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N
onlinear system identifi cation is an extremely 
broad topic, since every system that is not linear 
is nonlinear. That makes it impossible to give a 
full overview of all aspects of the fi eld. For this 
reason, the selection of topics and the organi-

zation of the discussion are strongly colored by the per-
sonal journey of the authors in this nonlinear universe.

The identification of linear dynamic systems started in 
the late 1950s. Zadeh [1] prioritized the need for a well-
developed system identification framework at the very 
outset, followed by early overviews of the field [2]. A series 
of books established the field [3]–[7]. Linear system 
identification presented many successes, and data-driven 
modeling became an enabling factor in modern design 
methods. Nonlinear system identification [8]–[29] began 
when linear system identification [6], [7], [30] failed to 

address users’ questions. The real world is nonlinear and 
time varying, and, in some applications, these aspects 
cannot be ignored (see Figure 1). Therefore, linear models 
are imprecise or do not reproduce essential aspects of 
system behavior. This article is focused on nonlinear system 
identification. Overviews of time-varying system identifi-
cation are given in [31] and the references therein.

Nonlinear behavior appears in many engineering prob-
lems. In mechanical engineering, nonlinear stiffness, damp-
ing, and interconnections influence ground vibration tests 
of airplanes and satellites, resulting in resonance frequen-
cies and dampings that vary with the excitation level (see 
Figure 2, [32], and [33]). In telecommunications, power 
amplifiers are pushed into a nonlinear operation regime 
to improve power efficiency. Distillation columns exhibit 
nonlinear dynamic behavior. Many biological systems 
(for example, the eyes, ears, and sense of touch) first 
apply a nonlinear compression (known as the Weber–Fech-
ner law) to cover the very large dynamic range of the inputs. 
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Furthermore, the human brain is governed by nonlinear 
relations between the neurons.

The need for nonlinear system identification extends far 
beyond the control application field. Nonlinear models are 
instrumental in achieving a basic understanding of prob-
lems in which researchers still struggle with compre-
hending how a system works (for instance, brain activity 
modeling and chemical reactions). In these applications, 
high accuracy is not always needed, and qualitative results 
can be very helpful in isolating the dominant terms. There-
fore, structural model errors (that is, deficiencies in the 
chosen model structure) become more important than 
noise disturbances, and the system identification tools 
should be properly tuned to deal with dominating struc-
tural model errors. This shows that there are many differ-
ent reasons to move from linear to nonlinear models. Here 
we have to note the motivation of the researchers who 
developed nonlinear identification tools; without under - 
standing the factors driving the researcher/scientist, it is 
often difficult to understand and appreciate the choices 
they made.

Since nonlinear system identification is an expansive 
topic that covers a diversity of fields, it is not possible to 

cover all technical details in full. Thus, as discussed in 
“Summary,” the focus of this article is on the general con-
cepts, with the aim of emphasizing the link between the 
different user choices within a unifying framework. This is 
also reflected in the outline of the article, which is orga-
nized into a number of sections that cover the main flow of 

Summary

T he goal of this article is twofold. First, nonlinear system 

identification is introduced to a wide audience, guid-

ing practicing engineers and newcomers in the field to a 

sound solution of their data-driven modeling problems for 

nonlinear dynamic systems. In addition, the article pro-

vides a broad perspective on the topic for researchers 

who are already familiar with linear system identification 

theory, showing the similarities and differences between 

linear and nonlinear problems. The existing literature will 

be referred to for detailed mathematical explanations and 

formal proofs. Here, the focus is the basic philosophy,  

giving an intuitive understanding of the problems and 

the solutions by providing a guided tour of the wide range 

of user choices in nonlinear system identification. To reach 

that goal, guidel ines and many examples are pro-

v ided. The recommended reading mode is to first read 

the main text and then, if needed, consult the sidebars for 

more details.

Linear

Nonlinear Time Varyingonlinear Time V

FIGURE 1 Linear system identification is successfully applied to 
a wide variety of problems in many different fields. However, 
the ever-increasing demand for higher performance and effi-
ciency pushes systems in a nonlinear operational direction, so 
that nonlinear models are required for their design and control. 
The real world is nonlinear and time varying, and these aspects 
cannot be ignored. Data-driven nonlinear model building has 
applications in traditional industrial and emerging new high-
technology applications, among others, from the mechanical 
and electrical fields to the electronic, telecommunication, and 
automotive. Biomechanical and biomedical applications can 
also take full advantage of a nonlinear modeling framework. 
Good nonlinear models provide designers with intuit ive 
insights that can guide them toward better solutions for tomor-
row’s products. 

–10
–20
–30
–40
–50

F
R

F
 (

dB
)

7 8
Frequency (Hz)

9

FIGURE 2 The variation of the resonance frequency and damping 
of a torsion mode of the wing of a fighter aircraft for varying excita-
tion levels. The right wing is excited at the tip with a shaker. The 
frequency response function (FRF) from the input force to the tip 
acceleration is measured at a small excitation level (gray line) and 
a medium one (black line). The red line gives the level of the non-
linear distortions. The nonlinearity is due to friction and gaps in the 
bolted connection between the wing and the missile. In the inset, 
the FRF of the best linear approximation (BLA) ( )G fBLA  is shown 
(gray and black line) for two different excitation levels in the fre-
quency band of interest (see “Linear Models of Nonlinear Sys-
tems”) [32], [33].
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the nonlinear system identification process, supported by 
sidebars to provide additional information and background 
information on some topics.

The article starts with a short discussion on the lead 
actors in (nonlinear) system identification. These are still 
the same as those identified in the early 1960s by Zadeh 
[1]: the data, the model, and the matching criterion. These 
are discussed from a nonlinear identification per-
spective in the section “The Lead Actors in Nonlinear 
System Identification.” Next, the section “Why is Nonlinear 
System Identification So Involved?” clarifies why the 
complexity of the modeling process grows very fast 
when moving from linear to nonlinear system identifica-
tion. The goal of the nonlinear modeling process strongly 
affects the required user effort, which is discussed in the 
“Goal of the Nonlinear System Identification Process” 
section. Nonlinear system identification is much more 
involved than linear identification. It should be a well-
informed decision to move toward nonlinear methods. 
This is discussed in the section “Linear or Nonlinear 
System Identification: A User’s Decision.” There are many 
more nonlinear model structures than there are for linear 
systems. Making a proper choice from this wide range of 
possibilities is one of the major difficulties for newcom-
ers in the field. Guidance to make a proper choice is 
given from a systems behavior perspective (for exam-
ple, hysteresis, chaos, and fading memory) and from 
a user’s point of view (physical or black-box model, a 
model that is linear in the parameters). This is discussed 
in the section “The Palette of Nonlinear Models” and 
“External or Internal Nonlinear Dynamics,” respectively. 
Black-box nonlinear models are more difficult to assess 
and to understand than physical models (“Black-Box 
Model Complexity”). It is often hard to obtain intuitive 
insight in the modeled behavior because the number of 
terms in the model becomes very large. Eventually, 
attention is paid to experiment design. A number of 
extensive sidebars provide more detailed background 
information and highlight important aspects of the non-
linear identification process so that the main flow of the 
article remains clear.  

Many aspects are illustrated by examples, and sup-
porting software is made publicly available. Guidelines 
for the user to pinpoint the main lessons and conclu-
sions are given at the end of most sections. 

THE LEAD ACTORS IN NONLINEAR SYSTEM 
IDENTIFICATION
Any identification procedure to build models using observed 
input–output data is characterized by three main compo-
nents: the data, a set of candidate models, and an estima-
tion method. The process of gaining confidence in the 
est imated model, that is, the val idat ion procedure, 
should also be added to these components. These four 
elements are briefly presented in this section, offering a 

highly structured, unified view on data-driven modeling. 
More comprehensive treatments will follow in forthcom-
ing sections.

The Data
The input–output data used to select a model constitute the 
fundamental information source. Selecting the signals to 
be measured, deciding how the input should be config-
ured, and collecting the data with appropriate sampling 
procedures will have a major impact on the quality of the 
resulting model. This is the task of experiment design. It 
is important to realize that no model can be a perfect 
description of the true system under investigation. Any 
model will be an approximation of the truth, and it will be 
affected by the aspects of the system that are excited during 
the  experiment.

It is important to design the experiment to cover the 
intended use of the model. The input power spectrum (for 
example, white or colored noise) and the amplitude distri-
bution (for example, uniform, Gaussian, or binary) of the 
excitation should be properly set. Of course, the classical 
linear identification rules also remain valid (persistency of 
excitation and maximum Fisher information) [6], [30]. How-
ever, these should be balanced against the other require-
ments to identify a well-behaving approximation model 
(see also “Impact of Structural Model Errors”).

User Guideline
Make sure that the experiment covers the domain of inter-
est and brings out all essential system features of interest.

The Model Structure: Set of Candidate Models
For linear identification, the choice of model sets is quite 
easy to grasp: a state-space structure of a certain dimen-
sion or transfer functions of certain orders. In contrast, 
the selection of a model set for nonlinear identification 
is a major problem and offers a very rich range of pos-
sibilities. It is driven by the user’s preferences and 
directed by the system behavior. In fact, aspects of 
model properties and considerations of model choices 
dominate this article. An overview of the user’s choices 
along possible and useful nonlinear model structures is 
given in the section “The Palette of Nonlinear Models,” 
arranged by the amount of prior physical knowledge 
about the system that is incorporated into the model. In 
addition, the system’s behavior imposes whether the 
nonlinearity should be captured in a dynamic closed 
loop or not. This may impact the behavioral patterns of 
the model and is further discussed in “External or Inter-
nal Nonlinear Dynamics.”

An important distinction is whether disturbance sources 
enter before the nonlinearity or not. This does not only affect 
the behavior of the nonlinear system [34]–[37]. Dedicated 
identification algorithms will also be needed [38]–[40]. 
Proper stochastic treatment of the model becomes more 
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Impact of Structural Model Errors
ny estimated model has some error. It is important to dis-

tinguish between two error sources. Structural model 

errors are the type of errors from deficiencies in the mod-

el structure. The model is simply not capable of produc-

ing correct model outputs. Even with an infinite amount of 

perfect estimation data, the model output will have errors. 

Random model errors are the disturbances present in the 

estimation data that will affect the model, such that even 

when there are no structural model errors, the model output 

will have errors. These concepts are defined more precisely 

in the following. For simplicity, only the case of output error 

models (or simulation models) will be treated [see “Simula-

tion Errors and Prediction Errors” (S21): ( ) ( ) ( )].y t y t v t0= +  

The term ( )v t  models the disturbances, which, for simplicity 

in this sidebar, are assumed to be additive and independent 

of the input.

For a simulation model, the predictions of ( )ty  will depend 

only on past inputs

( ) ( ) ( )y t y t h uS t
0 0

1; = = -t   prediction with the  

true system,  (S1)

( ( )) ( , )y t h uM t 1; i i= -t   prediction with a model for  

parameter value .i  (S2)

Clearly, the output ( )ty  contains an innovation ( ) ( ) ( )t y t y t S;o = - t  

that cannot be predicted by any model, even with the true sys-

tem. Model errors yf  will always be in addition to .o  Consider 

two cases:

1) The true system is in the model class .( )S M!  There ex-

ists a 0i  such that ( ) ( , ).h u h ut t
0

1 1
0i=- -  Normally, the esti-

mate N 0"i it  as N "3  [6] and the model parameter error 

N0i i- t  will be a random error caused by data disturbances 

( ).v t  Therefore, the model error ( , ) ( , )h u h ut t
N

1
0

1i i-- - t  will 

be defined by the random error in ,N0i i- t  and

 ( ) ( , ) ( ) [ ( , ) ( , )].y t h u t h u h ut
N

t t
N

1 1
0

1i o i i- = + -- - -t t  (S3)

2) The true system is not in the model class .( )S Mg  Define

 .limu
N

Ni i=
"

)

3

t  (S4)

The subscript u  emphasizes that ui
)  will depend on the sta-

tistical properties of the input .u  The output model error 

( ) ( ( ))y t y t M N; i- t t  can now be decomposed as

( ) ( , )) ( )y t h u tt
N

1 i o- =- t  innovation

 [ ( ) ( , )]h u h ut t
u0

1 1 i+ - )- -  structural model error

 [ ( , ) ( , ))]h u h ut
u

t
N

1 1i i+ -)- - t  random model error. (S5)

Denote the structural model error in (S5) as ( ) ( ).y t h ut 1=f f
-  

Observe that this error depends upon the input.

REMARKS

1) Under mild ergodicity properties of the estimation of data 

disturbances, the parameter ui
)  in (S4) obeys

 ( ) ( , ) ,argmin E y t h uu
t 1 2< <i i= -)

i
-  (S6)

which stresses that ui
)  is the best model available in the set 

M  for the chosen input.

2) For some applications, it may be of interest to consider a 

family of different input properties and configurations .u X!  

If these configurations are equipped with a probability mea-

sure, the best model for the family ,X  ,BAMi  can be defined as

 .Eu uBAM Xi i= )
!  (S7)

EXPERIMENT DESIGN

A system describes that part of reality of importance to the user. 

The main idea of system theory is to make this description in-

dependent of the actual inputs that are applied, creating a clear 

split between the system characteristics and the signals on 

which the system acts. System identification theory implies that 

the excitation signal does not affect the system, and, hence, the 

model should not depend upon it. In the presence of structural 

model errors and approximate modeling, this paradigm no lon-

ger holds. The approximate model is valid only around a given 

working point in a restricted input domain where the structural 

model error ( ( ))h u tf  is acceptably small. The approximate model 

depends on the working point and the class of inputs, so a major 

advantage of the system’s theoretic framework is lost. Neverthe-

less, this is the best that can be done if a complete model class 

that includes the true system is too complex.

Example: Static Nonlinear System u(t) = arctan(u(t))

Approximated by ys(t) = au(t)

The dependency of the model on the excitation class is illus-

trated in Figure S1, where the true system is given by ( ( ))h u t0 =  

( ( )),arctan u t  and the simplified model is ( ) ( ).y t au ts =  The dis-

turbing noise ( )v t  is set to zero to focus completely on the im-

pact of the excitation class on the approximate model. A clear 

dependency of *
ui  on the input distribution can be observed.

The results of this simple illustration are generally valid. 

Whenever a complex system is approximated with a simplified 

model, the results will depend on the actual applied inputs. For 

that reason, the experiment should be designed such that it 

covers the input domain of interest. It should be tuned to the 

problem to be solved so that the structural model errors ( )y tf  

remain acceptably small for the user. This will set the actual 

subdomain that must be covered. This is illustrated on the 

Duffing oscillator example in Figures 8 and S22. Within this re-

stricted domain, it still remains important to select signals that 

are sufficiently rich to collect as much information as possible 

within the tolerable cost of the experiment.

A
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Example: Design of an Excitation for  

the Wet-Clutch Setup

A simulation model of the wet-clutch setup in Figure S2 was 

used during an iterative control design for the system. The 

goal was to obtain a fast but smooth engagement of the 

clutch. To reach that goal, spiky signals with a large ampli-

tude are used to obtain a short filling phase, followed by a 

small excitation to obtain a smooth engagement. The design 

of rich excitation signals that mimic this behavior is discussed 

in Figure S3.

CHOICE OF THE COST FUNCTION

No Structural Model Errors Present

In linear system identification, the classical choice for the cost 

function is [6], [7]

 
( ) ( , ),

( , ) ( , ) [ ( ) ( , ) ( )],

V N t

t H q y t G q u t

1
2
1

N
t

N

1

2

1

i f i

f i i i

=

= -

=

-

/
 

(S8)

with G the plant model and H  the noise model. This can also 

be written in the frequency domain [6] (neglecting the begin 

and end effects that create leakage errors [69]) as

 ( )
( , )

( ) ( , ) ( )
.V N H k

Y k G k U k1
2
1

N
k

N

1
2

2

; ;

; ;
i

i

i
=

-

=

/  (S9)

( ),U k  ( )Y k  are the discrete Fourier transform of ,u  y  evalu-

ated at the frequency ,/f kf Nk s=  and ( , )G k i  and ( , )kH i  are the 

plant and noise transfer functions, respectively, evaluated at 

.fk  In the prediction error framework, the parametric plant and 

noise models are simultaneously estimated by minimizing the 
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FIGURE S1 A linear approximation of a nonlinear system [79]. (a) The nonlinear system ( )arctany u=  is approximated with a linear 
model y au=  for three excitation signals with a different amplitude distribution: Gaussian (red), uniform (blue), and sine (green) 
excitations are applied. All signals are scaled to have the same peak value. (b) The histograms for 1024 samples for each of the 
excitation signals. (c) The approximate linear models depend strongly on the distribution of the excitation signal. Since most of 
the probability mass of a Gaussian distribution is around the origin (see the Gaussian histogram), the Gaussian excitation results 
in the best fit in that domain (red). A sine mostly excites the extreme values (see the histogram of the sine excitation), and it results 
in a fit that better approximates the nonlinear function for these extreme values (green). This is at a cost of larger approximation 
errors around the origin. The behavior of the uniform distribution is between these two extreme distributions, and this is also true 
for the corresponding fit (blue).
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cost function ( )VN i  with respect to .i  It is shown [6] that this is the 

maximum likelihood formulation of the identification problem if 

the disturbing noise v  is Gaussian distributed.

An alternative is to replace the parametric noise model by 

a nonparametric measurement of the noise variance ( )kv
2v =  

( , ) .H k 2; ;i  The variance ( )kv
2v  is directly estimated from the data in 

a nonparametric preprocessing step using periodic excitations [30], 

[69] (see “Nonparametric Noise and Distortion Analysis Using Peri-

odic Excitations”) or starting from arbitrary excitations using the re-

cently developed nonparametric estimation methods [88]. Observe 

that, in this approach, the estimation of the noise model does not 

depend upon the plant model, such that a too-simple plant model 

will not affect the noise model. The cost function is then

 ( )
( )

( ) ( , ) ( )
.V N k

Y k G k U k1
2
1

N
k

N

v1
2

2; ;
i

v

i
=

-

=

/  (S10)

In the absence of structural model errors, there is a full 

equivalence between both approaches [30], [70], and the 

differences are mostly on the implementation side [71]. 

This picture changes completely if structural model errors 

are present.

This discussion can be directly generalized to nonlinear 

systems by replacing the linear model ( , ) ( )G q u ti  with the non-

linear model ( , ).h u i  A further generalization would be, for ex-

ample, to include a nonlinear noise model to address process 

noise (see “Process Noise in Nonlinear System Identification”).

Structural Model Errors Present

In the presence of structural model errors, the parametric 

noise model | ( , ) |H k 2i  will account for the power in both the 

disturbing noise ( )v t  and the structural model errors ( ).y tf  

Moreover, the maximum likelihood motivation is no longer 

valid because the structural model errors are not independent 

of the input .u

The nonparametric noise analysis based on periodic 

excitations will still estimate ( ) ( , )k H kv
2 2; ;v i=  while, for the 
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FIGURE S2 (a) A wet-clutch setup [20]. (b) A cross-sectional schematic of the electrohydraulic valve and wet clutch. A wet-clutch 
device transmits torque from an input axis to an output axis via fluid friction prior to the engagement of the friction plates. Such 
devices are commonly used in automatic transmissions for off-highway vehicles and agricultural machines to transfer torque from 
the engine to the load. An electrohydraulic proportional valve regulates the pressure inside the clutch, which causes the engage-
ment of the piston with the friction plates. A model describing the relation between the current applied to the motor of the electro-
hydraulic valve and the resulting pressure during the filling stage of the clutch is built for a smooth engagement. (c) A linear model 
(red line) fails to model the true oil pressure (black line) for the spiky input, while a nonlinear state-space model (blue line) 
matches very well with the real data [20]. The example is further discussed in Figure S3. (Source: W.D. Widanage et al. [20]; used 
with permission.)
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advanced nonparametric methods [72]–[74], a combination of 

the disturbing noise variance and the mean squared struc-

tural model errors will be retrieved.

This raises the question of what is the best choice for the 

weighting function in (S8)–(S10) in the presence of structural 

model errors. It makes no sense to weight the structural model 

errors with the noise variance if the structural model errors 

dominate the noise. The weighting function should reflect in 

what frequency band larger structural model errors can be tol-

erated and where small structural model errors are needed. 

This is done by replacing the noise-variance-based weighting 

( , )H q1 i-  in (S8) or / ( )k1 v
2v  in (S10) with a predefined frequency 

weighting ( )L q1-  or / ( )w k1 2  chosen by the user that reflects the 

most acceptable behavior of the structural model errors for the 

application in mind

 
( ) ( , ),

( , ) ( ) [ ( ) ( , ) ( )].

V N t

t L q y t G q u t

1
2
1

N
t

N

1

2

1

i f i

f i i

=

= -

=

-

/
 

(S11)

Observe that, in contrast to (S8), the weighting filter ( )L q1-  no longer 

depends on .i  In the frequency domain, the cost function (S11) is

 
( )

( ) ( )
.argmin

L f
Y f Y f

N
f F

2

2

; ;

; ; <
i

i
=

-

!

i
t

t
/  (S12)

By taking the sum over only the frequencies of interest ,f F!  

the fit is focused on the frequency band of interest.

COVARIANCE MATRIX EXPRESSIONS

The covariance matrix of the parameter estimates Ci  for the lin-

ear-least-squares problem ( ) ,y K u wi= +  where ,y  ,w RN 1! #  

,Rn 1!i #i  and ( ) ,K u RN n! # i  is given by [6], [7], [30]

( ) ( ) ( ) ( ) ( ( ) ( )) .C E N K u K u N K u ww K u N K u K u1 1 1
,u w

T T T T
1

1=i
-

-` j; E
 (S13)

No Structural Model Errors yЄ(t) Present:  

w(t) = v(t) and yЄ(t) = 0

In this case, ( )w t  is independent of ,u  and (S13) converges for 

N "3  to

[ ( ) ( )] ] [ ( ) ( )] [ ( ) ( )] ].C E K u K u E K u ww K u E K u K u,u
T

u w
T T

u
T1 1=i

- -  (S14)

Making use of the independency of w  and ,u  it follows that w  

is independent of ( ),K u  so that

 
[ ( ) ( )] [ ( ) [ ] ( )]

[ ( ) ( )],

E K u ww K u E K u E ww K u

E K u C K u
,u w

T T
u

T
w

T

u
T

w

=

=
 

(S15)

and the covariance matrix becomes

 [ ( ) ( )] ] [ ( ) ( )] [ ( ) ( )] ].C E K u K u E K u C K u E K u K uu
T

u
T

w u
T1 1=i

- -  (S16)

Since w  is white noise, ,C Iw w
2v=  and

 [ ( ) ( )] .C E K u K uw u
T2 1v=i

-  (S17)

Structural Model Errors yЄ(t) Present: w(t) = v(t) + yЄ(t)

In the structural model error case, ( )K u  and w  both depend upon 

the input ,u  so the independence is lost and [ ( ) ( )]E K u w wK u,u w
T T  !  

[ ( ) [ ] ( )].E K u E w w K uu
T

w
T  In that case, higher-order moments of 

u  show up in the calculation of [ ( ) ( )]E K u w wK u,u w
T T , and the 

general expression (S14) should be used. Since the depen-

dency of w  on u  is not known (the structural model error 

is unknown), it becomes impossible to obtain closed-form 

expressions for the covariance matrix .Ci  This creates a 

huge problem because the classical but simplified expression 

(S17) underestimates the variability, providing the user with 

a far too optimistic approximation of the uncertainty of the 

estimates [81]. Estimating the variability directly from a set 

of repeated experiments with varying inputs is a pragmatic 

solution to this problem but provides no closed-form expres-

sions [81].

Example 1: Linear Approximation of y un=

It is shown in [75] that the underestimation of the variance 

is maximal for static nonlinear systems. These can be ap-

proximated arbitrarily well in a mean-square sense using 

a polynomial representation. For that reason, the study 

of static nonlinear systems ( ) ( )y t u t n
0 =  is highly informa-

tive. For such a system excited with Gaussian noise, the 

best linear approximation (BLA) GBLA  is constant (see 

the section “More on the Best Linear Approximation GBLA ” 

in “Linear Models of Nonlinear Systems”) [30], [34], [82], 

[85], [86], and, hence, ( , ) ,G q aBLA BLAi =  which is different 

from zero only when n is odd. It is also possible to explic-

itly calculate the ratio between the full nonlinear-induced 

variance (with structural model errors present and input- 

dependent residuals) and the classical variance (with no 

structural model errors present and input-independent re-

siduals) of aBLAt  [75]

 .n2 12 2
dependant errors independent errorsv v = +  (S18)

This shows that the underestimation of the variance by (S17) 

grows with the nonlinear degree .n

Example 2: The Forced Duffing Oscillator

A linear approximating model is estimated to the forced Duff-

ing oscillator from the experimental data (tail part) discussed 

in “Simulation Errors and Prediction Errors.” The tail is split 

into 10 subrecords with a length of 8692 points, and each of 

these is used to identify a second-order, discrete-time plant 

model and a sixth-order noise model using the Box–Jenkins 
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model structure of the prediction-error method [6], [7]. The 

estimated second-order plant transfer function is shown in 

Figure S4. The estimation procedure resulted in the plant and 

noise model. From this information, in the structural model, 

error-free system identification approach, it is possible to ob-

tain an estimate of the variance on the results. In Figure S4, 

the estimated standard deviation of the transfer function is 

compared with the sample standard deviation calculated from 

the repeated estimates on the 10 subrecords. Both curves 

look very similar, but the model-based estimated value 

(green) underestimates the actual observed standard devia-

tion (red) by 50% or more. This is because the system identi-

fication framework fails to precisely estimate the uncertainty 

in the presence of nonlinear structural model errors. Note that 

whenever structural model errors are present, the confidence 

bounds are wrong.

Example 3: Wind Tunnel Experiment

In Figure S5, the underestimation of the variability in the pres-

ence of nonlinear model errors is illustrated in a wind tunnel 

experiment. In this experiment [93], the transfer function of the 

BLA [see “Linear Models of Nonlinear Systems” (S30)] is mea-

sured from the forced displacement (a random-phase multisine) 

[30] at the root of a wing mounted in a wind tunnel [Figure S5(a) 

and (b)] to the acceleration of the tip of the wing [Figure S5(b)]. 

The simplified variance analysis (neglecting the dependency of 

w on the input) and the actual observed variance obtained from 

different realizations of the experiment are shown. The sim-

plified analysis underestimates the actual observed standard 

deviation by 11 dB (approximately a factor of three).

OPTIMAL STRATEGY TO GENERATE SIMPLIFIED MODELS

A key issue in system identification is how to cope with 

high system complexity. Sometimes structural model er-

rors are unavoidable because overly complex models are 

needed to include the system in the model class. In other 

situations, structural model errors are deliberately created 

because simple models are needed in the next phase of the 

control design process. In that case, the experiment can 

be designed such that some complex system behavior is 

concealed, and the simple model still performs well on the 

 domain of interest [76].
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FIGURE S3 The design of excitation signals for the wet-clutch setup in Figure S2 [20]. (a) A random-phase multisine has a Gaussian 
amplitude distribution. This does not fit with the spiky signals typically applied to the wet clutch as shown in Figure S2. The nonlinear 
state-space models identified with these signals failed to simulate the system for the spiky signals that were applied during the 
iterative learning control design. The models even became unstable. For that reason, (b) a band-limited periodic signal was designed 
that consists of the sum of two signals. The first signal is a band-limited approximation of the spiky signal [see the blue spectrum in 
(c)]. A multisine with a flat and small-amplitude spectrum [red in (c)] is added to it. The red components excite the dynamics around 
the spiky profile. This results in a rich excitation that mimics the future use of the model very well. This guarantees that the structural 
model errors will be small for the intended application. (Source: W.D. Widanage et al. [20]; used with permission.)
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cumbersome and may require advanced tools when the pro-
cess noise enters before the nonlinearity [41]–[56]. This is dis-
cussed in “Process Noise in Nonlinear System Identification” 
and “Identifying Nonlinear Dynamical Systems in the Pres-
ence of Process Noise.”

In any case, a model should be capable of producing a 
model output ( )y tt  for the output at time ,t  based on previ-
ous input–output measurements. This could be computed 
as a formal prediction of the output, or it can be based 
on other considerations. The set of candidate models 

Identifying simplified models leads to structural model er-

rors and notes all of the questions discussed before. This also 

raises the question of the best strategy: 1) first identify the 

most complex model affordable (reduce the structural model 

errors as much as possible), followed by a model reduction 

step, or 2) identify a too-simple model, dealing directly with the 

structural model errors.

In [76], it is shown using the maximum likelihood invariance 

principle that the first strategy is the best choice to follow (if it is 

affordable) because it results in an asymptotically efficient es-

timate (smallest variance) consistent (retrieves the “true” value 

if the number of data goes to infinity). Moreover, it allows the 

user to separate the identification and model reduction steps 

by using the maximum likelihood framework in the first step 

(resulting in efficient estimates with the lowest uncertainty), fol-

lowed by a model reduction step using an application-oriented 

cost function. This two-step approach also allows the user to 

make a proper characterization of the reliability of the simpli-

fied model. For this reason, it is the best strategy, whenever it 

is affordable. However, this first option is often not affordable. 

The only solution is to directly identify a simple model in a set-

ting with structural model errors. The following user guidelines 

help address that situation.

USER GUIDELINES: HOW TO DEAL WITH STRUCTURAL 

MODEL ERRORS

• Experiment design: The experiment should be as close 

as possible to the future applications so that the struc-

tural model errors are guaranteed to be small under these 

conditions. For example, the best simplified model can be 

completely different for a Gaussian or a sine excitation. 

The same holds true for varying power spectra, amplitude 

ranges, and operating points.

• Choice of the cost function: When structural model er-

rors dominate, the maximum likelihood paradigm that 

proposes a cost function based on the disturbing noise 

properties is no longer the natural choice. The cost func-

tion should reflect the user’s needs and express where 

smaller structural model errors are needed and larger 

structural model errors can be tolerated. This can be done 

by using, for example, a relative error in  the cost or by 

proposing a user-defined weighting function.

