ^ G C the weights and xke C the grid points. (15-73) is an inner product if and only 
if the matrix J e Cn x(w + 1) with J[k r] = wkx

r
k~\ k = 1,2, . . . ,« and r = 1,2, . . . ,m+ 1 

has rank m + 1. 

Proof Similar to Lemma 15.6. D 
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Lemma 15.9: Let P^(C) be the linear space of complex 2 by 1 vector polynomials 
(= polynomials with complex coefficients) of order smaller than or equal to m. Take any 
/?(JC), q{x) G P2(C) and define 

(p(x), q(x)) = ΣΙ=1 Λ ) VfWkp(x¿) (15-74) 

with Wk GC2 the weighting matrices and J Í ^ C the grid points. Define the 2 by 1 vector 
polynomials E%r(x) = [xr 0] and E%r+X{x) = [0 xr], r = 0, 1,..., m. (15-73) is an inner 
product if and only if the matrix JG 0 , Χ ( 2 Λ , + 2) with J[2k_X:2Kr]

 = WhEr-\(xd> 
k = 1, 2 , . . . , n and r = 1, 2, ..., 2m+ 2 has rank 2m+ 2. 

Proof Similar to Lemma 15.7. D 

Note that Lemmas 15.7 and 15.9 can easily be generalized to vector polynomials with 
more than two entries. 

15.11 GRAM-SCHMIDT ORTHOGONALIZATION 

The Gram-Schmidt orthogonalization calculates an orthonormal set {yx,y2, ···>>'„} from a 
given linear independent set {xl9x2, ···,*„} with the property 

span{^!,^2, ...,ys} = span{x1,x2, ...,xs} for s = 1,2,...,* (15-75) 

It works as follows. In the first step we assign zx = xx and calculate yx = ^!/^!!!. In the 
second step we choose an element z2 e span{x1?x2} m a t is orthogonal to yx\ 
z2 = x2 + a2\y\ and {z2,yx) = 0. We find α2ι = ~{χι^\) and calculate >̂ 2 = z2/\\z2\\. 
In the sth step we take an element zs G spm{xXix2, ...,xs} that is orthogonal to 
yi,y2,.~,ys-i: zs

 = ^ + Σ'^ι^Λ a n d (zs>yr) = °> r = 1,2,..., J - 1 . We find 
asr = -(xs,yr), r = 1,2, . . . , J - 1 , and calculate ys = zs/\\zs\\. 

It is well known that the Gram-Schmidt orthogonalization has poor numerical properties 
(Golub and Van Loan, 1996). There is, typically, a (severe) loss of orthogonality among the 
computed basis vectors. The method is, however, still very useful in applications where the or-
thogonality of the basis vectors is not explicitly taken into account during the calculations. 

Example 15.10: Consider the space of real polynomials (Lemma 15.6) with inner 
product (15-68). Starting from the linear independent set {1,X,JC2, . . . ,xm} the (s+ l)th 
step of the Gram-Schmidt method becomes 

VA*) = xPs-\(x) ~ Σ / = o (χΡ8-\(
χ)>Ρι(χ))Ρι(χ) 

(15-76) 
AW = 9Αχ)φΑχ)1 

If we take imaginary grid points, xk = -xk, and w2k = 0 for any k in the inner product 
(15-68), then (15-76) reduces to a three-term recursion formula 

qs(x) = xps_ ,(*) + \qs_ I ( X ) | A _ 2 ( * ) 

ps(x) = qs(x)/\\qs(x)\\ 

(proof: see Exercise 15.44 and Forsythe, 1957). Note that (15-77) generates only even p2s(x) 
andodd/?25 + 1(x) polynomials. D 
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Example 15.11: Consider the space of real 2 by 1 vector polynomials (Lemma 15.7) 
with inner product (15-71). Applying the Gram-Schmidt method on the linear independent 
set {E0(x\Ex(x\ ...,E2m+l(x)}, with E¡r{x) = [*' 0] and E¡r+X(x) = [0 j f ] , 
r = 0, 1, ..., m, gives the following recursion formula: 

Φ ) = Es(x) ~ Σ / 1 ¡> <ΕΑχ)>Ρι(χ))Ρι(χ) ίΛ. _βΛ 
(15-78) 

A ( x ) = ^ ( χ ) / | ^ ) | | 

Using ^(x) = x E ^ W and £,
J_2W e span{/70(x),/>!(x), . . . . / ^ ^ ( x ) } , the recursion can 

be written as 

QM) = xPs - i(x) - Σ / = o (*Ps - 2Í*)· #(*)>#(*) 

ps(x) = q¿x)/¡qjlx)l 

If we take imaginary grid points, xk = -xk for any k, then (15-79) reduces to a five-term re-
cursion formula 

qs(x) = xps-2(
x)-fi(Ps-\(

x)-Ps-3(x))+Ps-4(x)\\<ls-2(x)\\ 

Λ(χ) = Í / * ) / | | Í , ( * ) | | 

with /? = <JC/7IS_2(JC),/75_1(JC)) (proof: see Exercise 15.46). A numerically stable and time-
efficient implementation of the orthogonalization can be found in Van Barel and Bultheel 
(1992) for real polynomials and real grid point xk e R, and Van Barel and Bultheel (1994) 
for real polynomials and grid points on the unit circle, \xk\ = 1 for any k. D 

Example 15.12: Consider the space of complex polynomials (Lemma 15.8) with inner 
product (15-73). Applying the Gram-Schmidt method on the linear independent set 
{1, JC, x2, ... ,xw} gives the same full recursion formula (15-76). If we take imaginary grid 
points, xk = -xk for any k, then the orthogonalization reduces to 

qs(x) = (x-a)ps_x(x)-fips_2(x) 

ps(x) = qs{x)/\\qs(x)\\ 

with a = (xps_x(x),ps_x(x)) and β = ( Χ Λ _ Ι ( Χ ) > Λ - 2 ( * ) ) (proof: similar to Example 
15.10). D 

Example 15.13: Consider the space of complex 2 by 1 vector polynomials (Lemma 
15.9) with inner product (15-74). Applying the Gram-Schmidt method on the linear indepen-
dent set {E0(x%El(x),...,E2m + l(x)}9 with E%r(x) = [xr 0] and E?r+l(x) = [0 xr], 
r = 0, 1, ..., m, gives the same full recursion formula (15-79). If we take imaginary grid 
points, xk = -xk for any k, then (15-79) reduces to a five-term recursion formula 

qs(x) = (χ-a)ps-i(
x)-β(ρ3-\(

χ) + PPS-ÁX))-yps-4Íx) , t - ™ 
(1 j -oZ) 

ps(x) = qs(x)/\\qs(x)\\ 
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with a = (xps_2(x),ps_2(x)), β= (xps_2(x),ps_l(x)), γ= (xps-2(
x\Ps-4(x)) (proof: 

similar to Example 15.11). A numerically stable and time-efficient implementation of the 
orthogonalization can be found in Van Barel and Bultheel (1994) for complex polynomials 
and grid points on the unit circle, \xk\ = 1 for any k. □ 

Note that a particular value of the orthogonal polynomial ps(xk) is calculated via the 
recursion formula used for the orthogonalization and not via the expansion of the orthogonal 
polynomials in powers of JC. The last approach is numerically ill-conditioned for high-order 
polynomials. Similarly, the poles and zeros of orthogonal polynomials are calculated via a 
companion matrix based on the recursion formula and not via the expansion of the orthogonal 
polynomials in powers of x (see Section 15.12). 

15.12 CALCULATING THE ROOTS OF POLYNOMIALS 

15.12.1 Scalar Orthogonal Polynomials 

In this section we study the problem of calculating the roots of a polynomial A(x) that 
is written as a linear combination of scalar orthogonal polynomials pr(x) 

A(X) = Hr=QarPAX) (15-83) 

The coefficients ar are known and the orthogonal basis pr(x), r = 0, 1, ..., nai is defined 
by the following recursion formula: 

~yr-\ 

qr(x) = χρκ-ΐ+Σ5 = οα™Ρ*(χ) 

PÁX) = <ΪΑχ)φΑχ)\\ 
(15-84) 

with q0(x) = 1 and ars = -{xpr_x{x\ps(x)) (see Example 15.10). 
To maintain good numerical conditioning, the calculation of the roots must use only the 

orthogonal decomposition of the polynomials and not their explicit form as a polynomial in 
powers of x. The eigenvalues of the modified companion matrix A9 

A — A{ (A2-A3) (15-85) 

with^lj, A2 mdA3, na by na matrices, 

AX = diasCi/||9MeC^)||> l / l ^ . j C ^ H l/ll^jOc)!!) 

V - i *\ "0 
a«. 

1 
0 

""a 

0 
1 

ana 

.. 0 

.. 0 

a 

0 
0 

1 0 

. ^ 3 = 

α " > α - 1 ) αηα{ηα-2) 

KM K « 
\na-\){na-2) 

IK-iW! 

Vo 

% ο - 1 ) 0 

lv-iW|l 

"10 

(15-86) 
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are the required roots of A(x) (see Appendix 15.A). For real polynomials with grid points on 
the imaginary axis (see Example 15.10), (15-84) reduces to the three-term recursion (15-77), 
and A3 in (15-86) contains only one nonzero diagonal. 

15.12.2 Vector Orthogonal Polynomials 

In this section we study the problem of finding the roots of the entries of a 2 by 1 poly-
nomial vector [A(x) B(x)]T that is written as a linear combination of vector orthogonal poly-
nomials 

A(x) 

B(x)_ 
Z

na + nb+\ 

r = 0 Qr 
PÁX) 

4ΑΧ) 
(15-87) 

with na, nb the orders of, respectively, A(x), B(x), and where the coefficients ar are 
known. The vector orthogonal basis \pr(x) qr(x)Y, r = 0, 1, ..., na + nb + 1, stems from a 
rational approximation B{x)/A(x) of a frequency response function G(x) at the grid points 
xk9 k = 1, 2, ..., F (see Section 9.16.2) and is calculated through a recursion formula (see, 
for example, the five-term recursion (15-80) in Example 15.11). 

The calculation of the roots of A(x) = 0 and B(x) = 0 can be reduced to finding the 
roots of scalar orthogonal polynomials. This is done as follows. 

1. Fit a scalar orthogonal polynomial Αλ{χ) = ΣΓ°= oarP\Xx) of order na to the de-
nominator A(x) polynomial in (15-87) by minimizing 

Σ' >k= 1 
'Μχώ-Α(χι)\ 

B(xk) 

2-Σΐ '*= 1 

\^na V~<Wa + nb + A 

1αν = 0ανΡ\ΑΧύ-^ = 0 arPÁXk) 
-,na + nb+\ 

arq£xk) 

w.r.t. a0, ax, ..., a„a (see Section 9.16.1). 
2. Fit a scalar orthogonal polynomial Bx(x) = Σ/= o^r^\Xx) of order nb to the nu-

merator B(x) polynomial in (15-87) by minimizing 

s. Bx{xk)-B{xk) 

A(xk) 
= Σ; <k= 1 

\^nb \~^na + nb+ * 

^n+nh+\ 
arPÁxk) 

w.r.t. β0, fil9 ...,fi„b (see Section 9.16.1). 
3. Calculate the roots of Ax(x) = ^r

a
=0O£rplr(x) and B{(x) = X/= 0 /? r#i r (*) us-

ing the modified companion matrix approach of Section 15.12.1. 

Note that the first and the second step of this procedure introduce no approximation errors be-
cause (i) there are no model errors (the true orders of A(x) and B(x) are, respectively, na and 
nb), and (ii) there is no disturbing noise (A(x), B(x) are known exactly, within the numerical 
precision, at the grid points xk, k = 1, 2, . . . ,F) . Note also that the grid points xk, 
k = 1, 2, ..., F, in the first and second steps are the same as those used to calculate the vec-
tor orthogonal basis [pr(x) qr(x)Y, r = 0, 1, ..., na + nb + 1. 
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15.13 SENSITIVITY OF THE LEAST SQUARES SOLUTION 

Consider the overdetermined set of equations 

Ax *b (15-88) 

with A G Cnxm, n>m, regular and b G Cm. The least squares solution of (15-88) is 

JCLS = (AHA)~lAHb (15-89) 

The sensitivity of the least squares solution (15-89) to perturbations in A and b equals 

Ρφ<ε(^Δ + ίΒ(α)κ2(Α)) (15-90) 
FLS| |2

 vcos(a) / 

with sin(a) = ||rLS||2/||Z>||2, rLS = AxLS-b, ε = max(||A^||2/M||2, ||Δ*||2/||*||2), and Δ 
the perturbation; that of the least square residual rLS is given by 

" ,,,„ u<2sfc(A) (15-91) 

(Golub and Van Loan, 1996). It shows that for nonzero residual problems (rLS Ψ 0) the sen-
sitivity of JCLS depends on the square of fc(A), while the sensitivity of rLS just depends lin-
early on K{A). 

The loss in numerical precision (high sensitivity) of the least squares solution (15-89) is 
basically due to the calculation of AHA (κ(ΑΗΑ) = κ2{Α)). There exist algorithms that cal-
culate xLS without forming the product AHA explicitly and, hence, have better sensitivity. For 
example, using the singular value decomposition A = UIVH, (15-89) can be calculated as 

JCLS = VI~xUHb orxLS = A+b, (15-92) 

while using the QR-factorization A = QR, (15-89) is calculated via back-substitution 

RxLS = QHb (15-93) 

The sensitivity of the SVD (15-92) and QR (15-93) solutions is approximately given by 

,, „ '2 <ε(^^1 + tg(a)K2(A)) 10- ' (15-94) 
||xLS||2 Vcos(a) ' 

where d is the number of significant digits used in the calculations (Golub and Van Loan, 
1996). 
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15.14 EXERCISES 

15.1. Prove that ranged) = (múliA11))1 (hint: take any z{ e mú\(AH), Z2 € ranged) and 
show that z^z2 = 0). 

15.2. Show that the eigenvalues of a Hermitian matrix are real (hint: use the equality 
xHAx = λχΗχ valid for the eigenvalue, eigenvector pair λ, χ and take the complex 
conjugate). 

15.3. Show that the eigenvalues of A and AT are the same (hint: use det(^í) = aet{AT)). 

15.4. Show that the eigenvalues of A e Cn x n are invariant w.r.t. a similarity transformation 
T (hint: use In = TT~X). 

15.5. Show that the eigenvalues of an upper or lower triangular matrix are the diagonal ele-
ments. 

15.6. Consider the following matrix with a Vandermonde structure: 

K(X], x2> xv 

1 ΧΛ X Λ 

1 Xy X'y 

1 X*i X'j . 

... x\ 

.. X 

. . X, 

Show, via linear combinations, that it can be reduced to 

f(xhx2>X3) 

1 x 1 Λ\ 

0 1 xx + x2 

l\ 

V"-1
 X^-^xV Lurx = 0 Λ2 

oo i ...Σ;;ΛΣ;;Λ"^3 Γ2ΧΓ
2

2Χ\] 

with/(xj,jc2,x3) = (x3-xl)(x2-xl)(x3-x2). Note that the matrix V{xhx2,x?) has 
a full rank if and only if all x· are different (hint: use ((yn -xn)/(y-x)) = 

Σ:>-'-ν). 
15.7. Prove that only the symmetric part of a real matrix A eUnxn contributes to xTAx 

(hint: use A = (A +AT)/2 + (A -AT)/2). 
15.8. Show that for any A e Cn x n and x e Cw: Re(xHAx) = jt^herm^)*. Conclude that 

only the Hermitian part of a matrix contributes to the real value of xHAx. 

15.9. If A D 

c B\ 
and B~x exist, show that 

det A D 

C B 
d e t ( 5 ) d e t ( | / i - Z ^ C ] ) (15-95) 

A D 

C B 
(hint: 

15.10. \iB~x exists, show that 

I 0 
0 B\ 

A D 

B~lC I 
and aet(AB) = det(¿)det(£)). 
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A D 

C B 

-1 
Λ-i -A-^F 

-EA~l B-l+EA~lF\ 
(15-96) 

where Δ = A-DB~lC, E = B~lC, and F = DB~X. Show, using Exercise 15.9, that 
Δ- 1 exists. 

15.11. Show that for any A e Cn x m and B eCmxn, tr(AB) = ix(BA). 

15.12. Show that for any AeCnxn, tr(A) = Σ ί - ι λάΑ)' 

15.13. Show that for any A,B <=Cnxm, tr(ATB) = (vec(A))T\ec(B). 

15.14. Prove the submultiplicative property (15-14) for the Frobenius norm. 
15.15. Show that ||4||2 < ||4||F. 
15.16. Using the definition of the singular value decomposition of a matrix A e Cnxm 

(n>m) show that the right singular vectors vk and the squared singular values o%, 
k = 1, 2, ..., m, are the eigenvectors and eigenvalues of AHA. 

15.17. Using the definition of the singular value decomposition of a matrix A e Cnxm 

(n>m), show that the left singular vectors uk and the squared singular values c%, 
k = 1, 2, . . . ,« , are the eigenvectors and eigenvalues of AAH. 

15.18. Let A = ϋΑΣΑΧ~ι, B = ϋΒΣΒΧ~λ be the generalized singular value decomposition of 
the matrix pair (A,B). Show that x = X . k-, and λ = α\/β\, k = 1, 2 , . . . , m, are 
the solutions of the generalized eigenvalue problem AHAx = λΒΗΒχ. 

15.19. Show that a Hermitian positive definite matrix A e Cn x m can be written as 
A = VIVH where VHV = VVH = In and Σ = diagiZ^A), λ2(Α),..., λη(Α)) (hint: 
show that Ák(Á) = σ^Α) and that U^k^ = V^.k^). 

15.20. Prove that a Hermitian matrix A e Cnxm is positive (semi-)definite if and only if 
Ák(A)>0 (Ák(A)>0) (hint: apply the results of Exercise 15.19, A = VIVH with 
yH = y-\ 9 to the quadratic form xHAx). 

15.21. Let Q e Cn x n be a unitary matrix (QHQ = In). Show that K(Q) = 1. 
15.22. Prove inequality (15-16) (hint: first show that (A + E)-l-A~l = -A~lE(A+E)-1, 

next use (In + A~lE)-1 = Y°k = 0{-A~xE)k). 

15.23. Let A eCnxm with n > m and B e£mxm nonsingular. Show that 
σ(Α,Β) = σ(ΑΒ~λ). 

15.24. Let x e Cn. Show that x+ = xH/(xHx). 

15.25. Show that expression (15-28) satisfies the four Moore-Penrose conditions. 
15.26. Let A eCnxr and B eCrxm with r < min(«, m) and rank(^) = rank(£) = r. 

Show that (AB)+ = B+A+ (hint: verify that the four Moore-Penrose conditions are sat-
isfied with A+ = (AHA)~XAH and£+ = ΒΗ{ΒΒΗ)~Χ). 

15.27. Let P e Cn x n be a Hermitian idempotent matrix. Show that P+ = P. 

15.28. Show that the eigenvalues of an idempotent matrix P are one or zero (hint: left multi-
ply Px = λχ by P and work out). 

15.29. Prove properties 2, 3, and 4 of the idempotent matrices (see Section 15.6). 
15.30. Show that (A ® B)(D ® G) = (AD) ® (BG). 

15.31. Show that VQC(ADB) = (BT®A)VGC(D) (hint: calculate the £th column of ADB and 
*8e(XY)[:tk]=XY[:tk]). 

15.32. Show that (N®M)~l = N~l ® M~l (hint: use (15-36)). 
15.33. Take any A e Cnxm and B e O 7 ^ . Show that M ®5| | = |M||||5|| where || || de-

notes the 1-, 2-, x-, and Frobenius norm (hint: for the 2- and Frobenius norm first show 
using (15-36) and (15-35) that A®B = (UA ® UB)(IA ® IB)(VA ® VB)H with 
A = UA£AVA and B = υΒΣΒΥΒ the corresponding singular valued decomposi-
tions). 
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15.34. Prove properties (15-41), (15-42), (15-43), and (15-45) (hint: use A = B~X<^>AB = In 

for (15-43) and A = B+ o BAB = B for (15-44)). 
15.35. Take a positive definite matrix A e Cn x n. Show that the real matrix ARe is symmetric 

and positive definite. 
15.36. Take a unitary matrix A. Show that ^4Re is orthogonal. 
15.37. Prove property (15-46) (hint: using linear combinations of block rows and block col-

umns show that 

det ' Re(A)-lm(A) 
lm(A) Re(A)j. 

= detl A 0 
Jm(A) A 

15.38. Prove property (15-47) (hint: first show that the singular value decompositions of A 
and ARQ are related to each other by A = UIVH and ARe = ^e^Re^Re)· 

15.39. Prove properties (15-49), (15-50), and (15-51). 
15.40. Verify results (15-56), (15-57), (15-58), and (15-60). 
15.41. Show that df(x, x)/dx = df(x, x)/dx if f(x, x) e U (hint: use the limit defíntion of 

the partial derivative operator and f(x, x) = f(x, x)). 

15.42. Verify results (15-62), (15-63), (15-64), (15-65), (15-66), and (15-67) (hint: use 
A~l = adj(^)/det(^) for (15-64), where adjX¿) is the transposed matrix of cofactors 
of¿; show first that dA~l/dA[kl] = -A-l(dA/dA[k^A-x for (15-65)). 

15.43. Prove Lemma 15.8. 
15.44. Show that (15-76) reduces to a three-term recursion if for any k, w2k = 0 and 

xk = -xk in (15-68) (hint: first use (xps_{(x),p¡(x)) = -{ps_x{x),xpi(x)) and 
xp¡(x) e span{p0(x),^j(x), ...,pl+l(x)} to prove the three-term recursion; next show 
that (ps_i(x),xps_i(x)) = 0 and {ps_x(x\xps_2{x)) = |tf5_i(*)||). 

15.45. Consider Example 15.10 with real grid points (xk e U) and w2k = 0 for any k in 
(15-68). Show that (15-76) reduces to a three-term recursion formula (hint: use 
{xps_x(x\pfa)) = (ps_i(x),xp¿x)), xpfa) e spw&QÍxXpfa), ...,ρι+ι(χ)}). 

15.46. Show that (15-79) reduces to a five-term recursion if xk = -xk for any k in 
(15-71) (hint: first use (xps_2(

x\P^x)) = ~(Ps-2^x)->xPf<x)) an(* xPf.x) e 

$φ3χν{ρ§(χ\ρχ(χ\ ...,/?/ + 2(x)} t 0 Pr o v e m e five-term recursion; next show that 
(ps_2(x\xps_2(x)) = 0, (ps_2(x),xps_{(x)) = -(ps_2(x),xps_3(x)) and 
(ps_2(x),xps_4(x)) = |^_2W||)· 

15.15 APPENDIX 

Appendix 15.A Calculation of the Roots 
of a Polynomial 

The roots of the polynomial A (x) are those values of x such that A(x) = 0 or 

Pnix) = ~ }-Yn
r
allarP&) (15-97) 

(use (15-83)). Adding the equations pr(x) = pr(x), r = na- 1, na-2,..., 1, to (15-97) 
gives the following set of na equations: 

A2Z = Zx (15-98) 
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with Z\ = ¡pn(x) p„a-i(x) . . . ^ i W ] , ZT = [Pna-l(x)pna-2(x) ··· Po(x)] and where A2 

is defined in (15-86). Recursion (15-84) can be written in matrix form as 

Zj = xAxZ + A3Z (15-99) 

where Ax and A3 are na by na matrices defined in (15-86). Combining (15-98) and (15-99) 
shows that the roots x of A(x) = 0 are the solutions of the eigenvalue problem 
Ajl(A2-A3)Z = xZ. D 



Some Probability and 
Stochastic Convergence 

Fundamentals 

Abstract: The goal of this chapter is to give insight into the way to analyze the stochastic 
properties of an estimator. Therefore, a great deal of attention is paid to the different concepts 
of stochastic convergence. The main ideas behind the stochastic convergence proofs used 
throughout this book are explained and some basic analysis tools are provided. More infor-
mation on the topic can be found in the following textbooks: Billingsley (1995), Chow and 
Teicher (1988), Brillinger (1981), Lukacs (1975), Stout (1974), and Jazwinski (1970). The 
calculation of probabilities, expected values, and higher order (central) moments and the 
properties of standard distributions are assumed to be known. More information can be found 
in Anderson (1958), Stuart and Ord (1987), and Mathai and Provost (1992). This chapter also 
includes a study of the properties of the noise after a discrete Fourier transform, which is es-
sential in frequency domain identification. 

16.1 NOTATIONS AND DEFINITIONS 

E { } and Prob( ) denote the expected value and the probability function, respectively. If 
fx(x) and F(x) are the respective probability density function and distribution function of 
the random variable JC , then the expected value of g(x) is given by 

E{g(x)} - \g{x)dF{x) = \g{x)fx{x)dx (16-1) 
Jx Jx 

where X is the domain of F(x). 

Let x,y e C be complex random variables: then the mean μχ and variance σ* of x 
and the covariance o%y between JC and y are defined as 

μχ = Ε{χ} σ2
χ = var(x) = E { | X - E { J C } | 2 } (16-2) 

σ% = covar(x,j;) = \E{(x-E{x})(y-E{y})} (16-3) 
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Let x,y e Cn be complex random vectors: then the covariance matrix Cx of x and the 
cross-covariance matrix C between x and y are given by 

Cx = Cov(x) = E{(x-E {*})(*-E {*})"} (16-4) 

Cxy = Cov(x,j;) = E{(x-E{x})(y-E{y})»} (16-5) 

Let x e C " be an estimate of the true value x0. The bias bx and the mean square error 
MSE(x) of the estimate are given, respectively, by 

bx=E{x}-x0 (16-6) 

MSE(x) = E{(x -x 0 ) (x -x 0 ) "} = Cov(x) + bxb? (16-7) 

A stochastic process x(t) e Cn, t G Z, is strictly stationary if the joint distribution of 
x(tx + t), x(t2 + t), ... x{tk + i) does not depend on / for every t,tl9 ...,tke Z and 
A: = 1, 2, 3, ... For example, a series of independent, identically distributed random vectors 
is strictly stationary. A stochastic process x(t) G Crt, / e Z, is second-order stationary or 
wide-sense stationary if the first- and second-order moments are invariant under a common 
shift of the argument / 

μ£γ + ή = μχ(ίλ) (16-8) 

Cov(x(^ + t\ x(t2 + 0) = Cov(x(tx), x(t2)) (16-9) 

for every t,t{9t2eZ. A strictly stationary process with finite second-order moments is 
second-order stationary. 

The stochastic process x(t) e C , / e Z, is independent if x(t) and x(^) are indepen-
dent whenever t-s^0. It is m-dependent if x(i),x{t+ 1), ...,x(/ + r) is independent of 
x{t + r + «), x(t + r + « + 1), ..., x(t + r + 5) for any n>m>0, with r, s > 0. It is uniformly 
bounded if \x(t)\ < C < 00 for any realization and for any t. 

Let x(0 E Cn and >>(f) G O be second-order stationary stochastic processes; then the 
autocorrelation matrix RXX(T) of x(/) and the cross-correlation matrix RxJj) between x and 
y are defined as 

RJr) = E{x(t)xH(t-T)} (16-10) 

^ ( r ) = E { x ( 0 ^ ( r - r ) } (16-11) 

The auto- and cross-power spectra are the Fourier transforms of the auto- and cross-correla-
tion matrices. 

A real normally distributed random vector x e Mn with mean μχ and covariance ma-
trix Cx, will be denoted as x G Νη(μχ9 Cx). If subscript n is omitted then this is equivalent to 
n = 1. Similarly, x G £(/ /X , σ^), x G £(/^, of), and x G i/(//x, of) denote rea/ exponen-
tial, Laplace, and uniform random variables, respectively. The sum of the squares 
y = ΣΙ = 1 xl of n independent and identically distributed normal random variables 
xk G Af(0, 1) is chi-squared distributed with n degrees of freedom y e X2(n). The ratio 
z = {n2yx)/{nly1) °f t w o independent chi-squared distributed random variables 
yx G X2{nx) and ^ e f (n2) is F -distributed with «j and n2 degrees of freedom 
z G F(nl9 n2). The matrix-valued random variable y = Σ £ = ^ ^ e Rpx/,

J formed by the 
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sum of the product of n independent and identically distributed normal vectors 
xk G Λ^(0, Cx), is Wishart distributed, y e Wp(n9 Cx), with n degrees of freedom and asso-
ciated parameter matrix Cx (Anderson, 1958; Mathai and Provost, 1992). As a special case, 
we have Wx(n, 1) = χ\ή). 

A complex random vector x e O is said to be circular if 

E{(jc-E{jt})(jc-E{jc})7'} = 0 (16-12) 

(Picinbono, 1993). If x G Cn is a circular complex random vector and A G Cmxn, then 
y = Ax is also circular (Exercise 16.3). Condition (16-12) is equivalent to 

Cov(Re(x)) = Cov(Im(jc)) 
Cov(Re(x), Im(jc)) = -(Cov(Im(jc), Re(x)))r (16-13) 

If (16-13) is valid, then it can be verified that Cov(xre) = 0.5(Cov(x))Re (Exercise 16.4). 
The probability density function fx(x) of complex random variables x e Cn is given by the 
joint probability density function fx (xre) of the real and imaginary parts of x. For circular 
complex normally distributed random vectors x G O , the probability density function is 
uniquely determined by the mean value μχ and the covariance matrix Cx (Picinbono, 1993) 

f&) = Are(*re) = ^^expHx-M^C-Kx-M,)) (16-14) 

If the complex normally distributed noise is not circular, then the other second-order moment 
E{(x-E{jc})(x-E{x})r} is also required to construct fx (xre). In the univariate case, 
(16-13) implies that the real and imaginary parts of x e C have equal variance and have zero 
covariance. If x G C is circular complex normally distributed, then its real and imaginary 
parts are independent and E{(x-E{x})"} = 0 (see Exercise 16.8 and Schoukens and 
Pintelon, 1990). 

A circular complex normally distributed random vector x e Cn with mean μχ and co-
variance matrix Cx, will be denoted as x G Ν£(μχ, Cx). Similarly, x G Εε(μχ, σ%), 
x G Lc(px, σ^), and x e ϋ%μχ, σζ) denote circular complex exponential, Laplace, and uni-
form random variables with independent real and imaginary parts. The matrix-valued random 
variable y = ^ = lxkx^ G CPXP with xke N£(0,Cx) is complex Wishart distributed, 
y G Wc

p(n, Cx), with n degrees of freedom and associated parameter matrix Cx (Goodman, 
1963; Brillinger, 1981). Its probability density function is given by 

= (det(y))-.exp(-tr(C;^)) ^ ^ 

nP(p- i)/2(det(Q)*nr= i (n ~ W 

for n >p and y > 0 (Goodman, 1963; Brillinger, 1981). Note that the real part of a complex 
Wishart distributed random variable is, in general, not Wishart distributed. This is due to the 
fact that the real and imaginary parts of the xk e A^(0, Cx) are not necessarily independent. 

Take n complex random variables xk G C with E {|xjw} <°o, k = 1,2, . . . ,« . The 
joint cumulant cum(jcl5 x2, .. ·, xn) of order n is given by 

cum(x„x2,...,x„) = Σ Η ν ' ί Ρ - υ ί ΐ Έ . , Ε ί Π ^ , ν / * . } (16-16) 

where the summation extends over all partitions {Vl5 V2, ..., V^} of D = {1,2, . . . , « } . If 
for any k, xk = x, then the definition gives the cumulant of order n of x. 
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Example 16.1: Calculation of the third-order joint cumulant. All the partitions 
{ V ^ V , , . . . , ^ } of the set {1,2,3} are {{1}, {2}, {3}}, {{1}, {2,3}}, 
{{2}, {1,3}}, {{3}, {1,2}}, and {{1,2,3}}. Hence, formula (16-16) becomes 

cum(xl5x2,x3) = ( - l ) 2 2!E{x 1 }E{x 2 }E{x 3 }+(- l ) 1 l !E{x 1 }E{x 2 x 3 } + 

( - 1 ) 1 1 ! E { X 2 } E { X 1 J C 3 } + ( -1 ) 1 1 !E{X 3 }E{JC 1 A: 2 } + (-1)00!E{JC1JC2JC3} 

where 0! = 1. D 

The cumulants have the following properties for any random variables xh yl e C and 
constants ah b¡ e C, k9l = 1, 2, ... (Brillinger, 1981): 

1. Symmetric in their arguments, for example, cum(x1? x2, x3) = cum(x3, x1? x2). 
2. Multilinear functions of their arguments, for example, 

cum(Zl=lakxkiT7=ibiyl) = Σ1 = ιΣΓ= i ^ V u m ( W / ) · 
3. If any group of the xk's9 k = 1, 2, ..., n are independent of the remaining x¿'s, 

then cum(xl9x2, ...,x„) = 0. 
4. If the random variables x1?x2, ...,xrt are independent of yx,y2, ...9yn9 then 

cvm(xl+yl9x2+y29...9xn+yn) = cum(xl5x2, ...,x„) + c u m O ^ , ...9yn). 

5. cum(x1?x2, ...9xk_X9 al9xk+l9 ...,xr) = 0 for r = 2, 3 , . . . , n. 

6. cum(x¿) = E{x¿}, c u m ^ , xk) = var(x¿) and cum(xk9yl) = cova^x^,^). 
7. For stationary random variables, x(k) e C, k e Z , we have 

cun^x^) , x(k2)9 . . . , . . . , x(kn)) = cumix^! - kn)9 x(k2 - kn)9 ..., x(0)) 
for every kl,e Z, / = 1,2, . . . ,« . 

It can be shown that the joint cumulant (16-16) equals the coefficient of jrtxt2...tr in the 
Taylor series expansion of ln(E{exp(/X¿ = i*A)}) a^out the origin tx = t2 = ... = 0 
(Brillinger, 1981). 

Example 16.2: Let X G R " be a multivariate normally distributed random variable 
with covariance matrix Cx and mean value μχ. Its characteristic function φ(ί) is given by 
(Stuart and Ord, 1987) 

φ(ή = E {exp(/Z!U !*[*]'[*]» = e xP(" 5 ' r c * ' + ^ r ^ (16_18> 

with / e R B . Note that this result remains valid if the covariance matrix Cx is not of full rank 
(Mathai and Provost, 1992). Taking the natural logarithm of (16-18) shows that all joint cu-
mulants of order greater than two are zero 

cum(x[ki]9x[ki]9 ...9x[kr]) = 0 ki e {1,2, . . . , r } , r > 2 (16-19) 

If x e C" is a multivariate complex normal random variable, then xre e IR2w is a real-valued 
normal random variable for which result (16-19) applies. Because the cumulants of x can be 
written as a linear combination of the cumulants of xre (multilinearity property 2), it follows 
that (16-19) is also valid for multivariate complex normal random variables. D 

Chebyshev s inequality: Take two random variables x, y with finite second-order mo-
ments and ε an arbitrary positive real number, then (Billingsley, 1995) 
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?rob(\x-y\>e)<±E{(x-y)i} (16-20) 

Markovs inequality: take two random variables x9y with finite absolute moments of 
order p > 0 and ε an arbitrary positive real number, then (Stuart and Ord, 1987) 

Vvob(\x-y\>€)<-E{\x-y\P} 
εΡ 

(16-21) 

16.2 THE COVARIANCE MATRIX OF A FUNCTION 
OF A RANDOM VARIABLE 

Let x G Un be a random vector with mean value μχ. In general it is impossible to calculate 
the covariance matrix of the ftinction f(x) e Um. An approximation can be calculated 
through linearization of the ftinction f(x). Assuming that f{x) has continuous derivative 
w.r.t. x, we find 

f(x) *ftMx) + dJM (x-Px) 
x = vx 

(16-22) 

and 

Cov(/(x)) « dm 
dx 

Cov(x) df(x) 
dx 

(16-23) 
x = Mx 

Under some conditions on x and df(x)/dx\ = , the right-hand side of (16-22) is approxi-
mately Gaussian distributed (see Section 16.10).*Then, (16-23) is very useful for calculating 
confidence levels and uncertainty bounds on fix), even if the second-order moments of f(x) 
do not exist. 

In general, if x G Cn and/or f(x) e O , then x and/or f(x) in (16-23) should be re-
placed, respectively, by xre and/or /re(x). Some important special complex cases lead to sim-
plified formulae. If x e Cn is circular complex distributed and f(x) G Cm is an analytic 
function of x, then the right-hand side of (16-22) is circular complex distributed and (16-23) 
becomes 

Cov(/(x)) « 2g) Cov(x) 
x = Mx 

(df(x)\ Y 
V dx I ) 

x = Mx 

(16-24) 

If x G O is circular complex distributed and f(x, x) G Um, then 

Cov(/(x,x)) * 2 R e ( ^ ^ COV(JC) 
x = μχ 

df(x, x) 
dx 

(16-25) 

(Proof: see Exercise 16.15). 
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SAMPLE VARIABLES 

A particular realization of a stochastic process x{t) e Cn is denoted by xW(t) where k can 
be a random variable itself. It indicates that the outcome of the process x{i) for each value of 
t depends on the particular value of k. In most cases A: is a positive integer number corre-
sponding to the index of the realization. 

The sample mean x(t) and sample (cross-)covariance matrices Cxy(i) and Cx(t) of R 
realizations of the stochastic processes x(t),y(t) e Cn are defined as 

*(0 = ^Σί.,*Ι*](0 i16"26) 

Cx(t) = ¿ Σ Ε - i (x[k](t)-m)(x[k](t)-m)H (16-27) 

cxy(t) = ¿ Σ ί =, (*w(0 -m)(y[k](t) -Kt))H (16-28) 

The sample mean x(t) and sample (cross-)covariance matrices Cxy(t), Cx(f) of independent 
realizations are unbiased estimates of the mean μχ(ί) and (cross-)covariance matrices Cxy(t), 
Cx(t). 

For real and circular complex normally distributed processes the sample mean x(t) and 
sample covariance matrix Cx(t) are independently distributed (see Anderson, 1958 for the 
real case; see Giri, 1965 for the circular complex case). Because Cx(0 and %(t) are only func-
tions of, respectively, CXJJ) and xre(t), it can be seen that this result is also valid for noncir-
cular complex normal processes. For real and circular complex normal processes we also have 

fJKO e Ν„(μχ(ί), Cx(t)/R) 
x(t) e Nn{px{t), Cx(/)) => . (16-29) 

[Cx(t)eWM-l),Cx(t)/(R-l)) 

(x(t) 6 Κ{μχ{ή, Cx(t)/R) 
x(t) e Νϊθφ), Cx(t)) => J (16-30) 

lC¿t)eW<H(!ÍR-l),C¿ty(R-l)) 

(see Anderson, 1958 for the real case; see Giri, 1965 for the circular complex case). 
The statistical performance of estimators is often compared through Monte Carlo simu-

lations. In such simulations the true parameter value is known, while the true covariance of 
the estimates is unknown. Because the parameter estimates are mostly asymptotically nor-
mal, we may use Hotelling's T2 -statistic to test the bias of the estimates. For real and circular 
complex normally distributed, it becomes 

* = {*-μχψ(€:χ/ΚΤ\*-μχ) (16-31) 

with 
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x e Νη(μχ, Cx)^be(R-l)-^-F(n,R-n) (a) 
K n (16-32) 

x e Ν<η{μχ, Cx)^be(R-l )^L-)F{2n, 2(R - «)) (b) 

(see Hotelling, 1933 and Anderson, 1958 for the real case; see Giri, 1965 for the circular 
complex case). If for all realizations the same dependence exists between the estimated pa-
rameters, then Cx is rank deficient and the inverse in (16-31) should be replaced by the 
pseudoinverse. The statistic (16-32) is still valid if n is replaced by rank(Cx) (see Exercise 
16.18). This rank deficiency problem often occurs when identifying models with a redundant 
number of parameters. For noncircular complex normal parameters JC e Cn the bias test 
(16-31), (16-32) is performed on xre and CXn where n is replaced by In in (16-32-a). 

16.4 MIXING RANDOM VARIABLES 

16.4.1 Definition 

An important requirement that will be imposed on the perturbing noise after sampling 
is that it has a limited span of dependence. This requirement is formalized by the mixing as-
sumption for discrete-time noise. The definition for mixing random variables used through-
out this book is slightly more general than the classical definition given in Brillinger (1981) 
in the sense that it is also valid for a certain class of nonstationary signals. 

The real random vectors x(t) e Rr, t = 0, 1, 2, ..., are called mixing of order P if 

00 

max X \cum(x[ax](tx\x[a2]{t2\ . . . , x K fik-\)>x{ak{fd)\ < °° O6"3 3) 
h /„/2, ...,/*_, = o 

for every at e {1,2, ..., r } , / = 1,2,..., k, and k = 1, 2, ..., P. Because cumulants are 
symmetric in their arguments (see Section 16.1, property 1), this definition is independent of 
the particular choice of the index ti9 i = 1, 2, ...£, used to take the maximum. A mixing 
condition of order P assumes that all moments of order k = 1,2, . . . ,P exist and are uni-
formly bounded. The random vectors x{(t) e Ur\ x2(t) e R'2, ... xq(f) e W* are jointly 
mixing of order P if the random vector 

m = [xRt) xT
2(t) ... *[( / ) ] re R r · + r ' + - + r« (16-34) 

is mixing of order P. For complex random vectors x(t) e Cr definition (16-33) is applied to 
xTQ(t) G U2r. For strictly stationary random variables x(t) e Rr, t e 2 , definition (16-33) 
simplifies to the classical definition given in Brillinger (1981) 

00 

max X \cam(x[a¡](tl),x[a2](t2),...,x[ai¡¡](tk_l),x[ai¡](tk))\ 
'k / „ i 2 > . . . , / t _ ,= -=o 

(16-35) 
00 

Σ |cum(jc[e|](H,),x[e2](M2), ..·,*[„,_,](«*_i),*[et](0))| 
«1,«2. · · · . « * - 1 = - = ° 
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where u¿ = t¡-tk, i = 1,2, ..., k~ 1 (see Section 16.1, property 7). Note that the definition 
of mixing random variables (16-33) implies that 

K 

Σ ^(^j^iXW^-'-^.J^-i^W^I = °VQ (16-36) 
,t„ ...,h= ] 

for K -> oo. The converse is true only for strictly stationary random variables. 
For strictly stationary random variables x(t), the mixing condition (16-33) implies that 

the span of dependence over / is sufficiently small. That is, the random variables JC(^) and 
x(t2) become uncorrelated sufficiently fast (mixing of order 2) or independent (mixing of or-
der x) as ί2-ίχ ->QO. Indeed, if the zero mean noise x(t) is mixing of order 2, then 
covar(jt(f j), x(t2)) = cum(x(tx), x(t2)) -> 0 as t2 - tx -» oo. As var(x(^)) = var(x(/2)) > 0 are 
independent of tl9 t2, we have 

covar^ij), x(t2)) 

Jvai(x(ti))var(x(t2)) 
0 as t2-tx ->oo (16-37) 

and thus x(tx) and x(t2) are asymptotically uncorrelated. Similarly, if the noise is mixing of 
order oo, then all the higher order correlations tend to zero as t2 - tx —» oo and, hence, JC(^) 
and x(t2) are asymptotically independent. Note that the converse is not necessarily true: if 
χ(ίχ) and x(t2) are asymptotically (t2 - tx -> oo) independent, then this does not imply that 
x(t) is mixing of order oo. Indeed, the mixing condition (16-33) also imposes conditions on 
how fast the random variables should become independent. For general nonstationary noise, 
the mixing condition (16-33) is not sufficient to ensure that x(tx) and x(t2) are asymptoti-
cally uncorrelated or independent. To be asymptotically uncorrelated, we must assume, in ad-
dition, that the variance of the noise does not decrease to zero or decreases to zero more 
slowly than the covariance, so that (16-37) is fulfilled. 

16.4.2 Properties 

Besides its generality, the power of the mixing assumption lies in the property that a 
linear combination of powers of mixing variables is also mixing. These properties are formal-
ized in the following lemmas. 

Lemma 16.3: Let x(t) e C be mixing of order P and a(t) e C nonrandom numbers. 
If max|tf(/)| < c < oo, then a(t)x(t) is mixing of order P. 

Proof. Follows directly from definition (16-33). D 

Lemma 16.4: Let xk(t) G O , k = 1,2, . . . ,#, be jointly mixing (over t) random 
variables of order P. The linear combination y{t) = Y?k=zXakzk(i) with zk(t) = xk(t) 
and/or zk(t) = xk(t) is mixing of order P. 

Proof. Apply the multilinearity property 2 of the cumulants (see Section 16.1). D 
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Lemma 16.5: Let x(t) e C be mixing of order P and y{t) = Σ^ = 0 /*0 , u)x{u). If 
h(t, u) e C is absolutely summable with respect to / and u 

Va: Y?t_Q\Kt9u)\<C<«> (a) 
(1 6-3 8) 

V̂ : 1LU = «\KUU)\<C«K (b) 

with C a constant independent of t, u then, y(t) is mixing of order P. 

Proof See Appendix 16.B. D 
Lemma 16.5 says that mixing noise, filtered by a linear time-variant system with abso-

lutely summable impulse response, remains mixing of the same order. Extension of Lemma 
16.5 to the multivariable case is direct (Exercise 16.19). The real multivariable time-invariant 
version of Lemma 16.5 can be found in Brillinger (1981). 

Example 16.6: Let y(t) be generated by independent, identically distributed noise 
e(t) passing through a stable discrete-time filter. If e(t) has bounded Pth order moments, 
then y(t) is mixing of order P. If e(t) is uniformly bounded or belongs to the exponential 
family of distributions (for example, exponential, gamma, Laplace, Gaussian), then y(t) is 
mixing of order oo. Indeed, for independent noise, the mixing condition (16-33) 

00 

max X \wm{e{tx\ ...,e(tk_x\e(tk))\ = \cum(e(tk% ...,e(tk))\ < oo (16-39) 

boils down to the existence of the Mi order moment. All higher order moments exist for 
uniformly bounded noise and noise belonging to the exponential family of distributions 
(Stuart and Ord, 1987). D 

Corollary 16.7: Let xeCN, He CNxN, and y = Hx. If x[t] is mixing over t of 
order P for N = 1, 2, ..., oo and \\H\\\ < c < oo, WH]^ < c < oo for N = 1, 2, ..., oo, with c 
a constant independent of N, then y^ is mixing over / of order P for N = 1, 2, ..., oo. 

Proof. Follows directly from Lemma 16.5. D 

Lemma 16.8: Let x(t) e C be mixing of order qP and y{t) e C defined as 

q t 

yd) = Σ Σ hm(t-ul,t-u2,...,t-um)x(ul)x(u2)...x(um) (16-40) 
m = 0 «i, u2, ...,um - 0 

If the hm(tx, t2, . . . , / J e C , m = 0, 1, ..., q, are absolutely summable 

f \hm(tht2,...,tm)\<Cm<«> (16-41) 

tx,t2, ...,tm = o 

and q < oo, then y(t) is mixing of order P. 

Proof See Appendix 16.C. D 
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Lemma 16.8 says that mixing noise of order qP passing through a time-invariant non-
linear system that can be described by a Volterra functional of finite degree q with absolutely 
summable impulse responses is mixing of order P. Extension of Lemma 16.8 to the multi-
variable systems is direct. As a special case of the multivariable result, we have the following 
lemma. 

Lemma 16.9: Let xk{t) e C , k = 1, 2, ..., g, be jointly mixing (over t) of order qP. 
The product y(t) = Y[q

k=1xk(t) is mixing of order P. 

Special cases of Lemma 16.9 are xq{f), xr(i)xs{f) with r + s = q, and more generally, 
the product Y[q

k = i z¿(0 °f # delayed and/or complex conjugate factors zk(t) = x(t - tk) and/ 
or zk(t) = x(t-tk). 

16.5 PRELIMINARY EXAMPLE 

Consider, again, the resistance measurement problem of Section 1.2. Assume that M inde-
pendent experiments are made of N current and voltage measurements each, 

/W(jt) = /0 + «W(Jt) and u^\k) = u0 + n[r\k) (16-42) 

k = 1,2, ...,7V, r - 1,2, .. . ,M. Assume, furthermore, that i0 = 1 A, u0 = 1 V, and 
that n\r\k), n\[\k) are independent (over the measurements k and the experiments r) uni-
formly distributed random variables in the intervals [-0.5 A , 0.5 A] and [-0.5 V, 0.5 V], 
respectively. Invoke the simple approach (1-1), least squares (1-2), and errors-in-variables 
(1 -3) estimators, proposed in Section 1.2, for each experiment r = 1, 2, ..., M, giving M in-
dependent realizations of the estimates 

RW(N) = I yN ^M (16-43) 

N 

¿ E V W = ^ — (16-45) 

Figure 16-1, top left plot, shows the evolution of errors-in-variables resistance estimate 
(16-45) as a function of the number of measurements N for the first experiment (r = 1). The 
basic question that arises now is: "Does the estimate converge along this particular realiza-
tion?" That is, 

lim R[^(N) = Ml) (16-46) 

Scrutiny of the errors-in-variables estimates of the first five experiments (see Figure 16-1, top 
right plot) may cause one to wonder to which realizations the estimates converge (also called 
pointwise convergence) 

lim R[£(N) = J?W r = 1,2, ..., (16-47) 
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Figure 16-1. Measurement of a resistance. Top left: errors-in-variables estimates of the first 
experiment; top right: errors-in-variables estimates of the first five experiments 
(r = 1,2,..., 5); bottom: simple approach, R^j(N) errors-in-variables and least 
squares estimate of the fifth experiment. 

whether they converge to the same value, 

4 v = REY ' = 1,2, (16-48) 

and whether this value equals the true value R0 

REV ~ Ro (16-49) 

If (16-47) is true for "almost all realizations," then we have stochastic convergence to a ran-
dom number REW and it makes sense to write 

"lim"#EV(A0 
N->oo 

R EV (16-50) 

If (16-48) is true for "almost all realizations," then REY in (16-50) is a deterministic (nonran-
dom) number. Several definitions of "lim" can be given according to what is meant by "al-
most all realizations." The precise definitions of the stochastic limits, their properties, and 
their interrelations will be discussed later on in this chapter. If (16-49) is true, then the resis-
tance estimates are called consistent, which means that they converge to the true value as the 
number of processed measurements N tends to infinity. 

Figure 16-1, bottom plot, shows the simple approach (16-43), least squares (16-44), and 
errors-in-variables (16-45) estimates of the fifth experiment (r = 5). Clearly, the simple ap-
proach and least squares estimates seem to converge to a value that deviates significantly from 
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the true resistance value of 1 Ω. Referring also to Figure 1-4 on page 5, we may ask the fol-
lowing questions: "Is the mean value of the estimates asymptotically different from the true 
value?", "Is the uncertainty of the estimates (asymptotically) minimal?", and "What is the as-
ymptotic distribution of the estimates?" The first question is strongly related to the consistency 
problem but is not completely equivalent (see Section 16.14). The second question is handled in 
Section 16.12, where it is shown that the uncertainty is bounded below by the Cramér-Rao 
bound. The central limit theorems of Section 16.10 will be helpful to answer the third question. 
The knowledge of the asymptotic distribution makes it possible to calculate confidence inter-
vals on the estimates. 

16.6 DEFINITIONS OF STOCHASTIC LIMITS 

Let x(N), N = 1, 2, ... be a scalar random sequence. There are several ways in which the 
sequence might converge to a (random) number x as N-> oo. We will define four modes of 
stochastic convergence. 

