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Preface 

Since the ascent of man, mankind has wanted to understand, predict, and control the environ-
ment. As scientists and engineers we want to do the same, but in a more systematic and quan-
tified approach. To that end, the scientific community makes use of mathematical models 
intensively because this allows for the simulation of the world on the computer. These mathe-
matical models are often obtained from first principles, making use of detailed knowledge 
about the physical laws that describe systems. The major advantage of such an approach is 
that it provides detailed physical models that give much insight into the problems studied, 
however, at the cost of a long and difficult modeling process. In such models there also re-
main, often, unknown parameters to be tuned such that a good match between the model and 
reality is obtained. At the other end of the possible modeling strategies we find the data-
driven approach, where all information is retrieved from experimental data. These models are 
called black box models, and it is usually less expensive and less time-consuming to get 
them. However, since all experimental data are disturbed by noise disturbances, it is impor-
tant to use well-designed methods to remove the impact of the noise on the final result as 
much as possible. The mere reliance on intuition can lead to erroneous results, even when a 
lot of data are used. As an example we note that linear regression methods underestimate the 
slope in the presence of noise on the regressor (the input of the modeled system). 

System identification theory was developed to address the need for good methods to es-
timate mathematical models from noisy data. Many excellent books are written, guiding the 
user to the best solution for his problem. However, for many engineers and scientists, the 
modeling task is only an intermediate step towards the solution to their problems, and they do 
not have enough time to learn the theory in full detail. With this book, the authors want to cir-
cumvent this problem. We guide the user to good solutions to built a mathematical model for 
a linear dynamic system by making a series of well-selected MATLAB exercises that high-
light many of the important steps in the identification process, point out possible pitfalls to 
the reader, and illustrate the powerful tools that are available. 

The exercises are kept as simple as possible to lower the technical barrier as much a 
possible. On the other hand, we selected the problems such that we can still guarantee that the 
lessons learned from the examples are generally valid. For each set of problems we start with 
a brief introduction to the specific aspects that will be highlighted. Next, we define for each 

Xlll 



xiv Preface 

exercise a series of intermediate steps to be followed by the user, and finally the results are 
graphically presented together with a discussion that emphasizes what should be observed in 
the results. In some sections we add general conclusions that can be learned from the exam-
ples. 

The book covers the whole identification process, from data to model. First we intro-
duce the basic ideas and methods of system identification in Chapter 1. Here least squares, 
weighted least squares, and maximum likelihood estimation are introduced. The impact of 
noise disturbances on the regressor variables is studied, and the reader learns how to select 
the model complexity. In Chapter 2 we instruct the user to deal with random and periodic sig-
nals in the time- and the frequency domain. In Chapter 3 we show how the impulse and fre-
quency response function (FRF) can be measured for linear systems, using random and peri-
odic excitation signals. We also show how to get a nonparametric estimate of the noise 
variance as a function of the frequency. This allows for uncertainty bounds to be generated to-
gether with the measured FRF. In Chapter 4, the reader will be able to learn how to estimate a 
parametric model to estimate plant and noise dynamics. Because many real-life systems suf-
fer from nonlinear distortions, we should also be able to characterize the level and the nature 
of these errors, so that the user can decide at the very beginning of the complex modeling pro-
cess if a linear modeling approach will do or a more involved nonlinear model is needed. The 
latter is more difficult to built and will be more expensive. In Chapters 5 and 6 we provide 
simple and more advanced methods to address these questions. The presence, the actual level, 
and the nature of nonlinear distortions are measured simultaneously with the FRF of the best 
linear approximation of the system for the selected class of excitation signals. Eventually, we 
show in Chapter 7 how parametric models can be obtained under these conditions. 

In many chapters, the authors took a frequency domain approach to the problem. This 
is partly due to the authors' background and experience, but also due to the fact that the state-
of-the-art nonparametric preprocessing methods are done in the frequency domain. For the 
identification of parametric linear dynamic models (Chapters 4 and 7), we took a more bal-
anced vision on the time and frequency domain methods, illustrating the similarities and dif-
ferences of both approaches. 

The exercises in this book can be used as illustrations in a bachelor degree course on 
Signal Processing (Chapter 2 and 3). Chapter 1 can also be used as an introduction to a basic 
course on the general concepts of system identification, while Chapter 4 is dedicated to the 
identification of linear dynamic systems. Chapters 6 and 7 can be used as a first introduction 
to understand the behavior of nonlinear systems and their impact on the linear system identi-
fication framework, with an emphasis on the practical user aspects. 

The MATLAB solutions of the exercises are available on the book support site, 
booksupport.wiley.com. With the help of these files the reader can verify her/his solutions 
and debug her/his own files. For some of the exercises, we used the commercially available 
MATLAB® toolboxes, on the one hand, the "System Identification Toolbox" developed by 
Lennart Ljung and distributed by the Mathworks, and on the other hand, the "Frequency 
Domain System Identification Toolbox" developed by the authors of this book together with 
Istvan Kollar and distributed by Gamax. 

Department of Electrical Engineering 
Vrije Universiteit Brussel 
BELGIUM 
Johan Schoukens 
Rik Pintelon 
Yves Rolain 
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Identification 

What you will learn: This chapter introduces the reader to the basic methods that are used in 
system identification. It shows what the user can expect from the identification framework to 
solve her/his modelling problems. For that purpose the following topics are addressed: 

- An estimator is a random variable that can be characterized by its mean value and co-
variance matrix (see Exercises l.a, 7). 

- The stochastic characteristics of an estimator depend on the number of raw data, the 
experiment design, the choice of the cost function,... (see Exercises l.b, 8, 9). 

- The estimates are asymptotically normally distributed when a growing amount of raw 
data is processed (see Exercise 2). 

- Noise disturbances on the regressor (e.g., the input data) can create a systematic error 
on the estimate, and the choice of the regressor variable has an impact on the final result. Spe-
cific methods are needed to deal with that problem (see Exercises 3,4, 12, 13). 

- The choice of the cost function influences the properties of the estimator (see Exer-
cises 5.a, 5.b, 8, 9). 

- The "optimal" choice of the cost function depends on the disturbing noise probability 
density function (see Exercise 9). 

- Least squares problems can be explicitly solved if the model is linear-in-the-parame-
ters (see Exercise 6). 

- The numerical properties of the algorithms are strongly affected by the choice of the 
model parameters (see Exercise 6). 

- The model complexity (number of unknown model parameters) should be carefully 
selected. Systematic tools are available to help the user to make this choice (see Exercise 10, 
11). 

1.1 INTRODUCTION 

The aim of system identification is to extract a mathematical model M(0) from a set of measure-
ments Z. Measurement data are disturbed by measurement errors and process noise, described as 
disturbing noise nz on the data: 

1 

1
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2 Chapter 1 ■ Identification 

Z = Z0 + nz. (1-1) 

Since the selected model class M does not, in general, include the true system S0, model errors ap-
pear: 

5 0 e M 0 andM„ = M + ME, (1-2) 

with ME the model errors. The goal of the identification process is to select M and to tune the model 
parameters 9 such that the "distance" between the model and the data becomes as small as possible. 
This distance is measured by the cost function that is minimized. The selection of these three items 
(data, model, cost function) sets the whole picture; all the rest are technicalities that do not affect the 
quality of the estimates. Of course this is an oversimplification. The numerical methods used to min-
imize the cost function, numerical conditioning problems, model parameterizations, and so on are 
all examples of very important choices that should be properly addressed in order to get reliable pa-
rameter estimates. Failing to make a proper selection can even drive the whole identification process 
to useless results. A good understanding of each of these steps is necessary to find out where a spe-
cific identification run is failing: Is it due to numerical problems, convergence problems, identifia-
bility problems, or a poor design of the experiment? 

In this chapter we will study the following issues: 

■ What is the impact of noise on the estimates (stochastic and systematic errors)? 
■ What are the important characteristics of the estimates? 
■ How to select the cost function? 
■ How does the choice of the cost function affect the results? 
■ How to select the complexity of the model? What is the impact on the estimates? 

1.2 ILLUSTRATION OF SOME IMPORTANT ASPECTS OF 
SYSTEM IDENTIFICATION 

In this book almost all the estimators that will be studied and used are based on the minimiza-
tion of a cost function. It is a measure for the quality of the model and it is calculated starting 
from the errors: the differences between the actual measurements and their modeled values. 
We will use mostly a least squares cost function that is the sum of the squared errors. 

In this section we present a simple example to illustrate some important aspects of sys-
tem identification. Specifically, the impact of the noise on the final estimates is illustrated. It 
will be shown that zero mean measurement noise can result in systematic errors on the esti-
mates (the mean of the parameter errors is not equal to zero!). Also the uncertainty is studied. 
Depending on the choice of the cost function, a larger or smaller noise sensitivity will be ob-
served. All these aspects are studied using a very simple example: the measurement of the 
value of a resistance starting from a series of voltage and current measurements. 

1.2.1 Least squares estimation: A basic approach to 
system identification 

Exercise l.a (Least squares estimation of the value of a resistor) Goal: Estimate 
the resistance value R0 starting from a series of repeated current and voltage measurements: 



Section 1.2 ■ Illustration of Some Important Aspects of System Identification 3 

«0(0 - R0i0(t), t = 1,2, ...,N (1-3) 

with w0, i0 the exact values of the voltage and the current. 
Generate an experiment with N = 10, 100, 1000, and 10,000 measurements. The cur-

rent i0 is uniformly distributed in [-/raax, /max] with z'max = 0.01 A (use the MATLAB rou-
tine r a n d (N, 1)), R0 = 1000. The current is measured without errors; the voltage is dis-
turbed by independent, zero mean, normally distributed noise nu with N(Q, a2 = 1). 

i(f) = i0(t) , t = 1,2,....N (1-4) 
u(t) = u0(t) + nu(t) 

To measure the distance between the model and the data, we select in this exercise a least 
1 N 

squares cost function: V(R) = T-,Y (u(t) -Ri(t))2. Notice that many other possible 
choices can be made. 

The least squares estimate R is defined as the minimizer of the cost function V(R): 

R = argminV(fl) (1-5) 
R 

■ Show that the minimizer of (1-5) is given by 

R = £ u(t)i(t)/^ i{t)2. (1-6) 

■ Generate 100 data sets with a length N = 10, 100, 1000, and 10,000, and calculate 
the estimated value R for each N. 

■ Plot the 100 estimates, together with the exact value for each N, and compare the re-
sults. 

Observations (see Figure 1-1) From the figure it is seen that the estimates are scattered 
around the exact value. The scattering decreases for an increasing number iV. It can be shown 
that under very general conditions, the standard deviation of the estimates decreases as 
\/JN. This is further elaborated in the next exercise. 

Exercise l.b (Analysis of the standard deviation) In this exercise, it is verified how 
the standard deviation varies as a function of N. Consider the resistance 

un(t) = R0i0(t),t = 1,2,....N. (1-7) 

with a constant current i0 - 0.01 A, and R0 = 1000 Q.. Generate 1000 experiments with 
N = 10, 100, 1000, and 10,000 measurements. The current is measured without errors, the 
voltage is disturbed by independent, zero mean Gaussian distributed noise nu ~ N(0, ol = 1) 
(use the MATLAB® routine r andn (N, 1)): 

i(t) = L 
, t = 1,2 N (1-8) 

u(f) = u0(t) + nu(t) 
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Figure 1-1 Estimated resistance values k(N) for N = 10, 100, 1000, and 10,000 for 100 
repeated experiments. Gray line: exact value; dots: estimated value. 

Calculate for the four values of N the standard deviation of R using the MATLAB® 
routine s t d (x) . Make a loglogplot of the standard deviation versus N. 
Compare it with the theoretical value of the standard deviation that is given in this 
simplified case (constant current) by 

a„ = 
J_o_u (1-9) 

Observations (see Figure 1-2) From the figure it is seen that the standard deviation de-
creases as 1/ JN . Collecting more data makes it possible to reduce the uncertainty. To get a 
reduction with a factor 10 in uncertainty, an increase of the measurement time with a factor 

Standard deviation R(N) 

Figure 1-2 Experimental (black circles) and theoretical (gray dots) standard deviation on R as 
a function of N. The error drops with VIO if the number of data N grows with a 
factor 10. 
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100 is needed. This shows that the measurement time grows quadratically with the required 
noise reduction, and hence it still pays off to spend enough time on a careful setup of the ex-
periment in order to reduce the level of the disturbing noise a„ on the raw data. 

Remark: For the general situation with a varying current, the expression for the stan-
dard deviation GR for a given current sequence i0(f) is 

aR = °" (1-10) 

Exercise 2 (Study of the asymptotic distribution of an estimate) The goal of this 
exercise is to show that the distribution of an estimate is asymptotic for N —> °° normally dis-
tributed, and this is independent of the distribution of the disturbing noise (within some regu-
larity conditions, like finite variance, and a restricted "correlation" length of the noise). 

Consider the previous exercise for N = 1, 2,4, 8, and 10 repetitions. Use a constant cur-
rent i0 = 0.01 A, measured without errors. For the voltage we consider two situations. In the 
first experiment, the voltage is disturbed by independent, zero mean Gaussian distributed 
noise #(0, o% = 0.22). In the second experiment the voltage noise is uniformly distributed in 
[-V3c„, V3c„]. 

■ Verify that the standard deviation of the uniformly distributed noise source also 
equals au. 

■ Calculate the least squares solution [see equation (1-6)] for N = 1, 2, 4, 8 and re-
peat this 105 times for both noise distributions. Plot the estimated pdf for the eight 
different situations. The pdf can be estimated by making a proper normalization of 
the histogram of the estimates (use the MATLAB routine h i s t (x)). The fraction 
of data in each bin should be divided by the width of the bin. 

■ Calculate the mean value and the standard deviation over all realizations (repeti-
tions) for each situation, and compare the results. 

□ 

Observations (see Figure 1-3) From the figure it is seen that the distribution of the esti-
mates depends on the distribution of the noise. For example, for N = 1, the pdf for the Gaus-
sian disturbed noise case is significantly different from that corresponding to the uniformly 
disturbed experiment. These differences disappear for a growing number of data per experi-
ment (N increases), and forN= 8 it is impossible to identify a different shape visually. The 
uniform distribution converges to the Gaussian distribution for growing values of N. This is a 
general valid result. 
In this case, the mean value and the variance is the same for both disturbing noise distribu-
tions, and this for each value of N. This is again a general result for models that are linear in 
the measurements (e.g., y0 = au0 is linear in uQ, while y0 = au\ is nonlinear in the mea-
surements). The covariance matrix of the estimates depends only on the second-order proper-
ties of the disturbing noise. This conclusion cannot be generalized to models that are 
nonlinear in the measurements. In the latter case, the estimates will still be Gaussian distrib-
uted, but the mean value and variance will also depend on the distribution of the disturbing 
noise. 
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Figure 1-3 Evolution of the pdf of R as a function of N, for 
N = 1 ,2,4,8. Black: Gaussian disturbing noise; Gray: 
uniform disturbing noise. 

1.2.2 Systematic errors in least squares estimation 

In the previous section it was shown that disturbing noise on the voltage resulted in noisy es-
timates of the resistor value, the estimated value of the resistor varies from one experiment to 
the other. We characterized this behavior by studying the standard deviation of the estimator. 
The mean value of these disturbances was zero: the estimator converged to the exact value for 
a growing number of experiments. The goal of this exercise is to show that this behavior of an 
estimator cannot be taken for granted. Compared with the Exercises l.a—2, we add in the next 
two exercises also disturbing noise on the current. The impact of the current noise will be 
completely different from that of the voltage noise, besides the variations from one experi-
ment to the other, a systematic error will arise. This is called a bias. 

Exercise 3 (Impact of noise on the regressor (input) measurements) Consider Ex-
ercise 2 for N = 100, and 10 repetitions. The current i0 is uniformly distributed between 
[-10, 10] mA. It is measured this time with white disturbing noise added to it: 
i(t) = i0 + n,{t), with a normal distribution N(0, a?). The voltage measurement is also dis-
turbed with normally distributed noise: N(0, <sl = 1). 

■ Repeat the simulations of the previous exercise once without and once with noise on 
the current. Vary the current noise standard deviation in 3 successive simulations: 
o, = 0, 0.5, 1 mA. 

Calculate the least squares solution [see eq. (1-6)] for N 
times for all situations and plot the pdf for each of them. 

100 and repeat this 105 

Calculate the mean value and the standard deviation over all realizations (repeti-
tions) for each situation, and compare the results. 

□ 
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Observations (see Figure 1-4) From the figure it is seen that the distribution of the esti-
mates depends strongly on the presence of the noise on the current measurement. Not only is 
the standard deviation affected, but also a visible bias grows with the variance of the current 
noise. This result is closely linked to the fact that the current is used as regressor or indepen-
dent variable that makes the voltage a dependent variable: We used a model where the current 
is the input, and the voltage is the output. Whenever the measurement of the input variable is 
disturbed by noise, bias problems will appear unless special designed methods are used. 
These will be studied in Section 1.6. 

pdf of the estimates 
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0.02 ^ < 7 < ^ 
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R 

Figure 1-4 Evolution of the pdf of R as a function of the noise level at the 
current. Black: Only noise on the voltage au = IV. Gray: 
Noise on the voltage o , = 1V and the current. 
Oj = 0,0.5, 1 raA (top, middle, bottom). 

Exercise 4 (Importance of the choice of the independent variable or input) In 
Exercise 3 it became clear that noise on the input or independent variable creates a bias. The 
importance of this choice is explicitly illustrated by repeating Exercise 2, where the disturb-
ing noise is only added to the voltage: i(i) = i0(t), u(i) - u0 + nu(t) with 
nu{i) ~ N(0, crj = 1). In this exercise the same data are processed two times: 

■ Process the data using the current as independent variable, corresponding to the 
function u(t) = Ri(t) and an estimate of R: 

R = £ u{t)i(f)/^ i(t)2. (1-11) 

Process the data using the voltage as independent variable, corresponding to 
i(t) = Gu(t), with G the conductance: 

G = £ u(t)i(k)/^ u(t)2 and£ = 1/G. (1-12) 

Repeat each experiment 105 times for N = 100, then calculate and plot the pdf of 
the estimated resistance for both cases. 

□ 
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Discussion (see Figure 1-5) Whenever the measurement of the variable that appears 
squared in the denominator of (1-11) or (1-12) is disturbed by noise, a bias will become visi-
ble. This shows that the signal with the highest SNR should be used as independent variable 
or input in order to reduce the systematic errors. The bias will be proportional to the inverse 
SNR (noise power/signal power). 

900 

pdf of the estimates 

950 1000 1050 1100 
R 

Figure 1-5 Study of the impact of the selection of the independent variable for the 
estimation of the resistance. Only the voltage is disturbed with noise. The 
pdf of the estimated resistance is shown for the independent variable 
being the current (black) or the voltage (gray). 

1.2.3 Weighted least squares: optimal combination of 
measurements of different quality 

The goal of this section is to combine measurements with different quality. A first possibility 
would be to throw away the poorest data, but even these poor data contain information. It is 
better to make an optimal combination of all measurements taking into account their individ-
ual quality. This will result in better estimates with a lower standard deviation. The price to be 
paid for this improvement is the need for additional knowledge about the behavior of the dis-
turbing noise. While the least squares (LS) estimator does not require information at all about 
the disturbing noise distribution, we have to know the standard deviation (or in general, the 
covariance matrix) of the disturbing noise in order to be able to use the improved weighted 
least squares (WLS) estimator, illustrated in this exercise. 