• Frequency weighting: The frequency weighting of the er-

rors should no longer reflect the disturbing noise variance 

when the structural model errors ye  dominate the disturb-

ing noise .v  Instead, the weighting should be chosen to 

ensure that the structural model errors remain small in the 

frequency band of interest.

• Did we lose 50 years of time? From the discussions in this 

sidebar, it might appear that the past efforts on the devel-

opment of a system identification framework are in vain 

when structural model errors exist. However, this is certain-

ly not true. The lessons learned from the classical system 

identification approach should not be forgotten; the clearly 

structured picture that is provided in classical textbooks [6], 

[7], [30] is still valid at full power and provides a road map of 

how to organize the system identification process.

Improper data handling can overemphasize small noise 

disturbances, making the identification process again vul-

nerable to noise disturbances that are far below the structur-

al model error level. The user is still strongly advised to make 

a clear split between the experiment design, the model class 

selection, the choice of the cost function, and the choice of 

the numerical procedures used to minimize the cost func-

tion. The consistency analysis developed in the structural 

model error-free framework still provides insight into the 

convergence of the  algorithms in the presence of structural 

model  errors. The major open issue that is still unsolved is 

how to generate reliable uncertainty bounds in the presence 

of structural model errors.

FIGURE S4 A study of the estimated standard deviation in the 
presence of nonlinear distortions [79]. The amplitude of the 
estimated transfer function model is shown in blue. The 
green line is the theoretic standard deviation of the estimated 
plant model, calculated under the assumption that there are 
no structural model errors (w is independent of u). The red line 
is the actual observed standard deviation of the estimated 
plant model, estimated from the variations of the estimated 
plant model over the 10 subrecords. It can be seen that the 
observed standard deviation is underestimated by 4 dB by 
the simplified theoretical analysis. This leads to too-small 
error bounds.
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is typically parameterized by a parameter vector ,i  and 
the notation

 ( )y t it  (1)

will be used for the model output corresponding to 
the model parameter .i  A common and easy case is 
that ( )y t it  is linear in i  (while possibly nonlinear in 
the data). This case is referred to as a linear-in-the-
parameters model.

• Uncertainty bounds: The covariance matrix generated 

by the structural model error-free system identification 

framework is wrong in the presence of structural model 

errors. This is still like that if the noise model is tuned to 

also include the structural model errors. The covariance 

matrix underestimates the true value because it does 

not account for the dependency between the structural 

model errors and the input. This is well in line with the 

rule of thumb: do not pay any attention to the model’s 

uncertainty bounds if the validation test fails. At this mo-

ment, there is no theoretical framework available that 

can provide more reliable bounds. The user is advised to 

repeat the experiment for different excitation signals (for 

example, different realizations of a random excitation) 

and to study the variability of the results under these 

conditions (see Figure S4) [81].
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FIGURE S5 An illustration in a wind tunnel experiment [92], [93] of the underestimated standard deviation on parametric 
models in the presence of nonlinear model errors. In this experiment [93], (a), (b) the transfer function is measured from the 
forced displacement (a random phase multisine) [30] at the root of a wing mounted in a wind tunnel to (b) the acceleration of 
the tip of the wing. The wind speed is 8 m/s, and the angle of attack is 17.5°. The nonlinear distortion level (+), obtained from 
a nonparametric analysis, is 20 dB above the noise floor (not shown on this figure). The measurements are repeated for eight 
realizations of the random-phase multisine input (bottom). The best linear approximation (BLA) for this nonlinear system is 
estimated. (c) The solid red line shows the parametric transfer function model of the BLA obtained by processing all realiza-
tions together. The BLA is also estimated for each individual realization. The black solid line that coincides with the red line 
shows the mean value of these individual estimates. The theoretical standard deviation (broken red line) obtained under the 
assumption that the errors are independent of the input, underestimates the actual observed standard deviation by 11 dB 
(about a factor of three). This is a typical result when structural model errors dominate the noise. [Sources: (a) J. Ertveldt  
et al. [92] (b) and (c): J. Ertveldt [93]; used with permission.]
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User Guideline
The choice of the model structure is directed by behav-
ior and structural aspects.

 » Behavior aspects: These are imposed by the system. 
The question is can the selected model reproduce 
the observed macroscopic behavior, such as shift-
ing resonances and hysteresis?

 » Structural aspects: These are a user choice set by the 
level of physical insight that the user desires to 
inject into the model, ranging from white-box 
physical models to black-box models.

 » Structural  model  errors :  Such ar t i facts in the 
model result i f the chosen model structure is 
not rich enough to contain a true description of 
t he  system.

The Estimation Method
With a given data set and model set, the identification 
task is to select that model (i) that best describes the ob -
served data. Most estimation methods are based on a 
criterion of fit between the observed output ( )y t  and 

the model output ( )y t it , which can be conceptually 
written as

 ( ) ( ) .argmin y t y tN
t

N
2

1
i i= -i

=

t t/  (2)

If the model output is computed as a one-step-ahead 
prediction based on the model set and data available at 
t ime t 1–  and the prediction error is Gaussian, then 
the model estimate Nit  will be the maximum likeli-
hood estimate. However, the conceptual method (2) 
can be interpreted in more pragmatic terms without 
making a statistical motivation (see “Impact of Struc-
tural Model Errors”).

The cost function (2) can be extended with a regular-
ization term to include prior knowledge or impose a 
desired behavior like smoothness or exponential decay 
on the solution [see also (S43) and dedicated tools can 
be used to impose additional structure on the solution, 
as discussed in “Black-Box Model Complexity”] [26], 
[57]–[68].

Simulation Errors and Prediction Errors

There are two basic uses of a model: simulation and predic-

tion. Simulation means that the model is subject to an in-

put sequence [ ( ), ( ), , ( )],U u u u t1 2t f=  and its response to that 

input is computed. Such applications are important to evalu-

ate the system’s behavior under new situations without having 

to perform actual experiments. Prediction means that an ob-

served input–output sequence [ ( ),Z u 1t =  ( ),y 1  ( ),u 2  ( ), ,y 2 f  

( ),u t  ( )]y t  is given, and a prediction of the next output ( )y t t1;+t  

is sought [or outputs k  steps ahead of ( )],y t k t;+t  in which  

case, tentative future inputs ( ), ,u t 1 f+  ( )u t k+  should be sup-

plied]. Such applications are important for system prediction 

but primarily for control design (control of a system subject to 

disturbances can be seen as control of the predicted output). 

Model predictive control [22] is commonly used in industry and 

provides an estimated model and a certain control/prediction 

horizon to select the control action that optimizes the predict-

ed output.

In (9), a model is essentially a predictor for the output. The 

model is a simulation model if the prediction depends only on 

past inputs, so it will be focused on the simulation task. It is a 

prediction model if the prediction also depends on past outputs.

Note that a prediction model ( )h Zt  (omit the parameter vec-

tor i  for simplicity) can also be used as a simulation model 

(simulating future outputs without access to past outputs), sim-

ply by replacing, recursively, the outputs in the predictor by 

predicted outputs. Let

 [ ( ), ( ), ( ), ( ), , ( ), ( )],Z u y u y u t y t1 1 2 2t
0 0 0 0f=  (S19)

where ( ) ( ), , ,y s h Z s 1 2s
0 0

1 f= =-  which is depicted in Figure S6.

The k-step-ahead predictor ( )y t k k;+t  is an intermediary 

entity between one-step-ahead prediction and simulation. For 

nonlinear models, a formal calculation of the k-step-ahead pre-

dictor as a conditional expectation is at least as difficult as find-

ing the optimal one-step-ahead predictor. However, a pragmatic 

and approximate way to compute a k-step-ahead predictor from 

any one-step-ahead prediction formula, optimal or not, is as fol-

lows, mimicking (S19).

Let ( )y t t 1; - =t  (( ),f y 1-  ( ),u t 1-  ( ),y t 2-  ( ),u t 2-  ( ),y t 3-  

( ), .....)u t 3-  be the expression for the one-step-ahead predictor. 

Form the expression for the k-step-ahead predictor at time t  by 

recursively performing (in t  and )k

( ( ( ), ), ( ), ( ),

( ), ( ), ),

( ) ( ( ), ( ), ( ), ( ),

( ), ( ), ),

( ) ( ( ), ( ), ( ), ( ),

( ), ( ), ),

(y t t f y t t u t y t u t

y t u t

y t t f y t t u t y t t u t

y t u t

y t t k f y t t k u t y t t k u t

y t t k u t

1 2 1 2 2

3 3

3 1 3 1 2 3 2

3 3

1 1 2 2

3 3

2)

f

f

h

f

; ;

; ; ;

; ; ;

;

- = - - - - -

- -

- = - - - - - -

- -

- = - - - - - -

- - -

t t

t t t

t t t

t (S20)

where ( )y t t k1;- -t  has first been computed. If f  is the optimal 

one-step-ahead predictor and a linear function of its arguments, 

this gives the optimal k-step-ahead predictor. Otherwise, it is an ap-

proximate method for producing outputs k  steps ahead while still 

providing an idea of the model’s properties over longer horizons.
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User Guidelines
The criterion of fit can be based on a statistically grounded 
choice if the noise disturbances dominate over the struc-
tural model errors. If the latter dominate, a weighting func-
tion can be selected that reduces the impact of structural 
model errors in the domain of interest (for instance, using a 
user-selected frequency weighting), at a cost of obtaining 
larger errors outside the domain of interest.

Model Validation
When a model has been estimated, the questions Does it 
solve our problem? and/or Is it in conflict with either the 
data or prior knowledge? are asked. This is the essential 
procedure of model validation, which is further discussed 
subsequently in the section with this title.

A key element is that model validation typically involves 
a validation data set, an independent data set from the 
system that was not used to estimate the model. Often, the 
decision is that the model is not good enough, so some 
choices must be revised. Typically, other model sets must 
be tested, or the conclusion might be that the data were not 

informative enough, so the experiment design must be 
reworked. This is why identification often is seen as an 
iterative problem with a so-called identification loop (for 
example, see [6, Fig. 17.1]).

User Guideline
Validating a model is a rather subjective and pragmatic 
problem. Check on a rich validation data set that covers 
the intended use of the model if the estimated model 
meets the user expectations.

WHY IS NONLINEAR SYSTEM IDENTIFICATION 
SO INVOLVED?
Nonlinear system identification can be much more involved 
than linear identification. Three aspects contribute to 
this observation: 

1) Nonlinear models live on a complex manifold in a 
high-dimensional space, while linear models live on a 
simple hyperplane that is much easier to  characterize. 

2) Structural model errors are often unavoidable in 
nonlinear system identification, and this affects the 

What can be said about the error created by simulation and 

prediction models, respectively? Let hp
0  be the true prediction 

description of a system (based on the correct statistical prop-

erties). Let ( )h Us t
0  be the simulation model created from this 

using (S19). Then ( ) ( )y t h Us t
0 0=t  will be the noise-free output 

response to the input ,Ut  and

 ( ) ( ) ( )v t y t y t0= - t  (S21)

will be the true output error disturbance.

If v  is white noise, the true model structure is a simulation 

model, and ( )y t0t  are the optimal predictions. Otherwise, the dis-

turbance ( )v t  has a smooth or correlated behavior so that its fu-

ture values can be partly predicted from its past. This property 

improves the quality of the prediction. The past values of ( )v t  can 

be estimated as the difference between the past model and mea-

sured output values ( ) ( ) ( ).v t y t y t0= -t t  This is the intrinsic idea 

used in the development of optimal prediction models. Whether 

it is worthwhile to further develop an improved predictor or not 

depends on the nature of the disturbance ( ).v t

• ( )v t  is dominated by measurement or sensor noise: Sen-

sor or measurement noises are not related to the process 

of interest. The main goal is the elimination of this dis-

turbance so that ( )y t0  is the signal of interest. Hence, a 

simulation model is the natural choice.

• ( )v t  is dominated by process noise: Process noise is an 

intrinsic part of the system output. It models that part of 

the system output due to inputs that are not known to the 

user. In control applications, good predictions are impor-

tant, so the noise disturbance must also be included in 

the model. Moreover, the past outputs are available to de-

termine the next control action, which turns the prediction 

model into a natural tool for these applications.

• ( )v t  is dominated by structural model errors: If the model 

set is not rich enough to capture the true system, structur-

al model errors appear (see “Impact of Structural Model 

Errors”), which can also be represented as a disturbance.

A predictor can use past outputs to be informed about struc-

tural errors and find a better predictor than a simulation model. 

Consider a simple process ( ) ( ) ( )y t y t u t1= - +  that ignores a 

structural error in the true system: ( ) ( ) ( )y t y t u t C1= - + +  (C  ig-

nored in the model). The predictor ( ) ( ) ( )y t y t u t1= - +  will have 

an error ,C  while the simulated output cannot avoid an error .Ct

This is one of the reasons why prediction is an easier task 

than simulation and why it is more demanding to obtain a small 

simulation error than a small prediction error.

h h
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FIGURE S6 (a) A prediction model starts from the measured inputs 
ut 1-  and outputs y t 1-  to estimate the output .( )y t  (b) In a simula-
tion model, the measured output y t 1-  is replaced by the esti-
mated output .y t 1-t
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three major choices (experiment design, model selec-
tion, and choice of the cost function). 

3) Process noise entering before the nonlinearity 
requires new numerical tools to solve the optimi-
zation problem.

From Hyperplane to Manifold
A l i near dy nam ic system is  descr ibed by a l i near  
relat ion between the lagged inputs and outputs, as 
w it h  a  s i mple  t wo - t a b s  f i n i t e  i mpu l s e  r e s p o n s e 
(FIR) model

Nonparametric Noise and Distortion Analysis Using Periodic Excitations

Here, tools will be presented that allow the user to detect and 

analyze the presence of nonlinear distortions during the ini-

tial tests. Using a well-designed periodic excitation [see (26) in the 

section “Experiment Design”], the frequency response function 

of the best linear approximation (see “Linear Models of Nonlinear 

Systems”), the power spectrum of the disturbing noise, and the 

level of the nonlinear distortions will be obtained from a nonpara-

metric analysis without any user interaction. The user can set the 

desired frequency resolution and the desired power spectrum 

of the excitation signal. The phase will be chosen randomly on 

[ , ).0 2r  This article only gives a brief introduction. See [30] and 

[150] for a more extensive discussion and [90] for measurements 

under nonlinear closed-loop conditions.

THE RESPONSE OF A NONLINEAR SYSTEM 

TO A PERIODIC EXCITATION

A linear time-invariant system cannot transfer power from one fre-

quency to another, while a nonlinear system does. Consider a non-

linear system ,y u= a  excited at the frequencies , , , .k F1k! f~ =  

The frequencies at the output are given by making all possible 

combinations of a  frequencies, including repeated frequencies, 

selected from the set of F2  excited frequencies (see also Figure S7 

for an illustration of a sine excitation with frequencies { , })1 1-  [30]:

 , { , , , , , }.withk
i

k F F
1

1 1i i f f!~ ~ ~ ~ ~ ~- -
a

=

/  (S22)

For example, for the quadratic kernel ( )2a =  excited by ( )u t =  

( ),sin t~  with ,1~=  it follows that { , }.1 1ki !~ -  Making all com-

binations of two frequencies in this set results in the output 

frequencies: { ,1 1 2+ =  ( ) ,1 1 0+ - =  ,1 1 0- + =  ( ) }.1 1 2- + - =-  

Using Volterra series models (S68) [28], this result can be 

generalized to dynamic fading-memory systems that include 

discontinuous nonlinear systems [30], [123], [151]. Chaotic sys-

tems are excluded from this study because these have no pe-

riodic output for a periodic input.

In the next section, the nonlinear distortions will be detect-

ed using a multisine excitation where some amplitudes Uk  in 

(26) are set to zero for a well-selected set of frequencies.

DETECTION AND CHARACTERIZATION 

OF THE NONLINEAR DISTORTIONS

Sine Test

The simplest nonlinearity test is a sine test. As shown in Fig-

ure S7, nonlinear operations like x2  or x3  create  harmonic 

components (S22) that can be detected at the output of the 

system and reveal the nonlinear behavior of the system. This 

result can be generalized to dynamic nonlinear systems. The 

sine test method is very popular in, for example, mechani-

cal engineering. To speed up the measurement, the sine is 

replaced by a sweeping sine [23], [79]. A sine test is not very ro-

bust because the higher harmonics that indicate the presence 

of nonlinear behavior can be amplified or attenuated by the lin-

ear  dynamics of the system. In highly resonating or bandpass 

systems, the presence of nonlinearities can be strongly under-

estimated. More robust tests were developed using multisine 

 excitations (26).

Multisine Test

Using well-designed multisines, the nonlinear sine test is made 

more robust (for a more reliable estimate of the nonlinear lev-

el) and sped up [79]. The basic idea, illustrated in Figure S8, 

is quite simple and starts from a multisine (26) that excites 

a well-selected set of odd frequencies [which correspond to 

odd values of k  in (26)]. This excitation signal is applied to the 

nonlinear system under test. Even nonlinearities appear at the 

even frequencies because an even number of odd frequencies 

are added together. Odd nonlinearities are present only at the 

odd frequencies because an odd number of odd frequencies 

FIGURE S7 The detection of a nonlinear behavior using a sine 
excitation. (a) The input spectrum shows two spikes at the pos-
itive and negative excitation frequency. (b) The output spectrum 
shows the linear (black), quadratic (blue), and cubic (red) contri-
butions of the output. At frequencies 2 and 3, the presence of 
even and odd nonlinearities is detected.
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 ( ) ( ) ( ),y t a u t a u t1 21 2= - + -t  (3)

which is shown in Figure 3(a). The output is confined to a 
hyperplane in the 3D space. For a nonlinear FIR (NFIR) 
model, the relation can become arbitrary complex

 ( ) ( ( ), ( )),y t h u t u t1 2= - -t  (4)

as shown in Figure 3(b). The task is to estimate this surface. 
It is clear that the linear hyperplane can be characterized 
with only a few points, while it is impossible to tell anything 

are added together. At the odd  frequencies that are not excited 

at the input, the odd nonlinear distortions become visible at the 

output because the linear part of the model does not contribute 

to the output at these frequencies (for example, frequencies 5 

and 9 in Figure S8). By using a different color for each contribu-

tion, it is easy to recognize these in an amplitude spectrum plot 

of the output signal.

DISTURBING NOISE CHARACTERIZATION

In the next step, the disturbing noise analysis is completed. 

By analyzing the variations of the periodic input and output 

signals over the measurements of the repeated periods, the 

sample mean and the sample (co)variance of the input and 

output disturbing noise is calculated, as a function of the 

frequency. Although the disturbing noise varies from one pe-

riod to the other, the nonlinear distortions do not. Thus, they 

remain exactly the same. This results in the following simple 

procedure. Consider the periodic signal ( )u t  in Figure S9, 

which is measured over P periods. For each subrecord, cor-

responding to a period, the discrete Fourier transform (DFT) 

is calculated using the fast Fourier transform algorithm, re-

sulting in the DFT spectra of each period ( ),U k[ ]l  ( ),Y k[ ]l  for 

, , .l P1 f=  The sample means ( ),U kt  ( )Y kt  and noise (co)vari-

ances ( ),kU
2vt  ( ),kY

2vt  ( )kYU
2vt  at frequency k  are then given by
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where (.)H  denotes the complex conjugate. The variance of 

the estimated mean values ( )U kt  and ( )Y kt  is ( ) /k PU
2vt  and 

( ) / ,k PY
2vt  respectively. Adding all this information in one fig-

ure results in a full nonparametric analysis of the system with 

information about the system (the frequency response func-

tion), the even and odd nonlinear distortions, and the power 

spectrum of the disturbing noise, as shown in Figure 4 for the 

forced Duffing oscillator.

FIGURE S8 The design of a multisine excitation for a nonlinear 
analysis [79]. (a) The selection of the excited frequencies at the 
input. The output contributions: (b) linear, (c) even, and (d) odd. 
(e) The total output. For simplicity, only the positive frequen-
cies are shown.

1 3 5 7 9 11

+

+

=

(a)
f /f0

1 3 5 7 9 11
(b)

f /f0

1 3 5 7 9 11
(c)

f /f0

1 3 5 7 9 11
(d)

f /f0

1 3 5 7 9 11
(e)

f /f0

FIGURE S9 The calculation of the sample mean and variance of 
a periodic signal [30].
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about the complex  manifold outside the domain where the 
function is  sampled.

This immediately reveals a number of issues in non-
linear system identification that are less pronounced (or 
not even present) in linear system identification. First, 
experiment design will be extremely important because 
it should be guaranteed that the full domain of interest is 
covered. Extrapolation of the model should be avoided at 
all costs, unless there is physical insight that provides a 
natural description of the manifold. Second, finding the 
parameters that describe the manifold often results in a 
highly nonlinear optimization problem. Good initial 
values are needed to ensure that the global minimum is 
reached. In practice, this is often impossible, and the 
user must be satisfied with a good local minimum. 
Third, because the manifold can be very complex, it is 
often not possible to propose a model structure flexible 
enough to reproduce it exactly. This leads to the presence 
of structural model errors. These affect the whole identi-
fication process.

User Guideline
In summary, nonlinear systems are intrinsically more 
involved and complex than linear systems. This affects the 
experiment design and the model selection of the system 
identification process.

System Identification in the Presence  
of Structural Model Errors
As explained in the previous section, it is hard to avoid 
structural model errors in nonlinear system identification. 

In “Impact of Structural Model Errors,” a formal definition 
is given of structural and random model errors, followed 
by a discussion of how to deal with structural model errors 
that dominate the noise disturbances. Special attention is 
paid to the user choice of how to shape the structural 
model errors, and consideration is given to the impact of 
structural model errors on the variance estimate of the 
model [69]–[75].

User Guideline
In summary, be aware that there is a high risk for domi-
nating structural model errors over the noise disturbances 
in nonlinear system identification, which makes some 
classical choices and results of the linear identification 
theory less relevant. Proper actions are needed to address 
this new situation.

Impact of Process Noise on the  
System Identification Problem
The output of a nonlinear system depends not only 
on the known or measured inputs; the system can 
also be affected by signals that are not known to the 
user. These unknown inputs ( )w t  are called process 
noise. While the measurement noise ( )v t  does not affect 
the evolution of the system, process noise does, as is 
clearly seen in the state-space representation of a non-
linear system
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FIGURE 3 (a) The hyperplane ( 1) ( 2)y a u t a u t1 2= - + -t  that characterizes a linear system is far less complex than (b) nonlinear 
models that live on a manifold ( 1) ( 2))( ,y u t u th= - -t  in the input–output space. This affects the whole identification process from 
experiment design and selection of the model structure to the choice and minimization of the cost function and generating initial 
values. The complexity of the problems to be solved grows quickly with increasing dimensionality, for example, the number of 
delayed inputs and outputs. 
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Process noise can have a structural impact on the behavior 
of a system because it also affects the system’s internal sig-
nals and not only the measurements. To proceed, we can 
consider, without loss of generality, the simple static non-
linear system

 
( ) ( ( ) ( )) ( )

( ) ( ( ) ( ) ( )) ( ).

y t u t w t v t

u t w t w t u t v t2

2

2 2

= + +

= + + +
 

(6)

The effect of the process noise ( )w t  at the output is 
( ) ( ) ( )w t w t u t22 + . It depends on the input and does not have 

typical noise properties (zero mean and stationarity). Its 
mean value is different from zero, and the variance depends 
on ( )u t . Moreover, it is shown in (S34) that the apparent 
gain of the system can also change for odd nonlinearities.

This simple example illustrates that the presence of 
process noise significantly increases the complexity of the 
system identification problem. If the process noise enters 
before the nonlinearity, its effect on the output is affected 
by the nonlinear operations, so that it is no longer realistic 
to use the Gaussian framework to formulate the cost func-
tion. Unknown distributions are faced that depend on the 
input and model parameters. For that reason, the output 
error framework that assumes that all noise enters at the 
output of the system must be abandoned, and a general-
ized multivariate probabilistic framework is needed. The 
complexity of the methods to solve these problems goes 
far beyond the linear system identification methods, and a 
completely new set of tools is required [41]–[56]. It is 
important to detect the presence of process noise that 
passes through the nonlinearity and select the proper 
tools when needed. This is discussed in detail in “Process 
Noise in Nonlinear System Identification” and “Identify-
ing Nonlinear Dynamical Systems in the Presence of Pro-
cess Noise.”

User Guideline
Check if process noise passes through the nonlinearity 
and select the proper tools, as needed.

GOAL OF THE NONLINEAR SYSTEM  
IDENTIFICATION PROCESS
The goal of the modeling effort strongly affects the 
complexity of the system identification process. The 
issues to be addressed are simulation or prediction 
models, physical models or black-box models, and appli-
cation-driven models. All of these aspects are briefly 
discussed next.

Models for Simulation or Models for Control?

Prediction Model
In layman’s terms, a prediction model estimates the 
output of the system one step ahead at time ,t 1+  using 

the measured input up to time t 1+  and the measured 
outputs up to time t. Prediction models are central to 
modern control applications, where essentially the pre-
dicted output is controlled [22].

Simulation Model
The alternative is that the measured outputs are not 
used at all, but the output is calculated from inputs only. 
This is called a simulation model, and it can be used to 
simulate the behavior of the system for new inputs. 
These models are useful to test what happens in new 
situations, design systems and controllers, and mimic 
physical systems.

It is much harder to obtain a good nonlinear simulation 
than a prediction model. Simulation models can become 
unstable, and it is harder to obtain small structural model 
errors than it is for one-step-ahead prediction models. Even 
a very simple linear model can often provide a good one-
step-ahead prediction if the sample frequency is high 
enough. A detailed discussion is given in “Simulation 
Errors and Prediction Errors.” Figure S21 shows the results 
of linear and nonlinear simulation and prediction models 
for the forced Duffing oscillator.

User Guideline
Do not spend effort to obtain a complex simulation 
model if a simple prediction model can do the job. How-
ever, keep in mind that a good prediction can fail com-
pletely to generate a reliable simulation.

Physical or Black-Box Models?
A physical model is built on a deep insight into the 
internal behavior of the system. Alternat ively, the 
simple use of physical insight can be used to guide the 
model process. Eventually, in both cases, the model 
depends upon a number of parameters that can be 
obtained from dedicated measurements (like the fric-
tion coefficient of a wheel on the road). These models 
are highly preferred in the industry, but they can be 
very expensive to construct and difficult to use in real-
time control. For that reason, such models are often 
not affordable.

Black-box models become very attract ive when a 
physical model is too expensive to develop. They des -
cribe the input–output behavior of a system and are 
tuned directly from experimental data. Such models are 
simple to use and can be applied in real-time computa-
tions. Of course, there are many possibilities between 
both extremes. These are discussed in “The Palette of 
Nonlinear Models” section.

User Guideline
Select the model level that best balances the need for 
physical insight/behavior insight and the expenses to 
build and use the model.
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Models Constrained for Particular Applications
The ideal model should cover all possible applications, 
providing good output simulations for all possible excita-
tions. Of course, this is an unattainable ideal, and a more 
restricted goal should be defined. This is done while 
keeping the application in mind: the model should cover 
those situations and signals that are important for the 
actual application and not more than that [76]. If a system 

will be mainly driven by low-frequency sine excitations, 
then no effort should be spent to also develop the model 
for wideband random-noise excitations. This can again 
significantly reduce the modeling effort.

User Guideline
Carefully select the domain and application of interest 
and focus the modeling effort on it.

Process Noise in Nonlinear System Identification

Process noise ( ),tw  as defined in (5), affects not only the 

measurements but also the system’s internal signals. In 

this sidebar, the impact of process noise is studied in more 

detail. The process noise ( ) ( ) ( )w t H q e tw w=  is considered to 

be a zero-mean, white or colored noise variable.

PROCESS NOISE IN LINEAR SYSTEMS

It is well known that, for linear systems, the effects of process 

noise can be collected at the output as an additive noise term 

( ) ( ),H q w tw  where it is combined with the measurement noise 

( ) ( ) ( )v t H q e tv=  into one noise term
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The d is turbances ( ),e tw  ( )e tv  are mutua l ly  indepen-

d en t l y  distr ibuted and independent of the input ( ).u t   

Under these conditions, the combined effect of the pro-

cess and the measurement noise result in a zero-mean  

 distr ibuted output disturbance that is independent of  

the input.

Process Noise in Nonlinear Systems

In nonlinear systems, process noise can have a structural 

impact on the identified models, as was illustrated in (6) 

and (S36). Zero-mean process noise can change, as in the 

linear gain of a nonlinear system, and the apparent distur-

bances at the output can become nonstationary and de-

pend upon the input, as discussed in more detail later in 

this sidebar.
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FIGURE S10 The detection of process noise [38]. (a) A Wiener–Hammerstein system with a saturating nonlinearity sandwiched 
between two low-pass linear filters L1  and L2  receives (b) a nonstationary input that is periodically repeated and applied to it. The 
process noise enters before the nonlinearity. This system was studied and discussed in detail at the nonlinear benchmark work-
shop [39]. The presence of the process noise is revealed through its nonstationary behavior at the output. (c) The smoothed 
variance of the output noise varies over time. Observe that it becomes small where the excitation is large and large where the 
excitation is small, pointing to process noise that is injected before a saturating nonlinearity.
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LINEAR OR NONLINEAR SYSTEM IDENTIFICATION:  
A USER’S DECISION
As discussed previously, nonlinear system identification is 
much more involved than the identification of a linear 
system. The experiment design is more tedious, the model 
selection much more involved, and the parameter estima-
tion more difficult. For that reason, moving from the well-
established linear identification tools toward the more 

advanced nonlinear identification methods is an important 
decision that significantly affects the cost of the identifica-
tion effort (time, money, and experimental resources), and 
thus the decision-making process should be well informed. 
Is a nonlinear model needed to reach the required model 
quality? Is the quality of the data good enough to improve 
the results of a linear identification approach? How much 
can be gained if a linear model is replaced by a nonlinear 

PROCESS NOISE: CURSE OR BLESSING?