1. The sequence x(N), N= 1,2,... converges to x in mean square if, 
E{|x|2}<oo, Ε{|χ(Λ0|2}<αο forallTV, and lim Έ.{\χ(Ν)-χ\2} = 0. We write 

N-><x> 

l.i.m. x(N) = x <=> limE{|jc(A0-x|2} = 0 (16-51) 
N->oo N-+co 

2. The sequence x(N), N = 1, 2, ... converges to x with probability 1 (w.p. 1) or 
almost surely if, lim χίω\Ν) = χ^ for almost all realizations ω, except those 

ω e A such that Prob(A) = 0. We write 

a.s.lim x(N) = x o Prob( lim x(N) = x) = 1 (16-52) 

This definition is equivalent to (Theorem 2.1.2 of Lukacs, 1975) 

a.s.lim x(N) = x <^> \/ε> 0: lim Prob(sup \x(k) - x\ <ε)=1 (16-53) 

3. The sequence JC(ÍV), N = 1, 2, ... converges to x in probability if, for every 
ε,δ>0 there exists an N0 such that for every N>N0: 
Prob(|jt(JV) -χ\<ε)>\-δ. We write 

plim x(N) = x <=> V¿r > 0: lim Prob(\x(N) -χ\<ε)=\ (16-54) 
N->oo 7V-»oo 

4. Let FN(x) and F(x) be the distribution functions of, respectively, x(N) and x. 
The sequence x(N), N = 1, 2, ... converges to x in law or in distribution if 
Fj^x) converges weakly1 to F(x). We write 

Lim x(N) = x<?> Lim FN(x) = F(x) (16-55) 

1. This means at all continuity points of the limiting function and is denoted by "Lim." 
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16.7 INTERRELATIONS BETWEEN STOCHASTIC LIMITS 

In the previous section we defined several modes of stochastic convergence. The connections 
between these concepts are 

1. Almost sure convergence implies convergence in probability; the converse is not 
true (Theorem 2.2.1 of Lukacs, 1975; see also Appendix 16.D). 

2. Convergence in mean square implies convergence in probability; the converse is 
not true (Theorem 2.2.2 of Lukacs, 1975; see also Appendix 16.E). 

3. Convergence in probability implies convergence in law; the converse is not true 
(Theorem 2.2.3 of Lukacs, 1975). 

4. There is no implication between almost sure and mean square convergence. 
5. A sequence x(N) converges in probability to x if and only if every subsequence 

x(Nk) contains a sub-subsequence x(Nk) that converges (/ -> oo) almost surely to 
x (Theorem 2.4.4 of Lukacs, 1975). 

6. A sequence converges in probability to a constant if and only if it converges in 
law to a degenerate distribution1 (Corollary to Theorem 2.2.3 of Lukacs, 1975). 

A graphical representation of the convergence area of the different stochastic limits is given 
in Figure 16-2. The interrelations between the concepts are summarized in Figure 16-3. As 
these allow a better understanding of the stochastic limits, some proofs are given in the ap-
pendixes. The importance of interrelation 5 is that any theorem proved for the almost sure 
limit is also valid for the limit in probability. Before illustrating some of the interrelations by 
(counter) examples, we cite the Borel-Cantelli and the Fréchet-Shohat lemmas, which are 
useful to establish, respectively, convergence w.p. 1 and convergence in distribution. The 
Borel-Cantelli lemma roughly says that if the convergence in probability or in mean square is 
sufficiently fast, this implies convergence with probability 1. 

On a subsequence 

< = 
a.s.lim — S plim S— l.i.m. 

Λ K Conv. to a degenerate 
*ψ | | distribution 

Figure 16-3. Interrelations between the stochastic limits. j · 

1. F(x) is degenerate if there exists an x0 such that F(x) = 0 for x < x0 and F(x) = 1 for x > x{ 
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Lemma 16.10 (Borel-Cantelli Lemma): If 

Σ ^ = jProbdxCAO-xl > ε) < QO or £ ¡ L jEflxí/V)-*!2} < QO (16-56) 

then x(N) converges to x w.p. 1. 

Proof. Theorems 2.1.1 and 2.1.3 of Stout (1974); see also Appendix 16.F. D 

Lemma 16.11 (Fréchet-Shohat Lemma): Let x have a distribution function F(x) 
that is uniquely determined by its moments (cumulants). If the moments (cumulants) of the 
sequence x(N) converge for N-> oo to the moments (cumulants) of x, then x(N) converges 
in distribution to x. 

Proof Theorem 1, Section 8.2 of Chow and Teicher (1988). D 

Example 16.12: Convergence w.p. 1 and convergence in probability do not imply con-
vergence in mean square (Example 2.1.1 of Stout). Take ω to be uniform in [0, 1 ], and build 
the sequence x(N) such that 

[0 ω e [ 1 /N, 1 ] 

Two realizations of the sequence are, for example, 

{x^\N)} = {1 ,2 ,3 ,0 ,0 ,0 ,0 ,0 , . . . } 
{Χ[0Λ5](Ν)} = {1 ,2 ,3 ,4 ,5 ,6 ,0 ,0 , . . . } 

We see that χίω\Ν) is zero for TV sufficiently large, which suggests that it will converge to 
zero. Formally, plim x(N) = a.s.lim x(N) = 0 since 

7V->oo N->co 

Prob(sup|x(£)| <s) = Prob(|x(A0| <ε) = Prob(x(A0 = 0) = 1 - \/N 
k>N 

is arbitrarily close to 1 for N sufficiently large. There is just one sequence, χί°\Ν), that does 
not converge. This is not in contradiction with the previous results because the probability of 
getting this particular realization is zero: Prob(co = 0) = 0. The mean square limit l.i.m. x(N) 
does not exist because E{x2(N)} = N is unbounded. Note that the Borel-Cantelli lemma 
cannot be used in this example to establish the almost sure convergence from the 
convergence in probability. Indeed, ΣΛΓ= I Prob(|jc(/V) >ε\) = X^= } \/N = oo. D 

Example 16.13: Convergence in probability and convergence in mean square do not 
imply convergence w.p. 1 (Example 2.1.2 of Stout, 1974). Take ω to be uniform in [0, 1), 
and build the sequence T(n, k) such that 

. ,, TX ,1 ω E [(&- l)/n, k/n) 

0 elsewhere 
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for k = 1, 2, ..., n and n > 1. Let 

{x(N)} = {{Γ(1,*)},{Γ(2,*)},{Γ(3, £)},.. .} 

with {T(n9 k)} = {T(n, 1), T(n, 2), ..., T(n, «)} and N = n(n- l ) / 2 + A:. Two realizations 
of the sequence are, for example, 

{χ[0.27](Λ0} = {{!}, {1,0}, {1,0,0}, {0,1, 0,0}, . . .} 

{X[0.S5](N)} = {{l} , { 0 , 1 } , {0,0,1}, {0,0, 0,1}, . . .} 

We see that the length of each subsequence {T(n, k)} of {x(N)} increases with n and that it 
contains exactly one nonzero term. This suggests that x(N) will converge in probability (the 
probability to get a 1 goes to zero), but not w.p. 1 (the supremum is 1 for any value of N). 
Formally, plim x(N) = 0 since 

N-»oo 

lim Prob(\x(N)\ <ε) = lim Prob(r(n, k) = 0) = lim (1 - 1 /n ) = 1 
7V-»oo N->ao JV->co 

and l.i.m. x(N) = 0 because 

limE{;t2(A0} = lim E{T\n , k)} = lim \/n = 0 
N—>co N-+00 N-+00 

The almost sure limit a.s.lim x(N) does not exist since Prob(sup|jc(r)| >ε) = l. Note that the 
subsequence T(n, k), with k fixed and n > 1 , converges with probability one to zero. This is 
an illustration of interrelation 5. D 

Example 16.14: Convergence in mean square and convergence w.p. 1 are compatible 
(Example 2.2.3 of Lukacs, 1975). Let x(N) be a random variable that assumes only the val-
ues \/N and -\/N with equal probability. We find l.i.m. x(N) = 0 since 

N-»oo 

limE{;c2(JV)} = lim l/N2 = 0 
N->oo N->oo 

Also a.s.lim x(N) = 0 because \x(k)\ < \x(N)\ for any k > N so that 
N-»oo 

Prob(sup|x(A:)| < ε ) = Prob(|x(^)| < ε)\Ν> χ/ε = 1 D 
k>N w>we 

Example 16.15: Convergence in distribution does not imply convergence in proba-
bility (Example 2.2.4 of Lukacs, 1975). Let JC be a random variable that can take only the 
values 0 and 1 with equal probability. Next, construct the sequence x(N) = l-x. We have 
Lim x(N) = x because x(N) and JC have the same distribution functions FN(x) = F(x). 

However, the limit in probability plim x(N) does not exist because \x(N) - x\ = 1 so that 
Prob(|jc(A0-x| <έ) = 0. N~*™ D 
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PROPERTIES OF STOCHASTIC LIMITS 

The properties of the stochastic limits are similar to those of the classical (deterministic) 
limit, but there are some subtle differences. The general properties are 

1. A continuous function and the almost sure limit may be interchanged 

a.s.lim/(jc(iV)) =/(*) with x = a.s.limx(A0 (16-58) 

2. The almost sure limit and the expected value may be interchanged for uniformly 
bounded sequences (Theorem 5.4 of Billingsley, 1995) 

lim E {x(N)} = E {a.s.lim x(N)} (16-59) 
N-taa JV->oo 

A direct consequence of (16-59) is that 

Ε{0„(ΛΜ)} = 0(N-X) (16-60) 

3. A continuous function and the limit in probability may be interchanged (Theorem 
2.3.3 of Lukacs, 1975) 

plimf(x(N)) =/(*) with* = plim;c(JV) (16-61) 

4. The limit in probability and the expected value may be interchanged for uniformly 
bounded sequences (Theorem 5.4 of Billingsley, 1995) 

lim E{x(N)} = E {plim x(N)} (16-62) 

A direct consequence of (16-62) is that 

E{Op(N~k)} = 0(N~k) (16-63) 

5. The mean square limit is linear (Theorem 3.1 of Jazwinski, 1970) 

l.i.m. (ax(N) + by(N)) = a l.i.m. x(N) + b l.i.m. y(N) (16-64) 
N-+ao JV-»oo 7V-»oo 

where a and b are deterministic (nonrandom) numbers. 
6. The mean square limit and the expected value may be interchanged (Theorem 3.1 

of Jazwinski, 1970), 

lim E {x(N)} = E {l.i.m. x(N)} (16-65) 
N-*cc N-><x> 
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A direct consequence of (16-65) is that 

E{Om.s.(#-*)} = 0(N~k) (16-66) 

7. If l.i.m. JC(A0 = x andE{(x(A0-*)2} = 0(N~k), with £ > 0 , then 

x(N) = x + Oms(N~k/2) and JC(#) = JC + Op(N~k/2) (16-67) 

This is a direct consequence of (16-66) and interrelation 2, Section 16.7. 
8. If the sequence x(n) is deterministic (nonrandom), then the limit in mean square, 

the limit w.p. 1, and the limit in probability reduce to the deterministic limits. 

Property 1 follows directly from the definition (16-52) of convergence w.p. 1, while property 
3 follows from interrelation 5, Section 16.7, and property 1. Properties 1 and 3 require the 
continuity of the function at ALL values of the limit random variable x. If x is a constant 
(nonrandom), then continuity in a closed neighborhood of x is sufficient. Note that the limit 
in mean square and a continuous function may, in general, NOT be interchanged. Note also 
that the almost sure limit and the limit in probability, in general, do NOT commute with the 
expected value. 

16.9 LAWS OF LARGE NUMBERS 

The classical laws of large numbers are used to study the stochastic convergence of the partial 
sum S(N) = Σ%= xx(k) of a random sequence x(k), with x(k) independent of N. They state 
roughly that S(N) converges to its expected value if the span of dependence of x(k) is lim-
ited. In this book, we often need the more general case where the sequence x(k) in the partial 
sum S(N) depends on the number of samples N: S(N) = Σ^= i*wW· According to the sto-
chastic limit used to establish the convergence, we speak about the weak law of large num-
bers, 

plim (S(N)- E{S(N)})/N = 0 (16-68) 
N->oo 

the strong law of large numbers, 

a.s.lim (S(N)- E{S(N)})/N = 0 (16-69) 
N-»oo 

and the law of large numbers 

l.i.m. (S(N)- E{S(N)})/N = 0 (16-70) 
iV-»oo 

Note that the (strong) laws of large numbers (16-69) and (16-70) imply the weak law of large 
numbers (16-68) (see Section 16.7, interrelations 1 and 2). The analysis of the rate at which 
S(N)/N converges to its expected value requires some additional assumptions. For the 
strong law of large numbers (16-69), this rate is given by the law of the iterated logarithm 
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S(N)/N= E {S(N)} /N + Oas(N~l /2J\n(\n(N))) (16-71) 

For the law of large numbers (16-70) we have, typically, 

S(N)/N= E{S(N)}/N+Om.s(N~W2) (16-72) 

Some interesting versions of the laws of large numbers and their respective convergence rates 
are listed next. More versions can be found in Chow and Teicher (1988), Lukacs (1975), and 
Stout (1974). 

1. If x(k) is independent and identically distributed (iid), then (16-69) applies if and 
only if E {*(£)} =x<oo (Theorem 4.3.3 of Lukacs, 1975). If in addition 
var(x(&)) = σ2<οο, then the convergence rate of (16-69) is given by (16-71) 
(Theorem 3.2.9 of Stout, 1974). 

2. If x(k) is independent, then 
2a. (16-68) and (16-69) are equivalent (Theorem 2.13.2 of Stout, 1974). 
2b. (16-69) applies if var(jc(&)) < M< oo for any k (Corollary 1 to Theorem 4.3.1 

of Lukacs, 1975). If, in addition, var(S(JV)) = 0(N) and for some δ> 0, 

ΣΙ= !Prob(|x(W)-E{x(N)}\ > JSNln(\n(N))) < oo (16-73) 

then the convergence rate of (16-69) is given by (16-71) (Corollary 3, Section 
10.2 of Chow and Teicher, 1988) 

3. If xN(k), N = 1, 2, ..., oo, is mixing of order 2 and depends on N, then the law 
of large numbers (16-70) applies, and its convergence rate is given by (16-72) 
(proof: see Appendix 16.G). For the strong law of large numbers, the variations of 
the sequence xN(k) w.r.t. N should, in addition, be "small enough": if 
var(X£= xxr{k)-xs{k)) = 0(r-s), r>s, then (16-69) applies (proof: see Appen-
dix 16.G). 

The uniformly boundedness condition on the variances in versions 2b and 3 of the law of 
large numbers is necessary to avoid any increase in the variance of the sequence x(k) to in-
finity. Otherwise, the uncertainty on the partial sum would not decrease to zero, making it im-
possible, in general, for S(N)/N to converge to its expected value. 

Because the almost sure limit imposes some restrictions on the supremum (see 
(16-53)), the convergence rate of the strong law of large numbers depends upon the tails of 
the probability density functions (pdf's) of the random variables x(k). Condition (16-73) dic-
tates that the tails of the pdf's tend sufficiently fast to zero. It is satisfied for uniformly 
bounded random variables. 

Example 16.16: Let x e CN, HeCNxN, and y = Hx, where x, H satisfy the as-
sumptions of Corollary 16.7 with P = 2, and where H^ is independent of N for any ij. 
The partial sum S(N) = ]>^= λyN(k), with yN(k) = y^9 satisfies the strong law of large num-
bers (16-69). Indeed, 
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k=\ k=ll = s+\ 

var( Σ yr(k) -ys{k)) = var( £ £ H[K ήχ^) 

r s s 

' l J 7 L'2Jy " 1*1» MJ 

/ , , / , = $ + ! A:, = 1 ¿, = 1 

< max 
v 

? χ Σ | # [ Μ ] | Σ |cum(x[/i]5x[/2])| 
1 k=\ J il9i2 = s + \ 

<0(r-s) 

The last inequality is due to the finite l-norm of H and the second-order mixing property of 
x[k] (16-36). D 

16.10 CENTRAL LIMIT THEOREMS 

The classical central limit theorems pertain to the asymptotic distribution function of the par-
tial sum S(N) = Y^= xx(k) of a random sequence x(k). They state, roughly, that S(N) is as-
ymptotically normally distributed 

*-►«> Vvar(S(A0) 

if each x(k) has high probability to be of the same order of magnitude and if the span of de-
pendence of x(k) is limited. Under some additional assumptions, the rate at which the distri-
bution function of S(N) converges to a normal distribution can be established. It is given by 
the Berry and Esseen theorem 

sup\FN(y) - Φ(γ)\ < 0(N~m) (16-75) 

with FN(y) the distribution function of (S(N) - E {S(N)} )/Jvar(S(N)) and <P(y) the stan-
dard normal distribution function. In this book we often need the more general case where the 
sequence x(k) in the partial sum S(N) depends on the number of samples N: 
S(N) = Σ^= !%(&). Some interesting versions of the central limit theorem are listed next. 
More versions can be found in Billingsley (1995) and Feller (1968). 

1. If x(k) is independent and identically distributed with finite mean μ < oo and fi-
nite nonzero variance 0<σ 2 <οο , then (16-74) applies with Ε{£(ΛΓ)} = Νμ 
and var(S(A0) = Νσ2 (Theorem 27.1 of Billingsley, 1995). If, in addition, 
E { |JC(A:)| 3} < oo, then the convergence rate of (16-74) is given by (16-75) (Theo-
rem 9.1.3 of Chow and Teicher, 1988). 

2. x{k) is independent, with finite means μΙς<ει<οο and finite variances 
σ\ < c2 < oo. If for some ε> 0 x(k) has uniformly bounded 2 + ε moments 
E{|x(¿)|2+*}<C<oo and if N/(Jvar(S(N)))2 + e = o(N°), then (16-74) applies 
with 1{S(N)} = Σ"= x^k and var(S(A0) = ¿ f= i tf. (Theorem 27.3 of Billings-
ley, 1995). If, in addition, E { |JC(&)| 3} < c3 <oo, then the convergence rate of 
(16-74) is given by (16-75) (Theorem 9.1.3 of Chow and Teicher, 1988). 
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If x(k) is m -dependent, then (16-74) is valid under the same conditions of version 
2 of the central limit theorem (Orey, 1958; Rosen, 1967). 
If xN(k), N = 1, 2, ..., oo, is mixing of order infinity and if var(£(7V)) = 0(N), 
then (16-74) and (16-75) apply (proof: see Appendix 16.H for the nonstationary 
case; see Theorem 4.4.1 of Brillinger (1981) for the stationary case). 

The conditions N/(Jvar(S(N)))2 + £ = o(N°) and var(S(N)) = 0(N) in, respectively, ver-
sions 2 and 3 and version 4 of the central limit theorem are necessary to avoid dominance of 
a few random variables over the partial sum S(N). If not, the distribution function of S(N) 
would be determined by the distribution functions of those few dominating random variables 
and would in general not be normal. Extension of these theorems to the complex and to the 
(complex) multivariate case is straightforward. 

The central limit theorem should be interpreted with some care. The following example 
will illustrate this. 

Example 16.17: Suppose that we take N independent samples of a uniformly distrib-
uted random variable x(k) e £/(0, σ2). According to version 1 of the central limit theorem 
(16-74), the mean value will be asymptotically normally distributed. Figure 16-4 compares the 
true probability density function of S(N)/N (solid line) with the Gaussian pdf predicted by 
the central limit theorem (dashed line) for the case σ = 5/73 . It follows that even for small 
values of N the Gaussian approximation is remarkably within the interval [-5, 5]. Although 
the mean S(N)/N cannot take values outside the interval [-73 σ, 73 σ], the central limit the-
orem predicts that this will happen with some (small) probability. Similarly, saying that the 
weight of newborn babies is normally distributed does not imply that there is a small risk of 
getting babies with a negative weight! We conclude that the central limit theorem describes, 
very well, the behavior of the distribution function around its mean value but not at its tails. D 

16.11 PROPERTIES OF ESTIMATORS 

What kind of properties do we expect from a "good" estimator? It would be nice that the esti-
mate Θ(Ν) converges to the true value θ0 as the number of noisy measurements N tends to 
infinity. We could also require that the expected value of Θ(Ν) equals the true value or that 
this is at least asymptotically (N-> oo) valid. "Does the estimator have the smallest possible 
(asymptotic) mean square error?" and "Is its (asymptotic) distribution function known?" are 
also important issues. Besides, we would also like that most of (all) these properties remain 
valid if we do not satisfy some of (all) the basic assumptions made in constructing the estima-
tor. The formal definitions are listed next. 

0.3-

0.2-

0.1-

0-
-10 -5 0 

(a) 

10 -10 -5 

(b) 

Figure 16-4. Comparison of the true pdf (solid line) and the Gaussian pdf predicted by the central 
limit theorem (dashed line) of S(N)/N for zero mean, independent uniformly distributed 
random variables x(k) with σ = 5/Jl: (a) N = 1, (b) N = 2, and (c) N = 3. 
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1. An estimator Θ(Ν) is consistent if it converges to the true value θ0 as N-> oo. 
According to the stochastic limit used, we say that Θ(Ν) is weakly consistent if 

strongly consistent if 

plim<9(A0 = θ0 (16-76) 
7V->oo 

a.s.lim Θ(Ν) = θ0 (16-77) 

and consistent if 

l.i.m. Θ(Ν) = θ0 (16-78) 
JV->oo 

2. An estimator Θ(Ν) is unbiased if 

Ε{0(ΛΓ)} = 0O (16-79) 

It is asymptotically unbiased if (16-79) is valid for N —> oo. 
3. An estimator Θ(Ν) is (statistically) efficient if, for all θ0 -values, the mean square 

error matrix of any other estimator ψ(Ν) is not smaller than that of Θ(Ν) 

MSE(^(A0) > MSE0(N)) (16-80) 

It is asymptotically efficient if (16-80) is valid for TV—» oo. For unbiased estima-
tors (16-80) becomes 

Cov(y/{N)) > Cov(0(AO) (16-81) 

4. The estimator Θ(Ν) is (asymptotically) normally distributed 

Θ(Ν) - Θ(Ν) -> δθ(Ν) e Nn\ 0, Cov(^(A0)) (16-82) 

with Θ(Ν) a deterministic parameter vector depending on N. 

5. An estimator Θ(Ν) is robust if one or more of the preceding properties remain un-
changed when one or more of the basic assumptions made to construct the estima-
tor are violated. 

There is a fundamental difference between asymptotic unbiasedness and (weak or strong) 
consistency. Indeed, to be asymptotically unbiased, it is, for example, sufficient (but not nec-
essary!) that the asymptotic probability density function fÁff) of the estimate Θ satisfies 
f^0 - θ0) = f¿(0o- &) ( s e e Figure 16-5(a)), while (weak or strong) consistency requires that 
the asymptotic probability density function is a Dirac function (see Figure 16-5(b)). 

The property that a continuous function may be interchanged with the almost sure limit 
and the limit in probability (see Section 16.8) explains why weak and strong consistency of 
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0.4-, 

^ ̂ 

Θ-Θ* 

Figure 16-5. Asymptotic pdf of Θ: (a) asymptotically unbiased estimator, (b) (weakly or 
strongly) consistent estimator for N -» oo (the limit pdf is a Dirac function). 

the estimates are mostly proved. This is not the case for the limit in mean square, which is of-
ten used as an intermediate step in the consistency proofs (see Section 16.13). Note, however, 
that consistency (16-78) implies asymptotic unbiasedness (see Section 16.8, property 6), 
which is not the case for weak and strong consistency (see Section 16.14). 

The practical importance of the efficiency property is that it makes no sense to look for 
estimators with a lower mean square error matrix. Although (asymptotic) efficiency is a 
highly desirable property, inefficient estimators with an acceptable accuracy may sometimes 
be the best practicable candidates (for example, if calculation time is important). 

The existence of bias in the estimates is often the reason of the increased mean square 
error matrix compared with that of the unbiased estimates. However, simple examples of bi-
ased minimum mean square estimators exist that are statistically more efficient (have smaller 
MSE) than any other unbiased estimator (Kendall and Stuart, 1979; Stoica and Moses, 1990; 
see also Example 16.19 and Exercise 16.24). Minimum mean square error estimators have 
the following three drawbacks. First, they often require knowledge of the true (unknown) pa-
rameter values and, therefore, are not realizable (Kendall and Stuart, 1979; Norton, 1986). 
Next, if the estimation results are averaged in a second step, then the mean square error can 
only be reduced to the square of the bias as the number of averages tends to infinity (it can be 
reduced to zero for unbiased estimates). Finally, minimum mean square estimators are not ro-
bust w.r.t. the assumed underlying distribution function of the measurements. This explains 
why (asymptotically) unbiased estimators are usually preferred over minimum mean square 
estimators. 

One should be very careful when interpreting the asymptotic normality property 
(16-82). It says that the difference Θ(Ν)-Θ(Ν), with Θ(Ν) deterministic, converges in dis-
tribution to a zero mean random variable δθ{Ν) that is (asymptotically) normally distributed. 
This does NOT imply the existence of the moments (expected value, variance, ...) of Θ(Ν) 
for any finite value of N. However, the asymptotic normality property makes it possible to 
calculate uncertainty bounds and confidence levels. 

16.12 CRAMER-RAO LOWER BOUND 

Consider the identification of the parameter vector Θ e Rn$ using noisy measurements 
z e UN. The quality of the estimator θ(ζ) can be represented by its mean square error matrix 

MSE(0(z)) = Cov(e(z)) + beb¡ (16-83) 
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where θ0 and be denote, respectively, the true value and the bias on the estimates. We may 
wonder whether there exists a lower limit on the value of the mean square error (16-83) that 
can be obtained with various estimators. The answer is given by the generalized Cramér-Rao 
lower bound. 

Theorem 16.18: Let fz(z, θ0) be the probability density function of the measurements 
z G UN. Assume that fz(z, θ0) and its first- and second-order derivatives w.r.t. Θ e Rn* exist 
for all θ0- values. Assume, furthermore, that the boundaries of the domain of fz(z, θ0) w.r.t. z 
are θ0 independent. Then, the generalized Cramér-Rao lower bound on the mean square 
error of any estimator G(z) of the function G{6) e Cr of Θ is 

(dGidn) dbA (dG(9ñ) db^f „ 
MSE(G(0(z))) > — L i ' + _ £ F/+(0o) — L * + _ £ + bGbH

G (16-84) v v w " \ δθ0 δθ0)
 v °\ θθ0 θθ0)

 G G v J 

with bG = E{G(z)} - G(0O) the bias that might be present in the estimate, and Fi(0o) the 
Fisher information matrix of the parameters θ0 

Equality holds in (16-84) if and only if there exists a nonrandom matrix Γ such that 

(Wz))~ E{0(θ(ζ))} = r[ y * y OJ) (16-86) 

The expectations in (16-84) and (16-85) are taken w.r.t. the measurements z. 

Proof. See Appendix 16.J. D 

Note that the calculation of the Cramér-Rao lower bound requires knowledge of the 
true parameters #0, which is often not available (except in simulations). An approximation 
can be calculated by replacing θ0 by its estimated value Θ in (16-84). Two special cases of 
the Cramér-Rao inequality are worth mentioning. 

If G(0) = Θ, bG = 0, and F/(#0) is regular, then we obtain the Cramér-Rao lower 
bound for unbiased estimators (abbreviated as UCRB) 

Cov(0(z)) > Fi-l(0o) (16-87) 

If condition (16-86) is not satisfied, θ(ζ) - θ0 * Γ(51η£(ζ, θ0)/θθ0)
τ, then the lower bound 

(16-87) is too conservative, and there may still be an unbiased estimator that has smaller vari-
ance than any other unbiased estimator. Better (larger) bounds exist when (16-87) is not at-
tainable, but they are often (extremely) difficult to compute. An overview of tighter bounds 
can be found in Abel (1993). 
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If G{0) = 0, bG*0, and Fi(0o) is regular, then we find the Cramér-Rao lower 
bound on the mean square error of biased estimators (abbreviated as CRB) 

MSE(0(z)) > η-\θ0) + bebl (16-88) 

It follows that the Cramér-Rao lower bound for asymptotically unbiased estimators (b# -> 0 
as JV-» oo) is asymptotically given by (16-87) only if the derivative of the bias w.r.t. θ0 is 
asymptotically zero. Likewise, in the unbiased case, the lower bound (16-88) may be too con-
servative and tighter bounds exist (Abel, 1993). Note that the first term in the right-hand side 
of (16-88) can be zero for biased estimators (see Example 16.20). 

In general, it is impossible to show that the bias (and its derivative w.r.t. Θ) of a 
weakly or strongly consistent estimator converges to zero as N -» oo. However, the moments 
of the limiting random variable often exist. The (asymptotic) covariance matrix or mean 
square error of the limiting random variable is then compared with the UCRB. In this context, 
the concept of efficiency is also used for weakly or strongly consistent estimators. 

Example 16.19: (Stoica and Moses, 1990) Let z(k), k = 1, 2, ..., N be zero mean iid 
Gaussian random variables, z(k) e N(0, σ2). The sample variance σ2 = Y¿k= lz

2(k)/N is an 
unbiased and efficient estimate of σ2 (see Exercise 16.23). Now consider the estimator 
s2 = ασ} where a > 0 is chosen to minimize the mean square error (16-7) of the estimate s2 

MSE(s2) = α2νκ(σ2) + (α-\)2σζ
4 (16-89) 

Minimizing (16-89) w.r.t. a gives a = σ//Ε{σζ
4} = N/(N+2) with corresponding mini-

mum mean square error 

minMSE(a) = 2σζ
4/(Ν+2) (16-90) 

a 

This should be compared with the UCRB 

Fr\a2) = var(áz
2) = 2σ*/Ν (16-91) 

which is clearly larger than the mean square error (16-90) of the biased estimate 
σ2Ν/(Ν+ 2). It can also be verified that σ2Ν/(Ν+ 2) is statistically efficient in the sense 
that its mean square error reaches the lower bound (16-88). We conclude that the lower bound 
on the mean square error matrix of biased estimators may be smaller than the lower bound on 
the covariance matrix of unbiased estimators. D 

Example 16.20: Assume that we estimate the weight of a bread from N noisy mea-
surements. The true weight of the bread is 800 g. Regardless of what we measure, we esti-
mate the weight as 100 g. Clearly, the estimator is biased and has zero variance. This is not 
in contradiction with the lower bound (16-88). Indeed, 
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Ine + dbe/de= δΕ{θ(ζ)}/θθ0 = 0 

because the estimate θ{ζ) of the weight is independent of the true value θ0. D 

16.13 HOW TO PROVE ASYMPTOTIC PROPERTIES 
OF ESTIMATORS? 

Ideally, we would like to know everything about the finite sample behavior (N does not in-
crease to infinity) of an estimator. In practice, however, we can prove only a few large sample 
(N-> oo) properties and hope that an estimator with good asymptotic properties also be-
haves well for practical sample sizes. The goal of this section is to present the main ideas and 
techniques without going into the mathematical details. The exact technical conditions and 
assumptions can be found in Chapter 17. We distinguish two different situations: an explicit 
(analytic) expression for the estimates Θ e R"e as a function of the measurements z e R^ is 
available, 

θ(ζ) =f(z) (16-92) 

or Θ is implicitly known through the minimization of a cost function V(0, z) 

θ(ζ) = arg min V( θ,ζ) (16-93) 
Θ 

The explicit case (16-92) is illustrated on the resistance measurement problem in 
Section 16.15, and the implicit case (16-93) is elaborated in Chapter 17 on cost functions that 
are quadratic-in-the-measurements. We assume that the measurements z are disturbed by 
additive noise nz 

z = zQ + nz (16-94) 

with zQ the true unknown value. 
The following tools are essential in the analysis of the asymptotic properties of an esti-

mator: the law of large numbers (Section 16.9) for the convergence and the consistency, the 
convergence rate of the law of large numbers (Section 16.9) for the convergence rate of the 
estimates, the interchangeability of the stochastic limit and the expected value (Section 16.8) 
for the asymptotic bias, the central limit theorem (Section 16.10) or the Fréchet-Shohat 
lemma (Lemma 16.11) for the asymptotic normality, and in general the interchangeability of 
a continuous function and a stochastic limit (Section 16.8). 

16.13.1 Convergence—Consistency 

In both cases (16-92) and (16-93) the estimate θ(ζ) converges to some nonrandom 
number θ(ζ0) by averaging of the disturbing noise nz. Therefore, we first locate in f(z) and 
V(0,z) the sums that average the measurements z, and next use one of the laws of large 
numbers of Section 16.9 to prove the convergence of the sums to their expected values. Fur-
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ther analysis is done with the limit in probability or the limit with probability one, as they 
have the nice property of being interchangeable with a continuous function (see 
Section 16.8). Putting the stochastic sums in the vector w e Rp, with p independent of N9 

we can write this down formally as 

¿(z)=/(z)=/(z0,W(«z,z0)) (a) 
(1O-9J) 

θ(ζ) = arg min V( Θ, z) = arg min V( Θ, z0, w( Θ, nz, z0)) (b) 
θ θ 

The sums w converge for 7V-> oo in some sense (mean square, in probability, or w.p. 1) to 
their expected values 

w(nz, z0) -> E {w(nz, z0)} = //w(z0) 
(16-96) 

w(6> nz, z0) -> E {w(0, nz, z0)} = μ^θ, ζ0) uniformly in Θ 

Note that the convergence of w(0, nz, z0) must be uniform w.r.t. Θ, otherwise μ„(θ, ζ0) is not 
a continuous function of Θ. The strong or weak convergence then follows directly from the 
interchangeability of a continuous function and the almost sure limit or the limit in probability 

θ(ζ)^θ(ζ0)=/(ζ0,μκ(Ζο)) (a) 

θ{ζ) -+ θ(ζ0) = arg minK(0, ζ0, μ„(θ, ζ0)) (b) 
Θ 

This is illustrated on the explicit case (16-97.a) using properties 1 and 8 of the almost sure 
limit (see Section 16.8), 

a.s.lim$(z) =/(a.s.lim z0, a.s.lim w(nz, z0)) 

(16-98) 
= / ( l i m z 0 , lim μ„{ζϋ)) 

Λ/'->οο 7V->OO 

= lim/(^o^w(zo)) 

= lim θ(ζ0) 

The estimate ^(z) is strongly or weakly consistent if the limit value 

A = lim 0(zo) (16-99) 

equals the true value ft = θ0. In most cases the stronger condition θ(ζ0) = θ0 is satisfied. 

16.13.2 Convergence Rate 

Suppose that we have estimated some parameters Θ using N data samples. We may 
wonder now how many additional samples we should measure in order to decrease the uncer-
tainty on Θ by a factor of k. The answer is given by the convergence rate of the estimates. It, 
typically, obeys the so-called JÑ law; for example, to decrease the uncertainty by a factor of 
10 we need 100 times more data samples. The consistency property does not tell how quickly 
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the estimates converge to the true value. An additional analysis is necessary to establish the 
convergence rate. It starts by analyzing how fast the variance of the stochastic sums w in 
(16-96) converges to zero. By properties 6 and 7 of Section 16.8, these convergence rates also 
apply for the limit in mean square and the limit in probability. For mixing sequences, this rate 
is at least Oms(N~W2) (see Section 16.9, version 3 of the law of large numbers). The almost 
sure limit is not used in this context because it results in somewhat slower convergence rates 
(see Section 16.9). Hence, further analysis is done with the limit in probability as it is inter-
changeable with a continuous function. The main idea is to make a Taylor series expansion of 
Θ (16-95) as a function of the stochastic sums w. The implicit case (16-95.b) is somewhat 
involved because first an explicit expression of Θ as a function of w should be constructed. 
Therefore, the explicit case (16-95.a) is tackled first. To simplify the notations, in the sequel 
of the analysis we drop the dependence of w and //w on nz and z0. 

16.13.2.1 Explicit Case. The Taylor series expansion of the &th entry of /(z0, w) 
(16-95.a) w.r.t. w at the point w = μΜ; gives 

f[k](z0,w) =f[k](z0,Mw) + 
df[k](zo, w) 

dw 

(W-MJJ ■ δ2ΆΦο> w) 
dw2 

( w - / 0 + 
w = Mw 

(16-100) 

0-/0 

where 9 i sa point on the straight line connecting w to μ^ (vv = tw + (1 - i)//w with 
t G [0, 1]). Suppose now that Cov(w) = 0(N~l) so that (property 7 of Section 16.8) 

w = Mw + OJN~"2) (16-101) 

Using the definitions θ(ζ) = /(z0, w), 0(zo) =/(z0 , μ^ and applying result (16-101) to 
(16-100), taking into account that the matrix dimensions of w, / , and the derivatives o f / 
w.r.t. w, are independent of N, gives 

0(z) = 0(zo) + ^(z) + Z>0(z) 

df[k](zQ, w) 
Se(z) = 

dw 

be(z) = OJN-i) 

(a) 

(w-MJ = OJN-^) (b) 

(c) 

(16-102) 

From (16-102) it follows directly that the convergence rate of 9{z) to the nonrandom value 
0(zo)isanOp(JV-i/2). 

16.13.2.2 Implicit Case. Now we give an approximate analysis for the implicit case 
(16-93) (see Chapter 17 for the complete analysis). The implicit function that defines θ(ζ) as 
a function of w is 

F'(¿,z0,w(¿)) = 0 (16-103) 

where χ' denotes the derivative of x w.r.t. Θ. Taylor series expansion of (16-103) w.r.t. Θ at 
the point Θ gives, neglecting the second and higher order terms, 
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Ϋ'\θ, z0, w0)) = Ϋ'\θ, z0, w0)) + Ϋ"φ, z0, w(<9))(0(z) -0(zo)) (16-104) 

Because 9(z) is the minimizing argument of Ϋψ, ζ0, \νψ)) (16-104) reduces to 

θ{ζ) -θ{ζ0) = -Ϋ"-\θ, z0, w0)) V'T0, z0, w0)) (16-105) 

Following the same lines as in the explicit case, the convergence rate of the first- and the 
second-order derivatives of the cost function in (16-105) is obtained. If (16-101) is valid, then 

Ϋ'φ, z0, wi0)) = ν'(θ, ζ0, μβ)) + Op(N-^) = Op(N~^) (a) 

Ϋ"φ, ζ0, Μ,φ)) = Ϋ"φ, ζ0, μκφ)) + Op(N-"i) (b) 

The last equality in (16-106a) is due to the fact that θ(ζ0) is the minimizing argument of 
Ϋ(θ, ζ0, μ^θ)). Using the interchangeability of a continuous function and the limit in proba-
bility, (16-106b) becomes 

P"-\§, z0, w(0)) = K"-1^, z0, μ^θ)) + Op(N-^) (16-107) 

Collecting (16-105), (16-106), and (16-107) gives (16-102a) with 

δθ(ζ) = -Ϋ«-\θ9 ζ0, μ„φ)) Ρτφ, z0, w0)) = 0¿N-"*) (a) ( l 6 m ) 

be(z) = Op(7V-i) (b) 

Similarly to the explicit case, it follows from (16-108a) that the convergence rate of θ(ζ) to 
^ ( z 0 ) i s a n O p ( ^ / 2 ) . 

16.13.3 Asymptotic Bias 

The asymptotic bias analysis is done for (weakly or strongly) consistent estimators. No 
explicit expression for the bias can be found except for some special examples. The best we 
can hope is to find how the bias behaves as N-> oo. It is derived from the convergence rate 
analysis (16-102) and (16-108) by making the additional assumption that the disturbing noise 
is uniformly bounded and using the property that for such noise the expected value and the 
limit in probability may be interchanged (property 4 of Section 16.8). Taking the expected 
value of (16-102a) gives 

E 0(z)} = θ(ζ0) + E {δθ(ζ)} + 6>(ΛΗ) (16-109) 

For the explicit case (16-102b) it is obvious that E {δθ(ζ)} = 0, whereas this is true for the 
implicit case (16-108) only if 

nm^m - dimz°>wm = o (16-no) 
δθ 
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Condition (16-110) is often satisfied so that for both cases (16-109) can be written as 

E{<9(z)} = θ(ζ0) + Ο(Ν-1) (16-111) 

For (weakly or strongly) consistent estimators we almost always have θ(ζ0) = θ0 so that the 
bias on θ(ζ) behaves as an 0(N~l). If θ(ζ0) Φ θ0, then, the convergence rate of θ(ζ0) to θ0 

should be added to the 0(ΛΗ) bias term in (16-109). 

16.13.4 Asymptotic Normality 

From (16-102) and (16-108) it follows that */Ν(θ(ζ)-θ(ζ0)) converges in probability, 
and, hence, also in distribution (interrelation 3, Section 16.7), to 4Νδθ{ζ). Hence, the study 
of the asymptotic distribution function of θ(ζ) boils down to the study of the asymptotic dis-
tribution of, respectively, w- / / w , see (16-102.b), and Ϋ\θ, z0, H>(0)), see (16-108.a). 
Thereto we use the central limit theorems (Section 16.10) or the Fréchet-Shohat lemma 
(Lemma 16.11). If w - μ„ and Ϋ\θ, z0, w(0)) are asymptotically normally distributed, then 
JN0(z) is also asymptotically normally distributed (a linear combination of Gaussian ran-
dom variables is Gaussian) with mean +/ΝΘ(ζ0) and covariance matrix Ni{S0(z)Sj(z)}. 
Note that the analysis assumes only that the moments of δθ(ζ) exist, not those of 0{z). 

16.13.5 Asymptotic Efficiency 

The asymptotic efficiency analysis is done for (weakly or strongly) consistent estima-
tors. It consists of comparing the covariance matrix of the limit random variable δθ(ζ) to the 
Cramér-Rao lower bound for unbiased estimators (16-87). The consistent estimator is asymp-
totically efficient if 

\im N(E{S0(z)S¡(z)} -Fr1^)) = 0 (16-112) 
JV-»OO 

Note that (16-112) can be true while the moments of θ(ζ) may not exist. 

16.14 PITFALLS 

Some erroneous statements such as "strong consistency implies asymptotic unbiasedness" or 
"the limit in mean square and a continuous function are interchangeable" are tempting to 
make. Therefore, a list of pitfalls is given, some of which are illustrated by means of counter-
examples, namely: 

1. Weak and strong consistency do not imply asymptotic unbiasedness. 
2. Asymptotic unbiasedness does not imply any kind of consistency. 
3. Weak and strong consistency do not imply that the limit of the variance is equal to 

the variance of the limit. 
4. 1 and 3 are special cases of: the limit in probability and the almost sure limit are 

not interchangeable with the expected value. Similar E {Op(N~k)} Φ 0(N~k) and 

5. The limit in probability and the limit with probability one (N-> oo) may not be 
interchanged with a continuous matrix function if its matrix dimensions vary with 
N. For example, let J G UNxp then, 
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plim JTJ Φ (plim J)r(plim J) 

Similarly, if A,BeUNxP with A = Oas(N~s) and B = Oas(N~r) then 
ΑΤΒΦΟ^(Ν~^ + ^ ) . 

6. The supremum (maximum) and the expected value may not be interchanged. 
7. The limit in mean square and a continuous function are not interchangeable. 

U.m.f(x(N))*f(U.m.x(N)) 
TV—>· oo TV—> oo 

Example 16.21: Weak consistency does not imply asymptotic unbiasedness. Let Θ(Ν) 
be an estimator of θ0 = 1 that takes the value 1 with probability 1-1 /N and the value N 
with probability 1 /N. The estimator is weakly consistent, 

lim Prob(|<9(JV) - θ0\ <δ) = lim ?rob(\Ó(N) - θ0\ = 0) = lim (1 - \/N) = 1 

and asymptotically biased lim E 0(N)} = lim (1 (1 - 1 /N) + N( 1 /N)) = 2. D 
N->ao N->oo 

Example 16.22: Asymptotic unbiasedness does not imply consistency (16-78). Con-
sider the squared magnitude of the DFT transform of a noise sequence v(t) 

(16-113) 

In Kay (1988) it is shown that Sv(k) is an asymptotically unbiased estimate of the power 
spectral density Sv(jcok), 

limE{¿K¿)} = Sv(/%) (16-114) 
JV->OO 

and that the variance of Sy(k) does not decrease to zero as N -> oo 

lim var(Sv(k)) * S^k) k±0,k±N/2 (16-115) 
N-*oo 

(see Appendix 4B of Kay, 1988). Hence, Sy(k) is an inconsistent estimate. D 

16.15 PRELIMINARY EXAMPLE—CONTINUED 

We retake the resistance measurement problem of Sections 1.2 and 16.5 and assume that one 
experiment consisting of N current and voltage measurements is made, 

i(k) = io + n^k) and u(k) = u0 + nu(k) (16-116) 

k = 1, 2, ..., N. Unless mentioned otherwise, we assume that the current and voltage errors, 
«·(&) and nu(k), are mutually independent, zero mean iid random variables, 

Sy(k) = ^ Σ Γ : > ω ^ ^ 
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nu(k) € U(0, σΐ) and n^k) e £/(0, of). The goal of this section is to predict, theoretically, 
the behavior of the three resistance estimators, the simple approach (1-1), the least squares 
method (1-2), and the errors-in-variables approach (1-3). The analysis follows the lines of 
Section 16.13. In a first step, we rewrite the estimates as a function of the stochastic sums w. 
We obtain 

n /ΑΓ\ 1 v # u(k) 

E{wm} = ¿ ΣΓ-,IE {«(*)} E{1/**)} 

u0 ¿ίσ, , (16-117) 

2V3<r(. '-fia, 

j ' n 1 + «¡3σ,/ίη r-

2^J3ai 1 - ν 3 σ / / 0 

for the simple approach, 

¿ Σ Γ . , * * ) < * ) Wn¿n+. 

K[l] ~~ jy ¿^t= i V«0"/W Τ < 0 " H W τ "iW'uWJ nlul "- X ^ f l ] 

for the least squares method, and 

* L S ( N ) = - ¡ —2 

jrlZ-A*) l0 + W[2] 

w[i] = Jf Σ * = i («o"/(*) + ¿ o " # ) + n¡(k)nu{k)) with E { w m } = 0 

W[2] = TV Σ Γ - 1 (2,Ό«((*) + «?(*)) W Í t h E íw[2] > = σ? 

w[i] = ^ Σ Γ = i "*(*) w i t h E {^[1]} = 0 

1 ^N 

(16-118) 

(16-119) 

W[2] = Jf Σ * = i "«(*) W i t h E {W[2] } = ° 

for the errors-in-variables approach. Note that under the condition J3a¿< i0, all the mo-
ments of the three resistance estimators exist for any N. 

16.15.1 Consistency 

Because by assumption nu(k) and n^k) are mutually independent, iid random vari-
ables, each entry of w in (16-117) to (16-119) consists of the sum of iid random variables and 
converges to its expected value (see Section 16.9, version 1 of the law of large numbers). 
Hence, we find 
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*SA(A0 = E {W[1]} = Λ ° - ln( ' °) (a) 
2A/3^ · l - V 3 ^ / / 0 

*LSTO . ° y F
E ' - 1 ' 1 i . «. (b) (16.120) 

i¡+E{w[2]} l + of/ijj 

* E v W = Ϊ 2 ΐ | { ! ϊ [ ΐ ι > - * 0 (C) 
z0 + E { w [ 2 ] } 

where J3a¡ < i0 for Rs¿£N). The values ^(N) in (16-120) are independent of the number 
of samples N so that R* = R(N) for each estimator. We conclude that the simple approach 
and the least squares estimates are inconsistent, RSA* &R0, RLS* ^RQ, while the errors-in-
variables estimate is strongly consistent, REy* = R0. Note that RSA(N) and RLS(N) tend 
to R0 as ζ 0 /σ ζ -^0 (Exercise 16.25). Taking the same numerical example as in Sec-
tion 16.5 (z0 = 1 A, σ; = 1/7Ϊ2 A) gives RSA* = R0\n3 = 1.0997?0 and 
RLS* = R0\2/13 = 0.9237?0. 

16.15.2 Convergence Rate 

According to Section 16.13.2, the convergence rate of R(N) to R(N) equals the con-
vergence rate of w to //w. Because the variance of each entry of w exists and is finite 
(J3a¡< i0 for (16-117)), the convergence rate of w to //w equals Oas(N~l/2\n(\n(N))) or 
Op(N~W2) (see Section 16.9, respectively versions 1 and 3 of the law of large numbers). 
Hence, for each of the three estimators, we have 

R(N) = R(N) + δ(Ν) + b(N) (a) 

S(N) = dR(N)/dw\w = Mw-Mw = Op(N~W2) (b) (16-121) 

b(N) = 0?(N~l) (c) 

with bSA(N) = 0 and 

dRSA(N)/dw\ = 1 

dRLs(N)/dw\w = Mw = [dt + afyi -u0i0(i
2 + af)~j (16-122) 

dREv(NVdw\w__Mw=[W¿0 -Uoi-¿ 

16.15.3 Asymptotic Normality 

The vector w consists of the sum of iid random variables with finite mean value and fi-
nite nonzero (co)variance matrix {J3at< i0 for (16-117)). According to the multivariable 
version of the central limit theorem (see Section 16.10, version 1), w- μ^ is asymptotically 
normally distributed at the rate 0(N~l/2). Hence, the estimates R(N) are asymptotically nor-
mally distributed (at the rate 0(N~112)) with mean value R(N) and variance ΰί{δτδ} (see 
Section 16.13.4). We find 
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var(£SA(A0) = var(wfl]) 

var(¿LS(7V)) = " ^ ^ + ^ ^ 
^covar^ t^w^j ) . 

u2i2-

v«(¿^) = = ^ + 5v^W r 2 1) 

(a) 

(b) 

(c) 

(16-123) 

where the stochastic vectors w in (a), (b), and (c) are defined in, respectively, (16-117), 
(16-118), and (16-119). For the numerical example of Section 16.5 (w0 = 1 V, i0 = 1 A, 
au = 1Λ/Ϊ2 V, and a¡ = 1Λ/Ϊ2 A), we obtain var(£SA(7V)) = 0.2377V-1, var(<?LS(7V)) = 
0.1327V-1, and var(£EV(7V)) = 0.1677V-1. Note that var(£LS(7V)) < var(^v(7V)), as observed 
in Section 1.2.2.3. Formulas (16-123b) and (16-123c) make it possible to predict the sample 
variances, obtained by Monte Carlo simulation, of the least squares and errors-in-variables esti-
mates shown in Figure 1-7 on page 11 (Exercise 16.27). 

16.15.4 Asymptotic Efficiency 

The Cramér-Rao lower bound does not exist for uniformly distributed random vari-
ables because the uniform probability density function does not satisfy the regularity condi-
tions of Theorem 16.18 (the derivatives of the pdf do not exist at the boundaries of the do-
main). Therefore, the asymptotic variance (16-123c) of the consistent estimator $EV(7V) is 
compared with the UCRB for Gaussian distributed errors (note that in opposition to the uni-
form case, the moments of REV(N) do not exist for Gaussian distributed errors). 

Putting var(wtl]) = σ /̂TV and var(w[2]) = σ}/Ν in (16-123c) gives an explicit ex-
pression for the variance of the limiting random variable ^ V W 

var(<JEV(JV)) (16-124) 

To construct the UCRB we need the likelihood function of the measurements z = 
[«(1) w(2) ...u(N) i(\) i(2) ... i(N)]T. As u{k) and i(k) are mutually independent, iid 
Gaussian random variables, it is given by (u0 = R0i0) 

TN 
¿(ζ,ι'ο,Λο) = nk=M<kM(k)(Kk)) 

1 , 1 v (u(k)-Roio)\(m-i0)\ 
jz ^ e xP(~o 2- 5 5 ) 

k= 1 

(16-125) 

Two unknowns appear in (16-125), the true values R0 and /0 of, respectively, the resistance and 
the current. This means that, in maximum likelihood sense, the resistance as well as the current 
must be estimated. Applying (16-85) gives the UCRB on the current and resistance estimates 

Fi-Kio.Ro) = $ 

l0 

-Mn 

*o2 .+ 

(16-126) 
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Finally, entry [2, 2] of Frl(i0, R0) is the UCRB on the resistance estimate 

Comparing (16-127) and (16-124) shows that the errors-in-variable estimate REV(N) is 
asymptotically efficient. 

16.15.5 Asymptotic Bias 

Under the condition Λ/3<ΤΖ < /0, the expected values of the three resistance estimators 
exist for any N. Applying property 4 of the limit in probability (see Section 16.8), it follows 
from (16-120) and (16-121) that the bias of the simple approach and the least squares esti-
mates is an 0(N°), while that of the errors-in-variables approach is an 0(N~l). For the nu-
merical example of Section 16.5 we find ¿SA = 0.10 Ω and bLS = -0.08 Ω. 

16.15.6 Robustness 

The simple approach (16-117) is not robust w.r.t. the underlying distribution function of 
the errors. Indeed, for Gaussian current measurement errors nj(k)9 neither the expected value 
nor the variance of \/i(k) exists, so that estimate RSA(N) does not converge w.p. 1, nor in 
probability, nor in mean square sense (see Section 16.9, versions 1 and 3 of the law of large 
numbers). 