Exercise 5.a (combining measurements with a varying SNR: Weighted least 
squares estimation) Estimate the resistance value starting from a series of repeated current 
and voltage measurements: 

u0(t) = R0i0(t), t = 1,2 N (1-13) 

with w0, i0 the exact values of the voltage and the current. Two different voltmeters are used, 
resulting in two data sets, the first one with a low noise level, the second one with a high noise 
level. 

■ Generate an experiment with N measurements, i0 uniformly distributed in 
[-0.01, 0.01 ] A, R0 = 1000 O. The current is measured without errors, the voltage 
measured by the 2 voltmeters is disturbed by independent, zero mean, normally dis-
tributed noise nu with N(0,al= 1) for the first, good voltmeter and 
N(0, al = 16) for the second, bad one. 
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i(t) = i0(t) 
u(t) = u0{f) + nu(ty 

,t = 1,2, .N (1-14) 

Calculate the weighted least squares solution as the minimizer of 

N* 
(u(t) -Rijt))1 

I W(f) 
(1-15) 

using (1-16), given below: 

R 

u(f)i(t) 
i vv(f) 

™ ijtf 
-, = i w(t) 

(1-16) 

with w(t) the weighting of the fth measurement: w{t) = alx for the measurements 
of the first voltmeter and w(i) = ol2 for the measurements of the second one. 

■ Repeat this exercise 10 times for N = 100. Estimate the resistance also with the 
least squares method of Exercise l.a. Make an histogram of both results. 

Observations (see Figure 1-6) From the figure it is seen that the estimates are scattered 

0.03 
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R 

Figure 1-6 Estimated resistance values for N = 100, combining measurements of 
a good and a bad voltmeter. Black: pdf of the least squares; gray: pdf of 
the weighted least squares estimates. 

around the exact value. However, the standard deviation of the weighted least squares is 
smaller than that of the least squares estimate. It can be shown that the inverse of the covari-
ance matrix of the measurements is the optimal weighting for least squares methods. 

Exercise 5.b (Weighted least squares estimation: A study of the variance) In this 
exercise we verify by simulations the theoretical expressions that can be used to calculate the 
variance of a least squares estimator and a weighted least squares estimator. It is assumed that 
there is only noise on the voltage. The exact, measured current is used as regressor (input). 
The theoretical variance of the linear least squares estimator (no weighting applied) for the 
resistance estimate is given by 

- 2 
<JLS 

^tlcl(t)i\f) 
(1-17) 
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and the variance of the weighted least squares estimator using the variance on the output (the 
voltage) as weighting is 

aks = =7̂ V- (M8) 

■ Consider Exercise 5.a, calculate the theoretical value for the standard deviation, and 
compare this with the results obtained from the simulations. 

Observations A typical result of this exercise is: 
theoretical standard deviation LS, 35.6; experimental standard deviation, 35.8 
theoretical standard deviation WLS, 16.8; experimental standard deviation, 16.8 
Remark: The expressions (1-17) and (1-18) for the theoretical values of the variance are 

valid for a given input sequence. If the averaged behavior over all (random) inputs is needed, 
an additional expectation with respect to the input current should be calculated. 

1.2.4 Models that are linear-in-the-parameters 

The least squares estimates of the resistor that have been studied thus far were based on the 
minimization of the weighted cost function 

1 * (u(t)-Ri(t))^ 
N*-,= l w(t) 

with u, i the measured voltage (output) and current (input), respectively. 
In general, the difference between a measured output y{t) and a modeled output 
y(t) = g(t, u0, §) is minimized for a given input signal u0(t). All model parameters are 
grouped in 9 e R e. This can be formulated under a matrix notation for models that are lin-
ear-in-the-parameters. Define the signal vectors y, uQ, g e R , for example: 

yT = {y(l),...,y(A0} (1-20) 

and a positive weighting matrix W e R * . Then the weighted least squares cost function be-
comes 

VWLS = (y-g(u0,e))Wl(y-g(u0,e)V. (1-21) 

For a diagonal matrix W„ = w(t), Wy = 0 elsewhere, and equation (1-21) reduces to 

_ i * (y(t)-g(t,u0,e)y 

The estimate 0 is found as the minimizer of this cost function: 

9 = argminVVs(e). (1-23) 
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In general it is impossible to solve this minimization problem analytically. However, if the 
model is linear-in-the-parameters, then it is possible to formulate the solution explicitly, and 
it is also possible to calculate it in a stable numerical way with one instruction in MATLAB®. 
A model is called linear-in-the-parameters if the output is a linear combination of the model 
parameters: 

y = K(uu)Q with Ke R e . (1-24) 

Note that K can be a nonlinear function of the input. The explicit solution of the linear 
(weighted) least squares problem becomes 

6WLS = (KTWK)^KTWy and 9Ls = {KTK)^KTy. (1-25) 

Solutions that are numerically stable for expression (1-25) exclude the explicit calculation of 
the product K W K or K K, thus improving the numerical conditioning. This can be done 
with the MATLAB® solution given by 

eWLs = (WU2K)\(Wi,2y) with W = Wl2Wm 

9LS = K\y. (1-26) 

Exercise 6 (Least squares estimation of models that are linear in the 
parameters) Consider the model yO = t a n (u0*0 . 9 * p i / 2 ) , evaluated for the inputs 
uO = l i n s p a c e (0 ,1 ,N) . Use the model 

m = y" e,«k0 d-27) 
i = 0 

to describe these data. Note that this is a nonlinear model that is linear-in-the-parameters 9,. 

■ Generate a data set y = y0. Put JV = 100, and vary n = 1 to 20. 
■ Calculate the least squares solution (W = INxN) for the different values of n, using 

the stable MATLAB® solution (1-26) and the direct implementation (1-25). 
■ Compare the solutions, and calculate the condition number of K and KTK. 

This can be done with MATLAB instruction cond ( ) 
■ Compare the modeled output with the exact output and calculate the rms value of the 

error. 
□ 

Observations (see Figure 1-7) From this figure, it can be seen that the condition num-
ber of the numerical unstable method (1-25) grows two times faster on a logarithmic scale 
than that of the stable method (1-26). The number of digits required to make the equations is 
given by the exponent of the condition number. From order 10 or larger, more than 15 digits 
are needed which is more than the calculation precision of MATLAB . As a result, the ob-
tained models are no longer reliable, even if there was no disturbing noise in the experiment. 
This shows that during system identification procedures, it is always necessary to verify the 
numerical conditions of the calculations. The condition number of the stable numerical im-
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Figure 1-7 Identification of a polynomial model that is linear-in-the-parameters using a 
method that is numerical stable §WLS = K\y (gray lines) or numerical unstable 
6WLS = (K K) Ky (black lines). Left: Condition number as a function of the 
model order. Right: The rms error as a function of the model order. 

plementation grows slower, making it possible to solve higher order polynomial approxima-
tions. 

Remark: If very high order polynomial approximations are needed, other more robust 
polynomial representations can be applied using orthogonal polynomials. The nature of these 
polynomials will depend upon the applied input signal. 

1.2.5 Interpretation of the covariance matrix & Impact 
on experiment design 

In this section, a one- and a two-parameter model will be considered. It is shown that: (1) The 
variance of a set of parameters is not enough to make conclusions on the model uncertainty; 
the full covariance matrix is needed. (2) The covariance matrix (and the correlation between 
the parameters) is strongly influenced by the design of the experiment. 

Exercise 7 (Characterizing a 2-dimensional parameter estimate) Generate a set 
of measurements: 

y(t) - auQ{t) + n,. (1-28) 

In the first experiment, u0(t) is generated by l i n s p a c e ( - 3 , 3 , N), distributing N points 
equally between -3 and 3. In the second experiment, u0(t) is generated by 
l i n s p a c e (2, 5,N). 

■ Choose a = 0.1, N = 1000, and n,~N(0, a2
n) withal = 1-

■ Use as a model y = au0 + b, and estimate the parameters (a, b) using the method 
of Exercise 6. 

■ Repeat this experiment 10 times. 
■ Estimate the LS-parameters for both experiments, calculate the covariance matrix, 

and plot a(i) as a function of b(i). 
■ Plot also the estimated lines for the first 50 experiments. 
Observations (Figure 1-8) In Figure 1-8 top, the parameters are plotted against each 

other. For the second experiment (u ~ uniform in [2,5]), the parameters are strongly corre-
lated, as can be seen from the linear relation between the estimated values a(i) and b(i). 
This is not so for the first experiment (u = [-3, 3]), the black cloud has its main axis paral-
lel to the horizontal and vertical axis which is the typical behavior of an uncorrelated vari-
able. This can also be seen in the covariance matrices: 

i \J 

S 10° 
to 
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Figure 1-8 Black: Experiment in time interval [-3,3] . Gray: Experiment in time interval 
[2, 5] . Top: Scatter plot (slope, offset). Middle: Modeled output. Bottom: Error on 
modeled output (left) and its standard deviation (right). 

-"expl 
3.2X10"3 0.85xl0"4 

0.85xl0"4 10.5X10"3 
, and Cexp2 = 1.31X10"2 -4.6xl0"2 

-4.6xl0~2 16.9xl0"2 
(1-29) 

or even better from the correlation matrices 

R expl 
1 0.02 

0.02 1 
and/?, exp2 

1 -0.97 
-0.97 1 

(1-30) 

The correlation in the first matrix is almost zero, while for the second experiment it is almost 
one, indicating that a strong linear relation between the offset and slope estimate exists. This 
means that both variables vary considerably (a large standard deviation), but they vary to-
gether (a large correlation) so that the effect on the modelled output is small in the input range 
that the experiment was made (see Figure 1-8, middle and bottom). In that range, the varia-
tions of a are mostly canceled by those of b. Outside this range, the standard deviation of 
the modeled output will be larger compared to that obtained with the first experiment because 
there the offset-slope compensation is no longer valid. This shows that the covariances play 
an important role in the model uncertainty. 
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1.2.6 What have your learned in Section 1.2? Further 
reading 

In this section we studied the properties of linear (weighted) least squares estimators. Be-
cause these models are linear-in-the-parameters, it is possible to calculate the weighted least 
squares solution explicitly. 

It is important to use numerical stable algorithms to calculate this explicit solution be-
cause otherwise the numerical noise can jeopardize the theoretical properties. The bias and 
covariance matrix of the estimates can be explicitly calculated provided that the covariance 
matrix of the disturbing noise is known. 

The parameter uncertainty is directly influenced by the choice of the input signals. Ex-
periment design methods provide systematic tools to get the best results within user specified 
constraints, for example for a given input power the determinant of the covariance matrix of 
the parameter estimates should be minimized. 

The selection of the weighting matrix in the weighted least squares method influences 
the covariance matrix of the parameters. The smallest covariance matrix is obtained by 
choosing the weighting matrix as the inverse of the disturbing noise covariance matrix. 

The parameter estimates are asymptotically Gaussian distributed under very weak con-
ditions of the disturbing noise. 

The books of Sorenson (1980) and van den Bos (2007) provide a general introduction 
to system identification, spending a lot of attention to weighted least squares estimation. Also 
the first chapter of the book of Pintelon and Schoukens (2001) introduces the reader to the 
general ideas of identification theory. More information on the numerical issues can be found 
in Golub and Van Loan (1996). Experiment design is covered in the books of Federov (1972), 
Goodwin and Payne (1977), and Zarrop (1979). Recently a new interest in this topic 
emerged, for example in the work of Hjalmarsson (2009), Gevers et al. (2009), and Bombois 
et al. (2006). The new design methods aim for an integrated design that optimizes the model 
for its final purpose, like, for example, the design of a controller. 

1.3 MAXIMUM LIKELIHOOD ESTIMATION FOR GAUSSIAN 
AND LAPLACE DISTRIBUTED NOISE 

In Sections 1.2 and 1.3, Gaussian distributed noise was added as disturbances to the measure-
ments. It is shown in theory that least squares estimators, where the cost function is a qua-
dratic function of the errors, perform optimal under these conditions. The smallest 
uncertainty on the estimators is found if a proper weighting is selected. This picture changes 
completely if the disturbing noise does not have a Gaussian distribution. In the identification 
theory it is shown that for each noise distribution, there corresponds an optimal choice of the 
cost function. A systematic approach to find these estimators is through the maximum likeli-
hood theory, which is not within scope of this book, but some of its results will be illustrated 
on the resistance example. The disturbances will be selected once to have a normal distribu-
tion, and once to have a Laplace distribution. The optimal cost functions corresponding to 
these distributions are a least squares and a least absolute value cost function. 

Exercise 8 (Dependence of the optimal cost function on the distribution of the 
disturbing noise) Consider a set of repeated measurements: 

w0(0 = R0i0(t), t = 1,2, ...,N (1-31) 
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with u0, i0 the exact values of the voltage and the current. Two different voltmeters are used, 
resulting in two data sets, the first one is disturbed by Gaussian (normal) distributed noise, the 
second one is disturbed with Laplace noise. 

Generate an experiment with N = 100 measurements, with i0 uniformly distributed in 
[0, ('max = 0.01 A] , and R0 = 1000 Q.. The current is measured without errors. The voltage 
measured with the first voltmeter is disturbed by independent, zero mean, normally distrib-
uted noise n„ - N(0, o% - 1), the second voltmeter is disturbed by Laplace distributed noise 
with zero mean, and a j = 1. 

i(t) = i0(t) 
u(t) = u0(t)+nu(t)' 

t = 1,2, ,N. (1-32) 

For the Gaussian noise the maximum likelihood solution reduces to a least squares (LS) esti-
mate as in (1-6); for the Laplace distribution the maximum likelihood estimator is found as 
the minimizer of 

VLAy(R) = -Y \u(t)-Ri(t)\ and i?LAV = argminVLAV(fl), (1-33) 

called the least absolute values (LAV) estimate. 
■ Repeat this exercise 10,000 times forN- 100. 
■ Apply both estimators also to the other data set. 
■ Calculate the mean value, the standard deviation, and plot for each case the histo-

gram. 
Help 1: Laplace distributed noise with zero mean and standard deviation stdu can be gener-
ated from uniformly distributed noise [0, 1] using the following MATLAB implementa-
tion: 
x = r a n d ( N D a t a , 1 ) ; % g e n e r a t e u n i f o r m d i s t r i b u t e d n o i s e 
nLap = z e r o s ( s i z e ( x ) ); % v e c t o r u sed t o s t o r e L a p l a c e n o i s e 
nLap(x<=0.5) = l o g ( 2 * x ( x < = 0 . 5 ) ) / s q r t ( 2 ) * s t d U ; 
nLap(x>0 .5 ) = - l o g ( 2 * ( 1 - x ( x > 0 . 5 ) ) ) / s q r t ( 2 ) * s t d U ; 
Help 2: to minimize VLAv(^) - a simple scan can be made over R belonging to [800:0.1:1200] 

Observations (see Figure 1-9) From Figure 1-9, it is seen that the estimates are scat-
tered around the exact value. For the Gaussian case, the LS squares estimate is less scattered 
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Figure 1-9 PDF of the Gaussian )?LS and Laplace /?LAV Maximum Likelihood 
estimators, applied to a Gaussian (left) and Laplace (right) noise disturbance. 
Black line: Rts; gray line: RLAV. 
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than the LAV estimate. For the Laplace case the situation is reversed. The estimated mean 
values (i and standard deviations o are given in Table 1-1. This shows that the maximum 

TABLE 1-1 Mean and standard deviation of the Gaussian and Laplace maximum likelihood 
estimators, applied to a Gaussian and Laplace noise disturbance 

Gaussian noise 

Laplace noise 

ALS 

1000.040 

1000.002 

OLS 

17.5 

17.3 

U-LAV 

999.94 

999.97 

OLAV 

22.0 

13.7 

likelihood estimator is optimal for the distribution that it is designed for. If the noise distribu-
tion is not known a priori, but the user can guarantee that the variance of the noise is finite, 
then it can be shown that the least squares estimate is optimal in the sense that it minimizes 
the worst possible situation among all noise distributions with a finite variance. 

Further reading: The books of Sorenson (1980) and van den Bos (2007) give an intro-
duction to maximum likelihood estimation, including illustrations on non-Gaussian distribu-
tions. The properties of the maximum likelihood estimator (consistency, efficiency, asymp-
totic normal distribution) are studied in detail. 

1.4 IDENTIFICATION FOR SKEW DISTRIBUTIONS WITH 
OUTLIERS 

In Section 1.3, it was shown that the optimal choice of the cost function depends on the distri-
bution of the disturbing noise. The maximum likelihood theory offers a theoretical frame-
work for the generation of the optimal cost function. In practice a simple rule of thumb can 
help to select a good cost function. Verify if the disturbing noise has large outliers: large er-
rors appear to be more likely than expected from a Gaussian noise distribution. 

In Exercise 9, the LS and the LAV estimates are applied to a %2 distribution with 1 de-
gree of freedom: this is nothing other than a squared Gaussian distributed variable. Compared 
to the corresponding Gaussian distribution, the extremely large values appear too frequently 
(due to the squared value). Neither of both estimates (LS, LAV) is the MLE for this situation. 
But from the rule of thumb we expect that the LAV will perform better than the LS estimator. 
It will turn out that a necessary condition to get good results is to apply a proper calibration 
procedure for each method, otherwise a bias will become unavoidable. 

Exercise 9 (Identification in the presence of outliers) Consider a set of repeated 
measurements: 

u0(t) = R0i0(t), t = 1,2, ...,N (1-34) 

with u0, i0 the exact values of the voltage and the current. The voltage measurement is dis-
turbed by noise, generated from a %2 -distribution with 1 degree of freedom (= squared Gaus-
sian noise). 
Generate an experiment with N measurements, i0 uniformly distributed in [0, Jmax= 0.01 A] 
(use the MATLAB® routine rand) , R0 = 1000 Q.. The current is measured without errors. 
The measured voltage u{t) is disturbed by %2 distribution distributed noise nu with 
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nu = n 2 , with n generated as N(0, o 2 = 1 ) . 

Note that the mean value of (E { «„}) is 1, and median(n„) is 0.455. 

i{t) = i0(t) 
u(t) = u0(t) + nu(t) 

, t = 1,2, ...,7V (1-35) 

■ In order to reduce the systematic errors, calibrate the data first. To do so, the mean 
value or the median of the noise should be extracted from the measurements. First, 
perform a measurement with zero current, so that u{t) = nu(t). The calibration is 
done using this record. 

■ Repeat the exercise 10,000 times and estimate, each time, the LS and the LAV esti-
mate for both data sets. 

■ Estimate the pdf of the estimates, and calculate their mean value and standard devia-
tion. 