Curse

In most applications, process noise is extremely disturbing. 

It is more difficult to control a system in the presence of pro-

cess noise. The system identification methods also become 

much more involved, as explained later. For this reason, pro-

cess noise is mostly considered as a highly annoying  effect.

Blessing

In some applications, process noise is used to reduce or 

linearize the averaged effect of abrupt nonlinearities, which is 

called dithering. The desired effects of dithering are augment-

ing the linearity of the open- or closed-loop system, increasing 

the robustness and asymptotic stability [34]–[36]. Dithering can 

be used to reduce the effect of Coulomb friction, dead zones in 

hydraulic valves, and hysteresis effects. However, this results 

in an increased wear due to the rapid motions [36]. Dithering is 

also employed in digital instrumentation and data acquisition 

systems to improve their measurement-related characteris-

tics. A typical example is the use of dithering in an analog-to-

digital converter to improve the resolution, dynamic range, and 

spectral purity below the quantization level [37].

Detection of the Presence of Process Noise

The dependence of the process noise output ( )y tp  on the input 

( )u t  can be used to detect it, even in the presence of mea-

surement noise. In [38], periodic nonstationary input signals 

are used. Assuming that a periodic input results in a periodic 

output, the process and measurement noise ( )v tu  can be esti-

mated as the nonperiodic part of the output. Next, the variance 

( )tvv u  is estimated. Assuming that the measurement noise is 

stationary, the presence of the process noise is revealed by a 

time-varying variance, as illustrated in Figure S10.

Impact of Process Noise on the System Identification Problem

The presence of process noise increases the complexity of 

the system identification problem significantly. The nonlin-

ear operations change the distribution of the process noise 

( )tw  and make a least-squares problem formulation at the 

output of the system quite inefficient and even strongly bi-

ased. For that reason, the output error framework, which 

assumes that all noise enters at the output of the system, 

has to be abandoned. Instead, the procedure should start 

from the joint (Gaussian) distribution of ( ),w t  ( ).v t  The sub-

sequent discussion focuses on the identification of a Wiener 

system to set the ideas. Following the ideas in [40], the likeli-

hood function can be easily generated using the intermedi-

ate nuisance variable ( )tx  in Figure S11 from this probability 

density function:

 ( , ) ( ( , )) ( ( , ) ) .p p y f x p x G q u dxy v w

x R

i h h i= - -
!

#  (S25)

The calculation of this integral becomes very difficult because 

it is not possible to eliminate ( ),x t  , ,t N1 f=  analytically with 

N  data points. Dedicated numerical methods are developed to 

address these high-dimensional integrals. See  (S38) in “Iden-

tifying  Nonlinear Dynamical Systems in the Presence of Pro-

cess Noise” for an initial introduction.

SUMMARY

• Process noise:   output of a nonlinear system may no lon-

ger be Gaussian distributed and independent of the input.

• Detection: When applying nonstationary periodic 

excitations, it is possible to detect the presence of pro-

cess noise.

• Identification: If no process noise is detected, the simpler 

output error formulation can be used to identify the non-

linear model. If the process noise is large, more advanced 

identification approaches are needed to guarantee con-

sistent and efficient estimates.

u (t ) x (t ) y (t )

ew (t ) ev (t )

G (q, θ) f (. , η)

FIGURE S11 A Wiener system with white process noise ( )e tw  
and measurement noise ( ).e tv  The signals ( )u t  and ( )y t  are 
available to identify the system, and the nuisance signal is not 
measured.
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Linear Models of Nonlinear Systems

Nonlinear models are clearly much more versatile and com-

plicated than linear models. A general linear model can 

be represented and fully characterized by a transfer function 

( ),G s  which is the Laplace transform of the model’s impulse 

response ( )g x

 ( ) ( ) .G s e dg s

0

x x=
3

x-

-

#  (S26)

In discrete time, the transfer function ( )G z  is the Z-transform of 

the impulse response. Because of the simplicity of linear mod-

els, it is tempting and common to complete linear approxima-

tions of nonlinear systems. Several linear models can possibly 

capture different aspects of the nonlinear system. Two ways of 

defining linear approximations are discussed here.

LINEARIZATION AROUND AN EQUILIBRIUM

Consider a general nonlinear state-space model

 ( ) ( ( ), ( )),x t f x t u t=o  (S27a)

 ( ) ( ( ).y t h x t=  (S27b)

Suppose the input is constant, ( ) ,u t u= )  and there is a cor-

responding state equilibrium ;x)  ( , ) .f x u 0=) )  Define the 

 deviations

 ( ) ( ) ,u t u t uT = - )  (S28a)

 ( ) ( ) ,x t x t xT = - )  (S28b)

 ( ) ( ) ( ) ( ).y t y t y y t h xT = - = -) )  (S28c)

By expanding the nonlinear functions f  and h in a Taylor series 

around ,x)  ,u)  and y)  and neglecting terms of higher order, we 

obtain a linear state-space equation

 ( ) ( ) ( ),x t A x t B u tT TD = +o  (S29a)

 ( ) ( ),y t C x tT T=  (S29b)

 ( , ) , ( , ) ,A x f x u B u f x u ,,x u x u2
2

2
2; ;= =) ) ) )  (S29c)

 ( , ) .C x h x u ,x u2
2 ;= ) )  (S29d)

In the vicinity of the equilibrium, the nonlinear system (S27) can be 

approximated by the linear transfer function ( ) ( ) .G s C sI A B1= - -  

This is a well-known and commonly used linearization. Corre-

sponding expressions apply in discrete time.

STOCHASTIC LINEARIZATION

Suppose the nonlinear system (S27) is excited by an input u  

with a spectrum ( ),u ~U  and the cross spectrum between  output 

and input ( )yu ~U  is well defined. The second-order properties 

of the input and output signals (that is, the  covariance functions 

and spectra) are thus well defined. For this input, define the 

linear model [83]

 ( ) ( ) [ ( )] ,G yu u
1

BLA ~ ~ ~U U= -  (S30)

which has the same second-order properties as the nonlin-

ear system. By considering second-order signal properties (for 

this input), the nonlinear system (S27) thus cannot be distin-

guished from the linear model ,GBLA  which are second-order 

equivalents [84].

This also means that, if a linear model is estimated with 

standard linear identification methods (that use only the 

second-order properties of the signals), the estimate will 

converge to .GBLA  The linear second-order equivalent is also 

called the best linear approximation (BLA). Note that the 

BLA of a nonlinear system will depend on the input signal 

spectrum. The definition of spectra does not require a sto-

chastic setting. It is sufficient that the following limits exist (in 

discrete time):

 ( ) ( ) ( ),limR N y t u t1
yu

N t

N

1

x x= -
"3

=

/  (S31a)

 ( ) ( ) ,R eyu yu
i~ xU =

3

3

x

~x

=-

-/  (S31b)

for the input–output signals [83] and correspondingly for .uU

MORE ON THE BEST LINEAR APPROXIMATION GBLA

This section further analyzes the BLA model (see [79] for more 

details). The BLA GBLA  in (S30), represented by its impulse 

response ( )g tBLA , or its frequency response function (FRF) 

( ),GBLA ~  is [30], [84], [88], the solution of

 ( ) ( ) ( ) ,{ }argmin t q tG E y G uG 0
2

BLA ; ;= -  (S32)

with q  the shift operator for a discrete-time model. Similar 

expressions can be given for continuous-time models. All ex-

pected values { }E  are with respect to the random input ( ).u t  In 

most applications, the dc value of the input and output signal 

should be removed to obtain a model that is valid around a 

given set point.

The transfer function ( )G kBLA  depends on the character-

istics of the input signal. Changing the power spectrum or 

the amplitude distribution (for example, replacing a Gauss-

ian by a uniform distribution) of the excitation will change the 

BLA [94], [95].

The Nonlinear Noise Source ys(t)

The difference between the output of the nonlinear system 

and that of the BLA ( )y ts =  ( ) ( ) ( )y t G q u tBLA-  is called the sto-

chastic nonlinear contribution or nonlinear noise. Although 

this name might be misleading (the error is deterministic 

for a given input signal), a   stochastic contribution is pre-

ferred because it looks very similar to a noise disturbance for 
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a random excitation [30], [87]. Because ( )y ts  is the residual of 

a least-squares fit, it is uncorrelated with the input. However, 

in general, it is still dependent on the input. The properties 

of GBLA  and Ys  are well known for Gaussian and Rieman-

equivalent excitations [88]. Extensions to more general distri-

butions are studied in [84]–[86], [94], and [95].

A New Paradigm

Combining both results, the output of the nonlinear system can 

be written as

 
( ) ( ) ( ),

( ) ( ) ( ) ( ),

y t y t v t

y t G q u t y tS

0

0 BLA

= +

= +
 

(S33)

where ( )y ts  is uncorrelated but dependent on the input ( ).u t  

Experimental Illustration on the Duffing Oscillator

In this example, measurements on the forced Duffing oscillator 

are shown (see [79] for more details). The FRF is measured 

for four different excitation levels and shown in Figure S12. For 

each excitation level, the FRF is averaged over 50 realizations 

of the input signal to obtain a smoother result. Two observa-

tions can be made: 1) the resonance frequency shifts to the 

right for increasing excitation levels and 2) the measurements 

become noisier. Both effects are completely due to the nonlin-

ear distortions.

BLA of a Static Nonlinearity (Simple Example)

The BLA of a static nonlinearity excited with a Gaussian excita-

tion is a constant [82]. For example, the BLA of y u3=  is

 
( ) ( ) ( , ),

{ ( ) ( )} / { ( ) } .

y t u t u N

G E y t u t E u t

0

3

with u

u

0
3 2

0
2 2

BLA

+ v

v

=
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(S34)

Observe that

 ( ) ( ) ( ) ( ) ( )y t y t G u t u t u t3s u0
3 2

BLA v= - = -  (S35)

is uncorrelated with but dependent upon .u  This is a generally 

valid observation.

Impact of Process Noise on the BLA

Process noise ( )tw  coming into the system before the nonlin-

earity creates mixing terms with the input signal so that, at the 

output of the system, the process noise contributions are no 

longer independent of the input. This will also affect the BLA, 

and a generalization of the framework is needed. See [89] 

for a full discussion and an extension of the simple example 

(S34). Assuming that the process noise ( )tw  is independent 

of the input ( ),u t  the BLA of ( ) ( )y t u w 3= +  with ( , ),u N 0 u
2+ v  

( , )w N 0 w
2+ v   becomes

 { ( ) ( )} / { ( ) } .G E y t u t E u t 3 3u w
2 2 2

BLA v v= = +  (S36)

This shows that the averaged behavior of a nonlinear system 

is strongly affected by the presence of process noise entering 

the system before the nonlinearity.

SUMMARY

• BLA :GBLA  It is possible to identify a simplified representation 

(for example, the linear model )GBLA  for a nonlinear system.

• Stochastic nonlinearities :ys  For a random excitation, the 

structural nonlinear model errors (called stochastic nonlin-

earities )ys  look like noise. The function ( )y ts  is uncorrelat-

ed but not independent of the input ( ).u t  For an untrained 

user, it is quite hard to distinguish process or measure-

ment noise from ys  (the nonlinear model  errors). Different 

actions must properly address the two  effects (see [79]).

• GBLA  depends on the nature of the input: The best simpli-

fied approximation ( )GBLA  depends on the nature of the 

excitation. Changing the power spectrum or input distribu-

tion can change .GBLA

• Structure detection: The variations of GBLA  for changing 

experimental conditions provide insight on the structure 

of the nonlinear system. For example, moving poles (reso-

nances) are possible only for nonlinear closed-loop sys-

tems. See [191] for further details.

• Process noise: Unmeasured random inputs process noise 

into the system before the nonlinearity can systemati-

cally affect the output. The BLA, with respect to the known 

input, depends on the process noise properties.
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FIGURE S12 The measured frequency response function of the 
best linear approximation of the forced Duffing oscillator [79]. 
Observe that there is a systematic shift, and the disturbances 
grow with the excitation level. The shift is due to the systematic 
nonlinear contributions that create a shift in the dynamics of 

.GBLA  The increased noisy behavior is due to the stochastic non-
linearities ys  that grow with the excitation level.
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one? Often, additional information is needed to address 
these questions.

If it is possible to apply periodic excitation signals, a full 
nonparametric analysis can be made that requires no user 

interaction, while the experimental cost with respect to a 
linear study remains almost the same (see “Nonparametric 
Noise and Distortion Analysis Using Periodic Excitations”). 
On the basis of the results, the user can detect the presence 

Identifying Nonlinear Dynamical Systems in the Presence of Process Noise
rather general formulation to be used when identifying 

nonlinear dynamical systems is arguably provided by the 

nonlinear state-space (NLSS) model that represents a system 

with input signal ut  and output signal yt  in terms of a latent 

Markovian state xt

 ( , ; ) ( ),x f x u wt t t t1 i i= ++  (S37a)

 ( , ; ) ( ).y h x u vt t t ti i= +  (S37b)

Here, the nonlinear functions ( )f $  and ( )h $  represent the dy-

namics and measurements, respectively. The variables wt  

and vt  describe the process noise and measurement noise, 

respectively. Finally, the unknown static model parameters are 

denoted by ,i  and the initial state is given by ( )x p x0 0+  for 

some distribution ( ).p $

The problem to be solved is the identification of the un-

known parameters i  in (S37) based on observed inputs 

{ }u uT
t t

T
1= =  and the corresponding outputs { } .y yT

t t
T

1= =  The 

maximum likelihood formulation can be written as

 ( ; ),argmax p yTi i= i
t  (S38)

where the nature of the intractability of the likelihood is re-

vealed by

( ; ) ( , ) ( , ) ( , ) .p y p y y p y x p x y dxT

t

T

t
t

t

T

t t t
t

t
1

1

1

1; ; ;i i i i= =
=

-

=

-% % #  (S39)

To stress that the process noise enters this integral, the follow-

ing alternative integral can be considered:

 ( ; ) ( , ) ( ) ( , ) ,p y p y x p x x p x y dx :
T

t

T

t t t t t
t

t t
1

1 1
1

1; ; ;i i i=
=

- -
-

-% #  (S40)

where it is clear that the process noise enters the integral via 

the term ( ) ( ( , ; )).p x x p x f x ut t w t t t1 1 1t; i= -- - -

More specifically, the challenge is that the  predictive 

state distribution ( , )p x yt
t 1; i-  cannot be explicitly computed, and 

approximations must be made. The sequential Monte Carlo 

(SMC) methods [41], namely, particle filters and smoothers, 

can be used to compute this distribution arbitrarily well. These 

methods were introduced in the beginning of the 1990s [42], yet 

it is still a research area with new results emerging. The idea 

behind these methods is to maintain an empirical distribution

 ( ) ( ),p x y W x:t t t
i

i

N

x t1 1
1

t
i; d=-

=

t /  (S41)

comprised of samples { }xt
i

i
N

1=  (sometimes referred to as par-

ticles) and their corresponding weights { } .Wt
i

i
N

1=  Here, ( )xx tt
id  

denotes the Dirac delta. The SMC methods describe how to 

update these weights over time in such a way that the esti-

mate (S41) converges to the true underlying weights as the 

number of samples .N "3  The theoretical basis underpin-

ning these methods is by now quite extensive. An entry point 

into this literature is [41] and [43]. What is perhaps most rel-

evant for the present discussion is that the SMC method is 

capable of producing unbiased estimators of the likelihood 

[43], [44]. The likelihood estimate is obtained by inserting 

(S41) into (S39).

Based on this, noisy unbiased estimates of the cost func-

tion in the maximum likelihood problem can be computed. 

As with any optimization problem—especially when faced 

with a stochastic optimization problem, as here—it is easier 

to solve if there are also gradients available. The SMC meth-

od can be used for this as well [45], [46]. Driven by deep 

learning, the state of the art for solving stochastic optimiza-

tion problems is evolving rapidly [47].

As an alternative to this solution, the expectation maxi-

mization (EM) method [48] can be used to solve (S38) in the 

presence of process noise (see, for example, [49] and [50]). 

EM is an iterative algorithm based on a current iterate ki  

that computes an approximation of the so-called interme-

diate quantity

 ( , ) ( , ; ) ( , ) ,logp x y p x y dxQ :k
T T T T

k T0;i i i i= #  (S42)

which is then maximized to find the next iterate .k 1i +  This 

procedure is then repeated until convergence, and it is guar-

anteed to stop at a stationary point of the likelihood surface. 

The SMC method is key as well, in that it allows for the ap-

proximation of the smoothing distribution ( , )p x yT T
k; i  in (S42) 

arbitrarily well.

The Bayesian approach is also highly interesting for 

nonlinear system identification in general [51] and when 

there is process noise present. The slight variation to the 

preceding is that the unknown parameters are assumed to 

be random variables, and rather than computing a point 

estimator like (S38), the posterior distribution ( )p yT;i  is 

computed. The breakthrough came in 2010 with the intro-

duction of the so-called particle Markov chain Monte Carlo 

methods [52].

Tutorial overviews of how to identify NLSS models using 

SMC are provided by [53] and [54]. Concrete system identifica-

tion examples where there is significant process noise avail-

able are provided in [49], [55], and [56].

A
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of nonlinearities, quantify their level, and find out if they 
are even or odd nonlinearities. With this information, the 
user can make a well-informed decision on what approach 
to use and how much can be gained by switching from 
linear to nonlinear modeling.

Detection, Separation, and Characterization of the 
Nonlinear Distortions and Disturbing Noise
In this article, only a basic introduction to nonlinear distor-
tion analysis is given. A detailed theoretical analysis is 
provided in [30], and illustrations on practical examples 
(fighter aircraft, diesel engine [77], and industrial robot 
[78]) are discussed in [79]. In this article, the ideas are illus-
trated on the forced Duffing oscillator, which is examined 
in full detail in “Extensive Case Study: The Forced Duffing 
Oscillator.” A detailed introduction to nonlinear distortion 
analysis is given in “Nonparametric Noise and Distortion 
Analysis Using Periodic Excitations.”

Nonlinear Distortion Analysis
The basic idea is very simple and starts from a periodic 
input signal with period / .T f1 0=  Only a well-selected set 
of odd frequencies (odd means that f  is an odd multiple of 
f0) is excited. All other frequencies have zero amplitude 
(see Figure S8). This excitation signal is applied to the non-
linear system under test. Effects from even nonlinearities 
(the simplest even nonlinearity is y u2= ) appear at the 
even frequencies, while odd nonlinearities (like y u3= ) 
are present at only the odd frequencies (see [79] and the 
references therein). At the odd frequencies not excited at 
the input, the odd nonlinear distortions become visible at 
the output because the linear part of the model does not 

contribute to the output at these frequencies. These contri-
butions are each plotted with a different color and become 
easy to recognize in an amplitude spectrum plot of the 
output signal. This is illustrated in Figure 4. The forced 
Duffing oscillator (see Figure S18) is excited at different 
excitation levels, and the output is plotted for the excited 
frequencies, even and odd nonlinearities, and disturbing 
noise level. For small excitation levels, the nonlinear dis-
tortions are at the 10% level (−20 dB below the output), 
while for the high excitation levels, the nonlinear distor-
tions dominate the output.

Linear or Nonlinear Model?
On the basis of this information, the user can make a well-
informed decision. For example, a linear model can be 
used if it is known that only small excitations will be 
applied and if 10% errors can be tolerated. However, for the 
large excitation levels, this is no longer an option because 
the nonlinearities are too large. In that case, a nonlinear 
model is needed.

Noise Floor
In Figure 4, the nonlinear distortions are more than 40 dB, 
or a factor of 100, above the noise level (see “Nonparametric 
Noise and Distortion Analysis Using Periodic Excitations”), 
also called the noise floor of the measurements [80]. The 
noise floor is the maximum power level over a given fre-
quency band in the frequency domain of components that 
are not due to the applied signal, harmonics, or spurious 
signals (these are signals that are out of the control of the 
user, for example, a disturbance picked up from the mains). 
The noise floor is estimated by analyzing the variations 
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FIGURE 4 A nonparametric analysis of the nonlinear distortions on the forced Duffing oscillator (see Figure S18) [79]. The system is 
excited at a well-selected set of frequencies. The nonlinearities become visible at the unexcited frequencies. Black dots: output at the 
excited frequencies; red circles: odd nonlinearities; blue stars: even nonlinearities; green line: disturbing noise level. The excitation level 
is growing from (a) to (d). Observe that the level of the nonlinear distortions expands with the excitation level, and the disturbing noise 
level remains almost constant.
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Black-Box Model Complexity

B lack-box modeling is a very flexible method that requires 

little or no physical insight of the user. This comes with 

the cost of an exploding number of model parameters for a 

growing complexity, leading to an increased risk of overfitting 

[6], [7], [30]. Regularization and data-driven structure retrieval 

tools are developed to keep this number of growing param-

eters or their effect on the modeled output under control. Both 

approaches are discussed next.

REGULARIZATION

The easiest approach to obtain a simplified model is to set the 

least significant parameters equal to zero in a model-pruning 

step using manual trial-and-error methods. Regularization 

techniques replace manual tuning by automatic procedures 

[58], [67]. The basic idea is to add an additional term ( )R i  

to the cost function (S11), imposing an extra constraint on 

the parameters

 ( ) ( , ) ( ).V N t R1
2
1

N
t

N

1

2i e i i= +
=

/  (S43)

The choice of R  sets the behavior of the regularized solution, 

leading to sparse or smooth solutions.

Sparse Models

Letting ( )R ; ;i m i=  gives LASSO [57], a method that sets as 

many parameters as possible equal to zero, which leads to 

sparse models.

Smooth Models

A quadratic regularization ( )R PT 1i i i= i
-  leads to a milder 

regularization than LASSO. The regularization term pulls the 

estimates toward zero, resulting in a reduced output variance 

at the cost of an increased bias. An optimal bias/variance bal-

ance is made that minimizes the mean square error of the out-

put, as illustrated in Figure S13.

The success of this approach strongly depends on a prop-

er choice of the regularization matrix P  that reflects the addi-

tional user knowledge or user desires (also called prior infor-

mation), which is added on top of the data. It can be based on 

physical insight or imposed on the user’s desire for a smooth 

solution [58]. Observe that, in this approach, the number of 

parameters is not reduced, but, instead, their freedom to vary 

independently is restricted, leading to a smaller effective 

number of parameters. Imposing smooth and exponentially 

decaying solutions is illustrated for nonparametric Volterra 

models (36) in the section “Example 5(a): Black-Box Volterra 

Model of the Brain” [56].

DATA-DRIVEN STRUCTURE RETRIEVAL

An alternative approach to reduce the number of model param-

eters is to impose more structure on the model. In black-box 

modeling, the structural information should be retrieved from 

the data rather than using physical information. The explosive 

growth of the number of parameters in nonlinear black-box 

 modeling is due to the parameterization of the multivariate non-

linear function (8) present in every nonlinear model. Retriev-

ing more efficient representations of the function F Rn nq p! #  is 

key to reducing the number of parameters and controlling the 

model flexibility. Recently, decoupling methods were devel-

oped that allow the multivariate function F  to be written as a 

combination of linear transformations and a well-selected set 

of single-input, single-output (SISO) nonlinear functions, as 

shown in Figure S14. In “Decoupling of Multivariate Polynomi-

als,” a tensor-based decoupling approach is explained in more 

detail. A decoupled representation offers major advantages:

• The combinatorial growth of the number of parameters 

is reduced to a linear growth as a function of the com-

plexity. For example, if F  is a multivariate polynomial of 

degree d, the number of parameters drops from ( )n O nq p
d  

to ( ),n O rdq  with r  the number of internal single-input, 

single-output branches.

• The decoupled representation of F  is easier to interpret, 

giving more intuitive access to the nonlinear behavior of 

the system. For example, it is much simpler to plot a set 

of SISO nonlinear functions than to make a graphical rep-

resentation of a high-dimensional multivariate nonlinear 

function because only slices of the multivariate function 

can be shown. 
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FIGURE S13 The bias and variance tradeoff of a scaled esti-
mator. The evolution of the total mean square error (MSE) 
(black), squared bias (red), and variance error (blue) as a 
function of the scaling factor. An error e can always be written 
as the sum e b v= +  of its mean value { }b E e=  (called the 
bias) and the remaining part ,v e b= -  with variance .2v  The 
total MSE is .e b2 2

MS v= +  Depending on the preference, 
either the bias b  or the MSE eMS  should be as small as pos-
sible. It is always possible to scale an unbiased estimator (no 
bias present) toward zero, such that eMS  drops. This is illus-
trated on a simple scalar example. Assume that it  is an unbi-
ased estimate of the true parameter ,10i =  with variance 

.12v =  Consider next the scaled estimator .i mi=u t  The bias of 
iu  is ( ),b 1 m= -  and the variance iu  is .2 2v m=iu  The MSE 
becomes ( ) .e 1 2 2

MS m m= - +  Black: MSE; red: bias error; blue: 
variance error.
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• Tuning the number of branches in the decoupled represen-

tation not only is a tool to reduce the flexibility of the model 

but also employed to make a user-selected balance be-

tween structural model errors and model complexity, which 

opens the possibility for model complexity reduction.

Applications

The decoupling approach can be applied to a variety of prob-

lems. Equation (S51) in “Extensive Case Study: The Forced 

Duffing Oscillator,” gives a detailed illustration of the decou-

pling approach. An early application of the decoupling strat-

egy [59] proposed a tensor-based decoupling method to de-

couple the Volterra kernels of different degrees separately. 

Next, this idea was further refined and applied to the identi-

fication of parallel Wiener and parallel Wiener–Hammerstein 

block-oriented models [60]–[62]. The full decoupling method 

[63] described in this sidebar is used in [65] to decouple a 

nonlinear state-space model for the Bouc–Wen hysteresis 

problem. Recently, the ideas were further generalized to ap-

ply the decoupling idea to the pruning of polynomial nonlinear 

autoregressive exogenous (NARX) models [26]. Eventually, 

the decoupling approaches were also directly applied to the 

design of decoupled controllers [68].

Decoupling of Multivariate Polynomials

Representations that increase the structural insight and reduce 

the number of model parameters are most welcome. The ap-

proach briefly described here is discussed in full detail in [63]. 

The starting point is a set of multivariate basis functions, for 

example, polynomials, that must be unraveled into a simplified 

structure. The cross-links among input variables are decoupled 

into single-variable functions by considering linear transforma-

tions at the input and output of the static nonlinearity. These 

transformations reveal internal variables between which uni-

variate relations hold. Consider the variables p  and q and the 

multivariate vector function f  with proper dimensions:

 ( ) ( ).W Vq f p g p= = <  (S44)

The entry i  of g  is a univariate function ( ),g xg i i i=  , , ,i r1 f=  

with .Vx p= <  The model can be given a physical/intuitive 

 interpretation while, at the same time, the number of  parameters 

decreases. A graphical representation is given in Figure S14. 

Each univariate function is a branch, and r is the number of 

branches used in the decoupled presentation. In [64], an ex-

act decomposition method is proposed to obtain a decoupled 

representation.

Example: Exact Decomposition of  

a Multivariate Polynomial

Consider the polynomials ( , )f p p1 1 2  and ( , )f p p2 1 2  of total de-

gree ,d 3=  given as
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which can be represented under the following decoupled 

structure:
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revealing the internal univariate polynomials and the linear 

transformations at the input and output of the structure.

Uniqueness

It is shown that the decoupled models are not always unique 

[63]. Hence, decoupling will not lead to the physical underlying 

representation, but it will still nevertheless provide increased 

intuitive insight into the behavior of the system.

Exact and Approximate Decomposition

In an exact decoupling of an arbitrary multivariate function, 

the number of branches r  might become very large. A trun-

cated decoupling with a reduced number of branches can be 

used to approximate the multivariate function. This problem 

is studied in [66]. The approximation error is tuned using a 

weighted least-squares criterion. The number of branches r  

can be used as a handle to balance the complexity of the mod-

el against the level of the tolerated structural model errors. 

This is illustrated on the forced Duffing oscillator in Figure S15 
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FIGURE S14 The multivariate nonlinear function ( )q f p=  is replaced by a decoupled representation [63].
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and the Bouc–Wen model in Figure S16, which are reported 

in detail in [65].

Relation With Neural Networks

The structure of the decoupled representation in Figure S14 is 

very similar to that of a neural network, as shown in Figure S17. In 

a neural network, the univariate functions belong to the same 

family (for example, sigmoids or hinge functions). It is known 

that neural nets are universal approximators [10], [11], [13] con-

verging as ( / ),O r1  with r  the number of neurons in the hid-

den layer. In the decoupling method, the univariate functions 

follow from the decoupling and are tuned to the specific prob-

lem. This additional degree of freedom will reduce the number 

of branches needed in the decoupled representation of the 

multivariate function.

ui yjvik wjkxk zk

FIGURE S17 A neural network model. The inputs ui  (green) are 
linearly combined with the weights vik  to generate the inputs 
xk  for the neurons (red). The output zk  of each neuron is cal-
culated by a univariate nonlinear function on its input ,xk  and it 
is linearly combined with the weights wk j  to generate the out-
puts y j  (blue). This is exactly the same structure as was used 
in the decoupling approach. The major difference between the 
neural network and the decoupling method is that, in the latter, 
the nonlinear functions vary from one node to the other, while 
in the neural network, they are all equal. This additional flexi-
bility results in a faster convergence, so that less branches 
are needed.
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over the periodic repetitions of the output. A noise floor 
more than 40 dB below the signals of interest shows that 
the quality of the data is very high. The distance between 
the nonlinear distortion levels and the noise floor is a mea-
sure of the potential improvement that can be obtained by 
using a nonlinear model. In the case of Figure 4, a gain of a 
factor of 100 is possible for the high excitation levels if a 
good nonlinear model can be obtained.