The properties of REV(N) have been analyzed, assuming that the errors nu(k) and 
n¿(k) are mutually independent, iid uniform random variables. One may wonder now what 
happens with these properties when, for example, the measurement errors are no longer inde-
pendent and/or are no longer identically distributed. Therefore, the analysis is redone, assum-
ing that the errors nu(k) and n¿(k) are mixing of order 2. For example, filtered independent 
noise with uniformly bounded variances satisfies this assumption. The errors may be corre-
lated and their distribution function has not been specified. Stationarity is also no longer re-
quired. The following properties remain unchanged and are, hence, robust w.r.t. the indepen-
dence and stationarity assumption. 

1. Consistency: applying the strong law of large numbers for mixing sequences (see 
Section 16.9, version 3) shows that w^ and w^2] in (16-119) still converge w.p. 
1 to zero, which proves the consistency. 

2. Convergence rate: applying the convergence rate of the law of large numbers for 
mixing sequences (see Section 16.9, version 3) to w^ and w^2] in (16-119) 
shows that the convergence rate (16-12lb) still applies. 

3. Asymptotic normality: if the assumption is tightened to a mixing condition of or-
der infinity, then the central limit theorem for mixing sequences (see Section 
16.10, version 4) applied to w^ and w[2] in (16-119) shows that REV(N) is still 
asymptotically normally distributed. 

4. Asymptotic bias: if the class of allowable disturbances is restricted to uniformly 
bounded random variables, then the bias is still an 0(N~l). 
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The following property is not robust: 

1. Asymptotic efficiency: the estimator REW(N) does not take into account the de-
pendence between the measurement errors and the particular shape of their distri-
bution function so that, in general, var(£EV(AT)) will not reach the UCRB. 

16.16 PROPERTIES OF THE NOISE AFTER A DISCRETE 
FOURIER TRANSFORM 

In this section we discuss the properties of discrete-time filtered white noise after a discrete 
Fourier transform (DFT). We first handle the scalar case and afterward generalize the results 
to the multivariable case. Taking the discrete Fourier transform of v(t) = H(q)e(t) gives (see 
Section 6.7.3) 

V(k) = H(z-¿)E(k) + TH(z?) (16-128) 

with H(z~x) = C(z~l)/D(z~l) the noise model, E(k) and V(k) the discrete Fourier trans-
forms of, respectively, e{i) and v(f), and TH(z~l) = J(z~l)/D(z~l) the initial and final con-
ditions of the noise process. The transient term TH{z~¡¡.1) is strongly correlated over the 
frequency and gives a nonmixing contribution to the noise V(k). Fortunately, it can be shown 
that its influence decreases to zero with probability one. 

Lemma 16.23: Consider filtered white noise H(q)e(t), where H(z~l) is stable and 
e{t) has uniformly bounded absolute moments of order 2 + <5", with δ>0: 
E|e(f)l2 + <y} < c < oo, with c independent of t. The discrete Fourier transform of H(q)e(t) 
converges w.p. 1 to H(z^l)E(k). The convergence rate in probability is an Op(N~l/2). 

Proof. See Appendix 16.K. D 

Lemma 16.24: Let e(i) be independent, identically distributed (iid) noise with 
existing moments of any order. The discrete Fourier transform E(k) is asymptotically 
(TV —» oo) independent, circular complex normally distributed (convergence in law at the rate 
0(N~l/2)). E(k) has zero mean except at k = 0 (DC). 

Proof. See Appendix 16.L. D 

Theorem 16.25 (Asymptotic Normality): The discrete Fourier transform V(k) 
(16-128) of filtered iid noise v(t) = H(q)e(t), where H(z~l) is stable and e(t) has existing 
moments of any order, is asymptotically (TV —> oo) independent, circular complex normally 
distributed (convergence in law at the rate 0(N~l/2)). For any N, V(k) has zero mean except 
at * = 0 (DC). 

Proof. According to Lemma 16.24, E(k) is asymptotically independent, circular 
complex normally distributed. This is also true for H(z^l)E(k) because ^ ( ^ 1 ) ! is uniformly 
bounded (see Exercise 16.6). Applying Lemma 16.23 and interrelations 1 and 3 of the 
stochastic limits (see Section 16.7) proves the theorem. D 

Due to the more restrictive noise assumption, this result is stronger than Theorem 4.4.1 
of Brillinger (1981), which shows for mixing stationary time domain noise v(t) that the DFT 
spectral lines ν(ζγΝ), ν(ζ2Ν), ..., ν{ζ3Ν), at a set of fixed frequencies fr = ζ^, 
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r = 1, 2, ...,,/, are asymptotically independent, circular complex normally distributed. As 
the number of time domain samples N increases, the number of DFT lines in between two 
consecutive spectral lines ν(ζνΝ), ¥(ζΓ+ιΝ), for which Theorem 4.4.1 of Brillinger( 1981) 
applies, increases to infinity. This is not the case in Theorem 16.25. 

Lemma 16.26 (Mixing of Order P): Let e(t) be independent, identically distributed 
noise with finite moments of order IP and discrete Fourier transform E(k). The squared 
amplitude spectrum \E(k)\2, DC not included, is mixing of order P. 

Proof See Appendix 16.M. D 

Lemma 16.26 does not imply that E(k) is mixing of order IP. On the contrary, it can 
only be proved that E{k) is mixing of order 2 (Lemma 16.27). 

Lemma 16.27: Let e(t) be independently distributed noise with mean //<oo, 
variance σ2<οο, and uniformly bounded fourth-order moments. The discrete Fourier 
transform E(k) of e(t) and its squared amplitude spectrum |i?(£)|2, DC not included, are 
mixing of order 2. 

Proof. See Appendix 16.N. D 

Note that Lemma 16.27 requires only the stationarity of the first- and second-order mo-
ments of e(t). 

Theorem 16.28 (Strong Law of Large Numbers): Let V(k) (16-128) be the DFT of 
filtered noise v(/) = H(q)e(t), where H{z~x) is stable, and where e(t) is independently 
distributed noise with mean μ< αο, variance σ2< <x>, and uniformly bounded fourth-order 
moments: μΑ(ί) <c<co with c independent of t. Consider the partial sums 

S(F) = Σ WkV{k) and S(F) = Σ | * W ) | 2 (16-129) 
kef keF 

with Wk a uniformly bounded deterministic weighting, F a subset of the DFT frequencies 
k = 0, 1, ...,7V/2, and F = 0{N) the number of frequencies in the set F. If DC (k = 0) 
belongs to the set F, then μ = E {e(0} must be zero. The partial sums S(F) in (16-129) sat-
isfy the strong law of large numbers (16-69). The convergence rate of the partial sums 
S(F)/F ismOp(F-l/2). 

Proof. See Appendix 16.0. D 

To study the asymptotic distribution of the estimates, we also need the following cen-
tral limit theorem. 

Theorem 16.29 (Central Limit Theorem): Let V(k) (16-128) be the discrete Fourier 
transform of filtered iid noise v{t) = H(q)e(t), where H(z~l) is stable and e(f) has existing 
moments of any order. Let X(k) be the discrete Fourier transform of the deterministic signal 
x(i). Define the sum 

S(N) = ZN
k:

l
0X(k)V(k) (16-130) 

If x(t) has constant power, 
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jf S : i TOP = $ ΣΓΓΟ WOP = om ae-m) 

and has uniformly bounded peak value 

max|x(0l <c<oo (16-132) 

for any N, oo included, with c a. constant independent of N9 then N~l/2S(N) is asymptoti-
cally normally distributed (convergence in law at the rate 0(N~l/2)). 

Proof See Appendix 16.P. D 

Theorem 16.29 is not valid if, for example, X{k) = 1, k = 09 1, ...,7V- 1, because 
the corresponding time signal x(t) is a pulse whose peak value increases as 0(JN) (see also 
Exercise 16.28). This result can easily be understood by rewriting (16-130) as a circular DFT 
convolution 

N~U2S(N) = Ν-υ2Σΐΐ\χ(1ϊ)ν(Ν-1ζ) = DFT(JC(/)V(0) (16-133) 

It shows that only a very few (independent of N) samples of v(t) contribute to the statistics 
of S(N) if x(t) is a pulse-like signal, while the central limit theorem requires a large number 
(increasing with N) of samples. 

Theorem 16.29 requires that the energy of the signal x{t) is more or less equally dis-
tributed over all time samples and not concentrated in a few points. This is the case for the 
following classes of signals: 

1. Periodic signals with a fixed number F of frequencies. The DFT spectrum X(k) 
increases as N112 at the F excited frequencies (power per frequency is an 0(N°)) 
and is zero (if an integer number of periods is observed) or decreases as N~l/2 at 
the other frequencies. The peak value is independent of N. 

2. Peak value optimized periodic signals with flat amplitude spectrum that excite all 
DFT lines k = 0, 1, ...9N- 1 with X(k) = X(N-k) and \X(k)\ = 1 (power per 
frequency is an 0(N~1)). The phases of X(k) can always be chosen such that the 
peak value of x(0 is an 0(N°) close to 1 (Kahane, 1980). 

3. Peak value optimized periodic signals with flat amplitude spectrum that excite 
only DFT lines r(k + 1), k = 0, 1, ...,N/r-2 with r e N0, X(k) = X(N-k) 
and \X(k)\ = 1 (power per excited frequency is an 0(N~1)). The signal x(t) is an 
r- times periodic repetition of the signal based on N/r samples that excites all 
DFT lines (see signal class 2). The peak value is an 0(N°) close to 1 because this 
is also the case for signal class 2. 

4. Peak value optimized periodic signals with flat amplitude spectrum that excite K 
(independent of N) frequency bands. For example, K = 2 frequency bands 
[N/16,N/&]f0 and [N/5,N/3]f0 with f0 = fs/N the DFT resolution. The 
signal x(t) can be written as a linear combination of K modulated versions of 
class 2 and/or 3 signals, each with an 0(N°) peak value (Schoukens et al., 
1996b). Hence, the peak value of x(t) is an <9(Af°) because the peak value of a 
linear combination of K signals with uniformly bounded peak value is uniformly 
bounded. 
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Only upper bounds on the peak value are available for periodic signals with nonflat ampli-
tude spectra. The same is true for periodic signals that excite only logarithmically spaced DFT 
lines (lacunar multisines), for example, 2k (k = 0, 1, ..., ln(JV72)- 1, X(k) = X(N-k) 
and \X(k)\2 = 0(N/\nN)). Fortunately, the upper bound increases slowly with N: for sig-
nals satisfying (16-131) the phases of X(k) can always be chosen such that the peak value is 
bounded by 0(J\ñÑ) (Theorem 4, Chapter 6 of Kahane, 1985), while for arbitrary phases 
the peak value is w.p. 1 an 0(J\ñÑ) 

Prob(max \x(t)\ > 0(J\ñÑ)) <N~2 (16-134) 

(Theorem 1 and Exercise 5, Chapter 6 of Kahane, 1985). This means that the risk of selecting 
phases with a peak value increasing faster than 0(JlnN) is very small. The following corol-
lary can then be used. 

Corollary 16.30: Let V(k) (16-128) satisfy the assumptions of Theorem 16.29. If x(t) 
satisfies (16-131) and has a peak value max|x(0l = 0(JíñÑ), then N~1/2S(N) (16-130) is 
asymptotically normally distributed (convergence in law at the rate 0(J\nN/N)). 

Proof. See Appendix 16.Q. D 

The preceding theorems are useful for studying the asymptotic behavior of frequency 
domain estimators when using deterministic excitation signals. For signals with a stochastic 
behavior, such as filtered white noise, periodic noise, and random multisines, we need the fol-
lowing theorems. 

Lemma 16.31 (Mixing of Order P): Let Ηχ(ζτι)9 Η2{ζ~λ) be stable filters and 
Ex(k), E2(k) the DFT spectra of iid random variables e{(t)9 e2(t) with existing moments of 
order P. Let X(k) be one of the following spectra, H2(z¿l)E2(k), or the DFT spectrum of an 
integer number of periods of a normalized random multisine (see Definition 3.2) or 
normalized periodic noise (see Definition 3.3), all with existing Pth order moments. If X(k) 
is independent of E{(k), then X(k)Hλ(ζιλ)Εx(k) is mixing of order P. 

Proof. See Appendix 16.R. D 

Theorem 16.32 (Strong Law of Large Numbers): Let V(k) (16-128) be the DFT of 
filtered noise v(t) = H(q)e(t), where H(z~l) is stable, and where e{i) is independently 
distributed noise with uniformly bounded absolute moments of order 2 + δ, with δ> 0. Let 
X{k) be the DFT spectrum of one of the following signals, filtered white noise, or an integer 
number of periods of a normalized random multisine (see Definition 3.2) or normalized 
periodic noise (see Definition 3.3), all with uniformly bounded fourth-order moments. 
Assume, furthermore, that X(k) is independent of V{k). Consider the partial sums 

S(F) = Σ* e F WkX{k) V{k) and S(F) = Σ * 6 F | WkX(k)\2 (16-135) 

with Wk a uniformly bounded deterministic weighting, F a subset of the DFT frequencies 
k = 0, 1, ...,ΛΤ/2, and F = 0(N) the number of frequencies in the set F. If DC (k = 0) 
belongs to the set F, then μ = E {e(t)} must be zero. The partial sums S(F) (16-135) satisfy 
the strong law of large numbers (16-69). The convergence rate of S(F)/F is an Op(F_1/2). 

Proof. See Appendix 16.S. D 
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Theorem 16.33 (Central Limit Theorem): Let V(k) (16-128) be the DFT of filtered 
iid noise v(/) = H{q)e{t), where H(z~l) is stable and e(t) has existing moments of any 
order. Let X(k) be the DFT spectrum of one of the following signals, filtered iid noise, an 
integer number of periods of a normalized random multisine (see Definition 3.2), or 
normalized periodic noise (see Definition 3.3), all with existing moments of any order. 
Assume, furthermore, that X(k) is independent of V(k). Consider the partial sums 

m = Σ WkX(k)V(k), S(F) = Σ \WkV(k)\2 and S(F) = £ \WkX(k)\2 (16-136) 
A:E F ke ¥ kei 

with Wk a uniformly bounded deterministic weighting, F a subset of the DFT frequencies 
k = 0, 1, ..., N/2, and F = 0(N) the number of frequencies in the set F. If DC (k = 0) 
belongs to the set F, then μ = E{e(0} must be zero. The sums F~l/2S(F) (16-136) are 
asymptotically normally distributed (convergence in law at the rate 0(F~l/2)). 

Proof. See Appendix 16.T. D 

The preceding theorems can easily be generalized to the multivariable case 
v(0 = H(q)e(t) with e(t) e Rp, v(t) e Rq and H(q) a stable transfer function matrix. For-
mula (16-128) is still valid with E(k) e Cp, V(k) e Cq, H(z~l) = D-\z~l)C(z-1), 
TH(z~x) = D-l(z-l)J(z~l), D(z~l) aq by q matrix, C(z~l) a q by p matrix, and J(z~l) a q 
by 1 vector (see Section 6.6). 

16.17 EXERCISES 

16.1. Let x,y e U have finite second-order moments. Prove that var(x + y) *s 
2var(jc) + 2var(y) (hint: use (a + b)1 < {a + b)2 + {a- b)2 = 2a2 + 2b2). 

16.2. Show that conditions (16-13) are equivalent to condition (16-12). 
16.3. Let x e Cn be circular complex distributed and A e Cm x n. Show that y = Ax is cir-

cular complex distributed. 
16.4. Show that Cov(xre) = 0.5(Cov(jc))Re for circular complex noise x. 

16.5. Show that the probability density function of x e N£(jux, Cx) is given by (16-14) (hint: 
use xTQ e N2n((Mx)TQ, 0.5(Cx)Re) and apply Lemma 15.3). 

16.6. Let JC e Ν%μ, σ|) and a e C with \a\ < oo. Show that ax e Νε(αμ, |α |2σ|) . 
16.7. Let JC G Nc(0, σ2). Show that E { |JC|4} = 2σχ

4. 

16.8. Let x G 7VC(0, σ2). Show that E{x"} = 0 (hint: use E{w2w} = σ2η{2η)\/{2ηη\) 
for ueN(0, σ2) (Stuart and Ord, 1987) and Σ1%2^ = Z ^ C f +* = 2»-1 

(Gradshteyn and Ryzhik, 1980)). 
16.9. Show that x e Ν^(μχ, Cx) can be written as x = μχ + Ay with y G JV£(0, Ip) and 

p = rmk(Cx) (hint: use Cx = AAH with A e CnxP and rank(^f) = p). 

16.10. Let x G Nn(0,In) (JC G Nc
n(0,In)) a n d P e R " x w (PeCnxn) a symmetric (Hermi-

tian) idempotent matrix of rank p. Show that xTPx G Z2(p) (2xHPx e X2(2p)) (hint: 
use P = UAUH with U~x = UH and A = d iag^ , On_p) withp = rank(P)). 

16.11. Let xeZ2(n). Show that E{1 /JC} = l / ( « - 2 ) and var(l/jc) = 
2/((n-2)2(n-4)) (hint: take yeF(nl,n2) and use the rules E{v} = 
E{xl/nl}E{n2/x2} and var(xjA:2) = σ%<%2 +c%^2

x +σ£2μ%2 with E{x} = «, 
E{v} = n2/(n2-\) and var(y) = 2w|(/i1 +« 2 -2) / (« 1 (« 2 -2) 2 (« 2 -4)) (Stuart 
and Ord, 1987)). 

16.12. Let JC G CM be circular complex distributed and /(JC) G Cm an analytic function. Show 
that COV(/(JC)) is given by (16-24). 

16.13. Let v G Wc
p(n, Cx) with Im(Cx) = 0. Show that Re(y) G Wp(2n, Cx/2). 
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16.14. Show using (16-16) that cum(x¿) =E{xk}, curn^ , x¿) = var(*¿), and cum(x¿, y¡) = 
covarix^yj). 

16.15. Let x e Cn be circular complex distributed. Show that the covariance matrix of 
fix, x) e Um is given by (16-25) (hint: start from (16-23) with x replaced by xre, and 
use CXn = 0.5(Q)R e, Lemma 15.4, and (15-60)). 

16.16. Show that the sample mean (16-26) and sample (cross-)covariance matrices (16-27), 
(16-28) of independent realizations are unbiased estimates of the mean and (cross-)co-
variance matrices. 

16.17. Let x E N(0, σ2) (x e iVc(0, σ2)) and calculate the sample variance σ2 of R 
independent realizations. Show that (R- \)σ2/σ^. e z2(R-1) 
(2(R-l)d*/a%ez2(2(R-l))) (hint: first show that (R-l)o$ = XHPX with 
x[k] = x[k]> p = JR-U/R and U[kl] = 1, k, I = 1,2, ...,R ; next prove that P is 
a symmetric idempotent matrix of rank R - 1 and apply the results of Exercise 16.10). 

16.18. Let x e Νη(μχ, Cx) with rank(Cx) =p<n. Show that b = (χ-μχ)
τ 

(Cx/R)+(x-jux) is p(R-\)/(R-p)F(p,R-p) distributed (hint: apply the results of 
Exercise 16.9 on Jc and Cx, and use Theorem 15.1). 

16.19. Let x(t) G C be mixing of order P and //(/, u) e Csxr the impulse response of a sta-
ble linear time-variant multivariable system. Show that y(t) = Σ™= οΚ*> u)x(u) is mix-
ing of order P. 

16.20. Prove the linearity of the limit in mean square (16-64) (hint: use (x+y)2 ^ 
(x + y)2 + (x-y)2 = 2x2 + 2y2). 

16.21. Prove that the limit in mean square and the expected value commute (hint: first show 
thatE{jc2}>(E{jc})2). 

16.22. Prove that E { 0 m s (AM)} = £(#-*) (hint: show that lim NkE{Oms(N-k)} <»). 
16.23. Let z(k) e N(0, of), k=l,2,...,N. Show that the sample variance 

6f = Zf= {z
2(k)/N is an unbiased and efficient estimate of σ2. 

16.24. Let z(k) e Ε(μζ, μ2), k = 1, 2, ..., N. Show that the sample mean fiz = Σ"= \z(k)/N 
is an unbiased and efficient estimate of μζ, with var(//z) = μ2/Ν. Now consider the 
estimator fh = αμζ, where a is chosen to minimize the mean square error MSE(m). 
Show that a = N/(N+ 1) and that MSE(w) = μ2/(Ν+ 1). Conclude that the MSE 
of the biased estimate m is smaller than that of the unbiased estimate μζ. 

16.25. Show that the simple approach (16-117) and the least squares estimates (16-118) tend to 
the true value R0 as the signal-to-noise ratio of the current measurements tends to in-
finity (hint: use (16-120) and let ÍQ/CÍ -> oo). 

16.26. Illustrate reasoning (16-98) on the errors-in-variables estimate (16-119). 
16.27. Run a Monte Carlo simulation for the resistance measurement problem (16-116) with 

u0 = 1 V, i0 = 1 A, and iid errors nu(k) e U(0, 12"1 V2), ηβ) e 
U(0, 12_1 A2) . Calculate the least squares (16-118) and errors-in-variables (16-119) 
estimates for increasing values of N. Compare the sample variance of the estimates 
with the values predicted by (16-123b) and (16-123c). 

16.28. Let E(k) be the DFT spectrum of iid noise e(t) with existing moments of any order. 
Consider the sum S(N) = ^Zl

0E(k). Show that N~U2S(N) is not asymptotically 
normally distributed. Explain. (Hint: use expression (16-182) to show that the cumu-
lants of N~l/2S(N) do not tend to those of a normal random variable; note that 
S(N) = e(0).) 

16.18 APPENDIXES 

Appendix 16.A Indecomposable Sets 

Consider a table with / rows and, possibly, a different number of columns per row 
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Vl l V12 · · · V\JX 

v21 v2 2 . . . v2j2 (16-137) 

71 v /2 - VU¡ 

Although some of the entries of this table may take the same numerical value, all elements 
are considered as distinguishable. Let P = Pl^JP2

[<J---{JPK be a partition of table 
(16-137). The sets Pz· and Py of the partition hook if there exist a v¡ j e P,· and a v, j G Pj 
such that ix = i2. Two sets P¡ and P. communicate if there exists a sequence of sets 
P, = Pm . PW2, ..., PmR = P,. suchthat P ^ and Pmr+i hookfor r = 1,2, . . . , * - 1. The 
partition P is indecomposable if all sets of the partition communicate. 

Example 16.34: Consider a 2 by 2 table 

"11 M2 

"21 K22 

All the indecomposable partitions of (16-138) are given by 

(16-138) 

v l l v12 
v21 v22 

v l l 
v21 

v12 

p22 

v l l 

^ 

v12 

|^22 
]̂ 

!?± 

fñ 
_^22 

^ 
v21 

fl2 
V 2 2 

v l l 
v21 

v12 
v22 

v l l 
v21 

^12 

P¡2 
_y 
5ϊ| 

v12 

|V22 

[Jñl 
ÜÜ 

En 
tía 1 ñi 

τ^ 
6ϋ 

D 

Lemma 16.35: Let>>z = ΓΧ'=ιν//> ζ = 1» 2, . . . , / , then 

cumív! ,^ . . . , Λ ) = Xpcum(vl7 G P ^ c u m ^ · G P2).-cum(v(/ G P*) (16-139) 

where the summation is taken over all indecomposable partitions P = Px ^JP2LJ··>KJPK 

of table (16-137), and with cum(ví;/ G Pr) the joint cumulant of all the elements of P r . 

Proof. See Leonov and Shiryaev (1959). D 

Example 16.36: Suppose we want to calculate Ο\ΧΧΆ(ΧΧΧ2, JC3X4). Note that the defini-
tion y>t = YljL xVjj in Lemma 16.35 defines the structure of table (16-137): the index / de-
fines the row and / defines the column. Hence, in this case we have on the first row xx and 
x2 (the order is not important) and on the second row x3 and x4 (the order is not important). 
Using Lemma 16.35 and the result of Example 16.34 with v n = xl9 v12 = x2, v21 = x3, 
and v22 = x4, we find 
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c u m ^ j ^ , x3x4) = cum(xl5 x2, x3, x4) + 

cum(x1? x2, x3)cum(x4) + cum(x1? x2, x4)cum(x3) + 

cum(x2, x3, x4)cum(xj) + cum(x1? x3, x4)cum(x2) + 

cum(x1? x3)cum(x2, x4) + cum(jcj, x4)cum(x2, ^3) + 

cum(x1? x3)cum(x2)cum(x4) + cum(x2, x4)cum(x!)cum(x3) + 

cum(x1? x4)cum(x2)cum(x3) + cum(x2, x3)cum(x1)cum(x4) 

Appendix 16.B Proof of Lemma 16.5 

For k = 1,2, ...,P we have 

(16-140) 

D 

max X |cum(y(f 1), Ah)> ···> A*k))\ 
fk tl,t2,...,tk_l = 0 

(16-141) 

<max Σ Σ \h(tx,ux)\...\h(th w¿)||cum(x(Wl),x(w2), ...,x{uk))\ (16-142) 
'* ul,...,uk = 0tl,...,tlc_l=0 

< Ch x max X \h(th uk)\ £ Icun^x^), x(w2), ..., x(w¿))| 
W, = 0 « 1 » - . " * - l = 0 

(16-143) 

<C ■ i f c - l max X Icum^Wj), x(w2), •••>*(w¿))| m a x Σ |̂ (**> w*)| 
V * « ,„ . . . ,« , ,_ , = 0 

/ 00 

(16-144) 

< Ck max X Icun^x^),x(w2), ...,x(uk))\ 
k «1» · · · » « * - ! = 0 

(16-145) 

< 00 (16-146) 

Inequality (16-143) is obtained by applying k~\ times (16-38a), inequality (16-145) uses 
(16-3 8b), and inequality (16-146) uses the mixing of order P property of x. D 

Appendix 16.C Proof of Lemma 16.8 

The proof follows exactly the same lines of the proof of Theorem 2.9.1 of Brillinger 
(1981), modified for the more general mixing definition (16-33) as in the proof of Lemma 
16.5. Instead of repeating the proof of Brillinger (1981), we will illustrate the differences on 
the second-order cumulant of a second-degree Volterra system. Background information con-
cerning the new concepts required for this proof can be found in Appendix 16.A. Assuming 
that the system is causal and that the input is zero for negative times, we have 
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/ t 

X 0 = Σ h2(t-ul,t-u2)x(ul)x(u2) = X h2(ul,u2)x(t-ul)x(t-u2) (16-147) 
Μ 1 , Μ 2

 = 0 Μ,, «2 = 0 

(for noncausal systems and noncausal inputs the sums in (16-147) are extended from -oo to 
+oo). The second-order cumulant of y(t) is 

Ί >2 

cum(y(tx\y(t2)) = X X h2(uu,un)h2(u2l,u22)-
un,ul2 = ou2l,u22 = o (16-148) 

CUm(x(^ - 1/!!)*(*! - W12), X^2 ~ w2l)X^2 ~ w22)) 

The mixing condition of order 2 becomes 

max X |cum(y(^),>;(i2))|< £ |¿2(wn> "1 2) | Σ N " 2 i > "2 2) | 
r 2 ¿ u / , - 0 Vii l l f i*1 2 = 0 

( °° ^ 
max X |cum(x(f! - w n M ^ - w12), x(t2 - u2l)x(t2 - u22))\ 

u\Yu\Tu\Tu22\t =o / (16-149) 
/ 2 > o 

< C2 max X Icum^v^jcivj + ux)9 x(v2)x(v2 + w2))| 
v, = 0 

where vx = tx-uu, ux = un-un, v2 = t2-u2l, and u2 = w21-w22. We will now 
prove that 

max X°° = Icum^Vj^Vj + Wj), x(v2)x(v2 + u2))\ < C < oo (16-150) 

which shows that y(t) is mixing of order 2. From Example 16.36 it follows that the cumu-
lant in (16-150) contains four kinds of contributions. For each type of contribution we will 
show that (16-150) is valid. We find for the type I contribution (fourth-order cumulant); 

max X°° Icum^vj), x(vx + ux\ *(v2), x(v2 + u2))\ < 
UVUT 2 v* 

m
v

axZ^° u = oIcumO^), x(u{% x(v2), x(u2))\ < C 

for the type II contributions (product of third- and first-order cumulants) 

max Σ _ | c u mWvi)» *(v2)> Xv2 + w2))cum(x(v1 + u{))\ < 
W-l , U<\f Vry Vl — U 

( m a x Z r „ = 0 jcumCxCv!), x(v2), x(w2))|)(max| cumixiuj)]) <C 

(16-151) 

(16-152) 

and similarly for the three other third-order terms; for the type III contributions (product of 
two second-order cumulants) 
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max Y |cum(x(vi), x(v2 + w2))cum(x(vi + uX x(v2))\ < 
u,, u~, Vj ^"^Vj = 0 ' ' 

( * V - λ (16-153) 
( " , ^ Σ * = olCUmWVl)' X(U2))\) [ ^ Σ Γ , = ol CUmWWl)' ^(V2))|J ^ C 

and similarly for the other term; and finally for the type IV contributions (product of second-
order cumulant and two first-order cumulants) 

max Σ _ |cum(x(v! + ux), x(v2 + w2))cum(x(vi))cumWv2))| -

( V V ^ (16-154) 
i m a x ^ v =Q|cum(x(v1), x(w2))|)fniax| cum^v^MÍmaxI cum(jc(v2))|J <C 

and similarly for the three other terms. The last inequalities in (16-151), (16-152), (16-153), 
and (16-154) are due to the fourth-order mixing property of JC(/). The basic reason why all 
the terms in (16-140) have a finite contribution to (16-150) is that they all stem from inde-
composable partitions. 

Extending the summations in all the equations from -oo to +oo shows that the proof is also 
valid for noncausal systems and noncausal inputs. D 

Appendix 16.D Almost Sure Convergence Implies 
Convergence in Probability 

x(N) converges w.p. 1 to x, hence, for any ε, δ> 0 there exists an N such that 

1 - δ < Prob(sup \x(k) -χ\<ε) = Prob( Pi \x(k) -χ\<ε)< Prob(|jc(7V) -χ\<ε) 
k>N k = N 

The last inequality shows that x(N) converges in probability to JC. D 

Appendix 16.E Convergence in Mean Square Implies 
Convergence in Probability 

x(N) converges in mean square to x, hence, for any ε, δ > 0 there exists a N0 such that 
for every N>N0, E {\x(N) - x|2} < δε1. Using Chebyshev's inequality (16-20) we find 

Prob(|x(A0-jc|<¿0 = 1 - Prob(|jc(N) - JC| >έ) > 1 - ~ E{\x(N)-x\2} > 1 -δ 

which shows that x(N) converges in probability to JC. D 

Appendix 16.F The Borel-Cantelli Lemma 

If Prob(,4 u 5 ) = l , then Prob(^ n B) = 1 - Prob(^ n B) = 1 - Prob(^ u B). 
Hence, 
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Prob(sup \x(k) -χ\<ε) = Prob( Pi \x(k) -χ\<ε) = 1 - Prob( U \x(k) -χ\>έ) 
k>N k=N k=N 

Using Prob(^ u 5 ) < Prob(^) + Prob(£) and Chebyshev's inequality (16-20) we find 

00 00 

Prob(sup |x(£)-x |<£)>l- Σ Prob(|x(£)-x\ >ε) > 1 - - Σ Ε{|χ(£)-χ|2} (16-155) 
k*N k=N ε k=N 

From (16-56) it follows that for any ε, δχ, δ2 > 0 there exists an N such that for every k > N 

X^Prob( |x(A:)-x | >*)<<?! and Σ^Ν ^{W)-X\2} <δ2ε
2 (16-156) 

Putting (16-156) in (16-155) proves the theorem. D 

Appendix 16.G Proof of the (Strong) Law of Large 
Numbers for Mixing Sequences 

We will give the proof for the general case where the sequence in the partial sum de-
pends on N. To simplify the notations, we introduce the zero mean variables 
y(N) = (S(N)- E{S(N)})/N and zN(k) = xN(k)- E {%(£)}. The law of large numbers 
then becomes l.i.m. y(N) = 0. The calculation of this limit in mean square requires an ex-
pression for cum(y(N), y(N)) (see (16-51)). Using the multilinearity of the cumulant (see 
Section 16.1, property 2) and the second-order mixing condition of Xj^k), we find 

cum(y(7V), y(N)) = 1 Σ ^ = 1 cum(%(£), xN(l)) = 0(N^) (16-157) 

where the last equality is due to (16-36). From (16-157), it follows that \imE{y2(N)} = 0, 
which already proves the law of large numbers for mixing sequences, and that 
var(y(7V)) = 0(N~l). Using properties 6 and 7 of Section 16.8, it follows that the conver-
gence rate of the limit in mean square is an Oms(N~l/2). 

Result (16-157) is not sufficient to prove the strong convergence of y(N) via the Borel-
Cantelli Lemma 16.10 ( Σ # = X\/N = oo). Therefore, we will first prove that the subsequence 
y(N2) converges w.p. 1 to zero. Next, we will show that the deviation of any element in the 
main sequence y(N) with a nearby element in the subsequence y(N2) converges to zero w.p. 
1. It is easy to see that cum(y(N2), y(N2)) = 0(N~2) and therefore 

Σ ; = 1 Ε Ο ^ ) } = ΣΓ=ι°(^"2)<^ (16-158) 

Applying the Borel-Cantelli Lemma 16.10 to (16-158) shows that a.s.lim y(N2) = 0. It remains 
to be proved that this implies the strong convergence of the whole sequence y(N). Therefore, 
it is sufficient to show that the maximal difference between the subsequence and the complete 
sequence 

sup \y(k)-y(N2)\ (16-159) 
N2<k<(N+\)2 
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converges to zero w.p. 1. The difference y(k)-y(N2) can be rewritten as the sum of three 
contributions 

y(k)-y(N2) = Δ1(*) + Δ2(*) + Δ3(*) (16-160) 

with 

Δι(*) = -(jLY^y(N2), Δ # ) = i Σ Φ) and Δ3(*) = \ Σ (z^-z^r)) 
= Ν2+\ 

Using sup\a(k) + b(k)\ < sxxp\a(k)\ + sup|¿>(£)|, (16-159) is bounded above by 
k k k 

sup |Δ1(*)|+ sup |Δ2(*)|+ sup |Δ3(*)| 
N¿<k<{N+\)¿ N¿<k<(N+\)2 N¿<k<(N+\)2 

(16-161) 

The strong convergence to zero of the first term in (16-161) is first established. Using 
sup \a(k)\ < Σ Ι = r +1 \a(k)\ > it is bounded above by 

r<k<s 

(N+\)2 

Σ \Α^)\<\γ(Ν
2)\{^ max 

k = N2+\ N2<k<(N+\)2\ 

k-N2 
^((Ν+Ι^-Ν2) (16-162) 

Using max 
N2<k<(N+\)2\ 

k-N2 

k 

(N+l)2 

Σ 
k = N2+\ 

(N+\)2-N2
 forA^> ! (16-162)becomes 

(7V+ l)2 

ΊΝ+ΙΛ2 

Σ ΐ Δ ^ μ ΐ Κ Λ ^ ) ^ ^ ^ ) = \ym\(Klñ (16-163) 

Because the subsequence y(N2) converges strongly to zero, so does (16-163). 
The strong convergence to zero of the second term in (16-161) will be established by 

application of the Borel-Cantelli Lemma 16.10. This requires that its variance decreases suf-
ficiently rapidly to zero as N-> oo. Using var(tf(fc)) < E{a2(k)}, (sup\a(k)\)2 = sup|a(&)|2, 
and sup \b(k)\<^k = r+i\t>(k)\, we find * * 

r<k<s 

var( sup | Δ # ) | ) < Ε { sup |Δ2(*)|2> 
N2<k<(N+l)2 " 

(N+\)2 

< Σ Ε{|Δ#)|2} 
k = N2+\ 

(16-164) 

(N+l)2 k 

^ Σ ñ Σ cum(z^(r), zk(s)) 
k = N2+\ r,s=N2 + \ 

As zk(r) is mixing of order 2, (16-164) is bounded above by (see (16-36)) 
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(JV+l)2 

var( sup | Δ # ) | ) < £ ^(k-N2) 
N2<k<(N+\)2 k = N2+\K 

( ^ 1 ) 2 k-N2 

(16-165) 

= Λ / 2 4 ^ * 

Using max 
N2<k<(N+\)2 

k = N¿+\ 

k-N2 

k2 
(N+l^-N2

 f o r 7 V > 3 (16-165)becomes 
(7V+1)4 

van ·( sup \A2(k)\)<c( max , 

< 0{N~2) 

k-tfi 
k2 

((N+iy-N2) 
(16-166) 

Applying the Borel-Cantelli lemma to (16-166) shows that the second term in (16-161) con-
verges to zero w.p. 1. 

The strong convergence to zero of the third term in (16-161) is shown following ex-
actly the same lines as that of the second term. Similar to (16-164), we find 

(N+\)2 N2 

var( sup ΙΔ3(£)|)< £ \νκ(Σ (z^-z^r))) (16-167) 

Using the assumption var(Xr= l(zk(r)-zNl(r))) = Oik-N2) and following the lines of 
(16-165) and (16-166), (16-167) becomes 

var( sup |Δ3(Α:)|) < 0(A^-2) (16-168) 
JV 2 <A:<(JV+1) 2 

Applying the Borel-Cantelli lemma to (16-168) shows that the third term in (16-161) 
converges to zero w.p. 1. Finally, it follows that a.s.lim y(N) = 0, which proves the strong 
law of large numbers for mixing sequences. "* °° D 

Appendix 16.H Proof of the Central Limit Theorem 
for Mixing Sequences 

We will show that the cumulants of S(N)Á/Ñ converge for N-> oo to those of a nor-
mal distribution. This concludes the proof because the normal distribution is uniquely deter-
mined by its moments (see the Fréchet-Shohat Lemma 16.11). 

The proof will be given for the general case where the sequence in the partial sum de-
pends on N. Using the multilinearity of the cumulant (see Section 16.1, property 2), we find 
for the Jth order cumulant Cj(N) of S(N)/JÑ 

C J ^ = j ^ X i U , . . . . * , - icum(%(*iX%(*2X ···>·%(*/)) (16-169) 

Because xN(k) is mixing of order J, J = 1,2,..., the summation in (16-169) is an 0(N) 
(see (16-36)), so that 
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lim Cj{N) = lim 0(Nl~J/2) = 0 for J>2 (16-170) 
N->ao N->oo 

By assumption var(S(N)) = 0(N) so that 

lim c2(N) = C with 0 < C < oo (16-171) 
#->oo 

We conclude from (16-170) and (16-171) that the Cj(N) converge to the cumulants of a normal 
distribution (see Example 16.2). The mixing assumption guarantees that the second-order cu-
mulants of xN(k) are uniformly bounded. This ensures that the number of random variables 
xN(k) that have an 0(N°) > C > 0 contribution to vai(S(/V)) = 0(N) increases as 0(N). 

The cumulants are the coefficients in the Taylor series expansion of the logarithm of 
the characteristic function φ(ί) (Brillinger, 1981; Stuart and Ord, 1987). From (16-170), it 
follows that Ιη(φ(ή) corresponding to S(N) equals that of a normal random variable within 
an 0(N~l/2), uniformly in t. Because the characteristic function is related to the probability 
density function by the Fourier integral, it follows that the distribution function FN(y) of 
S(N) equals that of a normal random variable within an 0(N~l/2)9 uniformly in y. 

Appendix 16.1 Generalized Cauchy-Schwarz Inequality 
for Random Vectors 

Let U G Cn and V e Ck be complex random vectors. Define the n by n matrix 
M = E{(U-rV)(U-TV)H} with Γ e Cnxk. By construction, M is positive semidefinite 

E{(U-rV)(U-TV)H}>0 (16-172) 

Elaborating inequality (16-172) with Γ = E{UVH}[ E{VVH}]+ using property 2 of the 
pseudoinverse + (see Section 15.5) gives the generalized Cauchy-Schwarz inequality for 
random vectors 

E{£/£/"}- E{UVH}[E{VVH}]+E{VUH}>0 (16-173) 

We will show that (16-173) reaches the lower bound if and only if there exists a nonrandom 
matrix Γ such that U = TV. Equality holds in (16-172), and, hence, also in (16-173), if and 
only if all the eigenvalues of the matrix M = E{(U-TV)(U-T V)H) are zero. The positive 
semidefiniteness of M implies that all its eigenvalues are zero if and only if their sum equals 
zero. Hence, tr{M) = 0 (see Exercise 15.12.), so that 

tr(E{(U-TV)(U-rV)H}) =E{(U-TV)H(U-FV)} = i{\\U-TV\\2
2} = 0 (16-174) 

The last equality in (16-174) is true if and only if U = Γ V. D 

Appendix 16.J Proof of the Generalized Cramér-Rao 
Inequality (Theorem 16.18) 

The generalized Cramér-Rao inequality (16-84) follows as a special case of the general-
ized Cauchy-Schwarz inequality for random vectors (see Appendix 16.1). In what follows, all 



Section 16.18 ■ Appendixes 615 

the expectations are taken w.r.t. the measurements z. Choosing U = όψ(ζ)) - E {G(#(z))} 
and VH = dlnfz(z, θ0)/θθ0 in (16-173), taking into account that 

gives 

c o v , ^ ) ) , , ; - ^ ' a ^ - ^ + Έ Τ Γ Ι Λ - ά ^ + Ρ # (16-177) 

Adding bGb^ to both sides of (16-177) gives (16-84). The second equality in (16-85) is ob-
tained by differentiating (16-175) w.r.t. θ0 

d f 31n/x(z, fl0)„ 

U 

[52ln/z(z, θ0)} f^ln/z(z, 6>0)Λ *yain/,(z, fl0) 

I ^ J [V S0O A 86t -

(16-178) 

= 0 

Equations (16-175), (16-176), and (16-178) assume that the necessary regularity conditions 
to allow for the reversal of the order of differentiation and integration are satisfied (Z is the 
θ0 -independent range of integration). The suitable regularity conditions for the existence of 
the expected values and the derivatives can be found in Caines (1988). The necessary and 
sufficient condition (16-86) to attain the lower bound is a direct consequence of the general-
ized Cauchy-Schwarz inequality (see Appendix 16.1). 

Appendix 16.K Proof of Lemma 16.23 

Applying (6-110) on page 165 to the polynomial J(z_1, Θ) = ^m = oJmz~m *n ^ e n ° i s e 

model (16-128) gives 

J(z-\0) = N~l/2 
f nc m nd n \ 

Σ Σ^Δ^ωζ'-"-- Σ Σ4,Δ„ν(0ζ'-« 
\m= \ί= \ n= \t= \ > 

(16-179) 

where ANx(t) = x(-t)-x(N-t) with x = e,v. It shows that the coefficients j m , 
m = 0, 1, ..., n-, of J(z~l, Θ) depend linearly on 2{nc + nd) (finite number independent of 
N) random variables. Because e(i) has uniformly bounded absolute moments of order 
2 + δ, we also have that E {|v(f)|2 + δ} < c < oo (bounded input-bounded output property of a 
stable system//(z-1)). Hence, the coefficients j of J(z~l,0) can be written as 



616 Chapter 16 ■ Some Probability and Stochastic Convergence Fundamentals 

Jm = N~l/2x(N) with l{x(N)} = 0 and E{\x(N)\2 + s} <c<oo (16-180) 

(c is independent of t). Because var(/w) = 0(N~l) it follows that jm = Oms(N~l/2), which 
implies that j m = Op(N~l/2) (see Section 16.7, interrelation 2). Applying Markov's inequal-
ity (16-21) with p = 2 + δ to jJN) (16-180), we find 

£ ; = 1 P r o b ( | y U A 0 | > * ) < Z ^ (16-181) 

which shows that jJN) converges w.p. 1 to zero (see the Borel-Cantelli Lemma 16.10). 
Using properties 1 and 3 of the stochastic limits (see Section 16.8), it follows that the results 
for j m are also valid for J(z~l, Θ). D 

Appendix 16.L Proof of Lemma 16.24 

We will show that the joint cumulants of E(k) tend for N -> oo to those of an indepen-
dent, circular complex normally distributed random variable (the joint cumulants of order 3 
and larger of a multivariate complex normal random variable are zero, see Example 16.2). 
This concludes the proof because the normal distribution is uniquely determined by its mo-
ments (see the Fréchet-Shohat Lemma 16.11). 

The Jth order joint cumulantof E(k) is 

N-\ _2π V · 7
 kt 

cum(E(kx), E{k2\ ..., E(kj)) = - L X e~ »'*"-* ' 'cum(e('i)> <t2\ ···> e(tj)) 
7V /„/,,..., o = o 

with ki = 0, 1, ...9N- 1, i = 1, 2, ..., J, and J - 1, 2, .... Because the noise e(t) is iid, 
cum(e(/j), e(t2), ..., e{tj)) is different from zero only when t{ = t2 = ··· = tj (see Section 
16.1, property 3 of the cumulants). Putting Cj = cum(e(/), e(t), ..., e(t)) and using 
Tk = oxh = ( l - * * ) / ( l - * ) , we find 

c u m ^ ) , ^ ) * ...,£(*,)) = ^^S((T-=iki) modN"> (16~182) 

with S(k) the Kronecker delta. From (16-182) it follows that for any N 

cum(£(£)) = 0 k*0 (a) 

cumCE^), E(k2)) = 0 (Jfcj + k2) mod ΝΦ 0 (b) (16-183) 

c\xm{E{kx\E(N-kx)) = cum{E{kx\E{kx)) = C2 (c) 

All the cumulants of order larger than 2 tend to zero as N -> oo (16-182) and 
var(£(&)) = 0(N°) (16-183c). We conclude from (16-182) and (16-183) that the cumulants 
equal, asymptotically, those of a zero mean (DC not included) independent circular complex 
normally distributed random variable. 

The proof of the convergence rate of the distribution function is similar to that given in 
Appendix 16.H. D 
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Appendix 16.M Proof of Lemma 16.26 

Because |£(&)|2 is given by 

I W = ± Σ " ; 1 o e(t)e(u)e-*Mt-u) (16-184) 

we find for the 7 th order joint cumulant of \E(k)\2 

ςΚ*!,** ...,*,) = cumd^í*!)!2, |^(*2)|2 | ^ (M 2 ) 

i V - l -~jYJ Ut.-u.) 

= ¿ Σ e^ 2 *- >„. . . , , , „„...,„,) (16-185) 
tl,i2,...,tj=0 

ux,u2,...,uj = 0 

with c(tl9 ..., /,, w1? ..., Uj) = c u m ^ j ) ^ ! ) , e(f2)e(«2), ···> e(0Mwy))· Application of 
Lemma 16.35 with vn = e(/,) and v/2 = e(w;) g i y e s 

c(/!, ..., tj9 ul9 ..., ιι,) = Σ<*™(*('«/) e Pi)cum(e(^·) G P2). . . cum(e(//y) G P^) (16-186) 
P 

with e(tij) an element of table (16-137) with J{ = J2 = ··· = Jj = 2 and I = J, and 
where the summation extends over all indecomposable partitions P = Pj W P2 ̂ J · · · LJ P^ 
of this table. Since e(t) is iid, cum(e(¿zy) G P¿) is different from zero if and only if for all 
e(/zy) G P¿, e(^) = e(w¿) (see Section 16.1, property 3 of the cumulants), and 
cum(e(^r = uk) G Pk) = c(Pk) is independent of uk. Putting these results in (16-185) gives 

1 N-\ J 

cjkl9 ...,*,) = ρΣ<*Ρι)···<*Ρκ) Σ ^{-ψΣΗ^-Us)) (16-187) 

with r ^ - e {1,2, . . . , # } . Because the partition P = P j U ^ U - U P ^ is indecompos-
able, all the differences ur - us9 i = 1, 2, ..., J, are obtained by addition and subtraction of 
the K-\ independent differences uK-uk9 k = 1, 2, ..., K- 1 (see Lemma 2.3.1, p. 20, 
Brillinger, 1981) 

ur~usi
 = Z f J i X i , *](%"«*) f o r ' = ^ 2 ' •>«/ (16-188) 

with A G {-1, 0, 1 y*(K-i) and rank(v4) = K- 1. Using (16-188), the second summation 
in the right-hand side of (16-187) becomes 

iV-1 J N-l K-\ J 

Σ ™v(—¡jjHkAur-us)) = Σ expí-^'^Σ ΣΜ[ α ] ) · 
Wj, ...,uK=0 1 = 1 w^ = 0 ¿ = 1 / ' = 1 

(16-189) 
ί Τ - Ι Λ ί - l J 

Π Σ exp(-¿r/"*ZM [Í,*]) 
* = 1 ¡/t = 0 ¿ = 1 
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less K- 1 linear independent constraints are satisfied (rank(v4) = K- 1) 
Applying K times ΣΓ=ο** = 0 - * * ) / ( ! - * ) to (16-189) shows that (16-189) is zero un-

N-\ J 

X e x p ( ~ 7 Σ ¿fc,(iir/- «,,)) = #*<=> (¿t7^) rnodW = 0 (16-190) 
ux, . . . , uK = 0 / = 1 

with F = [Jfcls Jt2, ..., kj]. Using (16-190), (16-187), we find 

Cj(k{, . . . , * , ) = ^ - p 

0 elsewhere 

Hence, the mixing condition of the Jth order joint cumulant becomes 

max X \cj(kl9...9kj)\ = 
kJ kx,...,kj_x = \ 

Σ(Ν~ iy-KNK-Jc(Pl)...c(PK) 
p 

= 0(N°) 

where the last equality is due to the fact that the number of indecomposable sets is 
independent of N. D 

Appendix 16.N Proof of Lemma 16.27 

Using (16-183b) and (16-183c) we find maxX£~ \ I c u m ^ ^ ) , E(k2))\ = C2, so that 
E(k) is mixing of order 2. 2 

The proof that \E(k)\2 is mixing of order 2 is similar to the proof of Lemma 16.26, ex-
cept that the third- and fourth-order cumulants of e(t) are now not necessarily stationary. 
Hence, it is sufficient to study only the contribution of these nonstationary cumulants to the 
mixing condition. The second-order cumulant of \E(k)\2 is given by (16-185) with J = 2. 
Equation (16-140) with xx = e(t{), x2 = e{ux), x3 = e(t2), and x4 = e(u2) gives an ex-
plicit expression for (16-186) with 7 = 2 . The eight terms in (16-140) containing a first-
order cumulant have a zero contribution to (16-185) because 

X f j o ' c u m M O ) ^ ' = ΜΣΙ'Ο^' = 0 o k* 0 

This eliminates all the (nonstationary) third-order cumulants. Because e(t) is independent 
over /, the contribution of the (nonstationary) fourth-order cumulant to (16-185) becomes 

N-\ _2ZE-V2
 k(t _ w ) N~l 

i Σ cumW/,),^,),^^^^^ , = 1 ' '""' = ¿ Σ Q ( 0 (16-191) 
t\, ¿2 = t) t — 0 

Mj, W2
 = 0 

Taking into account that \C4(t)\ is uniformly bounded, it can be seen that (16-191) has a 
0(N°) contribution to the mixing condition. D 
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Appendix 16.0 Proof of Theorem 16.28 

Applying Lemma 16.23 to the partial sums (16-129) gives 

i Σ Wk V(k) -> I Σ WkH{z?)E{k) w.p. 1 
r k e ¥ r k e ¥ 

(16-192) 

l Σ |̂  W|2 -► ¿ Σ | W * * « ) | 2 w.p. 1 
r k e í r k e ¥ 

at the rate Op(F_1/2). Hence, it is sufficient to study the following partial sums: 

S(F) = X wkE(k) and S(F) = X \wkE(k)\2 (16-193) 
Are F IfceF 

where wk = WkH(zk
l) is uniformly bounded. From Lemmas 16.3 and 16.27, it follows that 

wkE(k) and |w¿ii(fc)|2 are mixing of order 2. Hence, the partial sums S(F)/F in (16-193) 
converge in mean square sense at the rate Oms(F~U2) to their expected value (see Section 
16.9, version 3 of the law of large numbers). Note that the noise E{k) in (16-193) depends on 
the number of time domain samples N and, hence, also on the number of frequencies 
F = 0(N). Therefore, it should be denoted more precisely as EN(k), and to prove the strong 
convergence of S(F)/F, we must also verify that 

var(£* = {xr(k)-xs(k)) = 0(r-s) with r>s (16-194) 

is satisfied for xr(k) = wkEr(k) and xr(k) = \wkEr(k)\2 (see Section 16.9, version 3 of the 
law of large numbers). To verify this condition we rearrange the order of the frequencies in 
(16-193) such that the new added frequencies appear at the end of the sum. In (16-194) we 
compare terms of the sums (16-193), at the same physical frequencies kfs/s and not at the 
same DFT line numbers k; otherwise, the comparison makes no sense. This imposes a condi-
tion on the number of time domain samples r > s: r must be chosen such that the physical 
frequencies kfs/s, k = 0, 1, ...,s- 1, form a subset of the physical frequencies kfs/r9 

k = 0, 1, ..., r- 1. This condition is satisfied for the choice r = ms with m = 1, 2, 3, .... 
It means that we compare time domain experiments where the number of samples N is in-
creased linearly as mN, m = 1, 2, 3, .... Note that in a classical time domain analysis the 
number of samples is increased linearly asiV+w, m = 1,2, 3 , . . . . 