Observations (see Figure 1-10) From the figure it is seen that the estimates are no 

Calibration with mean value 
Calibration with median 

0.04 

I 0.02 

800 1000 
R 

1200 1000 1200 
R 

Figure 1-10 PDF of the Gaussian flLs and Laplace RLAV applied to % disturbed data. 
Left: Calibration with the mean value. Right: Calibration with the median 
value. Black line: /?Ls. Gray line: SLAV-

longer scattered around the exact value R = 1000 Cl. Only the combinations (LS estimate, 
mean value calibration) and the (LAV estimate, median value calibration) work well. The 
other combinations show a significant bias. 
The mean and standard deviations are given in Table 1-2. Observe that the standard deviation 
of the LAV estimate is smaller than that of the LS estimate. LAV estimates are less sensitive 
to outliers! Note that the mean value of the LAV estimator, combined with the median cali-
bration has still a small systematic error of 1.85, which is larger than the uncertainty on the 
mean value: 18.62/sqrt(10,000) = 0.18. If instead of using the mean, the median value is se-
lected to average the 10,000 estimates, the bias disappears completely. 

TABLE 1-2 Mean and standard deviation of the Gaussian and Laplace maximum likelihood estimators, 
applied to a Gaussian and Laplace noise disturbance 

Calibr.: mean value 

Calibr.: median 

ULS OLS It LAV OLAV 

999.84 

1081.86 

24.30 

24.43 

924.29 

1001.85 

16.26 

18.62 
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Conclusion: The LS estimate should be combined with a calibration based on the mean, and 
the mean should be used to average the results. It is sensitive to outliers. 
The LAV estimate should be combined with a calibration based on the median, the median 
should be used to average the results, and it is less sensitive to the presence of outliers. 

1.5 SELECTION OF THE MODEL COMPLEXITY 

1.5.1 Influence of the number of parameters on the 
uncertainty of the estimates 

In this exercise it will be shown that, once the model includes all important contributions, the 
uncertainty grows if the number of model parameters is still increased. 

Exercise 10 (Influence of the number of parameters on the model uncertainty) 
In order to measure the flow of tap water, the height y0(f) = a0t of the water level in a mea-
suring jug is recorded as a function of time t. However, the starting point of the measure-
ments is uncertain. Hence two models are compared: 

y(f) = at and y{i) = at + b. (1-36) 

The first model estimates only the flow, assuming that the experiment started at time zero, 
while the second one also estimates the start of the experiment. 

Generate a set of measurements: 

y(t) = a0t + n(t), with t = [0:N]/N. (1-37) 

■ Choose a0 = 1, N = 1000, and n, - N(0, c2
n) with a2

n = 1. 
■ Repeat this experiment 105 times. 
■ Estimate the LS parameters of both models, and compare a for the one parameter 

model y(t) -at and two-parameter model y(t) - at + b, by estimating the pdf of 
a. 

■ Calculate the mean value and the standard deviation of the slope. 
■ Plot also the error y0(t) - y(t) for the first 50 experiments, for t e [0, 2 ] , with y(t) 

the modeled output. 
□ 

TABLE 1-3 Mean and standard deviation of a in the one- and two-parameter model 

One-Parameter Model Two-Parameter Model 

mean 0.996 0.987 

std. dev. 0.057 0.113 

Observations The results are shown below in Table 1-3 and Figure 1-11. From the table 
it is seen that the uncertainty of the one-parameter estimate is significantly smaller than that 
of the two-parameter model. The mean values of both estimates are unbiased; the error equals 
the exact value within the uncertainty after averaging 100 experiments. Also in Figure 1-11 
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the same observations can be made. Note that due to the prior knowledge of the one-parame-
ter model (at time zero the height is zero), a significantly smaller uncertainty on & is found 
for small values of t, and the one-parameter model is less scattered than the two-parameter 
model. If prior knowledge is incorrect, systematic errors would be made on the flow estimate; 
if it is correct, better estimates are found. An analysis of the residuals can guide the user to 
find out which of both cases s/he is faced with. 

1.5.2 Model selection 

The goal of this section is to show how to select an optimal model for a given data set. Too 
simple a model will fail to capture all important aspects of the output, and this will result in 
errors that are too large in most cases. Too complex models use too many parameters. As was 
illustrated in the previous section, such models also result in a poor behavior of the modeled 
output because the model becomes too sensitive to the noise. Hence, we need a tool that helps 
us to select the optimal complexity that balances the model errors against the sensitivity to the 
noise disturbances. It is clear that this choice will depend on the quality of the data. All these 
aspects are illustrated in the next exercise where we propose the Akaike information criterion 
(AIC) as a tool for model selection. 

Consider a single input single output linear dynamic system, excited with an input 
u0(t) and output y0(t) = g0(t)*u(t). The system has an impulse response g0(t) that is infi-
nitely long (infinite impulse response or IIR system). For a stable system, g0(t) decays expo-
nentially to zero, so that the IIR system can be approximated by a system with a finite length 
impulse response g(t), t = 0, 1 / (finite impulse response or FIR system). For t > I, the 
remaining contribution can be considered to be negligible. The choice of / will depend not 
only on g(t), but also on the signal-to-noise-ratio (SNR) of the measurements as well as on 
the length of the available data record. 

; y(t) = g(t)*u0(t) = V g(k)u0(t-k), with u0(k) - 0 for k<0. (1-38) 

In (1-38) it is assumed that the system is initially at rest. If this is not the case, transient errors 
will appear, but these disappear in this model for t > I (why?). 

The model parameters 6 are, in this case, the values of the impulse response. 0 is esti-
mated from the measured data u0(t), y(t), t = 0, 1, ..., N, with v(f) the output measurement 
that is disturbed with i.i.d. (independent and identically distributed) noise v(i) with zero 
mean and variance G?: 

Distribution of the estimated slope Error modeled water level 

a 5 

Slope Time (s) 

Figure 1-11 Impact of the number of parameters on the uncertainty of the slope estimate 
and the variability of the model. Black: One-parameter model v = au. 
Gray: Two-parameter model y = au + b. Left: The pdf of the estimated 
slope. Right: The error on the modeled output as a function of time. 
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y(t) =y0(t) + v(t). (1-39) 

The estimates 9 are estimated by minimizing the least squares cost function: 

VJfi.Z'*) = Ij] |y(r)-K0l2 ,withy(0 = g(t)*u0(t) = u0(t)*8(t)- (1-40) 

Note that this model is linear-in-the-parameters, and solution (1-26) can be used. 
In order to find the "best" model, a balance is made between the model errors and the 

noise errors using a modified cost function that accounts for the complexity of the model. 
Here we propose to use of, amongst others, the AIC criterion: 

VAIC=VN(e){l+2^). (1-41) 

Exercise 11 (Model selection using the AIC criterion) Consider the discrete time 
system g0(t) given by its transfer function: 

G0(z) = X ***"*/£ akz~k, (1-42) 

Generate the filter coefficients ak, bk using the MATLAB instruction 

[ b , a ] = c h e b y l ( 3 , 0 . 5 , [2*0 .15 2 * 0 . 3 ] ) (1-43) 

This is a band pass system with a ripple of 0.5 dB in the pass band. Generate two data sets 
Des, and Dval, the former with length Ne being used to identify the model, the latter with 
length Nv to validate the estimated model. Note that the initial conditions for both sets are 
zero! Use the MATLAB instruction 

yO = filter(b,a,uO), y = yO+ny (1-44) 

with H0 zero mean normally distributed noise with o„ = 1, and ny ~ N(0, a = 0.5 ) for a 
first experiment, and ny ~ N(0, a = 0.05 ) for a second experiment. Put Nesl = 1000, and 
Nvai = 10,000 in both experiments. 

■ Use the linear least squares procedure (1-26) to estimate the model parameters of an 
approximating FIR model, for varying orders from 0 to 100. 

■ Calculate for each of the models the simulated output y - filter(|, 1, u0), and calcu-
late the cost function (1-40) on Dest and on Dval. 

■ Calculate VAIC. 

1 "»' 
■ Calculate V0 = —— V |y0(f)-5>(0|2 on the undisturbed output of the validation 

set. Wvai^o 
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Plot V^, VA!C, Vva, as a function of the model order. Normalize the value of the cost 
function by G% to make an easier comparison of the behavior for different noise lev-
els. 

Plot ,JV0/GZ as a function of the model order. 

□ 
Observations The results are shown in Figure 1-12, and the following observations can 

be made: 
(i) Increasing the model order results in a monotonically decreasing cost function Vest. This 
result was to be expected because a simpler model is always included by the more complex 
model, and the linear LS always retrieves the absolute minimum of the cost function, so that 
no local minima of the cost function as a function of the model order exist. Hence, increasing 
the complexity of the model should reduce the value of the cost function (it is a monotonic 
not increasing function of the model complexity). 
(ii) On the validation data we observe first a decrease and then an increase of Vva,. In the be-
ginning, the additional model complexity is mainly used to reduce the model errors, a steep 
descent of the cost function is observed. From a given order on, the reduction of the model er-
rors is smaller than the increased noise sensitivity due to the larger number of parameters, re-
sulting in a deterioration of the capability of the model to simulate the validation output. As a 
result the validation cost function Vva] starts to increase. 
(iii) VUG gives a good indication, starting from the estimation data only, where Vval will be 
minimum. This reduces the need for long validation records, and it allows us to use as much 
data as possible for the estimation step. 
(iv) The optimal model order increases for a decreasing disturbing noise variance. Since the 
plant is an IIR system with an infinite long impulse response, it is clear that in the absence of 
disturbing noise c„ = 0, the optimal order would become infinite. In practice this value is 
never reached due to the presence of calculation errors that act also as a disturbance. 
(v) A fair idea about the quality of the models is given by V0. The normalized rms value 
7V0/oJ is plotted on the right side of Figure 1-12. This figure shows that a wrong selection 
of the model can result in much larger simulation errors. The good news is that the selection 
of the best model order is not so critical, the minimum is quite flat and all model orders in the 

Noisy data Noiseless data 

20 40 60 80 100 
Order 

20 40 60 80 100 
Order 

Figure 1-12 : Comparison of the normalized cost function Vesl, the AIC criterion VAIC , 
and the validation Vml for a„ = 0.5 (top) and a„ = 0.05 (bottom). 
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neighborhood of the minimum result in good estimates. Note that in real-life experiments, V0 
is not available. 

Remark: In practice the validation set is chosen always (much) smaller than the test 
data. The data should be primary used to estimate a good model. In this exercise we selected 
an extremely large data set to eliminate the noise variation in the validation to better visualize 
the quality of the AIC model selection. The AIC method makes it possible to select the model 
on the test data without using a validation set. In practice it is however still advisable to test 
the final model on a validation test to verify if the model can explain also fresh data that were 
not used to build it. 

1.5.3 What have we learned in Section 1.5? Further 
reading 

In this section we learned that the choice of the model complexity is an important issue. Too 
simple models lead to bias errors, while models with too many parameters suffer from an in-
creased variability. Model selection tools balance the bias and variance errors. A first possi-
bility is to verify the identified model on a data set that was not used during the parameter 
estimation step, this is called a validation set. Instead of saving a part of the available data for 
this test it is also possible to predict the behavior of an identified model on a new data set. We 
have learned that the Akaike information criterion AIC is able to predict the value of the cost 
function on the validation set. This allows the user to use all the data in the estimation step, 
leading to a smaller variance. In the literature a lot of results are published on this topic. Be-
sides the original paper of Akaike (1974), we refer the reader to the classical textbooks on 
system identification, — for example, Ljung (1999), Soderstrom and Stoica (1989), and Jo-
hansson (1993) — to learn more about this topic. 

1.6 NOISE ON INPUT AND OUTPUT MEASUREMENTS: THE 
IV METHOD AND THE EIV METHOD 

In Section 1.2.2 it was shown that the presence of disturbing noise on the input measurements 
creates a systematic error. In this set of exercises, more advanced identification methods are 
illustrated that can deal with this situation. Two methods are studied: The first is called the in-
strumental variables method (IV), the second is the errors-in-variables (EIV) method. The 
major advantage of the IV method is its simplicity. No additional information is required 
from the user. The disadvantage is that this method does not always perform well. Both situa-
tions are illustrated in the exercises. The EIV performs well in many cases, but in general ad-
ditional information from the user is required. The covariance matrix of the input-output 
noise should be known. All methods are illustrated again on the resistance example with mea-
sured current and voltage i(t),u(t), t - 1,2, ...,N. Both measurements are disturbed by 
mutually uncorrelated Gaussian noise, n,-(f), nu(t): 

i(t) = i0(t) + n,{t), 
(1-45) 

u(t) = u0(t) + nu(t). 

The least squares estimate is given by 
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y u{t)i{t) 
RLS = - ^ , (1-46) 

the instrumental variables estimator (IV) is 

N 

£ u{i)i(t + s) 
*.v - - ^ , (1-47) 

V i(t)i(t + s) 

with -? a user selectable shift parameter. Note that the IV estimator equals the LS estimator 
f or s = 0. 

The EIV estimator is given by 

£««* £i(r)2 _ /^M(f)2 Y^Kt)2] (£«(f)i(0) 
°"; 'M v " i i u i y 

*mv = - , (1-48) 
y«(()i(() 

2^—, 

with ol, of the variances of the voltage and current noise respectively, the covariance is as-
sumed to be zero in this expression: â , = 0. 

Exercise 12 (Noise on input and output: The instrumental variables method 
applied on the resistor estimate) Generate the current i0(k) from a Gaussian white noise 
source ex filtered by a first order Butterworth filter with cutoff frequency /Gen 

i0 = filter(fcGen, aGe„, e,), (1-49) 

with [ b0s.B, aGen ] = b u t t e r (1 ,2 * / G e n ) . Next this filtered sequence is scaled to get a 
signal iQ with standard deviation Gt . 

Generate the measured current and voltage (1-45), where nu(k) is white Gaussian 
noise: N(0, al). The current noise n,(£) is obtained from a Gaussian white noise source fil-
tered by a second-order Butterworth filter with cut-off frequency /Noise: 

rij = f i l t e r (bNoix, aNoise, e2 ), (1-50) 

with [ bNoisi,, aNoise ] = b u t t e r (2 ,2 */NoiSe), and e2 white Gaussian noise. Its variance is 
scaled to a%.. 

m Experiment 1: Generate three sets of 1000 experiments with N = 5000 measure-
ments each on a resistor R0 = 1000 Q,, and the following parameter settings: 

/Gen = 0.05, /Noise = [0.4995,0.475,0.3], 
a. = 0.1, c„ = 0.1, a, = 1. (1-51) 
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Process these measurements with the LS estimator, as well as with the IV-estimator 
with the shift parameter s = 1. 
Experiment 2: Generate 1000 experiments with N - 5000 measurements each, and 
the following parameter settings: 

/ c , = 0.05, /N, 0.3, a, = 0.1, a„ = 0.1, an = 1. (1-52) 

■ Process these measurements with the LS estimator, and with the IV estimator with 
the shift parameter s = 1, 2, 5. 

Plot for both experiments: 
■ the pdf of ^LS and 7?iv, 
■ the autocorrelation function of i0 and «, (hint: use the MATLAB instruction 

x c o r r ) , 
■ the FRF of the generator and the noise filter. 

□ 
Observations The results are shown below in Figure 1-13 and Figure 1-14. In Figure 

1-13, the results are for a fixed generator filter and a varying noise filter. The shift parameter 
for the IV is kept constant at 1. From this figure it is clearly seen that the LS results are 
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Figure 1-13 Study of the LS and IV estimate for a varying noise filter bandwidth and fixed shift s = 1. Top: 
The LS (black line) and IV estimate (black or gray line). IV(1), IV(2), and IV(3) correspond to the 
first, second, and third filter. Middle: The auto correlation of i0 (black) and nt (gray) for the 
different noise filters. Bottom: The filter characteristics of i0 (black) and the noise «, (gray). 
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Figure 1-14 Study of the LS and IV estimate for a fixed noise filter bandwidth and a varying shift s=l,2,5. 
Top: The LS (black) and IV (black and gray) estimate. IV(1), IV(2), and IV(3) correspond to a 
shift of 1,2, and 5 tabs. Middle: The auto correlation of i0 (black) and n, (gray). Bottom: The 
filter characteristics of i0 (black) and the noise nt (gray). 

strongly biased. This is due to the noise on the input, the relative bias is in the order of 
ol./of . For the IV results, the situation is more complicated. For the white noise situation, 
no bias is visible. However, once the output noise is filtered, a bias becomes visible. The rela-
tive bias is proportional to the ratio of the autocorrelation functions of the noise and the cur-
rent Rnn(s)/R,■,(s). 
The same observations can also be made in Figure 1-14. In this figure, the shift parameter is 
changed while the filters are kept constant. It can be seen that the bias becomes smaller with 
increasing shift s, because R„.„{s)/Ri, (s) is getting smaller. At the same time the dispersion 
is growing, mainly because /?,, (s) is getting smaller. Observe also that the sign of the bias 
depends on the sign of Rnn(s). The IV method works well if the bandwidth of the generator 
signal is much smaller than that of the noise disturbances. 

Exercise 13 (Noise on input and output: the errors-in-variables method) In this 
exercise the EIV method is used as an alternatives for IV method to reduce/eliminate the bias 
of the least squares estimate. This time no constraint is put on the power spectra (bandwidth) 
of the excitation and the disturbing noise, but instead the variance of the input and output dis-
turbing noise should be given in advance (prior information). This is illustrated again on the 
resistance example with measured current and voltage i(t), u{t), t = 1, 2, ..., N. 
The least squares estimate is given in (1-46), the ElV-estimator is given in (1-48), where the 
sum runs over t = 1 JV. It is shown to be the minimizer of the following cost function: 
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_ i j W ) - ^ 2 (i(0-(„(())2 
(1-53) 

with respect to u0, i0, R0 under the constraint that u0(t) = R0i0(t) ■ 
m Setup: Generate the current i0(t) from a white zero mean Gaussian noise source 

MO, a? ) . 
Generate the measured current and voltage as 

i{t) = i0(t) + ni(t), 
u{t) = u0(t) + nu{t); 

(1-54) 

nu{t) and n,(0 a r e white Gaussian noise sources with zero mean and variance ajj 
and a£, respectively. 
Generate a set of 1000 experiments with N = 5000 measurements each, and the 
following parameter settings: 

R0 = 1000, o, = 0.01, a„ = 0.001, a„ = 1. (1-55) 

Calculate the LS and EIV estimate. Plot the histogram with RLs and /?Eiv. 
Observations The results are shown below in Figure 1-15, From this figure it is clearly 
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Figure 1-15 Comparison of the pdf of the LS (black) and the EIV estimate (gray), calculated 

with prior known variances. 

seen that the LS estimates are strongly biased (mean value is 990.15). This is due to the noise 
on the input, the relative bias is in the order of a^/af . No systematic error can be observed 
in the EIV results (mean value is 999.96). The IV estimate would fail completely in this situ-
ation (why?). 

Discussion We learned that noise on the input (regressor) results in a bias on the esti-
mates that depends on the inverse SNR of the input (regressor). Both methods, the IV and the 
EIV method, have pros and cons. While the IV method requires a lot of insight of the user 
(are the tight experimental conditions met?), the EIV method needs knowledge of the covari-
ance matrix of the input and output noise. In the literature, alternative methods are proposed 
to deal with this problem. A first possibility is to use repeated experiments. From the varia-
tions from one experiment to the other, it is possible to estimate the noise covariance matrix 
from the data. This is later illustrated in this book; see, for example, Exercise 47 (Schoukens 
et al, 1997). Alternative methods estimate at the same time a parametric plant and noise 
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model (Soderstrom, 2007). This allows to relax the experimental conditions (no repeated ex-
periments are required), at a cost of more difficult optimization problem to be solved (esti-
mate the plant- and noise model parameters). 