User Guideline
Make a nonparametric distortion analysis whenever it is 
possible to apply periodic excitations. Use this information 
to decide if a linear or nonlinear approach is needed and 
check how much can be gained by turning toward nonlin-
ear system identification.

Linear Modeling in the Presence  
of Nonlinear Distortions
Deciding to use the linear identification approach also 
implies the presence of structural model errors in the 
results. This may be an acceptable solution, but the user 
should fully understand the impact of the structural 
model errors on the validity of the results. This is dis-
cussed in “Impact of Structural Model Errors.” The major 
conclusions are that 1) the experiment should be tuned to 
the application (the same class of excitation signals) and 2) 
no reliable theoretical uncertainty bounds can be pro-
vided. These should be obtained from repeated experi-
ments with different excitation signals generated from the 
relevant class of input signals [81]. The problem of linear 
modeling in the presence of nonlinear distortions is dis-
cussed in “Linear Models of Nonlinear Systems” and [30], 
[72], and [82]–[95]. The classical linear identification meth-
ods will lead to consistent estimates of the best linear 
approximation (BLA).

For random excitations, the nonlinear effects at the 
output will look very similar to noise, and it is very diffi-
cult for an inexperienced user to recognize their presence. 
Their power spectrum can be estimated using a paramet-
ric noise model simultaneously identified with the plant 
model (as in utilizing a Box–Jenkins model [6]). The noise 
model can be employed in a control design to make the 
disturbance analysis. However, uncertainty bounds calcu-
lated from it are no longer valid because the errors are not 
independent of the input. Again, there is no theoretical 
framework available today to solve that problem. The vari-
ance of the estimates should be obtained by repeating the 
experiment multiple times with a random-varying excita-
tion, as explained in “Impact of Structural Model Errors.” 

User Guideline
In summary, linear models can be very useful, even in 
the presence of strong nonlinearities, because they are 
much easier to address. Make sure to understand the impact 
of the nonlinear distortions on the BLA.

Nonlinear System Identification
A nonlinear system identification approach is justified if 
the preprocessing step indicates nonlinear distortion levels 
that are too high, well above the noise floor of the data. It is 
this problem that will be further addressed in this article, 
in terms of what identification methods to use, how to 
select a model class, and how to design the experiments. 
Again, the user will have many options, starting from 
simple nonlinear models that are good enough to solve the 
problem to complex models that include the fine details 
deeply hidden in the data.

User Guideline
Select nonlinear system identification only if there is enough 
evidence that linear models will not solve the problem.

THE PALETTE OF NONLINEAR MODELS

The Multitude of Nonlinear Models
A major challenge in dealing with nonlinear system 
identification is that a great many nonlinear model struc-
tures have been suggested. A user can be confused when 
becoming familiar with the different choices available 
and how to choose a structure that suits a particular situ-
ation. A clear perspective on this wide variety of choices 
is needed to make a well-informed choice. Nonlinear 
model structures can be ranked along two axes that are 
directed, respectively, by the user’s preference and 
system behavior.

1) User’s preference: A first classification of the models 
is made in terms of how much prior knowledge 
about the system is used [96]. Based on the familiar 
concept of black-box models for general flexible 
structures with no physical insights, the user can 
then select from a palette of models of different 
shades of gray to delineate many approaches to 
common nonlinear models.

2) System behavior: An alternative to using varying 
degrees of structural physical insights is to use 
behavioral aspects of the system. Does it, for exam-
ple, show behaviors like chaos, shifting resonance 
frequencies and varying damping, or hysteresis, 
as discussed by Pearson [97]? Then, the main deci-
sion is whether to include the nonlinearity in a 
feedback loop. This selection is not a free user 
choice; it is imposed by the system behavior. A 
detailed ranking along this line is discussed in 
“Static Nonlinearities” and “External or Internal 
Nonlinear Dynamics.”

The user should combine both aspects in the final selec-
tion of the model. Note that there are many other dimen-
sions in which the different approaches can be classified, 
namely, universality, computational effort, and suitability 
to address unstable systems. These aspects are not further 
elaborated in this article.
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Extensive Case Study: The Forced Duffing Oscillator

Throughout this article, many results are illustrated on the 

forced Duffing oscillator, sometimes called the Silverbox 

in nonlinear benchmark studies. This sidebar describes the 

setup and experiments used throughout this article. A de-

tailed description of the experiments is given in [79].

SYSTEM, EXPERIMENTAL SETUP, AND EXPERIMENTS

The system is an electronic circuit that mimics a nonlinear me-

chanical system with a cubic hardening spring, as shown in 

Figure S18. This class of nonlinear systems has a rich behav-

ior, including regular and chaotic motions and the generation 

of subharmonics [8], [27].

The experimental setup consists of a generator and two 

data acquisition cards that are synchronized to avoid leak-

age errors in the spectral analysis. The generator starts 

from the zero-order-hold (ZOH) reconstruction [106] uZOH  

of a discrete-time sequence ( )u kd  passed through a low-

pass generator filter Ggen  to eliminate the higher harmon-

ics of the ZOH reconstruction .( )u t G ugen ZOH=  The sampling 

frequency is / .f 10 2 610MHz Hzs
14 .=  The data acquisition 

cards are alias protected (the signals are passed through 

a low-pass filter before sampling) and sample the input 

and output at a rate .fs  High-impedance buffers are used 

to eliminate the interaction between the plant and the mea-

surement setup.

The experiments are shown in Figure S19 and consist 

of three parts using a tail, arrow, and sweeping sine input 

u(t) [Figure S19(a), (b), and (c), respectively]. The output 

[Figure S19(d)–(f)] of the circuit corresponds to the displace-

ment y(t). The following observations can be made:

• The tail [Figure S19(a)] and swept sine excitation 

[Figure S19(c)] have approximately the same root-mean-

square (RMS) value. The arrow signal [Figure S19(b)], 

with a maximum amplitude that is twice that of the other 

signals, will be used to verify the extrapolation capabili-

ties of the models that are identified on the other excita-

tions. The swept sine alike excitation is a Schroeder mul-

tisine [30] that has a dominant odd behavior because the 

amplitude of the excited odd frequencies is approximately 

30 dB above the level of the excited even frequencies [see 

Figure S19(i) and (l)].

• All input signals have the same bandwidth [see Fig-

ure S19(g)–(i)].

• The output [Figure S19(f)] for the sweeping sine [Fig-

ure S19(c)] becomes very large around the resonance 

frequency, even if the input level remains constant. This 

results in an internal extrapolation for models that are 

identified on the tail [Figure S19(a)].

• In the input spectrum [Figure S19(g)], it can be seen that 

there are spurious components at the odd multiples of the 

mains frequency (50 Hz). The signal is picked up by the 

circuit and acts as process noise.

• The nonparametric distortion analysis in Figure 4 shows 

that the signal-to-noise ratio (SNR) of these measure-

ments is 40–60 dB (with the measurement and process 

noise at the 1–0.1% level).

LINEAR SIMULATION AND PREDICTION  

OF THE FORCED DUFFING OSCILLATOR

The behavior of simulation and prediction errors (see “Simula-

tion Errors and Prediction Errors”) is illustrated on the forced 

Duffing oscillator. Because the SNR of these measurements 

is very high (noise disturbances well below 1%), the simula-

tion and prediction errors in the subsequent study are com-

pletely dominated by structural model errors. The simulation 

and prediction errors will be shown for linear Box–Jenkins (BJ) 

models, autoregressive exogenous (ARX) models [6], [7], and 

a nonlinear ARX (NARX) model.

Linear Simulation and Prediction of the  

Duffing Oscillator

In the first step, a linear model

 ( ) ( ) ( ) ( , ) ( ) ( , ) ( ),y t y t v t G q u t H q e t0 i i= + = +  (S46)
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FIGURE S18 (a) A forced Duffing oscillator [79] is a system in 
which the electronic circuit mimics a nonlinear mechanical 
system with a hardening spring. The system is excited with an 
input u(t) (the applied force to the mechanical system). The 
output of the system corresponds to the displacement y(t). 
(b) The schematic representation of the system as a second-
order system with a nonlinear feedback.
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is estimated on the tail experiment using the prediction error 

framework [6], [7]. The order of the BJ model is n n 2a b= =  and 

n n 6c d= = , and the plant and noise models G and H are inde-

pendently parameterized. For the ARX model, the order of the plant 

model is also n n 2a b= = , while in this case, the noise model is 

, ( , ) ( , )C D q A q1 i i= = . The latter fits with the assumption that 

disturbances originate mainly at the input of the system, so that it 

shares its dominant dynamics with the input signal. The BJ and ARX 

simulation errors are shown in Figure S20 and compared to the 95% 

amplitude levels calculated from the estimated noise models. The 

BJ noise model describes the disturbances very well, while the ARX 

model underestimates the errors around the resonance  frequency.

These results are used to simulate ( ) ( , ) ( )y t G q u t0 i=t  [see 

Figure S21(g)–(i)] and predict ( ) ( , ) ( , ) ( )y t H q G q u t1 i i= +-t

( ( , )) ( )H q y t1 1 i- -  [see Figure S21(j)–(l)], the output for the three 

experiments [6], [7]. The simulation errors of both the BJ and 

ARX models are on top of each other in these figures. However, 

the better BJ noise model results in a significantly smaller predic-

tion error for the BJ models, compared to that of the ARX models. 

By increasing the model orders ,na  nb  for the ARX model, these 

results could be improved. However, to be able to compare the 

BJ and ARX models of the same complexity, the discussion is 

continued with the overly simple ARX model.

User Guideline

In summary, linear prediction can provide good results in the pres-

ence of nonlinear distortions. This is much harder for linear simu-

lation. The quality of the noise model has a strong impact on the 

quality of the predictions. A changing nature of the excitation sig-

nal results in a changing behavior of the residuals due to structural 

model errors. This can turn a good prediction model into a poor one.

NONLINEAR SIMULATION AND PREDICTION OF THE 

FORCED DUFFING OSCILLATOR USING A POLYNOMIAL 

NONLINEAR AUTOREGRESSIVE EXOGENOUS MODEL 

AND A POLYNOMIAL NONLINEAR STATE-SPACE MODEL 

A polynomial NARX (22) and a polynomial nonlinear state-

space model (20) are estimated on one of the realizations of 

the random-phase multisines in the tail.
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FIGURE S19 Results from the Duffing oscillator for (a), (d), (g), and (j): a random-phase multisine (26) experiment; (b), (e), (h), and (k): 
a growing noise experiment; and (c), (f), (i), and (l): a sweeping sine alike experiment. The input signals are shown in blue, and the 
output signals in red. The two top lines show the time-domain signals, and the two lines at the bottom show the amplitude spectra.
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Polynomial Nonlinear Autoregressive Exogenous  

Model and Polynomial Nonlinear State-Space Model

The polynomial NARX model is of order ,n n2 2a b= =  and poly-

nomial expansion of degree three, with arguments [ ( ),R u t=  

.( ), ( ), ( ), ( ))]u t u t y t y t1 2 1 2 T- - - -  The selection of the nonlin-

ear degree and arguments follow the results in [26] that were 

obtained on a trial-and-error basis

( ) ( ( ), , ( ), ( ), , ( ))
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It might also be possible to obtain better results by replacing 

the polynomials with other basis functions. It is important to ob-

serve that this model is linear in the parameters c ,p m p- , which 

will reduce the identification to a problem linear in the param-

eters for a quadratic cost function.

The polynomial nonlinear state space is of order two 

(two states) and polynomial degree three, with arguments 
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Only the state transition equation has a nonlinear term, and 

adding a nonlinear term to the output equation did not improve 

the results.

Cost Function

Polynomial NARX models are linear in the parameters, and, 

hence, the cost function (given by the squared equation errors) 

is minimized by solving a linear set of equations so that no initial-

ization problem must be solved. This is the major advantage of 

polynomial NARX models compared with many of the other mod-

els presented in this article. Because the noise enters nonlinearly 

into the model, a bias will appear. However, as long as the SNR is 

decent (for instance, better than 20 dB), this will not be the major 

issue. For that reason, polynomial NARX models became one of 

the most popular methods, and they are widely applied in many 

different fields.

For the nonlinear state-space model, the cost function is 

nonlinear in the parameters (nonconvex), and a numerical method 

is used to minimize the cost function:
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where ( )u t  and ( )ty  are the measured values.

Results

The results for the polynomial NARX and polynomial nonlin-

ear state-space (PNLSS) models are shown and discussed in 

Figure S22. For smaller output levels, the two models are quite 

comparable; but for larger outputs, the errors of the polynomial 

NARX model are two to three times larger than those of the 

PNLSS model.

Deep-Learning Nonlinear Autoregressive  

Exogenous Model

A deep-learning neural network with two layers and 27 nodes 

in each layer is identified on a section of the tail data (see 

“Machine Learning and System Identification”). The NARX 
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FIGURE S20 The linear modeling of the forced Duffing oscillator [79]. (a) The output of the forced Duffing oscillator is simulated 
using an estimated Box–Jenkins (BJ) model (the plant model has two poles and two zeros, and the noise model has six poles and 
six zeros) or (b) an autoregressive exogenous (ARX) model (a plant model order with two poles and two zeros). The amplitude of 
the discrete Fourier transform of the measured output and the simulation error are shown. The blue dots are the measured output, 
and the red dots are the simulation error. The green line is the 95% error level that is calculated from the estimated noise model. 
Observe that the simulation error for both models is very similar. The BJ noise model describes the disturbances very well, while 
the ARX model underestimates the errors around the resonance frequency.
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FIGURE S21 A study with the Duffing oscillator for the (a) and (d) tail experiment; (b) and (e) arrow experiment; and (c) and 
(f) sweeping sine experiment. (g)–(i) The Box–Jenkins (BJ) (green) and autoregressive exogenous (ARX) (red) simulation 
errors are almost equal to each other. (j)–(l) However, the prediction errors for the BJ model (green) are well below those of 
the ARX model (red), especially for larger amplitudes of the output. This is mainly due to the better BJ noise model, as 
shown in Figure S20. The simulations for the nonlinear ARX (NARX) model (black) are also shown. (m)–(o) The polynomial 
NARX simulation (black) has the same quality as the linear predictions in (j) and (k) (lines on top of each other), while it is 
in between the ARX and BJ linear predictions in (l). The polynomial NARX prediction errors are a factor of 10 smaller. The 
simulation error is shown in Figure S22. 
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model has four delayed inputs and outputs. The model is 

validated on the sweep data, and the results are shown in 

Figure S23. The simulation errors for the PNLSS and the 

deep-learning-based NARX models perform equally well 

on this test, illustrating the high potential of using deep-

learning methods within the nonlinear system identifica-

tion framework.

User Guideline

In summary, NARX models with an expansion in known ba-

sis functions (like the polynomial NARX model) are highly 

attractive because these are quite simple to use: no ini-

tialization and no problems with local minima. The PNLSS 

model results in slightly better results because it was better 

tuned. The nonlinear prediction models perform significantly 

better than the linear ones, even if they are not optimally 

tuned. The polynomial regression functions can be replaced 

with more convenient alternatives from machine learn-

ing (Gaussian bells and hinge functions), as discussed in 

“Static Nonlinearities.” The polynomial NARX method can 

be combined with pruning and structure-revealing methods 

to simplify the models.

PRUNING, DATA-DRIVEN STRUCTURE RETRIEVAL, 

AND MODEL REDUCTION

Polynomial Nonlinear Autoregressive  

Exogenous Model Pruning

The major drawback of polynomial NARX models is the com-

binatorial growth of the number of parameters with the 

number of regressors (in this example, five) and the degree 

(in this example, three). No further pruning of the model was 

made in the results presented. It is well known that prun-

ing can improve the model quality, especially if the num-

ber of regressors grows [19]. In [19], different strategies are 

presented to gradually include the dominating terms for the 

growing complexity of the polynomial NARX model.

Recently, a top-down approach was proposed [26] using 

the decoupling strategy presented in the section “Decoupling 

of Multivariate Polynomials.” First, a full model (including all 

regressor combinations) is identified, resulting in a single-out-

put multivariate polynomial that is next decoupled as a sum 

of univariate polynomials Pk  that act on linear combinations 

of the regressors. In [26], the polynomial NARX model for the 

forced  Duffing oscillator is decoupled with four polynomials of 
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FIGURE S22 Modeling the forced Duffing oscillator for the (a) tail, (b) arrow, and (c) sweeping sine experiments using a dis-
crete-time polynomial nonlinear autoregressive exogenous (NARX) model and polynomial nonlinear state-space model. Both 
are identified on a section of the tail data. The simulation error is shown for the polynomial NARX (red) and the polynomial 
nonlinear state space (green) on validation data in the (d) tail, (e) arrow, and (f) sweep. For smaller output levels, both models 
are quite comparable. However, for larger outputs, the errors of the polynomial NARX model are two to three times larger. 
The large initial green spike in (d) is due to transient effects because the initial states were not estimated.
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degree three: .( ) ( )y t P v Rk k k
T

1
4R= =  This method offers a system-

atic approach to model pruning, especially for a large number 

of regressors.

Nonlinear State-Space Model Reduction  

and Model  Data-Driven Structure Retrieval

Decoupling

Similar to the polynomial NARX model, it is also possible to 

decouple the multivariate nonlinear vector function [ , ]f f t
1 2  in 

(S49) using the decoupling strategy presented in “Decou-

pling of Multivariate Polynomials.” Four internal single-input, 

single-output (SISO) branches were needed in the decoupled 

representation (see Figure S14), which are shown in Fig-

ure S24. In a second step, the degree of the polynomials was 

increased from three to five, and the cost function was mini-

mized for this decoupled model. This reduced the RMS error 

(RMSE) of the decoupled model to 0.4% (or fit = 99.6), while 

the original full third-degree model had an RMSE of 0.49% (or 

fit 99.51) (see Table S1).

Model Reduction

In the following step, the number of branches of the decoupled 

model was reduced. In each reduction step, a new cost function 

minimization was performed. The RMSEs of the reduced models 

on the tail and arrow validation data are shown in Figure S15. 

Although it could be expected that the errors would start to grow 

when the model is simplified, they remain constant on the tail 

data and drop significantly on the arrow data. This indicates that 

the true system can be described with only one nonlinear branch 

in the decoupled model (see Figure S14). The reduced errors on 

the tail data indicate a better generalization (extrapolation) capa-

bility of the reduced model. The models are estimated on the tail 

data that cover a smaller domain than the arrow and sweep data, 

as is shown in Figure 8. The evolution of the RMSE on the tail val-

idation data, number of linear parameters n Li , and the number of 

nonlinear parameters n NLi  as a function of the model complexity 

during the model reduction process is given in Table S1.

Data-Driven Structure Retrieval

The final nonlinear state-space model is
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where g(p) is a SISO polynomial of degree five, with argument 

p that is a linear combination of the states ,x1 x2  and the in-

put u (with parameters , ,3 4 5i i i ). The coefficients ,1 2i i  scale 

the polynomial output g(p). The validation results on the arrow 

data are given in Figure S25. Observe that the full and the final 

reduced model have almost the same quality.

Because the forced Duffing oscillator is a lab setup, this 

model can be compared to the physical model. In this case, 

the data-driven retrieved model structure and the physical 

model structure are identical. This is a highly motivating re-

sult for the black-box identification framework. However, this 

conclusion cannot be generalized because it is not obvious 

that the simpler model coincides with the physical model. 

Moreover, the structure of many nonlinear systems is uniden-

tifiable from input–output data because of indistinguishabil-

ity problems; the same data can be represented by multiple 

models that cannot be distinguished from each other without 

additional information (as with the measurement of an inter-

nal signal). In the case of the forced Duffing oscillator, it is 

also possible to represent the same input–output behavior by 

a system with a nonlinearity in the forward path instead of the 

feedback path [127].

An alternative approach to obtain an extremely struc-

tured model for the forced Duffing oscillator in a black-box 

modeling framework is presented in [25]. It is based on a 

data-based mechanistic modeling approach, as explained 

in [21], where the objective is to obtain a model that can 

be interpreted in the mechanistic terms most appropriate 

to the nature of the dynamic system. The nonlinear nature 
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FIGURE S23 Modeling the forced Duffing oscillator using 
deep learning. A discrete-time nonlinear autoregressive 
exogenous (NARX) model is identified using a two-layer 
neural network with 27 hidden nodes in each layer. The 
model is identified on a section of the tail data and validated on 
the sweeping sine data. (a) The measured output. (b) The 
simulation for the polynomial NARX (red), the polynomial non-
linear state-space (PNLSS) model (green), and the deep learn-
ing-based NARX model (NARX NN, deep blue). It can be seen 
that the deep-learning NARX model and the PNLSS model per-
form equally well.
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General Structure of Nonlinear Models
In general, the measured system input and output at time t  
will be denoted by ( )u t  and ( )y t . All measured data up 
to time t  will be denoted by

 { ( ), ( )}   .Z u s y s s tfor allt #=  (7)

The models can be expressed in discrete or continuous 
time. Most real-life systems evolve in continuous time, but 
discrete-time models are often preferred to simplify the 
numerical simulations. Linear systems can be  perfectly 
represented by discrete-time models for zero-order-
hold excitations [4], [6], [7]. However, this approach cannot 

of the system is captured using state-dependent param-

eters. The basic idea is to star t with a linear model and 

check for data-dependent  variations of some of the param-

eters in the model. For the Duffing oscillator, this resulted 

in a transfer function model that is very similar to the final 

model (S51).

FIGURE S24 (a) The multivariate nonlinear polynomial vector function [the bold term in (S49)] is decoupled using four simple-input, simple-
output branches. (b) These functions are approximated by a single function after proper scaling of the input p and the output q in each of 
the branches. 
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be generalized to nonlinear systems because the ZOH 
nature of the signals is lost inside the nonlinear system. 
Continuous-time modeling of nonlinear systems has 
been intensively studied in the literature [19], [98]–[105]. In 
“Approximating a Continuous-Time Nonlinear State-Space 
Model With a Discrete-Time Model,” the discrete-time 

approximation is studied within the band-limited setup 
[106], [107]. The discretization error can be made arbi-
trarily small by increasing the sampling frequency and/
or the model complexity, as shown in that sidebar. Both 
models will be considered in this section. In the discrete-
time case, the time variable will be enumerated by time 

User Guideline

In summary, the decoupling method offers a data-driven system-

atic approach to model pruning. Tuning the number of branches 

offers a data-driven model reduction approach. The simpli-

fied models can significantly improve the intuitive insight in 

the nonlinear model behavior. The underlying physical model 

structure can sometimes be retrieved, although no guarantee 

can be given that a simple model coincides with the physi-

cal model.

CONCLUSIONS OF THE CASE STUDY ON 

THE FORCED DUFFING OSCILLATOR

In this case study, structural model errors 

dominate the noise disturbances. The fol-

lowing general observations can be made. 

The prediction errors for a given plant model 

are smaller than the simulation errors. This 

was expected because prediction methods 

explicitly use the output measurements to 

reduce the simulation error. The prediction 

method decreases the impact of the struc-

tural model errors, compared with the simu-

lation method. This holds true as well for 

the linear simulation/prediction models and 

the nonlinear models. The quality of the prediction depends 

strongly on the quality of the noise model. The better BJ noise 

model also results in better predictions than those of the poly-

nomial NARX model. A nonlinear model better captures the 

system behavior than a linear model. This results in smaller 

simulation and prediction errors. The decoupling methods are 

a powerful tool for pruning, data-driven structure retrieval, and 

model reduction.

Best Linear 
Approximation

Nonlinear 
State-Space 
Model Decoupled

Equal 
Branches

Single 
Branch

RMSE 12% 0.49% 0.4% 0.4% 0.4% 

n Li 5 5 5 5 5

n NLi 0 30 12 6 3

TABLE S1 The evolution of the root-mean-square error (RMSE) on the tail  
validation data, the number of linear parameters niL, and the number of nonlinear 
parameters niNL as a function of the model complexity during the model reduction 
process.

FIGURE S25 The validation of the final model (S51) on the arrow data in the (a) time and (b) frequency domains. The measured 
output is shown in blue, the validation of the final model in red, and the full model in black. NLSS: nonlinear state space.
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in  stances , , ,t 1 2 3 f=  (a constant sampling interval of one 
time unit).

The general structure of all of the nonlinear models 
can be in the form

 ( ) ( ( )),q t F p t=  (8)

with p and q vectors that are built on the signals turning 
around in the model (namely, inputs, outputs, states, and in -
ternal variables). The function F  is a static nonlinearity. The 
properties and parameterization of static nonlinearities 
are discussed in more detail in “Static Nonlinearities” and 

“External or Internal Nonlinear Dynamics,” which also illustrate 
how it can be used in various nonlinear dynamic models.

The model is an expression that allows the com putation 
of the next output ( )y t  based on previous observations:

 ( | , ) .y t Zti -t  (9)

This model output will depend on a parameter vector i  
used to parameterize the model class. The notation Zt-  
denotes that ( )y t  is excluded. In discrete time, this means 
Z  t 1– . Note that, if a direct term is needed in the model, the 
regressors Z  t 1–  can be extended with ( )u t .

Machine Learning and System Identification

Machine learning has become a central topic and buzzword 

in today’s decision and estimation world. It clearly has 

links to nonlinear system identification. This article provides a 

simple presentation of the leading ideas in machine learning 

and how they relate to the topic of the current survey.

THE BASIC PROBLEM IN MACHINE LEARNING

The core of all machine learning can be said to be function 

estimation: measure noisy observations ( ), ( )y t x ti i  of a function 

between two spaces X  to Y

 ( ) ( ( )) ,y t F x t noise= +  (S52)

and infer the function F. This is like a classical curve-fitting 

problem. However, the spaces may be of a highly general na-

ture: X  could be signals, images, or texts, and Y  could be 

numerical values or classifications (like “text is offensive”). It 

is the broad range of possible spaces that allows the problem 

formulation to be applied to a wide variety of tasks, which is 

the reason for the current interest in the field. For standard 

numerical spaces X  and Y, the formulation (S52) remains an 

example of standard nonlinear regression.

Most applications of machine learning have a black-box 

view of F, that is, no physical knowledge about the function is 

employed but only flexible mappings are used when estimat-

ing it. This is similar to the situation in “Static Nonlinearities.”

With a totally free description of F, it is clear that some 

constraining technique must be applied when fitting it to the 

observed ( ), ( )x t y ti i  to avoid a perfect (and useless) fit. In 

machine learning, two basic techniques are used. The first 

is regularization, which means that a penalty is added to 

the model fit to account for deviations in F from expected 

smoothness properties. This can be compared with (S43). 

This can also be interpreted as the Gaussian processes ap-

proach, described in connection with Figure S26. The sec-

ond is to use a flexible parametric model class for F, which is 

aligned with the general philosophy used in this article (see 

the section “The Lead Actors in Nonlinear System Identifica-

tion”). The two approaches will be discussed in more detail in 

the following.

APPROACH 1: REGULARIZATION, GAUSSIAN 

PROCESSES, AND KERNEL METHODS

The basic approach for estimating the function F in (S52) is

 ( ( ) (( ( )) .min y t F x tF
i

N

i i
1

2
F -!

=

/  (S53)

However, this formulation is ill posed for a general function class 

F  since the fit can always be perfect. This allows for regulariza-

tion techniques [137], which add a regularizer J to the criterion:

 ( ( ) (( ( )) ( )) .min y t F x t J FF
i

N

i i
1

2
F c- +!

=

e o/  (S54)

There are many ways to define the regularizer. A common and 

elegant way is to assume that F  is a Hilbert space with norm 

F 2
F  and use

 ( ( ) (( ( )) .min y t F x t FF
i

N

i i
1

2 2
FF c- +!

=

e o/  (S55)

These techniques were developed in 1970–1990 for general func-

tion estimation, giving rise to spline approximations [138], [139]. 

The penalty norm became known as the kernel for the problem—

hence the term kernel techniques for the approach, see [140].

A way to define the kernel/regularization is the Gaussian pro-

cess approach. Suppose that F is the realization of a Gaussian 

process, and assume that its prior distribution is that it is zero 

mean, with covariance function ( , ) ( ) ( )R t s F t F sE= . Using this as 

the scalar product in the Hilbert space ,F  the estimate in (S55) will 

be the posterior probability density function of the random process 

F, given the prior and the observations ( ),y ti  ( ),x ti  , , .i N1 f=  This 

was used to create a general theory for estimating linear systems, 

described in [58]. F is the impulse response of the linear system, 

and the kernel R is chosen to describe the smoothness and decay 

of the impulse response (using some hyperparameters that are 

estimated by empirical Bayes). Similar techniques have been used 

for the identification of nonlinear models [141], [142].
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Following the discussion in “Simulation Errors and Pre-
diction Errors,” the model output ( | )y t it  will be a simula-
tion output if it depends only on past inputs, and the 
corresponding model is a simulation or output error model. 
If the model output also depends on past outputs, then it is 
a predicted output, and the corresponding model a predic-
tion model. This term does not necessarily imply that it is 
based on correct probabilistic treatment of the stochastic 
signals involved in the model. In the list of models that fol-
lows, it will be indicated how they comply with the general 
structures (8) and (9).

Summary Model Structures: User Guidelines
 » The user-selected model set: This should reflect both 
the observed behavior aspects and the available 
physical insight.

 » Behavior aspects: As an example, the presence of chaos 
or shifting resonances requires a closed loop around 
the nonlinearity. These aspects lead to a selection 
imposed by the system.

 » Physical insight: This varies from physical models (white 
models) on one end to black-box models on the other that 
use only the available data without any physical insight.

APPROACH 2: FLEXIBLE PARAMETRIC NONLINEAR 

MODEL STRUCTURES

The other approach is to constrain the model by restrict-

ing the minimization in (S53) to a parameterized model set 

{ ( , ) | } .F x DF M!i i=  In the black-box situation, it is then a 

matter of finding such a set capable of allowing arbitrarily 

good approximations of any reasonable function F. In ma-

chine learning, the dominating black-box parameterization is 

the neural net (S64), (S69), (S70). The activation function is 

often chosen as a rectified linear unit, (S65c), which makes 

the parameterization a piecewise linear approximation over 

an adaptive grid of the function F. Deep networks (S66c) are 

common in current research, leading to deep learning.