The first partial sum in (16-193) converges strongly to its expected value if 

var( Σ wk(Ems(mk)-Es(k))) = 0((m-l)s) (16-195) 
ke¥s 

with m G N0, fs a set of Fs = 0(s) DFT frequencies, and 

^ (16-196) 

*Js 
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Because Yft20
e~2nJkt/s = ° for k*Q, we can replace e(t) by e{i)- μ in (16-196) without 

changing Ems(mk) and Es(k) for k Ψ 0. Hence, we may assume in the sequel of the analysis 
that e(t) has zero mean. If DC (k = 0) belongs to the set ¥s, then μ = E {e(/)} should be 
zero, otherwise the expected values of Ems(0) and Es(0) are not zero. Elaborating the vari-
ance expression in (16-195) gives 

var(X wk(Ems(mk)-Es(k))) = 
keis 

(16-197) 
Σ wkwki E {{Ems(mkx) - Es(kx))(Ems(mk2) - Es(k2))} 

Because e{t) is an independent random variable with zero mean and variance σ2, we have 

EiE^mkJE^mkJ} = E{Es{kx)Es{k2)} = o ^ * , - ^ 

E{Ems{mkx)Es{k2)} = E{Es(kx)Ems(mk2)} = ^¿Kkx-k2) ° 6 " 1 9 8 ) 

with 5{k) the Kronecker delta. Using (16-197) and (16-198), we find 

var( Σ wk(Ems(mk)-Es(k))) = 2σ* ^ ^ ) s \ Σ K | 2 * 0((m - l)s) (16-199) 
ke¥ *Jm(*Jm+ l)sk<= is 

where the last inequality is due to \wk\ < c < oo for any k. 

The variance expression for the second partial sum in (16-193) equals 

v a r ( I \wj\\\Ems{mk)Y-\Es{k)Y)) = 
ke F 

(16-200) 

Because e{t) is an independent random variable with zero mean, variance σ2, and uniformly 
bounded fourth-order moment μ4(ή, we have 

E{\Ems(mk^\Ems(mk2)\2} = a*+a*5(kx-k2) +
 KJ^ 

E{\Es(kx)\i\Es(k2)\i} = σ ' + σ 4 * * , - * ^ ^ (16-201) 

E{\Ems(mkxf\Es(k2)\^ =E{\Ems(mk^\Es(k2)m = σ 4 + £ * * i - *2> + ^ 

where /r4(r) = £ r
= 0MA(t)/r- 3 σ4 is an O(s0). Using (16-200) and (16-201), we find 
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m m 

Because K4(S) = O(s0), \wk\ < c < <x> is uniformly bounded, and 

| Σ Γ ^ W ) | <(max|//4(0|)((m- 1 » 

(16-202) is bounded above by 

var( Σ W2(\Ems(mk)\* " \W)\2)) ϊ 0((m - l)s) 
k& F 

which concludes the proof for the second partial sum. D 

Appendix 16.P Proof of Theorem 16.29 

To prove the theorem it is sufficient to replace V(k) by H(z^l)E(k) (Lemma 16.23). 
The rest of the proof follows the lines of Appendix 16.L. Using (16-182) and property 2 of 
the cumulants (see Section 16.1), the Jth order cumulant of N~l/2S(N) becomes 

C N~l 

Cj(N)=^ri Σ Y{kl)Y{k2)...Y{kJ_x)Y(N-^J
i:W (16-203) 

k\t Λ2, . . . , kj_ j = 0 

with Y(k) = H{zix)X(k). The right-hand side of (16-203) can be written as J- 1 consecu-
tive circular DFT convolutions of Y(k) with itself 

CÁN) = jj^m^m (16-204) 

with Yj(k) = Y(k)*(Y(k)*(...*Y(k))) and Y(k)*Z(k) = N-V2Z?:l
0Y(r)Z(k-r). Using the 

property that the inverse discrete Fourier transform (IDFT) of a circular convolution of DFT 
spectra equals the product of the corresponding time signals, we can write Yj(k) as 

Yj(k) = DFT(IDFT(y,(¿))) = DFT(y>(0) = -j= Σ?-~ „ Ή θ ^ ' (16-205) 

Hence, Y,(N) = JV-I/22^L"0VW. a n d 

CJW = ^ τ τ ^ ZT-ToVO) (16-206) 

Applying the bounded-input, bounded-output property of stable linear systems (Kailath, 
1980) to f(k) = H(z^)X(k), with IDFT(Z(£)) = z(-t) (Z = X9Y, z = x,y), shows that 
max[y(-0l <^!<οο if max\x(-t)\ < c < oo where c and cx are independent of TV 
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(max|z(-0l = max|z(0l, z = x,y). Similarly, Ν-ιΣ?=οΑ*) = 0(N°) since N-^=¿x2(t) = 0(N°). 
Therefore, (16-206) becomes for J = 2 

C2(N) = var(7V-1/2S(A0) = j^O(N°) = 0(N°) (16-207) 

while for J> 2 (16-206) can be bounded above by (N~l |X f J 0 V(0 | ^ max|X0K) 

lC^)| ú ^ h x c í * OQf-M + i) (16-208) 

It follows that the cumulants of order J= 3,4, ... are asymptotically zero, while 
C2(N) = 0(N°). According to the Fréchet-Shohat Lemma 16.11, N~U2S(N) is 
asymptotically normally distributed. The convergence rate to the normal distribution function 
is established as in Appendix 16.H. D 

Appendix 16.Q Proof of Corollary 16.30 

The proof follows the same lines as for Theorem 16.29. The only difference lies in the 
upper bound (16-208). Because (16-207) remains valid (we consider only signals with finite 
power), the signal can reach its peak value 0(J\nN) at most 0(N/lnN) times, while the re-
maining N- 0(N/lnN) samples have the value 0(N°). Therefore, (16-206) with J> 2, is 
bounded above by 

ic^)i * i¿hio«inNy/2~ !> * ° ( ( ^ ) y / 2 _ ) (i6-209> 

which concludes the proof. D 

Appendix 16.R Proof of Lemma 16.31 

First we prove the theorem for X(k) = E2(k) and Hx(z^1) = 1. The generalization to 
the colored case follows directly from the uniformly boundedness of H\(z^1) and H2(z^1). 
Applying Lemma 16.35 with v n = E2(k) and vi2 = E\(k) to the J th order joint cumulant 
of E2(k)Ei (k) gives 

cumiE^k^Exik^,Ε2(^)Ε^2), ...,Ε2%)ΕΧ%)) = 

^ c u m ( ^ ) G Px)cum(E(kij) * P2)-cum(£(*y) e P*) ( 1 6 " 2 1 0 ) 

p 

where E(k) equals E2(k) and/or E\(k) and where the summation extends over all 
indecomposable partitions P = P J U P J U - . - U P ^ of the table (16-137) with 
Jx = J2 = ' · - = Jj = 2. We study the mixing condition 

N-\ 

max X |cum(£(^) e P!)cum(£(¿/;/) eP 2 ) · · · cum^A^) e P^)| (16-211) 
kj * „ . . . , * , _ , = <) 



Section 16.18 ■ Appendixes 623 

for each term in the summation (16-210). As E\{k) and E2{k) are mutually independent ran-
dom variables, the partitions in (16-210) are limited to those where all E{ktJ) e Pr are equal 
to E2(k) or to Ex(k). Therefore, we can apply formula (16-182) to each cum(£(A:/:/) e Pr) in 
(16-211), which gives 

N-\ 

max Σ 
kj *„...,*,_,= 

K c π —̂  (16-212) 

with ^r=lJr
 = 2J (each partition contains all elements of the set) and where K constraints 

of the form 

CLkij) m o d N = °> E(k¿J)ePr9 r = 1,2,..., A: (16-213) 

should be satisfied. Because the partition P = P1LJP2L>,---L>'PA: is indecomposable, 
there are exactly K- 1 independent constraints in (16-213) (see Lemma 2.3.1, p. 20, Brill-
inger, 1981), so that (16-212) can be bounded above by 

# < ' - ! ) - ( * - i ) i i ^ i L i ! = 0(N°) (16-214) 
NJ~K 

This concludes the proof for the (colored) white noise case. 
The result (16-214) is also valid when X{k) is the DFT spectrum of an integer number 

of periods of normalized periodic noise or a normalized random multisine. To prove this 
statement, it is sufficient to note that 

c u m i X ^ X X ^ ) , . . . , ^ ^ ) ) = CjS{k2-kx)S{k,-kxy-S{kj-kx) 

by construction of these periodic signals (see Definitions 3.2 and 3.4). D 

Appendix 16.S Proof of Theorem 16.32 

The proof follows the lines of Appendix 16.0. 

16.S.1 First Partial Sum of (16-135). We distinguish two cases: (i) X(k) is the DFT 
spectrum of filtered white noise, x(t) = Hl(q)el(t), where Hx{z~x) is stable and ex(t) is in-
dependently distributed noise with mean μχ<<χ> and variance σ\ < αο, and (ii) X(k) is the 
DFT spectrum of an integer number of periods of a normalized random multisine or normal-
ized periodic noise. 

Applying Lemma 16.23 to the first partial sum of (16-135) gives, for case (i), 

I Σ W&k) V{k) -* I Σ WjcE^Eik) w.p. 1 
P k e i rke¥ 
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at the rate Op(F"1/2), where wk = WkH{(zk
l)H(zk

l) is uniformly bounded and where, at the 
same physical frequencies kfs/N, wk is independent of the number of time domain samples 
N. Hence, it is sufficient to study 

Using formulas (16-198) and the fact that Ex{k) and E(k) are independent, we find 

va^wk(Elms(mk)Ems(mk)-Eu(k)Es(k))) = 2σ^{-^^^ί Σ \wtf 
kei m SJc€Ís 

<0((m-l)s) 

where the last inequality is due to \wk\ < c < oo for any k. 
Applying Lemma 16.23 to the first partial sum of (16-135) gives, for case (ii), 

I Σ WkX{k) V{k) -► I Σ wkX{k)E{k) w.p. 1 
r k G Í rkG$ 

at the rate Op(F~1/2), where wk = WkH(zk
l) is uniformly bounded and where, at the same 

physical frequencies kfs/N9 wk and X(k) are independent of the number of time domain 
samples N. Hence, we must study 

var( Σ wkX(k)(Ems(mk) - Es(k))) (16-215) 

Because X(k) is independent of E(k), formula (16-199) of Appendix 16.0 remains valid for 
(16-215), if \wk\

2 is replaced by |w¿|2E{|X(£)|2}. 

16.S.2 Second Partial Sum of (16-135). As the case where X(k) is the DFT spec-
trum of filtered white noise is already covered by Theorem 16.28, it is sufficient to study the 
case where X(k) is the DFT spectrum of an integer number of periods of a periodic signal. 
For normalized random multisines, \X(k)\2 is a uniformly bounded nonrandom number, 
while for normalized periodic noise, |X(A:)|2 is a random variable with uniformly bounded 
fourth-order moments. In both cases, at the same physical frequencies kfs/N9 X(k) is inde-
pendent of the number of time domain samples N. Hence, S(F)/F obeys the strong law of 
large numbers (see Section 16.9, version 3 of the law of large numbers). D 

Appendix 16.T Proof of Theorem 16.33 

Applying Lemma 16.23 to the first two partial sums of (16-136) gives 

S(F)/F-> I X Wk Y(k)H(zki)E(k) w.p. 1 
P ke¥ 

(16-216) 
S(F)/F-> i X \WkH(zki)E(k)\2 w.p. 1 

rke\f 
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at the rate Op(F~U2). Y(k) = Hx{z?)Ex{k) for filtered iid noise, and Y(k) = X(k) for the 
periodic signals. Because Wk, HY(z^1), and H{z^1) are uniformly bounded, 
Wk Y(k)H(zix)E(k) and | WkH(z¿l)E(k)\2 are mixing of order infinity (proof: apply Lemmas 

16.3, 16.26, and 16.31). Hence, according to version 4 of the central limit theorem (see Sec-
tion 16.10), the sums in (16-216) are asymptotically normally distributed (convergence in 
law at the rate 0(F"1/2)). 

For the third partial sum of (16-136), we need only handle the case where X(k) is the 
DFT spectrum of the periodic signals (the filtered iid case is already covered by the second 
partial sum of (16-136)). Because Uf(&)|2 is, by construction, independent over k (see 
Definitions 3.2 and 3.4), and Wk, \X(k)\2 have, by assumption, existing moments of any or-
der, ^|X(&)|2 is mixing of order infinity. Therefore, ^.|Χ(&)|2 is asymptotically normally 
distributed at the rate 0(F~l/2) (see Section 16.10, version 4 of the central limit theorem). 
For a normalized random multisine, \X(k)\2 is a nonrandom number and the normal distribu-
tion is degenerate. D 



Properties of Least 
Squares Estimators with 
Deterministic Weighting 

Abstract: This chapter studies the asymptotic stochastic properties (strong convergence, 
strong consistency, convergence rate, asymptotic bias, and asymptotic normality) of nonlin-
ear least squares estimators with a deterministic weighting. The presented theory is applica-
ble to a large class of estimators such as the quadratic prediction error methods, the Gaussian 
maximum likelihood estimators, and the total least squares-based methods. Readers who are 
unfamiliar with the analysis of the stochastic properties of estimators should first read Sec-
tions 16.11 to 16.13. 

17.1 INTRODUCTION 

In this chapter we consider the identification of a parametric plant and/or noise model 
Μ(θ, z0, nz) through the minimization of a weighted nonlinear least squares cost function 

νΝ(θ,ζ) = ±ΖτψΝ(θ)ζ (17-1) 

with WN{6) e UNxN a deterministic positive semidefinite weighting matrix, z e RN the 
noisy measurements, z = z0 + nz9 and Θ e U"e the plant and/or noise model parameters 
with ηθ independent of N. Because the nonsymmetric part of WN{9) does not contribute to 
the quadratic form (17-1) (see Exercise 15.7), we can assume without any loss of generality 
that the weighting matrix WN(0) is symmetric. Note that all the elements of WN{6) may 
change as N increases. Because the true (unknown) observations z0 can be a random vari-
able, the expected values are taken everywhere w.r.t. the disturbing noise nz and the true ob-
servations z0. 

The analysis of the stochastic properties of the minimizer(s) of (17-1) requires a closed 
and bounded (= compact) set of parameters, where the cost function (17-1) and/or its higher 
order derivatives exist and are finite. Such a regular compact set is constructed as follows. 
Let P a R"0, with dim(P) = ηθ, be a compact parameter set. Define P s c P as the singu-
lar set of parameter values for which the cost function (17-1) does not exist or is infinite. 
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Usually, the topological dimension of this singular set is smaller than ηθ. The regular set Pr 

are the parameters in P that are not within an ε -distance of the singular set Ps 

Pr = P \ { 0 < E Ρ|||<9-08||<£, <9se PS} (17-2) 

Pr is compact (closed and bounded) by construction. Using the same reasoning, a regular 
compact set is constructed where the (higher order) derivatives of the cost function exist and 
are finite. Note that for the maximum likelihood estimation of ARMAX models the compact-
ness assumption of the parameter space can be avoided (Hannan and Deistler, 1988). 

Following the same lines as in Section 16.13, the asymptotic (N->oo) properties 
(strong convergence, strong consistency, convergence rate, asymptotic bias, and asymptotic 
normality) of the (set of) minimizer(s) 

θ{ζ) = argmin^(0,z) (17-3) 
0eP r 

will be analyzed. Replacing z e CN by zre e R2N in (17-1) and/or 0 e O by 0re e U
2n* 

(see Section 15.8 for the definition of ( )re), it follows directly that the results also apply to 
complex measurements and/or complex parameters Θ e Cn$. The chapter ends with an over-
view of the asymptotic properties of θ(ζ). 

17.2 STRONG CONVERGENCE 

The first step in the analysis consists of detecting the stochastic sum(s) w in the cost function 
(17-1) that averages the noise. It can easily be seen that there is only one such sum, namely 
the cost function itself. Following the notations of Section 16.13, we have 

w(0, z0, nz) = VN(09 z) and μ„(θ, z0) = E {VN(0, z)} (17-4) 

so that 

θ(ζ0) = argmmVN(0) (17-5) 
0eP r 

with^(0) =ί{¥Ν(θ9ζ)}. 
In the second step (see Section 17.2.1), the uniform convergence (w.r.t. Θ) of the sto-

chastic sum w toward its expected value //w is established 

a.s.lim (VN(0,z)- VN(0)) = 0 or a.s.lim VN(0,z) = lim VN(0) = V*(0) (17-6) 
7V-»oo TV—»ao N—> oo 

This requires some assumptions concerning the true observations z0, the disturbing noise 
nz, the weighting matrix WN{6), and the strategy of adding the measurements. The conver-
gence should be uniform w.r.t. the model parameters 0G Ργ to ensure that the convergence 
of the cost functions implies the convergence of the minimizers. Figure 17-1 shows a coun-
terexample where the cost function VN(0) converges nonuniformly to its limit value V*(0). 
It can be seen that the global minimum of the sequence νΝψ) does not converge to the glo-
bal minimum of V*(0). 
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Figure 17-1. Although VN{6,z) (dashed lines) 
converges nonuniformly to V+ψ) (solid line), 
their global minimizers (x) and (+) differ. 
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In a third step (see Section 17.2.2) the strong convergence of the minimizer(s) is estab-
lished from the strong uniform convergence of the cost function 

a.s.lim (θ(ζ)-θ(ζ0)) = 0 or a.s.lim θ(ζ) lim 0(zo) = Θ* 
iV-»oo 

(17-7) 

It requires that adding measurements to z (7V-»oo) increases the knowledge about the 
model parameters Θ such that Θ is uniquely identifiable. If this is the case, then the data are 
said to be persistently exciting. The weakest assumption that satisfies this condition is that the 
asymptotic cost function V*{0) has a unique global minimum #*. If this assumption is not 
fulfilled, then the uniform convergence of the cost functions does not imply the convergence 
of their minimizer(s). The following counterexample shows this. Consider, for example, the 
cost functions VXN{0) = \-N~lsin(0) and V2N{9) = 1-N~lcos(0) with respective mini-
mizers Θ\(Ν) = n/2 + 2kn and OiQf) = 2kn, k e Z. Although V\N(0) converges uni-
formly in Θ to ν2Ν{θ), Θ\(Ν) does not converge to 02(N): #i(oo)*02(°°). The problem 
with this counterexample is that all Θ- values minimize the limit cost function V*(6) = 1. 

17.2.1 Strong Convergence of the Cost Function 

Assumption 17.1 (Mixing Condition of Order P): The true observations z0 e RN 

are disturbed by zero mean additive noise z = z0 + nz. The noise nz is stochastically inde-
pendent of z0. Both nz and z are mixing of order P. 

Assumption 17.2 (Constraints on the Cost Function): (a) The weighting matrix 
WN{6) e UNxN in (17-1) is a symmetric positive semidefmite matrix, satisfying 
I ^ ^ I J <c<oo, with c an N-independent constant, for all N, oo included, and all 
Θ E Pr . WN{6) is a continuous matrix function of Θ in the compact set Pr . (b) There is an 
N0 such that for any r>s>NQ, \K[u,,u*lW-WMi = 0((r-s)/r) in 

Note that Assumption 17.1 makes it possible to handle, simultaneously, the cases z0 
random and/or z0 deterministic. Condition (b) in Assumption 17.2 limits the variation of the 
elements of WN(0) as N increases to infinity. This is necessary to ensure the strong conver-
gence of the cost function (see proof of Lemma 17.3). If (b) is not satisfied, then only mean 
square convergence of the cost function can be shown. All lemmas and theorems of this chap-
ter remain valid except that the strong convergence (w.p. 1) must be replaced by weak con-
vergence (in prob.). 

Lemma 17.3 (Strong Convergence of the Cost Function): Under Assumptions 17.1 
{P = 4) and 17.2 the cost function νΝ(θ, z) converges uniformly w.p. 1 to its expected value 
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νΝψ) in the compact set Pr . The uniform mean square convergence rate in Pr is 

Proof See Appendix 17.A. D 

Lemma 17.3 does not guarantee that the limit cost function V*(0) = lim VN{6) ex-
JV->oo 

ists. Because VN{0) depends on WN(0) and z, the existence of V*(0) imposes some condi-
tions on WN{6) and z that should be verified for each particular choice of the weighting 
ΨΝ(Θ) and for every experiment (strategy of adding measurements to z). Therefore, we 
make the following assumption. 

Assumption 17.4 (Constraint on the Experiment): The expected value of the cost 
function VN{6) converges uniformly to the limit cost function ν*(θ) in the compact set P r . 

17.2.2 Strong Convergence of the Minimizer 

Assumption 17.5 (Persistence of Excitation): There exists an N0 such that for any 
N>N0, oo included, the expected value of the cost function VN{9) has a unique global min-
imum #(z0), which is an interior point of Pr . 

Theorem 17.6 (Strong Convergence of the Minimizer): Under Assumptions 17.1 
(P = 4), 17.2, and 17.5, the minimizer(s) θ(ζ) converge(s) strongly to #(z0): 
a.s.lim(0(z)-0(zo)) - 0. 

N->co 

Proof. See Appendix 17.B. D 

Theorem 17.6 does not guarantee that #(z0) converges to some limit value #*. As-
sumptions 17.4 and 17.7 ensure the existence of this limit value. 

Assumption 17.7 (Persistence of Excitation): The asymptotic cost function V*(0) 
has a unique global minimum θ*, which is an interior point of Pr . 

If VN(0) and/or V+ψ) are not convex, then in the presence of model errors it may hap-
pen that VN(0) and/or V*(0) have more than one global minimum. An example of this is 
given in Kabaila (1983) for the identification of particular parametric noise models (MA pro-
cesses). To handle these cases we restrict the compact set Pr in Assumptions 17.5 and 17.7 
such that VN{6) and/or V*(0) contain a unique global minimum in Pr . 

Theorem 17.8 (Strong Convergence of the Minimizer): Under Assumptions 17.1 
(P = 4), 17.2, 17.4, and 17.7, θ(ζ0) converges to 0* and θ(ζ) converges strongly to Θ*: 
lim 0(zo) = Θ* and a.s.lim θ(ζ) = Θ*. 

N->ao ./V-»oo 

Proof Note that V*(0) is a continuous function in Pr because it is the deterministic 
limit of a uniformly convergent sequence of continuous functions VN{6) in Pr (Theorem 2.1 
of Henrici, 1974). The proof of the two limits then follows the same lines as for Theorem 
17.6. D 

Note that Theorems 17.6 and 17.8 do not require the existence of the derivative(s) of 
the cost function and are valid in the presence of model errors (the true model cannot be rep-
resented by Μ(θ, ζ0, nz)). 
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17.3 STRONG CONSISTENCY 

Consistency can be proved only if the true model belongs to the considered model set. There-
fore, the following assumption is made. 

Assumption 17.9 (True Model Belongs to Model Set): There is a θ0 e Pr such that 
Μ(θ0, ζ0, nz) represents the true model. 

Using the results of Section 17.2, it follows directly that the estimates θ{ζ) are strongly 
consistent if either A = θ0 (weakest assumption) or θ(ζ0) = θ0 for any N>N0 (stronger 
assumption). This imposes some conditions on the expected value of the cost function, which 
can be written as 

VN(0) = I E {z¡WN(e)z0} + I trace(^(0)C„z) (17-8) 

with Cn the covariance matrix of the disturbing noise nz (see Exercise 17.2). The following 
theorems are in order of reduced conditions on VN{6). 

Assumption 17.10 (Consistency Condition on the Cost Function): There exists an 
N0 such that for any N>N0, oo included, E{ZQWN@)Z0} is minimal in the true parameter 
values θ0 e PT and trace(^(^)Cw) isa Θ- independent constant for any 0e P r . 

Theorem 17.11 (Strong Consistency): Under the assumptions of Theorem 17.6 and 
Assumptions 17.9 and 17.10, the estimate θ(ζ) is strongly consistent: a.s.lim θ(ζ) = θ0. 

Proof. It follows directly from Theorem 17.6 and Assumptions 17.9 and 17.10. D 

Assumption 17.12 (Consistency Condition on the Cost Function): There exists an 
N0 such that for any N>N0, oo included, the expected value of the cost function VN{6) is 
minimal in the true parameter values ^0 e P r 

Theorem 17.13 (Strong Consistency): Under the assumptions of Theorem 17.6 and 
Assumptions 17.9 and 17.12, the estimate θ(ζ) is strongly consistent: a.s.lim θ(ζ) = θ0. 

N->oo 

Proof. It follows directly from Theorem 17.6 and Assumptions 17.9 and 17.12. D 

Assumption 17.14 (Consistency Condition on the Cost Function): The asymptotic 
cost function V*(6) is minimal in the true parameter values ^0 G Pr . 

Theorem 17.15 (Strong Consistency): Under the assumptions of Theorem 17.8 and 
Assumptions 17.9 and 17.14, the estimate θ(ζ) is strongly consistent: a.s.lim θ(ζ) = θ0. 

N->cc 

Proof It follows directly from Theorem 17.8 and Assumptions 17.9 and 17.14. D 

Although Assumptions 17.10 and 17.12 are stronger than Assumption 17.14, they are 
satisfied very often in practice. Assumption 17.10 often applies when a nonparametric noise 
model is identified (see, for example, Exercise 17.3 and Chapter 9). 
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CONVERGENCE RATE 

Sections 17.2 and 17.3 study the conditions under which the estimate θ(ζ) converges. This 
section studies how fast the estimate θ(ζ) converges toward its limit value. 

In a first step, the convergence rate of θ(ζ) to θ(ζ0) is analyzed. This is already suffi-
cient for the strongly consistent estimators (0(zo) = θ0) of Theorems 17.11 and 17.13 and 
the strongly converging estimator (0(zo) Φ θ0) of Theorem 17.6. The key idea of the analysis 
consists of applying the mean value theorem (Kaplan, 1993) to the derivative of the cost 
function VN\0,z) at the points θ(ζ) and θ(ζ0) 

νΝ\θ(ζ\ ζ) = νΝ\θ(ζ0), z) + 0{z) - θ(ζ0))
τνΝ"(Τ, z) (17-9) 

where ÍT is a point on the straight line connecting θ(ζ) to θ(ζ0) 

^ = é(z) + (1 - ήθ(ζ0) with t e [0, 1 ] (17-10) 

Taking into account that νΝ\θ(ζ), z) = 0 (θ(ζ) is the minimizer of νΝ(θ, ζ)), an expression 
for θ(ζ) - θ(ζ0) is found (VN"( θ , z) is symmetric) 

θ(ζ)-θ(ζ0) = -VN«-K&,z)VN'T(fc¿9z) (17-11) 

From (17-11) it follows that the convergence rate of θ(ζ) to 0(zo) is determined by the con-
vergence rates of the first- and second-order derivatives of the cost function. Therefore, in 
Section 17.4.1 we will first analyze under which conditions these derivatives converge to 
their expected values. Next, in Section 17.4.2 the convergence rate of the minimizer will be 
established from the convergence rate of the derivatives of the cost function. 

In a second step, the convergence of θ(ζ0) to Θ* is analyzed (see Section 17.4.3). This 
second step is necessary for the strongly consistent estimator of Theorem 17.15 (#* = θ0) 
and the strongly converging estimator of Theorem 17.8 (ft Φ θ0). Following the same lines 
as in the first step, we find 

θ(ζ0)-θ. = -V-TOWA) (17-12) 

with ft a point on the straight line connecting θ(ζ0) to ft 

ft = rt?(z0) + ( l - 0 f t w i t h / e [0,1] (17-13) 

From (17-12), it follows that the convergence rate of θ(ζ0) to ft is determined by the deter-
ministic convergence rates of the first- and second-order derivatives of the expected value of 
the cost function. 
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17.4.1 Convergence of the Derivatives 
of the Cost Function 

The proof of the mean square converge of the derivatives of the cost function follows 
the same lines as in Section 17.2.1. Therefore, suitable assumptions concerning the deriva-
tives of WN{6) w.r.t. Θ should be made. 

Assumption 17.16 (Constraints on First- and Second-Order Derivatives Cost 
Function): The weighting WN{9) has continuous first- and second-order derivatives w.r.t. Θ 
with bounded 1-norm 

dWN(0)\\ ^ 
θθ[η 

Ny n <c2<oo, i,j = 1,2,...,ng 
δθ[ηδθυ] 

for N = 1, 2, ..., oo and for any Θ e Pr . cl9 c2 are N- independent constants. 

Lemma 17.17 (Convergence of the Derivatives of the Cost Function): Under 
Assumptions 17.1 (P = 4) and 17.16, the derivatives of the cost function VN\6,z) and 
VN"(9, z) converge uniformly in mean square to their expected values VN\6) and VN"(6) in 
the compact set Pr . The uniform mean square convergence rate in Pr is Oms(N~l/2): 
VN\0, z) = νΝ\θ) + OmJN~^) and VN"(0, z) = VN«(ff) + OaJN-"*). 

Proof. Similar to Lemma 17.3. D 

Lemma 17.17 does not guarantee that the Hessian (second-order derivative) of the ex-
pected value of the cost function is regular. This is, however, necessary to ensure the exis-
tence of the matrix inverse in (17-11) and (17-12). From (17-10) and the convergence of θ(ζ) 
to θ(ζ0), it follows that Θ converges to θ(ζ0). Hence, it is sufficient to assume that the 
Hessian of the expected value of the cost function is regular at θ(ζ0). This assumption im-
poses some conditions on the data set z, and, therefore, it is also a persistence-of-excitation 
condition that is stronger than Assumption 17.5. 

Assumption 17.18 (Persistence of Excitation): There exists an N0 such that for any 
N>N0, oo included, the Hessian of the expected value of the cost function is regular at the 
unique global minimizer #(z0), which is an interior point of Pr : cxIn < νΝ"(θ(ζ0)) < c2In , 
where 0 < cx < c2 < oo and cl9c2 are N- independent constants. 

17.4.2 Convergence Rate of θ{ζ) to 0(zo) 

Theorem 17.19 (Convergence Rate of θ(ζ) to #(z0)): Under Assumptions 17.1 
(P = 4), 17.2(a), 17.16, and 17.18 the convergence rate in probability of θ(ζ) equals 
Op(N-^): θ(ζ)-θ(ζ0) = Ορ(ΛΗ/2). 

Proof. See Appendix 17.D. D 

Note that Assumption 17.18 is essential for the convergence rate Op(N~l/2). If the 
Hessian ^"(^(z0)) is not of full rank, then the convergence rate will decrease (see Exercise 
17.4). Using the convergence rate of the minimizer θ(ζ) and Assumption 17.20, we can 
strengthen Theorem 17.19. 
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Assumption 17.20 (Constraint on Third-Order Derivative Cost Function): The 
weighting WN{6) has continuous third-order derivatives w.r.t. Θ with bounded 2-norm 

' Vi/ i /-# i ii 

c3<°°, i,j,k = 1,2, ...9ηθ 

δ'ψΝ(θ) 

\\δθ{ί]δθυ]δθ[1ζ]\2 

ϊονΝ= 1,2, ..., οο and for any <9e Pr . 

Theorem 17.21 (Improved Convergence Rate of θ(ζ) to θ(ζ$)): Under 
Assumptions 17.1 (P = 4), 17.2 (a), 17.16, 17.18, and 17.20 the minimizer θ(ζ) can be 
written as 

θ(ζ) = 0(zo)+ <%(*) + **(*) 
δθ(ζ) = -νΝ^-\θ(ζ0))νΝ^φ(Ζοΐζ) 

(17-14) 

where Ε{δθ(ζ)} = 0, δθ(ζ) = Op(N~"2), and be(z) = Ορ(ΛΜ). 

Proof. See Appendix 17.E. D 

17.4.3 Convergence Rate of θ(ζ0) to & 

Under Assumption 17.18, it follows from (17-12) that the convergence rate of θ(ζ0) to 
Θ* is entirely determined by the deterministic convergence rate of VN\6) to V*\6). The lat-
ter depends on the way new data are added to the cost function and should be calculated for 
each particular weighting WN(6) and for every strategy of adding measurements to z. This is 
summarized in the following assumptions. 

Assumption 17.22 (Constraint on the Experiment): The first- and second-order de-
rivatives of the expected value of the cost function, νΝ\θ) and νΝ"ψ), converge uniformly 
to their limit values, V*\6) and V*\0), in the compact set Pr . 

Assumption 17.23 (Convergence Rate VN\0)): The convergence rate of the deriva-
tive of the expected value of the cost function is an 0(N~K) in Pr : VN\6) = 
ν:ψ) + 0(Ν-κ). 

Theorem 17.24 (Convergence Rate θ(ζ0) to #*): Under Assumptions 17.2(a), 17.4, 
17.18, 17.22, and 17.23 the deterministic convergence rate of θ(ζ0) equals 0(N~K): 
θ(ζ0)-θ, = 0(N-K). 

Proof Similar to Theorem 17.19. D 

17.5 ASYMPTOTIC BIAS 

It makes sense to speak about the bias on the estimates θ(ζ) only if a true model exists and if 
the true model belongs to the considered model set. Under Assumptions 17.9 and 17.10 or 
17.12 or 17.14, Theorem 17.21, eventually combined with Theorem 17.24, gives information 
about the systematic errors on the estimates. This leads to the following two corollaries. 
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Corollary 17.25 (Improved Convergence Rate of θ(ζ) to <90): Under the assump-
tions of Theorem 17.21 and Assumptions 17.9 and 17.10 or 17.12, the minimizer 9{z) can be 
written as 

θ(ζ) = θ0 + δθ(ζ) + όθ(ζ) 

δθ(ζ) = -νΝ"-\θ,)νΝ<τφ^ζ) 

where E {<%(*)} = 0, δθ{ζ) = Ορ(Ν~"2), and be(z) = Ορ(ΛΜ). 

Proof. It follows directly from Theorem 17.21 and Assumptions 17.9 and 17.10 or 
17.12. D 

Corollary 17.26 (Improved Convergence Rate of θ{ζ) to θ0 - relaxed condition): 
Under the assumptions of Theorems 17.21 and 17.24 and Assumptions 17.9 and 17.14, the 
minimizer θ(ζ) can be written as 

(17-16) 
θ(ζ) = 0o+%(z) + b9(z) 

δθ(ζ) = -νΝ"-\θ0)νΝ'Τ(θ0,ζ) 

where E {<%(*)} = 0, δθ(ζ) = Op(N~"2), and be(z) = 0?(N~l) + 0{N~K). 

Proof. It follows directly from Theorems 17.21 and 17.24 and Assumptions 17.9 and 
17.14. D 

Comparing Corollary 17.25 with Corollary 17.26 shows that the deterministic conver-
gence rate of θ(ζ0) to θ0 influences only be(z). Because δθ(ζ) is a zero mean random vari-
able, it can be concluded from Corollaries 17.25 and 17.26 that the bQ(z) term is responsible 
for the systematic error on the estimate 9{z) and that, in general (Corollary 17.25, Corollary 
17.26 with K> 1/2), b9(z) tends faster to zero than δθ(ζ) as N increases to infinity. Hence, 
in probability, no systematic errors should be expected when N is sufficiently large. 

Although the previous analysis of the systematic errors is already sufficient for our pur-
poses, we will also, briefly, discuss the bias error on 9{z). It is very tempting to conclude 
from both corollaries that the bias be =E{b0(z)} decreases to zero as an 0(N~l) 
(0(N~l) + 0(N~K)). However, the expected value of θ(ζ), and, hence, of b0(z)9 may, in gen-
eral, not exist. This is due to the fact that convergence in probability does not exclude realiza-
tions of z for which θ{ζ) tends to infinity. Additional assumptions on the measurements z 
are required to ensure the existence of E {θ{ζ)}. For example, for quadratic prediction error 
methods, the eighth-order moments of the disturbing errors should be bounded (see Appen-
dix 9.B of Ljung, 1999). The following pragmatic approach also ensures the existence of 
E{#(z)}. Define the truncated estimator θ(ζ) as 

to, μ»-*Α« (17.17) 
l0 |to-fco)|2>£ 

where L is a(n) (arbitrarily) large number (0 <L < oo) independent of N. Note that this is 
exactly what we do in practice: if the estimate is unacceptably large, then we reject it. 
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Lemma 17.27 (Equivalence between θ(ζ) and θ(ζ))ι Under the assumptions of 
Theorem 17.6 or Theorem 17.8, there exists an N0 such that for any N>N0, θ(ζ) = θ(ζ) 
w.p. 1. Moreover, the results of Theorem 17.21 are still valid. 

Proof. See Appendix 17.F. D 

The estimate θ_(ζ) is uniformly bounded and, hence, its expected value exists. This 
leads to the following theorem. 

Theorem 17.28 (Asymptotic Bias on θ(ζ)): Under the assumptions of Corollary 
17.25 (Corollary 17.26) the asymptotic bias be = E {b0(z)} of 0(z), and its derivative w.r.t. 
<90, δδθ/δθ09 are an 0(N~l) (0(N~l) + 0(N~K)) for all θ0 e Pr . 

Proof See Appendix 17.G. D 

17.6 ASYMPTOTIC NORMALITY 

It makes no sense to estimate parameters if no quality stamp on the result can be given. Oth-
erwise, any random guess is a valuable estimate. For example, the quality stamp can be a re-
gion around the estimated value where the limit (true) value lies within some confidence 
level. Therefore, we would like to know the distribution function of θ(ζ) for finite N. In 
most cases it is impossible to calculate, and we can only make statements about the asymp-
totic distribution function of θ(ζ). 

Theorem 17.29 (Asymptotic Normality of ^Ν(θ(ζ)-Θ(ζ0))): Under the 
assumptions of Theorem 17.21 and Assumption 17.1 (P = oo), Λ/Ν(Θ(Ζ)-Θ(Ζ0)) converges 
in law at the rate 0{N~XI2) to a Gaussian random variable with zero mean and covariance 
matrix Co\(JÑSe(z)) 

C O V ( V A ^ ) ) = VN^O(z0))QN(kzo))V^-\§(z0)) 

QN(0(zo)) = ΝΕ{νΝ<ψ(ζ0Χζ)νΝ\θ(ζ0Χζ)} 

Proof See Appendix 17.1. D 

It follows that the uncertainty on the estimated parameters is small if the eigenvalues of 
the Hessian matrix VN"(0(zo)) are large. Although Theorem 17.29 guarantees neither the 
convergence of Cov(JN0(z)) to Cov(jÑSg(z)) nor the existence of Co\{JÑé{z)), it makes 
it possible to construct uncertainty regions on θ{ζ) with a given confidence level. This is suf-
ficient for our purposes. 

Additional assumptions on the measurements z are required to ensure the existence 
and the convergence of Cov(JÑe(z)) (for example, for quadratic prediction error methods 
the eighth-order moments of the disturbing errors should be bounded: see Appendix 9.B of 
Ljung, 1999). Another way to ensure its existence is to truncate the estimate θ(ζ), see 
(17-17). It makes it possible to strengthen Theorem 17.29 as follows. 

Theorem 17.30 (Asymptotic Covariance Matrix of θ(ζ))ι Under the assumptions 
of Theorem 17.21 and Assumption 17.1 (P = oo), the covariance matrix COY(*JN0(Z)) exists 
and converges to Cov(JÑS0(z)) at the rate 0(N~l/2). 

Proof See Appendix 17.J. D 
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TABLE 17-1 Overview of the Notations Used 

Cost function VN(%z) VN{G) = E{VN(0,z)} V*(0) = lim VN(0) 
N-*oo 

Minimizer Hz) 0(zo) θ* 

Note that Theorems 17.29 and 17.30 are also valid for the strongly consistent estima-
tors of Section 17.3 if in addition Assumption 17.9 and Assumption 17.10 or 17.12 or 17.14 
(consistency conditions) are satisfied. 

17.7 ASYMPTOTIC EFFICIENCY 

Analyzing the (asymptotic) efficiency is possible only if a true model exists and if the proba-
bility density function of the disturbing noise is known and satisfies some regularity condi-
tions (see Theorem 16.18). In the ideal case, the covariance matrix of the estimate θ(ζ) 
should be compared with the generalized Cramér-Rao lower bound (16-84). Because an ex-
plicit expression of the bias and its derivative w.r.t. the model parameters is mostly not avail-
able, the analysis is simplified to comparing the covariance matrix of δθ(ζ) to the unbiased 
Cramér-Rao lower bound (16-87). Although the classical definition of (asymptotic) effi-
ciency applies only to estimators with finite second-order moments, the concept of efficiency 
is often extended to (weakly or strongly) consistent estimators. The (weakly or strongly) con-
sistent estimate θ(ζ) is then said to be asymptotically efficient if 

lim (Cow(JÑ Se(z))-NFr\0o)) = 0 (17-19) 
7V-»oo 

where Cow(jÑS0(z)) is given by (17-18) with θ(ζ0) = θ0, and with Fi(0o) the Fisher infor-
mation matrix of the model parameters. If (17-19) is valid for finite N and be(z) = 0, then 
the estimate is efficient. Note that (17-19) can be valid while Cov(#(z)) may not exist. 

This classical definition of asymptotic efficiency can be applied to the truncated esti-
mator θ_(ζ) (17-17). Because the bias of θ_(ζ) and its derivative w.r.t. θ0 are asymptotically 
zero (Theorem 17.28), we can compare the covariance matrix of θ(ζ) to the unbiased 
Cramér-Rao lower bound (16-87). The asymptotically unbiased estimate θ(ζ) is asymptoti-
cally efficient if 

lim (Cov(*JNe(z))-NFi-l(0o)) = 0 (17-20) 

Note that Theorem 17.30 can be used to verify (17-20). 

17.8 OVERVIEW OF THE ASYMPTOTIC PROPERTIES 

In this section we give an overview of the asymptotic properties of the minimizer θ(ζ) (17-3) 
of a cost function VN{0, z) (17-1) that is quadratic-in-the-measurements. In the analysis of 
the stochastic properties of θ(ζ), it turned out that the expected value of the cost function 
VN(0), its limit value K*(#), and the corresponding minimizers 0(zo) and ft, play an im-

portant role. Therefore, we summarize the notations in Table 17-1. 
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The minimizer θ(ζ) (17-3) of the cost function VN(0,z) (17-1) has the following 
asymptotic (JV->oo) properties: 

7. Stochastic convergence: 9(z) converges strongly to #(z0) (Theorem 17.6). 
2. Stochastic convergence rate: θ(ζ) converges in probability at the rate 0?(N~l/2) to 

θ(ζ0) (Theorem 17.19). 
3. Systematic and stochastic errors: θ(ζ) converges in probability to θ(ζ0) with 

θ(ζ) = 0(zo) + $ ( z ) + *,(*) 

where ¿¿(z) = Op(N~l/2), with E{^(z)} = 0, is the dominating stochastic er-
ror and where be(z) = Ov(N~l) contains the contribution of the systematic errors 
(Theorem 17.21). 

4. Asymptotic normality: JN0(z) - Θ(ζ0)) converges in law at the rate 0(N~X/2) to a 
Gaussian random variable with zero mean and covariance matrix Co\{JÑSe{z)) 

Cov(V^(z)) = VN
n-\e{z^Q^z^)VN--\e{z^ 

(17-22) 
QN0{zQ)) = N Ε{νΝ<τφ(ζ0%ζ)νΝχθ(ζ0)9ζ)} 

(Theorem 17.29). 
5. Deterministic convergence: θ(ζ0) converges to Θ* (Theorem 17.8) at the rate 

0(N~K) (Theorem 17.24). 
If in addition VN(0,z) satisfies the consistency conditions then, 

6. Consistency: θ(ζ) is strongly consistent; in properties 1 to 4 replace θ(ζ0) or 
lim 0(ZO) = ft by θ0 (Theorems 17.11, 17.13, and 17.15). 

7. Asymptotic bias: the asymptotic bias be = E {b0(z)} and its derivative w.r.t. θ0, 
dbe/d0o, of Θ(ζ) are an 0(N~l) or an 0(Ν~ι) + 0(N~K) (Theorem 17.28). 

Properties 1 to 7 make it possible to predict the stochastic behavior (uncertainty, bias, ...) of 
the estimate θ(ζ) if, for example, nine times more data are collected. Property 1 ensures that 
θ{ζ) will be closer to the minimizer θ(ζ0) of the expected value of the cost function. Prop-
erty 2 tells us that 9{z) will be (in probability) three times closer to #(z0). From property 3 it 
follows that the systematic and stochastic errors in the residual θ(ζ) - θ(ζ0) decrease with a 
factor of 9 and 3, respectively. Finally, property 4 ensures that the distribution function of 
θ(ζ) is three times closer to a normal distribution. Similar results are obtained when no 
model errors are present θ(ζ0) = θ0. 

17.9 EXERCISES 

17.1. Prove the strong convergence of the nonlinear least squares cost function 
YN

k=x{y(k)-mu0{k)))2/(Noi) with y(k) = y0(k) +ny(k), ny(k) mixing of 
order 4, and aj- = \ar(ny(k)). Under which condition(s) is the convergence uniform 
w.r.t. Θ (hint: follow the lines of Lemma 17.3)? 

17.2. Show that the expected value of the cost function is given by (17-8) (hint: use 
xTAx = trace^xjc7) for any x e UN and A e UNxN). 
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17.3. Show that the term trace(WN(@)Cn ) in the nonlinear least squares cost function of Ex-
ercise 17.1 is Θ independent. 

17.4. Let θ{ζ) eIR be the minimizer of VN(0,z) and Θ0 the unique global minimizer 
of VN{6) for any N, oo included. Assume that the cost function has continuous 
third-order derivative w.r.t. Θ for all ΘΕΡΤ with \\d3WN(0)/d93\\l<c<oo. As-
sume, furthermore, that νΝ"(θ0) = 0, ^ΜΙ(0Ο)*Ο, and that Assumptions 17.1 
(P = 4), 17.2, and 17.16 are satisfied. Show that θ(ζ) = θ0 + Ορ(Ν~ι/4) (hint: fol-
low the lines of the proof of Theorem 17.19 using VN\6(z), z) = 
νΝ\θ0, z) + νΝ\θ& ζ){θ{ζ) - θ0) + 0.5 VN'"($, ζ)φ(ζ) - θ0)

2). 

17.5. Prove Theorem 17.24 (hint: follow the lines of the proof of Theorem 17.19). 
17.6. Consider the nonlinear least square estimator of Exercise 17.1 and assume that ny(k) 

is independent over k. Assume, furthermore, that the true model is included in the 
model set (y0(k) =f(00, u0(k))). Show that the covariance matrix of δθ(ζ) is given 
by (L?=i<>k2fo¿Tfo¿rl, with/o,' = dMu0(k))/d^^ (hint: use(17-18)). 

17.7. Show the weak convergence and the weak consistency of the estimates θ(ζ) (conver-
gence in prob.) when Assumption 17.2(b) is not fulfilled (hint: use the mean square 
convergence of the cost function and interrelation 5 of Section 16.7). 

17.10 APPENDIXES 

Appendix 17.A Proof of the Strong Convergence 
of the Cost Function (Lemma 17.3) 

The cost function (17-1) can be written as 

νΝ(θ, z)=X- zTyN = 1 ΣΓ= I%(0 O7"23) 

with yN = WN(6)z and xN{t) = z[t]yN[t]. Because WN(0) has a bounded 1-norm for 
N = 1, 2, ..., oo (Assumption 17.2) and z ^ is mixing over t of order 4, N = 1, 2, ..., oo 
(Assumption 17.1), the conditions of Corollary 16.7 are satisfied with P = 4. Hence, yN[t^ 
is mixing over t of order 4, N = 1, 2, ..., oo, so that xN(t) = z^yN^ is mixing over / of 
order 2 , N = 1, 2, ..., oo (Lemma 16.9). This proves that the law of large numbers for mix-
ing sequences and the corresponding convergence rate is valid for (17-23) (see Section 16.9, 
version 3 of (16-69) and (16-72)) 

¥Ν(Θ, z) = VN(0) + OmJN~^) (17-24) 

If in addition it can be shown that v a r ( ^ = ^χή-χ^ή) = 0(r~s), r>s, then also the 
strong law of large numbers for mixing sequences applies to (17-23) (see Section 16.9, ver-
sion 3 of (16-69)). Because ]T* = lxr(t)-xs(t) = Ax + Δ2 with 

and var(Aj + Δ2) < 2var(Aj) + 2var(A2) (see Exercise 16.1), it follows that it is sufficient to 
show that the variance of Ax and Δ2 are both an 0(r - s). 
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1. Study of Ax 

Rewriting Δ, as Δ! = Σ / = 5 + ι ζ [ / ]^(0, where ys(l) = Σ ί = iz[/]^r [/,/](#) i s 

mixing over / of order 4 (Corollary 16.7), and z^ys(l) is mixing over / of order 
2 (Lemma 16.9), gives 

v a r ^ ) = cumiA^AO = Σ / ^ ^ , + ι ^ ^ / , ^ ι Χ ^ Λ ^ ) ) * 0(r-s) 

where the last inequality is due to property (16-36) of the mixing condition. 
2. Study of A2 

I f |^r[i:5,i:5](^)-^(^)|f = 0((r-s)/r), then there exists a matrix Τ{Θ) such 
that 

^[ i : , , ! : , ] ( # ) - W = W<J(r-s)/r 

with \\Τ(Θ)\\ j < c < oo for any r > s, infinity included. It facilitates rewriting A2 as 

A2 = J(r-s)/r Σ ' = ^[/]Λ(0 

where ys(t) = Σ /= i ^[/,/](^)z[/] *s mixing of order 4 (Corollary 16.7), and 
z[t]);

s(
t) *s fixing of order 2 (Lemma 16.9). Hence, we find for any r > s 

var(A2) = cum(A2,A2) = ? L z £ ] T ^ = j c u m ^ ^ ^ z ^ ^ ) ) < O( r - s ) 

where the last inequality is due to property (16-36) of the mixing condition. 

We conclude that the cost function (17-23) converges w.p. 1 to its expected value, making 
(17-6) valid. It remains to be proved that the mean square convergence (17-24) and the al-
most sure convergence (17-6) are uniform in Pr . Because VN(0, z) is continuous in the com-
pact set Pr (Assumption 17.2), it is uniformly bounded in Pr . Hence, the maximum over Θ 
can be taken, where necessary, in the inequalities above and in those of the proof of the strong 
law of large numbers for mixing sequences (see Appendix 16.G). D 

Appendix 17.B Proof of the Strong Convergence 
of the Minimizer (Theorem 17.6) 

The proof follows the lines of the proof of Theorem 2 in Soderstróm (1974). Because 
the assumptions of Lemma 17.3 are satisfied, we can consider only those realizations for 
which VN{6,z) converges to VN{6). These realizations have probability measure 1. Choose 
an arbitrary ε> 0 and construct the set Ρε = {θ\\θ-θ(ζ0)\2 < £} c: Pr . We will show that 
the global minimizer(s) of VN(0,z) is (are) located in Ρε for N sufficiently large. This 
proves the theorem because ε can be made arbitrarily small. 