Generation and Analysis of 
Excitation Signals 

What you will learn: This chapter makes the reader familiar with the fast Fourier transform 
(FFT) algorithm that is intensively used to make a spectral analysis of measured signals. Next 
we study how to generate good excitation signals to solve nonparametric and parametric sys-
tem identification problems. The following topics are addressed: 

- Representing a continuous time signal by a discrete signal without loss of information 
(see Exercise 14). 

- Setting the parameters of the FFT and understanding the impact on the spectral reso-
lution, the leakage errors, and the relation between frequency and FFT lines (see Exercises 
15, 16, 17, 18, 22.a, 22.b). 

- Generating periodic signals using the IFFT (inverse FFT) (see Exercises 19.a, 19.b, 
and 20). 

- Generation and tuning the properties of broadband and multi-harmonic periodic exci-
tation signals (see Exercises 20, 21, 23, 24, 25, 26, 27). 

- Generation, tuning, and processing random excitations (see Exercises 28, 29, 30, 31). 
- Amplitude distribution of filtered random signals (see Exercise 32). 
- Calculating the derivative of a measured periodic signal (see Exercise 33). 

2.1 INTRODUCTION 

Each system identification process starts with experiments that provide information about the 
system to be modeled. Within a given time as much information as possible should be col-
lected. The amount of information that can be retrieved within the operational constraints 
(e.g., maximum excitation level, minimal power consumption,...) depends strongly on the se-
lection of the excitation signal. For that reason we study in this chapter a number of potential 
excitation signals like sines, multisines and binary sequences (periodic excitation signals) on 
the one hand, and random noise excitations on the other hand. The measurements are often 
analyzed in the time and in the frequency domain, using the FFT as an algorithm to move 
from one domain to the other. For that reason we learn the reader also how to use this algo-
rithm, and how to understand its results in order to avoid the pitfalls that are linked to its use. 
We start this chapter with a number of exercises on the use of the FFT; next we learn how to 
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generate and analyze periodic excitation signals. Finally we study how random noise excita-
tion signals can be generated and processed. 

2.2 THE DISCRETE FOURIER TRANSFORM (DFT) 

The Fourier integral transforms a continuous, analog signal u(t) from the time to the fre-
quency domain: 

U(j(0) = r?- f uffle-Wdt, where CO = 2nf. (2-1) 
2JI-U, 

Although such a transform does not create new information, it might reveal some of the prop-
erties of the signals. In practice this transform is calculated on a digital computer starting 
from a signal measured in a discrete, finite set of equidistant samples. Hence, the continuous 
time Fourier transform (2-1) is replaced by the discrete Fourier transform (DFT): 

1/(0 = SV u{kTs)e' N, (2-2) 
i(: = 0 

where / is the frequency line number. 
In this expression, S is an arbitrary scaling factor that is often equated to: 

■ 1 / JN for random noise sequences and signals where the number of frequency com-
ponents grow proportional to N, e.g. a random noise sequence 
u = r andn (N, 1). 

■ \/N for sequences where the number of frequency components does not depend 
upon N, e.g. a sine wave: u = s i n (2 J i t ) , t = 0, 1, ..., N- 1. 

Replacing the continuous Fourier transform (2-1) by the discrete Fourier transform involves 
the following actions: 

■ Discretization in time: The continuous signal uQ) is replaced by the discrete set of 
samples u{kTs). The sample frequency is fs = l/Ts. 

m Windowing: The infinite integration interval ]-°°, °°[ is replaced by a finite window 
[0, NTS[. Note that the end point NTS does not belong to the interval. 

■ Discretization in frequency: The integral is calculated at a discrete set of frequencies. 
{/(/) is the DFT at frequency l/NTs = lf/N. Observe that the frequency resolu-
tion is set by the window length NTS of the previous step. 

The DFT can be calculated rapidly using the MATLAB® instruction: U = f f t (u), 
and the inverse transform is given byu = i f f t ( U ) . Note that the scaling factor S of the 
MATLAB® f f t routine is S = 1. The f f t and i f f t are calculated fastest if the length 
of u and U is N = 2". However, the MATLAB® implementations allow also for signal 
lengths that are different from this optimal value, while the calculation time is still very small. 

The major aspects of the three basic steps discussed before (discretization in time, win-
dowing, discretization in frequency) are illustrated in the next two exercises. In the rest of this 
chapter and this book, the f f t and i f f t routines will be intensively used. 
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The frequency axis of the DFT is often expressed in "line numbers". The zero fre-
quency (/ = 0) corresponds to line number zero, the Ith line number corresponds to the fre-
quency lfs/N. 

Exercise 14 (Discretization in time: Choice of the sampling frequency: ALIAS) 
Consider two sines with frequency / , = 1 Hz and f2 = 9 Hz, for example: 
MCI(7) = sin(27t/ir) and HC2(?) = -sin(27t/27). Sample both signals in the time interval 
[0, 1[ with a sampling frequency fs = 10 Hz: for example, udl(t) = ucl(t/fs) - ucl(tTs), 
with t = 0, I, ...,N-l. Make a time domain figure with the continuous time and discrete 
time signals on one plot. Make a frequency domain plot with the spectrum of the continuous 
time signals, and the result of the DFT for both signals. Compare the DFT of both signals. □ 

Discussion In the time domain, it can be observed (Figure 2-1, middle left side) that the 
samples of both signals completely coincide, it is no longer possible to distinguish them on 
the basis of the discrete time representation. The fast signal results in a slowly varying dis-
crete time sequence. This effect will appear each time when the signal frequency is larger 
than half the sample frequency. It is the alias effect. In order to avoid alias, the maximum fre-
quency /max of the sampled signals should be smaller than half the sample frequency: 
/max *"-Js' ^ • 

In the frequency domain, the spectra of the original continuous time signals can be 
compared to that of the DFT. Observe that the amplitude spectrum of the DFT is symmetric 
around N/2 corresponding to the frequency fs/2, and the phases are changing sign, viz., 

U(l) = U(N-l). (2-3) 

It can also be seen that the fast frequency (9 Hz) is mapped to a low frequency of 
fs - 9 Hz = 1 Hz. This is the alias effect in the frequency domain. Sampling maps the origi-
nal frequencies - / and / of a sine with frequency / to a set of frequencies fk = ± / + kfs. 

The spectrum between 0 and f/2 corresponding to the fft lines between 0 and N/2 
gives all information of the DFT of a real signal: the remaining DFT lines [N/2 + 1, N - 1 [ 
are the complex conjugate of those between [0, N/2[, U(N -1) = U(l). 

Discussion What you learned in this exercise 
■ When a continuous time signal is sampled, the sample frequency should be larger 

than 2 times the maximum frequency, otherwise alias errors occur. 
■ In order to avoid alias, also for signals with a bandwidth that is larger than fs/2, it is 

strongly advised to filter the signals first with a low-pass filter, called an anti-alias 
filter, that surpresses the high-frequency content. 

■ The spectrum of a DFT analysis is periodic, with period N which is the number of 
samples in the time domain window. The spectrum is mirrored around half the sam-
ple frequency: U(N-l) = U(l). 

m More information on the DFT and FFT can be found in Brigham (1974). 

Exercise 15 (Windowing: Study of the leakage effect and the frequency 
resolution) Consider a sine wave: u(t) = sin(2nft) with / = 2 Hz. Sample it with a 
sample frequency fs - 10 Hz in N points, with N being [10 11 12 13 14 15]. Calculate for 
each of these values of N the DFT U = f f t (u), and draw the amplitude spectrum \U\ 
with the x-axis scaled in Hz. Add to this plot also the amplitude spectrum of the original sine 
wave. □ 
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Figure 2-1 Illustration of the alias effect due to the sampling of a continuous time signal in 
the time domain (left) and frequency domain (right). Top: Slow sine and its 
Fourier transform. Bottom: Fast sine and its Fourier transform. Middle: The 
sampled sine and its DFT spectrum. 

Observations (see Figure 2-2) Depending upon the value of N the lower half of the 
DFT spectrum either coincides with the original sine spectrum or does not. The spectrum is 
perfectly retrieved for N = 10 and 15 . For the other values the DFT spectrum differs from 
that of the sine, although it is still concentrated around the original spectral line at 2 Hz. This 
effect is called leakage; it is present if for a periodic signal the window length is not an inte-
ger multiple of the period length. 

Observe also that the spectral resolution of the DFT varies inversely proportional to the 
window length. The longer the window, the higher the spectral resolution. 

It is important to remark that the sample on the right extreme value of the window does 
not belong to the window because it is an open interval on the right side, beyond that sample. 

Discussion What you learned in this exercises The lessons to be taken from this exer-
cise are: 

■ In order to avoid leakage in a DFT analysis, an integer number of periods of a peri-
odic signal should be measured. 

■ The frequency resolution of a DFT analysis is influenced by the length of the win-
dow in the time domain; longer measurements result in a finer frequency resolution. 

■ The first sample of the next period does not belong to the time domain window, it is 
an open interval: [0, NTS[. 

Further reading: The book of Brigham (1974) gives a very didactical introduction to the the-
ory and use of the FFT. It discusses the Fourier transform, the DFT, the FFT, and basic FFT 
applications. Also the book by Bendat and Piersol (1980) provides a lot of useful information 
on the use of FFT methods in daily practice. 
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Figure 2-2 Illustration of the windowing-leakage effect of the DFT on a sine wave. On the 
left side, different window lengths are used N = [10, 11 15] samples 
corresponding to a window length of [1.1, 1.2 1.5] seconds. On the right 
side, the amplitude of the DFT spectrum is shown (+), together with the positive 
frequency component of the sine (filled circle). 

2.3 GENERATION AND ANALYSIS OF MULTISINES AND 
OTHER PERIODIC SIGNALS 

2.3.1 Generation and analysis of sine wave signals 

In this series of exercises, it will be shown using a sine wave signal: 

■ How to avoid leakage. 

■ How to read the frequency axis when line numbers, instead of a scaling in Hz are 
used. 

* What is the impact of the FFT scaling factor? 

■ How to calculate a sine wave using the inverse fast Fourier algorithm. 



34 Chapter 2 ■ Generation and Analysis of Excitation Signals 

Exercise 16 (Generate a sine wave, noninteger number of periods 
measured) Generate a signal 

u(t) = Asin(mTs + q>), t = 0,1, ...,N-l (2-4) 

with co = 2%f and / = 80Hz, A = 1, <p = J C / 2 , /s = 1/TS = 1000, and N = 16. 
Calculate U = f f t (u). Put the FFT scale factor equal to 1/N (Why?). 
Make four plots: 

■ Plot 1: u(t) as a function of time. 
■ Plot 2: The amplitude spectrum (dB) as a function of the frequency. 
■ Plot 3: The amplitude spectrum (linear scale) as a function of the FFT line number 

(DC is line 0). 
■ Plot 4: The amplitude spectrum (linear scale) as a function of the frequency. 

□ 
Observations (see Figure 2-3) It is seen that since a non integer number of periods is 

measured, leakage errors appears. The amplitude axis can be shown on a linear or a logarith-
mic (db) scale: AdB = 201og10A . The frequency axis can be scaled in DFT-line numbers or in 
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Figure 2-3 Results of exercise 16: Generate a sine wave, no integer number of periods 
measured. Number of samples N = 16. 
Top left: Discrete time signal. 
Top right: DFT-amplitude spectrum (dB), frequency axis in Hz. 
Bottom left: DFT-amplitude spectrum (linear), frequency axis: line numbers. 
Bottom right: DFT-amplitude spectrum (linear), frequency axis in Hz. 

Hz. In the first case, the position will depend on the number of measured periods, as is illus-
trated in the next exercise. In the latter case, the position is fixed (see Exercise 18). 

Exercise 17 (Generate a sine wave, integer number of periods measured) Gener-
ate a signal 

u(i) = y4sin(C0/rs + cp), t = 0, 1 N- 1 (2-5) 
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with fs = \/Ts = 1000 Hz, A = 1, (p = JC/2, and N = 16. Choose CO such that an inte-
ger number of periods is measured, for example 1 period. Calculate U = f f t (u ) . Put the 
FFT scale factor equal to 1 /N. Make four plots: 

■ Plot 1: u(t) as a function of time. 
■ Plot 2: The amplitude spectrum (dB) as a function of the frequency. 
■ Plot 3: The amplitude spectrum (linear scale) as a function of the FFT line number 

(DC is line 0). 
■ Plot 4: The amplitude spectrum (linear scale) as a function of the frequency. 

□ 
Observations (see Figure 2-4) From the spectral analysis it turns out that no leakage is 

present, which should be the case since an integer number of periods is measured. It can be 
seen that the unexcited frequencies have an amplitude which is about 300 dB below the am-
plitude of the excited frequencies. This corresponds to a calculation precision of 15 digits (1 
digit is 20 dB). 
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Figure 2-4 Results of exercise 17: Generate a sine wave, an integer number of periods 
measured. Number of samples N = 16. 
Top left: discrete time signal. 
Top right: DFT-amplitude spectrum (dB), frequency axis in Hz. 
Bottom Left: DFT-amplitude spectrum (linear), frequency axis: line numbers. 
Bottomr Right: DFT-amplitude spectrum (linear), frequency axis: line numbers. 

Exercise 18 (Generate a sine wave, doubled measurement time) Generate a signal 

u(t) = Asin(cof7,
I + cp), t = 0, 1, ..., N- 1. (2-6) 

Choose CO, 9 , A , fs equal to the values of Exercise 17, but double the number of data points 
N = 32. 
Calculate U = f f t (u). Make four plots: 

■ Plot 1: u(t) as a function of time. 
■ Plot 2: The amplitude spectrum (dB) as a function of the frequency. 
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■ Plot 3: The amplitude spectrum (linear scale) as a function of the FFT line number 
(DC is line 0). 

■ Plot 4: The amplitude spectrum (linear scale) as a function of the line number. 

What are the excited spectral lines (the FFT line numbers)? What are the excited frequencies? 
Explain the different behavior: the line numbers shifted, the frequencies remained the same. 
What is the relation between line number, frequency, the sample frequency f„, spectral 
resolution of the FFT, and the data length? □ 

Observations (see Figure 2-5) From the spectral analysis it turns out that no leakage is 
present, as expected since an integer number of periods is measured. The frequency of the ex-
cited spectral lines did not change by increasing the measurement time. The line number 
changed: the excited frequency line is now 2 because two periods are now measured. It can 
also be seen that the frequency resolution of the plots is doubled to / j / 32 . Due to the FFT 
scaling factor of 1 /N, the amplitude of the spectrum did not change when N is varied. 
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Figure 2-5 Results of exercise 18: Generate a sine wave, an 
integer number of periods measured. Number of samples N = 32. . 
Top left: discrete time signal. 
Top right: DFT-amplitude spectrum (dB), frequency axis in Hz. 
Bottom left: DFT-amplitude spectrum (linear), frequency axis: line numbers. 
Bottom right: DFT-amplitude spectrum (linear), frequency axis: line numbers. 

Discussion What you learned in this exercise 

■ The position of a harmonic component is independent of the window length if the 
frequency axis is scaled in Hz (mHz, kHz, ...). If the frequency axis is labeled with 
the DFT-line number, then the position changes with a varying window length. 

■ At the unexcited frequencies, the level of the (calculation) noise is visible. 

■ The amplitude of the spectrum does not vary with the window length if the proper 
FFT scaling factor is used. For a signal where the number of harmonic components 
does not depend upon the window length, die proper choice for the scaling factor is 
S = \/N. 
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Exercise 19.a (Generate a sine wave using the MATLAB® IFFT instruction) 
Generate a signal: 

u(k) = Asin((i)kTs + <p), k = 0, 1, ...,N-l (2-7) 

with (p = 0 and 1 period in a record of N = 16 data points (u(k) - u(k + N)). Use the in-
verse fast Fourier transform (IFFT) to make the calculations. 
Hints: Define the DFT spectrum U(k), k = 0, 1, 2, ..., N- 1 and calculate u = i f f t (U). 
Apply a scale factor N/2 to compensate for the internal scaling of the FFT. Notice that the 
FFT coefficient of a sinusoid with zero phase is exp (- j *p i / 2) for the positive frequency 
and exp ( j *p i /2 ) for the negative frequency. 

Exercise 19.b (Generate a sine wave using the MATLAB® IFFT instruction, 
defining only the first half of the spectrum) Make the same exercise, but define this time 
only U(k), k = 0, 1, 2, ..., N/2 - 1, and put U(k) = 0 for k = N/2 N- 1. 
Hint: Make use of the fact that U(k) = U(N- k), and xy + xy = 2real(ry). 
Plot the result of Exercise 19.a and 19.b on top of each other. 
Analyze the number of operations to calculate a (sum or) sines directly in the time domain, or 
using the FFT routine. How does this answer depend upon the number of generated 
harmonics in the signal? □ 

Observations (see Figure 2-6). Both results coincide completely after proper scaling of 
the amplitude by l/N. This is again due to the scaling of the MATLAB IFFT command. 

sr®iB ■ 1 
e e 

e e 
© 

© o 
e e 

_, . ■ 9 0 ® 
0 0.005 0.01 0.015 

Time (s) 

Figure 2-6 Results of Exercise 19.a and 19.b: Generate a sine wave 
using I F F T . o: direct calculation; + calculation via 
u = 2 r e a l ( i f f t ( U ) ) . 

Discussion What you learned in this exercise To calculate with a minimal numerical 
effort a time domain signal starting from its spectrum, the MATLAB instruction 
u = N* ( r e a l ( i f f t (U) ) can be used. Only the first half of the spectrum should be de-
fined, the second half is put to zero. 

For a single sine generation, this method is not very efficient from computational point 
of view. However, for a sum of harmonically related sines with many components, a huge re-
duction of the calculation time is obtained. Because the i f f t is an orthogonal transforma-
tion from the frequency to the time domain, a maximal numerical stability is maintained. 

2.3.2 Generation of multisine signals 

A multisine is a sum of harmonically related sines. It is an example of a broadband or multi-
harmonic signal. Instead of measuring at one frequency at a time, the system is excited simul-
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taneously at a whole set of frequencies. This allows often to reduce the measurement time be-
cause the transients that appear at the output at each change of the excitation frequency 
disappear. Initial transient effects will only be present at the start of the experiment. In the fol-
lowing sections the reader will be able to learn how to design and analyze multisine measure-
ments. The user can set the amplitude and the phase of each frequency component of a 
multisine individually: 

F 

u(t) = V Arcos(2nf0ktTs + <pr), (2-8) 

where T0 = 1 /f0 is the period of the multisine and Ts is the sample period of the generator. 

Exercise 20 (Generation of a multisine with flat amplitude spectrum) Generate a 
multisine, using u = 2 * r e a l ( i f f t (U) ), with a period of N = 1000 samples, exciting 
the frequency band [0, 0.1/J . Choose fs = 1000 Hz. Note that from these settings the num-
ber of frequencies F in the multisine is set. First put all amplitudes Ar - 1, and then nor-
malize the rms value of the multisine to l , e .g .u = u / s t d ( u ) . Make three choices for the 
phase: 

k m Signal 1 (impulse multisine): <$r{k) - -xcot (a linear phase), with (itk - 27t-£ and 
x = 0.3 s. 