DEEP LEARNING AS A SYSTEM  

IDENTIFICATION PROCESS

Machine learning and deep learning are closely related to 

system identification. To emphasize this, a session with the 

System Identification Toolbox [173] (see “Software Sup-

port”) for the estimation of the Duffing oscillator models is 

shown in the Matlab code in Listing S1. See also Figures S19 

and S20.

Sections of data are selected for estimation and validation; 

edat corresponds to Figure S22(a) and vdat is Figure S22(c). 

Then, a linear Box–Jenkins model is estimated and evaluated 

by simulation on validation data (compared with Figure S21), 

including computing the fit measure (32). The model is tested 

for validation using residual analysis. See “Linear Validation” 

under the “Model Validation” section.

Neural networks and deep learning are attempted with a 

deep net (S66c) with two layers. The System Identification 

Toolbox can use network models from the Deep Learning Tool-

box in Matlab and incorporate them in the idnlarx object.

The numbers FIT-computed with the compare command 

show that the simulation fit for the linear Box–Jenkins model is 

37.68%, while the deep network gives a fit of 99.26%, and the 

one-layer neural network returns 98.09%. The average norm of 

the simulation error for model mN2 is

   norm(vdat.y-YH{3}.y)/sqrt(length(vdat.y)) = 

4.18e-4 (mV).

This validation simulation is shown in Figure S23 as NARX NN. It 

is compared with other nonlinear models on the same data and 

shows that the deep neural network model compares quite well 

with the best of the other models. The software syntax shows also 

that deep networks can be estimated, evaluated, and used much 

like the conventional linear models. The actual minimization of the 

criterion may be more cumbersome and require user interaction.

  load SNLS80mV.mat

  fs = 1e7/2^14;

   edat = iddata((V2(30550:38500)’, V1(30550: 

 38500)’, 1/fs)

  load Schroeder80mV.mat

  ySchroeder = V2(10585:10585 + 1023);

5  uSchroeder = V1(10585:10585 + 1023);

   vdat=iddata(ySchroeder’,uSchroeder’,1/fs);

  mbj=bj(edat,[4 4 2 2 0]); %linear model

   compare(vdat,mbj),shg % shows the fit to  

 simulating validation data

  resid(vdat,mbj),shg

10  % Neural network with one layer and 40 nodes:

   net=cascadeforwardnet(40]); N2 =  

 neuralnet (net); %two layers

   Deep network with two layers with 27 nodes each:

   net=cascadeforwardnet([27, 27]);  

 N2 = neuralnet(net);

  mN1 = nlarx(edat,[4 4 0],N1);

15 mN2 = nlarx(edat,[4 4 0],N2);

   [YH, FIT] = compare(vdat,mbj,mN1,mN2),shg  

 %simulation fit

  resid(vdat,mN1,mN2)

LISTING S1 The Matlab Code for Deep Learning
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Static Nonlinearities
static nonlinearity (no memory present) is the basic building 

block in nonlinear models. Consider the mapping

 ( ); , .z H x z R x Rp m! !=  (S56)

If z  and x  are time-varying signals in the model, the mapping 

is applied for each ,t  ( ) ( ( )),z t H x t=  so the mapping is static. 

Such a mapping can occur in many contexts in a nonlinear 

model and is indeed what constitutes the nonlinear behavior 

[see also (8)]. In a state-space model, H can be mapping from 

the state at time t  to the state at the next time instant (20). 

In a regression model like (22), H  can be the mapping from 

the regressors to the model output. In block-oriented models 

(Figure 6), the static nonlinearity block is a fundamental com-

ponent. In this sidebar, the parameterization of static nonlin-

earities ( , )H x i  will be discussed.

SINGLE-INPUT, SINGLE-OUTPUT NONLINEARITIES

Consider the simple single-input, single-output (SISO) case 

p m 1= = , which includes all of the essential ideas. This is the 

case of a 1D curve.

Break-Point-Based: Piecewise Constant and 

Piecewise Linear

A very simple idea to parameterize a curve is to define its val-

ues at a number of break points { , , }.x xM1 f  So

 { , ( ), , }x z H x k M1k k k fi = = =  (S57)

would be the parameterization of the curve. An interpolation 

rule must then be applied to define ( )H x  at the intermediate 

points. Standard options include a piecewise constant rule 

[the value ( )H x  equals ( ),H xk  where xk  is the break point im-

mediately to the left of ]x  and a piecewise linear rule [the val-

ue ( )H x  is linearly interpolated from its two neighboring break 

points]. Clearly, more sophisticated interpolation rules could 

also be used.

Basis Function Expansions

A common way to parameterize functions is to choose a sys-

tem of basis functions, { ( ), , , }x k M1k ft =  and parameterize 

the curve as

 ( , ) ( , ),H x xk
k

M

k
1

i i t i=
=

/  (S58)

where the basis functions t  may or may not depend on .i  

Many basis function expansions are possible, and a few will 

now be reviewed.

Custom Regressors

With some physical insights (or semiphysical modeling), the 

user can identify specially chosen basis functions ( )xk
ct  that 

reflect typical nonlinearities for the application in question. For 

example, using ( )x xt =  if ( )z H x=  describes the output in a 

free-level flow system, where x  is the level in the flow system. 

This gives the expansion

 ( , ) ( ).H x xk
k

M

k
c

1

i i t=
=

/  (S59)

Polynomial Expansion

The most common “black-box” expansion is the polynomial ex-

pansion ( )x xk
kt =  or the Taylor series

 ( , ) .H x xk
k

M
k

1

i i=
=

/  (S60)

Such polynomial expansions are used in modeling contexts 

where x  consists of delayed inputs, also known as a Volterra 

model [see (S68)].

Linear Regressions

Note that, if the basis functions kt  are known [do not depend 

on the parameter ,i  as in (S59) and (S60)], then (S58) is a 

linear regression, so it is easy to estimate i  from the measure-

ment of z  and .x

Local Basis Functions

It is also possible to construct local basis functions (pulses) 

that are nonzero only over certain intervals:

 ( , , )
/ ,

x
x1 1

0
if
else.k k k

k k k1#
t c b

c c b
=

+'  (S61)

Then, if / ,1k k k1c c b= ++  the expansion

 ( , ) ( , , )H x xk
k

M

k k k
1

i a t c b=
=

/  (S62)

will be a piecewise constant function like (S57), with break 

points { }.kc  It can approximate any reasonable function arbi-

trarily well with sufficiently large .M  Note that

 ( , , ) ( ( )),x xk k k k kt c b l b c= -  (S63)

where ( )$l  is the unit pulse indicator, which is one for x0 11#  

and zero elsewhere.

Neural Networks

Inspired by the approximation capability of (S62) and (S63), a 

“mother function” ( ),xl  also known as an activation function, 

can be selected. When translated by kc  and dilated by ,kb  this 

results in the expansion

 ( , ) ( ( )).H x xk
k

M

k k
1

i a l b c= -
=

/  (S64)

Common activation functions are the Gaussian bell (a soft pulse)

 ( )x e x2

l = -  (S65a)

A
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and the sigmoid function (a soft step)

 ( ) .x
e1

1
xl =

+ -  (S65b)

Another common choice of the activation function is ( )xl =  

ReLU(x) (rectified linear unit):

 ( )
,
,

x
x

x
x

0 0
0

if
if
1
$

l = '  (S65c)

which makes H  piecewise linear and continuous in .x  The ex-

pansion (S64) represents the simplest neural networks.

Deep Neural Networks

The basis function expansion (S64) can be seen as a map-

ping from the regression variables x  [if x  is an n-dimensional 

column vector, the terms can be interpreted as (S69) or (S70)] 

to M  new regressors:

 ( ( )) , , .x x k M1( )
k k k
2

fl b c= - =  (S66a)

The mapping can be written compactly as

 ( , ),x G x W( ) ( ) ( )2 1 1=  (S66b)

where W ( )1  contains all of the coefficients in kb  and ,kc  and 

G( )1  is an element-wise mapping from n  regressors to M  new 

regressors. These new regressors can, in turn, be subjected 

to a new mapping

 ,x x( )0 =  (S66c)

 ( , ), , , ,x G x W L1( ) ( ) ( ) ( )1 , f= =, , , ,-  (S66d)

 ( , ) ,H x W x b( ) ( )L Li = -  (S66e)

where the last step gives the output of the model as an affine 

combination of the last step’s regressors. The parameter i  

contains all of the parameters in { , , }W L1( ) , f=,  and .b  The 

model (S66c) is a deep neural network with L  (hidden) layers, 

each with ( )dim x( ),  regressors or hidden units. There is a con-

siderable current interest in deep networks as models. While 

one layer, as in (S64), is sufficient to create a universal ap-

proximator of any reasonable function, deep networks have 

more powerful approximation capabilities in practice [135].

Trees

A useful mapping ( )z H x=  can be defined via (binary) trees. 

Such trees are popular mappings and used in, for example, deci-

sion and classification trees [136]. Here, a regression tree will be 

defined. The value x  will be subjected to a sequence of binary 

questions at the different nodes. All of the binary answers will be 

collected and, based on those, a value ( )z H x=  will be assigned.

At the root node, for a scalar ,x  the basic question is 

?,x c0$  for some number .c0  Depending on the answer, 

a new question will be asked at the next level ?,x cr
1$  

, .r 1 2=  It continues so that, at level ,k  there are 2k  nodes 

with similar questions ?,x cr
k$  , , .r 1 2kf=  For a tree with 

depth ,n  the final level is k n=  with 2n  nodes, called 

leaves. The leaves correspond to a partition of the x  axis 

into 2n  parts. Each leaf has a value dk  for ( )H x  at the 

x-value that leads to that point. Some branches may be 

cut before level .n  The leaves are then defined at a lower 

level. The tree defines a function ( ),H x  which is piecewise 

constant—all values of x  that belong to the same parti-

tion give the same value .dk  A tree is an alternative to 

piecewise constant functions (S57) where the break points 

are defined in a contrived way by the tree partitioning. For 

a regression tree, it is customary to add an interpolation 

step to compute the function value:

 ( ) ,H x d xLk k= +  (S67)

where dk  is the value produced by the leaf of the tree and Lk  

is a scalar that is also provided by the leaf in question. The tree 

( )H x  becomes a piecewise linear function of .x

Gaussian Processes

Gaussian processes offer a nonparametric approach to 

model ( )z H x=  in (S56) that can be used in a Bayesian 

framework [131]. This static model can then be used to form 

dynamic models, as in ( ( ), ( ), )f x t u t i  and ( ( ), )x th i  in (20), 

or nonlinear autoregressive exogenous models and other 

examples in this article. The idea is that the function to be 

est imated is embedded in a stochast ic framework, so 

that ( )H x  is a realization of a Gaussian stochastic pro-

cess. There is a prior (before any measurements) distribu-

tion with a zero mean, large variance, and a covariance 

function that describes the assumed properties of the func-

tion H  (that is, smoothness, possible exponential decay, 

and periodicity).

When ( ),z H xk k=  ,k N1f=  have been measured, the pos-

terior distribution ( )H x zp ;  can be formed for any .x  The mean 

of that function will be the estimate of the function H  and is 

formed by interpolation and extrapolation of the measurements 

[ , ]z xk k  using the probabilistic relationships in the prior distribu-

tion. The reliability of the estimate can also be assessed from 

the posterior variance. This is, of course, a reflection of the prior 

assigned distributions.

If all variables are jointly Gaussian, all of this can be com-

puted by simple and efficient linear algebraic expressions. 

The idea is depicted in Figure S26. The framework can be 

seen as a generalization of the regularization approach [187] 

[see (24) and the discussion in “Black-Box Model Complex-

ity”]. See [132] for a full introduction to the topic and [131] for 

a recent tutorial to apply Gaussian processes to the modeling 

of dynamic systems.
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MULTIPLE-INPUT, SINGLE-OUTPUT NONLINEARITIES

When the nonlinearity is multiple input ( ),m 12  x  will be an 

m-vector. Most of the ideas for SISO models carry over to the 

multiple-input, single-output (MISO) case. Some specific as-

pects will be noted here.

Polynomial Expansion

In the polynomial expansion (S60), the term xk
ki  should be 

interpreted as the sum of all those terms that can be created 

from exponentials of the components xi
ri  whose exponents 

sum to .k  Each term xk  expands into several new terms. 

Each of these terms requires its own parameter, so the num-

ber of parameters in (S60) rapidly increases with m  and .M  

A common special case of polynomial expansion is the Volt-

erra model.

Volterra Models

A Volterra system [28] is a nonlinear finite impulse re-

sponse system with a multivariate polynomial nonlinearity. Let 

the regressors be ( ) [ ( ), ( ), ( )].t u t u t u t m1 1{ = - - +  Then, the 

model is

( ) ( ),

( ) ( , , ) ( ) ( ) ( ).

y t y t

y t g u t u t u t

M

r

m m

M M

0
1

0
0

1

0

1

1 1 2
M1

f f f

;i

x x x x x

=

= - - -

a

a

a
a

x

=

=

-

=

-

t /

/ /
 (S68)

The kernel ( , , )g 1 fx xa a  is the multidimensional impulse 

 response of degree a  and corresponds to the model pa-

rameters .ki

The number of terms in the Volterra models is ( ),O mM  and 

it becomes very large when the memory length grows. For that 

reason, Volterra models were usually only applied to problems 

with short memory length m  and moderate polynomial orders 

.M  Only recently could more complex problems be handled [56], 

[183], using the regularization framework [187] to reduce the 

impact of the exploding number of parameters (see “Black-Box 

Model Complexity”).

Neural Networks

For the neural network model (S64), it is customary to keep the 

activation function ( )xl  with a scalar argument and reinterpret 

the argument with vector x  in one of two ways. One approach 

is ridge construction, in which kb  is an m-vector, where

 ( ( )) is interpreted ( ).x xask k k
T

kl b c l b c- -  (S69)

This means that the basis function assumes the same val-

ue for all x  in the hyperplane ,x constantk
Tb =  thus creating 

a ridge structure for the function values. With a sigmoid 

activation function, this leads to the celebrated one hid-

den layer  feedforward sigmoid neural net. A second ap-

proach is radial construction, in which kc  is an m-vector 

of translation and kb  is a positive definite matrix of 

dilation coefficients (or a scaled version of the identity 

matrix). Intepret

 ( ( )) ( ),x xask k k k< <l b c l c- - b  (S70)

where x x xT
k

2
k< < b=b  is a quadratic norm defined by .kb  This 

means that the contribution of the basis function depends 

only on the distance between x  and a given center point, 

thus providing a certain radial symmetry to the function. The 

Gaussian activation function gives the well-known radial ba-

sis neural network.

Trees

With an m-vector ,x  the questions asked at the nodes will be 

[ ] ?x C1 0T T
k
r 2  for m 1+  vectors .Ck

r  The linear interpolation 

term Lk  in (S67) will also be an m-vector provided by the leaf 

in question.

MULTIPLE-INPUT, MULTIPLE-OUTPUT  

NONLINEARITIES

Turning to the multiple-output case ,p 12  there is a common 

and simple solution: treat it as p independent MISO cases. If 

models are built from data, the actual models for the different 

outputs may appear in different shapes and different model 

orders. Gray-box thinking and/or experimental evidence may 

suggest that the same parameters may be used in different 

output channels to obtain a more efficient representation. 

This is noted in “Decoupling of Multivariate Polynomials,” see  

Figure S14. However, this does not change the essential fea-

tures of multiple-input, multiple output representation of static 

nonlinearities captured when MISO models are constructed.
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FIGURE S26 The yellow crosses are the observed x  and y  
values. The red line is the estimate of the f  function, and the 
shaded region shows the credibility, which is the standard 
deviation around the mean .f
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 » White-box models: In general, these are dedicated (a 
new model for each new problem), expensive, and 
compact and provide deep physical insight.

 » Black-box models: Such models offer a generic method-
ology, are sensitive to an explosion of the number of 
parameters, and provide little intuitive insight.

The following sections offer a unified view on the large 
variety of model classes. It may be convenient to extend the 
metaphor of white- and black-box models to a sequence of 
various shades of gray, indicating the amount of physical 
insight that will be used: 

 » White models are physical models, and the values 
of the physical parameters are estimated.

 » Smoke-gray models are semiphysical models based 
on a natural selection and transformation of the mea-
sured variables using simple physical insights.

 » Steel-gray models are linearization-based models 
that depend on the working point and the nature 
of the excitation.

 » Slate-gray models are block-oriented models that 
are well suited to inject structural insight.

 » Black models are universal approximators, name  ly, 
Volterra, nonlinear autoregressive exogenous (NARX) 
models, nonlinear state-space models, and neural 
networks.

 » Pit-black models involve a nonparametric smooth-
ing approach.

Snow-White Models
A model of a dynamical system is a collection of mathematical 
expressions that relate signals y and u and parameters and 
variables that characterize the system behavior. Important sig-
nals are the system’s output signal(s) ( )y t  that are of primary 
interest to be modeled; the input signal(s) ( )tu  to the system, 
which are measurable signals that affect the outputs and 
may or may not be manipulated by the user; disturbance sig-
nals ( )w t , which are unmeasurable signals that affect the out-
puts and typically described by random processes; and 
auxiliary signals ( )tx  used in the model description. A 
model is then a collection of equations involving y, u, w, and 
x. To be a useful model, it must be possible to infer something 
about y from the other measured variables.

Deterministic Models
If no disturbances w  are present, then it should be pos-
sible to compute ( )y t  from previous values of ( ); .u s s t#  
That means that the model is deterministic or a simula-
tion model or an output-error model.

Stochastic Models
If there are stochastic disturbances w  present, the outputs 
also become stochastic variables. A specific value of ( )y t  
cannot be assigned based on the other variables, but a sto-
chastic characterization of it must be used instead, that is, its 
probability density function (pdf) or mean value ( )y tt . Since 

w  is not observed, its values up to time t have to be inferred 
from the values of the observations ( )y s  and ( ),su .s t<  The 
model values of ( )y t  will then be conditioned on these vari-
ables, and the conditional mean ( )y tt  will be a prediction 
based on past values.

To address these computability questions, it is necessary 
to be more specific about the structure of the collections of 
equations involving the model variables.

Deterministic Differential Algebraic Equation Models
For simpler notation, we introduce the vector ( )z t = 
[ ( ), ( )]y t x t T  for the outputs and auxiliary variables. Assume 
that there are no disturbances. When writing the equations 
that correspond to the physical knowledge of the system, 
differential equations are used in addition to algebraic rela-
tions among the variables. The equations can be written as

 ( ( ), ( ), ( )) ,F z t z t u t 0=o  (10)

where zo  is the time derivative of z. It is sufficient to con-
sider first-order derivatives, since higher-order ones can be 
rewritten with the aid of extra x variables. Also, if uo  were to 
appear in (10), u  can be included in z, and the basic form 
can still be applied. This is a differential algebraic equation 
(DAE) model. There is a clear conceptual relation between 
(10) and the general structure (8).

It is a normal case that (10) can be solved for z for a given u, 
and most software packages [108] for modeling systems con-
tain DAE solvers. There is extensive literature [109], [110] that 
addresses this problem of the solvability of (10).

Deterministic State-Space Models
If zo  can be solved explicitly from (10), it follows that

 ( ) ( ( ), ( )),x t f x t u t=o  (11a)

 ( ) ( ( ), ( )),y t h x t u t=  (11b)

which is a standard, nonlinear state-space description for 
the relationship of u  to y. If an initial state ( )x 0  is given, this 
equation has as a unique solution y under general and mild 
conditions. So, ( )y t  will be a function of past ( ):u s

 ( ) ( | ); ( ), .y t y t u u u s s tt t 1= = " ,  (12)

Stochastic State-Space Models
With disturbances present, it is customary and necessary to 
represent these as white noise w filtered through certain 
filters and assume that

 ( ) ( ( ), ( ), ( )),x t f x t u t w t1+ =  (13a)

 ( ) ( ( ), ( )) ( ),y t h x t u t v t= +  (13b)

where ( )w t  is a sequence of independent random variables 
with pdf (·)gw , and ( )v t  is a sequence of independent 
random variables with pdf (·)gv . To avoid intricate issues 
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External or Internal Nonlinear Dynamics

DUAL REPRESENTATION OF LINEAR SYSTEMS

Infinite Impulse Response (IIR) Models

A linear system can be modeled by the recurrent rep-

resentation 

 

( ) ( ) ( ) ( )

( ) ( )

( ( ), , ( ), ( ), , ( )) .

y t b u t b u t b u t n

a y t a y t n

h u t u t n y t y t n

1

1

1

n b

n a

b a

0 1

1

IIR

b

a

g

g

f f

= + - + + -

- - - - -

- - -=

 

(S71)

The system (S71) can have an infinite memory (its impulse re-

sponse has an infinite length) and, for that reason, is called an 

IIR model.

Finite Impulse Response (FIR) Models

The equivalent impulse response representation of (S71) 

is ( ) ( ) ( )y t g t u t)= = .( ) ( )g k u t kk 0R -3
=  Truncating this infinitely 

long impulse response to a finite length n leads to the 

FIR model

( ) ( ) ( ) ( ) ( ) ( ( ), , ( )) .y t g t u t g k u t k h u t u t n
k

n

0
FIR) f= = - = -

=

/  

 (S72)

Dual Representation of Linear Systems

From the previous discussion, it follows that linear systems 

can be represented either by an IIR model ( ) ( ( ), ,y t h u tIIR f=

( ), ( ), , ( ))u t n y t y t n1b af- - -  or an FIR model ( ) ( ( ),y t h u tFIR=  

, ( ))u t nf -  (where n can grow to infinity).

From a behavior perspective, there is no difference be-

tween these representations. However, a structural differ-

ence is how the memory (dynamics) is created in both repre-

sentations. The FIR model hIIR  makes no use of an internal 

memory; the dynamic behavior is obtained using delayed 

inputs. This is referred to as a model with external memory. 

The IIR model hIIR  includes delayed outputs to create an in-

ternal memory.

NONLINEAR FINITE IMPULSE RESPONSE  

AND INFINITE IMPULSE RESPONSE MODELS

Internal or External Dynamics

By choosing h in (S71) and (S72) to be nonlinear, the linear FIR-

IIR classification can be generalized toward nonlinear IIR (NIIR) 

systems ( ) ( ( ), ,y t h u tNIIR f=  ( ), ( ), , ( ))u t n y t y t n1b af- - -  

with internal dynamics (S72) or nonlinear FIR (NFIR) sys-

tems ( ) ( ( ), ,y t h u tNFIR f=  ( ))u t nb-  with external dynamics 

(S71) [11], [15]. For notational simplicity, the hNFIR  and hN IRI  

will both be written as h. The difference between these mod-

els follows from the arguments of the function.

For linear systems, it is a user’s choice to select the 

FIR or IIR representation as there is a full equivalence be-

tween both. This is no longer the case for nonlinear sys-

tems. Not all NIIR systems can be modeled with an NFIR 

model, as explained further along. The choice between 

NFIR and NIIR systems/models affects the structure, be-

havior, and stability properties. In addition, the numeri-

cal methods for addressing these systems are strongly 

dependent upon it.

Structural Aspects

The NFIR/NIIR nature of a system is uniquely linked to its to-

pology. For NFIR systems, there can be no dynamic closed 

loop around the nonlinearity, while, for NIIR systems, the non-

linearity is captured in a dynamic closed loop. This property 

is used in the structural detection framework [191]. It starts 

from the best linear approximation (BLA) (S30) that is identi-

fied for a varying input offset or amplitude [91]. The poles of 

the BLA remain fixed for NFIR systems, while they move for 

NIIR systems.

Remark 1

The class of systems included in the NIIR representation 

can be further generalized along with the nonlinear state-

space models that have a nonlinear feedback over some of 

the states, such that internal dynamic nonlinear closed loops 

are created.

Behavior Aspects

Some typical nonlinear behaviors like chaos, bifurcations, 

jumps, moving resonances, and autonomous oscillations (see 

Figure S27) can be generated only by NIIR systems. NFIR 

models cover fading memory systems whose behavior is more 

closely related to that of a linear system. Fading memory sys-

tems [123] forget the past inputs asymptotically over time. In 

other words, a nonlinear system that has no fading memory 

requires an NIIR model.

Fading Memory Systems

NFIR systems are a subset of fading memory systems. All 

stable NFIR systems have a fading memory, unless the non-

linearity would be discontinuous. The simplest example of 

such an exception is a static discontinuous system. An NIIR 

system can have a fading memory behavior on a restricted 

input domain [for example, the Duffing oscillator in the section 
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“Linear Simulation and Prediction of the Forced Duffing Oscil-

lator” (S46)] and, on that input domain, NFIR models can be 

used to approximate the NIIR system. This is illustrated on the 

Duffing oscillator in [29].

However, the output of nonlinear NIIR systems can also 

show bifurcations and jump phenomena (small variations at 

the input can result in sudden qualitative or topological chang-

es in the output), even for systems with smooth nonlinearities 

[8], [16], [17], [27]. The output can become chaotic, or autono-

mous oscillations can appear. An NFIR model cannot model 

these phenomena, illustrated in Figure S27.

Stability

While the stability of NFIR systems can be guaranteed under 

very general conditions, it is much harder to analyze the sta-

bility of NIIR systems. Although general theories exist to ana-

lyze and impose stability on NIIR systems [14], the user must 

often complete extensive simulations to check stability [15].

Numerical Aspects

The numerical optimization aspects of nonlinear systems/

models are strongly affected by moving from NFIR to NIIR. 

Calculating the derivative of the output of an NIIR system 

with respect to the model parameters means computing the 

output of another nonlinear model [9]. Table S2 gives an 

overview of the NFIR and NIIR systems considered in this 

article. See [97] for a more extensive table of different mod-

els and behaviors.

SUMMARY: USER GUIDELINES

• Internal or external dynamics models: The choice be-

tween an external dynamics NFIR model (with no nonlin-

ear closed loop) or an internal dynamics NIIR model (with 

a nonlinear closed loop present) strongly influences the 

complexity of the identification problem.

• Initial tests or insight: Initial tests or insight can help to 

choose between the two model classes. This avoids wast-

ed time and effort in trying to fit the wrong model structure 

to the data.

• External dynamics model class: Only systems with a 

fading memory behavior can be modeled (with a small 

error) with an external dynamics model. Typical models 

are NFIR, Volterra, and open-loop block-oriented mod-

els (Wiener, Hammerstein, Wiener–Hammerstein, and 

Hammerstein–Wiener). These models can be used only 

if the poles of the BLA do not move for varying experi-

mental conditions.

• Internal dynamics model class: Strong nonlinear be-

haviors like moving resonances, jump phenomena (bi-

furcations), hysteresis, and autonomous oscillations 

can be modeled only with internal dynamics (NIIR) 

models. External dynamics (NFIR) models are not able 

to represent such phenomena. Typical models are 

nonlinear autoregressive exogenous (NARX) models, 

block-oriented models with feedback, and nonlinear 

state-space models. Whenever the poles of the BLA 

move for varying experimental conditions, this class of 

models is preferred.

Force

Displacement Frequency

FRF
(dB)

Increasing
Excitation

(a) (b)

(c)

FIGURE S27 (a) Hysteresis, (b) moving resonance frequency, 
and (c) chaotic behavior are typical nonlinear phenomena 
that can be modeled only by systems with a nonlinear feed-
back loop.

External Nonlinear Memory No 
Nonlinear Output Feedback

Internal Nonlinear Memory 
Nonlinear Output Feedback

Nonlinear finite impulse 
response 

Nonlinear autoregressive 
exogenous 

Volterra 

Open loop, block oriented Closed loop, block oriented

Nonlinear state-space  
lower triangular 

Nonlinear state-space full 

TABLE S2 Systems/models with external or internal 
nonlinear dynamics. 
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Approximating a Continuous-Time Nonlinear State-Space Model With a Discrete-Time Model
lthough real-world systems evolve in continuous time, 

discrete-time models are preferred in many control appli-

cations because most simulations and many controllers are 

implemented digitally [99]. However, without special care, the 

discrete-time approximation can have a completely different 

behavior than the original continuous-time system [100], [101]. 

To provide a better understanding of these problems, the dis-

cretization of linear systems is first considered, and next the 

discrete-time approximation of continuous-time nonlinear sys-

tems is discussed.

DISCRETIZATION OF LINEAR SYSTEMS

Zero-Order-Hold Discretization

In linear system identification, it is well known that a continuous-

time system that is excited by a zero-order-hold (ZOH) input 

(also called piecewise constant excitation [6]) can be replaced 

by a discrete-time model that gives an exact description of the 

discrete-time, input–output relations [6], [7], [106]. Generalizing 

this result to nonlinear systems is not always possible because 

the ZOH character can be lost inside the system. For example, 

the output of the feedback in nonlinear closed-loop systems will 

no longer be ZOH. For that reason, solutions that do not rely 

explicitly on the ZOH nature are needed.

Alternative Discretizations

Replacing the continuous-time differentiation by a finite differ-

ence is intuitively very appealing:

 
( ) ( ) ( )

( ( ) ( ))dt
dx t

T
x t x t T

x t x t T f
s

s
s s.

- -
= - -  (S73)

or in the Laplace- and Z-domain

 ( ) .s z f1 s
1" - -  (S74)

In the frequency domain, s j f2r=  and z e j f f1 2 s .= r- -

(( ) )j f f O f f1 2 s s
2r- + , and (S74) becomes

 ( ) (( ) ) .s z f j f O f f1 2s s
1 2" . r- +-  (S75)

This simple solution works well only if the sample frequency 

fs  is much larger than the frequency band of interest. In Fig-

ure  S28(a), it can be seen that the relative error grows to 100% 

for . .f f0 3 s2  In Figure S28(b), the transformation (S74) is ap-

plied to a continuous-time first-order system

 ( ) ( ) .G s G z
f f zs1

1
1

1
s s

1 1"
x x x

=
+

=
+ - -  (S76)

Observe that the error is very small around the origin but grows 

very fast to 100% for . .f f0 3 s2

A very popular approach in the system identification com-

munity is to identify directly, in the frequency band of interest, 

a discrete model ( )G Z  for the continuous-time system G(s). 