Because VN(0) is a continuous function in Pr (Assumption 17.2), we can choose a 
S>0 such that 
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min νΝφ)>νΝφ(ζ0))+δ (17-25) 
r ε 

As VN(0,z) converges uniformly to VN{6) in Pr , there exists an N0 such that for any 
N>N0 and any 0 e Pr 

-δ/3 < νΝ(θ, ζ) - VN(0) < δ/3 (17-26) 

Using the upper inequality in (17-26), evaluated in #(z0), we get 

min VN(0, z) < VN(§(z0l z) < VN0(zo)) + δ/3 (17-27) 
Θ<= PT 

Using the lower inequality in (17-26) and result (17-25), we find 

min VN(99z)> min νΝ(θ)-δ/3>νΝ(θ(ζ0)) + 2δ/3 (17-28) 
0 e P \ P 0 e P \ P 

r ε r ε 

From (17-27) and (17-28) it follows that 

min VN(9, z) < min ¥Ν(Θ, ζ) 
r r ε 

which shows that the minimizer(s) of VN{6, z) is (are) located in Ρε. D 

Appendix 17.C Lemmas 

In this appendix we study the asymptotic (N—> oo) properties of the function fN(09 z) 
where Θ G Μ"Θ is a stochastic vector of finite dimension (ηθ is an TV-independent integer) 
and z GUN are the noisy observations. The convergence, the convergence rate, the asymp-
totic bias, and the asymptotic distribution function are analyzed. For the bias analysis, the 
concept of the truncated estimate of Section 17.5 is used. Although all the theorems are 
proved assuming convergence w.p. 1, they are also valid for convergence in probability (see 
Section 16.7, interrelation 5). 

Lemma 17.31 (Strong or Weak Convergence): Let fN(6,z) e R be a continuous 
function of Θ in P r , a compact subset of Un% and z G MN a stochastic variable. If 

1. fN(0, z) converges uniformly w.p. 1 (in prob.) to /(#) in Pr , 
2. Θ converges w.p. 1 (in prob.) to #*, an interior point of P r , 

then fN(0, z) converges w.p. 1 (in prob.) to / (A) . 

Proof (Strong Convergence). Consider the stochastic realizations of z for which 
/Ν(θ,ζ) converges uniformly to f{6) in Pr and Θ converges to Θ+. Due to the almost sure 
convergence, these realizations have probability measure one. Choose an arbitrary ε> 0 and 
construct the set P^ = {# | | |0 - 0*||2 < ε) c Pr . Because for any of the considered 
realizations z, /Ν(θ,ζ) converges uniformly to /(#) in Pr and Θ converges to A, there 
exists, for any δ> 0, an N0 independent of Θ such that for any N>N0 
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ΘΕΡ€ and \fN(0, z) -/{θ)\ < δ/2 for any Θ e Pr (17-29) 

The function /(#) is continuous in Pr because it is the limit of a uniformly convergent se-
quence of continuous functions (see Kaplan, 1993, Theorem 31, Remark 2). Hence, there ex-
ists an ε such that 

|/(0) - / (A) | < δ/2 for any ΘΕΡ£ (17-30) 

Combining (17-29) and (17-30) shows that for any δ> 0 there exist an ε and an N0 such 
that for any N>N0 

\fN0, z) -f(0.)\ < \fN0, z) -f0)\ + \/{θ) -/(0,)| < δ (17-31) 

Making δ arbitrarily small and noting that the considered realizations z occur w.p. 1 reveals 
directly that a.s.lim (fN(9, z) - / (&)) = 0 or fN{9, z) = / ( & ) + o„.(JV°). D 

JV-»oo 

Corollary 17.32 (Strong or Weak Convergence): Let z e UN be a stochastic vari-
able. Let /#(#, ^, / / , z ) e R be a jointly continuous function of 0e P r , y/e S r , and 
77 e Er. P r , S r , and Er are compact subsets of, respectively, R"*, R*V, and Rw*. If 

1. fN{0, ψ, η,ζ) converges uniformly w.p. 1 (inprob.)to/(0, ψ, η) in Pr , S r , and 

2. 0, ^ converge w.p. 1 (inprob.)to A, ^*, interior points of Pr , S r , 
then /Ν{θ,ψ, η,ζ) converges uniformly w.p. 1 (in prob.) to / (A, ψ*, ή) in Er. 

Lemma 17.33 (Strong or Weak Convergence): Let fN{9,z) e R be a continuous 
function of Θ in Pr , a compact subset of Rw<?, and z e R^ a stochastic variable. If 

1. f„(0,z) = 0,,(iV*) (Op(N
k)) uniformly in Pr , 

2. Θ converges w.p. 1 (in prob.) to A, an interior point of P r , 
then/^Az) = O^im (Op(N

k)). 

Proof. Similar to that of Lemma 17.31. D 

Lemma 17.34 (Convergence Rate): Let z eUN be a stochastic variable. Let 
/Ν(θ9ζ) e R and fN\0,z), its derivative w.r.t. Θ, be continuous functions of Θ in P r , a 
compact subset of Rn<s\ If 

1. fN(0,z) converges uniformly w.p. 1 (in prob.) to /(Θ) in Pr at the rate 
Op(N-"2), 

2. \\fN'(0,z)\\2<OaJN°) (Op(N°)) uniformly in Pr , 
3. Θ converges w.p. 1 (in prob.) to A at the rate Op(N~l/2), with A an interior 

point of Pr , 

then fN0,z) converges w.p. 1 (in prob.) to / (A) at the rate Op(N~l/2). 
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Proof (w.p. 1). Note that the conditions of Lemma 17.31 are satisfied so that only the 
convergence rate must be proved. Applying the mean value theorem (Kaplan, 1993) to 
/Ν(θ9ζ) at the points θ9 A gives 

fN09 z) = / „ ( A, z) +fN'ff, ζ)φ - A) (17-32) 

/ — S A , \ A 

with Θ a point on the straight line connecting Θ to A (θ = ίθ + (1 -1) A with 
/ G [0, 1]). # converges w.p. 1 to A because 

a.s.lim (θ-θ*) = lim / a.s.lim ( 0 - A) = 0 (17-33) 

Consider the realizations z for which Θ converges to A and \\/Ν\θ,ζ)\\2<0(Ν°) 
uniformly in Pr . For these realizations, there is an N0 such that for any Ν>Νθ9 Θ e P r 

and, hence, | / V ( ^ >z)||2 - 0(N°). Because these realizations occur w.p. 1, we have 
\/Ν'(θ,z)\2 < Oas(N°) and, hence, \/Ν'(θ,z)\2 < Op(N°) (see Section 16.7). Putting this 
result in (17-32), taking into account that fN{9*,z) = / ( A ) + Op(N~U2) (condition 1), 
Θ = A + Op(N~l/2) (condition 3), and that ηθ is an TV-independent integer proves the 
lemma. D 

Corollary 17.35 (Convergence Rate): Let z e RN be a stochastic variable. Let 
/Ν(θ, ψ9 η,ζ) eU and its derivatives w.r.t. Θ and ψ be jointly continuous functions of 
# e Pr , y/e S r , and η e Er, Pr , § r , and Er are compact subsets of, respectively, Μ"θ, 
RM<% and R^. If 

1. fN{99 ψ9 η,ζ) converges uniformly w.p. 1 (in prob.) to f{69 ψ9 ή) in Pr , S r , and 
. Er attherateOp(7V-1/2), 

2. ψΜΘ, ψ, η9 ζ)/θθ\\2 < O^m (Op(tf°)), ΡΜΘ, ψ, η9 ζ)/3ψ\\2 < OaJN°) 
(Op(N°)) uniformly in Pr , § r , and Er, 

3. θ9 ψ converge w.p. 1 (in prob.) to A, ψ* at the rate Op(N~l/2)9 where A, ψ* 
are interior points of Pr , § r , 

then fN(69 ψ, η,ζ) converges uniformly w.p. 1 (in prob.) to / (A, ψ*9 ή) in Er at the rate 
Op(N~"2). 

Lemma 17.36 (Asymptotic Bias): Let z eUN be a stochastic variable. Let 
/Ν(θ9 z) e R and f$\09 z)9 k = 1, 2, its derivatives w.r.t. Θ, be continuous functions of Θ 
in P r , a compact subset of Rn*. If 

1. /Ν{θ9ζ)9 fN\09z) converge uniformly w.p. 1 (in prob.) to E {fN(0, z)} = fN(0)9 

Ε{/Ν'(θ,ζ)} =/Ν\θ) in Pr at the rate Op{N~"2)9 

2. | | / / ( 0 , z)\\2 < Oa<s<(7V°) (Op(N°)) uniformly in Pr , 
3. Θ converges w.p. 1 (in prob.) to θ0 at the rate Op(N~l/2)9 with θ0 an interior 

point of Pr , 
4. The bias of the truncated estimate Θ is an 0(N~l): E {0} = θ0 + 0(N~l)9 

then fN(09 z) converges w.p. 1 (in prob.) to /(#0) at the rate Op(N~l/2) and the bias of the 
truncated estimate JN09 Z) is an 0(N~l): E {jfa(b, z)} = fN(0o) + 0(N~l). 
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Proof (w.p. 1). The conditions of Lemma 17.34 are fulfilled for fN0, z) so that only 
the claim about the asymptotic bias must be proved. Applying the mean value theorem to 
fN(09z) at the points θ9 θ0 gives 

fN09 z) = fN(0O9 z) +/„■(?, ζ)φ - θ0) (17-34) 

where Θ = t6 + (1 - ί)θ^ with / £ [0, 1]. Note that fN\0 , z) satisfies the conditions of 
Lemma 17.34 because Θ converges w.p. 1 to θ0 at the rate Op(N~l/2) (proof: similar to 
(17-33)). Referring to the equivalence between the truncated and the original estimate 
(Lemma 17.27), there is an N0 such that for any N>N0 w.p. 1, Θ = θ9 /Ν(Θ9 Z) = fN09 z), 
and ΙΝ{Θ , Z) = fN\ θ, z). Assume now that N> N0 and define ZL as the set of realizations 
z for which Θ converges to #0, fN(0o,z) ^converges to /Ν(θ0)9 fN\6 ,z) converges to 
/ Λ ) > # = £ M £ * ) = / ^ ( ¿ , z ) , a n d M ? , z ) = / * ( ? , * ) · The set Z¿ has probability 
measure one. For z e ZL, (17-34) can be written as 

Λ(0, z) = fN(0Q9 z) +/Ν(Θ, Ζ)(Θ - θ0) (17-35) 

Using the convergence rates of Θ (condition 3) and /Ν(Θ , Z) (Lemma 17.34), (17-35) be-
comes 

Μθ, z) = fN(0o, z) +/Ν\Θ0)(Θ - θ0) + 0ρ(ΛΜ) (17-36) 

where O (N~l) is a uniformly bounded random variable. Calculating the expected value of 
(17-36) over all realizations z e Zh9 taking into account that E {Op(N~l)\z e ZL } = 0(N~l) 
(see Section 16.8, (16-63)), and that by definition of the truncated estimate, 
E{M0,z)\zeZL} = Ε{Μθ,ζ)}9 gives 

Ε{Μθ,ζ)} = E{/^0,z) |zeZL} +0(^-0 

Because Prob(z e ZL) = 0 for N> N0 and E {fN(0o, z)} exists and is finite, we have 

E { / ^ 0 , Z ) | Z E Z L } = Ε{/Ν(θ09ζ)} =/Ν(θ0) 

which concludes the proof. □ 

Corollary 17.37 (Asymptotic Bias): Let z eUN be a stochastic variable. Let 
/Ν(θ9 ψ9 η, z) G R, and its first- and second-order derivatives w.r.t. Θ and ψ9 be jointly con-
tinuous functions of ΘΕ Pr , y/e § r , and η e Er. P r , S r , and Er are compact subsets of, 
respectively, R"*, Rw% and R V If 

1. /Ν(θ9ψ9η9ζ)9 δ/Ν(θ,ψ,η,ζ)/θθ, d/Ν(θ9 ψ9 η9 ζ)/d ψ converge uniformly 
w.p. 1 (in prob.) to their expected values /Ν(θ, ψ9 ή)9 δ/Ν(θ9 ψ9 η)/θθ9 

dfN(0, Ψ, ή)/δψ in P r , § r , and Er at the rate Op(N~V2)9 
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2. 
δθ2 ¡2 I δψ2 \\2 

uniformly in Pr , §>r, and Er, 

3. θ, ψ converge w.p. 1 (inprob.)to θθ9 ψ0 at the rate Op(N~l/2)9 where θθ9 y/0 

are interior points of Pr , S r , 
4. The bias of the truncated estimates θ, ψ is an 0(N~l)9 

then fN(09 ψ, 77, z) converges uniformly w.p. 1 (in prob.) to fN(00, ψ0, ή) in Er at the rate 
Op(N~l/2), and the bias of the truncated estimate /Ν(Θ, ψ, η, z) is an 0(N~l). 

Lemma 17.38 (Asymptotic Distribution Function): Let z e R ^ be a stochastic 
variable. Let fN(0,z) e R, and fj^\0,z)9 k = l, 2, its derivatives w.r.t. θ9 be continuous 
functions of Θ in Pr , a compact subset of Mn*. If 

1. fN(0,z) converges uniformly w.p. 1 (in prob.) to f{6) in Pr at the rate O (N~U2) 
and is asymptotically normally distributed at the rate 0{N~XI2)9 

2. fN\09z) converges uniformly w.p. 1 (in prob.) to / '(#) in Pr at the rate 
Op(N-"*), 

3. \\/Ν\θ9ζ)\\2<0^(Ν») (Op(tf°)) uniformly in Pr , 
4. Θ converges w.p. 1 (in prob.) to A at the rate Op(N~l/2)9 with A an interior 

point of Pr , and is asymptotically normally distributed at the rate 0(N~l/2)9 

then fN(0,z) converges w.p. 1 (in prob.) to/(A,) at the rate Op(N~l/2) and is asymptotically 
normally distributed at the rate 0(N~l/2). Moreover, we have 

fN(0, z) = fN(A, z) +f(&W - A) + ¿W"1) 

Proof (w.p. 1). Condition 2 implies that \fN\09 z)\\2< Oas(N°) and, hence, all the as-
sumptions of Lemma 17.34 are fulfilled. Therefore, only the asymptotic normality must be 
proved. Applying the mean value theorem to fN(99z) at the points θ, A gives 

fN0, z) = fN{6., z) +fN\?, ζ){θ - A) (17-37) 

where θ = ίθ + (\ -ί)θ* with / e [0, 1], Because Θ converges w.p. 1 to A at the same 
rate as Θ (proof: see (17-33)) it follows from conditions 2 and 3 that 
fN'(e9z) =/ ' ( f t ) + Op(N~l/2) (Lemma 17.34). Putting this result in (17-37) taking into ac-
count conditions 1 0W&,z) - / (A) = Op(N~l/2)) and 4 (Θ- A = Op(N~l/2)) gives 

fN(0, z) - / ( A ) = SN(z) + Op(AM) 

δΝ{ζ) = /„( A, z) - / ( A ) +/'(ft)(<? " A) 

where δΝ(ζ) = Op(N~l/2) is asymptotically normally distributed at the rate 0(N~l/2) (a fi-
nite linear combination of asymptotically normally distributed random variables is asymptot-
ically normally distributed and the convergence rate is preserved). Multiplying (17-38) by 
4Ñ and taking the limit gives 
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plim JN{fN0, z) -/(θ*)-δΝ(ζ)) = 0 (17-39) 

Because convergence in probability implies convergence in law (see Section 16.7, 
interrelation 3), it follows from (17-39) that *JÑ(fN@, z) - / ( f t ) ) is asymptotically normally 
distributed at the rate 0(Nl / 2) . D 

Corollary 17.39 (Asymptotic Distribution Function): Let z e RN be a stochastic 
variable. Let fN{69 ψ9 η9ζ) e U9 and its first- and second-order derivatives w.r.t. Θ and ψ, 
be jointly continuous functions of 0 e P r , ^ G § P and η e Er. P r , S r , and Er are com-
pact subsets of, respectively, R"', R'V, and R V If 

1. fN{69 ψ9 η9ζ) converges uniformly w.p. 1 (in prob.) to /(#, ψ9 ή) in Pr , S r , and 
Er at the rate Op(N~l/2) and is asymptotically normally distributed at the rate 
0(N~l/2), 

2. δ/Ν(θ9 ψ9 η9ζ)/δθ9 δ/Ν(θ9 ψ9 η9ζ)/δψ converge uniformly w.p. 1 (in prob.) to 
δ/(θ9 ψ9 η)/δθ, δ/(θ9 ψ9 ή)/δψ in Pr , Sr , and Er at the rate Op(N~m)9 

3. | a W ' ^ M | ^ OJJf") (Op(tf°)), p 2 / ^ ^ ^ z ) | ^ Oas(N°) (Op(tf°)) 
II δθ2 \\2 " || δψ2 ¡2 
uniformly in Pr , Sr , and Er, 

4. θ9 ψ converge w.p. 1 (in prob.) to ft, y/* at the rate Op(N~l/2)9 where ft, ψ* 
are interior points of Pr , Sr , and are asymptotically normally distributed at the 
rate 0(N~l/2)9 

then fN09 ψ9 η,ζ) converges uniformly w.p. 1 (in prob.) to /(f t , ψ*9 ή) in Er at the rate 
Op(N~l/2) and is asymptotically normally distributed at the rate 0(N~l/2). Moreover, we 
have 

/Ν(θ9 ψ9 η9 ζ) = fN(0*9 ψ.9 η9 ζ) + — {θ - ft) + ^ - (Ψ - ψ·) + Ορ(Ν~ι) 

Appendix 17.D Proof of the Convergence Rate 
of the Minimizer (Theorem 17.19) 

The proof consists of the following three basic steps: first, the convergence rate of 
νΝ\θ(ζ0)9 z) is studied; next, the convergence rate of VN"{6 , z); and finally, both results are 
combined to establish the convergence rate of θ(ζ) to θ(ζ0). 

1. Convergence rate of VNX§(z0)9 z) 

Under Assumptions 17.1 (P = 4) and 17.16, VN\09z) and VN"(09z) converge 
uniformly in mean square at the rate Oms(N~l/2) to their expected values VN\6) 
and VN"(6)9 respectively (Lemma 17.17) 

VN\6, z) = νΝ\θ) + 0m,.(AM /*) (17-40) 

Because θ(ζ0) is deterministic we may evaluate (17-40) at θ = θ(ζ0). Taking 
into account that #(z0) minimizes VN{6)9 this gives 
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νΝ\Θ{ζ,\ζ) = VN\0{z,)) + Om^N-^) = Om,(N~^) (17-41) 

2. Convergence rate of VN"( θ , z) 

Here, Θ is a random variable (see (17-10)) so that the reasoning applied to 
VNX<9Jz0), z) does not hold for VN"(6 , z). Indeed, the convergence rate of 
νΝ"(θ ,z) depends on the stochastic properties of Θ . Under Assumptions 17.1 
(P = 4), 17.2(a), and 17.18, θ(ζ) converges in prob. to 0(zo) (Theorem 17.6 
without Assumption 17.2(b) shows convergence in prob., see Exercise 17.7). 
From (17-10) it follows also that Θ converges in probability to θ(ζ0) 

a.s . l im(^-£(z0)) = a.s.limi a.s.lim (0(z)-0(zo)) = 0 (17-42) 

Hence, VN"(0 ,z) converges in probability to VN"(6(z¿)) (see Appendix 17.C, 
Lemma 17.31) 

νΝ"(θ, z) = VN"0(zo)) + op(N°) (17-43) 

3. Convergence rate of θ(ζ) to θ(ζ0) 

Because convergence in mean square and almost sure convergence imply conver-
gence in probability (see Section 16.7, interrelations 1 and 2) and a continuous 
function and the limit in probability may be interchanged (see Section 16.8, prop-
erty 3), it follows from (17-11), (17-41), and (17-43) that 

θ(ζ)-θ(ζ0) = (νΝ\θ(ζ0)) + ορ(Ν°)ΤιΟρ(Ν-"ΐ) 

= (νΝ"-\θ(ζ0)) + ον(Ν^)Ορ(Ν-^ 

Under Assumption 17.18, VN"-l(0(zo)) is an 0(N°), so that 0(z)-0(zo) = 

Appendix 17.E Proof of the Improved Convergence 
Rate of the Minimizer (Theorem 17.21) 

Using Assumption 17.20 and the result of Theorem 17.19, the convergence rate of 
VN"(G , z) will be established. Combined with the convergence rate of VN\<9(z0), z) (see Ap-

pendix 17.D), this will lead to a refined expression for θ(ζ) - θ(ζ0). 
To establish the convergence rate of VN"(0 , z ) , we verify that all the conditions of 

Lemma 17.34 (see Appendix 17.C) are satisfied. Consistent with the assumptions of Lemma 
17.17, VN"{6,z) converges uniformly in mean square to VN"(6) in Pr at the rate 
Oms(N~xl2), which implies Op(N~U2) (condition 1, Lemma 17.34). From (17-10) it follows 
that θ -θ(ζ0) = ί(θ(ζ)-θ(ζ0)) with t e [0, 1] . Hence, Θ -#(z0) converges w^p. 1 to zero 
at the rate of θ(ζ)-θ(ζ0), which is given by Theorem 17.19, and, hence, θ -θ(ζ0) = 
Op(N~l/2) (condition 3, Lemma 17.34). We will now show under Assumptions 17.1 
(P = 4), 17.18, and 17.20 that VN"\09z) is an Oas(N°) uniformly in Pr (condition 2, 
Lemma 17.34). The absolute value of the third-order derivative of the cost function VN{0, z) 
is bounded by 
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for ij,k = 1 ,2 , . . . , ^ (17-44) 
2 

Assumption 17.20 guarantees that the second factor in the right-hand side of (17-44) is an 
0(N°) uniformly in Pr . Under Assumption 17.1 (P = 4), IHIf/N obeys the strong law of 
large numbers for mixing sequences (see Section 16.9, version 3 of (16-69)). Under Assump-
tions 17.1 (P = 2) the expected value of \\z\\¡/N is an 0(N°) so that \\z\\¡/N = Oas(A^°). 
This shows that the right-hand side of (17-44) is an Oas(JV°). The three conditions of 
Lemma 17.34 (see Appendix 17.C) are satisfied and, hence, 

νΝ"(θ,ζ)= VN"(fc¿) + Op(N-"*) 

Following the same lines as in the third step in the proof of Theorem 17.19 (see Appen-
dix 17.D) we conclude from (17-11), (17-41), and that 

θ(ζ)-θ(ζϋ) = -(VN"-K§(z0)) + Op(N-^))VN'r(é(z0),z) = δθ(ζ) + Ορ(Ν-<) 

with δθ(ζ) = -νΝ"-\θ(ζ0))νΝ'τφ(ζ0),ζ) = Of(N-"*). As Έ{νΝ\θ,ζ)} = VN\0) in Pr 
and VN\<9(z0)) = 0, we have that Ε{δθ(ζ)} = 0, which concludes the proof. D 

Appendix 17.F Equivalence between the Truncated 
and the Original Minimizer 
(Lemma 17.27) 

Define ZL as the set of realizations z for which the estimate 9{z) lies within the hy-
perball with center θ(ζ0) and radius L 

ZL = {z\\\á(z)-é(z0)\\2<L} 

Under the assumptions of Theorem 17.6 or Theorem 17.8, θ(ζ) converges strongly to θ(ζ0): 
there exists an N0 such that for any N>N0, \θ(ζ) - θ(ζ0)\ 2<L w.p. 1. Hence, for N>N0, 
the realizations z e ZL happen with probability measure 1. From the definition of θ(ζ) 
(17-17) we conclude that θ(ζ) = θ(ζ) w.p. 1 for any N>N0. 

To prove that the results of Corollaries 17.25 and 17.26 are valid, we still need to show 
that the expected value of δθ(ζ) over the set ZL is zero. Using E {δθ{ζ)} = 0, we get 

E{<%(Z) |ZEZ¿} =-E{%(z)\zeZL} = 0 

where the last equality is due to the fact that Prob(z g ZL) = 0 for N> N0 and that the 
second-order moments of z are uniformly bounded. D 

Appendix 17.G Proof of the Asymptotic Bias on the 
Truncated Minimizer (Theorem 17.28) 

Define ZL as in the proof of Lemma 17.27 with 0(zo) = θ0 (see Appendix 17.F). Un-
der the assumptions of Corollary 17.25 (Corollary 17.26) and (17-17), it follows for any 
z eZL, that θ(ζ) = θ(ζ) = θ0 + δθ(ζ) + be(z) and that be(z) is uniformly bounded. The in-
terchangeability property of the expected value and the limit in probability for uniformly 

&νΝ{θ,ζ) 

δθιηθθυ]δθιΙζ] 

< Mi 
~ N 

d'WN{0) 1 
\dandandem\ 
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bounded random variables (see Section 16.8, (16-63)) guarantees that the expected value of 
be(z) taken over Z£, l{b0(z)\z G ZL}, is an 0(N~l) (0(Ν~ι) + 0(N~K)). From Lemma 
17.27 it follows that there exists an N0 such that for any N>NQ, Ε{δθ(ζ)\ζ e ZL} = 0. 
This shows that E{Z>0(z)|z e ZL} is the bias error of θ_(ζ) for N>N0. 

If we can show that the derivative of the bias w.r.t. θ0 is continuous for all θ0 e P r , 
then it is also uniformly bounded in the compact set Pr , and, hence, it behaves as an 0(N~l) 
(0(N~l) + 0(N~K)). Therefore, it is sufficient to show that the derivative of θ(ζ) w.r.t. θ0 is 
continuous in Pr . Consider (17-9) with 0(z0) replaced by θ0, giving 

νΝ\θ(ζ), z) = νΝ\θ0, z) + (θ(ζ) - θ0)
τνΝ"(θ, ζ) (17-45) 

where θ = ίθ{ζ) + (1 - ί )θ0 with r e [0,1]. Because VN(0,z) has continuous first-, 
second-, and third-order derivatives for all Θ e Pr (Assumptions 17.16 and 17.20), it follows 
from the implicit function theorem (Kaplan, 1993) that Θ is a continuous function of θ{ζ) 
and θ0 with continuous partial derivatives. Putting Θ = g(0(z), Θ0) in (17-45), taking into 
account that νΝ\θ(ζ\ζ) = 0, gives 

0 = VN\0O, z) + 0(z) - eo)
TVN"(g(0(z), Θ0), ζ) (17-46) 

(17-46) defines θ(ζ) implicitly as a function of θ0. Applying, again, the implicit function 
theorem shows that θθ(ζ)/δθ is continuous in Pr . By definition of θ_(ζ) (17-17), this is also 
true for Θθ(ζ)/3Θ. D 

Appendix 17.H Cumulants of the Partial Sum 
of a Mixing Sequence 

Let S(N) = Σ , = 1%(0 with xN(t) mixing over t of order P forN^ 1,2, ...,<x>. 
The A:th order cumulant of S(N) is an 0(N), k = 1,2, . . . ,P . 

Proof. The kth order cumulant Ck of S(N) is given by 

Ck = Σ * ,2l..., h = i cum(%('i)> %('2)> ···? %(^)) (17-47) 

Applying (16-36) to (17-47) gives \Ck\ = 0(N). D 

Appendix 17.I Proof of the Asymptotic Distribution 
of the Minimizer (Theorem 17.29) 

From Theorem 17.21, it follows that 4Ν{θ(ζ) - θ(ζΔ) converges in probability and, 
hence, also in law (see Section 16.7, interrelation 3) to JNSQ{Z). According to (17-14) the 
stochastic part of δθ(ζ) is given by νΝ'τ(θ(ζ0), ζ). Since the matrix dimensions of the Hes-
sian of the cost function are independent of N, we can study the stochastic behavior of 
VN'T(<9(Z0), Z) separately from VN"-l0(zo)). We will show that the cumulants of 
JÑVN'T(0(z¿), z) tend to those of a Gaussian random variable. Because a normal distribution 
is uniquely determined by its moments, it follows from the Fréchet-Shohat Lemma 16.11 that 
JÑVN

íT(d{z¿), z) converges in law to a Gaussian random variable. A linear combination of a 
finite number (independent of N) of Gaussian random variables is also a Gaussian random 
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variable, which shows that JÑSe{z) is asymptotically normally distributed. Expression 
(17-18) for the covariance matrix follows directly from the definition of δθ(ζ) (17-14) and 
the fact that E{<%(z)} = 0. 

Under Assumptions 17.1 (P = 2K), 17.2, and 17.16, the derivative of the cost func-
tion can be written for any 0 G Pr as 

dVN(09z) _ 
= ¿ΣΓ-!**(') (17"48> δθ{ί] Ν 

i = 1, 2, ..., ηθ, with xN(f) mixing over t of order K, N = 1, 2, ..., oo (proof: similar to 
that of νΝ(θ,ζ) in Appendix 17.A). Hence, the kth order joint cumulant of 
JÑVN'T(<P(z0),z) is an 0(Nl~k/2), k = 1, 2, ..., £ (see Appendix 17.H). Under Assump-
tion 17.1 (P = oo) this is valid for K = 1,2, ..., oo. It shows that the covariance matrix 
(second-order cumulant) is an 0(N°) and that all the joint cumulants of order 
k = 3, 4, ..., oo are asymptotically (JV-»oo) zero. This concludes the proof because the 
joint cumulants, of order 3 and larger, of a Gaussian random variable are zero (see Example 
16.2). 

The proof of the convergence rate follows the lines of Appendix 16.H. D 

Appendix 17.J Proof of the Existence and the 
Convergence of the Covariance Matrix of 
the Truncated Minimizer (Theorem 17.30) 

Lemma 17.27 is valid under the assumptions of Theorem 17.21. It states that there 
exists an N0 such that for any N>N0, θ(ζ) = θ(ζ0) + δθ{ζ) + be(z) w.p. 1. Because #(z), 
defined by (17-17), is uniformly bounded, its expected value and covariance matrix exist. 
The same is true for b0(z) for all realizations z e ZL, where ZL is defined in Appendix 17.F. 
Taking into account that for all N>N0, E {<%(z)|z e ZL} = 0 , and 
E {be(z)\z e ZL} = 0(N~l) (proof: similar to Appendix 17.G), we find 

4ΝΘ(ζ)- Έ.{4ΝΘ(ζ)\ζ E ZL) = JÑ5e(z) + Op(N~l/2) (17-49) 

where Ov(N~l/2) is a uniformly bounded random variable. Calculating the covariance matrix 
of (17-49), taking into account that by definition of θ(ζ) 

Cov(^0(z)) = Cov(VAté(z)|z G ZL) (17-50) 

gives 

Cov(JÑe_(z)) = Cov{JÑSe{z)\z e ZL) + 0(N~l/2) (17-51) 

Because Prob(z g ZL) = 0 for N> N0 (see Appendix 17.F) and the fourth-order moments 
of z are uniformly bounded, we have 

Cow(JÑSe(z)\z G ZL) = Co\(JÑS9(z)) (17-52) 

Combining (17-51) and (17-52) proves that Cov(*/N0(z)) converges to Cov(4ÑS9(z)) at the 
rate 0(N~U2). Π 



Properties of Least 
Squares Estimators 

with Stochastic Weighting 

Abstract: This chapter studies the asymptotic stochastic properties (strong convergence, 
strong consistency, convergence rate, asymptotic bias, and asymptotic normality) of nonlin-
ear least squares estimators with a stochastic weighting. The presented theory is applicable 
to, for example, (total) least squares estimators using nonparametric noise models. Because 
this chapter relies strongly on the results of Chapter 17, it cannot be read independently of 
that chapter. Readers who are unfamiliar with the analysis of the stochastic properties of esti-
mators should, in addition, first read Sections 16.11 to 16.13. 

18.1 INTRODUCTION—NOTATIONAL CONVENTIONS 

In this chapter we consider the identification of a parametric plant and/or noise model 
Μ(θ, z0, nz) through the minimization of a weighted nonlinear least square cost function 

VN(0, z) = i ZTWN(0, η(ζ), w(0, η(ζ), ζ)) ζ (18-1) 

with z e UN the noisy measurements, z = z0 + nz, 0e Rn& the plant model parameters, and 
η(ζ) G Mi a stochastic vector. \ν(θ, η(ζ), z) e UP is the vector of the stochastic sums that av-
erage the noisy measurements z. WN e UN x N is a stochastic positive semidefinite weighting 
matrix depending on θ, η(ζ), and \ν(θ, η(ζ),ζ). ηθ, p and q are TV- independent integers. 
Just as in Chapter 17, we can assume without any loss of generality that the weighting matrix 
WN is symmetric. We will often rewrite (18-1) as 

VN{6, z) = fN(0, η(ζ), w(6> η(ζ), ζ), z) (18-2) 

and denote the function by 

/Ν(θ, η, w,z) = I ζτψΝ(θ, η, w)z (18-3) 
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where the stochastic vectors η(ζ), w(0, η(ζ), z) have been replaced by the deterministic vec-
tors 77, w. Note that (18-3) is a nonlinear least squares cost function with deterministic 
weighting. Similarly to Pr (see Section 17.1), we define W c R ^ as a compact (closed and 
bounded) set of w values for which the cost function (18-3) and/or its higher order deriva-
tives w.r.t. w exist and are finite. From (18-2) and (18-3) it follows that it is not possible to 
put (18-1) within the framework (16-95) of Section 16.13, even without η(ζ). The reason for 
this is that (18-1) is a stochastic sum which depends, itself, on other stochastic sums 
\ν(θ, η(ζ), z) and a stochastic vector η(ζ). 

Following the same lines as in Chapter 17, the asymptotic (JV-» 00) properties (strong 
convergence, strong consistency, convergence rate, asymptotic bias, and asymptotic normal-
ity) of the (set of) minimizer(s) 

θ(ζ) = argmin VN(0,z) (18-4) 

will be analyzed (P r , see Section 17.1, is a compact set of parameters where the cost func-
tion and/or its higher order derivatives exist and are finite). It is clear that the asymptotic 
properties of the minimizer (18-4) strongly depend on the stochastic behavior of η(ζ) and 
w(#, 7(z), z). Assumptions similar to those of Chapter 17 guarantee the stochastic properties 
of (18-3). The main difference from Chapter 17 is that additional assumptions concerning 
η(ζ) and w(#, η(ζ), ζ) have to be made to ensure that (18-4) has asymptotic properties simi-
lar to those of the nonlinear least squares estimator with deterministic weighting (17-3). The 
analysis of the nonlinear least squares estimator with stochastic weighting (18-4) relies 
heavily on the stochastic properties of a converging sequence of functions that also depends 
on some converging random vector(s). Therefore, it is recommended to read Appendix 17.C 
first, before going through the proofs of this chapter. The chapter ends with an overview of 
the asymptotic properties of θ{ζ). 

STRONG CONVERGENCE 

The strong convergence of the minimizer is a direct consequence of the strong convergence of 
the cost function (see Section 17.2). The cost function (18-1) can converge only if η(ζ) tends to 
some nonrandom number and if w(#, η(ζ), ζ) tends to some deterministic function of Θ. There-
fore, it is natural to make the following assumptions (see Lemma 17.31, Appendix 17.C). 

Assumption 18.1 (Strong Convergence η(ζ)): The stochastic vector η(ζ) converges 
w.p. 1 to a nonrandom value 77*. 

Define Εε as a compact set of η values in the neighborhood of η* 

E £ = { 7 e K * | | 7 7 - 7 7 4 ^ (18"5) 

and let \ν(θ, η, z) denote the stochastic sums, where the stochastic vector η(ζ) is replaced by 
the deterministic vector η. Although the strong convergence of the minimizer puts condi-
tions only on the convergence of w(#, η(ζ), z), the assumption will be stated more generally 
for the Mi order derivative w.r.t. Θ. 

Assumption 18.2 (Strong or Weak Convergence w^k\0, η,ζ)): w^k\0, η,ζ), the 
kth order derivative of w(#, η, z) w.r.t. #, converges uniformly w.p. 1 (in prob.) to 
E{w<*>(0, η,ζ)} = w<*)(0, 7), in Pr , Έε. For any N, 00 included, \ν^\θ, η,ζ) is a jointly 
continuous function of θ, η in Pr , ίε. 
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18.2.1 Strong Convergence of the Cost Function 

Assumption 18.3 (Constraints on the Cost Function): (a) The weighting matrix 
WN(0, η, w) is a symmetric positive semidefinite matrix, satisfying | | ^ ( 0 , η, w)\\{ < c < oo, 
with c an N- independent constant, for all iV (oo included) and all Θ e P r , η e E£9 w eW. 
WN{0, η,\ν) is a jointly continuous matrix function of ft η, w in the compact sets P r , Έε, W. 
(b) There exists an N0 such that for any r >s >N0, \\Wr[l.s χ.^{θ, η, w)- Ws(0, η, w)||J = 
0((r-s)/r) inPr , E„ W. 

Condition (b) is necessary to ensure the strong convergence of the cost function. If it is 
not fulfilled, then all the lemmas and theorems of this chapter remain valid except that the 
strong convergence (convergence w.p. 1) must be replaced everywhere by weak convergence 
(convergence in prob.). 

Lemma 18.4 (Strong Convergence of the Cost Function): Under Assumptions 17.1 
(P = 4), 18.1, 18.2 (w.p. 1, k = 0), and 18.3 the cost function VN(%z) converges 
uniformly w.p. 1 to 

VN(0) = E {/Ν(θ, η., w(0, η.\ z)} = fN(09 η*9 w(ft η.)) (18-6) 

in the compact set Pr . VN{0,z) and VN{6) are continuous functions of Θ in P r . 

Proof. See Appendix 18.A. D 

Note that νΝ(θ) = /Ν(θ, η*, \ν(θ, η*)) is obtained as follows: first replace the stochas-
tic weighting WN(0, η(ζ), \ν(θ, η(ζ), ζ)) in (18-1) by the deterministic weighting 
WN(e, 77*, w(ft 7*)), and next, take the expected value. This shows that under Assumptions 
18.1 and 18.2 (w.p. 1), the stochastic behavior of the cost function with stochastic weighting 
is similar to that with deterministic weighting. 

18.2.2 Strong Convergence of the Minimizer 

Using definition (18-6) of VN$), the theorems of Section 17.2.2 (strong convergence 
of the minimizer of nonlinear least squares cost functions with deterministic weighting) re-
main valid under Assumptions 18.1, 18.2 (w.p. 1, k = 0). 

Theorem 18.5 (Strong Convergence of the Minimizer): Under Assumptions 17.1 
(P = 4), 18.1,18.2 (w.p. 1, k = 0), 18.3, and 17.5 the minimizeos) θ(ζ) converge(s) w.p. 1 to 

θ(ζ0) = arg mmfN(0, 7*, w(0, η*)) (18-7) 

Proof. Similar to Theorem 17.6 (see Appendix 17.B). D 

Theorem 18.6 (Strong Convergence of the Minimizer): Under Assumptions 17.1 
(P = 4), 18.1, 18.2 (w.p. 1, k = 0), 18.3, 17.4, and 17.7, θ(ζ0) converges to ft and θ(ζ) 
converges strongly ft, with 

ft = argmin V*(0) and V*(0) = limjfr(0, η*9 w(6> η*)) (18-8) 
ΘΕΡ N-^CO 

Proof Similar to Theorem 17.8. D 
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18.3 STRONG CONSISTENCY 

The cost function (18-6) can be written as 

νΝψ) = I ί{ζξΨΝ(θ9 η*9 w(09 η.))ζ0} + I trace( ΨΝ(Θ9 η*9 w(09 η.)) Cn) (18-9) 

and equals VN(0) in (17-8) where WN(6) is replaced by WN(0, η*9\ν(θ9 η*)). Hence, replac-
ing WN{9) by WN{99 77*, \ν(θ, η*)) in the assumptions of Section 17.3 shows that the theo-
rems of Section 17.3 (strong consistency of the minimizer of nonlinear least squares cost 
functions with deterministic weighting) remain valid under Assumptions 18.1, 18.2 (w.p. 1, 
k = 0). We cite them in order of reduced conditions on VN{0). 

Theorem 18.7 (Strong Consistency): Under the assumptions of Theorem 18.5 and 
Assumptions 17.9 and 17.10, the estimate θ(ζ) converges w.p. 1 to θ0. 

Proof. It follows directly from Theorem 18.5 and Assumptions 17.9 and 17.10. D 

Theorem 18.8 (Strong Consistency): Under the assumptions of Theorem 18.5 and 
Assumptions 17.9 and 17.12, the estimate θ{ζ) converges w.p. 1 to θ0. 

Proof. It follows directly from Theorem 18.5 and Assumptions 17.9 and 17.12. D 

Theorem 18.9 (Strong Consistency): Under the assumptions of Theorem 18.6 and 
Assumptions 17.9 and 17.14, the estimate θ(ζ) converges w.p. 1 to θ0. 

Proof It follows directly from Theorem 18.6 and Assumptions 17.9 and 17.14. D 

18.4 CONVERGENCE RATE 

The convergence rate of the minimizer is a direct consequence of the convergence rate of the 
first- and second-order derivatives of the cost function w.r.t. Θ (see Section 17.4). These de-
rivatives can be written as 

VN'T(09z) = gN(09 η(ζ\ w(09 η(ζ),z), w\09 η(ζ)9z)9z) 
(18-10) 

VN"(09 z) = hN(09 7(z), w(99 η(ζ\ ζ\ w\09 η(ζ\ z), W\99 η(ζ\ ζ), z) 

From (18-10) it follows that the convergence rate of the derivatives of the cost function is in-
fluenced by the convergence rates of η{ζ) and w^k\G9 η(ζ)9 z), k = 0, 1, 2. Therefore, it is 
natural to make the following assumptions (see Lemma 17.34, Appendix 17.C). 

Assumption 18.10 (Convergence Rate η(ζ)): The convergence rate in probability of 
η(ζ) equals Op(N~l/2): η(ζ)-η* = Ορ(Ν-χ>2). 

Assumption 18.11 (Convergence Rate w(k\8, η, ζ)): The convergence rate in prob-
ability of the &th order derivative w^k\09 7, z) equals Op(N~l/2) uniformly in Pr, Eff: 
w(*>(0, η9ζ)-\ν«\θ9 η) = Op(N~l/2). 
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Assumption 18.12 (Constraint on the Derivative of H>W(0, η, ζ)): The derivative of 
w^k\09 η9ζ) w.r.t. η satisfies 

d δ^(θ9η9ζ) II < Q ( m 

3η5θ[ίΛδθ[ίχν..3Θ[ίκ\2- * > 

uniformly in Pr , E£, for il9 i29 ..., ik = 1,2,..., ne and for any N (oo included). 

We discuss only the convergence rate of θ(ζ) to θ(ζ0). The reader is referred to Sec-
tion 17.4.3 for a discussion of the convergence rate of θ(ζ0) to #*. The first step in the anal-
ysis of the convergence rate of θ(ζ) is the weak convergence of the derivatives (18-10) of the 
cost function. 

18.4.1 Convergence of the Derivatives 
of the Cost Function 

The derivatives of the cost function (18-10) can be written more explicitly as 

gN[i](% ?(*). w(0, η(ζ), z), w\0, η(ζ), z), z) = - zT — z 

1 ^cf-WM η(ζ), \ν(θ, η(ζ),z)) 
hN[iJ](0, η{ζ\ w(0, η(ζ), z), w'(0, η(ζ), z), w"«9, η{ζ\ z), z) = i ζ^ άθ . dO · * 

for ij = 1,2,..., ηθ9 with 

Wu(0, η(ζ\ w(% η(ζ), z), w'(0, η(ζ\ z)) 

(18-11) 

d1 WM(% η(ζ)9 w(69 η(ζ), ζ)) 
NK ' Υ " = W2 (θ, η(ζ), w(% η(ζ\ z), w\09 η(ζ), z), w"(0, η(ζ\ ζ)) 

(18-12) 

MUCT/] 

Similarly to (18-3), we will denote the functions (18-10) by 

gN{09 η9 w9 wl9z) and hN{09 η, w, wl9 w2, z) (18-13) 

where the random variables η{ζ) and w^k\99 η{ζ)9ζ)9 k = 0, 1, 2, have been replaced by 
the deterministic variables η9 w, wl9 w2. Define Wx c R ^ and W 2 cR / , X B e X , , i as the 
compact sets of, respectively, wx and w2 values for which the functions (18-13) and/or their 
higher order derivatives w.r.t. wx and w2 exist and are finite. 

The proof of the convergence in probability follows the same lines as for Lemma 18.4. 
Therefore, the following assumptions concerning WXi, W2ij must be made. 

Assumption 18.13 (Constraints on the Derivatives of the Cost Function): The ma-
trices Wu(09 η9 w9 wx) and W2ij{69 η9\ν9\νΐ9 w2) have bounded 1-norm 

| |^1 /(«7,w,wO|1^c1<«, | |^2 / /e,7,w,w1,w2) | | 1^c2<oo 
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for i,j = 1,2, ...,ηθ, and are jointly continuous functions of θ, η, w, wx, w2 in the com-
pact sets Pr , Εε, W, Wl9 W2 for any N (oo included). cx, c2 are TV-independent con-
stants. 

Lemma 18.14 (Convergence of the Derivatives of the Cost Function): Under 
Assumptions 17.1 (P = 4), 18.1, 18.2 (in prob., k = 0, 1, 2), and 18.13, the derivatives of 
the cost function VN\6,z) and VN"(0,z) converge uniformly in probability, respectively, to 

νΝ*ψ) = E{gN(% η*,κ(θ, η,),νϊ(θ, η*\ζ)} = gN(% η.,ν(θ9 //*), w'(0, //*)) 
νΝ"ψ) = Ε{hN(0, η*, w(0, η*\ w\e, η+\ w"(0, η*\ ζ)} = ΗΝ(Θ, η*, κ(θ, η*\ νν'(6> η.)9 w"(0, /;*)) 

in the compact set Pr . νΝ\θ, ζ) and VN"{6, z) are continuous functions of Θ in P r . 

Proof. Similar to Lemma 18.4. D 

18.4.2 Convergence Rate of θ{ζ) to <9(z0) 

Assumption 18.15 (Constraint on Derivative gN{9, η, w, wt) w.r.t. η, w, wx): The 
weighting matrices in gN{6, η, w, wx) have continuous first-order derivatives satisfying 

WiW*>?,v>"i)\ < c < 0 0 (18_14) 
dxm h 

uniformly in Pr , ίε, W, and W1? for / = 1,2, ...,ηθ, j = 1,2, ...,dim(x), and for any 
N (oo included), x is a vector that contains all the elements of η, w, wx 

(dim(x) = q+p+pn0), and c is an N- independent constant. 

Theorem 18.16 (Convergence Rate of θ{ζ) to #(z0)): Under Assumptions 17.1 
(P = 4), 17.18, 18.1, 18.2 (w.p. 1, k = 0; in prob., k = 1,2), 18.3(a), 18.10, 18.11 
(* = 0, 1), 18.12 (it = 0, 1), 18.13, and 18.15 the convergence rate of θ(ζ) to θ(ζ0) equals 
Ορ(ΛΗ/2); θ(ζ)-θ{ζ,) = Op(tf-"2). 

Proof See Appendix 18.B. D 

An additional assumption on the third-order derivatives of the cost function allows the 
refinement of the expression for the convergence rate. 

Assumption 18.17 (Constraint on Derivative hN(0, η, w, wv w2) w.r.t. θ, η, w, 
wx, w2): The weighting matrices in hN{6, η, w, wx, w2) have jointly continuous first-order 
derivatives satisfying 

dw2ij(e,Kw,Wl,w2)j < c < o o (18_15) 

dx[k] || 2 

uniformly in Pr , Εε, W, W1? and W2, for i,j = 1,2, ...,ηθ, k = 1,2, ..., dim(x) and 
for any TV (oo included), x is a vector that contains all the elements of θ, η, w, wx, w2 

(dim(x) = ηθ + q+p+ ρηθ+ prig), and c is an N-independent constant. 
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Theorem 18.18 (Improved Convergence Rate of θ(ζ) to #(z0)): Under 
Assumptions 17.1 (P = 4), 17.18, 18.1, 18.2 (w.p. 1, k = 0; in prob., k = 1,2), 18.3(a), 
18.10,18.11 ( £ = 0 , 1 , 2 ) , 18.12 (Jt = 0, 1,2), 18.13, 18.15, and 18.17, the minimizer θ(ζ) 
can be written as 

θ(ζ) = 0(zo) + $(z) + ¿,(z) 
(18-16) 

<%(*) = - ^ " - 1 ( ^ ( z 0 ) ) ^ ' ^ ( z 0 ) , z ) 

with δθ(ζ) = Ov(N-"2) and b0(z) = Ορ(ΛΗ). 

Proo/ Follow the lines of the proof of Theorem 17.21, generalized as in Theorem 
18.16 for the stochastic weighting. D 

Note that compared with the deterministic weighting (Theorem 17.21), the expected 
value of δθ(ζ) is, in general, not zero and may not even exist. Indeed, θ(ζ0) is not the mini-
mizer of E{ νΝψ(ζ0), ζ)} (see (18-2) with (18-6) and (18-7)), and the expected value of the 
weighting E {WN(0, η(ζ), \ν(θ, η(ζ), ζ))} may not exist. 

18.5 ASYMPTOTIC BIAS 

We assume in this section that a true model exists and that it belongs to the considered model 
set. Compared with the case with deterministic weighting (see Section 17.5), we need addi-
tional assumptions to guarantee that the asymptotic bias behaves as an 0(N~l). This is due to 
the fact that the expected value of δθ(ζ) in (18-16) is, in general, not zero or equivalently 
E{ νΝ\θ0, ζ)} Φ 0. Therefore, using the concept of the truncated estimate (see Section 17.5), 

the asymptotic bias of νΝ'(θ0, ζ) will be analyzed in more details. This requires the following 
assumptions (see Lemma 17.36). 

Assumption 18.19 (Asymptotic Bias η(ζ))ι The bias of the truncated estimate η(ζ) 
is an 0(N~l): 1{η(ζ)} = η* + 0(Ν~ι). 

Assumption 18.20 (Derivative w^k\69 η, z) w.r.t. η): The derivative of 
w(k\e, η9ζ) w.r.t. η, dw^k\0, η,ζ)/δη, converges uniformly in probability to its ex-
pected value dw^k\0, η)/δη in ΡΓ, Εε at the rate Op(N~l/2). The second-order deriv-
ative of w(k\0, η,ζ) w.r.t. η is uniformly bounded in ΡΓ, Εε for any N (oo included): 

| y ^ η)\ ίΟρ(Ν°), ,J= 1,2,. . . ,q. 
II d%]d^m h 

Assumption 18.21 (Constraint on Derivatives gN(0, η, w, w{) w.r.t. η, w, w>j): The 
weighting matrices in gN(6, η, w, W]) have jointly continuous first- and second-order deriva-
tives satisfying 

dWu(0, 7,w,w,) 
dxm 

*c,<oo, P2wu(e,n,w,Wl)\ 
dxy-]dx[k] 

<c2 <oo 
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uniformly in ΡΓ, Εε9 W, and Wl 5 for i = 1,2, ...,τ%, j\k = 1,2, ...,dim(x) and for any 
N, oo included, x is a vector that contains all the elements of 77, w, wx (dim(x) = 
q+p+ρΠβ) and c{, c2 are N- independent constants. 

Theorem 18.22 (Asymptotic Bias of θ(ζ)): Under the assumptions of Theorem 
18.18 and Assumptions 17.9, 17.10 or 17.12, 18.19, 18.20 (k=0, 1), and 18.21, the bias 
be = E {be(z)} of the truncated estimate θ(ζ) is an 0(N~l). If, in addition, w^\6, η(ζ), ζ) 
is continuous in Pr then the derivative of the bias w.r.t. θ0, db0/deo, is an 0(N~l). 

Proof. See Appendix 18.C. D 

18.6 ASYMPTOTIC NORMALITY 

The asymptotic distribution function of the minimizer is determined by the asymptotic distri-
bution function of the first derivative of the cost function w.r.t. Θ (see Section 17.6). The 
asymptotic distribution function of the derivative of the cost function (18-10) is influenced by 
the asymptotic distribution functions of η(ζ) and w^k\6, η(ζ),ζ), k = 0 ,1 . Therefore, it is 
natural to make the following assumptions (see Lemma 17.38, Appendix 17.C). 

Assumption 18.23 (Asymptotic Distribution η(ζ)): η(ζ) can be written as 
η(ζ) = ή(ζ) + Ορ(Ν-1) with ή{ζ) = Op(N~l/2), and where ή(ζ) has finite second-order 
moments and converges in law at the rate 0(N~l/2) to a Gaussian random variable with mean 
value 77*. 

Assumption 18.24 (Asymptotic Distribution w(k\6, η, z)): \ν^\θ,η,ζ), 
k = 0 ,1 , can be written as w<*)(0, η,ζ) = \ν^\θ, //, z) + Ορ(Ν~ι) with 
w(k\09 77, z) = Op(N~in), and where \ν^\θ, η,ζ) has finite second-order moments and 
converges in law at the rate 0{N~112) to a Gaussian random variable with mean value 
w(k\0, 77). The convergence is uniform in ΡΓ, ίε. 