■ Signal 2 (random phase multisine): (pr uniformly random distributed in [0, 2n[ 
(random phase multisine). 

■ Signal 3 (Schroeder multisine): q>k = -k(k-l)n/F (Schroeder phase). 

Make two plots: Plot 1 is the impulse and random phase multisine on top of each other; Plot 2 
is the Schroeder and random phase multisine on top of each other. □ 

Observations (see Figure 2-7) A multisine with a linear phase (p(C0t) = -G)*x behaves 
as an impulse centered in x. By switching to a random phase a "noisy" behavior is obtained. 
(What is the asymptotic distribution of u(t) as F —> °° ?) The peak value of the random phase 
multisine is also significantly reduced, compared to the zero phase multisine. The ratio of the 
peak value Mpeak over the root mean square value ums of a signal is called the crest factor: 

Cr{u) = ^ . (2-9) 
^rms 

Making the Schroeder phase choice, a sweeping behavior is obtained: In the beginning of the 
period the signal varies slowly, while at the end of the period fast variations occur. The peak 
value of the time domain signal is reduced even more, the crest factor of the Schroeder multi-
sine is typically 1.65 for flat low-band power spectra (all frequencies in the band [0,/max] ex-
cited), while for an impulse multisine it is J2N. Notice that all these signals have exactly the 
same amplitude spectrum and rms value. Reducing the peak value for a given rms value al-
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lows us to improve the signal-to-noise ratio of an experiment. 
Note that in this example N = 1000 ^ 2". Although the calculations are less fast than with 
N = 1024, the calculation time is still very small. 

2.3.3 The swept sine signal 

A popular alternative for a multisine signal is the swept sine. This is a periodic signal that 
continuously varies its frequency between two limits. In contrast to a multisine all its extreme 
amplitude values are equal (±A), but the freedom of the user to shape the amplitude spectrum 
is much more restricted. The signal is given by 

u(t) = Asin((at + b)t) (2-10) 

with a = 7t(A:2-£,)/§, b = 2nkJ0,f0 = 1/T„, jfc2> Jk, e N , with t = T0[0 : N]/N. Re-
mark: Only one period can be calculated with (2-10). Concatenating this signal allows us to 
generate multiple periods. 

Exercise 21 (The swept sine signal) Generate a swept sine signal with a period of 1 
second, having most of its power between 50 and 200 Hz. Choose the sample frequency 
equal to 1 kHz. 

Observations see Figure 2-8 u(t) is a periodic signal with period T0 and most of its 
power is in the frequency band kj0 to k^Q. The amplitude spectrum shows a ripple of a few 
dB. 

Discussion What you learned in this exercise. In this exercise we showed how to gen-
erate periodic signals using computationally efficient methods. 

■ Using the i f f t it is possible to generate multisine signals. The user has a full con-
trol over the amplitude spectrum of the signal. 
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Figure 2-7 Multisines with the same amplitude spectrum and different phases. 
Top left: Linear phase (black) and random phase (gray) multisine. 
Top right: Schroeder phase (black) and random phase (gray) multisine (notice the 
difference in scale!). 
Bottom: Amplitude of the DFT spectrum of the 3 signals. 
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Figure 2-8 Generation of a swept sine signal with a period of 1 second and its 
power concentrated between 50 and 200 Hz. Left: The time domain 
signal; Right: The amplitude spectrum (dB). 

■ The Schroeder multisine results in a sweeping signal that has all its power within the 
frequency band that is specified by the user. 

■ The swept sine method is an alternative method to generate a sweeping signal. Com-
pared to the Schroeder multisine, not all power is in the frequency band of interest. 
The crest factor for a swept sine (typically 1.45) is slightly smaller than that of a 
Schroeder multisine (typically 1.65). 

■ In Exercise 24 it will be shown how multisines with a lower crest factor can be gen-
erated. 

■ More information on the design of advanced excitation signals can be found in Pin-
telon and Schoukens (2001). 

2.3.4 Spectral analysis of multisine signals 

Exercise 22.a (Spectral analysis of a multisine signal, leakage present) Generate 
a random phase multisine u(t) (see Exercise 20), using u = i f f t (U) normalized such 
that HRMS = 1. with a period of N = 1024 samples, exciting the frequency band 
[0.15/s, 0.35/j]. Put all amplitudes Ar = 1 in the frequency band of interest. Make a long 
signal ulmg{t) with t - 1 Aflong by concatenating M+0.25 periods of this signal. Put 
M - 4 . Calculate the FFT using the window w(f): 

w. *u, and Z = f f t (z) (2-11) 

Use two windows: 

Rectangular window: w(t) = 1 for all t. 
Hanning (also called Hann) window: w(t) = 0.5( 1 - c o s - ^ - J , 
t = 0,l,...,Nlom-l. 

2%t 
N, long' 

Plot both spectra and compare the results. 
Hint: use the MATLAB® instruction HANNING (Nlong, ' p e r i o d i c ' ) to generate the 
Hanning window w(t). □ 

Exercise 22.b (Spectral analysis of a multisine signal, no leakage present) Re-
peat Exercise 22.a, but with exactly M = 4 periods so that no leakage appears. Plot again the 
spectra. 

Observations (see Figure 2-9 and 2-10) Observe the leakage in the spectra of the first 
figure. Using the Hanning window, the main lobe (points closely around the spectra lines) is 
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Figure 2-9 FFT of a multisine: no integer number of periods measured. Left: the measured 
time domain signal. Right: Amplitude of the DFT spectrum. Gray dots: 
Rectangular window. Black dots: Hanning window. 

widened to three points, while the side lobes become much smaller than those obtained with a 
rectangular window. 
In Figure 2-10, the leakage disappeared completely because an integer number of periods is 
measured. In this case the rectangular window gives the best result, while the Hanning win-
dow disturbs the spectral lines. 
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Figure 2-10 DFT spectrum of a multisine measured over an integer number of 
periods. (+) rectangular window; (•) Hanning window. Top: Global 
spectrum; Bottom left: Zoom, Hanning window without scale factor; 
Bottom right: Zoom, Hanning window with a scale factor 2. 

Discussion What you learned in this exercise: leakage >< no leakage 

■ If possible, measure an integer number of periods of the multisine. Use the rectangu-
lar window. This gives an undistorted view of the spectrum. A Hanning window ap-
plied to an integer number of periods results in worse results than the rectangular 
window. 

■ No integer number of periods is measured: the first advice is to avoid this situation. 
If this is impossible, a Hanning window can be used to reduce (or better reshape) the 
error such that it is less disturbing in most cases. 

■ A concise review of a large variety of windows and their properties is given in Harris 
(1978). 
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2.3.5 What have we learned in Section 2.3? Further 
reading 

In this section we have illustrated that periodic signals can be very efficiently generated using 
the FFT algorithm. As a user it is important to be able to link the FFT spectral lines to the fre-
quencies of the actualy generated and measured signals. Multisines are the sum of harmonic 
related sines. The properties of a multisine are completely set by the choice of the amplitudes 
and phases of the individual sines. The advantages that can be gained by a proper choice will 
be illustrated in the next section and also in the next chapter. A special case among the multi-
sines is a swept sine signal. In order to avoid leakage errors during the FFT analysis of these 
signals, it is necessary to measure an integer number of periods. For more references on this 
topic, we refer the reader to Section 2.4.3. 

2.4 GENERATION OF OPTIMIZED PERIODIC SIGNALS 

2.4.1 Optimized multisines 

In Exercise 20 a multisine is generated. It turned out that the shape of the signal not only de-
pends on the user defined amplitude spectrum but also on the phase. Proper selection of the 
phases in (2-8) allows to reduce the peak value or crest factor of the signal for a given ampli-
tude spectrum. In the next exercise two possibilities to minimize Criu) are studied: the first 
is based on the selection of the signal with the smallest crest factor out of a large number of 
multisines with random generated phases, the second uses a nonlinear optimization approach. 

Exercise 23 (Generation of a multisine with a reduced crest factor using random 
phase generation) Generate a random phase multisine u{t) (see Exercise 20), using 
u = i f f t (U), with a period of N = 256 samples, exciting the frequency band [0, 0.1/J . 
Set all amplitudes Ar - 1. Choose (pr uniformly random distributed in [0, 2JU[ (random 
phase multisine). Repeat this 10,000 times and select the realization with the lowest crest 
factor. Plot the optimized signal and its histogram. Make a plot of the evolution of the 
smallest crest factor as a function of the number of random phase realizations. Compare the 
best obtained crest factor to that of a multisine with Schroeder phase (see Exercise 20). 
Repeat this exercise for TV = 4096. How many excited frequencies will be in the frequency 
band of interest? □ 

Observations (see Figures 2-11 and 2-12) Note that the best crest factor slowly de-
creases when the number of trials is increased. For multisines with more excited frequencies 
the decrease becomes very slow. Random phase selection is not a good method to generate 
signals with a small crest factor. 

Exercise 24 (Generation of a multisine with a minimal crest factor using a crest 
factor minimization algorithm) Generate a low crest factor multisine using the following 
instructions of the FDIDENT toolbox: 
ExcitationLines = 1 + floor([1:0.1*N] ' ) ; 

% the excited FFT lines 
Amp = ones(size(ExcitationLines)); 

% set the amplitudes 
SignalData = fiddata([],Amp,ExcitationLines-1) 

% creates a MATLAB® object 
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Figure 2-11 Crest factor minimization of a multisine with 25 excited frequencies. 
Left top: Best result selected from 10,000 random phase realizations. Middle top: Result of a nonlinear 
search procedure (Exercise 24). Left middle bottom: Histogram of the multisines. Right: Evolution of 
the crest factor as a function of the number of trials. Gray: random phase generation. Broken black line: 
the crest factor of the optimized phase multisine. 
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Figure 2-12 Crest factor minimization of a multisine with 400 excited frequencies. Left top: Best result selected 
from 10 000 random phase realizations. Middle, top: Result of a nonlinear search procedure (Exercise 
24). Left, Middle bottom: Histogram of the multisines. Right: Evolution of the crest factor as a 
function of the number of trials. Gray: Random phase generation. Broken black line: The crest factor 
of the optimized phase multisine. 

UMinCrest = crestmin(SignalData) ; 

% minimize the crest factor 

z = msinprep(UMinCrest,Ndatal) ; 

% calculates the multisine 

uMinCrest = z.input; 

put the signal in a vector 
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Plot the signals on the plot of Exercise 23. Also plot the histograms of multisines for both 
exercises. □ 

Observations (see Figures 2-11 and 2-12) The numerically optimized signal has a very 
low crest factor (typically 1.4). From its histogram it is seen that this signal has almost a bi-
nary behavior while the samples of the best random multisine still have an almost Gaussian 
distribution. Random phase multisines (without optimization) are asymptotically Gaussian 
distributed. The phase optimization reduces the size of the tails of the distribution. 

Discussion Generating multisines with a small crest factor 

■ The amplitude distribution of a random phase multisines is asymptotically normally 
distributed. 

■ Minimization of the crest factor by selecting the smallest peak value out of a large 
number of realizations does not work well. The probability to find a very low crest 
factor drops very fast with the number of excited frequencies. 

■ Numerical optimization methods are available to generate multisines with a minimal 
crest factor (typical value 1.4). 

■ The amplitude distribution of an optimized multisine tends to almost a binary distri-
bution; it is close to a sine distribution. 

■ More details on the crest factor minimization algorithm c r e s t m i n is given in Guil-
laume et al. (1991). Random phase multisines are extensively discussed in Pintelon 
and Schoukens (2001). 

2.4.2 Maximum length binary sequences 

The amplitude distribution of an optimized multisine almost tends to a binary distribution, 
with the extreme amplitudes having the highest density. Binary excitations are signals that 
take only two values: 1 or -1. The power spectrum of these signals is set by the switching se-
quence between these two values. Special signals in this class are the maximum length binary 
sequences (MLBS). These are periodic signals with a crest factor equal to 1, that are designed 
to generate a flat amplitude spectrum. They can be generated using a shift register as shown 
in Figure 2-13. The spectrum of the discrete time sequence is flat, while the spectrum of the 
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Figure 2-13 Generation of a maximum length binary signal with a shift register (can be initialized 
with an arbitrary nonzero code). 

corresponding continuous time ZOH-reconstructed signal (see Figure 2-14) has a spectrum 
whose components decrease inversely proportional to the frequency. The amplitude A(k) of 
the Fourier coefficient Uk of a ZOH-MLBS is given by 
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A(0) = ^ and A(jfc) = a^N* lsmc(k%/N) for it = 1, 2, ..., AT- 1, (2-12) 

with a the amplitude of the binary signal. The length of an MLBS is N = 2" - 1 with n the 
register length. The feedback positions in Figure 2-13 depend on the register length. 

Exercise 25 (Generation of a maximum length binary sequence) 

■ Generate an MLBS with a register length n = 5. Plot the discrete time sequence 
and its ZOH continuous time reconstruction. Select a clock frequency of 100 Hz. 

■ Plot the DFT spectrum of the discrete time sequence (with a scaling factor l/jN). 

■ Approximate the spectrum of the continuous time ZOH-MLBS by upsampling the 
original sequence 16 times. 

Hints 
To generate the required signals the following instructions can be used 
u = mlbs(nRegister) ; 

% generates a MLBS with registerlength = nRegister 
% the clock frequency is normalized to 1 Hz 

uOverSample = kron(u(:),ones(OverSample,1)) ; 
% over samples u with a factor OverSample □ 

Observations (see Figures 2-14) The discrete time sequence has a flat amplitude spec-
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Figure 2-14 Generation of a maximum length binary sequence with a register length of 5. 
Top left: The discrete time MLBS sequence (dots) together with a ZOH 
reconstruction. Top right: The DFT amplitude spectrum of the discrete time 
sequence. Bottom left: Approximation of the spectrum of the continuous time 
sequence in / = [0, 100] Hz. Bottom right: Approximation of the spectrum of 
the continuous time sequence in / = [0, 800] Hz. 

trum. The ZOH reconstruction introduces zeros at multiples of the clock frequency used to 
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generate the MLBS. In practice, the frequency band of interest is usually restricted to the first 
lobe between zero and the clock frequency. 

Exercise 26 (Timing the parameters of a maximum length binary sequence) 
Select the clock frequency and the register length to generate an MLBS such that at least 100 
spectral components are present in the frequency band [0,1000] Hz while the amplitude of the 
lowest frequency component in that band is not more than 6 dB below that of the largest 
amplitude. □ 

Discussion What you learned in these exercises 
m An MLBS injects a maximum power for a given amplitude, its crest factor equals 

one. 
■ The amplitude spectrum of the discrete time sequence is flat. 
■ The amplitude spectrum of the ZOH sequence drops as a sine-function with its first 

zero crossing at the clock frequency. 
■ Not all power is in the frequency band of interest. A MLBS has a part of its power at 

much higher frequencies than the clock frequency. 
■ Within the frequency band of interest, the amplitude spectrum rolls off slowly. 
■ An extensive overview of binary excitation signals and related excitations are dis-

cussed in Godfrey (1993). An overview of available software to generate these sig-
nals is made in Godfrey et al. (2005). 

2.4.3 What have we learned in Section 2.4? Further 
reading 

In this section we learned to design multi-frequent periodic excitations with optimized char-
acteristics. In many applications we want to generate a signal with a user defined power spec-
trum, while at the same time the peak value of the signal should remain small. This can be 
done using either multisine signals with well-selected phases, or by using binary excitations. 
Both problems are intensively documented in the literature. In Schroeder (1970) a method is 
proposed to generate multisines that are very similar to swept sine excitations, the major dif-
ference being that all the signal power is confined to the frequency band of interest which is 
not the case for a swept sine excitation. Guillaume et al. (1991) propose a very efficient nu-
merical search algorithm to create multisines with an arbitrary power spectrum and an ex-
tremely low crest factor. In Schoukens and Dobrowiecki (1998), a multisine is imposed that 
not only generates a user imposed power spectrum, the user can also define the amplitude dis-
tribution of the signal (e.g., a uniform distribution). Also the design of binary excitations is 
intensively studied. The papers by Tan and Godfrey (2009), Godfrey et al. (2005), and the 
book Godfrey (1993) give an extensive overview with many reference therein. These authors 
developed also a toolbox to generate these signals. In Chapter 6, we will also discuss the use 
of random phase multisines to identify linear approximations of nonlinear systems. 

2.5 GENERATING SIGNALS USING THE FREQUENCY 
DOMAIN IDENTIFICATION TOOLBOX (FDIDENT) 

The FDIDENT toolbox (Kollar, 1994) offers a GUI (graphical user interface) to design ad-
vanced periodic excitations, allowing the user to optimize the crest factor or the spectral con-
tent of the excitation. The user should select the nature of the signal: 
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Multisine: See Section 2.3.2 
Pseudo random binary sequence (PRBS): The MLBS of the previous section is a 
special case of these signals. The restriction on the length (N = 2" - 1) can be re-
laxed which leads to the PRBS signals. 
Discrete interval binary (DIBS) and ternary (DITS) signals: These are signals that 
take either two (-1,1) or three (-1,0,1) values, respectively. The signal can only 
switch on an equidistant discrete time grid. The switching sequences are optimized 
in order to get as close as possible to the user defined amplitude spectrum. 
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Figure 2-15 The excitation design window of the FDIDENT toolbox. 

Exercise 27 (Generation of excitation signals using the FDIDENT toolbox) Use 
the graphical user interface (see Figure 2-15) to generate a periodic excitation signal that ex-
cites the system with a flat amplitude in the frequency band [100 Hz, 500 Hz] with a fre-
quency resolution of 5 Hz or higher. Normalize all signals to have the same rms value in the 
frequency band of interest: 

ke freq.band 

(2-13) 

Compare the different excitation signals: 

■ Analyze the ratio of the in-band power to the out-of-band power. 

■ Calculate the crest factor of the signals. 
■ Look for the DFT lines with the smallest amplitude in the frequency band of interest. 
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2.6 GENERATION OF RANDOM SIGNALS 

An alternative to the special designed periodic excitation signals is the use of random excita-
tions. Their use is very popular in practical applications because it seems much easier to gen-
erate and use random noise excitations than periodic signals. As we learned in the previous 
sections, we have to choose the amplitude spectrum and the spectral resolution in order to de-
sign a periodic excitation while these questions are seemingly not present when dealing with 
random excitations. However, this impression is misleading because these choices are implic-
itly made when the user does not address these aspects explicitly. The frequency resolution of 
a random noise excitation is set by the length of the experiment, and the amplitude spectrum 
is determined by the noise shaping filters that are used in the generator and actuator. For that 
reason, we strongly advice the reader to use periodic excitations whenever it is possible be-
cause their periodic nature gives access to many additional advantages during the processing 
in time- and in frequency domain methods. If the reader decides to use random excitations 
she/he should also understand very well the choices to be made during the generation and 
processing of these signals. The next series of exercises illustrate how to do that. 