This is also illustrated in Figure S28(b). A first-order discrete-

time model ( )G z2  is obtained by a least-squares fit in the fre-

quency band [ , . ] f0 0 25 s . Observe that the error of ( )G z2  is 

much smaller than that of ( )G z1 . See the signal processing 

literature for more information on the classical solutions to 

this problem (for example, impulse invariant transformation, 

bilinear transformation) [107].

DISCRETIZATION OF NONLINEAR SYSTEMS

Finding good discrete-time approximations for continuous-

time nonlinear systems has been studied extensively [19], [98], 

[102], [103]. As was done for linear systems, the discussion 

starts with dedicated methods for ZOH excitations, followed 

by an approach to address the more general class of low-

pass excitations.
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FIGURE S28 The approximation of a continuous-time system 
by a discrete-time system. (a) A discrete-time approximation 
of a differentiator: ( )G ss =  (blue) and ( ) ( )G z z f1 s

1= - -  (solid 
red). Observe that the error (broken line) grows fast with the 
frequency to 100% at / . .f f 0 3s .  (b) The approximation of a 
continuous-time first-order system ( )G s  (blue) by a discrete-
time system ( )G z1  obtained by a finite difference transfor-
mation ( )s z f1 s

1" - -  (red) and a first-order discrete-time 
system ( )G z2  (green) that is fitted in a least-square sense in 
the bandwidth . .f0 0 25 s6 @  Observe that the error of the finite 
difference solution is very small, around ,f 0=  but grows 
very fast. 

A
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ZOH Framework

An exhaustive overview of the discretization problem is 

made in [99] and the references therein. The authors look 

for an approximate discrete-time  representation, operating 

in a ZOH framework. Some of their major conclusions are 

as follows:

• The popular forward Euler method should be used with 

extreme care because it results in relative errors that grow 

fast with /f fs , leading to the need for a very high oversam-

pling. This confirms the observation made in Figure S28.

• The dynamics of sampled data models can be different 

from those of the continuous-time system; numerical 

sampling zeros are created.

• A truncated Taylor series (TTS) approximation model is 

proposed to estimate a continuous-time nonlinear state-

space (NLSS) equation by a discrete-time equivalent. 

The global fixed-time truncation error (the error when 

integrating over a fixed time interval) drops to zero, pro-

portional to the inverse of the sampling frequency fs  as 

an ( / ).O f1 sD =

Low-Pass Framework

An alternative approach for the approximation of a continuous-

time NLSS model is presented in [104]. Consider

 
( )

( ( ), ( )),

( ) ( ( ), ( )),
dt

dx t
f x t u t

y t h x t u t

=

=
 

(S77)

which is excited with an input signal u(t) that is a low-pass sig-

nal of degree du  [the square root of the power spectrum is an 

( / )O f1 du  for f fc2 ]. Observe that a ZOH excitation is a low-pass 

signal with  d 1u = . Similar to the identification approach for the 

linear first-order example in the previous section, a discrete-

time NLSS model

 
( ) ( ( ), ( )),

( ) ( ( ), ( ))

x k F x k u k

y k G x k u t

1d d d d

d d d d

+ =

=
 

(S78)

is identified directly from the data. The discrete-time signals 

( )x kd  and ( )y kd  equal the sampled continuous-time signals 

( )x t  and ( )ty  within an error

 
( ) ( ) ( / ) ,

( ) ( ) ( / ) .

x k x kT O f

y k y kT O f

1

1

.
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s s
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f

f
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= + +

-

-  
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( , )mind d d 1x u F= + , with dF  a characteristic of the nonlinear 

system, as explained in Figure S29 [104]. For a static dis-

continuous nonlinear function, d 1F =  and d n 1F = +  if the 

nth derivative exists in the domain of interest [104], [105]. 

The error If  is a user choice set by the choice of the com-

plexity of the discrete-time NLSS model. The discretization 

error is dominated by the aliasing effect, which is due to the 

sampling of the input, output, and internal signals. The error 

in the direct identification approach is smaller than that of 

the TTS ZOH approach. This is because the discrete-time 

model is  tailored to the continuous-time data in the least-

squares minimization step. This result provides a strong the-

oretical foundation for the  popular and successful practice 

to directly identify explicit discrete-time models of continu-

ous-time nonlinear systems.

ILLUSTRATION: DISCRETIZATION  

OF THE DUFFING OSCILLATOR

The results of the previous section are illustrated on the Duff-

ing oscillator setup (Figure S18) described in “Experimental 

Setup: The Forced Duffing Oscillator.” In this case, the ZOH 

output ( )x tZOH  of the generator filter is filtered by a fourth-order 
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FIGURE S29 A study of the amplitude spectrum of a low-pass signal 
of relative degree d 5u =  that passed through a nonlinear system 
[104]. The amplitude spectrum of the output normalized to a root 
mean square value of one is shown, and the dc value is not shown. 
(a) The results for a static nonlinear system ,y pn=  , , , ,n 1 2 3 7 8= .  
Observe that all of the signals have the same relative degree, 
independent of n. In this case, the relative degree of the output is 
set by the relative degree of the input. (b) The results for a static 
nonlinear system ( )y u usign n=  with , , .n 1 2 3=  In this case, the 
relative degree is set by the nonlinear system: d n 1F = +  for 

.d dF u#
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with continuous-time white noises, only the discrete-time 
case is considered. Using the state-space forms (13), the links 
with the general predictor model structure (9) become clear.

The problem of finding the conditional distribution 
or conditional mean ( ),y t t 1-t  given past input–output 
signals, is the well-known nonlinear prediction or filter-
ing problem. If f  and h  are linear and y  and w are 
Gaussian variables, this is solved by the familiar Kalman 
filter [111]. In the general case, the filtering problem has 
no closed-form solution. However, there has been recent 
progress on a numerical solution in terms of particle 

filters [49], [112]. A simplistic but mostly erroneous 
way to address the nonlinear filtering problem is to 
assume that all disturbances can be collected as white 
noise added to the output. Then, the model will corre-
spond to an output error model like (11) (see also “Pro-
cess Noise in Nonlinear System Identification”).

User Guideline
In summary, the work to construct a snow-white model, 
sometimes called first principles modeling or mechanistic 
modeling, is typically time consuming and laborious, and 

low-pass filter with a cutoff frequency of 200 Hz. A wideband 

zero-mean excitation with a bandwidth of /f 2s  is used as the 

excitation signal in the frequency band [0–39,062 Hz]. With 

these settings, the signal ( )u tc  has a flat amplitude spectrum 

up to 200 Hz, to be compared with the bandwidth of the sec-

ond-order system that is below 100 Hz.

The continuous-time input and output are sampled at a high 

sampling frequency , .f 78 125 Hzs =  Next, the data are sub-

sampled at different rates [104]. For each subsampled data set, 

a discrete-time nonlinear state-space model is identified on the 

measurements, using a discrete-time nonlinear  polynomial state-

space model and employing the methods described in [188] 

and “Extensive Case Study: The Forced Duffing Oscillator.” The 

model has two states, and the degree of the internal multivariate 

polynomial is three (it depends on both the states and the input). 

Higher orders and degrees were tested, but this did not signifi-

cantly improve the results. The results are shown in Figure S30. 

It shows that the errors drop as an ( / )O f1 s
4  until the noise floor or 

the structural model error floor is reached. The drop rate is pro-

portional to the drop of the alias errors and much faster than /f1 s .

SUMMARY

Different options are available to approximate a continuous-

time system/model by a discrete-time model.

• Data-driven approach: A nonlinear discrete-time model 

can be identified directly from the experimental data. The 

approximation error is dominated by the alias error that 

is ( / )O f1 .
s
d 1 5x- . The model complexity of the discrete-time 

model can be higher than that of the continuous-time 

counterpart to keep the discretization error below a user-

defined error level.

• Model-based approach: If a continuous-time model is 

available, it is possible to turn it into a discrete-time one. 

Two options are available for the user.

o TTS approximate model: The continuous-time equa-

tions are transformed into a set of discrete-time equa-

tions  using a Taylor series approximation. The major 

advantage is that there is a close connection with the 

original, physical equations. The main drawbacks are 

1) the restriction to ZOH excitations and 2) the ap-

proximation error is ( )O fs
1- , which drops slowly with 

the sample frequency.

o Simulation-identification approach: The continuous-

time model is used to create a rich data set used as the 

input for a direct fit of a discrete-time model. The major 

advantages are 1) a compact model is obtained with a 

user-controllable balanced quality/complexity and 2) by 

a proper design of the data set, the user can focus the 

model on the intended application. The major disadvan-

tage is the loss of physical interpretability of the model.
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FIGURE S30 A discretization of the Duffing oscillator [104]. An 
experimental verification on the Duffing oscillator shown in 
Figure S18 is made. A discrete-time model nonlinear 
state-space model is identified, and the root mean square 
value of the simulation error on the estimation set and a vali-
dation set is plotted as a function of the sample frequency. It 
is also compared to the relative alias error of the input and 
output. The alias error drops with about 70 dB/decade, 
which is in perfect agreement with the presence of the 
fourth-order filter in the generator path. It is also seen that the 
error on the modeled output follows the slope of the aliased 
power of the input and output, as was expected from the 
theory. At lower error levels, structural model errors domi-
nate. These could not be further reduced by increasing the 
complexity of the model.
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it does not involve any system identification. It is supported 
by software like the object-oriented languages Modelica 
[113] and Simscape [114].

Off-White Models
Snow-white modeling includes one or several physical 
constants whose numerical values are not known. If the 
values cannot be established by separate measurements, 
they must be included as a parameter i  in the model. In 
the deterministic state-space case, the model then takes 
the form

 ( ) ( ( ), ( ), ),x t f x t u t i=o  (14a)

 ( ) ( ( ), ( ), ),y t h x t u ti i=t  (14b)

where ( )y t it  is the output corresponding to the specific 
parameter value .i  In the stochastic case, the symbol is 
the predicted output time t based on the model with 
parameter .i  Since its value is unknown, the model is no 
longer snow white but has become an off-white model. 
Such models are also known as gray-box models [115], but, 

as follows from the ensuing discussion, there are several 
shades of gray.

Building an off-white model requires the same effort 
as a snow-white model, which might be significant. 
Also, it may not be possible to retrieve all of the physical 
parameters from an identification experiment.

The off-white model (14) is a clear case of the general 
predictor structure (9). In addition, it complies with (8) 
by using F to solve the underlying nonlinear differential 
equation. An application of off-white model identifica-
tion to a cascaded tanks system is given in (33). 

User Guideline
In summary, off-white model identification requires 
substantial modeling. It is important to realize that any 
deficiencies in the physical model may cause corruption 
in the physical parameter estimates.

Smoke-Gray Models: Semiphysical Modeling
Semiphysical modeling is physical modeling with a more 
leisurely attitude regarding the physics. It could use 

Software Support

The algorithms needed for nonlinear model definition, esti-

mation, and analysis are typically quite complex and need 

sophisticated computer software support. Several program 

packages for such support are publicly available, some for free 

download and others for license agreements. Some of these 

packages will be briefly described.

THE SYSTEM IDENTIFICATION TOOLBOX FOR  

USE WITH MATLAB

The System Identification Toolbox [173] is a commercially avail-

able program package, distributed by MathWorks Inc. It con-

tains implementations of several of the methods/models dis-

cussed in this article, as follows:

• idnlarx is a model object that handles the nonlinear au-

toregressive exogenous model (22) with several possible 

nonlinearities.

• idhw handles the Hammerstein–Wiener block-oriented 

model in Figure 6.

• idnlgrey treats nonlinear state-space gray-box models 

(20), where f and h must be programmed by the user in 

Matlab or C-code.

Static nonlinearities (S56) can be chosen, for example, as

• pwlinear: (S57)

• poly1d: (S60)

• sigmoidnet: (S64)

• treepartition: (S67)

• customnet: (S59)

for use in idnlarx and idnlhw. All model validation and 

evaluation commands, namely, compare (for cross valida-

tion); resid (for linear residual analysis); and sim, predict, 

and forecast (for simulation and forecasting) are available, 

 analogous to linear models, and can be used to compare linear 

and nonlinear models in the same command.

NONPARAMETRIC NOISE ANALYSIS

The freely available frequency-domain identification toolbox 

FDIDENT can be used to make the nonparametric noise and 

distortion analysis (see “Nonparametric Noise and Distortion 

Analysis Using Periodic Excitations” and http://home.mit.bme 

.hu/~kollar/fdident/). This toolbox also includes the tools to de-

sign the random-phase multisines (26) and perform the non-

parametric nonlinear analysis. In [151], all of the procedures for 

the noise and distortion analysis presented in this article are 

discussed in full detail, and the related Matlab software can be 

freely downloaded from booksupport.wiley.com.

NONLINEAR STATE-SPACE MODEL

A package to identify a polynomial nonlinear state-space mod-

el (see “Extensive Case Study: The Forced Duffing Oscillator”) 

is freely available at http://homepages.vub.ac.be/~jschouk/.

NONLINEAR BENCHMARK WEBSITE

The website http://www.nonlinearbenchmark.org has many ex-

perimental data sets that are well documented. For each bench-

mark, a detailed description of the setup and the experiments is 

given. In addition, a list of references is provided to publications 

that process these data. The data for “Extensive Case Study: 

The Forced Duffing Oscillator” are available on this website.
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qualitative reasoning rather than formal equations. Take, for 
example, a voltage-controlled dc motor, with input applied 
voltage u  and output motor shaft angle y. A known load 
disturbance torque L also acts on the shaft. Well-known 
physical laws demonstrate that the applied voltage to the 
rotor circuit is split between the internal resistance in the 
rotor winding and the back electromotive force resulting 
from the motion of the winding in the magnetic field. The 
latter is proportional to the rotational speed ~ . The torque 
T from the magnetic field is proportional to the current in 
the winding, and the resulting torque on the shaft is T-L 
minus the frictional torque (which is typically proportional 
to ~). The resulting torque will (by Newton’s law of motion) 
be proportional to the rotor acceleration ~o . This means that 
the voltage u  will be a linear combination of ,~ ~o , and L. 
Since ~  is the derivative of y, it follows that

 ,x
y
~

= ; E  (15a)

 .x x u L
0
0

1 0 0
1a b

= + +o ; ; ;E E E  (15b)

This is, of course, the same model that would have been 
obtained with careful white modeling, with the difference 
that a  and b  would have been expressed in physical 
 constants of the motor (that is, internal resistance, friction 
coefficient, rotor moment of inertia, and magnetic field 
characteristics). That is not really essential, since the only 
physical constants that can be retrieved from input–output 
data are the combined expressions of a  and b .

Another useful form of semiphysical modeling is find-
ing nonlinear transformations of the measured data, so that the 
transformed data have a better chance to describe the 
system in a linear relationship. To give a trivial example, 
consider a process where water is heated by an immersion 
heater. The input is the voltage applied to the heater, and 
the output is the temperature of the water. Any attempt to 
build a linear model from voltage to temperature will fail. 

It is clear that the power of the heater is the driving stimu-
lus for the temperature. Thus, let the squared voltage be the 
input to a linear model generating water temperature at the 
output. Despite the trivial nature of this example, it is good 
to note as a template for data preprocessing. Many identifi-
cation attempts have failed because of the lack of adequate 
semiphysical modeling. See [6, ex. 5.1 and pp. 533–536] for 
more examples.

Nonlinear recalibration of the time scale is in the family 
of nonlinear transformations of measured data. Many sys-
tems have a natural time maker. This could be a rota-
tional system, where the angle of the rotation is a natural 
time unit, or a f low system, where the accumulated 
amount of transported substance provides a natural time 
flow (see the case in the section “Example 2: Smoke-Gray 
Model (Semiphysical Model): An Industrial Buffer Flow 
System” and Figure 5).

The most common and important application of semi-
physical modeling is to concatenate known submodels. A 
simple example is the dc case cited previously, which is a 
concatenation of a dc motor model from u  to ~  and an in -
tegrator. Having libraries of basic element models from 
which more complex models are built using simple physics 
and logic is now the most common modeling approach in 
many application areas. Modeling languages like Modelica 
are based on this principle, and extensive Modelica librar-
ies exist for most applications.

User Guideline
It is always important to consider the physics of the system 
to be identified, even if a complete off-white model is not 
constructed. Such semiphysical modeling can provide 
insights into important nonlinear transformations that 
can be essential components in the model.

Steel-Gray Models: Linearization-Based Models

Linear Models of Nonlinear Systems in Identification
It is well known that a nonlinear model like (14) can be 
linearized around a stationary point x*  [see “Linear 
Models of Nonlinear Systems” and (S32)]. Using linearized 
models may be the most common way to address nonlin-
ear systems in practice. Identifying a linearized model is 
normally not done by going through the linearizing dif-
ferentiations (since the nonlinear models are typically 
unknown). Instead, one simply postulates a linear model 
structure and applies normal linear system identification. 
If the excitation keeps the system in the close vicinity of 
the stationary point x*, the identified model will be close to 
the stationary point linearization. In general, the identi-
fied model will be a stochastic linearization, or BLA (S33), 
reflecting the input and output signal spectra of the iden-
tification data. In any case, the usefulness of the model 
may be limited, since it describes only the system in the 
vicinity of x*.

FIGURE 5 A schematic picture of a buffer vessel with inflow and 
outflow.
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Local Linear Models
An obvious remedy to the local nature of the linearized 
model is to work with several linearized models and con-
nect them in some way to address the global behavior of 
the system. The many ways to do this have led to an exten-
sive literature on local linear models [15]. Several other 
terms are used as well.

The basic idea is to divide the state space into regions 
within which a linear model is used to describe the 
system. We use a collection of measurable regime points 

, , ,P p d1 1i f= =" , that define the centers of the regions. 
Each point is like a stationary point x*  of a state-space 
model but does not need not to be formally defined. Each of 
these points is associated with a linear model, generically 
characterized by its output prediction ( | , )y t Zi

t 1i -t . The 
type of linear model is arbitrary, and some examples are 
given subsequently. When the system is at the regime point 

,pi  there is a clear linear model for predicting the output. At 
other points p(t), the prediction is interpolated from the 
values in P by

 ( | , ) ( ( ), ) ( | , ),y t Z p t p y t Zt

i

d

i i
t1

1

1i t i=-

=

-t t/  (16)

where t  is a weighting or validity function that describes the 
validity of model i at another value p of the regime variable. 
This is the archetype of a local linear model. This is explic-
itly of the form of (9). In terms of (8), the nonlinearity hides 
in the weights t  and the shifts between linear models that 
they represent. For a concrete case, the following items 
must be specified: 

 » What are the measurable regime points? 
 » How is the collection P determined? 
 » What type of linear models ( | , , )y t Zi

t 1i -  are used? 
 » How does one choose the validity function ( , )?p pit

Note that regime points are often naturally defined by 
the application and may typically be part of the state vector. 
They correspond to operating conditions that are known to 
provide well-defined behavior. Typical cases could be fluid 
levels in flow systems applications and speed and altitude 
in flight applications. The regime points can also be deter-
mined from data, as in a tree-based construction in the 
local linear model tree (LOLIMOT) [15]. Furthermore, there 
is a wide range of linear model types available. The sim-
plest one is the ARX model, which predicts the output as a 
linear combination of past inputs and outputs [for instance, 

( | ) ( ) ( )y t a y t b u t1 11 1i =- - + -t  in a first-order case]. Asso-
ciating the rth regime point model with parameters using 
superscript (r), the complete model (16) is

 ( | , ) ( ( ), ) [ ( ) ( )],y t Z p t p b u t a y t1 1( ) ( )t

r

d

r
r r1

1
1 1i t= - - --

=

t /  (17)

which is a linear regression with parameters [ , ,a b( ) ( )r r
1 1i =  

, , ].r d1 f=  There is vast literature on multiple and local 

linear models [15], [116], [117], where the latter use fuzzy 
sets for the model interpolations.

Linear Parameter-Varying Models
A related concept is that of linear parameter-varying (LPV) 
models. In state-space form, they can be described as

 ( ) ( ( )) ( ) ( ( )) ( ),x t A p t x t B p t u t1+ = +  (18a)

 ( ) ( ( )) ( ),y t C p t x t=  (18b)

correspondingly, in continuous time. Disturbances can also 
be added. The function p(t) is a measured regime variable. 
Formally, (18) is not a nonlinear system but rather a linear, 
time-varying system. However, if p(t) in some way depends 
on the state x, this can be a handy way of addressing a non-
linear system. There is an extensive literature on dealing 
with and identifying LPV models [118]–[120]. If p(t) assumes 
only a finite number of different values, (18) is really a col-
lection of local linear models, and several identification 
schemes can be based on the ideas in the previous section 
and/or on handling time-varying linear systems. An impor-
tant difficulty for LPV systems is keeping track of the state-
space basis when p(t) is changing [121].

User Guideline
In summary, using linearization is a standard tool to handle 
nonlinear physical systems. Many possibilities exist to 
merge linearized pieces into a good nonlinear model.

Slate-Gray Models: Block-Oriented Models
A common and useful family of models is obtained by the 
concatenation blocks of two types: linear dynamic models 

( )y G s u=  and static nonlinearities ( ) ( ( ))y t f z t= . Many 
such combinations have direct physical interpretations 
(see Figure 6), as with the Wiener model [a linear model 
followed by a static nonlinearity ( ( ) )y f G s u= ], which des -
cribes a linear plant with a nonlinear output sensor, and 
the Hammerstein model [a static nonlinearity followed by 
a linear system ( ) ( )y G s f u= ], which depicts a linear model 
controlled via a nonlinear saturating actuator.

Such block-oriented models have a flavor of the smoke-
gray, semiphysical models, constructed by simple engineer-
ing insights of a qualitative nature. However, beyond that, 
block-oriented models possess interesting approximation 
properties. It is known, for example, [122], that the parallel 
Wiener model in Figure 6, with sufficiently many linear 
branches, can approximate fading memory systems u y"  
arbitrarily well. The convergence rate can be improved by 
switching to parallel Wiener–Hammerstein models [123]. 
Therefore, block-oriented models can be used for many 
nonlinear systems in appropriate configurations without 
any physical interpretation and achieve good modeling 
results. This is in the spirit of black-box models (see the next 
section), which motivates giving block-oriented models a 
darker shade of gray than smoke gray.
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The block-oriented models clearly fit the general struc-
ture (8), with linear blocks in combination with static non-
linearities. To find the predictor (9), it is necessary to follow 
the signal flow through the linear and nonlinear parts. If 
there is process noise, a correct calculation of the predictor 
may require the use of advanced statistical techniques, 
namely, particle filters [55] (see also “Identifying Nonlinear 
Dynamical Systems in the Presence of Process Noise”).

The estimation of a block-oriented model follows the gen-
eral minimization of fit between the model’s predicted output 
and measured output. However, before that can be done, con-
siderable work may be required to determine the structure 
and initial parameter values. The concept of the BLA [see 
“Linear Models of Nonlinear Systems” and (S33)] is useful in 
this context. A comprehensive account of estimation tech-
niques for block-oriented models is given in [18] and [124].

The Hammerstein, Wiener, Hammerstein–Wiener, and 
Wiener–Hammerstein models (including the parallel struc-
tures) are all examples of nonlinear systems with external 
nonlinear dynamics (see “External or Internal Nonlinear 
Dynamics”). The nonlinear blocks are not captured in a 

dynamic feedback loop. The Wiener–Hammerstein feed-
back and the linear fractional representation feedback sys-
tems are both nonlinear systems with internal nonlinear 
dynamics because the nonlinear block N is part of a 
dynamic closed loop. Addressing multiple branches [125] 
and feedback structures [126] is extremely challenging.

User Guideline
In summary, block-oriented models form a powerful and 
intuitive tool to handle nonlinear systems. It is often useful 
to try a simple Wiener or Hammerstein model to see if non-
linear model components show significant improvements 
over linear models.

Black Models: Universal Approximators
So far, the starting point has been some kind of physical or 
behavioral aspect of the system when constructing the 
model. However, the model—the predictor—is a mapping 
from past input–output data to the space where the output 
lives. Lacking insights into the system, the focus is on 
building general flexible mappings that are universal and 
effective approximators of any reasonable predictor func-
tion, which is the idea behind black-(box) models.

A General Structure of the Mapping
A general way to generate very flexible mappings from 
Z  t 1–  to yt  is to construct a state x  from past input–output 
data, and let the predictor be a general function of this state

 ( ) ( ( ), ( ), ( ), ),x t f x t u t y t1 i+ =  (19a)

 ( | ) ( ( ), ),y t h x ti i=t  (19b)

where f  and/or h  are flexible, static, nonlinear functions 
of their arguments ( ), ( ),x t u t  and ( )y t . The possibilities 
of parameterizations to reach flexibility are discussed in 
general terms in “Static Nonlinearities.” The model (19) 
is of the general predictor form (9) and links to the struc-
ture (8) through the nonlinear maps f  and h . However, 
working with both f  and h  may be too general, so two 
cases will be discussed further.

Unknown State Transition Function:  
Nonlinear State-Space Models 
Perhaps the most natural general black-box approach is to 
postulate a general state-space model like (14) in discrete 
time (see also “Approximating a Continuous-Time Non-
linear State-Space Model With a Discrete-Time Model”):

 ( ) ( ( ), ( ), ),x t f x t u t1 i+ =  (20a)

 ( | ) ( ( ), ) .y t h x ti i=t  (20b)

If the state transition function f  is not known, it could be 
parameterized with ,i  that is, a flexible basis function 
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FIGURE 6 Examples of block-oriented models [189]. The linear 
blocks L capture all dynamics while the static nonlinear blocks N 
are used to model the nonlinearity. (a) The Hammerstein model 
can include the actuator nonlinearities, and (b) sensor nonlineari-
ties are covered by the Wiener model. The (c) parallel Hammer-
stein and (d) parallel Wiener models are also shown. (e) The 
combined effects are covered by the Hammerstein–Wiener model. 
(f) The Wiener–Hammerstein model describes a static nonlinear-
ity with an input- and output-matching network. (g) The parallel 
Hammerstein-Wiener model is shown. (h) The parallel Wiener–
Hammerstein structures are universal approximators for fading 
memory systems [122], [123]. (i) and (j) The feedback structures 
are a generalized representation of the Duffing oscillator studied 
in “Simulation Errors and Prediction Errors.” Note that, in the par-
allel structures, either a multiple-input, multiple-output nonlinear 
block (for example, in the parallel Wiener model) or a set of single-
input, single-output nonlinear blocks (as in the parallel Wiener–
Hammerstein model) can be used.
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expansion (S58). If a polynomial expansion (S60) is used, a 
PNLSS results, see also (S49). Similar expansions can be 
applied to h. In some cases, state x is measurable and h would 
be known. In such instances, [127] has applied a Gaussian pro-
cess model to f, which corresponds to a basis expansion in 
terms of eigenfunctions associated with the kernel (the cova-
riance function for the Gaussian process). See also Figure S26.

Nonlinear State-Space Models With Internal and 
External Dynamics
In “External or Internal Nonlinear Dynamics,” the charac-
ter of the nonlinear dynamics is discussed. This reflects 
whether the signals are fed around a nonlinearity or not. 
For a nonlinear state space, that property depends on the 
structure of f.

External Dynamics
If f  is lower triangular,

 ( ) ( , ( ), ),x t f x u t1 , ,j j1 1 i+ = f -  (21)

the states can be solved for explicitly from u  and i . It is 
then possible to write (20) in the form ( | ) ( ( ), ,y t h u t fi =t  

( )),u t nb-  which is a system with external nonlinear dynam-
ics (an NFIR model). Observe that in (21), the state ( )x t1  
does not depend upon other states, only ( ) .u t

Internal Dynamics
If the nonlinear state space cannot be written in the lower 
triangular form (21), it is, in general, not possible to solve 
the equations explicitly as a function of ( ),u t  and the func-
tion (20) becomes a system with internal nonlinear dynam-
ics. For these systems, there will be at least one state ( )x ti  
that is a nonlinear function of the past values of some of the 
other states.

Two other aspects that should be carefully consid-
ered are stability and the impact of the initial states.

Unstable Models
Nonlinear state-space models with internal dynamics can 
become unstable. Even if the physical system is stable, the 
approximate model can become unstable during the opti-
mization process. Using a modified formulation of the 
optimization problem, it is possible to address these unsta-
ble models [128]. The topic is also discussed in the section 
“Closed-Loop Data and Open-Loop Unstable Systems.”

Unknown Initial States
The response of a nonlinear state-space model depends 
strongly on the initial states x(0). These are usually 
unknown. The simplest solution is to omit the first part of 
the response. However, this is not affordable if the avail-
able record lengths are small compared to the transient 
time of the system. A better solution is to consider the ini-
tial states as additional parameters that are estimated 

simultaneously with the model parameters. For validation, 
it is important to realize that the initial state parameters 
need to be reestimated on the validation set to avoid the 
initial errors on the validation data dominating the errors.

Nonlinear Autoregressive Exogenous Models
A special case of (19) is the NARX model, where the state is 
constructed as a finite number of past inputs and outputs

( ) ( ) [ ( ), , ( ), ( ), ( )]x t t y t y t n u t u t n1 1a b
Tf f{= = - - - -

 (22a)

 ( | ) ( ( ), ) .y t h ti { i=t  (22b)

If h  is a linear function, this predictor is the familiar simple 
ARX structure for a linear model. But, as indicated, a general 
nonlinear static function h  can be expressed, for example, in 
the basis function expansion (S58). This structure is there-
fore known as a NARX model. If ,n 0a =  it is an NFIR. NARX 
models are a common class of nonlinear models and can 
describe a large domain of nonlinear systems [19], [129]. 
However, they are not as general as the nonlinear state-space 
models discussed before. For example, the nonlinear system 

( ) ( ) ,y t x t 2=  with ( ) ( ) ( )x t G q u t=  and ( ) ( )/ ( ),G q B q A q=  
cannot be represented in an input–output presentation 
(since the even-nonlinearity x2  cannot be inverted).