Theorem 18.25 (Asymptotic Normality of <JN0(z) - Θ(ζ0)))ι Under the 
assumptions of Theorem 18.18 and Assumptions 17.1 (P = 00), 18.20 (k = 0, 1), 18.21, 
18.23, and 18.24, */Ν(θ(ζ)-θ(ζ0)) converges in law at the rate 0(N~l/2) to a Gaussian 
random variable. The expression for the covariance matrix (17-18) is still valid if δθ(ζ) is 
replaced by 

dN(z) = gN0(zo), 7*, \ν(θ(ζ01 η*), w'(0(zo), η*), ζ) 

, dgN0(zo), 77, w(0(zo), 77), M/(<9(Z0), 77)) 
dx 

(18-17) 

(x(z)-x*) 

with 

χΤ = [ητ w\d{z0), ή) v e c V ( ^ o ) , 7»1 

χϊ = [ηΐ Wr0(zo), 7.) vecVtffco). 7·))] 

*7(z) = [77r(z) w^ (z 0 ) , ?.,*) v e c W f e X 7·,*))] 
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de(z) = Op(N~V2), and Ε{άθ(ζ)} = 0. The functions gN( ) are defined in (18-10) and 
Lemma 18.14, and ή(ζ), w^k\t9(z0), η, ζ) are defined in Assumptions 18.23 and 18.24. The 
derivative w.r.t. η in (18-17) is calculated using the chain rule 

dgN = ^§N +
 djN_^w + dgN d\ec(W) (18-18) 

άη θη dw δη Svec(w') θη 

Proof. See Appendix 18.D. D 

18.7 OVERVIEW OF THE ASYMPTOTIC PROPERTIES 

In this section we give an overview of the asymptotic properties of the minimizer θ(ζ) (18-4) 
of a cost function ¥Ν(Θ, ζ) (18-1), which is quadratic-in-the-measurements when the stochas-
tic vectors η(ζ), \ν(θ,η(ζ),ζ) in the weighting matrix WN are replaced by deterministic vec-
tors η, w. In the analysis of the stochastic properties of θ(ζ), the cost functions and 
minimizers of Table 18-1 play an important role. 

The minimizer θ(ζ) (18-4) of the cost function VN{0,z) (18-1) has the following 
asymptotic (N^co) properties: 

1. Stochastic convergence: θ(ζ) converges strongly to θ(ζ0) (Theorem 18.5). 
2. Stochastic convergence rate: θ(ζ) converges in probability at the rate Ov{N~xl2) to 

0(zo) (Theorem 18.16). 
3. Systematic and stochastic errors: θ(ζ) converges in probability to θ(ζ0) with 

θ(ζ) = θ(ζ0) + δθ(ζ) + Βθ(ζ) 

δθ(ζ) = -νΝ"-\θ(ζ0))νΝ<τφ(ζ0),ζ) 

where δθ(ζ) = Op(N~i/2) is the dominating stochastic error and where 
be{z) = 0?(N~l) contains the contribution of the systematic errors (Theorem 
18.18). 

4. Asymptotic normality: JN0(z) - Θ(ζ0)) converges in law at the rate 0(N~1/2) toa 
Gaussian random variable with zero mean and covariance matrix Co\{JÑde(z)) 

(18-20) 
COV(7A^(Z)) = vN"-\e{z0))QN(e(n))vN"-\e{z0)) 

QN0(zo)) = NHdN{z)4{z)} 

where dN(z) is defined in (18-17) (Theorem 18.25). 
5. Deterministic convergence: §(z0) converges to Θ* (Theorem 18.6). 

TABLE 18-1 Overview of the Notations Used: η(ζ) and \ν(θ, η(ζ),ζ) Are Stochastic Vectors, 
and 77*, \ν(θ, 77*) = Ε{\ν(θ, 77*, ζ)} Are the Corresponding Limit Values 

Cost function γ ^ z) = y ^ = E { f ^ ^ w(% η^ ζ) } Κ(θ) = timJN(0) 

fNW η(ζ), w(0, η{ζ\ z), z) = /Ν(θ, τ;*, w(6> //*)) 

Minimizer θ{ζ) θ(ζ0) @* 
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If in addition VN(0, z) satisfies the consistency conditions, then 

6. Consistency: θ{ζ) is strongly consistent; replace in properties 1 to 4 θ(ζ0) or 
lim 0(ZO) = ft by 0O (Theorems 18.7, 18.8, and 18.9). 

F->oo 
7. Asymptotic bias: the asymptotic bias he = E{be(z)}, and its derivative w.r.t. #0, 

dbe/d0O9 of θ(ζ) are an 0(N~x) (Theorem 18.22). 

Note the similarity to the properties of Section 17.8. Compared with the deterministic weight-
ing, the uncertainty (18-20) is increased. This is due to the stochastic vectors η(ζ) and 
w(0,/7(z),z) in the weighting WN (compare dN{z) in (18-17) with VN'T0(zQ),z) in (17-18)). 

18.8 EXERCISES 

18.1. Consider the model equation y0(k) =f(e,u0(k)). Assume that M> 2 independent re-
peated experiments of Ν>ηθ measurements each are available: y^-r\k) = 
y0(k) + n^Xk) for r = 1,2, . . . ,M and k = 1, 2, ...,7V, where the disturbing noise 
n^r\k) is independent and identically distributed (over r, k) with finite fourth-order 
moment and \ar(n^r\k)) = σ2. Consider the nonlinear least squares cost function 
with stochastic weighting 

[ i * = I**) -M «o(*))2]/[lT= I *$<■*>] 

where y(k) and cr2(k) are, respectively, the sample mean and sample variance of the 
kth measurement over the M experiments. Show that θ(ζ) is a strongly consistent 
estimate if /(#, u0(k)) is a continuous function of Θ. Under what conditions on 
/(Θ, u0(k)) are the other results of this chapter valid? What additional assumption 
on n (k) is required for the asymptotic normality property? (Hint: first write the cost 
function as zTWN(%w(z))z/N with zT = \y(\) \ y(2) 1 ... y(N) l]> w(z) = 
Σ* = i tf(k)/N, WN{9, w(z)) = diagiC,, C2,..., CN), and 

1 -/(0,"o(*))j 

18.2. Consider the linear model y0(k) = a0u0(k) + bQ with θτ = [a b]. Assume that 
M> 2 independent repeated experiments of N>2 measurements each are available: 
y[r\k) = y0(k) + njfXk), u^r\k) = u0(k) + n¡f\k) for r = 1,2, . . . ,M and k = 1, 
2, ...,JV. rAr\k)9 n[r\k) are independent (over r, k) uniformly bounded random vari-
ables. Consider the nonlinear least squares cost function with stochastic weighting 

[Σί= i W) - am - ¿)2]/[lf=! {^{k)+fl2ó2(«)] 

where j>(&), w(&) and <3¿(&), o¿(^) are, respectively, the sample means and sample 
variances of the kúv measurement over the M experiments. Show that θ(ζ) is a 
strongly consistent estimate. Show that all the other results of this chapter are also valid 
(hint: follow the lines of Exercise 18.1). 

18.3. Consider the linear model y0(k) = aQu0(k) + bQ with θτ = [a b]. Assume that N 
noisy observations of the input and output are available: y(k) = y0(k) + n (k) and 
u(k) = u0(k) + nu(k), k = 1,2, ...,N. n (k), nu(k) are independent Gaussian ran-
dom variables. The maximum likelihood solution of this problem minimizes 

Z j l i (y(k) - au{k) -b)2/(a2(k) + a2 a2(k)) 

1 
w(z) 



Section 18.9 ■ Appendixes 661 

w.r.t. Θ. This requires a nonlinear minimization and, therefore, the following weighted 
linear least squares approximation, also called iterative quadratic maximum likelihood 
(IQML), is often calculated: 

¿IQML = arg min£f= x iyik) - au{k) - b)2/(aj(k) + d[s aftk)) 
θ 

where #LS minimizes the linear least squares cost function Σ^= x{y(k)-au(k)-bj1. 
Show that ¿IQML is an inconsistent estimate (hint: apply Theorem 18.5 with 
η(ζ) = aLS and w(0, η(ζ\ζ) = 1, and show that Θ(Ζ0)ΦΘ0 for any N, oo included). 

18.9 APPENDIXES 

Appendix 18.A Proof of the Strong Convergence 
of the Cost Function (Lemma 18.4) 

We will show that ¥Ν(θ,ζ) = fN(0, η(ζ), \ν(θ, η(ζ), z), z) satisfies the two conditions 
of Corollary 17.32 (see Appendix 17.C). Under Assumptions 17.1 (P = 4) and 18.3, 
/Ν(θ, η,νν,ζ) converges uniformly w.p. 1 to Έ.{/Ν(θ, η9\ν9ζ)} = fN(0, η, w) in Pr , Es, 
and W (Lemma 17.3), so that condition 1 of Corollary 17.32 is satisfied. Under Assumptions 
18.1 and 18.2 (w.p. 1, k = 0), w(0, η(ζ),ζ) converges uniformly w.p. 1 to w(0, η*), an inte-
rior point of W, in Pr (Lemma 17.31, Appendix 17.C). Combining this result with Assump-
tion 18.1 shows that condition 2 of Corollary 17.32 is satisfied. We conclude that VN{9, z) 
converges uniformly w.p. 1 to fN{0, η*, w(#, η*)) in Pr . 

νΝ(θ,ζ), νΝψ) are continuous in Pr because fN(0, 77, w, z), /Ν(θ, η,\ν) are jointly 
continuous functions of Θ, w in Pr , W and \ν(θ9 η,ζ), w(#, 77*) are continuous functions 
of<9inPr . D 

Appendix 18.B Proof of the Convergence Rate 
of the Minimizer (Theorem 18.16) 

The proof follows the same lines as for Theorem 17.19 (see Appendix 17.D). Applying 
the mean value theorem to the derivative of the cost function VN\9, z) at the points θ(ζ) and 
θ(ζ0) gives 

νΝ\θ{ζ\ z) = VN'(0(zol z) + φ(ζ) - θ(ζ0))
τνΝ"(θ,ζ) (18-21) 

where νΝ\θ(ζ\ζ) = 0 by definition of 0(z), and Ί) = ίθ(ζ) + (1 -ήθ(ζ0) with 
te [0, 1]. The proof consists of three main steps. In a first step, the convergence rate of 
VN\§(z0)9 z) is shown using Corollary 17.35 of Appendix 17.C. Because VN\§(zQ)) = 0, we 
find 

νΝ\θ{ζ0\ζ) = νΝ\θ{ζ,)) + Ον{Ν-^) = Op(N-^) (18-22) 

uniformly in Pr . In a second step, the convergence of VN"(0 , z) is shown using Corollary 
17.32 of Appendix 17.C. Because VN\§(zQ)) = 0(N°) (Assumption 17.18), we get 

VN"(0,z) = VN
n0(zo)) + OñJN^ = 0^(Ν°) (18-23) 

uniformly in Pr . In the third and last step (18-21), (18-22), and (18-23) are combined, giving 
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θ(ζ)-θ(ζ0) = νΝ"-\θ,ζ)νΝ'ψ(ζ0Ιζ) OÁN-m) (18-24) 

In the first step we verify that VN\§(z0% z) fulfills all the conditions of Corollary 17.35. Un-
der Assumptions 17.1 (P = 4) and 18.13 gN{6, η, w, wl9z) converges uniformly in prob. to 
gN(% η,\ν,\νχ) in Pr , Ef, W, and Wx at the rate Ov(N~l/2) (Lemma 17.17), so that condi-
tion 1 of Corollary 17.35 is satisfied. The conditions of Lemma 17.34 are satisfied so that 
w>W(#, η(ζ),ζ), k = 0, 1, converges uniformly in prob. to wW(#, 7*) in Pr at the rate 
Op(N~l/2). This, together with Assumption 18.10, guarantees that condition 3 of Corollary 
17.35 is satisfied. Following the same lines as in Appendix 17.E, (17-44), we conclude from 
Assumptions 17.1 (P = 4) and 18.15 that 

|dgy[i](fl *7>w>wi>*)| <!!f!!i 

II d*m I2" N for, 
s*ñ (18-25) 

Km 
i = 1, 2, ..., ηθ. Hence, condition 2 of Corollary 17.35 is satisfied, thus concluding the first 
step of the proof. 

In the second step we verify that VN"{6, z) fulfills all the conditions of Corollary 
17.32. The assumptions of Lemma 18.14 are satisfied and, hence, VN"(0, z) converges 
uniformly in prob. to VN"{0) in Pr (condition 1 of Corollary 17.32). The assumptions of 
Theorem 18.5 (Assumption 17.18 is stronger than Assumption 17.5) are satisfied so that 
#(z), and, hence, also θ , converges in prob. to θ(ζ0) (Theorem 18.5 without Assumption 
18.3(b) shows convergence in prob.). The conditions of Lemma 17.31 are satisfied so that 
w(*)(#, 77(z), z), k = 0, 1,2, converges uniformly in prob. to w^k\9, η*) in Pr . Together 
with Assumption 18.1, it shows that condition 2 of Corollary 17.32 is satisfied, which 
concludes the second step of the proof. □ 

Appendix 18.C Proof of the Asymptotic Bias of the 
Truncated Minimizer (Theorem 18.22) 

The results of Theorem 18.18 are valid so that only VN\6, z) must be studied. We will 
show that νΝ\θ,ζ) = gN{9, η(ζ), w(0, η(ζ), ζ), w\0, η{ζ\ ζ), z) satisfies the conditions of 
Corollary 17.37 (see Appendix 17.C), which proves the theorem. 

Under Assumptions 18.1, 18.2 (k = 0, 1), 18.10, 18.11 (k= 0, 1), 18.19, and 18.20 
(k = 0, 1), w(k\e, η(ζ\ ζ) satisfies the conditions of Lemma 17.36. Hence, it converges uni-
formly in prob. to wW(0, η*) at the rate Op(N~l/2) with bias 

E{wW(<9, η(ζ\ζ)} = \ν^\θ,η*) + 0(Ν-1) 

It follows that conditions 3 and 4 of Corollary 17.37 are satisfied for η(ζ) and 
w<*>(0,7(z),z). 

Under Assumptions 17.1 (P = 4) and 18.21, dgN(6, η, w, wl,z)/dx[j] converges uni-
formly in prob. to dgN(0, η, w, wx)/dx{i] at the rate Ov(N~xl2) (proof: similar to Lemma 
17.17). Under the same assumptions, we also have 

|d2&v[i](ft *7>w>wi>g)|| <Q 
dxy]OX[k] 

,W°) 
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/ = 1,2, ...,«0 (proof: similar to (18-25)). From the proof of Theorem 18.18, it follows that 
gN(fy η9 w, wl9 z) satisfies condition 1 of Corollary 17.35. Hence, conditions 1 and 2 of Cor-
ollary 17.37 are satisfied, thus concluding the proof for the bias. 

If w^\69 η(ζ)9 z) is continuous in Pr, then under Assumptions 18.2 {k = 0, 1, 2) and 
18.17, VN(0,z) has continuous first-, second-, and third-order derivatives w.r.t. Θ in Pr. 
This is sufficient to show that db0/dOo is an 0(N~l) (see the proof of Theorem 17.28 in Ap-
pendix 17.G). 

Appendix 18.D Proof of the Asymptotic Normality of 
the Minimizer (Theorem 18.25) 

Multiplying (18-16) by JÑ and taking the limit for N -» oo gives 

plim JN0(z) - θ(ζ0) - δθ(ζ)) = 0 (18-26) 
N-><x> 

Because convergence in probability implies convergence in law (see Section 16.7, interrela-
tion 3), it follows directly from (18-26) that JN{0{z) - θ(ζ0)) has the same asymptotic distri-
bution function as δθ(ζ). We will show that δθ(ζ) converges in law at the rate 0(N~l/2) to a 
Gaussian random variable. To prove this it is sufficient to show that the stochastic part of 
δθ{ζ)9 namely, 

V«?(z 0 ) , z) = gN0(zo), η(ζ), wi0(zo), η(ζ), z), w'0(zo), η(ζ), z), z) (18-27) 

satisfies the conditions of Corollary 17.39. 
Condition 1 of Corollary 17.39 is satisfied under Assumptions 17.1 (P = oo), 18.3(a), 

and 18.13 (proof: similar to Theorem 17.29). Conditions 2 and 3 of Corollary 17.39 are satis-
fied under Assumptions 17.1 (P = 4), and 18.21 (proof: see Theorem 18.22, Appendix 
18.C). Under Assumptions 18.1, 18.2 (in prob., k = 0, 1), 18.10, 18.11 (k = 0, 1), 18.20 
(k=09 1), 18.23, and 18.24, w^\0, η(ζ\ ζ) satisfies the conditions of Lemma 17.38. 
Hence, wW(#, η{ζ\ z) converges uniformly in prob. to w(k\0, 7*) at the rate Op(N~l/2), is 
asymptotically normally distributed at the rate 0(N~l/2)9 and can be written as 

w(*>(0, 7(z), z) = w(*>(0, 17,, z) + dw{k)
d
{£ η\η(ζ) - η*) + Op(N^) (18-28) 

Combined with Assumptions 18.1, 18.10, and 18.23, it shows that condition 4 of Corollary 
17.39 is also fulfilled. We conclude from Corollary 17.39 and (18-28) that (18-27) can be 
written as 

VN'T(fc0)9z) = gN0(zo), η.ΜΘ(ζ0)> ^ w ' ( 0 ( z o ) , η.\ζ) 

, dgN0(zo), η, w(0(zQ% η\ νν'((9(ζ0), η))\ 

dx 
(x(z)-x*) + 0(N-1) 

(18-29) 

with xT(z) = xT(z) = [ητ{ζ) wT(<9(z0\ η*,ζ) ν&οτ(\ν\θ(ζ0)9 η*9ζ))] and where the deriva-
tive w.r.t. η is calculated using the chain rule (18-18). The first two terms in the right-hand 
side of (18-29) are asymptotically normally distributed. Because x(z) = x(z) + Op(7V_1), we 
can replace x{z) by x(z) in (18-29), which concludes the proof. 



Identification 
of Semilinear Models 

Abstract: Many signal and system modeling problems lead to parametric models that are 
linear-in-the-measurements. This chapter treats the identification (parameter estimation and 
model selection) of such models using the Markov estimator. The asymptotic properties (con-
sistency, convergence rate, asymptotic bias, asymptotic normality, and asymptotic efficiency) 
of the Markov estimates are analyzed. The different aspects of model selection, such as 
model validation, and detection of undermodeling and overmodeling are discussed. Explicit 
expressions for the Cramér-Rao lower bound are derived and conditions for the asymptotic 
efficiency of the Gaussian maximum likelihood estimator are given. The presented theory is 
applicable to general signal modeling and system identification problems. Readers who are 
unfamiliar with the analysis of the stochastic properties of estimators should first read Sec-
tions 16.11 to 16.13 and Chapter 17. 

19.1 THE SEMILINEAR MODEL 

Consider the following general model based on N observations: 

Μ0(θ) + Μχ(θ)ζ = 0 (19-1) 

which is linear-in-the-measurements z e UsN and (non)linear-in-the-model-parameters 
Θ e Un<>. Μ0(θ) G UrN, Μχψ) e RrNxsN wjth 5 > r has rank rN and ηθ9 s and r fixed in-
tegers, independent of the number of observations N. Each time a new observation is added, 
the number of model equations and the number of measurements increase with, respectively, 
r and s. In frequency domain applications, (19-1) often has a block diagonal structure 

Mok(0) + Mxk(0)zk = 0 for * = 1,2, ...,N (19-2) 

with Μ0Ις(θ) G Rr, Μηψ) G Urx\ and zk G RS. The relationship with (19-1) is given by 

Μΐ(θ) = [Μΐχφ)...Μ^Νφ)1 Μχ{θ) = diag(Mlo(0), ...9MlN(ff))9 and zT=[z¡...z^] 
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Two special cases of model (19-1) are worth mentioning. 

19.1.1 Signal Model 

Putting s = r and Μχ(θ) = -IsN in (19-1) gives the signal model 

z = Μ0(θ) (19-3) 

This is typically the form encountered when estimating a linear combination of basis signals 
such as sine waves (Pintelon and Schoukens, 1996), cisoids (Cadzow, 1990), and exponential 
functions (Van den Bos and Swarte, 1993). 

19.1.2 Transfer Function Model 

Putting Μ0(θ) = 0, Μχψ) = [Α(θ) -B(ff)]9 and zT = [yT uT] gives the transfer 
function model 

A(ff)y = B(G)u (19-4) 

where y e RrN and u e U<*N with r + q = s. Αψ) e RrNxrN is a regular matrix. The 
model equations of a linear time-invariant discrete-time multivariable system can be written 
in the time domain under this form (Exercise 19.1). u and y are, respectively, the stacked in-
put and output signals of the system, while r and q are, respectively, the numbers of outputs 
ny and inputs nu. The left matrix fraction description (6-54) can be written under the block 
diagonal form (19-2) with 

M0¿ff) = 0, Μη(θ) = [AKe(nh Θ) -BKe(ah 4 and z¡ = [γτ^ £/Γ#)] 

and where the operators ( )Re and ( )re are defined in Section 15.8 (proof: apply Lemma 
15.4 to (6-54)). Y(k) and U(k) are, respectively, the ny by 1 output and the nu by 1 input 
DFT spectra at frequency k (s = 2(ny + nu)). If the initial conditions are included in the 
model, then Mok(0) = lre(0-h Θ)> w^t n K^k> Θ) t n e n

y ^Y 1 vector of the equivalent initial 
conditions (see Section 6.6), and (19-2) becomes (Exercise 19.3) 

ΛΚε(Ω„ QYn(k) = BRQ(Qh 0)Ure(k) + IJCih Θ) (19-5) 

19.2 THE MARKOV ESTIMATOR 

First we construct the Markov estimates for real observations and real model parameters. Af-
terward, the results are generalized to complex observations and complex model parameters. 

19.2.1 Real Case 

An estimate Θ of the model parameters Θ of the semilinear model (19-1) is calculated 
using noisy observations z = z0 + nz of the true (unknown) values z0. Because z0 is un-
known, it should also be estimated and is parameterized as zp. Under Assumption 17.1(2), 
the Markov estimator minimizes the squared residuals (z - zp) weighted with the noise co-
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variance matrix C„z = Cov(«z), taking into account the model equations (19-1). This con-
strained minimization problem, with parameters Θ and zp, can be solved using Lagrange 
multipliers λ e UrN (Kaplan, 1993) 

l-(z - zpyC+
n(z - zp) + λτ(Μ0(θ) + Mx(ff)zp) (19-6) 

with + the Moore-Penrose pseudoinverse (see Section 15.5). Singular noise covariance matri-
ces are allowed to cover the case where parts of the measurements may be known exactly. 
This is, for example, the case in transfer function modeling with known inputs. Because 
(19-6) is quadratic in zp and linear in λ, ζρ and λ can be explicitly eliminated. This gives 
the following expression for zp (see Appendix 19.A): 

CnCizv = CnCtz - €ηΜ\φ){Μ^^ηΜ\φ)Υ\ΜΙΘ) + Μλ(θ)ζ) (19-7) 

It makes it possible to eliminate the parameters zp in (19-6), which results in a significant re-
duction of the size of the minimization problem. The following Markov cost function is 
found: 

*Wov(3 *) = \eTW ¿)C-\ff)etfi, z) = Ιετφ, ζ)ε(θ, ζ) (19-8) 

with 

e(0,z) = Μ0(θ) + Μχ(θ)ζ, Ce(0) = Μχφ)€ηΜ[(θ\ ε(θ9ζ) = Λ(θ)β(θ,ζ) (19-9) 

and where Λ(θ) e RrNxrN satisfies Λτφ)Λψ) = C~\0) (see Appendix 19.A). Note that 
Cov(e(6> nz)) = Ce(0) and Cov(¿r(<9, nz)) = IrN. Minimizing the cost function (19-8) w.r.t. 
Θ gives the Markov estimates of the model parameters 

θ(ζ) = arg min FMarkov(0, z) (19-10) 
0ePr 

The Markov estimates z of the true observations z0 are found by evaluating (19-7) at 
Θ = θ(ζ) 

CnC+z = CnC+z - CnM\0{z))C-\e{z))e0{z\ z) (19-11) 

Note that this formula estimates the observations lying in the regular space of Cn . Those ly-
ing in the null space of Cn are known exactly. 

The Markov estimates require knowledge of the noise covariance matrix C„r. It can be 
estimated from independent repeated experiments (see Chapter 10 for transfer function model-
ing of SISO systems). This consumes a great deal of computer time and memory space if N is 
large. In frequency domain identification only a (block) diagonal version of C«z is required. 
Using the block diagonal structure (19-2) of the model equations and replacing C„z in (19-8) 
by diag(C„2i, ..., C„ ), with Cn = Cov(nzk), gives the simplified Markov cost function 
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^MarkovC^ *) = ¿Σ" = , **(*. Z^C" 1 ( 0 ) ^ ( 0 , Zk) (19-12) 

with ek(0,zk) = Mok(e) + Mlk(0)zk, Cet(0) = Cov(ek(e,nzk)) = Mlk(e)CnikM¡k(e), and 
zk = z0k + nzk. Neglecting the nondiagonal terms of Cet(0) in (19-12), the Markov cost 
function can even be simplified further to 

The stochastic properties of the minimizers of (19-8), (19-12), and (19-13) are analyzed in 
Section 19.4. 

19.2.2 Complex Case 

Expressions (19-8), (19-12), and (19-13) are still valid for complex-valued observa-
tions z G CsN and complex-valued model parameters # e C"e, if applied to zre and #re. If 
in addition, the errors nz are circular complex distributed (see (16-12) and (16-13)), then 
(19-8) can be written as (see Example 15.5) 

= εΗ(θ,ζ)ε(θ,ζ) 

with ε(θ9ζ) = Λ(θ)β(θ9ζ) and where Λ(θ) e CrN*'N satisfies ΛΗ{Θ)Λ{Θ) = Cf(ff). 

19.3 CRAMÉR-RAO LOWER BOUND 

We first derive the Carmér-Rao lower bound for real observations and real model parameters. 
Afterward, the results are generalized to complex observations and complex parameters. 

19.3.1 Real Case 

The concept of Cramér-Rao lower bound requires the existence of a true model 

Μ0(θ0) + Μχ(θ0)ζ0 = 0 (19-15) 

with z0 the true observations and θ0 the true model parameters, and knowledge of the prob-
ability density function of the measurements z = z0 + nz. The Cramér-Rao lower bound for 
unbiased estimators (16-87) is constructed under the following assumption. 

Assumption 19.1 (Gaussian Errors): The observations z0 are deterministic and the 
errors nz are normally distributed with known covariance matrix Cn . 

The log-likelihood function becomes 

ln/z(z,zp,0) = - i ( z - z p ) ^ Q z ( z - z p ) + c (19-16) 
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with c a constant independent of zp and Θ, and where the parameters zp and Θ satisfy the 
constraint (19-1) 

Μ0(θ) + Μ{(θ)ζρ = 0 (19-17) 

Straightforward calculation of the Fisher information matrix Fi(z0, θ0) (see (16-85)) from 
(19-16) is impossible because zp contains too many unknowns. Indeed, the parameters of zp 
lying in the singular space of Cn are known exactly and should not appear in the CR bound. 
Next, (19-17) puts rN linear constraints on the entries of zp. The resulting rN linear depen-
dent variables should also not appear in the CR bound. 

Hence, the first step in calculating the CR bound consists of reducing the sN parame-
ters zp to the rank(C„ ) - rN parameters x: zp = zp(x, Θ) (see Appendix 19.B). It facilitates 
writing the log-likelihood function as 

ln/z(z,x,0) = - i ( z - z p ( x , ^ ) ) ^ ( z - z p ( x , 0 ) + c (19-18) 

The corresponding Fisher information matrix Fz(x0, θ0) is 

F/(x0, θ0) 
Ρχχ Ρχθ 

FL· ¥ΘΘ 

(19-19) 

Applying the inverse of block matrices (15-8) to CR(x0, θ0) = F/'_1(x0, θ0) gives the 
Cramér-Rao lower bound on the model parameters 

CR(d0) = Fi-\0o) = (Fee-FjeF-¡Fxe)-^ (19-20) 

Filling out the explicit expressions of F009 Fxx, and Fx0 in (19-20) gives, after some calcu-
lations (see Appendix 19.B), 

Fi(0o) = VMarkov"(0o,zo) 

fde(e9z0J\T jde(0,zoJ 

i^)c,M-θθ0 J e v U/V δθ0 J (19-21) 
de(^z0)Yfde(O,z0)\ 

δθ0 J V δθ0 

This shows that the Fisher information matrix of the model parameters Fi(0o) equals the 
Hessian of the Markov cost function (19-8), evaluated at the true observations and the true 
model parameters. Hence, the larger the eigenvalues of the Hessian matrix, the smaller the 
Cramér-Rao bound of the model parameters. 

19.3.2 Complex Case 

We first consider the case where the observations z e CsN are complex, the errors 
nz E CsN are circular complex distributed (set (16-12) and (16-13)), and the model parame-
ters Θ are real. This is, for example, true in frequency domain system identification. Formula 
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(19-21) of the real case still applies to zre and erQ(0o,zo). Using the isomorphism between 
complex and real matrices (see Section 15.8), (19-21) becomes 

Fi(0o) ^Markov"(^0>zo) 

2Re 
^ 30„ 

) c-\e0y 
de(0,zo) 

δθη (19-22) 

with ^Markov( '̂z) is given by (19-14) (see Exercise 19.6). 
Next, we consider the case where, also, the model parameters Θ are complex. Applica-

tions where Θ is complex can be found in nuclear magnetic resonance spectroscopy 
(Kumaresan et al., 1990) and the diagnosis of asymmetry of rotating machinery (Lee and Joh, 
1994; Peeters et al., 2000). Formula (19-22) is still valid for θκ. If β(θ,ζ) is an analytic 
function of Θ e C» , then 

de(0, z) = YdejO, z) de{0, ζ)Ί = Γθβ(θ,ζ) .de{0, ζ)Ί 
δθκ |_5Re(0) 5Im(0)J l ΘΘ J δθ J 

and (19-22) can be rewritten as 

F Y / n ^e^,z0)Y^_un^fde(e,zoy 

= (teWz^«rdeWzot 
■y ΘΘ0 J κ ΘΘ0 

(19-23) 

(see Exercise 19.7). 

19.4 PROPERTIES OF THE MARKOV ESTIMATOR 

The properties of the Markov estimator will be studied for real observations and real model 
parameters. Following the lines of Sections 19.2.2 and 19.3.2, it is easy to see that the results 
are also valid for complex observations and complex model parameters. Note that the 
Markov cost function (19-8) fits within the framework of Chapter 17. Indeed, (19-8) can be 
written as 

νΝ(θ,ζ) = ±νΜκΛαάθ,ζ) = I WN{ff) (19-24) 

with \ΥΝψ) an (sN+ 1) by (sN+ 1) weighting matrix 

WN(&) = ±[M0) M,(0)FCe-'(0)[Mo(0) M,(0)] (19-25) 
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Cost function (19-24) has exactly the same form as (17-1) and, hence, all the results of Chap-
ter 17 apply to the Markov estimator (19-10). The same is true for the Markov estimates 
based on the simplified cost functions (19-12) and (19-13). Only the assumptions and the 
properties that can be worked out more specifically for the Markov estimator are discussed 
here. 

Approximate expressions for "large" signal-to-noise ratios (||^0||2/J|^iJ|2 » 1) and 
"small" model errors are obtained by replacing nz by vnz (and, hence, Cn by u2Cn ) with 
υ -» 0 and e(0(z), z0) by μβ{θ(ζ), z0) with μ —» 0. 

19.4.1 Consistency 

Besides the model parameters, (a part of) the measurements are also estimated. First, 
the consistency of the estimates θ{ζ) (19-10) of the model parameters is analyzed. Next, the 
consistency of the estimates z (19-11) of the measurements is discussed. 

19.4.1.1 Model Parameters. Assumption 17.2 requires that Ce(9) is positive definite in 
the compact set Pr . The condition || W#(0)|| λ < c < oo imposes restrictions on the one and infinity 
norm of Μλψ) and C„z, while the condition \Wm{l.nA.nfé)- Wn@)\\ = 0((m-n)/m), 
with m > n, limits the variation of C~\ff) as N increases. Note that both conditions are automat-
ically satisfied for the simplified Markov estimators (19-12) and (19-13). Under Assumption 17.1, 
using 

e(%z) = <(9,z0) + M1((9)A2z and traced TC~le) = tmce(C-leeT) 

we find the expected value of the cost function (19-8) 

>Wkov(0) = E {^Markov(3 *)} = E {FMarkov(0, z0)} + rN/2 (19-26) 

Assumption 17.10 is satisfied because E{KMarkov(0o, z0)} = 0 and rN/2 is #-indepen-
dent. Hence, it follows from Theorem 17.11 that the Markov estimate (19-10) is strongly con-
sistent. 

Note that the expected values of the simplified cost functions (19-12) and (19-13) are 
also given by (19-26). We conclude that the Markov estimates of the (block) diagonal model 
(19-2) based on the simplified cost functions (19-12), (19-13) are still strongly consistent. 
Removing some parts of the nondiagonal elements of C„z does not influence the consistency 
property: the minimal requirement is that each residual is weighted with its variance. For fre-
quency domain system identification, this means that the correlation of the errors nz over the 
frequencies and between the different outputs can be neglected. However, the correlation of 
the errors nz between an output and all the inputs may not be removed because it influences 
var(e¿[z](#, zk)); otherwise consistency is lost. 

19.4.1.2 Observations. In general, the estimates z (19-11) of the observations are in-
consistent. This is due to the fact that the uncertainty of z in (19-11) is not decreased by mak-
ing more observations (no averaging effect occurs in Cn Cnz\ z cancels in (19-11) for 
signal models (19-3) and transfer function models (19-4) with known input (excitation) sig-
nals u0. In these cases, strongly consistent estimates of the observations are obtained 
through, respectively, z = Μ0(θ(ζ)) and j> = A~l(á(z))B(á(z))u0 (see Appendix 19.C). 
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19.4.2 Strong Convergence 

If model errors are present (e(#(z0), z0) Φ 0), one can wonder why the Markov estima-
tor should be preferred over, for example, the nonlinear least squares estimator 

Wft*) = \βτ{θ,ζ)β{θ,ζ) (19-27) 

The reason for this is that the Markov estimate θ(ζ) converges to a value θ(ζ0) that is inde-
pendent of the signal-to-noise ratio. Indeed, replacing nz by vnz (and, hence, Cn by 
o2Cn ) in the expected value of the cost function (19-26) gives 

* W o v ( 0 ) = ^ E^MarkovC^ ζ θ ) } + rN/2 (19-28) 

It shows that 0(zo), the minimizing argument of (19-28), is independent of υ. The same is 
true for the simplified Markov estimators (19-12) and (19-13). This is not the case for the 
nonlinear least squares estimator (19-27). Indeed, the expected value of (19-27) equals 

FNLS(0) = E {FNLS(0, z)} = E {FNLS(0, z0)} + t r a c e d ) ) (19-29) 

Replacing nz by vnz (and, hence, C„z by u2Cn) in (19-29) gives 

FNLS(0) = E {KNLS(0, z)} = E {FNLS(0, z0)} + <Arace(C,(0)) (19"3°) 

Clearly, the minimizer of (19-30) depends on υ. 

19.4.3 Convergence Rate 

Expression (17-14) for the difference θ(ζ) - θ(ζ0) can be elaborated for the Markov es-
timator. It will be used to study the statistical properties of the residuals ε(θ(ζ), ζ) and the 
global minimum of the cost function ^Markov(^(z)>z)· 

Theorem 19.2 (Convergence Rate θ(ζ) to 0(zo)): Under the assumptions of 
Theorem 17.21, large signal-to-noise ratios (L>-> 0) and small model errors (//-» 0), the 
minimizer θ(ζ) can be written as 

θ(ζ) - θ(ζ0) = Δθ{ζ) + δθ(ζ) + be(z) 

Λ(λ >(^<¿ 
Δθ(ζ) - { ΘΘ(Ζ0); 

τ 'δείθ,ζώΥ 

, θθ(.ζ0))_ θθ(ζ0) j 

where Ε{Δθ(ζ)} = 0, Ε{δθ(ζ)} = 0 and 

Δθ{ζ) = uOp(JV-"2) 

θθ(ζ) = (υ2 + υμ + μλ(ζ0))Ορ(Ν-"ΐ) 

b9(z) = (υ* + (υ+μ)λ(ζ0))Ο-(Ν-ΐ) 

Τ(δε{θ{ζ0\ζ^ (19-31) 
\—ΈΓ-)η* 
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with Ά(ζ0) = 1 for random z0 and A(z0) = 0 for deterministic z0. 

Proof. See Appendix 19.D. D 

From (19-31), it follows that in the presence of model errors (//* 0), de(z) and be{z) 
do not decrease to zero for random z0 as the noise level υ tends to zero. In the absence of 
model errors (μ = 0), Αθ(ζ) and be(z) are, for deterministic z0, an υΟρ(Ν~ι/2) and 
υ2Ορ(Ν~ι), respectively. It shows that the bias error decreases as v2 while the stochastic er-
ror decreases as υ. Although be(z) = (υ2 + υΑ(ζ0))Ορ(Ν~ι) for random z0, the conclusion 
remains valid because the expected value of υλ(ζ0)Ορ(Ν~ι) in be(z) is zero (see Appendix 
19.D). 

19.4.4 Asymptotic Normality 

If the true model belongs to the model set, then expression (17-18) of the covariance 
matrix in Theorem 17.29 (asymptotic normality of JÑ(é(z) - θ(ζ0))) can be elaborated. 

Theorem 19.3 (Asymptotic Normality of JN0(z) - θ0)): Under the assumptions of 
Theorem 17.21 and Assumptions 17.1 (P = oo) and 17.9, JN0(z) - Θ0) converges in law, at 
the rate 0(N~l/2), to a Gaussian random variable with zero mean and covariance matrix 
Cov(4ÑSe{z)) 

qN(00) =ΝΕ{νΝ'Τ(θ0,ηζ)νΝχθ0,η2)} 

+ 2herm( E { ( - ^ J } E{^0> nz)v^ nz)}) 

with νΝ(θ9 nz) = ± Α\θ, ηζ)Δ{θ, nz) and Δ(θ, nz) = Λ(θ)Μι(θ)ηζ. 

Proof. See Appendix 19.E. D 

The expression (19-32) for Cov(S0(z)) is not tractable and will be approximated. Re-
placing nz by vnz (and, hence, C„2 by v2Cn ), it can be seen that the second term in the ex-
pression of CO\(JÑSQ(Z)) decreases to zero faster than VN"~l(0o) as the signal-to-noise ratio 
increases to infinity (υ-> 0). It makes it possible to approximate (19-32) for "sufficiently 
large" signal-to-noise ratios as 

Cov(4(z)) = FMark0V"-i( W „ e + 0(υ)) (19-33) 

with KMarkov"-'(0o) = υ20(Ν~ΐ) (Exercise 19.9). 
If modeling errors are present, e(0(z), z0) * 0, then the full expression (17-18) of the 

covariance matrix should be used. Replacing e(0(z), z0) by μβ(θ(ζ)9 ζ0) and nz by υηζ, an 
approximation for "small" model errors (μ -» 0) and "large" signal-to-noise ratios (υ —>· 0) 
is given by (Exercise 19.10) 

Cov(<%(z)) = εθ{Ιηβ + 0{υ) + 0{μ) + 0{ρϊυ-ϊ)Μζϋ)) 

(19-32) 

Ca E{ 
V δθ{ζ0) -

Tf 0ε(θ,ζ0) 

V δθ(ζ0) ■ 

(19-34) 
= υ20{Ν~λ) 
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where A(z0) = 1 for random z0 and A(z0) = 0 for deterministic z0. Formula (19-34) 
shows that in the presence of model errors (μφ 0), the uncertainty of the estimated model 
parameters does not decrease to zero for random z0 as the noise level υ tends to zero. Intu-
itively, this can be understood as follows: in the absence of observation noise, nz = 0, the 
model errors still depend on the particular realization of z0. Hence, θ(ζ) depends on z0, and 
Cov(^(z)) = //2θ(ΛΗ). 

19.4.5 Asymptotic Efficiency 

Comparing the Cramér-Rao lower bound (19-21) for normally distributed errors nz 

and deterministic z0 with the asymptotic covariance matrix (19-32) shows that the Markov 
estimates are, in general, asymptotically inefficient ( νΝ"(θ0) = νΝ"(θ0, ζ0) for deterministic 
z0). The inefficiency term VN

n-l(0Q)qN(9o)VN
n-l(0o) is, however, small w.r.t. νΝ"~ι(θΌ) for 

sufficiently large signal-to-noise ratios (Exercise 19.9). For some noise covariance matrices 
the inefficiency term is zero. 

Theorem 19.4 (Asymptotic Efficiency of θ(ζ)): Under the assumptions of Theorem 
19.3 and Assumption 19.1, the Markov estimates (19-10) are asymptotically efficient if 
rank(CM) = rN for any N>N0. 

Proof. See Appendix 19.F. D 

The condition rank(C„z) = rN is automatically satisfied for signal models (Exercise 
19.11). In frequency domain identification of multivariable systems, it implies that the num-
ber of noncoherent noise sources must be equal to the number of outputs. Note that Theorem 
19.4 is not valid for the estimates based on the simplified Markov cost functions (19-12) and 
(19-13). 

19.4.6 Robustness 

The consistency, asymptotic normality, convergence rate, and asymptotic bias proper-
ties of the Markov estimator (19-10) for (block) diagonal models (19-2) are robust w.r.t. to 
the knowledge of some nondiagonal parts of C„2 (compare the simplified cost functions 
(19-12) and (19-13) with (19-8)). This is not the case for the asymptotic efficiency: removing 
the nondiagonal elements of Cn increases the uncertainty of the estimates. 

19.4.7 Practical Calculation of Uncertainty Bounds 

Theorems 17.29 and 19.4 and formulas (19-33), (19-34) require knowledge of the true 
observations z0 and the (true) model parameters θ0 or #(z), which are not available. Ap-
proximations of the asymptotic covariance matrix are obtained by replacing z0 by z and θ0 

or #(z0) by θ(ζ). Mostly the following approximation is used: 

cov^^i^^yr^^ir1 ( ^ 

Note that the right-hand side of (19-35) is calculated in Newton-based minimization methods 
of the cost function (19-8). 

Together with the results of Section 16.2, (19-35) allows the calculation of uncertainty 
bounds of any model-related quantity. For example, the uncertainty of /(z, θ{ζ)) e Rm is 
found by linearizing /(z, θ(ζ)) at z0, 0(z0) 
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/(z, θ{ζ)) « a/(Z:fZo))^ + dJ^-0(z) - Θ(ζ0)) (19-36) 
**ο δέ?(ζ0) 

where θ(ζ)-θ(ζ0) is given by (19-31). Calculating the covariance matrix of /(z, θ(ζ)) and 
replacing z0 afterward by z and θ(ζ0) by #(z) in this expression gives 

cov(/(z, é(z))) - (WEsm Cn mamT
+m°h c^d^mT 

\ dz ) "Λ dz J \ Q0tz\) - v δ ( 9 ( ζ ) ; 
(19-37) 

where, using (19-31) and (19-35), Cov(«z, θ(ζ) - θ(ζ0)) can be approximated as 

Covín, kz) - θ(ζο)) « - C . , ( * ^ ) Γ ( ^ ) ) Cov(¿(z)) 

19.5 RESIDUALS OF THE MODEL EQUATION 

First we study the residuals for real observations and real model parameters. Afterward, the 
results are generalized to complex observations and complex model parameters. 

19.5.1 Real Case 

The weighted residual of the model equation, ε(θ(ζ)9 ζ), is a random vector that de-
pends directly on the errors nz through the observations z and indirectly on these errors 
through the estimate #(z), which is a nonlinear function of nz. To analyze its stochastic 
properties, we need assumptions on the square root C~1/2(#)[M0(#) Μγ(θ)] of the weighting 
WN(0) (19-25) (convergence analysis) and on the true observations z0 (existence of some 
moments). 

Assumption 19.5 (Constraint on the Square Root of the Weighting): The riV + 1 
by sN+ 1 matrix RN(0) = Λ(Θ)[Μ0(Θ) Μχ(θ)], with Λτ(θ)Λψ) = C~l(0)9 satisfies 
ll^v(^)|L - c < °°' w*tn P = 1> °° anc* c a n N- independent constant, for all N (oo included) 
and any Θ e P r . ΚΝ(Θ) is a continuous matrix function of Θ in the compact set P r . 

Assumption 19.6 (Constraint on the Derivatives of the Square Root of the Weight-
ing): The rN + 1 by sN+ 1 matrix RN(0) = Λ(Θ)[Μ0(Θ) Μχψ)]9 with ΛΤ(Θ)Λ(Θ) = 
0~χφ), has continuous first- and second-order derivatives w.r.t. Θ satisfying 

(a) 

(b) 

dRN{0) 

δθ[ί] 

<cx<co, i = 1, 2, ..., ηθ 

d2RN(P) 
θθ[ί]8θυ] 

<c2<oo, ij = 1,2, ...,ηθ 

p 
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with/? = l , o o and cl9 c2 N- independent constants, for N = 1,2, ...,oo and # e Pr . 

Assumption 19.7 (True Observations): The true observations z0 are uniformly 
bounded. 

Lemma 19.8 (Convergence Rate Residuals): Under the assumptions of Theorem 
17.21 and Assumptions 19.5 and 19.6(a), the residual ε^(θ(ζ),ζ) converges uniformly in 
prob. to ¿r[/:|(#(z0), z) at the rate Op(N~U2) in Pr as Ν->οο, / = l,2,...9rN. 

Proof. See Appendix 19.G. D 

For large signal-to-noise ratios and small model errors, the convergence rate of the re-
siduals can be refined. 

Lemma 19.9 (Improved Convergence Rate Residual): Under the assumptions of 
Theorem 17.21 and Assumptions 19.5, 19.6, and 19.7, large signal-to-noise ratios (υ^>0), 
and small model errors (μ —» 0), the residual ε^(θ(ζ), z), i = 1,2,..., rN9 can be written as 

ε[η{θ{ζ),ζ) = ε[ί](θ(ζ0),ζ0) + (α(ζ0)4(ζ)) [ / ] + Ορ(Ν-^)(υ + μ + μυ-ΐλ(ζ0)) 

Q¿?¿> = i, rN~ 

θε(θ,ζ0) 

δθ(ζ0) o)J 

δε(θ,ζ0) 

δθ(ζ0) ο>; 

δε(θ,ζ0) 9ε[θ,ζ0) 

δθ(ζ0)]] Κδθ(ζ0) 
(19-38) 

δε(ζ) = Α(θ(ζ0),ηζ) = Λ(0(ζο))Μ,(0(ζο)Κ 

where Έ{δε(ζ)} = 0, Cov(Se(z)) = IrN and 

¿m(0(zo),zo) = μυ-Όρ(Ν°) 

{Qe{zQ)Se{z))m = Ov(N°) 

W ^ ^ y i + O ^ 1 ) 

for i = 1, 2, ..., rN, with A(z0) = 1 for random z0 and λ(ζ0) = 0 for deterministic z0. 
Q£(z0) is a symmetric idempotent matrix of rank rN-ne. 

Proof. See Appendix 19.1. D 

If no model errors are present, ε^{θ{ζ0), ζ0) = 0, it follows from Lemma 19.8 that the 
residuals εψ{ζ), z) are asymptotically white: Cov(f(#o>z)) = Λ-w Therefore, we could 
think of verifying the presence of model errors through the sample correlation of the residuals 

Res(k) = 1 
rN-\k\ 

->WV-|*I Σ , _ , ε[η(θ(ζ),ζ)ε1ί+Ι[]ψ(ζ\ζ) (19-39) 

The following theorem shows that this makes sense, indeed. 
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Theorem 19.10 (Properties Sample Correlation): Under the assumptions of 
Theorem 17.21 and Assumptions 19.5, 19.6(a), the sample correlation R££(k) converges in 
prob. to 

^ q ^ Z , - . , E {SyPizo), z0)£li+k](e(z0), z0)} + <?(*) (19-40) 

at the rate Op(N~l/2) as N-> oo (S(k) is the Kronecker delta and k is fixed independent of 
N). If, in addition, Assumptions 17.1 (P = co) and 19.6(b) are valid, then R££(k) is asymp-
totically normally distributed. If no model errors are present (Assumptions 17.9, 17.10) and 
nz is normally distributed (Assumption 19.1), then the standard deviation of the truncated 
sample correlation R££(k) equals, asymptotically, 

l+S{k) (19-41) 
JrN-\k\ 

Proof. See Appendix 19.J. D 

Under the null hypothesis that no model errors are present, Theorem 19.10 makes it 
possible to verify whether or not the sample correlation is white within its uncertainty. This 
procedure is known as the whiteness test on the residuals. 

Lemma 19.9 shows that in the absence of model errors, ε^(θ(ζ0), z0) = 0 and 
μ = 0, ηθ linear dependences exist among the residuals ε^(θ(ζ),ζ), i = 1,2, ...,rN 
(rank(g^(z0)) = rN-ne). It explains why the expected value of R££(0) approximately 
(7V->oo, u , / / ->0) equals E{Z^i((G^o)^))m)2 / ( rJV)} = (rN~¿0)/(rN) (see Exer-
cise 19.12) while Theorem 19.10 predicts the value 1. To compensate for this bias at 
lag zero, R££(k) and its standard deviation are often multiplied by rN/(rN-ne). 

For deterministic z0, the covariance matrix of the truncated residuals is given approxi-
mately by 

Cow(s0(z), z)) * Cov(&(z0H(z)) * IrN-
'θε(θ,ζ0γ 

θθ(ζ0) 
Cov(0(z)) 

^ε(θ,ζ0)\ 

. S0(zo) J 

T 

(19-42) 

(see Exercise 19.13). It follows that the total uncertainty equals the uncertainty due to the ob-
servation noise nz minus the uncertainty due to the estimated model parameters Θ. 

19.5.2 Complex Case 

For complex observations z e CsN and real or complex model parameters the sample 
correlation of the residuals is defined as 

Reeik) = -^ρ^ Σ , - , *[/](*(*). Z)% + kim> Z) (19"43) 

Theorem 19.10 is still valid for circular complex distributed errors nz e CsN (see (16-12) 
and (16-13)) with the following modifications (proof: all formulas of Section 19.5.1 are valid 
forzre, «zre, and £re). R££(k) is asymptotically circular complex normally distributed except 
at lag zero, where it is asymptotically normally distributed. If no model errors are present, 
then R££(k) (k Φ 0) is asymptotically circular complex normally distributed and the variance 
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of the truncated sample correlation R££{k) equals, asymptotically, \/{rN-\k\) (see Exer-
cise 19.14). The multiplicative bias correcting factor for Rss{k) (and its standard deviation) 
equals rN/(rN-ne/2) for real model parameters and rN/(rN-ne) for complex model 
parameters (see Exercise 19.15). 

19.6 MEAN AND VARIANCE OF THE COST FUNCTION 

First, the case of real observations and real model parameters is handled. Afterward, these re-
sults are generalized to complex observations and complex model parameters. 

19.6.1 Real Case 

This section studies the stochastic properties of the minimum of the cost function 
FMarkov($(z), z). In particular, the contribution of the model errors (e(#(z0), z0) * 0) and the 
noise nz to VUMkoy{9{z),z) *s analyzed. The following lemma gives the properties of 
KMarkov(^(z), z) for a large number of observations (N->co), large signal-to-noise ratios 
( υ -> 0), and small model errors (μ -» 0). 

Lemma 19.11 (Convergence Rate Cost Function): Under the assumptions of 
Theorem 17.21 and Assumptions 19.5, 19.6, and 19.7, large signal-to-noise ratios (t>-> 0), 
and small model errors (// -> 0), the minimum of the cost function ^Markov(^(z)>z) c a n ^ e 

written as 

Wov(¿(z)>z) = ΐφ(ζ0%ζ) + (υ + μ + μυ-Ηυ + μ)λ(ζ0))Ορ(Ν<)) 
1 (19-44) 

¿(0(zo),z) = KM^kov(0(zo),zo) + ^ ^ ^ 

where 

W o v f e U o ) = M2»-2Op(N) 

Sj{z)QE{z0)5E{z) = Op(N) 

ετφ{ζ0\ζϋ)δε(ζ) = μυτΐθβ*"*) 

with λ(ζ0) = 1 for random z0 and λ(ζ0) = 0 for deterministic z0. 