2.6.1 Generation, analyzing, and shaping random 
excitations 

Exercise 28 (Repeated realizations of a white random noise excitation with fixed 
length) Generate a white zero mean random noise sequence, uniformly or normally 
distributed, with a length of N - 128 samples and an rms value JE { u2} equal to 1. Plot 
the DFT spectrum (scale with \/ JN). Repeat this four times and compare the amplitude 
spectra. □ 

Observations Note that the spectrum varies from one realization to the other (see 
Figure 2-16). Although a white noise sequence has a flat power spectrum (0 dB in this exam-
ple), the spectrum of an individual realization is not flat. Large spikes and dibs occur. At 
some frequencies the amplitude is 20 dB or more below the average value. This leads to a 
poor SNR at those frequencies. 
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Figure 2-16 Comparison of the DFT spectrum of 4 realizations of a random white noise 
sequence each with a length of N = 128. 
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Exercise 29 (Repeated realizations of a white random noise excitation with 
increasing length) Repeat the previous exercise for an increasing length of the record: 
N = 128,256,512, 1024. Plot for each of these realizations the amplitude of the DFT 
spectrum (scale DFT with \/JN). □ 

Observations Observe that a longer record does not result in a smoother spectrum (see 
Figure 2-17). Irrespective of the record lengths, apparent dips and spikes still appear in the 
amplitude spectra. From the plots it can be seen that by increasing the record length, the fre-
quency resolution is increasing (see also Exercise 18). 
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Figure 2-17 Comparison of the DFT spectrum of 4 realizations of a random white noise 
sequence with increasing length. 

Exercise 30 (Smoothing the amplitude spectrum of a random excitation) Gener-
ate n successive realizations ulr](k), r = 1,..., n of the white random noise sequence. Av-
erage over the different DFT spectra (scale with I/JN): 

Suv(G>k) 
1 M 

u{r\k)u^\k) = -y 
n*-'r= i 

iU<Jc)\7 (2-14) 

Plot the results for M = 1, 16, 64. Also add the histogram of | U(k) | , k = 1, ...,N/2. D 

Observations Note that averaging over different realizations smooths the spectrum (see 
Figure 2-18). The peaks and drops disappear and the histogram becomes concentrated around 
its mean value. What is the underlying distribution of | U(k)\ ? 
From the central limit theorem, it follows that under loose conditions, the real and imaginary 
part of U(k) are zero mean normally distributed. The power spectrum Suu((sik) consists of 
the scaled sum of 2M squared normally distributed variables, resulting in a %2 -distribution 
with 2M degrees of freedom. Such a distribution has a mean value of M and a standard devi-
ation of JIM. This shows immediately that the standard deviation of the power spectrum 
drops as 1/ JM due to the scaling with \/M in (2-14). 
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Figure 2-18 Comparison of the DFT spectrum for an increasing number of averages. 

Conclusion - What you learned in these exercises Power spectrum of random noise ex-
citations: 

■ The DFT-amplitude spectrum of a random noise sequence is a random sequence 
with spikes and dips (of 20 dB or more). 

■ Making the sequence longer does not reduce the spiky behavior. 
■ Averaging over multiple realizations allows to average the power spectrum $uv(G)k) ■ 
■ The measured power spectrum is %2 -distributed. For a large number of averages it 

tends to a normal distribution with mean value Ŝ f/CD*) and variance 2S(/fX<D,t)/M. 
■ More information on the use and processing of random excitation signals can be 

found in Bendat and Piersol (1980). 

Exercise 31 (Generation of random noise excitations with a user-imposed power 
spectrum) Generate a filtered noise sequence with a length N = 2048 using the following 
instructions: 

■ Noise filter 
[b,a] = butter(6,CutOff*2), Cutoff = 0.1 

■ Generate M realizations of a Gaussian white noise sequence with length N each: 
u = randn(N,M); 
Choose M = 1, 16,64. 

■ Generate the filtered signals: 
u = f i l t e r ( b , a , u ) ; 

■ Plot the amplitude of the DFT spectrum (scale with \/ JN) and compare it to the 
amplitude of the filter transfer function. 

■ Repeat the exercise using a Hanning window (see Exercise 22.a). 
Observations The behavior of the amplitude spectrum is similar to that of the previous 

exercise. But this time the power spectrum is shaped by the filter characteristic (see Figure 2-
19). Note that for the rectangular window, the averaged power spectrum is not following the 
filter characteristic any more from -40 dB on. This is due to the leakage effect. Replacing the 
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Figure 2-19 Comparison of the DFT spectrum of filtered noise sequences for a different 
number of averages. Top figures: Rectangular window. Bottom figures: 
Hanning window. Black dots: The actual realization of the spectrum. Gray 
line: The filter characteristic. 

rectangular window by the Hanning window pushes this effect to a much lower level (no 
longer visible on this figure). 

Exercise 32 (Amplitude distribution of filtered noise) Generate a white binary se-
quence with a length of N = 100,000 and pass it through a filter with a long impulse re-
sponse. Plot the histogram of the input and the filtered output. 
Hint: Use the following instructions to generate the filter coefficients: 
CutOff =0.1 % Cut off frequency, relatively to fSample 
[b,a] = butter(6,CutOff*2); % filter □ 

Observations Although the input amplitude distribution is a binary sequence, it can be 
seen that the output is almost normally distributed (see Figure 2-20). This is a direct conse-
quence of the central limit theorem that states, loosely, that the sum of a large number of in-
dependent random variables tends to a normal distribution. A discrete time filter calculates 
the output by making a convolution between the input and the impulse response: 

y(t) = ^T u(n)h(t - n). (2-15) 

So the output at time t consists of the sum of a large number of weighted input samples. Due 
to the central limit theorem, the output tends to be normally distributed, as is seen in Figure 2-
20. It is difficult to generate a filtered noise sequence that is not approximately normally dis-
tributed. 

2.6.2 What have we learned in Section 2.6? Further 
reading 

Random noise excitations should be processed with care. The FFT of a random noise se-
quence does not converge towards a limit value for a growing length of the excitation. Well-
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Figure 2-20 Histogram of a binary input, and the corresponding filtered output. 

designed averaging techniques are needed to smooth the estimated power spectrum. At least a 
few realizations of the signal are needed. In practice this is done by breaking the original data 
record in a number of sub records. Even the availability of only a few sub records improves 
the smoothness already significantly (Bendat and Piersol, 1980; Pintelon and Schoukens, 
2001). We also learned that it is possible to shape the power spectrum of random noise using 
a shaping filter. This is a simple operation, but it drives the amplitude distribution to become 
Gaussian. To the best of the authors knowledge, there does not exist a (simple) procedure to 
generate noise with a user defined power spectrum and amplitude distribution. 

DIFFERENTIATION, INTEGRATION, AVERAGING, AND 
FILTERING OF PERIODIC SIGNALS 

In some applications, the user needs to integrate or differentiate the measured signals. The 
aim of this exercise is to illustrate how the periodic nature of a signal can be used to calculate, 
for example, its derivative, and to improve the SNR by averaging over repeated periods and 
eliminating non excited frequencies. 

Exercise 33 (Exploiting the periodic nature of signals: Differentiation, integration, 
averaging, and filtering) Generate a periodically repeated sawtooth function using the fol-
lowing MATLAB instructions: 

uO - 1 : 1 " [ 0 : N / 2 - l N / 2 : 
% create a sawtooth 

uO = uO-mean(uO); uO = u 0 / s t d ( u 0 ) ; 
% eliminate the mean value and normalize the signal 

uO = k r o n ( o n e s ( 1 , M + 1 ) , u O ) ; 
% repeat the signal over M + 1 periods, choose M - 10 

[ b , a ] = b u t t e r ( 2 , 0 . 3 ) ; uO = f i l t e r ( b , a , u O ) ; uO(1:N) = 
% reduce the high frequency components and eliminate the first period 

u = u0 + SNR*randn(s i ze (uO) ) ; 
% add noise to the signal, put SNR = 0.001 

. ] ; 

Calculate the derivative of u{t) and u0(t) by transforming the signal to the frequency 
domain and multiplying the spectra with y co. Take care of the frequencies above half 
the sampling frequency (see also Exercise 19.b)! Plot the signals together with the 
derivatives. 
Reduce the influence of the noise by averaging (in the time domain) over the M 
measured periods. Plot the noise signal. 
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Figure 2-21 Calculation of the derivative of a periodic function using FFT techniques. 
(a) The noiseless signal (black) and its derivative (gray), (b) Shows also the 
measured derivative, (c) The measured derivative, averaged over M = 10 
periods, (d) As (c) but the even frequencies put equal to zero. 

■ Verify the spectrum of u0(t) and observe that only the odd harmonics are present. 
This will not be changed by passing the signal through a linear system (e.g. integrat-
ing, differentiating, ...). Hence we can put the even frequencies also equal to zero. 
Plot this "filtered" noise signal. 

Observations (see Figure 2-21) 
m The figure of the noiseless data shows the expected behavior. The derivative of a 

sawtooth is a staircase function. Notice that around the "discontinuity" a ringing 
phenomenon can be seen. This is due to the "Gibbs" phenomenon: Asum of sines 
cannot produce a discontinuous function. 

■ The derivative of the noise signal looks much noisier than the original signal. This is 
because we added white noise, and the differentiation action amplified the high fre-
quency noise. It is possible to reduce the noise amplification by reducing the fre-
quency band over which the derivative is calculated. A compromise between 
systematic errors (a part of the signal is removed) and noise sensitivity should be 
made. 

■ Averaging over M periods reduces the noise by JM (Figure 2-21, c). Eliminating 
all even frequencies (one line in two) reduces the noise once more with a factor 
72 (why?), (see Figure 2-21 d). 



FRF Measurements 

What you will learn: This chapter shows the reader how to measure the frequency response 
function (FRF) of a linear dynamic system with single or multiple inputs. The following top-
ics are addressed: 

- Direct impulse response function measurement (see Exercise 34). 
- The response of a linear system on a sine excitation: transient and steady-state re-

sponse (see Exercise 35). 
- FRF measurements using broadband excitations using multisines (see Exercise 36) 

and random noise excitations (see Exercise 37). 
- Understanding and reducing the impact of leakage on FRF measurements (see Exer-

cises 38, 39, 40, 51, and 52). 
- Dealing with process (output) noise in FRF measurements (see Exercises 42, 43, 44, 

45, and 56). 
- Dealing with disturbing noise on the input measurements in FRF measurements (see 

Exercises 46,47, and 48). 
- FRF measurements under feedback conditions (see Exercises 49, and 50). 
- Measuring the FRF matrix of a multiple-input-multiple-output system (see Exercises 

53, 54, 55, and 57). 

3.1 INTRODUCTION 

The aim of this chapter is to study how the nonparametric frequency response function (FRF) 
of a linear dynamic system can be measured. Making this nonparametric intermediate step in 
the system identification procedure offers multiple advantages. The user gets a good idea of 
the behavior of the system dynamics, and sees at the same time that it is also possible to mea-
sure the power spectrum of the disturbing noise. This can simplify significantly the initializa-
tion of the parametric identification step. Moreover, the user will get a good idea about the 
quality of the measurements in an early phase of the measurement campaign so that it is even 
possible to adapt the experiments to improve the result or to remove measurement problems. 

In this chapter we consider first the perfect situation, where no disturbing noise nor 
nonlinear distortions are present. This allows us to study the intrinsic properties/problems of 
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the basic algorithms, using impulse excitations, and periodic and random excitations. Next 
we study the impact of a disturbing process or measurement noise and learn how to deal with 
it. We will show the reader also to deal with disturbing noise on the input measurements. The 
impact of nonlinear distortions on FRF measurements is out of the scope of this chapter, it 
studied in detail in Chapters 5 and 6. Finally we illustrate how to measure the FRF of a sys-
tem that is captured in a feedback loop. In this chapter it will not only be shown how the FRF 
can be extracted from the measurements, it will also be shown how a nonparametric noise 
analysis can be made so that uncertainty bounds can be given around the measurement re-
sults. Most of the exercises in this chapter are focused on single-input single-output (SISO) 
systems, but at the end of the chapter we also give a brief introduction to the problems related 
to the measurement of the frequency response matrix (FRM) of multiple-input multiple out-
put (MIMO) systems. 

3.2 DEFINITION OF THE FRF 

Consider the linear time-invariant dynamic system, characterized by its impulse response 
g0(t) (Figure 3-1). 

(0 8o(t) - ■ " * " 

Figure 3-1 A linear time-invariant dynamic system with impulse response 
g0(f), excited by the input signal H0(<) and output y0(f). 

In the continuous time domain, the system response is described by 

v0(0 = J g0(t-x)u0(x)dx. (3-1) 

For discrete time systems, the relation is 

yo(t) = Y° g0(t-k)u0(k). (3-2) 

In the frequency domain, the relation for continuous and discrete time systems is given 
by 

Y0(Q.) = G0(Q)U0(ei), (3-3) 

with U0, Y0, G0 the continuous or discrete Fourier transform of u0, y0, g0, respectively, 
£1 = j(0 for continuous time systems, and for discrete time systems £1 - e"8700* where 
cos = 2nfs with fs the sample frequency. G0(Q) is the transfer function of the system. A 
nonparametric measurement of the transfer function at a discrete set of frequencies G0(Q.k), 
k = 1, ..., F is called the frequency response function (FRF) of the system. In this chapter 
we will learn how to extract g0, G0 from measured data. For simplicity, we will make all sim-
ulations in the discrete time domain, but all methods can be generalized without any problem 
to measurements of continuous time systems. 
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Further reading: There are many books on system theory available. Amongst others, an intro-
duction to continuous and discrete linear time invariant systems can be found in the book of 
Oppenheim et al. (1997). 

3.3 FRF MEASUREMENTS WITHOUT DISTURBING NOISE 

In this section we study the measurement of the FRF without considering the influence of dis-
turbing processes or measurement noise. This allows us to focus on the errors that are in-
duced due to the fact that the system is measured during a finite time. First we will study the 
behavior of the dynamic system in the time domain. A direct measurement of the impulse re-
sponse will be made, and the transient and steady-state behavior of the system will be intro-
duced. Next we will turn our attention to the frequency domain and study the popular 
methods for the measurement of FRFs. 

3.3.1 Direct measurement of the impulse response 

In this exercise we make a direct measurement of the impulse response. The input signal is an 
impulse (u{t) = 8(f) with 8(f = 0) = 1, and zero elsewhere), the output is by definition the 
impulse response: g0(t) = G0(8(0)- The major advantage of this method is its simplicity, it 
is often used in practice for this reason. In many mechanical applications, a direct impulse re-
sponse measurement can be made by a simple hammer excitation. The major disadvantage of 
this method is twofold: (i) a large peak value of the impulse is needed to get a sufficiently 
high signal-to-noise-ratio, the method can only be applied under low noise measurement con-
ditions. (ii) Too large peak values often drive the system into a nonlinear operation mode. 

Exercise 34 (Impulse response function measurements) Create a second order dis-
crete time system with a resonance of 10 dB using, for example, the MATLAB® instruction 
[ b , a ] = c h e b y l ( 2 , 1 0 , 2 * f c / f s ) with / , = 256Hz the sample frequency, and fc 

the cut off frequency. Select fc/fs = 0.1. Excite this system with an impulse of amplitude 1, 
and measure its input and output in N = 128 points. 

■ Plot the input/output measurements in the time domain, and calculate the corre-
sponding FFT spectrum. Normalize the FFTs by dividing by JN. 

m Plot the time and frequency domain signals. 

■ Calculate the FRF of G{z) directly from the transfer function 
G(z) = ^bkz'k/J^akz'k using the MATLAB® instruction f r e q z (b, a, CO ), with 
co = 2nf/f,. 

m Plot the FRF and the output spectrum on one plot. Determine the scaling factor of 
the output spectrum such that it fits with the FRF. Compare the scaling factor to the 
amplitude of the input spectrum. 

Observations (see Figure 3-2) The impulse response does not start before the impulse is 
applied. This is the defining characteristic of causal systems. The impulse response 
oscillates with a frequency that corresponds to the resonance frequency of the sys-
tem, and it decreases exponentially toward zero (verify this by making a log plot). 
The FFT of the output shows the FRF of the transfer function of the discrete system, 
sampled at the frequencies kfs/(N), with fs normalized to 256 Hz. The FFT re-
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suits are compared to the FRF that is calculated directly from the transfer function, 
and a perfect agreement is found. 
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Figure 3-2 Direct measurement of the impulse response. Top: Time domain measurements. 
Bottom: Frequency domain measurements. 

3.3.2 Transient and steady-state response for periodic 
excitations 

Instead of applying an impulse to probe the system at all frequencies simultaneously, it is also 
possible to measure the FRF frequency per frequency using a sine excitation. The major ad-
vantage is that such measurements will have a much higher SNR, but at a cost of a longer 
measurement time, and this for two reasons. It is not only necessary to measure at least one 
period at each probing frequency, it is also required to wait till the transients have disap-
peared, and this is done each time that the frequency is changed. The transient effect is stud-
ied in this section. 

Exercise 35 (Study of the sine response of a linear system: transients and steady-
state ) Consider the discrete time system of the previous exercise and excite it at 16 Hz with 
a cosine with amplitude 1. Select the sample frequency fs - 256 Hz. Measure TV = 128 
points of the input/output signals which corresponds to 8 periods of the excitation. Use the 
last measured period to estimate the steady-state response (all transients are assumed to be 
negligible in this interval), and subtract it from the rest of the record to make the transient vis-
ible. 

■ Plot the output and the estimated transient in the interval [0, 0.25] s. 

■ Plot also the input and output spectrum. Use a scale factor of 1 /N in the FFTs. 

■ Study the impact of the length of the measurement on the estimates of the steady-
state and transient response. How can you verify that the record was long enough to 
reach the steady-state ? 

□ 

56 
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Observations (see Figure 3-3) From the left figure it is seen that the transient decays 
exponentially. It can be concluded that the steady-state is reached, only when the transient is 
sufficiently small at the end of the measurement interval. In the right figure, the spectrum of 
the input (a pure cosine, no leakage) appears as an impulse. At the output, the skirts which are 
due to the transients are clearly visible. 
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Figure 3-3 Left: Output (gray) and transient response (black). Right: The input (black +) and output (gray 
dots) FFT. 

Exercise 36 (Study of a multisine response of a linear system: transients and 
steady-state ) In this exercise we repeat the previous exercise but this time for a multisine 
excitation. As was illustrated in Chapter 2, a multisine excites all frequencies simultaneously 
(similar to an impulse), but the phases are chosen to avoid the impulsive nature so that a more 
persistent excitation of the system is obtained; it is "continuously" excited during the whole 
experiment. The major advantage of these signals is that the same power is injected into the 
system for a much lower peak value of the excitation. 

Create a multisine with a period of NPeriod - 128 points, exciting the system up to 
100 Hz, with frequency components having an equal amplitude and random phase (see Chap-
ter 2, Exercise 20). Normalize the peak value of the signal to 1 so that it is possible to com-
pare the results with those obtained with an impulse excitation. Calculate the rms value of 
this signal and compare it to that of an impulse. Apply it to the system of Exercise 34, and 
measure the input and output over M = 3 periods of the excitation signal. Estimate the 
steady-state , and next the transient. Verify if the steady-state estimate is reliable. 

Make the following series of plots on a first figure: 
■ the measured output, 
■ the estimated transient, 
■ the estimated transient (absolute value) on a logarithmic amplitude scale. 