NARX models come in many different shapes, depend-
ing on how h  is parameterized (see “Static Nonlineari-
ties”). They include Volterra systems (S68), neural networks 
(S64), Gaussian processes (Figure S26) [130], [131], and cus-
tom-made, semiphysical models (S59). The case where the 
nonlinear function h  is written as a linear combination of 
known basis functions (S58), [11], [12] simplifies the identi-
fication problem to a linear regression. No iterative optimi-
zation procedure is needed [6], [30]. This is one reason why 
NARX models are quite popular and have been success-
fully applied to many industrial problems.

The number of terms M  of a NARX model with basis 
expansion (S58) may grow very fast with the memory 
length. Special model-pruning methods have been devel-
oped to keep only the most dominant terms in the model 
[19]. More advanced methods to make a local variable 
selection are discussed in [132] and [133]. In these repre-
sentations, a local model structure is determined in an 
arbitrary user-selected number of operating points, link-
ing this approach also to the local model structures that 
were discussed before in the class of steel-gray models. 
More information about black-box models can be found 
in “Static Nonlinearities” and [134]–[141].

User Guideline
Lacking physical insights, it may be necessary to use black-
box model structures. Many flexible and useful structures 
exist. However, they all have a strong curve-fitting flavor 
and may not recognize any intrinsic system features. They 
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basically reflect the properties of the estimation data, which 
must be chosen with great care.

Pit-Black Models: Nonparametric Smoothing
So far, models have been described in parametric and ana-
lytic terms. However, there is also another possibility. A 
pit-black model takes a geometrical view of the observed 
data set and the model construction. This approach is 
outside the scope of the current survey. However, a few 
basic facts can be provided to make the model discussion 
more complete.

The model is a relation between the predictor and the 
output (that is, between all past observations and the 
observed next output). Denote by ( )t{  an n-dimensional 
vector of relevant representation of past observations 
[that is, the state in (19)]. Then, the model is a relation

 ( ) ( ( )) ( ) .y t g t e t{= +  (23)

Here, g  acts like the predictor in the previous sections, so it 
corresponds to the general model structure (9). However, 
instead of focusing on estimating g  by some parameteriza-
tion, the whole data record can be viewed geometrically. 
Assume that ( )y t  is scalar. Then, each value pair ( ), ( )y t t{  is 
a point in an n 1+^ h-dimensional space Z . The data set is 
what might be thought of as a point cloud in this space. 
From that perspective, the modeling task is to find a sur-
face g  in Z  that describes this cloud as accurately as pos-
sible (see Figure 7).

This can be accomplished by various ways to smooth the 
raw data cloud. The basic assumption is that the model sur-
face is smooth, that is, ( )g 1{  and ( )g 2{  are close if 1{  and 2{  
are. This means that, if the observed points [ , ], , ,y i N1i i f{ =  
are available, an estimate ( )g *{t  can be constructed for any 
point *{  from observed yi  at neighboring points:

 ( ) (| |),g y w* *i
i

N

i
1

{ { {= -
=

t /  (24)

where the kernel w weights the value of the observation 
y by its distance to the sought regressor point .*{  Such 
smoothing kernels and nonparametric estimates ( )g *{t  
are discussed extensively in the statistical literature 
[142], [143]. In the control literature, they have been con-
sidered under the name just-in-time models, since the esti-
mate at point *{  is constructed from raw measured data 
only when it is requested.

A very simple and common approach is to let w be 
zero, except for the ( )t{  that is closest to *{  in the data-
base. That makes the estimate gt  equal to its nearest 
neighbor. Many other kernels have been suggested and 
studied. A commonly used one is a parabola bottom, 
turned upside down, known the Epanechikov kernel [144],

 ( ) ( ) ( ) ,w x C x x t1 *
2 { {= - = -+  (25)

where (·) [·, ]max 0=+ , and C is a normalization constant. 
Another approach to selecting the weights w in (24) is direct 
weight optimization [145]. Here, w is selected so that an upper 
bound of the error in the estimate ( ) ( )g g* *{ {-t  is mini-
mized using a quadratic programming technique.

Manifold Learning
An additional strategy for this geometrical construction of 
linear models is to find lower-dimensional manifolds in 
the cloud where there is a clear concentration of points. A 
linear model version of this idea can be used for illustra-
tion. In the data cloud setup, a model is a hyperplane in the 
data space. Many techniques are well known to fit the 
hyperplane to data, including principal component analy-
sis, for finding essential linear subspace descriptions. This 
means that the modeling can be concentrated to the selected 
subspace with lower-dimensional models. The nonlin-
ear counterpart is to find a lower-dimensional manifold 

( )r ZY =  and express a model in terms of the lower-dimen-
sional image of the variables {  under this mapping. Find-
ing such a manifold is a challenging problem that has been 
discussed in an extensive literature under manifold learning. 
See [146] (Isomap) and [147] (local linear embedding). 

User Guideline
In summary, pit-black models constructing model predic-
tors directly from data (not explicitly employing a parame-
terized model) are an interesting option for nonlinear 
identification that has not been used that much in the con-
trol community.

EXPERIMENT DESIGN
The experimental data are the fundamental information 
source for the data-driven modeling process. Practical con-
cerns (easy access to a nonparametric noise and nonlinear 
distortion analysis to guide the model selection process) 
and theoretical issues (maximizing the information in the 
data with respect to the selected model structure) should 
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FIGURE 7 The cloud of observed data (red dots) and the model as 
a surface in the data space.



DECEMBER 2019 « IEEE CONTROL SYSTEMS MAGAZINE 79

be addressed during the design of the experiment. This 
leads directly to the following guidelines:

 » Practical concerns: Use periodic excitations whenever 
possible because these give direct access to a nonpara-
metric distortion analysis without any user interac-
tion (see “Nonparametric Noise and Distortion Analysis 
Using Periodic Excitations”).

 » Theoretical concerns: Design the amplitude distribu-
tion and power spectrum of the excitation to maxi-
mize the information with respect to the parameters 
that must be estimated in the selected model struc-
ture. Note that this is still no guarantee that the full 
domain of interest is covered (see, for example, 
Figure 8).

 » Warning: Because structural model errors often domi-
nate the noise-induced errors, it is necessary to select 
excitation signals that reflect the later use of the 
model to keep the structural model errors small in the 
domain of interest (see “Impact of Structural Model 
Errors”).

Design of Periodic Excitation Signals
A simple periodic excitation is ( ) ( ) .cosu t U f t21 0r=  The 
period of this signal is /T f1 0= . In most experiments, u(t) 
is generated and processed in discrete time t lTs= , with 

, ,l N1 f=  and /T f1s s=  the inverse sample frequency. The 
sample frequency and period length are matched to each 
other by choosing T NTs= , so that N samples fit exactly in 
one period of the signal. This relates also the frequency f0  
to the sample frequency fs  by /f f Ns0 = .

More general periodic signals are represented by their 
Fourier series as the sum of harmonically related sines 
and cosines, with frequencies at integer multiples of f0 :

 ( ) .cosu t U kf t2k k
k

F

0
1

{r= +
=

^ h/  (26)

Such a signal is called a multisine [148], and it has a period 
/T f1 0=  and a frequency resolution f0 = / / .f N T1s =  The 

amplitude spectrum ,Uk  phases ,k{  the number of excited 
frequencies F, and the frequency resolution f0  are user 
choices that define the periodic signal. These can be set by 
the following (see also “Nonparametric Noise and Distor-
tion Analysis Using Periodic Excitations”).

User Guidelines to Design a Multisine [30], [149], [150]
 » Spectral resolution /f f Ns0 = : This should be chosen high 
enough so that no sharp resonances are missed [151].

 » Period length N: This is set by / /T f N f1 s0= = . A higher-
frequency resolution requires a longer measure-
ment time.

 » Amplitude spectrum ,Uk  , , :k F1 f=  This should be chosen 
such that the frequency band of interest is covered.

 » Phases: Use random phases that are mutually inde-
pendent for k l! , and { }E e 0j k ={ . For example, select 

k{  from a uniform distribution on the interval 
[ , ) .0 2r  For this choice, it follows from the central 
limit theorem that u(t) is asymptotically Gaussian 
distributed for F " 3  [30].

 » Signal amplitude: This should be scaled such that it 
also covers the input amplitude range of interest.

 » Length of the experiment: At least one and prefer-
ably a few periods (for example, three) should 
be measured.
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FIGURE 8 The model validation on the forced Duffing oscillator. A 
nonlinear state-space model is identified (see Figure S22) using a 
part of the tail data described in “Extensive Case Study: The Forced 
Duffing Oscillator.” Next, the models are validated on another data 
set from the tail part (blue) and the sweeping part (red). The input 
signals in both data sets have almost the same maximum amplitude 
and power spectrum, as shown in Figure S19. (a) A plot of the state 
trajectory for both validation experiments. Observe that the domain 
covered by the sweeping signal is much larger than that of the tail 
signal. (b) The absolute values of the simulation error for both 
experiments are plotted as a function of the states. The errors on 
the states outside the domain covered by the tail signal are much 
larger. This is clearly visible in (c), where the absolute error is plot-
ted as a function of the normalized distance s C st

s
1-  with s the states 

and Cs the covariance matrix of the tail (blue) states. Observe that 
the red errors in (b) and (c) for the large values of the distance are 
much larger than the blue ones. This shows that a nonlinear model 
that is validated only on the blue data fails to explain the red data 
that cover a larger domain, illustrating the risk of extrapolation in 
nonlinear system identification. 
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 » Experimental repetition: If possible, repeat the experi-
ment with a new realization of the random-phase mul-
tisine, and average the results over the multiple 
realizations for improved estimates of the nonlinear 
distortion levels. The additional data sets are also valu-
able for model validation on different but very similar 
excitations and the generation of more reliable uncer-
tainty bounds in the presence of structural model 
errors (see also “Impact of Structural Model Errors”).

Note that, by optimizing the phases, it is possible to 
create randomized signals with a user-controlled ampli-
tude distribution and power spectrum [152]. For exam-
ple, signals with a uniform amplitude distribution that 
excite a specified frequency band can be generated.

Experiment Design: Most Informative Experiment
The goal of the experiment design can be formalized as a 
procedure to obtain the minimum required information 
needed to reach the modeling goals at the lowest experi-
mental cost (time, power consumption, and disturbance of 
the process). Originally, optimal experiment design was 
completely focused on maximizing the information con-
tent of the experiment [153], quantified by the Fisher infor-
mation matrix M [6], [7], [30] that is directly linked to the 
smallest possible covariance matrix of the parameter esti-
mates P M 1=i - . A scalar measure [for example, the deter-
minant ( )det M  or the trace tr(M)] is used to quantify the 
information in the experiment.

Although an optimal experiment design is not always 
created for each experiment, it is quite useful to complete 
the exercise on a number of typical problems to be studied 
because it provides intuitive insight into what makes a 
good experiment. On the basis of that experience, the qual-
ity of the experiments can be significantly boosted, even 
without explicitly designing an optimal input.

For models that are linear in the parameters, the infor-
mation matrix M does not depend on the actual parameter 
variables. This does not hold true if the output of the model 
is a nonlinear function of the parameters. In that case, 

( )M 0i  depends explicitly on the true but unknown param-
eters i 0. Often, the true parameters i 0 are replaced by an 
estimate it  obtained from an initial experiment.

The more structured a model is, the higher the gain that 
can be obtained by a specific optimally designed experi-
ment. The optimal experiment for a first-order linear 
system, described by its nonparametric impulse response 
representation ( ), , ,g k k n1 f= , is a white-noise excitation. 
If the same system is represented by its transfer function 
model ( ) ( ) ,G s s1 1 x= +^ h  the optimal experiment is a 
single sine excitation at a frequency /f 1 x=  [154].

Optimal Input Design for Linear Systems
The optimal input design for linear systems is now fully 
understood. In the basic problem, an excitation is designed 
that maximizes the determinant of the information matrix 

det(M). The optimal design minimizes the normalized 
variance of the estimated transfer function and is retrieved 
by solving a convex optimization problem. Since the prob-
lem depends only on the second-order properties of the 
input signal, its solution is given by an optimal power spec-
trum of the excitation signal [153]–[155]. The actual shape of 
the signal (the amplitude distribution) does not affect the 
information. However, practical constraints can have a 
strong impact on it, leading, for instance, to signals ranging 
from filtered white noise (having a Gaussian distribution) 
to binary excitations with a user-imposed power spectrum.

It became clear that this simple problem statement does 
not meet the full user needs. The optimal experiment 
design should be plant friendly (not all excitations are 
acceptable for the operators) [156]. Moreover, the uncer-
tainty on the estimated model should be tuned to result in 
a control design that meets the global goals of the project. 
These initiated a search of application-oriented input 
design [76], [157]–[160], resulting in a design that pushes the 
uncertainty in a direction where it does not hurt the quality 
of the application. The uncertainty ellipsoid of the model is 
matched to the contour plots of the application cost.

Optimal Input Design for Nonlinear Systems
While the optimal input design for linear systems is well 
understood, it is much harder to provide general guidance 
on the optimal input design for nonlinear systems. Although 
it is possible to numerically retrieve the Fisher information 
matrix for nonlinear systems, it is difficult to interpret these 
equations and translate them into an optimal input [161]. 
This is because of the dependence of the Fisher information 
matrix M on the higher-order moments of the input for non-
linear systems. This leads to the design of the multivariate 
probability distribution of the input for all moments and all 
lags [161], [162], which is a highly nonconvex problem.

In the case of a static nonlinear system linear in the 
parameters, the problem becomes convex again. The solu-
tion depends only on the amplitude distribution of the 
excitation and results in a signal concentrated around a dis-
crete set of excitation levels. The order of the samples does 
not influence the solution, so that the power spectrum is 
completely free.

The optimal input design for a nonparametric impulse 
response estimation (resulting in a white-noise excitation) 
can be generalized to nonlinear systems using the nonpara-
metric Volterra representation. It leads to a design that com-
bines the properties of the linear impulse response design 
(white-noise excitation) with that of optimal input design for 
static nonlinear systems (a discrete set of amplitude levels) 
[163]. This idea was also the starting point for a numerical 
design, leading to numerical procedures that perform a 
brute-force search for discrete-level signals [164], [165].

Solving the full optimal experiment design problem for 
nonlinear systems is tackled today using brute-force numeri-
cal optimization methods. The solutions can be generalized 



DECEMBER 2019 « IEEE CONTROL SYSTEMS MAGAZINE 81

and simplified using a proper normalization of the problem. 
The choice of the signal constraint (the power constraint at the 
input or output and the amplitude constraint at the input, 
output, or an intermediate signal) is the most important. A 
natural choice is to restrict the amplitude range at the input of 
the nonlinear subsystem [166]. In some problems, the interest 
is in the identification of a single parameter in a nonlinear 
model. Its variance can be reduced using a well-designed 
feedback law that can be applied in real time [167].

Closed-Loop Data and Open-Loop Unstable Systems
To have a reasonable experiment, it may be preferable or 
necessary to generate the input by output feedback. Using 
closed-loop data for identification is not a problem [168]. 
The model convergence properties (as the number of obser-
vations tend to infinity) for prediction error methods are 
essentially the same for linear and nonlinear systems and 
for open- and closed-loop data [169, Lemma 4.1]: the esti-
mated model will converge to that member in the model set 
that gives the smallest prediction error, under the condi-
tions present during the experiment. The latter qualifica-
tion may have unwanted effects, since the output may be 
partly explained via the regulator signals. A generic way to 
avoid that is to inject output-independent reference and 
excitation signals with the input. Closed-loop experiments 
should be specifically examined in this respect.

When an open-loop unstable system is identified, these 
issues become important. A common example is when 
the plant is an unstable aircraft [170]. The model is

 ( ) ( ( ), ( ), ),x t f x t u t1 i+ =  (27)

 ( ) ( ( )) .y t h x t=  (28)

If the true value of i  corresponds to an unstable model, 
this expression cannot be used. In that case, an observer 
must be employed to create a stable prediction error:

 ( ) ( ( ), ( ), ) ( , ) ( , ),x t f x t u t K t t1 i i f i+ = +t t  (29)

 ( | ) ( ( )),y t h x ti =t t  (30)

 ( , ) ( ) ( | ) .t y t y tf i i= - t  (31)

Finding the optimal predictor is highly nontrivial and, in 
most cases, does not correspond to an additive term .K  Two 
ad hoc solutions have been tested with reasonable success 
(for an aircraft application) in [170] and [171]: 1) compute K  
as an extended Kalman filter, and 2) parameterize ( , )K t i  as 
a constant matrix ,K  and let it be part of the i -vector. (This 
is known as the parameterized observer approach.)

User Guideline
In summary, an optimal input design based solely on the 
Fisher information matrix M  and its related variance ex -
pressions should be applied only if there are no dominant 

structural model errors present. For linear systems, optimal 
input design is a well-developed field, and the nature of the 
solutions is fully understood, even if numerical procedures 
are needed to calculate the optimal input. Optimal input 
design is closely linked to the intended application. For 
nonlinear systems, numerical procedures are available for 
some nonlinear model structures. A full understanding of 
the important aspects of a good solution is still lacking.

MODEL VALIDATION
Model validation addresses the question “Does the 
model solve our problem?” and/or “Is it in conflict with 
either the data or prior knowledge?” A number of linear 
and nonlinear validation tools are discussed next.

Cross Validation
One of the most common and pragmatic tools for model 
validation is cross validation, which checks how well the 
model is able to reproduce the behavior of new data 
sets—validation data—that were not used to estimate the 
model. One way is to use the input of the validation data 
to produce a simulated model output ( )y tst  and compare 
how well this model output reproduces the output ( )y t  of 
the validation data. The comparison could simply be a 
subjective, ocular inspection of the plots to see if essential 
aspects of the system for the intended application are 
adequately reproduced.

The comparison can also be done by computing numer-
ical measures of the fit between the two signals. These 
are naturally based on the distance between ( )y t  and 

( ).y tst  A common numerical measure is the fit, used in 
the System Identification Toolbox [172].

 
( ) ( ( ))
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 (32)

The fit determines the percentage of how much of the vari-
ation of the output is correctly reproduced by the model.

For models that contain integration or are used for con-
trol design, it may be more revealing to evaluate the model’s 
prediction capability. The k-step-ahead predicted output for 
validation data ( | )y t t kp -t  is computed as described in (S20). 
Loosely, it means that ( | )y t t kp -t  is the model’s prediction of 
y(t) based on all relevant past inputs and all outputs up to 
time .t k–  Compare this result with (S20). The prediction can 
then be compared with the measured validation output by 
inspecting the plots or by the fit criterion (32). In addition to 
these simple simulation and prediction applications, cross 
validation can be used in several sophisticated ways, which 
are discussed in the statistics literature [173].

Nonparametric Validation for Periodic Excitations
Using periodic excitations gives access to a nonparametric 
noise and distortion analysis (see, for example, Figure 4 
in “Detection, Separation, and Characterization of the 
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Nonlinear Distortions and Disturbing Noise”). Adding the 
residues ( ) ( )y t y t- t  to such a figure shows how well the 
model captured the nonlinear contributions (how far the 
validation errors are below the nonlinear distortion levels) 
and if the errors drop to the noise floor.

Actions
 » The error level is above the noise floor: Structural model 
errors are detected. The user should decide if these 
errors are acceptable or not.

 » Nonparametric analysis of the errors: If the special 
periodic excitations noted in “Nonparametric Noise 
and Distortion Analysis Using Periodic Excitations” 
are used in the validation test, it is possible to deter-
mine the nature of the dominant errors (even or odd 
nonlinearities are missed in the model), giving indi-
cations of how the model can be improved.

Linear Validation Tools
Linear validation tools check the whiteness of the residuals 
(autocorrelation test) and verify if no linear relations between 
the input and the residuals are left (cross correlation). These 
are both second-order moment tests that reveal only a subset 
of the possible problems (the higher-order moments are not 
tested). However, it still provides valuable information.

Actions
 » Cross correlation detected: A more flexible linear part 
of the model can reduce the linear dependency at 
a low cost.

 » Autocorrelation detected: The residuals are still col-
ored. Using a linear noise model, it is possible to 
reduce the prediction errors. This can improve the 
efficiency of the estimation procedure.

Nonlinear Validation

Higher-Order Moment Tests
A full validation of a nonlinear model requires the higher-
order moments to also be white: no higher-order cross 
correlations should exist. In practice, these tests are often 
not made for the following reasons:

1) Moments of order n  are  ( )n 1– -dimensional objects. 
Visually evaluating these at all lags becomes cumber-
some and time consuming.

2) The required experiment length to estimate the 
higher-order moments with a given precision grows 
extremely fast with the order n , making such a test 
often unfeasible. For some dedicated problems, 
higher-order tests are proposed to detect the pres-
ence of nonlinearities [174].

Change the Nature of the Input
The behavior of a nonlinear system strongly depends on 
the nature of the excitation signal, even if the maximum 

input amplitude and power spectrum remain the same. For 
that reason, it is a strong requirement for a model to cover 
a wide range of input signals, which can be tested during 
the validation. In Figure S21, it is shown on the Duffing 
oscillator that the nonlinear NARX model that was tuned 
for the tail data failed to give a good simulation on the 
sweep data.

Action
Verify the quality of the model on all relevant classes of 
excitation signals.

Checking the Domain
Changing the nature of the excitation also changes the 
domain on which the internal nonlinear function (8) pres-
ent in each nonlinear model is evaluated. The best guaran-
tee to obtain a valid model is by ensuring that the complete 
domain of interest is covered during the estimation and 
validation. Although this is not always possible, it might be 
helpful to check the covered domain by plotting the phase 
plane trajectory for the estimated model for different exci-
tations. This is illustrated on the Duffing oscillator exam-
ple in Figures 8 and S23.

Check the Uncertainty Bounds
As explained in the discussion of uncertainty bounds in 
“Impact of Structural Model Errors” and illustrated in 
Figure S5, it is very hard to provide reliable uncertainty 
bounds in the presence of structural model errors that dom-
inate the noise disturbances. The actual observed variabil-
ity of the model is larger than the theoretically expected 
one. For that reason, it is indispensable to verify the validity 
of the theoretically calculated uncertainty bounds.

Action
Estimate the selected model structure with fixed complex-
ity for different realizations of the excitation, and verify if 
the actual observed standard deviation agrees with the 
theoretical one.

User Guidelines
 » Validating a model is a rather subjective and prag-
matic problem. Check on a rich validation data set 
that covers the intended use of the model if the esti-
mated model meets the user expectations.

 » The final modeling goal should be kept in mind 
during the model validation. In many problems, struc-
tural model errors below a user- defined level can be 
tolerated, even if these errors are clearly detected in 
the model validation step.

 » Check the theoretically obtained uncertainty bounds. 
In the presence of structural model errors, these 
may underestimate the actual variability.

 » Make sure that the validation tests cover the full 
domain of interest. 
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EXAMPLES OF NONLINEAR SYSTEM 
IDENTIFICATION: FROM WHITE- TO  
BLACK-BOX MODELS
In the next series of examples, the use of different levels 
of physical insight into the nonlinear system identifica-
tion process is illustrated.

Example 1: Off-White Model—Tank System

The System
The cascaded tanks system is a benchmark system that 
was set up at the University of Uppsala, Sweden [175]. It is 
a fluid-level control system consisting of two tanks with 
free outlets fed by a pump, described in detail in Figure 9.

A Physical Model
When no overflow occurs, a model can be constructed 
based on Bernoulli’s principle and the conservation of mass:

 
( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ),
( ) ( ) ( ),

x t k x t k u t w t
x t k x t k x t w t
y t x t e t

1 1 1 4 1

2 2 1 3 2 2

2

=- + +

= - +

= +

o

o  

(33)

where ( )u t  is the input signal; ( )x t1  and ( )x t2  are the 
states of the system; ( ), ( ),w t w t1 2  and ( )te  are additive 
noise sources; and , ,k k1 4f  are constants depending on 
the system properties.

The relation between the water flowing from the upper 
tank to the lower tank and the water flowing from the lower 
tank into the reservoir are weakly nonlinear functions if 
there is no overflow (33), while in the presence of overflow, 
hard nonlinearities need to be identified. To model the over-
flow, ( )x t1  and ( )x t2  are constrained to their maximum 
value, and an additional term ( )w t3  is added to the second 
equation in (33) for ( )x t x max1 12  [176]. In [176], it is also pro-
posed to add additional terms ( )k x t5 1  to ( )x t1o  and ( )xk t6 2  to 

( )x t2o  to include the losses in the fluid flow. The losses are 
proportional to the velocity of the fluid squared and, there-
fore, proportional to the height of the fluid in each tank. 
Ultimately, this additional flexibility in the model is also 
used to accommodate other imperfections of the model, 
leading to an improvement that goes far below the expected 
impact of the loss terms in this system [176].

The Data
The input signals are ZOH-multisine signals that are 1024 
points long and excite the frequency range from 0 to 
0.0144 Hz, both for the estimation and test cases (see 
Figure 10). The lowest frequencies have a higher amplitude 
than the higher frequencies. The sample period Ts  is 4 s, and 
the period length is 4096 s. Two similar data sets were col-
lected, one for estimation and one for test (validation). The 
water level was measured using capacitive water-level sen-
sors, and the measured output signals had a signal-to-noise 
ratio (SNR) close to 40 dB. The water-level sensors are 

considered part of the system. They are not calibrated and 
can introduce an extra source of nonlinear behavior.

Note that the system was not in a steady state during the 
measurements. The system states have an unknown initial 

FIGURE 9 The cascaded tanks system [175]. The input signal con-
trols a water pump that delivers the water from a reservoir into the 
upper water tank, where it flows through a small opening into the 
lower tank and finally through a small opening from the lower tank 
back into the reservoir. When the amplitude of the input signal is 
too large, an overflow can occur in the upper tank, with a delay 
also in the lower tank. When the upper tank overflows, part of the 
water moves into the lower tank, and the rest flows directly into the 
reservoir. This effect is partly stochastic. Hence, it acts as an 
input-dependent process noise source. The overflow saturation 
nonlinear behavior of the lower tank is clearly visible in the output 
signals that saturate at level 10 (see Figure 10). The input is the 
pump voltage, and the output is the water level of the lower tank. 
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FIGURE 10 (a) Input and (b) output signals of the estimation data 
(blue) and test data (red) [175]. Observe the saturation in the 
output level (second tank) when the output ( ) 10.ty =
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value at the start of the measurements. This unknown state 
is the same for both the estimation and the test data records, 
and it also must be estimated.

Cost Function
The cost function used to match the model to the data is

 ( ( ) ( | )) ,V N y t y t1
mod

t

N

1

2i= -
=

t/  (34)

with ( | )y tmod i  a model output computed from (33) by 
ignoring the noises w and e.

Results
In [176], the parameters of the simple and extended physical 
model are directly estimated using well-selected numerical 

optimization procedures (see Figure 11). The fit (32) of the 
simulated output equals 95.77% on the estimation data and 
94.07% on the test data. For the extended model, which also 
includes the loss terms, the fit increased to 98.98% on the 
estimation data and 98.22% on the test data.

As a reference, a black-box Gaussian-process NARX 
model (see the “Nonlinear Autoregressive Exogenous 
Models” section) with 15 lags for the input and output was 
estimated, resulting in . %95 38fit =  for the simulation error 
and . %99 943fit =  for the one-step-ahead prediction error. 
This illustrates once more that it is much easier to obtain a 
small prediction error than a small simulation error.

Example 2: Smoke-Gray Model (Semiphysical 
Model)—An Industrial Buffer Flow System

The System
This is an example of the usefulness of recalibration of the 
time scale [177], as explained in the section “Smoke-Gray 
Models: Semiphysical Modeling” (see Figure 5). The process 
is a buffer vessel in a pulp factory, in Skutskär, Sweden. The 
pulp spends 48 h in the different stages of the process—
cooking, washing, and bleaching. It passes through several 
buffers to allow for a smooth, continuous treatment. It is 
important to know the residence time in the buffers for 
proper bookkeeping. The so-called l  number is a property 
of the pulp, measuring its lignin content. The buffer vessel is 
schematically depicted in Figure 5. The problem is to find a 
model for the dynamics of the buffer vessel that can be used 
to evaluate the residence time in the vessel and to, in a sense, 
time-mark the pulp as it passes through the several vessels.

The Data
In a particular buffer, the l -number of the outflow (output 
y) was measured, along with the input u, the l -number of 
the inflow (see Figure 12). The vessel level and flow were 
also measured (Figure 13).

First Model Attempt: Linear Model Based on Raw Data
The data were first detrended (by subtracting means from 
the inputs and outputs). A linear process model was 
then estimated with the input–output data u  and y, using 
the first half of the data. That gives the model ( )G s = 
( . /( )) .s e0 818 1 676 s480+ -  This model was simulated with the 
input, and the model output is compared with the mea-
sured output in Figure 14. This linear model is quite bad, as 
the simulated output differs quite substantially from the 
measured output.

Semiphysical Modeling Application
The physics behind the flow system must be considered. 
How does the flow and buffer level affect the buffer dynam-
ics? If there is no mixing in the vessel (plug flow), the vessel 
is just a pure time delay for the pulp flow. The delay time 
is given by the vessel volume/pulp flow (dimension time). 
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FIGURE 11 The cascaded tanks are modeled using the simple 
physical model (33) and the extended model (33) plus additional 
terms ( )k x t5 1  to ( )x t1o  and ( )k x t6 2  to ( )x t2o . Both models are vali-
dated on the test data [176]. The extended physical model (red) 
simulates the measured output (blue) much better . %( )98 98fit =  
than the simple model (33) (green) with . %94 07fit = . Observe that 
the saturations starting at t 150=  and t 750=  are well retrieved 
by the extended model.
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If there is perfect mixing in the tank, the system is a text-
book first-order system with a gain of one and a time con-
stant equal to the volume/flow. If volume and flow are 
changing, the system is nonlinear. The natural time vari-
able is really volume/flow, which has been measured. The 
observed data can be resampled according to this natural 
time variable.