Proof. See Appendix 19.K. D 

As is the case for the estimates #(z), in general it is very difficult or impossible to 
show the existence of the expected value and the variance of the cost function 
FMarkov(#(z), z). However, the first- and second-order moments of Z,(#(z0), z) exist. 

Theorem 19.12 (Properties Cost Function): Under Assumption 17.1 (P = oo) and 
the assumptions of Lemma 19.11, KMarkov(^(z)>z) *s asymptotically normally distributed. 
Under the assumptions of Lemma 19.11, we have 

E {L0(zo\ z)} = E {FMarkov(0(zo), z0)} + (rN- ηθ)/2 (19-45) 

with ηθ the number of identifiable model parameters. If, in addition, the errors nz are nor-
mally distributed (Assumption 19.1), then 
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var(Z(0(zo), z)) = £{ετ(θ(ζ0% ζ0)<2€(ζ0)ε(θ(ζ0), ζ0)} + (rN- ηθ)/2 

+ var(FMarkov(^(z0),z0)) 
(19-46) 

For deterministic z0, (19-46) reduces to 

var(I(0(zo), z)) = ετ(θ(ζ0), z0M#(z0), z0) + (rN- ηθ)/2 (19-47) 

Proof. See Appendix 19.L. D 

Theorem 19.12 shows that the model errors (ε(θ(ζ0), ζ0) Φ 0) increase not only the ex-
pected value of the cost function but also its uncertainty. This increase in uncertainty is larger 
for random than for deterministic observations z0 (var(FMarkov(¿?(z0), z0)) = 0). 

Under the null hypothesis that no model errors are present (μ = 0), Theorem 19.12 
shows that ^Markov(^(z)>z) is asymptotically N((rN-ne)/2,(rN-ne)/2) distributed. It 
makes it possible to verify whether or not the cost function ^Markov(^(z)'z) eQuals 
(rN-ne)/2 within a given confidence level. 

In the case of deterministic observations z0, Theorem 19.12 allows estimation of the 
uncertainty of the cost function in the presence of model errors. Indeed, from (19-45) and 
Lemma 19.11 it follows that the contribution of the model errors to the cost function 
*Wov(^(zo)> zo) c a n b e estimated as 

^Markov(#(zo)> ζ θ ) ~ 
VMnkoMz\ z ) " 2 FMarkov(^(Z)?

 z ) ^ j (19-48) 

0 elsewhere 

Substituting this expression in (19-47) gives an estimate of the variance of the cost function 

var(ZMarkov(^(z0), z0)) * 2 FMarkov(^(z), z) - (rN- ηθ)/2 (19-49) 

As a null hypothesis test already makes it possible to verify the presence of model errors, one 
could wonder why it is useful to know the uncertainty of the cost function in the presence of 
model errors. Formula (19-49) is useful for comparing the cost functions of two independent 
experiments, for example, to decide whether or not the model errors are significantly differ-
ent in both experiments. 

The variance expression (19-46) becomes intractable for non-Gaussian observation er-
rors nz. However, for deterministic observations z0 and non-Gaussian «z, it is still possible 
to give upper and lower bounds on the variance (Pintelon et al., 1997a). 

19.6.2 Complex Case 

For complex observations z e CsN and circular complex errors «z, Theorem 19.12 
and formulas (19-48), (19-49) are still valid with the following modifications. Replace 
rN-Πβ by 2rN -ηθ for real model parameters and rN-ne by 2(rN-ne) for complex 
model parameters (see Exercise 19.16). 
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MODEL SELECTION AND MODEL VALIDATION 

An identification procedure typically consists of applying iteratively model selection and pa-
rameter estimation. The model selection (order estimation) is still the most critical step in the 
identification process and consists of detecting overmodeling as well as undermodeling. 
Overmodeling occurs if the considered model set includes the true model and if it is de-
scribed by too many parameters. Undermodeling is, for example, due to unmodeled dynam-
ics and/or nonlinear distortions in system identification or, for example, due to too small a 
number of sine waves and/or nonperiodic deterministic disturbances in signal modeling. This 
section describes the properties of several (classical) model selection methods. 

19.7.1 Real Case 

19.7. 1.1 Detection of Overmodeling. The Akaike information criterion (AIC) and 
minimum description length (MDL) method select the model Μ(θ(ζ), z) out of the model set 
M that minimizes the sum of the negative log-likelihood function of the parameters and a 
function that penalizes the use of a large number of parameters (Akaike, 1974; Rissanen, 
1978; Liang et al., 1993). For model (19-1) and Gaussian-distributed errors nz, they take the 
form 

AIC: VtíaAjé(z),z) + ne (19-50) 

MDL: FMark0V(é(z),z) + ^ln(rank(C„;) (19-51) 

with ηθ the number of identifiable model parameters (Appendix 19.M). Minimizing (19-50) 
and (19-51) over the set of models M (^Markov(#(z)>z) a n ^ ηθ vary over M) gives the opti-
mal model according to the AIC and MDL criteria, respectively. The AIC criterion is incon-
sistent because it selects too complex models (Kashyap, 1980), while the MDL criterion 
gives strongly consistent estimates of the order of ARMA models (Hannan, 1980). 

Example 19.13: Consider the identification of the amplitudes Ak9 phases <f>k, and fre-
quency /0 of the sum of h harmonically related sine waves (signal model (19-3) with 
s = 1): Μ0[η](θ) = Σ^= i^sin(to0«r5 + ̂ ) with n = 0, 1, ...,N- 1 and θτ = 
[Αι...ΑΗφν..φΗ/()\. Hence, (19-50) and (19-51) apply with ηθ = 2h +1 and 
rank(C„) = N. According to the AIC or MDL principle, the optimal value of h is found by 
minimizing (19-50) or (19-51) w.r.t. heN (FMarkov(0(z), z) is a function of h). D 

The AIC and MDL criteria have been derived by assuming implicitly, or explicitly, that 
the true model belongs to the model set (see Ljung, 1999 for AIC) and, therefore, are unable 
to detect undermodeling. In the presence of model errors (for example, nonlinear distortions) 
the additive penality terms in (19-50) and (19-51) are no longer valid. In the sequel of this 
section we show that under some suitable assumptions on the model error, a multiplicative 
penality term should be used. 

Assumption 19,14 (Behavior of the Model Error): The model error contribution 
mU] = ε[ΐ](θ(ζο)> zo) and the noise contribution v[z] = (Qe(z0)Se(z))^ in the normalized re-
sidual s[t] = ε^ψ(ζ\ζ) (19-38) have the following properties: 
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1. The model error m^ and the noise error v^ are uncorrelated: E { w ^ v ^ } = 0. 
2. The model error m^j is "uncorrelated": i{m^my^} =m2S(i-j), with S(k) the 

Kronecker delta. 
3. The model error m^ and the derivative of the normalized residual w.r.t. the 

model parameters s\q are asymptotically (JV-»oo) uncorrelated: 

4. The noise error v[y] and the derivative of the normalized residual w.r.t. the model 
parameters ε^ are uncorrelated for large signal-to-noise ratios ( υ —» oo): 

Ε { 4 ^ Λ ] } « Ε { 4 ^ ] ί Ε ί ^ ] ^ ] } 

where E ^ v ^ } = S(i-j) +Op(N~l) (see Lemma 19.9). 

At first glance it might seem hard to assume uncorrelated model errors. However, cor-
related model errors would be detected in the whitness test of the residuals (see Section 19.5), 
and it can be argued that one should not bother about AIC or MDL under these conditions. 

Theorem 19.15 (AIC and MDL in the Presence of Model Errors): Under the 
assumptions of Lemma 19.9 and Assumption 19.14, the modified AIC and MDL rules equal 

modified AIC: FMarkov(¿(z),z)(l + ^ f ) (19-52) 

modifiedMDL: KMarkov(0(z),z)(l + ^ ln(rank(C„r))) (19-53) 

Proof. See Appendix 19.N. D 

In the presence of "uncorrelated" model errors the modified AIC and MDL rules will 
help to select the best model within the considered model class. An example of "uncorre-
lated" model errors are the stochastic nonlinear distortions when approximating a nonlinear 
dynamic system by a linear transfer function model (see Chapter 3). 

19.7.1.2 Detection of Undermodeling. Undermodeling can be detected by a null 
hypothesis test on the cost function (see Section 19.6): if ^Markov(^(z)>z) > 

(rN- ηθ)/2 + 2j(rN-ne)/2 then, with 95% confidence, model errors are present. 

19.7.1.3 Model Validation. The whiteness test of the residuals (see Section 19.5) can 
be used as a model validation tool. If the sample correlation is not a delta function within its 
uncertainty, then model errors are present. If it is white within its uncertainty, then the model 
passes the validation test. This does not, however, mean that no model errors are present. 
Indeed, the whiteness test is insensitive to errors that behave as white noise in the residuals. 
Nonlinear distortions in system identification are an example of such errors (see Chapter 11). 
The presence of model errors in a validated model can be detected by a null hypothesis test 
on the cost function (see paragraph 19.7.1.2 of this section). 
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19.7.1.4 Model Selection Procedure. The following iterative model selection proce-
dure results. 

1. Choose an initial model set (model order). 
2. Estimate the model parameters. 
3. Validate the model using a whiteness test on the residuals (see Section 19.5). If the 

residuals are white or a user-defined criterion is satisfied, then go to 4, else in-
crease the model complexity and go to 2. 

4. Detect undermodeling using a null hypothesis test on the cost function (see Sec-
tion 19.6). If the cost function lies in the interval (rN- n0)/2±2j(rN- ηθ)/2, 
then go to 5, else stop. 

5. Detect overmodeling using the MDL criterion (19-51). 

Possible user-defined criteria in step 3 are, for example, that the estimated contribution of the 
model errors ^Markov(̂ (zo)> zo) t 0 m e c o s t function (see (19-48)) is below a given level C, or, 
in system identification, that the maximal (relative) transfer function error is less than a given 
value ε. The proposed procedure starts with simple models and gradually increases the model 
complexity. Practice has shown that in most identification problems the iterative procedure 
stops at step 4 (the validated model still contains some model errors). This is quite natural be-
cause the proposed model set reflects our belief in what reality is. This belief is mostly (al-
ways?) an approximation of the true behavior. 

19.7.2 Complex Case 

The results of the real case are still valid for complex observations z E CSN and circu-
lar complex errors nz with the following modifications: replace rN by 2rN, and rank(C„ ) 
by 2rank(Crt ). For complex model parameters ηθ is replaced by 2ηθ. For example, (19-51) 
becomes 

MDL: FMarkov0(z),z) + |ln(2rank(C„2)) (19-54) 

for real model parameters Θ e R"*, and (19-53) becomes 

modified MDL: FMarkov(0(z), z)(l + ^ ln(2rank(C„z))) (19-55) 

for complex model parameters 0e C"e. 

Example 19.16: Consider the frequency domain identification of a linear time-invari-
ant MIMO system from periodic steady-state measurements, and assume that the input and 
output spectra are observed at F frequencies (model (19-5) with r = ny, q = nu9 and 
Ik(0) = 0; see also Chapter 6, left matrix fraction description (6-54). In this case (19-54) ap-
plies with ηθ = nanj + (nb + \)nynu and rank(C,7z) = nncF with nnc the number of nonco-
herent noise sources. For example, nnc = nu + n for errors-in-variables problems (all obser-
vations are disturbed by noise) and nnc = ny for output error problems (the inputs are 
exactly known). According to the MDL principle, the optimal values of na and nb are found 
by minimizing (19-54) w.r.t. na, nb e N ( ^Markov(^(z)>z) ls a function of na, nb). D 
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19.8 EXERCISES 

19.1. Consider a scalar (SISO) discrete-time system and assume that N samples of the input 
and output signals are available. Show that the time domain model can be written in the 
form (19-4) with r = q = 1. 

19.2. Consider a multivariable system with nu inputs and n outputs. Assume that the input 
and output signals are periodic and that the DFT spectra are available at F frequencies. 
Show that the frequency domain model equations can be written in the form (19-2) with 
r = 2/2 , s = 2(nu + n ), and N = F (hint: use the left matrix fraction description 
(6-54) and apply Lemma 15.4). 

19.3. Repeat Exercise 19.2 for arbitrary excitations (hint: use the left matrix fraction descrip-
tion (6-54) generalized for arbitrary excitations). 

19.4. Solve the constraint minimization problem (19-6) assuming that Cn is a regular ma-
trix. 

19.5. Assume that Μ0ψ) in (19-1) is linear in some of the model parameters, say ψ e Rn«% 
and that Μχψ) is independent of ψ: Μ0ψ) = Μ(ξ)ψ and Μχ(θ) = Μχ(ξ) where 
£ e Une-n<«, Μ(ξ) e UrNxnv and θτ = [ψτξτ]. This form, with Μχ(θ) = IrN, is 
typically encountered in signal models (Cadzow, 1990; Van den Bos and Swarte, 1993). 
First, show that the cost function (19-8), after elimination of ψ, becomes 

W o v ^ ) = ^{Κ{ξ)Λ{ξ)Μχ(ξ)ζ Ϋ(Κ{ξ)Λ{ξ)Μχ{ξ) Ζ ) 

where A(fieRrNxrN satisfies Λτ(ξ)Λ{ξ) = Cjffi and R(g)eRrNxrN is an 
idempotent matrix of rank ΓΝ-ηψ, Rffi = Ι,Ν-Ρ(ξ)(Ρτ(ξ)Ρ(ξ))-ιΡτ(ξ) with 
Ρ(ξ) = Α(ξ)Μ(ξ). Show that the Markov estimate of ψ is given by 

Next, show that the cost function ^Markovi^»z) c a n ^e written as 

VMarkoy(£z) = 0.5ε?(ξ, ζ)ε(ξ,ζ) 

where < £ z ) e UrN~nw equals ε(ξ,ζ) = [IrN_nv/ 0]ντ(ξ)Λ(ξ)Μχ(ξ)ζ, and Υ(ξ) is 
the orthogonal matrix of the eigenvectors of R(%). Finally, show that 
Cov(4t,nz)) = IrN_nv. 

19.6. Prove the Cramér-Rao lower bound (19-22) for complex observations z, circular com-
plex distributed errors nz, and real model parameters Θ (hint: first show that 
Wov(3*) = O.5e£(0, zJCjH^M*,*) = eH(0, z)Cf(0)e(% z) using Lemmas 15.3 and 
15.4). 

19.7. Prove the Cramér-Rao lower bound (19-23) for complex observations z, circular com-
plex distributed errors nz, and complex model parameters Θ, assuming that e(0, z) is 
an analytic function of Θ (hint: rewrite (19-22) using d/(0)/dRe(0) = df(0)/d09 

d/(0)/dIm(0) =jdf(0)/d0, Re(yX) = lm(X) and definition (15-40)). 
19.8. Consider the model of Exercise 19.5 and show that the CR bound of the parameters ξ 

is given by 

CR-Κξο) = FU® = VMMkov"(40,z0) = {-Q^-) {-Q^j 

(hint: start from the Fisher information matrix Fi(y/0, ^ ) , apply the inverse of block 
matrices (15-8), and use the results of Exercise 19.5). 

19.9. Show that the asymptotic covariance matrix is given by (19-33) as the signal-to-noise 
ratio increases to infinity (hint: show that νΝ"~ι(θ0) = 0(υ2), gN(00) = 0(υ~1)). 
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19.10. Show that the asymptotic covariance matrix of the model parameters is given by 
(19-34) for "small" model errors and "large" signal-to-noise ratios (hint: use 
ε(θιΖ) = ε(θ,ζ0)+Δ(θ,ηζ), Ε{Δ(θ,ηζ)} = 0, Ε{Δ(Θ, ηζ)Δ

τ(θ, ηζ)} =Jn$, and 
ν\θ(ζ0), ζ0) = 0 for deterministic ζ0, £·(0(ζο),ζο) = 0(μυ~ι), and Δ(θ(ζ0), ηζ) = 
Ο(μ0υ0)). 

19.11. Show that the rank condition rank(C„ ) = rN in Theorem 19.4 is automatically satis-
fied for signal models. 

19.12. Show that E{Z-=i( (e^o)^)) m ) 2 / ( rA0} = (rN-n0)/(rN) (hint: use the properties 
of Qe(z0) and δε(ζ) given in Lemma 19.9). 

19.13. Show that the covariance matrix of Q£(z0)S£(z) is given by (19-42) (hint: use the prop-
erties of Q£(z0) and δε(ζ) given in Lemma 19.9 and approximation (19-34)). 

19.14. Consider the case of complex observations z and circular complex distributed errors 
nz. Prove that in the absence of model errors R££(k), k^O, is asymptotically cir-
cular complex normally distributed Nc(0, \/(rN-k)) (hint: follow the lines of part 
3 of Appendix 19.J and show that cum(Ree(k), R££(k)) = \/(rN-k), 
cum(R££(klR£S(k)) = 0 with Ree(k) = (rN- ^Σ^Ϋ δεφ)δε[ϊ + φ \ and where δε(ζ) 
defined in Lemma 19.9 is circular complex normally distributed). 

19.15. Consider the case of complex observations z and circular complex distributed errors 
nz. Show, using Lemma 19.9, that the expected value of ^ ( 0 ) is approximately 
(7V-»oo, u, μ - » 0 ) (rN-n0/2)/rN and (rN-ne)/rN for, respectively, real and 
complex model parameters (hint: replace z by zre, and Θ by #re for complex model 
parameters, and show that ε(θ,ζκ) = Jlsre(6,z) (e(0Te,zK) = 7 2 ^ ( 0 , z)), next fol-
low the lines of Section 19.5). 

19.16. Consider the case of complex observations z and circular complex distributed errors 
nz. Show, using Lemma 19.11, that Theorem 19.12 and formulas (19-48), (19-49) are 
still valid, where rN-n0 is replaced by 2rN-ne for real model parameters and 
rN-Πβ by 2(rN- ηθ) for complex model parameters (hint: use the hint of Exercise 
19.15). 

19.9 APPENDIXES 

Appendix 19.A Constrained Minimization (19-6) 

Expressing the stationarity of the cost function (19-6) w.r.t. zp and λ gives 

- C¿z(z-zp) + Μ\{θ)λ = 0 (19-56) 

Μ0(β) + Μχφ)ζν = 0 (19-57) 

λ is solved from (19-56) by left multiplication with Mx(0)Cn 

λ = {M^)Cn^)Y'M^)Cnpn(z-zv) (19-58) 

Because Cn is a symmetric positive semidefmite matrix, it can be decomposed into singular 
values as Cn = UIU7, where U is an orthogonal matrix (UTU= UUT = IsN) and Σ a 
diagonal matrix (rank(i7) = rank(C„z)) containing the sorted singular values (see Section 
15.4). Defining 

£/% = »ΊΡ 

w> 20 

(19-59) 
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where dim(WXp) = rank(Cw), it follows that 

h = u 

W20 

and C„C^zp = U 
0 0 

u\ = u w, (19-60) 

with rc = rank(C«z). Wlp stands for the (linear combination of) measurements lying in the 
regular space of C„z and is estimated, while W20 represents the (linear combination of) mea-
surements lying in the null space of C„z and is known exactly. Hence, we have 

z = U 
W, 

w, 20 

and C„ C¿z = U (19-61) 

Rewriting (19-57) and (19-58) using (19-60) and (19-61) makes it possible to eliminate WXp 

in (19-58) 

λ = {Mtf)CnM\{e))-\M0{9) + Μχ(θ)ζ) (19-62) 

Substituting (19-62) into (19-56) and left multiplication of (19-56) by C„z gives (19-7). Us-
ing (19-60), it can be seen that (19-7) is independent of W20, which is known exactly, and, 
hence, makes it possible to estimate the measurements WXp lying in the regular space of Cw¿ 

only. Because C^ = {CnzCnz)Cn2{CnC$z) (see Section 15.5, properties 1 and 2) and 
CnJ = Cnz, the cost function (19-6), where zp satisfies (19-57), can be written as 

0.5[Cnpn2(z-zp)VC:z[CnC
+

n2(z-zp)] 

Substituting (19-7) into (19-63) using Cn Q Cn = Cn gives (19-8) directly. 
" 2 " 2 " 2 

(19-63) 

D 

Appendix 19.B Proof of the Cramér-Rao Lower Bound 
for Semilinear Models 

The proof consists of two parts. In the first part we reduce the sN parameters zp to the 
rc - rN parameters JC0, with rc = rank(C«z). In the second part the Fisher information ma-
trix Fi(x0, θ0) of the observations x and the model parameters Θ is reduced to the Fisher in-
formation matrix Fi(0o). 

(i) The known observations lie in the null space of C„z (sN-rc parameters) and are 
separated from the unknown observations by decomposing the parameter vector 
zp as in (19-60). Using (19-60), with U = [Ux U2] and Ux e UsNxr<9 the con-
straint (19-57) can be written as 

Μχφ)υλΨΧν = -Mo(e)-Mx(0)U2W2O (19-64) 

Ce(0) = Μχψ)ΟηζΜ\ψ) has, by assumption, full rank rN and, therefore, 
rc > rN and TSLnk(Mx(0)Ux) = rN. Because rc > rN, (19-64) has, in general, in-
finitely many solutions for Wx . They can be found by adding one particular so-
lution of (19-64) to the solution of the homogenous part of (19-64). The solution 
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Wxh of the homogenous part lies in the null space of Μχ(θ)ϋχ G 
cause Μχψ)υχ has full rank rN9 it can be written as 

r>rNx rr . Be-

Wxh = Q{9)x (19-65) 

with x G W<-rN and where ζ)ψ) e WcX{r<-rN) satisfies Mx(e)UxQ(0) = 0 
(see Section 15.4.1). It can easily be verified that 

ΨΧρ{θ) = -Μτ(θ)(Μφ)Μτ(θ))-\Μ0(θ) + Μχ(θ)ϋ2Ψ20) (19-66) 

where Μψ) = Μχψ) Ux, is a particular solution of (19-64). The complete solution 
of (19-64) equals WXp = Wxh + WXp(0) so that in (19-60) zp can be written as 

zp = zJx, Θ) = 1 / ^ 0 ) * + Ux Wlp(0) + i /2^2 20 (19-67) 

with x G Urc rN, which concludes the first part of the proof. The following prop-
erty of the function zp(x, Θ) will be used in the second part of the proof: 

Μχ(θ) 
dzp(x9 Θ) 

dx 
Μχ(θ)υχ<2(θ) = 0 (19-68) 

(ii) The second part of the proof starts with the calculation of the Fisher information 
matrix Fi(x0, θ0). Applying (16-85) to (19-16), using zp(x0, θ0) = z0, gives 

F = 

χθ 

δζν(χ,θ)γ^+(θζρ(χ,θ) κ-dx ) "zV dx 

δζν(χ,θ)γ^(δζρ{χ,θ) 

X — XQ, v — C/Q 

y*. 
ΘΘ 

dx ) "Λ ΘΘ 

θζρ(χ,θ)γ^+(δζν(χ,θ) 

X — Xn, Θ — ΘΓ 

x -xa, Θ- & 
ΘΘ J ~"Λ ΘΘ 

Cn and C+ can be decomposed into singular values as 

(19-69) 

C. = U 

ct = u 

2Ί 0 

0 0 
IF = υ,ΣΜΤ 

I f ' O 
0 0 

, - ί , , ο , 

uT = uxi^u\ 

(19-70) 

where Σλ contains the nonzero singular values of C„z. Putting (19-69) into 
(19-20) by using (19-70) gives, after some calculations, 

Fi($0) = GT[Ir -F(FTF)-lFT]G (19-71) 
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with G = ^/2υ{δζρ(χ0,θ)/θθ0 and F = £¡l/2Q(eo). Defining E = 
Μχ(θ0)υχΣ\/2, it follows from (19-68) that EF = 0. Because the matrices 
E e UrNxr< and FG Ur<x{r*-rN) have, respectively, full rank rN and rc-rN 
and EF = 0, it follows that the conditions of Theorem 15.2 are fulfilled for the 
symmetric idempotent matrices F(FTF)~lFT and ET(EET)~lE. Hence, 

Ir-F(FTF)~lFT = ET(EET)~lE (19-72) 

so that (19-71) can be simplified as 

F/(0O) = (EG)T(EET)-l(EG) (19-73) 

Working out EG gives 

EG = Μχ(θ0)— l P ° (Ux is independent of Θ) 
dv0 

= M^eJ*2^*® UlW2o) ((19-67) with UT
XUX = / r and £/ft/2 = 0) 

¿7#π
 c 

Λζ0-ζ (χ0,θ)) 
= - M ^ ^ Q ) ^ (U2, W20, z0 are independent of Θ) 

ϋϋ0 

dMmí*o-z¿x»e» (2 =z(x θ)) 

= - ° θθ ' ° ((19-57): Μ,(0)ζρ(χο, θ) = -Μο(0)) 

Substituting this result into (19-73), taking into account that EET = Ce(#0) (see 
(19-9)), gives 

Using e(#0, z0) = 0, the two other expressions in (19-21) follow directly. D 

Appendix 19.C Markov Estimates of the Observations 
for Signal Models and Transfer 
Function Models with Known Input 

For signal models, we have Μχ(θ) = -IsN, Ce(0) = C„z (see (19-9)), and C+ = C~] 
(Assumption 17.2 implies that Ce(0) is regular), and (19-11) becomes 
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z = Mo(0(z)) 

For transfer function models with known input, we have 

(19-75) 

^ n . = 
< " . , 

"> 
L° 

0 

oj 
c c+ = 

0 0 
(19-76) 

Taking into account (19-4), (19-11) becomes 

Α-\θ{ζ))Βφ{ζ))η,\ 

0 
(19-77) 

which concludes the proof. D 

Appendix 19.D Proof of the Convergence Rate of the Markov 
Estimates for Large Signal-to-Noise Ratios 
and Small Model Errors (Theorem 19.2) 

δθ(ζ) defined in expression (17-14) will be elaborated for the Markov estimator, as-
suming large signal-to-noise ratios and small model errors. Therefore, nz is replaced by vnz 

(and, hence, C„z by u2Cn) with υ->0, and e(#(z), z0) by μβ(θ(ζ),ζ0) with //—»0. The 
proof consists of two parts: part one studies δθ{ζ) = Δθ(ζ) + δθ{ζ) and part two be(z). 

(i) The Hessian of the expected value of the cost function can be written as 

νΝ\θ(ζ,)) = i 
. 9<9(z0), 

7Υ δε(θ,ζ0) 

δθ(ζ0)) 

1 * . δ2ε,αθ,ζ0) 

+ ¿ Σ *mW*o), *ο) J?, 2 (19-78) 
*= i δθ(ζ0γ 

where the first and second terms in the right-hand side are, respectively, an 
0(υ~2) and 0{υ~2μ). Hence, 

νΝ"-\θ(ζϋ)) 
δε(θ,ζ0) 

8θ(ζ0) 

Τ( 

ο>; 

3ε(θ,ζ0) 

δθ{ζ0))) 
+ υ20{μ) (19-79) 

where the first term in the right-hand side is an 0(υ2). Using 
ε(θ,ζ) = ε(θ,ζ0) + Δ(θ,ηζ), witix Δ(θ, ηζ) = Λ(θ)Μχ(θ)ηζ (see (19-9)), gives 

VN'T0(zo),z)=i 
δε(θ,ζ0γ

Τ 

δθ(ζ0) 
ε{θ(ζ0),ζ0) + -

(δε(θ,ζ0) λτ 

δθ(ζ0)) 
Δφ(ζ0), ηζ) 

Ν 

δΔ{θ, η$\ 

δθ{ζ0) o) J 

ε(θ(ζ0),ζ0)+^ 
δΔ(θ,ηζ) 

(19-80) 

δθ(ζ0) 
Δφ(ζ0\ ηζ) 

o) y 
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Note that the expected value of each of the terms in the right-hand side of (19-80) 
is zero. This is evident for the first three terms. For the transpose of the fourth 
term, we find 

δθ(ζ0) 8θ(ζ0) θθ(ζ0) 

Applying the law of large numbers for mixing sequences (see Section 16.9, ver-
sion 3) to each of the terms in the right-hand side of (19-80) shows that they are, 
respectively, an Ορ{μιτ2Ν-υ2), O^urW2), Ορ(υ~ιμΝ-1/2), and Op(N-i/2). 
Because VN\§(z0), z0) = 0 for deterministic z0, (19-80) becomes 

VN'T(0(zo),z) = υ-Ηυ + μλ(ζ0))Ορ(Ν-"2) (19-81) 

with λ(ζ0) = 1 and 0 for, respectively, random and deterministic 
z0. Combining (19-79) and (19-80) with Δ(θ, nz) = (δεφ(ζ0),ζ)/δζ)ηζ, 
gives δθ(ζ) = Δθ(ζ) + δθ(ζ) with E{^(z)} = 0, Ε{δθ(ζ)} = 0, Δθ{ζ) = 
υΟρ(Ν~1'2), and θθ(ζ) = (υ2 + υμ + μλ(ζ0))Ορ(Ν-1'2). 

(ii) From the proof of Theorem 17.21 (see Appendix 17.E), it follows that the b¿z) 
term stems from the difference νΝ"(θ , ζ) - νΝ"(θ(ζ0)) = Ορ{Ν~υ2), 

be(z) = [ VN"-\?, z) - νΝ"-\θ(ζ0))] VN'T0(zo), ζ) (19-82) 

This expression will be refined. Applying the mean value theorem to VN"( θ , z) 
at the points θ , θ(ζ0) gives 

νΝ"(θ,ζ) = ^"(^(z0),z) + X ; = i }¡¿ \θ W - % ] ( z 0 ) ) (19-83) 

with θχ = tx Ί) + (1 - tx)θ(ζ0) and tx e [0, 1 ]. Because 1) - θ(ζ0) = 
ί(θ(ζ)-θ(ζ0)) (see (17-10)), and θ(ζ) - θ(ζ0) = Λθ(ζ) + 6θ(ζ) +£θ(ζ\ with 
be{z) = Ορ(Ν~ι) (see previous paragraph), we have θ -θ(ζ0) = 
(υ + μλ(ζ0))Ορ(Ν-ι/2). Combined with dVN

n(0,z)/d0l[k] = υ-2Ορ(Ν°) (see 
Appendix 17.E), the second term in (19-83) becomes 

w*. δνΝ"(θ, ζ) ^ 
Σ / - ! L (Θ w - %](z0)) = υ-\ υ + μλ{ζ,))Ον{Ν~^) (19-84) 

The first term in (19-83) can be written as 

VN"0(zo), z) = VN"0(zo), z0) + ^δ2εΤ(θ^ο)Δ(θ,ηζ) + „φ(Ζο1 } ( 1 9 . 8 5 ) 
N 9θ(ζ0)

2 

with νΝ{θ,ηζ) = (2Ν)-ιΔτ(θ,ζ0)Δ(θ,ηζ). VN"0(zo),zo) converges w.p. 1 to 
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VN"(<9(z0)) for random z0 and VN"0(zo), z0) = VN"0(z¿¡) for deterministic z0 

(Lemma 17.17): 

VN"0(zo), z0) = νΝ"(θ(ζ0)) + υ-ΐλ(ζ0)Ορ(Ν-"ΐ) (19-86) 

Using Lemma 17.17, it follows that the second and third terms in the right-hand 
side of (19-85) are, respectively, an Ορ(υ-ιΝ-112) and 0ρ(υοΛΗ/2). Hence, 

VN"0(zo), z) = VN"0(zo)) + (u-1 + υ-2λ(ζ0))Ορ(Ν-^) (19-87) 

Combining (19-83), (19-84), and (19-87), using VN"0(zo)) = υ-2Ορ(Ν°), gives 

VN"(?, z) = VN"(0(zo)) + (u-i + υ-ΐλ(ζ0))Ο<Ν-">) 
p (19-88) 

=> VN"-\?, z) = VN"-\§(z0)) + υ(υ2 + υλ(ζ0))Ορ(Ν^>2) 

Collecting (19-81), (19-82), and (19-88) finally gives 

be{z) = (u2 + (υ + μ)λ(ζ0))Ορ(Ν-ΐ) (19-89) 
The term υλ(ζ0)Ο (N~l) in 6^(z) stems from the product of the second term in 
(19-80) with the term υ2λ(ζ0)Ορ(Ν-ιη) in (19-88). As the latter depends only on 
z0 (see (19-86)), the expected value of this product is zero (by assumptions, z0 

and nz are independent). D 

Appendix 19.E Proof of the Asymptotic Distribution of the 
Markov Estimates without Model Errors 

Expression (17-18) will be elaborated for the Markov estimator assuming that no 
model errors are present (β(θ0, z0) = 0). Using ε(θ9 z) = ε(θ, ζ0) +Δ(Θ, nz), with 
Δ(θ,η2) = Λψ)Μχφ)ηζ, and ε(θ0,ζ0) = 0 (see (19-8)), we find 

VNWO* Z) = jf^ffl V o > "z)+ V ^ o * nz) (19-90) 

where νΝ(θ9 nz) = (2Ν)-ιΑτ(θ,ηζ)Δ(θ,ηζ). Because Cov(zl(0, nz)) = IrN (see (19-8)), 
ε(θ0,ζ0) = 0 and z0, nz are mutually independent (Assumption 17.1), ζ)Ν(θ0) (17-18) be-
comes 

QM = ΝΕ{νΝ'?(θ0,ζ)νΝ'(θ0,ζ)} 

= νΝ\θϋ)+ΝΗνΝ'τ{θ0,ηζ)νΝ\θ0,ηζ)} ^ ^ 

+ 2herm(Ε { { - ^ ) } Ε {Δ(θ0, ηζ)νΝ\θ0, ηζ)}) 

Putting (19-91) into (17-18) gives (19-32). D 
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Appendix 19.F Proof of the Asymptotic Efficiency 
of the Markov Estimates (Theorem 19.4) 

The second term in the expression of qN(eo) (see (19-32)) is a function of the third-
order moments of nz and, hence, is zero for Gaussian errors nz. The first term is positive 
semidefinite and is zero if and only if νΝ(θ9 nz) is independent of Θ for any nz. From (19-70) 
and Assumption 19.1, it follows that we can write nz as nz = υλΣ\,2εζ with εζ e Nr (0, Ir) 
(see Exercise 16.9). Hence, Μχ(θ)ηζ = Ε(θ)εζ, with Ε(θ) = Μχ(θ)υχΣ}/2, and Ce(0) = 
Ε(Θ)ΕΤ(Θ), so that 

% ( 3 nz) = ± εϊΕΤ(θ)(Ε(θ)ΕΤ(θ))-ΐΕ(θ)εζ (19-92) 

The matrix Ε{θ) e UrN x r« has full rank rN (rN<rc< sN) because Ce(0) has full rank rN. 
If rc = rN9 then (Εψ)Ετ(θ))-1 = ΕΓΤ(Θ)ΕΓ\Θ) and νΝ(θ, ηζ) = εΊ

ζεζ/(1Ν). This 
concludes the proof because εζ is independent of Θ. D 

Appendix 19.G Proof of the Convergence Rate 
of the Residuals (Lemma 19.8) 

Applying the mean value theorem to ε^(θ(ζ), z) at the points #(z), θ(ζ0) gives 

ε{ί]{θ(ζ\ z) = *m(0(zo), z) + d£{f^Z)0(z) - θ(ζ0)) (19-93) 

where θλ = ίλθ(ζ) + (1 -t{)9(z0) with ίλ e [0, 1]. Under Assumptions 19.5, 19.6, and 
17.1 (P = 2) ε(θ, z) and 3ε(θ, z)/d0y] are both mixing of order 2 in PT (Corollary 16.7), so 
that var(¿rm(6U)) = 0(N°) and £ονκ(3ε[ί](θ,ζ)/θθ) = 0(N°) uniformly in Pr . Hence, 
£m(0(zo), z) isantfms(JV°) (O (N0)). From Theorem 17.21, it follows that θ(ζ) converges in 
prob. to 0(zo) attherate Op(N~l/2). Thesame is true for 0l9 so that θε[ί](θ,ζ)/δθι = Op(N°) 
(Lemma 17.33). We conclude that ε[ίλψ(ζ\ z) - ε^(θ(ζ0)9 z) = Op(N~l/2), which proves the 
lemma. D 

Appendix 19.H Properties of the Projection Matrix 
in Lemma 19.9 

Part one of this appendix studies the stochastic properties of the projection matrix 
Q£(z0) in (19-38) for random z0. Part two calculates the covariance matrix of Q£(z0)S£(z). 

(i) Under Assumptions 17.1 (P = 4) and 19.6(a), δε(θ,ζ0)/θθ^ is mixing of order 
4. Therefore, θε[ί](θ,ζ0)/δθΰ] = Op(N°) and 

h^r-^m - M ^ H ? * ) » ♦<*-■"> <»-*> 
uniformly in Pr as N-> oo (proof of (19-94) is similar to Lemma 17.3). Because 
Assumption 17.18 is valid for any / / - > 0 , it guarantees that 
Ε{ε'τ(θ(ζ0\ ζ0)εχθ(ζ0% z0)} = 0(N). Putting these results in (19-38) finally 
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gives Q£[iJ](z0) = IrN[ij] + Op(N~l). As z0 is uniformly bounded, there exists 
m N0 s.t for my N>N0: Ε{β φ · ,#ο )} = W j ] ^ ^ " 1 ) · 

(ii) Using Έ.{δε(ζ)} = 0, Cov(^£(z)) = IrN, and the fact that nz and z0 are 
stochastically independent gives Co\(Qe(z^S£{z)) = i{Q£(z0)}

 = 0(N°), 
where the last equality follows from part one. D 

Appendix 19.1 Proof of the Improved Convergence 
Rate of the Residuals (Lemma 19.9) 

Taylor series expansion of ε^(θ(ζ), ζ) at #(z0), z0 gives 

ε[η(θ(ζ),ζ) = g[/3(^(z0),z0)+ li A0 + -LL^ n% 

1 82εϊη(θ9ζχ) ,β2€{ΑΘ9ζλ) 
(19-95) 

with Αθ = #(z) - 0(zo), θχ = íj0(z) + (1 - tx )0(zo), zx = txz + (1 - tx )z0, and 
^ G [ 0 , 1 ] . We analyze each term in the right-hand side of (19-95). Under Assumptions 17.1 
(P = 2) and 19.5, the first term of (19-95) is mixing of order two (Corollary 16.7) and, 
hence, it behaves as υ~ιμΟρ(Ν°). Using (19-31), the sum of the second and third terms of 
(19-95) becomes 

(a(z0)4(z)) [ / ] + (¿; + // + //A(z0))Op(AA-i/2) (19-96) 

with λ(ζ0) = 1 for random z0 and λ(ζ0) = 0 for deterministic z0. Because 
Ε{(β,(ζο)^))[ ί]} = ° a n d va i ( (a (zo)^) ) [q ) = W ) (see Appendix 19.H), we have 
(β,(ζ0)4(ζ))[ ; ] = Op(N°). Using Αθ = (υ + μλ(ζ0))Ορ(Ν-^) (Theorem 19.2) and 
Assumption 19.6, it can be seen that the last two terms of (19-95) are, respectively, a 
υ-ι(υ+μλ(ζ0))

2Ορ(Ν-1) and (υ+μλ(ζ0))Ορ(Ν~υ2). Putting all these results in (19-95) 
proves the lemma. D 

Appendix 19.J Proof of the Properties of the Sample 
Correlation of the Residuals 
(Theorem 19.10) 

The proof consists of three parts: part one shows the weak convergence and the conver-
gence rate of R£e(k), part two proves the asymptotic normality of R££(k), and part three gives 
an asymptotic expression (N —» oo) for the variance of the truncated sample correlation 
R££(k). In the proof, it is essential that N- \k\ = 0(N). Hence, the results are valid for con-
stant values of k or constant fractions k = aN, with a independent of N. 

(i) Define the following functions: 

4(¿U)=E{/„(0,z,*)} 
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with fN0(z\z9k) = R££(k). Under Assumptions 19.5, 19.6, and 17.1 (P = 4) 
ε(θ,ζ) and δε(θ,ζ)/δθ[}] are jointly mixing of order 4 in Pr . Hence, according 
to the weak law of large numbers (16-68), fN{9, z, k) and fN{9, z, k) converge in 
prob. to their expected values at the rate Op(N~l/2), and \\fN'(09 z, k)\\2 = Op(N°). 
From Theorem 17.21, it follows that θ(ζ) converges in prob. to θ(ζ0) at the rate 
Op(N~l/2). All the conditions of Lemma 17.34 are fulfilled so that fN0(z\ z, k) 
converges in prob. to fN(0(zo),k) at the rate Op(N~l/2). Using ε^(θ{ζ^),ζ) = 
ε{ί]φ(ζ01 ζ0) + δε[ί](ζ) in fN(§(z0% k) gives (19-40). 

(ii) Now we show that R££(k) is asymptotically normally distributed. Therefore, it is 
sufficient to verify that all the conditions of Lemma 17.38 are fulfilled. Under As-
sumptions 17.1 (P = oo) and 19.5, ε(θ,ζ) is mixing of order infinity. Hence, ac-
cording the central limit theorem ((16-74), version 4), fN(0,z, k) is asymptoti-
cally normally distributed (condition 1 of Lemma 17.38). Condition 2 of Lemma 
17.38 is already satisfied (see part one of the proof). Under Assumption 19.6(b) 
we have ||./#ff(0, z, k)\\2 = Op(N°) uniformly in Pr (condition 3 of Lemma 
17.38). The proof is similar to that of fN\0, z, k) in part one. The assumptions of 
Theorem 17.29 are satisfied so that θ(ζ) is asymptotically normally distributed 
(condition 4 of Lemma 17.38). 

(iii) In the absence of model errors (Assumptions 17.9 and 17.10), εφ(ζ0), z0) = 0 
and 

ε(θ(ζ0),ζ) = Δφ{ζ,\ηζ) = δε(ζ) (19-97) 

where δε(ζ) is defined in Lemma 19.9. Using (19-97), (19-93) becomes 

£[i]0(z\ z) = SE[i](z) + Op(N-"2) (19-98) 

where δε^(ζ) is an Op(N°). The asymptotic variance (J¥-»oo) of the truncated 
sample correlation R££(k) is, hence, given by 

var(wvq^^-!"¡'" ¿*[/]W<W](*)) 

Under Assumption 19.1, δε^(ζ) is normally distributed NrN(0,IrN), so that the 
cumulants of δε^(ζ) of order 3 and higher are zero (see Example 16.2). Using 
this result together with that of Example 16.36 and var(x) = cum(x, x) (see Sec-
tion 16.1), we find 

v a r ( ^ i ; ! " , W Sm{z)S£[i + k]{z)) = -Λ^(1 + **)) D 
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Appendix 19.K Proof of the Convergence Rate 
of the Minimum of the Cost Function 
(Lemma 19.11) 

Taylor series expansion with remainder of VN(0(z), z) = N~l ^Markov(̂ (z)>Z) a t #(zo)> 
z0 gives 

νώ(Λ Λ vm< Λ ^θνΝ(θ,ζ0)χη^θνΝφ(ζ0)9ζ) 
νΝ(θ(ζ\ζ) = VN(0(zo)9zo)+ ΑΘ + — nz 

δθ(ζ0) οζ0 

J A . / W ^ o ) A . J TS2VN0{zo\z) ^ΑητδΐνΝ(θ,ζ) (19-99) 
+ -Δ07 - — Δ0 + - « / — nz+ Αθτ— nz 

2 δθ(ζ0)
2 2 dzl δθ(ζ0)θζ0 

+ RX+R2 + R3 + R4 

where 

' .■Kr.1H^(S,^J,1(M 

and ^ = ίιθ(ζ) + (1-ίι)θ(ζ0), zx = ^ z + ( 1 - / ^ 0 with tx e [0, 1]. Each term in the 
right-hand side of (19-99) will be studied. 

(i) Under Assumptions 17.1 (P = 4) and 17.2(a), the first term VN(<9(z0), z0) is mix-
ing of order two so that var(P^(#(z0), z0)) = 0(N~l) and, hence, 

K„(0(zo),zo) = μ*υ-ΐΟρ(Ν°) (19-100) 

(ii) Using Theorem 19.2, the sum of the second and the third term can be written as 

¿ * Γ ( 0 ( ζ ο λ * ο ) & ^ (19-101) 

For deterministic z0 we have νΝ\θ(ζ0\ z0) = VN\0(z0)) = 0 (see (19-26)). For 
random z0, ^'(¿^(ZQ), z0) converges in prob. to νΝ\θ(ζ0)) at the rate Op(N~l/2) 
(Lemma 17.17). νΝ\θ(ζ0)) = 0 by definition of 0(zo), so that 
^'(0(zo), z0) = μυ~2Ορ(Ν-ι/2). Putting these results in (19-101) gives 
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I ετ(θ(ζ0Χ z0)Q£(z0)S£(z) + I μΐυ-ΐλ(ζ0)Ορ(Ν») (19-102) 

with λ(ζ0) = 1 for random z0 and λ(ζ0) = 0 for deterministic z0. Note also 
that ετ(θ(ζ0), z0)Q€(z0) = ετ(θ(ζ0),ζ0) for deterministic z0. 

(iii) The second-order derivative in the fourth term of (19-99) can be written as 

< ? 2 W * o ) _ 1 
δθ(ζ0)

2 Ν v d0(zo), 

T 'de(AzS 
{ θθ(ζ0)) 

4l^o)^)d-^é^ (19-103) 
k= i θθ(ζ0Υ 

Under Assumptions 19.5, 19.6, and 17.1 (P = 4), both terms in the right-hand 
side of (19-103) converge in prob. to their expected value (proof: similar to 
Lemma 17.17). Assumption 17.18, which is by assumption valid for any μ -» 0, 
guarantees that both terms behave as an Op(N°). We conclude that the first and 
second terms are, respectively, an υ~2Ορ(Ν°) and μυ~2Ον(Ν°). 

(iv) The sixth term of (19-99) can be written as 

Αθτ(φ)+/Νφ(ζ0),ζ)) 

φ) = ±ε'Τφ(ζ0),ζ0)δε(ζ) 

ίΝΦ(ζ0), ζ) = - Χ ^ , £[k]0(zo), z0)\ 
'δδε[ψ)Υ 
V δ0(ζο) 

(19-104) 

where δε(ζ) is defined in Lemma 19.9. Because E{g(z)} = 0 and 

C o v ( g ( z ) ) = ^ E { 
δε(θ,ζ0) 

Tí 

δθ(ζ0) J 

9ε(θ,ζ0) 

δθ(ζ0) 
} = 0(N-i) 

we conclude that g(z) = v~lOp{N-xl2). Under Assumptions 19.5, 19.6, and 17.1 (P = 4), 
ε(θ, ζ0) and δδε{ζ)/δθ^ are jointly mixing of order 4, so that fN(0, z) converges in prob. to 
its expected value /y(#) at the rate Op(N~l/2), uniformly in Pr (proof: similar to Lemma 
17.17). Because fN0(zo)) = 0, it follows that fN0(zo), z) is a μυ-ιΟρ(Ν~ι/2). Combining 
these results with Theorem 19.2 gives the following expression for the sum of the fourth, 
fifth, and sixth terms in (19-99): 

¿L S¡(z)Q£(z0)S£(z) + ! ( / / + υ + μυ-\μ+ υ)λ{ζ0))Ορ{Ν*) (19-105) 

(v) The term RY is bounded above by 

\RX\< Σ ΐ Δ ^ Δ έ ^ Δ ^ , 
i,j, k = 1 

(INI2
2 + D 
N 

&WN(0) 

d9mdemdenk] 

(19-106) 
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where, by Assumption 17.20 (θχ e Pr) , the 2-norm of the third-order derivative 
of WN(0) w.r.t. Θ is an υ-2Ορ(Ν°). Under Assumption 17.1(P = 4), \\z\\¡/N 
and ||z0|2/N converge both in prob. to their expected values, which are both an 
0(N®) (weak law of large numbers, see Section 16.9). Hence, HzĤ /Af and 
|z0| | |/W are both an Op(N°). This is also true for HzJ^/N, because 
zx = txz+(\ -tx)z0 with tx G [0, 1]. Combining these results with Theorem 
19.2 gives 

|tf,| < i υ-\υ + μΚζϋ))Όν{Ν-^) (19-107) 

(vi) Because VN(0,z) is a quadratic function of z, it follows directly that 

R2 = 0 (19-108) 

(vii) The term R3 can be written as 

R3 = νΝ\θχ,ηζ)ΑΘ (19-109) 

with νΝ(θ, nz) = (2Ν)-ιΔτ(θ,ηζ)Δ(θ,ηζ) and Δ(θ, ηζ) = Λ(θ)Μχ(θ)ηζ. We will 
verify that all the conditions of Lemma 17.34 are satisfied for νΝ\θχ, ηζ). Under 
Assumptions 17.1 (P = 4) and 17.16, νΝ\θ,ηζ) converges in prob. to its ex-
pected value Ε{νΝ\θ,ηζ)} = d(rN/2)/d0 = 0 at the rate^ Op(N~V2) uni-
formly in PT (Lemma 17.17). θ(ζ) converges in prob. to θ(ζ0) at the rate 
Ορ(Ν~ι/2). This is also true for θλ because θλ = tx0(z) + (1 -ίχ)θ(ζ0) with 
tx G [0, 1] . Under Assumptions 19.1 (P = 4) and 17.16, we have 

\\νΝ"(θ,η2)\\2< \h\\¡ 
N 

d2WN{6) 

θθ^δθ^^ 
= OJN°) 

uniformly in Pr . We conclude from Lemma 17.34 that νΝ\θχ,ηζ) = 
υ°Ορ(Ν~ι/2). Combining this result with Theorem 19.2 gives 

R3 = ±(υ + μλ(ζ0))Ορ(Ν») (19-110) 

(vi) The term R4 can be written as 

* d2F(0uz) 
R4= Σ Δ ^ Δ ^ \1

Θ (19-111) 

with F(6,z) = (2Ν)~ιΔτ(θ, ηζ)ε(θ,ζι). ζχ is mixing of order four because this 
is the case for z and z0. Therefore, under Assumptions 17.1 (P = 4) and 17.16, 
F"(#, z) converges uniformly in prob. to its expected value F"(#), which is an 
0(N°) (proof similar to Lemma 17.17). Because θχ converges in prob. to θ(ζ0) 
it follows that F\0x,z) converges in prob. to F"(0(zo)) = 0(N°) (Lemma 
17.31), so that F\0l9 z) = υ-χΟρ(Ν°). Combining this result with Theorem 19.2 
gives 

R4 = N~* ν-Κυ + μλ(ζύγθΛΝ*) (19-112) 
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(ix) Putting (19-100), (19-102), (19-105), (19-107), (19-108), (19-110), and (19-112) 
into (19-99), taking into account that VN{0(z)9z) = VMarkoy0(z)9z)/N9 proves 
(19-44). 

Appendix 19.L Proof of the Properties of the Cost 
Function (Theorem 19.12) 

To prove the asymptotic normality of VN0(z)9z)9 we show that all conditions of 
Lemma 17.38 are satisfied. In fact, it is sufficient to show the asymptotic normality of 
VN(0,z) because all the other conditions are satisfied under the assumptions of Lemma 
19.11. €[k](0, z) is mixing of order infinity under Assumptions 17.1 and 19.5 and, therefore, 
the asymptotic normality of ¥Ν(Θ9 ζ) follows directly from version 4 of the central limit the-
orem (see Section 16.10). 