Calculate the spectrum of the input signal (1 period). Segment the output in 3 sections, con-
taining each exactly one period (see also Chapter 2, Exercise 15 to select correctly the begin 
and end point of the data for an FFT analysis). Calculate for each segment the FRF by mak-
ing a division of the output spectrum by the input spectrum. Make a plot of: 

■ the amplitude spectrum of one period of the input (scale the FFT with jNPeriod), 
■ the FRF at each segment, together with the exact FRF. 

a 
Discussion (see Figure 3-4) The response of the system on three successive periods of 

the input is drawn at the left of this figure. Notice that it is hard to see deviations from period-
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Figure 3-4 Top: 3 periods of the multisine response of the system. Middle: Transient. Bottom: Amplitude of the 
transient on a logarithmic amplitude scale. 

icity in this figure. In the middle figure, the transient is made visible by subtracting the third 
output period from the first and second period. From the logarithmic plot (right plot), it can 
be clearly seen that the transient decays exponentially, the local successive maxima are on a 
straight line. Note also that the estimated transient amplitude is below le-10 at the start of the 
third period that was used to calculate the steady-state response. This shows that the transient 
error on the steady-state estimate will be smaller than this value. In Figure 3-5, the flat ampli-
tude spectrum of the multisine excitation can be seen, all frequencies are equally excited as 
was the case for an impulse. Observe that the amplitude of the spectrum is almost 5 times 
larger than what was obtained with the impulse excitation in Section 34 for the same settings 
(see Figure 3-2). This will result in a much higher SNR in the presence of disturbing noise. In 
the next three subplots, it can be seen that the errors on the FRF decrease fast. This is because 
the impact of the transient that creates these errors decreases exponentially. Figure 3-5 b-d 
shows the measured FRF and the error. Observe that the error drops fast because the transient 
drops exponentially with a growing period number. 
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Figure 3-5 (a) Amplitude spectrum of the multisine excitation, (b)-(d) The amplitude of the FRF 
estimate for the first, second, and third period. Thin black line: G0 . Dots: Measured FRF. 
Gray line: \G-G0\. 
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3.3.3 FRF measurements using random excitations 

Noise is a very popular excitation signal to measure the FRF. The basic reason for this popu-
larity is the apparent ease of generation: a random sequence is passed through a digital filter 
to select the frequency band of interest. The drawback of this signal is that it is not periodic, 
and hence the FRF measurements will suffer from leakage. It is impossible to reach a peri-
odic steady-state response like in Exercise 36, because the excitation is not periodic. To re-
duce the leakage effects, the data are divided in M blocks (or subrecords) and dedicated 
averaging methods are used to combine all these data in a single estimate with a lower noise 
sensitivity. 

Exercise 37 (FRF measurement using a noise excitation and a rectangular 
window) Generate a random noise sequence r(t) with length 128xM, with M the number 
of realizations. Filter this sequence by a generator filter with bandwidth 03fs and 
/ , = 128Hz, using a digital filter [ b , a ] = b u t t e r (2 , 2*0 . 3) and apply the resulting 
signal u(t) to the system in Section 34. Measure the output y(t). 

Segment the input/output record in M subrecords, calculate the FFT on each of these 
segments (is the normalization of the FFTs of importance?), and calculate the FRF at fre-
quency (0r as 

1 M 

G(j(Or) = - — T J = , (3-4) 
- Y Uul(r)Uls](r) Svvi^r) 
M-

with X[s] the FFT spectrum of segment s. Repeat this exercise for M = 1, 4, 16, 256. Plot 
\G\ and Suu (scale the FFTs with Vl28). 

Observations In Figure 3-6, the measured FRF is shown, together with the exact value 
G0 and the error \G - G0\. Note that in this exercise there is no disturbing noise added, the 
errors are completely due to leakage. It can be clearly seen that initially the error drops fast 
with growing M. For larger values of M, the error reduction becomes proportional to 
\/JM which means that the error disappears slowly. For large values (in this case 
M > 256), it can be seen that at the resonance frequency the error no longer decreases and a 
systematic error becomes visible. To probe the relationship between M and the error, the re-
alized amplitude spectrum of the excitation Suu should be plotted (see Figure 3-7). In this 
figure it is clearly visible that for a small number of realizations, Suu has many frequencies 
with low power (dips). At those lines the measurement is extremely sensitive to the leakage 
errors. For larger values of M, these dips disappear. At the same time the errors are also 
smoothed in the averaging process. 

Exercise 38 (Revealing the nature of the leakage effect in FRF measurements) 
In this exercise it will be illustrated that the leakage effect has intrinsically a highly structured 
nature although it looks like noise in Figure 3-6. Consider N measured input and output data 
points, sampled from a system G0 that is excited with noise. It can be shown that the relation 
between the FFTs U0, and Y0 of these records is 

Y0 = G0U0 + T, (3-5) 
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Figure 3-6 FRF measurement using a noise excitation and a rectangular window, averaged over M realizations. 
Black line: Exact FRF. Gray line: Measured FRF. Dots: The magnitude of the complex error |G — G0| . 
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Figure 3-7 Power spectrum of the random noise excitation, averaged over M realizations. 

with T a transient term that has the same mathematical structure as the system transfer func-
tion G0. The measured FRF G is then 

e-§-°-£- (3-6) 

The leakage effect is nothing other than T/U0, which has a random nature because U0 is a 
complex normally distributed random signal. The aim of this exercise is to illustrate this tran-
sient behavior of leakage. 

Create a second-order discrete time system with a resonance of 10 dB using, for exam-
ple, the MATLAB® instruction [ b , a ] = c h e b y l (2 , 1 0 , 2 * f c / f s ) with/, = 256Hz 
the sample frequency, and fc the cutoff frequency. Select fc/fs = 0.1. Excite this system 



Section 3.3 ■ FRF Measurements without Disturbing Noise 63 

with a white Gaussian random noise excitation u0(t) with a length N + AfTrans > with 
N = 10,000 and NTmns - 1000. Measure its input and output. Remove the first NTrans 
points to eliminate the effect of the initial conditions. 

■ Process the remaining data in blocks of Nmozk, with NWaA = [125 250 500] in the 
time domain. Then transform the data to the frequency domain (block by block), and 
calculate for each block the output starting from the input using the relation: 

yMod = real(ifft(G.*U)) (3-7) 

(see also Chapter 2), with G the FRF of G0 calculated at the FFT frequencies: 

G = f r e q z ( b , a , 2 * p i * f / f s ) (3-8) 

■ Calculate for each block the error between the modeled output and the actual output 
of the system and plot these for the different block lengths. 
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Figure 3-8 Illustration of the transient nature of the leakage effect. The output of a dynamic system is 
calculated block per block using the FFT IFFT and the FRF of the system. Observe that at the 
beginning of each block a transient that is due to the excitation of the previous block is appearing. 
This is disturbing the FRF measurement in two directions: This transient is missing in the analysis 
of the previous block, and it is disturbing the analysis of the next block. 

Discussion (see Figure 3-8) From the error plot in this figure, the transient nature of the 
error becomes clearly visible. This transient is the response of the system to the input of the 
previous block (for example block number k - 1) and acts as a disturbance for the FRF mea-
surement in the actual block (block number k). Moreover, the transient that is connected to 
block k is not measured in block k but is disturbing block k + 1. This shows that in a single 
block two errors are combined: the additional transient of the previous block, and the missing 
transient that is in the next block. 

Observe that the level of the transients does not depend upon the block length. The 
longer the block, the smaller the relative power of the transients compared to that of the total 
signal in the block. This shows that the variance (power) of the error will drop in 1 /NBlock. 

In the next exercise, an alternative will be proposed to reduce the impact of the tran-
sients. From this exercise it is seen that the errors are due to problems with the analysis at the 
borders of the blocks. By replacing the rectangular window (no weighting of the time domain 
data in the measured window) in this exercise by a window that goes to zero at the ends, it 
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seems possible to reduce the errors. This is the basic idea behind windowing methods, for ex-
ample a Hanning window, or a diff window (see Exercise 2, 22.a). A more advanced method 
that exploits explicitely the smooth behaviour of the transfer function and the transient (= 
leakage) is explained in Section 3.7. 

Exercise 39 (FRF measurement using a noise excitation and a Hanning window) 
In the previous exercise it turns out that leakage disturbs the FRF measurements. The impact 
of leakage can be reduced by multiplying the data with a window in the time domain. The ba-
sic idea is to use a weighting of the data that goes to zero at the beginning and the end of the 
time window. A very popular window is the Hanning window: 

wHa„n(0 = 0.5(1 - cos tlii/N). (3-9) 

where t = 0, 1, ....iV— 1. This window is multiplied with the signal for which the FFT is 
calculated: XHann(k) = FFT(x(t)w(t)). 

■ Repeat Exercise 37, using the Hanning window for N = 1024 and 
M = 4, 16, 256, 1024, 4096. Use the MATLAB® instruction: 
h a n n i n g ( N , ' p e r i o d i c ' ). 

■ Compare next the measured FRF for the rectangular window (see Exercise 37) and 
the Hanning window, averaged over M = 128 realizations, and a block length of 
N = 128, 256, 512, 1024, 2048, 4096. 

□ 
Observations For the Hanning window, the same observations as in the previous exer-

cise can be made, but this time the errors are significantly smaller at most frequencies 
(Figure 3-9). For a low number of averages (M = 1) the stochastic leakage errors dominate. 
By increasing the number of averages, the stochastic errors are averaged to zero and the re-
maining errors are dominated by the bias errors of the leakage effect. It can be seen that both 
errors are smaller for the Hanning window than for the rectangular window. Note that the sys-
tematic errors are dominant around the resonance frequency. The level of these errors 
strongly depends on the length of the window. 
This is shown in Figure 3-10. Here the evolution of the errors is shown for an increasing 
record length for the Hanning and the rectangular window. It can be seen that the errors of the 
Hanning window are again well below those of the rectangular window, and the size drops 
faster for growing N for the Hanning window than it does for the rectangular window 
(Schoukens et al., 2006) and Table 3-1. 

TABLE 3-1 Comparison of the rectangular, Hanning, and Diff window 

Window 

WReclW = 1 

wHam(k) = 0.5(1 -cosk2n/N) 

M W * ) = \-e^k 

Systematic 
Error 

( M - > ~ ) 

O(AH) 

0(N-2) 

0(N~2) 

Variance 

0(M-lN->) 

0(M^N-2) 

0(M-lN~2) 
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Figure 3-9 FRF measurement using a noise excitation and a Hanning window, averaged over M realizations. Black 
line: G0 Gray dots and black dots: Amplitude complex errors of the rectangular and Hanning window, 
respectively. 
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Figure 3-10 Comparison of FRF measurements with the rectangular and Hanning window for M = 128 realizations, 
and varying length N of the sub-blocks. Full line: G0 Gray dots and black dots: Amplitude complex 
errors of the rectangular and Hanning window, respectively. 

Exercise 40 (FRF measurement using a noise excitation and a diff window) In 
the previous exercise it was shown that the leakage errors can be reduced by multiplying the 
data with a window in the time domain. This can also be interpreted as filter operation (con-
volution) of the data in the frequency domain. The simplest filter is the diff operation 
(diff(X)inMATLAB®): 

Xdiff<£ + 0.5) = X(k+1)-X(k), (3-10) 

where the index k + 0.5 denotes symbolically that the corresponding frequency is the middle 
frequency of bin k and k + 1. For the Hanning window the filter operation corresponds 
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within a factor -0.25 to a double difference Xdifdif(fc) = -2X(k) + X(k + 1) + X(k - 1) so that 
X*JM = -0.25(-2X(*) + X(k+l) + X(k-l)). 

m Repeat Exercise 37, using the diff window. Apply the window this time in the fre-
quency domain using the 'diff operation. Beware of the frequency shift of half a bin 
when comparing the result with the exact value of the FRF. 

■ Compare next the measured FRF for the rectangular window (Exercise 37) and the 
diff window, averaged over M = 128 realizations, and a block length of 
N = 128,512,2048,8192. 

D 

Observations For the diff window, the same observations as in the previous exercise 
can be made (Figure 3-11). Note that the systematic errors are again dominating around the 
resonance frequency, and averaging does not significantly reduce these errors. The level of 
the errors strongly depends on the length of the window. 
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Figure 3-11 FRF measurement using a noise excitation and a diff window, averaged over M realizations. Black 
line: Exact FRF. Gray line: Measured FRF. Dots: The magnitude of the complex error \G - G0\ . 

This is shown in Figure 3-12. Here the evolution of the errors is shown for an increasing 
record length for the diff and the rectangular window. It can be seen that the errors of the diff 
window are well below those of the rectangular window, and the size drops faster for growing 
N for the diff window than it does for the rectangular window (see also Table 3-1 and the pa-
per (Schoukens et ah, 2006). 

Exercise 41 (FRF measurements using a burst excitation) In all the previous exer-
cises, the only source of errors was the leakage effect because no disturbing noise was added. 
The leakage errors were due to the fact that it was not possible to measure in steady-state an 
integer number of periods, because the excitation was nonperiodic. An alternative is to use a 
burst excitation, that starts at the beginning of the measurement window, and falls back to 
zero well before the end of the window. This makes it possible to include the transient effects 
completely in the window (the begin and end transients), thus eliminating all the leakage ef-
fects. This is illustrated in the next exercise. 

Consider a second-order discrete time system with a resonance of 20 dB, using for ex-
ample the MATLAB® instruction [ b , a ] = c h e b y l ( 2 , 2 0 , 2 * f c / f s ) with 
fc/fs = 0.1, put fs = 256 Hz. Excite this system with a burst white random sequence (rms 
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Figure 3-12 Comparison of FRF measurements with the rectangular and diff window for 
M = 128 realizations, and varying length N of the sub-blocks. Full line: G0 . Gray 
dots and black dots: Amplitude complex errors of the rectangular and diff window, 
respectively. 

value of 1) that excites the system in t = 0, 1, ...,AfblU5t- 1, with 7Vburst = 64, 128, 192. 
Measure N = 256 samples of the input and output in an interval of 1 s. Calculate the FRF by 
simple division of the output/input FFTs (has the scaling of the FFTs any importance?). Make 
the following plots: 

■ The measured input and output on top of each other, 
■ The measured FRF, compared to the exact value. 

□ 
Observations (Figure3-13) In this figure, the output transient that remains, once the 

excitation is stopped, is shown. Notice that the error on the FRF increases if a larger part of 
this end transient is missing. This illustrates that leakage effects are essentially a problem of 
unmeasured transients. 

3.3.4 What have we learned in Section 3.3? Further 
reading 

The response of a linear time invariant system consists of two parts: the transient and the 
steady-state response. The transients decay exponentially for systems described by ordinary 
differential equations (e.g., if no diffusion processes are present). 

A periodic input results in a periodic output once the transient decayed. In many mea-
surement applications the users wait till the transients are gone to start the measurement of 
the FRF making explicitly use of the periodicity. The major reason to do so it to avoid leak-
age errors; however, this is done at a cost of lost measurement time. Another advantage of 
measuring under steady-state conditions is that for well-designed periodic excitation signals 
it becomes possible to extract from a single measurement a nonparametric noise model (see 
for example Section 3.5), and also a nonlinear distortion analysis can be made (see Chapter 5, 
Exercise 81). 

For random excitations it is much more difficult to avoid leakage. The classic solution 
to reduce the problem is to average the results over multiple realizations of the input and to 
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Figure 3-13 Measurement of the FRF with a burst random excitation for different burst lengths of 64, 128, 192, 
respectively. Top: The input (black) and output (gray). Bottom: The FRF, exact (black), measured 
(gray), error (dots). 

apply a window before the FFTs are calculated. In Section 3.7 we will introduce a very re-
cently developed method, called the local polynomial method. At a cost of an increased com-
puting time, it is possible to reduce the leakage error with several order of magnitude. 

The reader can find more information on the classical methods to measure the FRF us-
ing random excitation in the book of Bendat and Piersol (1980) that focuses on frequency do-
main methods. Alternatively the impulse response can by measured in the time domain using 
correlation methods, as is explained in Godfrey (1969, 1980). More information on the use of 
windowing methods and a detailed theoretical analysis is available in Antoni and Schoukens 
(2007, 2009) and the references therein. In Schoukens et al. (2000) it is shown that replacing 
a sine excitation by a multifrequency excitation like a multisine can reduce the measurement 
time significantly, especialy for high SNR measurements. 

3.4 FRF MEASUREMENTS IN THE PRESENCE OF 
DISTURBING OUTPUT NOISE 

In this section we repeat the study of nonparametric FRF measurements, but this time we 
consider the impact of process (output) noise on the measurements. 

3.4.1 Impulse response function measurements in the 
presence of output noise 

The major advantage of a direct impulse response function measurement is its simplicity; it is 
often used in practice for this reason. The major disadvantage is the noise sensitivity, the 
technique can only be applied in experimental conditions with a high signal-to-noise-ratio. 
This will be clearly illustrated in the next series of exercises. First the impulse response is 
measured directly, while in the next section more advanced excitation signals are used again. 
From these results it will become clear that the SNR increases significantly when the impulse 
excitation is replaced by an excitation that is applied during the whole experiment. 
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Exercise 42 (Impulse response function measurements in the presence of output 
noise) In this exercise we repeat Exercise 34, where the FRF of a linear dynamic system is 
obtained by a direct measurement of the impulse response. 

Create a second-order discrete time system with a resonance of 10 dB using, for exam-
ple, the MATLAB® instruction [ b , a ] = cheby l ( 2 , 1 0 , 2 * f c / f s ) with fs = 256 Hz 
the sample frequency, and fc the cutoff frequency. Select fc/fs = 0.1. Excite this system 
with an impulse of amplitude 1, and measure its input and output in N = 128 points. Disturb 
the output with white random Gaussian noise N(0, a2 = 0.022). Next repeat this experiment 
100 times and average the results. Calculate also the standard deviation of the measured FRF 
as a function of the frequency. 

■ Plot the input/output measurements in time domain, and calculate the corresponding 
FFT spectrum. Normalize the FFTs by dividing it by the record length N. 

■ Plot the time and frequency domain signals. 

■ Calculate the FRF of G(z) directly from the transfer function 
G(z) = 'YJ>

kz~ /^akz~ using the MATLAB® instruction f r e q z (b, a, CO ), and 
CO = 2itf/fs, with CO evaluated at the FFT frequencies. 

■ Plot the time and frequency domain signals. 

■ Plot the FRF and the output spectrum on one plot. Determine the scaling factor of 
the output spectrum such that it fits as close as possible to the FRF. Compare the 
scaling factor to the amplitude of the input spectrum. 

□ 
Observations (see Figure 3-14) Besides the remarks made before in Exercise 34, the 

following additional observations can be made. From the output time domain measurements 
(Figure 3-14), it can be seen that the impulse response fades exponentially to zero, which is 
not the case for the noise. Increasing the record length does not result in a proportional in-
crease of information about the system because the noise dominates completely at the end of 
the window. After a while, only noise is added to the record which will deteriorate the SNR. 
The bad SNR results also in a very poor estimate of the FRF (Figure 3-14, bottom left). A 
possibility to improve the SNR is to repeat the experiment periodically, and to average the 
successive measurements in the time domain. At the bottom right of Figure 3-14 the same re-
sult is shown after M = 100 averages. Observe that the SNR increased with «/M = 10 (20 
dB). From the repeated measurements it is also possible to estimate the standard deviation of 
the noise as a function of the frequency. 