Time Scale Recalibration
A nonlinear transformation was applied to the raw data by 
resampling it to the natural time variable. The code in 
Matlab is shown in listing 1. The resampled inputs and out-
puts are indicated in Figure 15.

Second Model Attempt: Linear Model Based  
on Resampled Data
Building a linear process model from the first half of the resa-
mpled and detrended inputs and outputs gives the model 

( ) ( . ( . )) ./G s s e0 8116 1 110 28 . s369 58= + -  Simulating that model 
and comparing with the measured output (for resampled 
data) gives a much better fit, as shown in Figure 16, analogous 
to Figure 14. The semiphysical model is linear in the resam-
pled data but nonlinear in the original raw data in Figures 12 
and 13. It gives a sufficiently good description of the buffer to 
allow proper time-marking of the pulp before and after.

Example 3: Steel-Gray Model (Linearization-Based 
Model)—High-Pressure Fuel Supply System
The team of Oliver Nelles (University of Siegen, Germany) 
developed a local linear modeling-based approach and 
used it to identify a high-pressure fuel supply (HPFS) 
system used in a common-rail direct fuel injection for diesel 
engines. See [15], [178], and [179] for a detailed description of 
the project and the general methodology. This section is 
fully based on these references.
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Listing 1: The Matlab code for resampling data

z = [y,u];
pf =  flow./level+sqrt(eps); %the eps-

term to keep time running %even 
when there is no flow.

t = 1:length(z);
5   newt =  interp1(cumsum(pf),t,[pf(1): 

sum(pf)]);
newz = interp1(t,z, newt);}



86 IEEE CONTROL SYSTEMS MAGAZINE » DECEMBER 2019

The System
The main components of an HPFS system are the high-
pressure rail, the high-pressure fuel pump, and the engine 
control unit (ECU). The pump is actuated by the crankshaft 
of the engine. A demand control valve in the pump controls 
the delivered volume per stroke. A pressure-relief valve is 
also included in the pump but should never open, if possible. 
Hence, the maximum pressure should be limited during the 
whole measurement process. The pump transports the fuel 
to the rail, which contains the pressure sensor. From there, it 
is injected into the combustion chambers. The system has 
three inputs and one output. The engine speed nmot  affects 
the number of strokes per minute of the pump and the 
engine’s fuel consumption. The fuel pump actuation MSV  
gives the fuel volume, which is transported with every 
stroke of the pump. It is applied by opening and closing the 
demand control valve accordingly during one stroke of the 
pump. The injection time tinj  is a variable calculated by the 

ECU, which sums the opening times of the single injectors 
and is, thus, related to the discharge of fuel from the rail.

During the measurement procedure, the injection time 
is not varied manually but set by the ECU. The permissible 
times depend on many factors, and a wrong choice could 
extinguish the combustion or even damage components. 
The engine load would have a major influence on the HPFS 
system via the injection time, but it is omitted to prevent 
the necessity of a vehicle test bench.

The Model
A nonlinear model constructed using the delayed variables

 ( ), , ( ), ( ), , ( )u t u t n y t y t n1b af f- - -  (35)

will be used to model the pressure ( )y t  of the rail as a 
function of three inputs [ , , ],u u u u1 2 3=  with ( ) ,u t n1 mot=  

( ) ,u t M2 SV=  and ( ) .u t t3 inj=  The local linear modeling 
method (16) is selected to represent and identify the non-
linear model [15] (see also the section “Steel-Gray Models: 
Linearization-Based Models”). These are specified by the 
choice of 1) the regime points, 2) the validity functions, 
and 3) the local linear models.

The regime points p(k) (also called z-variables in [178] and 
[179]), which are the entries of the validity functions 

( ( ), )w p t pi  in (16), are reduced to one time-delayed process, 
with inputs and output in this application: ( ) [ ( ),p k u k 11= -  

( ), ( ), ( )].u k u k y k1 1 12 3- - -  This choice considers that the 
actual operating point is defined by the level of the actual 
process inputs and output. The first and higher derivatives 
of the model inputs and output are assumed to be insig-
nificant to describe the operating point.

The validity functions ( ( ), )w p t pi  in this contribution are 
constructed using the hierarchical local model tree (HILO-
MOT) algorithm [180]. This incremental growing-tree con-
struction algorithm divides the input space with axes-oblique 
splits. The validity functions are generated by sigmoid split-
ting functions that are linked in a hierarchical, multiplicative 
way. See [180] for more details.

The procedure of the HILOMOT algorithm can be ex -
plained with the help of Figure 17. Starting with a global 
affine model, in each iteration, an additional local affine 
model is generated. The local model with the worst local 
error measure (the gray areas in Figure 17) is split into two 
submodels, such that the spatial resolution is adjusted in an 
adaptive way.

The local linear models ( | , )y t Zi
t 1i -t  are ARX models of 

order three: [ ( ), ( ), ( ), , ( ),Z u t u t u t u t1 2 3 1t 1
1 1 1 3f= - - - --

( ), ( ), ( ), ( ), ( )]u t u t y t y t y t2 3 1 2 33 3- - - - - .

The Data
Experiment Design: Two main aspects drive the experiment 
design. The experiments should be rich enough to obtain 
a good estimate of the local linear models. Even more 
important, the experiments should be designed such that 

First
Iteration

Second
Iteration

Third
Iteration

Fourth
Iteration

Initialization

Opt.Opt. Opt.

z2

z1 z1 z1

z1 z1 z1

z2 z2 z2

z1

z2 z2 z2

FIGURE 17 The first iterations of the hierarchical local model tree 
using a 2D z-input space [180].
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(blue) for detrended resampled data. The fit (32) for this model is 
60.4%. The first half of the data was used for estimation.
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the regime points cover the full space of interest [15], [178], 
[179]. The excitation signal should also comply with the con-
straints imposed by the process (that is, restrictions on the 
amplitude level and signal gradients). In [179], a procedure 
is described that searches for randomized steplike sequences 
that meet all of these constraints. The step time is set by the 
dominant time constant of the system, while the step 
sequences are designed to assure that the regime points are 
well distributed over the full operational space of the 
system. Detailed information, including the design of exci-
tations for multiple input systems, is given in [179].

The Data: The optimized experiment is called OptiMized 
Nonlinear InPUt Signal (OMNIPUS), and it will be compared 
to a second experiment, in which the excitation is a combi-
nation of ramp and chirp sequences, proposed in [181]. The 
measurement time for each signal is limited to 10 min. The 

sampling frequency f 100 Hzs =  results in a signal length 
of ,N 60 000=  samples.

Cost Function
The models are estimated by minimizing the squared 
errors (two) between the measured ( )y t  and modeled 
output ( | )y t it . No weighting is applied.

Results
Two local linear model networks (LMNs) are identified, 
with the first being estimated on the OMNIPUS data and 
the second on the ramp–chirp data. Both models are used 
to simulate the measured plant output on a test data set that 
consists of a new realization of a ramp–chirp and OMNIPUS 
excitation. The simulated output of both models on the test 
data are shown and discussed in Figure 18. The error for 
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excitation and the second on a ramp–chirp excitation. Both models are used to simulate the measured plant output on a test data 
set consisting of a new realization of a ramp–chirp and OMNIPUS excitation. The simulated output of the ramp–chirp (green) and 
the OMNIPUS hierarchical local model tree (red) model [178] on the test data are shown and compared with the measured output 
(blue) given as a reference. The test signal is designed such that the model behavior outside the training domain can be analyzed. 
Part 1 consists of ramp test sequences, part 2 of chirp test sequences, and part 3 of the OMNIPUS test sequence. The ramp–chirp 
model was trained on the ramp–chirp training data (similar to the signals in parts 1 and 2). Thus, the second half of the test signal 
(part 3) is outside the training domain of the ramp–chirp model. Alternately, a model was trained on the OMNIPUS training data 
(part 3). Thus, the first half of the test signal (parts 1 and 2) is outside the training domain. This effect can be seen in (b) and (c). 
In (a), good model fit for both models on the ramp–chirp sequence is obtained. In (b), a plant model mismatch of the model that 
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models on the OMNIPUS sequence is obtained.
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both local linear models is, in most cases, small [see Figure 18(a) 
and (b)]. However, there are also some significant mis-
matches [for example, Figure 18(c)]. The nonlinear behavior 
of the process is not well identified by the model identified 
on the ramp–chirp LMN. This major mismatch between 
process and model indicates a poor modeling, most likely 
because informative data in this area of operation are missing. 
Figure 18(b) shows a minor mismatch between the process 
and the OMNIPUS LMN.

Example 4: Slate-Gray Model  
(Block-Oriented Model)—Hydraulic Crane

The Process
When handling logs in tree harvesting, huge hydraulic cranes 
do all of the lifting and moving. The cranes can be thought of 
as industrial robots controlled by hydraulic pressure, and the 
controlled output is the position of the gripper at the top of 
the crane (see Figure 19). The crane shows oscillatory behav-
ior at the gripper, and, to design a good regulator, a model 
must be developed.

The Data
Some collected data from a particular crane are shown in 
Figure 20 (see [182]). The dynamics are clearly resonant.

A Linear Model
To find a model, a linear model of the crane is first built 
using the data. The first half of the data sequence in 
Figure 20 was used to estimate the model, and the second 
half was used to evaluate the fit between the model’s simu-
lated output and the measured output. After some experi-
mentation, the best model was obtained as a fifth-order 
linear state-space model. The comparison between model 
and measured outputs is shown in Figure 21. This best fit 
for a linear model (42%) is not very impressive and not good 
enough for control design.

Nonlinear Models: A Hammerstein Model
The lack of success with linear models may indicate that there 
are nonlinear effects in the system. A simple test to see if non-
linearities can improve the fit is to try a Hammerstein model 
(compare with Figure 6). A Hammerstein model with a fifth-
order linear system—preceded by a nonlinear (piecewise 
linear) static nonlinearity estimated from the first half of the 
data record—gave the model fit depicted in Figure 22. The 
estimated nonlinearity at the input is shown in Figure 23.

The improvement from 42 to 72% fit with the input non-
linearity is quite impressive. In retrospect, a semiphysical 
explanation can be given. Most of the resonance dynamics 
is due to the mechanical construction of the crane. The 
transformation from the hydraulic input pressure to actual 
forces on the mechanical parts of the crane is more compli-
cated, and, in that way, a model with an unknown nonlin-
ear static transformation of the input acting on a linear 

FIGURE 19 The tree-harvesting hydraulic crane.
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system becomes physically feasible. Note that the estimated 
input nonlinearity is a saturation.

Example 5(a): Black-Box Volterra Model of the Brain
In collaboration with the Department of Biomechanical 
Engineering at the Delft University of Technology, The 
Netherlands, a regularized Volterra model has been identi-
fied for a part of the human sensorimotor system, as 
explained in Figure 24. Detailed information on this exper-
iment is reported in [183] and [184].

The System
In the experiment, the relation between the wrist joint 
motion (input u) and the electroencephalography (EEG) 
signal measured at the sculp (output y) is modeled. The 
experiment setup used to obtain the EEG data evoked as a 
reaction to the wrist perturbation is depicted in Figure 24.

Volterra Models
Regularized Volterra models are a nonparametric representation 
of the system, using multidimensional impulse responses 
(S68) called Volterra kernels. Because the number of parame-
ters grows extremely fast with the degree of the kernel, an 
additional constraint will be imposed on it to express that the 
kernel should be smooth in some directions, and it decays 
exponentially to zero along these directions. This is illustrated 
in Figure 25 for a second-degree kernel. By using constrained 
models, it is still possible to identify the kernels from rela-
tively short data sets. This turned nonparametric Volterra 
modeling into a handy tool [56].

The choice of the maximum degree in (S68) is critical. 
Choosing it too high results in a fast-growing number of 
parameters to be estimated, and choosing it too low creates 
large structural model errors. A prior nonparametric anal-
ysis [79] showed that a linear model can capture only 10% 
[in terms of variance accounted for (VAF), corresponding to 
5% in terms of fit (32)] of the characteristics of the wrist 
joint–brain system, while more than 70% VAF (or 45% fit) is 
attributed to even nonlinear behavior [184]. On the basis of 
these results, a second-degree Volterra model [see also 
(S68)] will be estimated:

 ( | ) ( ),y t y t0
0

2

i = a

a=

t /  (36)

including a dc offset ( ),0a =  a linear kernel ( ),1a =  and 
a quadratic kernel ( ).2a =  The output ( )y tt  is calculated 
by direct evaluation of (S68).

The memory length of a Volterra model (S68) is set by 
the maximum length of the multidimensional kernels ,ga  
which is, in (S68),  .m 1–  In this example, m 33=  corre-
sponds to a memory length of approximately 130 ms at 
a sampling rate of 256 Hz (see [163] and [184] for more 
details). This choice resulted in the smallest structural 
model errors.

The Data
Experiment Design: The perturbation signals used were ran-
dom-phase multisines with a period of 1 s, resulting in a 
fundamental frequency .f 1 zH0 =  Only odd harmonics of 
the fundamental frequency were excited, namely 1, 3, 5, 7, 9, 
11, 13, 15, 19, and 23 Hz (odd random-phase multisines). 
Exciting the nonlinear system using different phase real-
izations of a multisine signal (that is, the same amplitude 
per frequency yet new random phases) allows for using 
different data for estimation and validation when model-
ing. Seven different multisine realizations were generated. 
After transient removal, 210 periods are available for each 
of the seven realizations. The aforementioned choices for 
the duration of the excitation resulted in a total duration of 
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FIGURE 22 A comparison between the best linear model’s simu-
lated output (red) and the measured output (blue) for a Hammer-
stein model, with a fit of 72%. The first half of the data was used 
for estimation.

FIGURE 23 A screenshot of the estimated piecewise linear input 
nonlinearity (10 break points allowed).



90 IEEE CONTROL SYSTEMS MAGAZINE » DECEMBER 2019

clear perturbation equal to 24.5 min per subject. Including 
the extra time intervals corresponding to the preparation of 
the equipment, preparation of the subject, and the pauses 
necessary for the safety and convenience of the subject, the 
total experiment time results to be more than 2 h!

Preprocessing of the Data: The EEG measured signals 
were high-pass filtered with a cutoff frequency of 1 Hz. The 
50-Hz disturbance from the mains was removed. In a 
second step, the data were averaged over the periods, 
resulting in an SNR of approximately 20 dB. For all of the 
subjects, the recorded output signals were shifted in time 
to impose a time delay of 20 ms, corresponding to the trav-
eling time of the signals from the wrist to the brain. As long 

as this delay is not too large, its choice is not critical because 
the Volterra kernels can also accommodate delays, at a cost 
of a growing memory length of the kernels. This results in 
a fast increase of the number of parameters to be estimated 
(the values of the Volterra kernels).

Cost Function
The model parameters are estimated by minimizing a 
regularized least-squares cost function [56] using a 
Bayesian perspective [185] consisting of the sum of the 
squared differences between the averaged measured 
output and the modeled output ( | )y t it  (36), plus a regu-
larization term [see also (S43)]:
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FIGURE 24 Modeling a sensorimotor system [183], [184]. (a) The sensorimotor system refers to all of the mechanisms in the human body that 
contribute to human motion. The brain, spinal cord, muscles, and joints between the bones constitute the basic parts of the sensorimotor 
system. In this experiment, the relation between the wrist joint motion and the electroencephalography (EEG) signals measured at a selected 
position on the skull is modeled. (b) The right forearm of the subject is strapped into an armrest and the right hand strapped to the handle, 
requiring no hand force to hold the handle. The imposed wrist motion includes circular motion of the wrist around a fixed reference (zero 
angle). The angle of the wrist constitutes the input to the system, while the EEG signal in the brain, as a reaction to this motion, is the system 
output. The measured output is contaminated with measurement noise, while the input signal is assumed to be exactly known.
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The parameters ,T T
0 1 2i i i i= 6 @  with ,Ri

n i!i i  are the 
parameters of the Volterra kernel of degree i. For ,m 33=  
n 331 =i  for the linear kernel ,g1  and ( )/n m m 1 2 5612 = + =i  
for a symmetric quadratic kernel g2  [28]. The regular-
ization matrix is block diagonal in which each block Pi  
accounts for the regularization of the Volterra kernel 
of degree i. Because of this choice and the selection of 
an odd excitation (only odd-frequency components are 
present in the multisine), the identification of the linear 
part is completely decoupled from the even nonlinear 
part (the zero- and second-degree kernels). The hyper-
parameters in the regularization matrices Pi  are tuned 
using a marginalized maximum likelihood estimator [185], 
which leads to a nonlinear numerical optimization in 

the hyperparameters (the model parameters [ ,  ,  ]T T
0 1 2i i i  

are eliminated in the marginalizing step). Once the hyper-
parameters are fixed, the remaining problem is linear in 
the model parameters [ ,  ,  ]T T

0 1 2i i i  and directly worked out 
by solving the linear least-squares problem (37).

Results
The results are shown in Figure 26. Only the second-
degree kernel is depicted. The linear part of the model 
captured approximately 10% of the power of the output 
signal y (formally defined as VAF in [184]), resulting in a 
5% fit, while more than 70% of the output power was 
attributed to even nonlinear behavior in the nonpara-
metric analysis [184], leading to a 45% fit. The Volterra 
series, combined with the regularization technique 
described previously, was used to model the nonlinear 
system behavior.
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FIGURE 26 The estimation of the wrist angle in the electroencephalography system [163]. (a) The estimated second-order Volterra kernel. 
(b) A 2D frequency response function (FRF) obtained by applying the 2D Fourier transform to the 2D impulse response (Volterra kernel). 
(c) An xy view of the 2D FRF. From these results, it can be concluded that the system behaves as a high-pass system (the lower frequen-
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view, down to the low frequencies at the output. (Source: Birpoutsoukis [163]; used with permission.)
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The obtained models were able to achieve, on average, 
a 46% VAF, corresponding to a 26% fit on validation data 
sets across different participants. Since a 10% VAF of the 
output is due to noise, it indicates that approximately a 
44% VAF remains unmodeled. In this case, a fourth-order 
kernel would be needed to further improve the results. 
However, even with regularization, this remains an unat-
tractive problem. Richer and longer experiments would 
be needed, and that is not feasible. Although the second-
degree Volterra model still suffers from large structural 
model errors, it provides already useful insights into the 
wrist–brain system.

In [163], a new experiment was made using a richer exci-
tation, so that the risk for overfitting is further reduced. 
Instead of exciting only the odd frequencies, the even fre-
quencies were also excited. At that moment, the estimation 
of the linear part can no longer be decoupled from the non-
linear part of the model. With this rich data set, the VAF 
increases to almost 60% (or a 36% fit). However, the qualita-
tive conclusions remained the same.

Example 5(b): Nonlinear State-Space  
Black-Box Model of a Lithium-Ion Battery
Lithium-ion batteries are attracting significant and grow-
ing interest because their high energy and high power 
density render them an excellent option for energy stor-
age, particularly in hybrid and electric vehicles. In this 
section, a nonlinear state-space model is proposed for the 
operating points at the cusp of the linear and nonlinear 
regimes of the battery’s short-term electrical operation. 
This point is selected on the basis of a nonparametric dis-
tortion analysis as a function of the state of charge (SOC) 
and temperature. More detailed information is available 
in [186] for a fixed SOC (10%) and temperature model 
(25 °C). In [187], a nonlinear state-space model is devel-
oped that covers a varying temperature (from 5 to 40 °C) 
and SOC (2–10%). For higher SOC values, it follows from 
the nonparametric distortion analysis that a linear model 
can be used.

The System and the Experimental Setup
A high energy density lithium-ion polymer battery (EIG-
ePLB-C020, lithium nickel cobalt manganese) with a nominal 
voltage of 3.65 V, nominal capacity of 20 Ah, and ac imped-
ance (1 kHz) <3 mΩ (along with the PEC battery tester 
SBT0550, with 24 channels) is used for the data acquisition. 
The tests are performed on a preconditioned battery inside a 
temperature-controlled chamber at 25 °C [186], [187].

Nonlinear State-Space Model
A discrete-time nonlinear state-space model (S78) is selected 
to approximate the continuous-time system (see “Approxi-
mating a Continuous-Time Nonlinear State-Space Model 
With a Discrete-Time Model”). The nonlinear state space 
model in (19) is rewritten as

( ) ( ( ), ( )) ( ) ( ) ( ( ), ( )),

( ) ( ( ), ( )) ( ) ( ) ( ( ), ( )) .

x k F x k u k Ax k Bu k F x k u k

y k G x k u t Cx k Du k G x k u t

1+ = = + +

= = + +

u

u

 (38)

Although the split between the linear part and the non-
linear terms ( ( ), ( ))F x k u k  and ( ( ), ( ))G x k u t  in (38) is not 
unique, it is convenient to write the equations like that 
because the initialization procedure that will be presented 
further on provides initial estimates for , , ,A B C  and D that 
are obtained from the BLA of the nonlinear system.

The nonlinear terms ( ( ), ( ))F x k u k  and ( ( ), ( ))G x k u t  are 
multivariate nonlinear functions. These will be written as 
a linear combination of nonlinear basis functions. The 
whole palette of possibilities can be used, ranging from 
polynomials and hinge functions to Gaussian processes. 
In this example, a polynomial representation will be used.

The Data
An odd random-phase multisine signal is used as an input 
excitation signal. The band of excitation is kept between 1 
and 5 Hz because the dynamic range of interest of the bat-
tery for hybrid and electric vehicle applications is covered 
well within this band of excitation. It also takes into con-
sideration the limitations of the battery tester in terms of 
the sampling frequency. The excitation signal has a period 
of 5000 samples, and the sample frequency fs is set to 50 Hz, 
resulting in a frequency resolution of / . .f 50 5000 0 01 Hz0 = =  
The input is zero mean with a root-mean-square value of 
20 A. A detailed description of the whole measurement 
procedure (for example, charging and discharging) is 
given in [186].

Cost Function
The cost function is formulated in the frequency domain 
on the difference between ( )Y k  and ( , )Y k it , which are the 
discrete Fourier coefficients of the measured and mod-
eled output,

 ( )
| ( ) ( | )|

,V F W k
Y k Y k1

k B

N 2i
=

-

!

t
/  (39)

The selection of a model set for nonlinear identification is a major problem 

and offers a very rich range of possibilities.
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where B  is the set of frequencies of interest and ( )W k  a 
user-selected weighting. Because structural model errors 
dominate, the weighting ( )W k  is set to one (see “Impact 
of Structural Model Errors”).

Results
Nonparametric Distortion Analysis: At the start of the identi-
fication process, a nonlinear distortion analysis (see “Non-
parametric Noise and Distortion Analysis Using Periodic 
Excitations”) provides insight into the quality of the data 
and the possible gain that can be made with a nonlinear 
model. In this case, Figure 27 shows that the SNR of the 
data is very high (above 50 dB). The nonlinear distortions 
are very low for a high SOC, while they increase above 10% 
for a low SOC (10%). More results for other temperatures, 
SOCs, and amplitude ranges are available in [187]. On the 
basis of these results, it was decided to focus the nonlinear 
modeling effort on the low SOC range.

Parametric Nonlinear State-Space Model: The nonlinear 
state-space model is determined in two steps [188]. In the 
initialization step, the BLA (S30) is ascertained using one 
of the classical linear identification methods. The noise 
weighting W(k) in (39) during this step is set by the non-
linear distortions. These results are used to find initial 
values for the , , ,A B C  and D matrices. In the second step, 
the nonlinear terms are added to the model. These are 
linear in the parameters and initialized at zero. Eventu-
ally, a nonlinear numerical optimization is used to mini-
mize the cost function with respect to all of the parameters 

(see [186] for more details). In this and the next steps, 
 W k 1=^ h  because model errors dominate.

In this case, a polynomial nonlinear state-space model 
(38) is used with three internal states, and F is a multi-
variate polynomial of degree three. A major problem that 
often shows up in many applications is the appearance of 
instabilities. Even if the identified model remained stable 
on the test data, the model still frequently becomes unsta-
ble on the validation data. This is mainly due to the poly-
nomial basis functions that were used in this example. 
Outside the state-space domain covered by the test data, 
the polynomials have the tendency to grow very fast, 
resulting in model instabilities. The results are discussed 
in Figure 28. The nonlinear model outperforms the linear 
one by a factor of 10 on the validation data. However, the 
errors are still far above the noise floor.

For nonlinear state-space models that include output 
feedback, it is also possible to replace the states x(k) by a 
well-selected set of outputs y(k) as the input to the multi-
variate nonlinear functions, leading back to the full expres-
sion (19). Although such a representation can always be 
reduced to that in (38), it can be much more compact. A 
typical application is in vibrating mechanical systems, 
where the nonlinearities often depend on the displacement 
of the structure close to the nonlinearities, which can be 
selected to be the states of the nonlinear equations [24]. This 
choice also simplifies the initialization of the identification 
problem because, in these applications, the states are directly 
measurable outputs.
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FIGURE 27 (a) A nonlinear distortion analysis [186], [187] for a state of charge (SOC) of 90% and (b) an SOC of 10% at a temperature of 
25 °C. The signal-to-noise ratio of the measurements is very good. The output at the excited frequencies (green) is more than 60 dB 
above the noise floor (black). At a 90% SOC, the nonlinear distortions are at −50 dB (less than 1%). At a 10% SOC, the even nonlinear 
distortions (blue) are well above the odd distortions (red) at 10% (20 dB) of the output. (Source: Relan [187]; used with permission.) 

Any model will be an approximation of the truth, and it will be affected by the 

aspects of the system that are excited during the experiment.
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CONCLUSIONS
In this article, an extensive overview of the nonlinear system 
identification process is given. Nonlinear system identifica-
tion is a very rich topic with many different aspects. The selec-
tion of the topics and the organization of the discussion are 
strongly influenced by the authors’ experiences. The discus-
sion is aligned along the following topics: 1) whether a 

nonlinear modeling approach is needed or if it is still possible 
to address users’ questions using a linear design; 2) the lead 
actors of the system identification process: experiment design, 
model structure selection, choice of the cost function, and 
validation; and 3) an illustration of the wide variety of meth-
ods on a series of experiments. The sidebars provide more 
detailed technical background information on some issues.

The main conclusions are formulated as a set of guide-
lines and summaries. More detailed guidelines are pro-
vided throughout the article.

 » Linear or nonlinear system identification? The need for 
nonlinear modeling starts where linear modeling 
fails to solve the problems. Nonlinear system identi-
fication is more involved than linear because models 
require higher flexibility, and the presence of struc-
tural model errors is difficult to avoid. Tools are 
available to check the level of nonlinearity in a non-
parametric preprocessing step, which enables a 
well-informed decision to be made.

 » The main actors of the nonlinear system identification 
process

 • Experiment design
 • Use periodic excitations whenever possible.
 • Cover the domain of interest to keep structur-
al model errors under control. Covering the 
amplitude range and the frequency band of 
interest are necessary but not sufficient condi-
tions to guarantee that no internal extrapola-
tion will appear in later use of the model.

 • The experiment should be informative to keep 
the noise-induced uncertainty low (make the 
Fisher information matrix large).

 • Selection of a model structure: The choice of the model 
class is driven by: 1) the user preference (white-
box or black-box models), 2) the system behavior 
(open-loop or closed-loop nonlinear system), and 
3) models for simulation or prediction.

 • User choice: Decide how much physical insight 
will be injected. The palette provides an over-
view of models ranging from white- to black-
box modeling.

 • System behavior: Fading memory (with nonlinear 
open-loop models, the nonlinearity is not cap-
tured in a dynamic loop) is much easier to iden-
tify than nonlinear closed-loop models, where 
the nonlinearity is part of a dynamic closed loop. 
However, addressing complex behaviors like 
shifting resonances, changing damping, or even 
chaotic behavior requires nonlinear closed-loop 
model structures.

 • The model complexity and effort are strongly 
affected by the later use of the model (predic-
tion or simulation). The development of a good 
prediction model is less demanding than ob-
taining a good simulation model.
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FIGURE 28 The nonlinear simulation of a battery [186], [187]. (a) 
The simulation error of the best linear (green) and nonlinear (red) 
state-space models on a validation set. (b) A zoom of the results 
in (a). Observe that the error is strongly asymmetrically distrib-
uted, which is well in agreement with the presence of dominating 
even nonlinearities. This results in large spikes for the linear 
model that are completely removed by the nonlinear model. (c) 
The same results are shown in the frequency domain. Although 
the errors of the nonlinear state space model are 20 dB below 
those of the linear model, they are still far above the noise floor 
that was measured in the nonparametric noise analysis (see 
Figure 27). In this case, the structural model errors dominate. 
PNLSS: polynomial nonlinear state-space model.
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 • Choice of the cost function
 • Do structural model errors dominate?

 • Yes: The choice of the cost function is set by 
user criteria to shape the model errors.

 • No: The choice of the cost function is set by 
the noise properties.

 • Regularization is a very powerful tool that can 
help to keep the model complexity under control. 
It can be used in black-box models to either cre-
ate sparse models or to impose smooth solutions.

 • Validation: Does the model meet the user needs? 
Are the errors small enough in the domain of in-
terest? Is there information left in the data?

 • Test the model on new data and check the in-
ternal domain.

 • Check the linear validation criteria (a whiteness 
test of the output residuals and a cross-correlation 
test between the input and output residuals).

 • Nonlinear validation criteria (for example, higher-
order moment tests)

 » Uncertainty bounds: If structural model errors are 
present (the model does not pass the validation test, 
but it is good enough for the intended application), no 
reliable theoretical uncertainty bounds are available. 
The variability of the model should be obtained from 
repeated experiments with varying excitations.
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