Using S^z)Q£(z0)S£(z) = trace(&(z0)<^z)¿J(z)) and Assumption 17.1 (P = 2), we 
find 

E {¿Markov(^0)> *θ) > = E { ̂ Maikovfe Ζθ) } +E {taice(&(z0)) } 

Qe(z0) is an idempotent matrix of rank rN-ne so that trace(Q,(z0)) = rN-ne. Because 
δε(ζ) e NrN(09IrN) under Assumption 19.1, we have S^(z)Q£(z0)S£(z) e x\rN-ne) (see 

Exercise 16.10), so that VSLT(S¡(Z)Q£(Z0)S£(Z)) = 2{rN-ne) (Stuart and Ord, 1987). 
Formula (19-46) follows directly from this result. For deterministic z0, we have 
var(FMarkov((9(z0),z0)) = 0 and ετφ(ζ0)9ζ0)<2£(ζ0) = ετ(θ(ζ0)9ζ0)9 so that (19-46) reduces 
to (19-47). D 

Appendix 19.M Model Selection Criteria 

For model (19-1), the AIC and MDL criteria have the form 

-\nfz(z9x9ff)+g(k9m) (19-113) 

with fz(z, x9 Θ) the likelihood function, x the number of unknown, independent variables in 
zp (see Section 19.3), k the number of free parameters in the model to get the estimates θ{ζ) 
and x9 m the number of independent noisy measurements, g(k9 m) = k for AIC, and 
g(k9 m) = 0.5&lnjw for MDL. The number of free parameters equals the total number of 
identifiable parameters dim(#(z)) + dim(Jc), so that k= ne + dim(x). The number of 
independent noisy measurements equals the number of measurements rc = rank(C„) lying 
in the regular space of Cn . Taking into account that dim(Jc) = rc~rN is constant over the 
model set M, (19-113) reduces for Gaussian-distributed errors nz to (19-50) and (19-51). D 

Appendix 19.N Proof of the Modified AIC and MDL 
Criteria (Theorem 19.15) 

The proof follows the same lines of Schoukens et al. (2002). The AIC-rule (19-113) is based 
on the Kullback-Leibler distance between two distributions. When the cost function is chosen 
to be the negative log likelihood function, it reduces to a simple correction term on the 
weighted least squares cost function in case of normally distributed noise nz (see (19-50)). 
An alternative interpretation of the AIC rule is to consider it as a prediction of the value of the 
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cost function based on an infinite amount of data starting from the actual value of the cost 
function based on the finite data set. For N » ηθ the AlC-rule takes then the form (see Ljung, 
1999, Theorem 16.1), 

E { Vy^jfc), z)} + tr(FMarkov"(^(z0))Cov(^(z))) (19-114) 

In the absence of model errors Co\(S0(z)) « ^Markov"~ιΦ(ζο)) f°r l a rSe signal-to-noise ratios 
(see (19-33)), and (19-114), where the expected value of the cost function is replaced by its 
actual value, reduces to the AlC-rule (19-50). In the presence of model errors Cov(^(z)) is 
given by (17-18) 

Cov(^(z)) = KMarkov"-i((9(z0)) Q(0(zo))VMaTko^0(zo)) 

Q(0(z0)) = E{FMark^^(z0),z)KMarkov'(^(z0),z)} 

Using Assumption 19.14 we will approximate now ^Markov"(̂ (zo)) a n ( l Q0(zo)) f°r la rSe 

signal-to-noise ratios ( υ -> 0) and small model errors {μ -> 0). 
The second order derivative of the cost function can be approximated as 

Markov W o ) ) = M i ; ! , V r * [ / ] , + I ^ , « t o V > * Σ ^ , Ε ^ Λ · ] ' } (19-116) 

for υ, / / -> 0. Using ε[η * v[;] + m{i] for υ, / / -» 0 (see (19-38)), Q0(zo)) in (19-115) be-
comes 

irN ■t-iciV 

(19-117) 
* Σ-!,Σ,ίfi{sínT<vMt]+ w[<])(vt /]+ w m)> 

Under Assumption 19.14 (19-117) is further simplified as 

Q0(zo)) « (W2+ 1) Σ ^ Μ * [ / ] % ] ' } (19-H8) 

Combining (19-115), (19-116), and (19-118) gives 

tr(^MarkovWo))Cov(^(z))) * tr((m2 + 1)/^) = (m2+ 1 ) ^ (19-119) 

For L>, μ -> 0 and N» ηθ, the following expression is found for the expected value of the 
cost function 

E{FMarkov(0(z),z)} « 0.5rJVw2 + WV-0.5^ * 0.5WV(w2+l) (19-120) 

(see Lemma 19.11 and Theorem 19.12). Using (19-119) and (19-120), (19-114) becomes 

E { ^MarkovC^X *)}0 + 2ne/(rN)) * F J z ) , z)(l + 2ne/(rN)) (19-121) 

which proves (19-52). 
Without formal derivation, the MDL-rule (19-53) is proposed solely using the analogy 

with the AlC-rule. 



Identification of Invariants of 
(Over)Parameterized Models 

Abstract: This chapter deals with the identification of invariants of (over)parameterized models. 
First, it is shown that the generalized Cramér-Rao lower bound on the estimate of invariants of 
(over)parameterized models is independent of the particular (over)parameterization chosen and 
equals that of the identifiable form. This result is useful for (asymptotically) efficient estima-
tors. Next, it is shown that a certain class of estimates of invariants of (over)parameterized mod-
els are with probability one, independent of the particular (over)parameterization chosen. The 
result is nonasymptotic and the estimators considered minimize a cost function that is invariant 
with respect to the same parameter transformation as the overparameterized model. 

20.1 INTRODUCTION 

In many identification problems, one is faced with the choice of the parameterization of a 
model out of a large number of possibilities (see, for example, Guidorzi, 1975; Van Overbeek 
and Ljung, 1982). Some of these representations contain a redundant number of parameters 
and lead to the so-called overparameterized models. Such models result in singular Fisher in-
formation matrices (Shapiro, 1986). This situation is often encountered in practical parameter 
estimation problems. 

Example 20.1 (Rational Transfer Function Model for SISO Systems): Consider 
the identification of the numerator and denominator coefficients of a rational transfer func-
tion model of a single input, single output (SISO) continuous-time system 

0(*,θ) = ψ^ = ?ρ^: (20-1) 
Σ;: 0 

where θτ = (a0, ax, ..., a„a, b0, b{9 ..., bnb). Transfer function model (20-1) is overparame-
terized because Θ is unidentifiable: G(s, λθ) = G(s, Θ) for any λ e R0. Assuming that the 
true model order is (na, nb), the dimension of the null space of the corresponding Fisher 
information matrix (16-85) equals 1. Identifiable parameterizations ψ are obtained by fixing 
one coefficient of the numerator or denominator, for example, an = 1 for a monic 
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denominator polynomial. Invariants of model (20-1) are, for example, the poles and zeros of 
the transfer function or the value of the transfer function itself. D 

Example 20.2 (State Space Models for Multivariable Systems): Consider the iden-
tification of a proper multivariable discrete-time system parameterized by its state space rep-
resentation (A,B,C,D) 

G(z~\ Θ) = z-xC{In-z-xA)-xB + D (20-2) 

with n the order of the state space model, AGU"*", B <=Unxn\ C e Unyxn, and 
D e Unyxn\ The overparameterized model parameter Θ is related to the (A,B,C,D) matri-
ces as 

θτ = [vecT(A) VQCT(B) vecr(C) vecT(D)] (20-3) 

where vec(.) transforms a matrix into a column vector by stacking the columns of the matrix 
on top of each other. Transfer function (20-2) is invariant w.r.t. a regular transformation 
TeUnxn: replacing (A,B,C,D) by (TAT~l,TB, CT~\D) in (20-2), with det(r )*0, 
leaves G(z~l, Θ) unchanged. Hence, n2 dependences exist between the entries of Θ. 
Assuming that the true model order is n, the dimension of the null space of the Fisher 
information matrix equals n1. Identifiable parameterizations ψ are obtained by constraining 
the matrices {A, B, C) (Van Overbeek and Ljung, 1982). Invariants of model (20-2) are, for 
example, the eigenvalues of A. D 

First, we define the considered (over)parameterized models and their invariants. Next, 
the Cramér-Rao lower bound on the estimates of the invariants is analyzed. Further, the finite 
sample behavior of a certain class of estimates of invariants is studied. Finally, the chapter 
concludes with a numerical example of identification methods whose estimates are, respec-
tively, dependent on and independent of the particular (over)parameterization chosen. 
Although throughout this chapter the theory is mainly illustrated on the identification of con-
tinuous-time single input, single output systems, it is also valid for discrete-time, multivari-
able, and nonlinear systems. 

20.2 (OVER)PARAMETERIZED MODELS 
AND THEIR INVARIANTS 

The system model is described as a general vector function Μ(θ9 z0) of the true signal 
z0 G RN and the overparameterized model parameters Θ e W9 with ηθ < N. The model 
M(6U0) i s defined for every ΘΕ Ώθ9 a subset of η"θ. The complement of Ώθ in R"* is 
§0, the set of singular points. Se = U"e \ Ώ)θ has topological dimensions less than ηθ 

(dim(§(9)<«6>). If no system model errors are present, then Μ(θ0,ζ0) = 0 with θ0 the true 
model parameters. Note that for overparameterized models, θ0 is not a single point but a sub-
space of mx 

In practice, only noisy observations z = z0 + nz of the true signal z0 are available. If a 
parametric noise model for the observation noise nz is identified, then the system model 
Μ(θ, ζ0) must be extended with the noise model. To simplify the notations, the discussion is, 
without any loss of generality, limited to the case without a parametric noise model. 
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Assumption 20.3 (Invariance Model): The overparameterized model Μ(θ,ζ0) is in-
variant with respect to a parameter transformation g{9,X) e R"e with λ e IR"A and 
0<ηλ<ηθ: for any Θ e B# and λ e Ώ>λ a Rn\ with dim(IR^ \ Ώλ) <ηλ, we have 
vmk(dg(e, λ)/δλ) = ηλ md M(g(% λ),ζ0) = Μ(θ,ζ0). 

Assumption 20.4 (Identifiable Models): The model Μ(θ,ζ0) can be parameterized 
in β overlapping identifiable parameter sets y/k e Rnv, satisfying 

1. νθ e Dh 5 λ,ψ) e DA : hk{¥k) = g(% λ,ψ)) 

2. B, = MÍ- iB* 
3. dim(D¿) = ηθ and dim(0¿ \ D7) < ηθ 

with ηψ = ηθ-ηλ and k,l = 1,2, ...,/?. The function %.(#) and its derivative w.r.t. Θ, 
y/k(d), are continuous in 0¿. %X#) has full rank ηψ in D¿. 

Note that Assumptions 20.3 and 20.4 define a manifold with boundary given by an 
equivalence relationship. Assumptions 20.4 (1) and (2) guarantee that Μ(θ,ζ0) can be pa-
rameterized in at least one identifiable parameter set y/k, k = 1, 2, ..., β, for any value of 
Θ e Βθ. Assumption 20.4 (3) implies that the parameterizations are overlapping: each iden-
tifiable parameter set \¡/k can represent any model Μ(θ, z0), except those corresponding to 
Θ- values lying in some lower dimensional (<ηθ) subspaces of 0#. 

Definition 20.5: An invariant of the model Μ(θ,ζ0) is each model-related quantity 
Ιψ) that is invariant w.r.t. the same parameter transformation g{6, X) as the model itself: 
I(g{9,X)) = 1{θ) (see Assumption 20.3). 

The following two examples show that Assumptions 20.3 and 20.4 are satisfied in 
many practical identification problems. 

Example 20.6 (Rational Transfer Function Model): Consider transfer function 
model (20-1) of Example 20.1 at angular frequencies ay, / = 1,2, ...,N. Clearly, 
GO'ocy, λθ) = G(j<üp Θ). If, for example, coefficient a0 is fixed to one, then the resulting 
identifiable parameter set ψ0 can describe all models of the form (20-1), except those for 
which a0 = 0. If a{ is fixed to one, then the resulting identifiable set ψλ covers the sub-
space {a0 = 0} but cannot describe models with ax = 0. These observations are now stated 
more formally in the framework of Assumptions 20.3 and 20.4. 

Assumption 20.3 is valid with 

Μ(θ,ζ0) = [GU<ol9e)-G0U<»i) G ( M , 0 - G o ( > 2 ) ... ΟΟ'ωΝ,θ)-Ο0Ο'ωΝ)\Τ 

z0 = [GOO'CDJ) G0(j(ü2) ... G0(j(oN)]T, G0(JG)) the true frequency response function, 

ηθ= na + nb + 2> g(0>¿) = W ηλ = !> °λ = Κ> and 

S¿ = {θ\3 fe {1,2, ...,Ν} s.L G(j®f,0) = *> or 0 /0} 

Assumption 20.4 is valid with β = ηθ, ηψ = ηθ-\, λ0) = \/0k, 

hl(yk) = [yk[l] ... ¥k[k-X] i vk[k+i] ... Vk[nw]i 
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and Dk = Βθ\ {θ^ = 0}. The relationship between the identifiable parameters y/k and the 
overparameterized set Θ is given by 

^ } = ¿ h i - - -Vi ] *[*+>] ···%»]] D 

Example 20.7 (State Space Model): Consider transfer function model (20-2) at the 
frequencies Zy = e2nJf/N, f = 0, 1, ...,N- 1. The model Μ(θ,ζ0) can be defined in ex-
actly the same way as in Example 20.6. Assumption 20.3 is valid with λ = vec(r), 
ηλ = τ?2, and DÁ = Un*\{Á\det(T) = 0}. Applying property (15-38) of the Kronecker 
product to (20-3), where (A,B, C,D) is replaced by (TAT~\ TB, CT~l,D), gives an ex-
plicit expression for g(#, X) 

Ε(θ,λ) = ά\&%(Τ-τ®Τ,Ι„ν®Τ,Τ-τ®Ιη,Ιν)θ 

with diag(.) a block diagonal matrix. The existence and the properties of overlapping 
identifiable parameterizations, as required in Assumption 20.4, have been shown for linear 
multivariable systems in Hazewinkel (1977), Delchamps and Byrnes (1982), and Delchamps 
(1985), while Van Overbeek and Ljung (1982) discuss the numerical aspects when switching 
from one identifiable form to another. D 

20.3 CRAMÉR-RAO LOWER BOUND FOR INVARIANTS 
OF (OVER)PARAMETERIZED MODELS 

Consider the identification of a particular model Μ(θ9 z0) using noisy observations z e UN, 
and assume that the true model belongs to the considered model set. The Cramér-Rao lower 
bounds on the covariance matrix of an estimator /(z) using (over)parameterization Θ and y/k 

are given, respectively, by (see Theorem 16.18) 

(a) 

(20-4) 

(b) 

with I0 = /(#0), bj = E {/(z)} - 1 0 the bias that might be present in the estimate, Fi(00) the 
singular Fisher information matrix of the overparameterized parameter vector #0, and 
Fi(i//k0) the regular Fisher information matrix of the identifiable parameter vector y/k0. Be-
cause we will compare (20-4a) with (20-4b), the Fisher information matrix Fi(0o) should be 
constrained to exclude the θ(ζ) -values lying in the lower dimensional subspace We \ 0¿. In 
Gorman and Hero (1990) it has been proved under some suitable regularity conditions that 
the constrained Cramér-Rao lower bound equals the unconstrained case if the constraints are 
not active in θ0. We conclude that we can compare (20-4a) with (20-4b) if θ0 £ We \ B¿. 

Theorem 20.8 (Cramér-Rao Bound of Overparameterized Models): Under 
Assumptions 20.3 and 20.4, the Cramér-Rao lower bounds (20-4a) and (20-4b) of any 
estimator I(z) of an invariant Ι(θ) of the model Μ(θ,ζ0) are independent of the particular 
(over)parameterization (Θ) y/k chosen. 

Proof See Appendix 20.A. D 

Cov(/(0(2)))> 
'di0+db^ 

δθ0 δθ( 
Fi+m 

8I0 +db^ 

oy ΘΘ0 ΘΘ0) 

Cov(/(^*(z)))) : di o +db¡ 

?Vko ^ Who 
Fi-\VkÁ 

dip Jb, Λ 
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The theorem has been proved by comparing an overparameterized parameter set with 
an identifiable parameter set. By applying the same reasoning twice, the conclusions are also 
valid when comparing two different overparameterized parameter sets. 

Intuitively, the theorem can be understood as follows. The null space of the Fisher infor-
mation matrix spanned by the redundant model parameters is not affected by the noise. Hence, 
the redundant parameters will not increase the variance of identifiable model parameters. 

20.4 ESTIMATES OF INVARIANTS 
OF (OVER)PARAMETERIZED MODELS -
FINITE SAMPLE RESULTS 

Consider the identification of a particular model Μ(θ, z0) using noisy observations z e RN 

of the true signal z0. The basic question now arises whether estimates of invariants ϊ(θ(ζ)), 
I{hk{y/i¿z))), of model Μ(θ,ζ0), calculated from estimates θ(ζ), ψάζ), depend on the par-
ticular (over)parameterization θ, ψκ. In general, the answer is yes: not only each realization 
but also the statistical properties (bias, uncertainty, ...) of the estimated invariants strongly 
depend on this choice (De Moor et al., 1994). In this section we show that estimators whose 
corresponding (equivalent) cost functions are invariant with respect to the same parameter 
transformation as the overparameterized model lead to estimates of invariants that do not de-
pend on this choice. While in Section 20.3 it has been proved that the uncertainty of (asymp-
totically) efficient estimators is independent of the (over)parameterization Θ, y/k, the result 
presented in this section is valid for any finite sample property (the distribution function, the 
sample mean, the sample variance,..., and if the moments exist, the bias, variance,...) of the 
estimated invariants and is not restricted to the class of (asymptotically) efficient estimators. 

20.4.1 The Estimators 

The estimators considered in this section minimize a cost function V(0, z) that is de-
fined for any θεΒθ, a subspace of U"e, and any z e Dz, a subspace of UN. The comple-
ments of Bfl in IR"* and Dz in UN are, respectively, S# and Sz, the sets of singular points. 
S# = U"e \ Βθ and Sz = IR^ \ Oz have topological dimensions less than, respectively, ηθ 

and N. 

Assumption 20.9 (Invariance Cost Function): The (equivalent) cost function 
V(0, z) minimized by the estimator is invariant with respect to the same parameter transfor-
mation g(0, λ) as the model itself (see Assumption 20.3): V(g(6, A), z) = V(0, z), for any 
Ae Βλ, ΘΕ Ώ)Θ, maze Dz. 

Very often the cost function is a function of some transformed form of the system 
model Μ(θ, ζ0) and, therefore, Assumption 20.9 is, in general, not true. This is illustrated in 
the following example. 

Example 20.10 (Frequency Domain Identification): Consider the identification of 
model (20-1) starting from frequency response function measurements G(y^y), 
/ = 1, 2, ..., N. The linear least squares estimate minimizes (see Section 9.8) 

^ L S ( 3 z) = Σ ΐ ! μθ 'ω , , 0)GU<»f) ~ BU®/, Θ)\2 (20-5) 
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w.r.t. Θ. Because VLS(A0,z) = A2KLS(#, z), it follows directly that Assumption 20.9 is not 
fulfilled. Often, the frequency response function G(y ccy) is obtained as the ratio of the output 
to the input DFT spectra G(y<fly) = Y(f)/U(f). The cost function is infinitely large for 
U(f) = 0 and,hence, § z = {z\U(f) = 0}. D 

For each particular observation z e Dz, Θ- values in S# may exist for which the cost 
function V{0, z) is not defined or infinitely large. At these singular points, the first- and 
second-order derivative of the cost function w.r.t. the model parameters either do not exist 
or are rank deficient. These #-values should, therefore, be excluded during the minimiza-
tion of V(0, z). This can be done by introducing a regularization parameter μ in the cost 
function. 

Assumption 20.11 (Regularized Cost Function): The cost V(0, z) can be regularized 
as V(0, z, //), with / i e R , such that V(0, z, 0) = V(0, z) and 

1. ν(θ,ζ,μ) is a continuous function of μ, and V(g(0, λ), ζ, μ) = ν(θ,ζ,μ) 

2. H¥kVk = d2V(hk(y/k),z^)/dy/k has rank ηψ and is a jointly continuous function 
of y/k, z 

3. Ηψ z = d2V(hk(y/k), z, μ)/3ψ]ίδζ has rank ηψ and is a jointly continuous func-
tion of y/k, z 

for any i//keUn<«, k= 1,2,...9β, for any z e Uz c UN (dim(UN\ Uz) <N), and for any 

Due to Assumption 20.11(1), the regularization parameter μ can always be chosen 
such that the difference ¥(θ, ζ, μ) - V(0, z) is arbitrarily small in the regular space D^. Pro-
ceeding in this way, μ is active only in the singular subspace S^ and this is exactly how the 
regularization is applied in practice. This motivates the following definition. 

Definition 20.12: The estimates Θ = #(z), y/k = ψύζ) are the minimizing argu-
ments of ¥(θ, z, μ) and V(hk(i//k), z, //), respectively, 

θ(ζ) = argminK(<9,z,//) and ψύζ) = argminK(/*¿(^),z,//) 

Estimators satisfying Assumptions 20.9 and 20.11 are, for example, the nonlinear least 
squares (see Section 9.9), the generalized total least squares (see Section 9.10 and Van Huffel 
and Vandewalle, 1991), the one-step bootstrapped total least squares (see Section 9.10), and 
the maximum likelihood (see Section 9.11; Vandersteen et al., 1996a). Counterexamples in 
system identification are the linear least squares (see Section 9.8; Kalman, 1958; De Moor et 
al., 1994), the (iteratively) weighted linear least squares (see Section 9.8; Steigliz and 
McBride, 1965), and parametric time series analysis using, for example, the conditional max-
imum likelihood method (Box and Jenkins, 1976). 

The z- values for which the cost function is singular (Vz e Sz) and/or its second-order 
partial derivatives are not of full rank (Vze UN\ Rz, see Assumption 20.11) lie in lower di-
mensional subspaces of UN. To ensure that these values occur with probability zero, the fol-
lowing assumption is made. 
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Assumption 20.13 (pdf Noise): The probability density function of the disturbing er-
rors nz = z - z0 is continuous. 

Under Assumption 20.13, it is clear that Prob(z € Sz) = Prob(z e B ^ R J = 0. 
Assumptions 20.9 and 20.11 are illustrated in the following example. 

Example 20.14 (Frequency Domain Identification): Consider the identification of 
model (20-1) starting from frequency response function measurements G(yay), 
f = 1, 2, ..., N. The nonlinear least squares estimate minimizes (see Section 9.9) 

WS *) = Σ% i \GiJ^f) ~ <KJ<»/> β)\2 (20-6) 

Because G(j(úf,Áfy = G(j(üf,0), it follows directly that FNLS(A6>,z) = ν^(θ,ζ). The 
cost function (20-6) is infinitely large for ^-values satisfying ak = 0, k = 0, 1, ...,na. It is 
undefined for Θ = 0 and ^-values such that G(yay, Θ) has a common pole-zero pair at 
/ay. Hence, 

O,? = Κ Λ ' \ { 0 | / € {1,2, ...,N} s.t. φ ω / 5 Θ) = oo or 0 /0} 

Using G(j(£>f, Θ) = B(j($p 6)/A{j(üp 0), the regularized cost function becomes 

KNLS(0,z,//) = V ,V \A{j<üf,9)G{j(»f)-B{j<*f,e)\ 2 

4f=x \Α(]ω/9θ)\2 + μ2θτθ D 

Quadratic cost functions satisfying Assumption 20.9 can always be written as 
V(0,z) = ετ{θ,ζ)ε{θ,ζ)/2, where the residual ε(θ,ζ) is also invariant w.r.t. the parameter 
transformation g(#, λ)\ e(g(0,Z),z) = ε{θ,ζ). For such cost functions, it is possible 
to make statements about the null space of the Jacobian matrix δε(θ,ζ)/θθ w.r.t. 
the overparameterized Θ. 

Theorem 20.15 (Jacobian Matrix of Overparameterized Models): Under 
Assumptions 20.9 and 20.11, the Jacobian matrix δε(θ, ζ)/δθ of the quadratic cost function 
Υ(θ, z) = ετ(θ, ζ)ε(θ9 z)/2 has a null space of dimension ηλ for any Í G D ¿ and z e Dz. 

Proof. See Appendix 20.B. D 

The dimension of the null space of the Jacobian matrix w.r.t. Θ is independent of the 
noise on the observations z and of the model errors. For quadratic cost functions that violate 
Assumption 20.9, the dimension of the null space of the Jacobian matrix w.r.t. Θ is affected 
by the noise and the model errors (see Exercises 20.2 and 20.4). 

20.4.2 Main Result 

Theorem 20.16: Under Assumptions 20.3, 20.4, 20.9, 20.11, and 20.13, the estimate of 
an invariant Ι(θ) of model Μ(θ, ζ0) is with probability one independent of the particular 
(over)parameterization chosen: ϊ(θ(ζ)) = I{hk(y/k(z))) for k = 1,2, ...,/?. 

Proof. See Appendix 20.C. D 
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Because N = dim(z) is fixed in the analysis, the theorem is valid for finite values of 
N. As it has not been assumed that the true model is within the model set, the theorem is also 
valid when there are model errors. As it has not been assumed that model Μ(θ, ζ0) is linear 
in z0, the theorem is also valid for nonlinear systems. An application of the nonlinear case 
can be found in Vandersteen et al. (1996a). The theorem also applies to estimators minimiz-
ing a series of cost functions where each cost function satisfies Assumptions 20.9 and 20.11. 
An example of such an estimator is the multistep bootstrapped total least squares method (see 
Section 9.12.3). Because the estimates of the invariants are independent of the (over)parame-
terization chosen, one should use the particular (over)parameterization that leads to the nu-
merically best conditioned set of equations (see, for example, Van Overbeek and Ljung, 1982 
and also Practical remark at the end of Section 20.5). 

20.5 A SIMPLE NUMERICAL EXAMPLE 

Consider again Example 20.14 with N = 100 data points, ω ,̂ / = 1, 2, ...9N equally dis-
tributed in the band [ 1, 1500] 2π rad/s, and a true plant transfer function 

G0(s) = 1 + 2 x 1 0 / (20-7) 
1 + 1x10 s 

Independent, circular complex distributed noise nG(j(£¡) with zero mean and variance 2x10 
is added to the true transfer function G(y cey) = G0(j(oj) + «G(y ay), f = 1, 2, ..., N. A hun-
dred independent sets of 100 noisy transfer function values are generated. For each noisy data 
set the nonlinear least squares estimate (20-6), which satisfies Assumption 20.9 
( PNLS(^# Z ) = ^NLS(^> z))> anc* the linear least squares estimate (20-5), which violates As-
sumption 20.9 (KLS(A#, z) Φ VLS(0, z)), are calculated for two models; one without model 
errors (20-8) and the other one with model errors (20-9). 

G(s, Θ) « b l h i (20-8) 
a0 + axs 

G(s, Θ) = _ ^ ° _ (20-9) 

20.5.1.1 Model without Model Errors (20-8). The four identifiable forms of the 
overparameterized model (20-8) that satisfy Assumption 20.4 are 

Gis, Ψύ = * Ρ 1 + * [ 3 ] ' , G{s, Ψ2) = ttP1 + » W , Gis, Ψύ = l + W , and 

V4[1] + V W 
Gis, Ψ4) - -J^lll. 

For each of the 100 noisy data sets, the linear and nonlinear least squares estimates of the 
identifiable model parameters i//k, k= 1,...,4, and the overparameterized model parame-
ter Θ are calculated. The latter are obtained by solving the normal equations using the 
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pseudoinverse. Three invariants of model (20-8) are the gain K = b0/a0 at s = 0 and the 
time constants τχ = bx/b0 and r2 = ax/a§. These invariants are calculated for each of the 
100 least squares and nonlinear least squares estimates of ψ^ k = 1,...,4, and Θ. There-
suits are shown in Table 20-1. It follows that the linear least squares estimates of the invari-
ants are strongly dependent on the particular (over)parameterization chosen. This is 
explained by the fact that the linear least squares cost function FLS(0, z) is not invariant w.r.t. 
the transformation g(#, λ) = λθ\ VLS(Á0, ζ) Φ VLS(0, z). Note that the estimates based on 
parameterizations ψ2 (monic denominator polynomial) and Θ perform much better than the 
other ones. From Table 20-1, it also follows that the nonlinear least squares estimates and 
their sample deviations are equal within the numerical precision of the calculations (12 dig-
its). This is also true (but not shown in Table 20-1) for the estimates of each of the 100 data 
sets separately. 

20.5.1.2 Model with Model Errors (20-9). The three identifiable forms of the over-
parameterized model (20-9) that satisfy Assumption 20.4 are 

G(s, Ψι) 
_ Ψ\[2] 

\ + ψη 

-, G(s, ψΛ = Ψι[2] , and G(s, ψ,) = 1 
y y/2[i] + s ^3 [ ΐ ] + ^3[2]* 

For each of the 100 noisy data sets, the linear and nonlinear least squares estimates of the 
identifiable model parameters y/k, k = 1,2,3, and the overparameterized model parameter 
Θ are calculated. Two invariants of model (20-9) are the gain K = b0/a0 at s = 0 and the 
time constant τ = αλ/α0. These invariants are calculated for each of the 100 least squares 

TABLE 20-1 Estimated Invariants A", r p and r2 of Mo 

Invariant 

τλ{ψ\) 

τχ{ψι) 

τλ{Ψζ) 

η(^4) 

Φ 
τ2(Ψύ 

Τ2(Ψ2) 

τάΨϊ) 

Τ2(ΨΛ) 

τ2φ) 

Κ{ψχ) 

Κ(ψ2) 

Κ(Ψ3) 

Κ(ΨΑ) 

κφ) 

Least 

Sample Mean 

-8.59e-07 

2.236e-04 

6.394e-05 

4.805e-04 

1.879e-04 

1.011e-04 

1.327e-03 

3.156e-04 

7.7e-03 

8.84e-04 

3.886e-01 

1.2198 

7.410e-01 

4 

9.417e-01 

Squares 

Sample Sandard 
Deviation 

7.0e-06 

2.9e-05 

8.5e-06 

5.3e-05 

2.7e-05 

1.4e-05 

1.5e-04 

3.2e-05 

2.3e-01 

l.le-04 

1.6e-02 

7.8e-02 

3.2e-02 

140 

6.4e-02 

del (20-8) 

Nonlinear Least Squares 

Sample Mean 

1.9956e-04 

1.9956e-04 

1.9956e-04 

1.9956e-04 

1.9956e-04 

1.0055e-03 

1.0055e-03 

1.0055e-03 

1.0055e-03 

1.0055e-03 

1.0024 

1.0024 

1.0024 

1.0024 

1.0024 

Sample Standard 
Deviation 

1.9e-05 

1.9e-05 

1.9e-05 

1.9e-05 

1.9e-05 

6.6e-05 

6.6e-05 

6.6e-05 

6.6e-05 

6.6e-05 

3.8e-02 

3.8e-02 

3.8e-02 

3.8e-02 

3.8e-02 
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TABLE 20-2 Estimated Invariants K and τ of Model (20-9) 

Invariant Least Squares Nonlinear Least Squares 

<Ψ\) 

<Ψ2) 

<Ψ3) 

τφ) 
Κ{ψχ) 

Κ(ψ2) 

Κ(ψ3) 

κφ) 

1.017e-04 
6.068e-04 
1.673e-04 
2.184e-04 
3.892e-01 
8.399e-01 
6.395e-01 
4.920e-01 

Sample Standard 

l.le-05 
4.4e-05 

1.9e-05 
3.0e-05 
1.4e-02 
3.2e-02 
2.2e-02 
2.2e-02 

Sample Mean 

5.3026e-04 
5.3026e-04 
5.3026e-04 
5.3026e-04 
7.6796e-01 
7.6796e-01 
7.6796e-01 
7.6796e-01 

Sample Standard 
Deviation 

5.9e-05 
5.9e-05 
5.9e-05 
5.9e-05 
4.4e-02 
4.4e-02 
4.4e-02 
4.4e-02 

and nonlinear least squares estimates of ψ^ k = 1,2,3, and Θ. From Table 20-2 it follows 
that the conclusions of the preceding section are also valid for model errors. 

20.5.1.3 Practical Remark. From the many simulations that have been conducted, it 
can be concluded that the overparameterized models lead to one of the best, but not always 
the best, condition numbers of the normal equations. This is in agreement with the results of 
McKelvey and Helmersson (1997). It also followed that the overparameterized form often 
gives the best linear least squares estimate (see, for example, Table 20-1), which is in agree-
ment with the results of De Moor et al. (1994). Hence, even for estimators that violate As-
sumption 20.9, the overparameterized models are strongly recommended. 

20.6 EXERCISES 

20.1. Consider Examples 20.1, 20.6, and 20.14. Show that the null space of the Jacobian 
matrix of the nonlinear least squares estimate (20-6) has dimension 1 (hint: show that 
rank(dg(<9, λ)/δλ) = 1). 

20.2. Consider Examples 20.1, 20.6, and 20.14. Show that the null space of the Jacobian ma-
trix of the linear least squares estimate (20-5) has dimension 0 unless it is evaluated in 
the noiseless data z0 and the true model parameters θ0 (hint: use 
ε(θ,ζ) = (δε(θ,ζ)/δθ)θ). 

20.3. Consider Examples 20.2 and 20.7. Show that the null space of the Jacobian matrix 
of the nonlinear least squares estimate (20-6) has dimension n2 (hint: show that 
rank(dg(6> λ)/δλ) = n2\ 

20.4. Redo the simulations of Section 20.5. Verify that the Jacobian matrix δβ(θ,ζ)/δθ of 
the nonlinear least squares estimate has a null space of dimension 1 for each noise real-
ization. Verify that the Jacobian matrix δβ(θ, ζ)/δθ of the linear least squares estimate 
is not rank deficient for noisy observations and/or in the presence of model errors. 

20.7 APPENDIXES 

Appendix 20.A Proof of Theorem 20.8 (Cramér-Rao 
Bound of (Over)Parameterized Models) 

Applying the chain rule for the partial derivatives on F/(#0), (16-85) and δΙ0/δθ0, 
makes it possible to rewrite (20-4a) in B¿ as 
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Cov(/(0(z)))> 
rdl + dbA 

d¥k dVk) 

\dl +dbi 
d¥k δψύ 

(20-10) 

If we can show that 

%%%ί^οκ^τ--^ (20-11) 

in Dk, then the right-hand sides of (20-4a) and (20-4b) are equal in D>t, which proves 
the theorem. Using the first Moore-Penrose condition of the pseudoinverse AA+A = A (see-
Section 15.5) with A = (dyf/d0)TFi(i//k)(dy//de) gives 

(dVk\* (5Ψ£\Λ(δψ£ 

Left multiplication with δψ/δθ and right multiplication with {dy/k/d0)T of (20-12) give 

e^^>(l5") KS") ̂ ^ > (Ι5")ί (S") ̂ ( ^ ) β = erwe (20-13) 

where Q = (dy/k/d0)(dy/k/de)T is a regular ηψ by «^ matrix in Dk (Assumption 20.4). 
Left division by QFi(i//k) and right division by Fi(y/k)Q of (20-13) give (20-11). D 

Appendix 20.B Proof of Theorem 20.15 (Jacobian 
Matrix of (Over)Parameterized Models) 

Because the residual ε(θ,ζ) is independent of λ9 we have δε{θ9ζ)/3λ = 0. Using 
s{g{69X)9z) = ε(θ9 z), this equality can be written as 

fe(g,z)5g(éU) = 0 
dg θλ 

(20-14) 

for any ΘΕΒΘ and λ e Βλ, and with ds(g9 z)/dg e RNxn* (Ν>ηθ) the Jacobian matrix. 
Because rank(5g(#, λ)/δλ) = «Λ with ηλ < ηθ (Assumption 20.3), it follows from (20-14) 
that dim(null(5<g, z) /dg)) = ηλ. D 

Appendix 20.C Proof of Theorem 20.16 

The regularized cost function V{69 ζ, μ) is an invariant of model Μ(θ9 ζ0) (Assumption 
20.11). J h i s implies that for any Θ e B / ^ O , (**/) hk{(f/k) = g09 λ^θ)) and 
g(3, λφ)) = hfy/i)\ otherwise ψ^ and ψι would not be the minimizers of V(hk(y/k), z, μ) 
and ν(Η^ψ^ζ9μ)9 respectively. Using I(g(θ9 Á(θ))) = Ι(θ) (Definition 20.5), it follows that 
for any £ e D^OD/, 

I{h&k)) = % ( 0 , 4(^))) = /(*) and ΪΟιίψί)) = I(g(e, Xjm = A*) (20-15) 
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and, hence, I(hk(y/k)) = I(h{\j/í)). The theorem is proved if it can be shown that the event 
4 Θ G B^Pl D/ ' occurs with probability one. Therefore, it is sufficient to prove that the prob-
ability density functions (pdf's) of the estimates ψ^ k = 1,2, ... ,/?, are continuous. In-
deed, accumulation of probability mass in a lower dimensional space can occur only if the 
distribution function is degenerate (Papoulis, 1981). If the pdf of y/k is continuous, then the 
probability that y/k lies in a lower dimensional subspace of R'V equals zero. Under Assump-
tion 20.4, the ^-values that cannot be represented by, for example, y/k, represent values of, 
for example, y/h lying in a lower dimensional subspace of Rw<% so that 
Prob(0 G Dk \ D7) = 0. Similarly, Prob(<9 e Bz \ B¿) = 0 and, thus, 
Prob(0G D^PlD;) = 1. 

By Assumption 20.13, the pdf of the noisy data z is continuous. To prove that the prob-
ability density functions of the estimates y/k, k = 1,2, ... ,/?, are continuous it is, therefore, 
sufficient to show that y/k = Wkiz) is a continuous function of z with continuous derivatives 
satisfying 

d i m ( { z | r a n k ( ^ ^ ) < ηψ})<Ν (20-16) 

(Papoulis, 1981). If (20-16) is not satisfied, then the distribution function of y/k may be de-
generate in the subspace Dk \ D/5 so that accumulation of probability mass may occur in 
Dk \ B/. In this case, Prob(# e Dk \ Β7) Φ 0 and the theorem is no longer valid. The func-
tion y/k(z) is implicitly known by the definition of the minimizer y/k 

dv(hk(n),z,M) 

dy/k 

= 0 or F(y/k,z,¿) = 0 (20-17) 

Under Assumption 20.11, F(y/k, z, μ) G W* has continuous, full rank, first-order partial de-
rivatives w.r.t. y/k and z for any y/k G R'V and z G RZ with din^R^ \ Rz) < N. Applying 
the implicit function theorem (Kaplan, 1993) to F ( ^ , z, μ) = 0 shows that y/k = Wk(z) isa 
continuous function of z with full rank, continuous derivative 

dy/k(z) = 
dz 

(dF(y/k,z^y (dF(y/k,z9¿)\ 

dy/k 
dz 

V dy/k 

d2V(hk(y/klz,Mj 

dy/kdz 

(20-18) 

for any y/k e Rn* and z G RZ with dim(R^ \ R2) < N9 which concludes the proof. D 
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examples, 580—581 
in distribution, 578 
in law, 578 
in mean square, 578 
in probability (in prob.), 578 
interrelations, 579—581 
preliminary example, 576—578 
properties, 582—583 
with probability 1 (w.p. 1), 578 

linear least squares, 21—22, 301—305 
definition, 21, 301 
properties, 301-303, 339-341 
simple example, 22 

linear time invariant second order equivalent, 89 
local polynomial method 
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bias-variance trade-off, 239—240 
comparison with spectral analysis method, 237— 

239 
concatenated data sets, 243—248 
errors-in-variables, 240—241 
fast method, 253, 258-260 
for periodic excitations, 248—263 
for random excitations, 228—233 
robust method, 252-253, 254-258 

LOG 
See logarithmic least squares 

logarithmic least squares, 308—309 
definition, 309 
properties, 309, 339-341 

LS 
See linear least squares 

LTI-SOE 
See linear time invariant second order equivalent 

M 
Markov estimator 

frequency domain, 317, 350 
model selection, 680—682 
properties, 670—675 
semilinear models, 666—668 

Markov's inequality, 571 
matrix norms, 547 
maximum length binary sequence 

See periodic signals 
maximum likelihood, 23-25, 314-318, 406-410 

approximate, 409 
conditional, 409 
covariance matrix, 318—319 
definition, 23, 315 
exact, 409 
mean and variance cost function, 443 
numerical implementation, 365—366 
properties, 25, 316-318, 339-341, 406-410 

MDL criterion, 439, 479, 680, 681 
measurement example, 480—481 
simulation examples, 439-441 

mean, 567 
See also sample variables 

mean square error 
definition, 568 
minimum MSE estimators, 588 

measurement examples 
3.4 MW synchronous motor, 334—339 
aluminum plate, 264-266, 480-482 
flight flutter analysis, 334-339, 398-399 
nonlinear electrical circuit, 90—92, 410—411 
octave bandpass filter, 171—172 
operational amplifier, 141—145 
parallel Wiener system, 126—130 
plexiglass beam, 261—263 

tfC-circuit, 504-508 
robot arm, 448^49 
steel beam, 246-248, 515 

measurement setup 
See experimental setup 

MIMO 
See multivariable systems 

minimum phase region, 181 
missing data 

identifiability, 192 
identification, 346—348 
models, 188-189 

mixing random variables 
(strong) law of large numbers, 584, 611 
central limit theorem, 586, 613 
definition, 573-574 
properties, 574—576 

model 
See models 

model errors 
classification, 444—448 
detection, AA2—AAA 

model selection 
frequency domain, 4?>l-44\, 449-452, 479 
guidelines, 452 
measurement example, 448—449, 480—482 
semilinear models, 680—682 

model validation 
frequency domain, 432-436, 477-479 
measurement example, 448—449, 480—482 
semilinear models, 681 

models 
damped (complex) exponentials, 190—191 
equivalent initial conditions, 185 
identifiability, 191-193 
linear-in-the-parameters, 18 
nonparametric, 17, 33, 195 
over-parameterized, 699—708 
parametric, 17, 182-191, 193-194, 195-201 
semilinear, 665—666 
transfer function, 177—202 
white box versus black box, 17 

Moore-Penrose pseudoinverse, 550—551 
MSE 

See mean square error 
multiple-input, multiple-output 

See multivariable systems 
multisines 

crest factor optimized, 162—164 
Fisher optimized, 168—170 
full random orthogonal, 93 
full random phase, 121 
Hadamard, 66 
input/output optimized, 165—166 
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log-tones, 141, 164 
nonlinearity detection, 130—140 
odd random phase, 121 
orthogonal, 67 
random orthogonal, 92 
random phase, 76 
random phase with random harmonic grid, 121 
Riemann equivalent, 123 
Schroeder, 156-157, 504 
snow, 163 
zippered, 64 

multivariable systems 
FRF measurement, 64—67 
identification, 348-349, 410, 470-479 
measurement example, 480—482 
models, 193-194 
rank residue matrix, 194 

N 
Newton-Gauss algorithm, 290—291 

multivariate systems, 474—475 
NLS, NLS-FRF, NLS-IO 

See nonlinear least squares 
noise after a DFT, 601-605 

asymptotic normality, 601 
central limit theorem, 602, 605 
mixing, 602, 604 
strong law of large numbers, 602, 604 

noise model, 385 
continuous-time, 197—199 
discrete-time, 196—197 
model structures, 200—201 
parametric versus nonparametric, 526 
See also nonparametric noise model 
See also parametric noise model 

nonlinear distortions 
See nonlinear systems 

nonlinear least squares, 20—21, 305—308 
definition, 20, 305, 306 
properties, 306, 307-308, 339-341 
simple example, 310 
See also weighted nonlinear least squares 

nonlinear systems 
continuous-time, 74—78 
discrete-time, 180—181 
intuitive introduction, 74—75 
model, 202 
parallel Wiener system, 126 
Volterra, 75, 180-181 
Wiener-Hammerstein, 85—86 
See also best linear approximation 

nonlinearity detection, 130—140 
fast method, 135-139, 258-260 
literature overview, 119—120 
measurement example, 141—145 

robust method, 130-134, 254-258 
nonparametric noise model 

estimation, 130-138, 227-231, 234, 252-260 
use in parametric modeling, 383—401, 463—484 
See also measurement examples 

normal equations 
definition, 290 
sensitivity of the solution, 562 

normalized model parameter 
See scaling 

null space, 545, 549 

O 
OE 

See output error model 
offset, 536 
1-norm, 547 
operational amplifier 

See measurement examples 
optimal experiments 

D-optimal, 66, 170 
for controller design, 173 
measurement example, 111—111 
nonparametric measurements, 162—167 
parametric measurements, 167—172 

orthogonal matrix, 546 
orthogonal polynomials 

calculation of the roots, 560—561 
frequency domain estimators, 341—344 
scalar, 558, 559 
vector, 559 

outliers, 537 
output error, 288 
output error method 

identification, 401—410 
output error model 

continuous-time, 201 
definition, 201 

overmodeling 
frequency domain, 437—441 
semilinear models, 680 
simulation examples, 439—441 
See also model selection 

P 
parallel Wiener system 

See measurement examples 
parametric noise model 

identification, 401—410 
maximum likelihood solution, 403—410, 524 
measurement example, 410—411 
model, 195-201 

partial fraction expansion 
See transferfimction models 

passivity 
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See transfer function models 
periodic noise 

See periodic signals 
periodic signals 

comparison, 161—162 
DFT properties, 40-42 
discrete interval binary sequence, 164—165 
maximum length binary sequence, 158 
optimized multisines, 162—164, 165—166, 167— 

172 
periodic noise, 77, 122 
pseudorandom binary sequence, 157—158 
random phase multisine, 77, 121—122 
reducing FRF measurement errors, 49—53 
Schroeder multisine, 156—157 
single sine, 156 
spectral representation, 43—44 
swept sine, 156 
ternary sequence, 65, 166 
versus random, 520—522 
why should they be used?, 516—520 
See also multisines 

persistence of excitation 
frequency domain, 295 
weighted nonlinear least squares, 630, 633 

perturbation signals 
See excitation signals 

plexiglass beam 
See measurement examples 

positive (semi-)definite, 546 
positive real 

See transfer function models 
prediction error 

definition, 402 
prediction error method 

cost function, 402 
frequency domain interpretation, 402 
maximum likelihood solution, 524 
relation with frequency domain ML solution, 

405-406 
prefiltering, 517—518 
preprocessing, 536—539 
pseudorandom binary sequence 

See periodic signab 
pulse signals, 160—161 

Q 
QR Factorization, 550 
quasi-stationary signals, 294 

R 
random phase multisine 

See periodic signals 
random signals 

random burst, 160 

random noise, 159 
versus periodic, 520—522 

range space, 546, 549 
rank, 545, 549 
rational form 

See transfer function models 
i?C-circuit 

See measurement examples 
reciprocity 

See transfer junction models 
rectangular window, 36 
residuals 

uncertainty bounds, 433—434 
white-colored, 452 

resistance measurement problem 
See simulation examples 

Riemann equivalence class, 120—130 
definition, 122-124 
invariance BLA, 124—126 
measurement example, 126—130 

right singular vectors, 546, 548 
robot arm 

See measurement examples 
robust nonparametric method 

comparison standard procedure - LPM, 256, 263 
local polynomial method (LPM), 252—253, 

254-258 
measurement examples, 144—145, 261—262 
standard procedure, 130—134 
use in parametric modeling, 396—398, 468—480 

robustness 
definition, 587 
maximum likelihood estimator, 318 
minimum mean square estimators, 588 
semilinear models, 674 
simple example, 600 

S 
sample bootstrapped total least squares, 392—395 

definition, 393 
multivariate, 476 
properties, 393-395, 399-^01 

sample correlation residuals 
frequency domain, 445-^448, 478—479 
semilinear models, 676—678 
standard deviation (no modeling errors), 448, 

479, 677 
variance (modeling errors), 459 

sample generalized total least squares, 390—392 
definition, 390 
multivariate, 476 
properties, 391-392, 399-401 

sample maximum likelihood, 386—390, 470--480 
covariance matrix, 389, 475—476 
definition, 386, 470-472 
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mean and variance cost function, 389, 390, 478 
multivariate, 470-479 
properties, 387-390, 399-401, 472-474 

sample subspace algorithms, 395—396 
definition, 395 
properties, 396, 399-401 

sample variables 
frequency domain estimators, 50, 384, 397, 

464-470 
generalized sample covariance, 464—470 
generalized sample mean, 464—470 
sample covariance matrix, 572 
sample mean, 572 
sample variance, 572 
stochastic properties, 572—573 
See also noise model 

sampling, 34—35 
SBTLS 

See sample bootstrapped total least squares 
scaling 

frequency, 290 
Jacobian matrix, 290, 475 
model parameter, 290 

SGTLS 
See sample generalized total least squares 

similarity transformation, 546 
simulation examples 

comparison frequency domain estimators, 330— 
332 

comparison starting value algorithms, 332—333 
detection of overmodeling, 439—441 
influence parameter constraint on transfer 

function estimates, 706—708 
leakage errors on FRF measurement, 59 
noise removal in periodic signals, 518 
on-line simulation example for frequency domain 

estimators, 286, 302, 303, 308, 351 
resistance measurement problem, 2—12, 27, 

576-578, 596-601 
uncertainty poles and zeros, 435—436 
uncertainty transfer function residuals, 434 
undermodeling, 442 

singular value decomposition, 548—549 
singular values, 546, 548 
SML 

See sample maximum likelihood 
spectral analysis method 

See frequency response matrix measurement 
square root of a matrix, 550 
SSUB 

See sample subspace algorithms 
stability 

See transfer function models 
stability region, 181 

starting values, 282-283, 332-333 
state space equations, 182 
state space representation 

See transfer function models 
stationarity, 568 
steel beam 

See measurement examples 
step-invariant transformation, 180, 500 
stochastic limit 

See limits 
strong consistency 

See consistency 
strong convergence 

See limit with probability 1 
SUB 

See subspace algorithms 
subspace algorithms, 324—330 

definition, 325-329 
properties, 329-330, 339-341 

SVD 
See singular value decomposition 

systems 
continuous-time, 74—78, 177-179 
discrete-time, 179—181 
distributed continuous-time, 178 
lumped continuous-time, 177 
nonlinear, 74-78, 180-181 

T 
ternary sequence 

See periodic signab 
time delay 

See delay 
time domain experiment, 286 
time domain identification 

versus frequency domain identification, 522— 
527 

time factor, 154 
total least squares, 310—312 

definition, 312 
introduction, 310—312 
properties, 312, 339-341 

trace, 547 
transfer function models, 182-190, 195-201 

bounded real, 528 
factorization in poles and zeros, 183 
identifiability, 191-193 
imposing constraints, 528—529 
minimum phase region, 181 
multivariable systems, 193—194 
noise models, 195—201 
orthogonal polynomials, 183, 186 
partial fraction expansion, 182, 186 
passivity (positive real), 528 
plant models, 182-184 
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rational form, 182, 186 
reciprocity, 528 
relation with DFT spectra, 184-190 
stability, 528 
stability region, 181 
state space representation, 184, 186 
time delay, 184 

trends, 520, 536 
truncated estimator, 297, 635 
2-norm, 548 

U 
unbiased, 13—14 

definition, 587 
See also asymptotically unbiased 

undermodeling 
frequency domain, 441—449 
measurement example, 448—449 
semilinear models, 681 
simulation example, 442 

uniform convergence, 628 
unitary matrix, 546 

V 
validation, 542-543 

See also model validation 
variance, 567 

on FRF measurements, 46—47, 56—58 
See also sample variables—sample variance 

Volterra systems 
continuous-time, 75 
discrete-time, 180—181 

W 
weak consistency 

See consistency 
weak convergence 

See limit in probability 
weighted generalized total least squares, 313—314, 

319-323 
definition, 314, 321-322 

weighted linear least squares, 303—304, 319—323 
definition, 303, 304, 321-322 
properties, 303-304, 323, 339-341 
simple example, 304—305 

weighted nonlinear least squares 
deterministic weighting, 627—638 
intuitive introduction, 22—23 
stochastic weighting, 651—660 

well-conditioned, 549 
WGTLS 

See weighted generalized total least squares 
white box models, 17 
whiteness test residuals, 4 4 5 ^ 4 8 , 478-479, 523, 

677, 681 
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Wiener-Hammerstein systems, 85—86 
Wiener-Hopf equation, 55, 523 
window 

half-sine, 63 
Hanning, 40 
rectangular, 36 

windowing 
See discrete Fourier transform ana frequency 

response junction measurement 
Wishart distribution 

complex, 569 
WLS 

See weighted linear least squares 

z 
zero-order-hold assumption, 498 

measurement example, 504—508 
ZOH-assumption 

See zero-order-hold assumption 
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