3.4.2 FRF measurement in the presence of output noise 
using noise and multisine excitations 

In this section we replace, again, the impulse excitation by noise or multisine excitations so 
that the system is excited throughout the whole experiment. This allows us to put more power 
into the system for the same maximum excitation levels. Two classes of excitation signals are 
used: random noise excitation and multisines. In order to minimize the leakage errors, a diff 
window is used for the random noise excitations (see Exercise 37 and Exercise 39). For the 
multisines, the golden rule of thumb is to measure an integer number of periods, to break this 
long record in subrecords, each containing a single period, and to calculate the FFT using a 
rectangular window (sometimes called "no window")- The FRF is estimated as 
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Figure 3-14 Direct measurement of the impulse response in the presence of output noise. 
Top: Time domain measurements. Black: The exact signal. Gray: the disturbing 
noise. Bottom: FFT spectrum of the output. Number of averages 1 (left), and 100 
(right). Black line: Exact value (= FRF). Black dots: The measurements. Gray 
crosses: The error. Blue line: The standard deviation of the errors. 

&<*> = r f I T . , ""<*>. **> = s E T - , ^ ■ w i t h * * > = z l ' M* 
(3-11) 

In these equations, X is the FFT of the /th subrecord. 

In the exercise the different behavior for random noise and multisine excitations is analyzed. 

Exercise 43 (Measurement of the FRF using a random noise sequence and a 
random phase multisine in the presence of output noise) Generate a white Gaussian 
random noise sequence r{t) (bandwidth is 0.5/,). Select the measurement length equal to 
1024*M data points, with M the number of realizations. Choose fs = 128 Hz. Scale the 
rms value to 0.33 to get a peak value that is comparable to the amplitude of the impulse that 
is used in Exercise 42. Apply these signals to the system of Exercise 42. Disturb the output 
with white random Gaussian noise N(0, a2=0.022). Measure the output y(t). Do the same 
for a random phase multisine (period length N = 1024) that excites the full frequency band, 
and consider M periods. Add to both signals JVTrans = 1024 points that will be used to elimi-
nate the initial transients. Repeat the exercise for M = 1,4, 16,64. 

■ Plot the input and output signal plus the disturbing noise for the first 1024 input/out-
put samples. 

■ Process the data, using a block length of 1024 data points so that exactly one period 
fits into a block. Calculate the FRF G using the appropriate method for each type of 
excitation signal. Use a diff window for the noise excitation, and a rectangular win-
dow for the multisine (see Exercises 36, 37, and 39 in this chapter). Is the scaling 
factor of the FFT's important? 
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■ Plot, as a function of the frequency, the exact FRF G0, the complex error G-G0 for 
the noise excitation measurements, and the error for the multisine excitation. Repeat 
this for all values of M. 

□ 
Observations From Figure 3-15 it is seen that the system is continuously excited. The 

response does not fade away as was the case for impulse measurements. The collected infor-
mation will increase with a growing data length (proportional to the square root of the num-
ber of samples), which is not the case for an impulse excitation where the output fades away. 
Note that the peak value of the excitation is similar to that of the impulse excitation of Exer-
cise 42. 

a o 
■PfflllfllJUFI 
W TJwil™ 

2 4 6 
Time (s) 

2 4 6 
Time (s) 

Figure 3-15 Measured input or excitation (left) and output or response (right). Black: Exact 
signal. Gray: Output noise. 

This is also confirmed in Figure 3-16 where the errors of the FRF measurements are 
shown for both excitations for an increasing number of averages M. Notice that for M = 1 
the noise excitation result is very poor compared to the multisine measurements. This is due 
to the fact that the amplitude spectrum of a single noise realization of finite length shows 
large dips resulting in a very poor SNR at those frequencies (see Exercise 37 and Figure 3-7). 
Averaging over an increasing number of realizations removes this problem. It can be seen 
from the figure that the errors for both excitations have a very similar behavior for M > 16. 
The average error level decreases as 1 / JM. 

Exercise 44 (Analysis of the noise errors on FRF measurements) In this exercise, 
a more detailed analysis of the errors that were observed in Exercise 43 is made. The standard 
deviation will be calculated directly from the data (sample variance), and indirectly through a 
theoretical variance analysis. 

Repeat Exercise 43, but fix the number of blocks to M = 16, and repeat the whole ex-
ercise Afrepeat= 10 times. Estimate the FRF from each repeated set. Calculate the mean value 
and the standard deviation of the measured FRF over the 10 repetitions. Next calculate the 
theoretical variance of the FRF from a single realization (e.g., the last one) using the follow-
ing formulas. 

Noise excitation: Calculate first the coherence y2(/) as a function of the frequency: 

f(f) = \sru(f)\2 _ M^ 
$uv(f)Sn(f) f l M _ m Vj M . . . . ^ 

(3-12) 
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Figure 3-16 Evolution of 
the error |G - G0| as a function of the number M of averaged blocks or periods for 
a noise excitation (black dots) or a multisine (gray dots). Black line: exact FRF 
|Go|. 

with Um(j), T-^if) the windowed FFT spectra of block k. The variance estimate is then 
given by 

og(/HG0(/)[ 21-Y2(/) 
f(f) ' 

(3-13) 

Replace in (3-13) the exact FRF G0(f) by its measured value. 

Multisine excitation (no window is applied!): In this case the variance a$(f) is first esti-
mated: 

a*® = r r - f l l ^ W - W with *(/> = M 1 L Y W ^ • 
k=\ * = 1 

M-
(3-14) 

Next the variance on the FRF averaged over M blocks is obtained as 

oh m - 1 \ r ml2 CT^ - 1 ^ 
d W - M | O 0 W | \Yo(f)\2~M\U0(f)\2' 

(3-15) 

where the additional factor M accounts for the variance reduction due to the averaging over 
M realizations. So the standard deviation of the averaged FRF over the total data set (M 
blocks and Afrepea, realizations) is given by 

°5. averaged AT A/f 
iy repeat '" 

(3-16) 
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The reason for the (different) scale factors in (3-15) and (3-16) is that with the expression in 
(3-13) the variance at the level of a single block is estimated. By averaging over M or 
NnpeaiM blocks, the variance on the average is reduced by the number of averaged measure-
ments. 
Make the following plots: 

■ The measured FRF and standard deviation together with the errors, for both excita-
tions. 

■ Estimate the theoretical variance from the last realization (M blocks), using (3-13). 
■ Compare the sample variance with the estimated theoretical variance. 
Observations From the top of Figure 3-17 it can be seen that the errors of the averaged 

FRF are well described by the sample standard deviation. This clearly indicates that for these 
measurements the stochastic errors are dominating, at this level no systematic errors can be 
observed. A further increase (either increasing M or Afrepeat) of the number of averages would 
reveal that, for the noise excitation, systematic errors would pop up around the resonance fre-
quency. These errors decrease fast proportional to squared block length N~2. On the bottom 
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Figure 3-17 Study of the errors and the standard deviation for a noise (left) and a multisine 
(right) excitation. Top: FRF (black line). Thin black line: Measured standard 
deviation on the averaged FRF. Gray dots: \G-G0\. . Bottom: Thin black line: 
Measured standard deviation for a single realization Bottom gray line: Estimated 
theoretical standard deviation. 

part of the figure, it can be observed that the theoretical variance, calculated from a single re-
alization, coincides well with the sample variance, after properly scaling for the number of 
processed blocks per realization (M in this case). Notice that for the noise excitation, the the-
oretical value calculated on the basis of (3-13) is not very reliable. This is due to the fact that 
for a small number of realizations, the estimate of the coherence is very poor. The expression 
in (3-15) behaves much better under these conditions because, in this case, no measured val-
ues appear in the denominator. 

Exercise 45 (Impact of the block (period) length on the uncertainty) In practice 
the block length is set in order to get a sufficient frequency resolution in the measurements: 
A/ = f/N. In this exercise we study the impact of the block length N on the behavior of 
the errors. 
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Repeat the previous exercise for a fixed number of blocks M = 64 and vary the block 
or period length N = 128, 512, 2048, 8192. Excite the full frequency band each time, so that 
the number of sines in the multisine equals N/2. Calculate for each value of TV the theoreti-
cal value of the standard deviation, for both the random noise excitation and the multisine. 
Compare the results. 

Observations (See Figure 3-18) It can be clearly seen that the variance level is indepen-
dent from the length of the block or period. Increasing this length increases the frequency res-
olution of the measurement, but the uncertainty does not drop. This is because the power per 
excited frequency line remains constant in this experiment. For short data records the leakage 
errors dominate (see also Exercise 37), especially around the resonance frequency. For in-
creasing block lengths it can also be seen that the impact of the leakage errors is decaying 
proportionally to N'1 (see also Table 3-1). 
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Figure 3-18 Evolution of the standard deviation on the averaged FRF as a function of the 
block length. Bold black line: Measured FRF (here shown for the noise 
excitation). Gray line: Standard deviation for noise excitation. Thin black line: 
Standard deviation for multisine excitation. 

3.4.3 What have we learned in Section 3.4? Further 
reading 

In this section we studied the impact of disturbing noise at the output of a system on the FRF 
measurement. The same methods as in the previous section can be used under these condi-
tions, but besides the leakage errors we now face also the impact of the disturbing noise. 
Tools are provided to estimate the variance of the measured FRF. The coherence (see equa-
tions (3-12) and (3-13)) can be used for this purpose. For measurements with periodic excita-
tions under steady-state conditions it is also possible to make a direct noise analysis using 
equations (3-14)-(3-16). From (3-15) it is seen that the variance on the FRF is inversely pro-
portional to the power at a given frequency. Within a given measurement time, it is possible to 
increase this power by reducing the number of excited frequencies in the multisine. This can 
be done by putting a number of harmonics equal to zero, or by reducing the period length of 
the multisine. It is clear that the price to be paid is a reduced resolution of the FRF measure-
ment. This is a degree of freedom that can be used during the experiment design. We refer the 
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reader to Bendat and Piersol (1980) for more information on the use of the coherence, and to 
Pintelon and Schoukens (2001) for more information on the design of multisine signals. 

3.5 FRF MEASUREMENTS IN THE PRESENCE OF INPUT 
AND OUTPUT NOISE 

In this section, we mainly repeat the exercises from the previous section where only disturb-
ing (process) noise on the output was considered. This time also input disturbances are added 
to the measurements of the input, assuming that the input and output noise disturbances 
nu{t), ny(t) are mutually independent; that is, knowledge about nu(t) does not give any infor-
mation about ny(t): 

u(t) = u0(t) + n,,(0, y(t) = y0(t) + ny{t). (3-17) 

The input noise level in the exercises is selected to have a very poor SNR of 6 dB at the input. 
This will allow us to illustrate clearly the additional problems that are created by input distur-
bances. In the previous section it turned out that the disturbing output noise increases the un-
certainty of the measured FRF, but it does not create systematic errors. This is not so for input 
noise disturbances in combination with a random excitation, where systematic errors will also 
occur. 

Exercise 46 (FRF measurement in the presence of input/output disturbances using 
a multisine excitation) Repeat Exercise 43, but change the rms value of the excitation to 
1, and add this time also disturbing noise nu to the input, with nu normally distributed 
N(0, al = 0.52). Select for the number of averages M = [8 32 128 512]. 

Observations From Figure 3-19 it can be seen that the errors behave completely differ-
ently depending upon the applied excitation signal (noise or multisine) and the corresponding 
method that is used to estimate the FRF. Increasing the number of averages reduces the errors 
of the multisine measurements, completely similar to the previous output noise experiment. 
However, for the noise excitation, the situation is completely different. The errors converge to 
a level that is independent of M; these are systematic errors. This is due to the presence of the 
input noise and the appearance of quadratic terms in the denominator of the estimator (3-4). 
This is completely similar to what is illustrated on the resistor example in Chapter 1, Exer-
cises 12 and 13. For these situations, the use of multisines avoids a lot of problems and in-
creases the quality of the measurements considerably. For multisine excitations (or in general, 
periodic excitations) the signals are first averaged before making the division in equation 
(3-11), so that the impact of the noise disappears (averaged towards zero) for a growing num-
ber of averages. 

What will happen to the systematic errors of the noise excitation experiments if the 
SNR of the input or output measurements varies? 

Exercise 47 (Measuring the FRF in the presence of input and output noise: 
Analysis of the errors) In this exercise, a more detailed analysis of the errors is made, sim-
ilar to Exercise 44. Repeat this exercise for the noise settings specified in Exercise 46 and the 
number of blocks M = 16. Calculate the theoretical standard deviation for the noise excita-
tion with formulas (3-12) and (3-13). For the periodic (multisine) excitation, the following 
extended formulas should be used: 
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Figure 3-19 Evolution of the error G-G0 of the averaged FRF G, as a function of the 
number M of averaged blocks or periods. For a noise excitation (gray dots) or a 
multisine (black dots). Black line: Exact FRF G0 . 

CTg(jfc) « ' G ( / ^ (a2
r(k)/\Y(k)\2 + a«(*)/|&(*)|2 - 2Re(o^(*)/(K(ife)t/(*)))), (3-18) 

al(k) = j j ^ l T , , \um(k) - U(kf, ofo) = j j j T i I , " , J ^ ' W - K(*)|2 

with (3-19) 
a2

ru(k) = r r ^ - r T r A^'Kk)-Y(k)KW\k)-U(k)). 

Just as in the previous exercise, the variances a£ should be normalized by the total number 
of processed blocks AfrepeatM in order to get the variance of the mean value over all these mea-
surements. 

Observations From the results in Figure 3-20, it is again clearly seen that the multisine 
excitation/method gives much better results. For the noise excitation, the errors are much 
larger than the standard deviation, which is completely due to the presence of the systematic 
errors. For the multisine measurements, the standard deviation is in good agreement with the 
observed errors. On the bottom of the plot, the theoretical standard deviations, calculated 
with (3-13) for noise excitations, and (3-18) for periodic excitations, are compared to the 
sample variances. In both cases there is a good agreement. The scattering of the theoretical 
variance values at the higher frequencies is due to the fact that in equation (3-18) the mea-
sured values of the input and output are used instead of the theoretical values because the lat-
ter are not known. For higher frequencies, the SNR of the output measurements becomes very 
low because the measured system has a low pass nature. 

Exercise 48 (Measuring the FRF in the presence of input and output noise: Impact 
of the block (period) length on the uncertainty) In this exercise, the impact of the block 
(period) length on the uncertainty is analyzed, similar to Exercise 45. 



Section 3.5 ■ FRF Measurements in the Presence of Input and Output Noise 77 

Noise excitation Multisine excitation 
0 

m 
B - 2 0 
m 
1 -40 
E < 

-60 
-80 

^ ^ ^ f c . 

20 40 
Frequency (Hz) 

60 20 40 
Frequency (Hz) 

20 40 
Frequency (Hz 

Figure 3-20 Study of the errors \G - G0\ and the standard deviation for a noise (left) and a 
multisine (right) excitation. Top: FRF (black line); Gray line: Measured standard 
deviation on the averaged FRF. Black dots: The errors. Bottom: Gray line: 
Measured standard deviation on the mean value. Black dots: Standard deviation 
obtained from the theoretical expressions. 

Repeat the exercise of Section Exercise 45, but add noise to the input as specified in 
Exercise 46. 

Observations From Figure 3-21 it can again be concluded that the variance level is in-
dependent of the length of the block or period. Increasing this length increases the frequency 
resolution of the measurement, but the uncertainty does not drop. This is because the power 
per excited frequency line remains constant in this experiment. Observe that the uncertainty 
for the noise excitation measurements does not disappear by increasing the block length. 

3.5.1 What have we learned in Section 3.5? Further 
reading 

In this section we learned that disturbing noise on the input results in a bias on the FRF mea-
surement that does not disappear with a growing number of averages. This is also in agree-
ment with the conclusions of Section 1.6 in Chapter 1. Depending upon the periodic and 
nonperiodic nature of the excitation, different methods are available to reduce this problem. 

Using periodic excitations allows the input and output DFTs to be averaged before 
making the final division to get the FRF. This increases the SNR of the averaged input mea-
surement and makes the bias to decrease as an 0(M~l). 

This method does not work for random excitations because in that case the averages of 
the DFTs converge to zero. A first alternative solution is to use nonlinear averaging tech-
niques, for example logarithmic averaging methods as discussed in Guillaume et al. (1992). 
Guillaume gives detailed analytical expressions for the bias level as a function of the SNR of 
the input measurements and shows that the bias decreases exponentially with the SNR of the 
input. It turns out that for an input SNR of 6 dB the bias is already smaller than 2%e. A second 
alternative is to use the indirect method that is explained in the next section, Exercise 50. In 
that case the FRF is measured from an external, exactly known, reference signal to the input 
and the output of the system. The final estimate is then obtained as the division of both FRFs. 
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Figure 3-21 Evolution of the standard deviation as a function of the block length. Black: 
Measured FRF with noise excitation. Light gray: Standard deviation for noise 
excitation. Dark gray: Standard deviation for multisine excitation. M = 64 blocks 
are averaged. 

3.6 FRF MEASUREMENTS OF SYSTEMS CAPTURED IN A 
FEEDBACK LOOP 

The goal of this exercise is to illustrate the problems that appear when measuring the FRF of 
a system that is captured in a feedback loop. For such a measurement the process noise is fed 
back to the input of the system. Hence the input is no longer independent of the noise as it 
was in all the previous examples. This creates systematic errors for the noise excited mea-
surements, while the periodic processing of multisine measurements does not suffer from this 
problem at all. The systematic errors can also be avoided if the external reference signal is 
available using an indirect measurement of the FRF. 

3.6.1 Measurements in the loop: The direct method 

From experimental point, it is often very tempting to make a direct measurement of the input 
and the output of the system, even when it is captured in a feedback loop. In many cases the 
exact feedback configuration is not known, or the user might even not aware that the system 
is operating under feedback conditions. This will lead to a systematic error on the FRF mea-
surement as is shown in the next exercise. 

Exercise 49 (Direct measurement of the FRF under feedback conditions) Con-
sider the setup in Figure 3-22: a system y = G0u + v is captured in a feedback loop: 

The system is given by: f i l t e r (b, a , u ) , with 

" = [l -0.6323 0.90978]- and fo = [0 0.12775 0.063873]- (3-20) 
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Figure 3-22 System captured in a unit feedback loop. 

which can be generated in MATLAB® as 

[bFF,aFF] = c h e b y l ( 2 , 2 0 , 2 * 0 . 2 5 ) ; b F F ( l ) = 0; bFF = bFF*2; 

The process noise v is selected to be white normally distributed noise with ov = 0.2. Make 
two experiments. In the first experiment, the excitation r(t) is a white normal distributed ran-
dom excitation with standard deviations or, and length N*M, with M = 256, the number 
of blocks, and N = 1024, the block length. In the second experiment a multisine with the 
same parameters is used. Add to both signals A âns = 1024 points that will be used to allow 
for the initial transients to disappear: the first A/Trans are neglected when processing the data. 
Select 4 different excitation levels ar = 0, 0.2, 0.4, 0.8, and measure each time the FRF be-
tween u and y, using formula (3-4) for the noise excitation and (3-11) for the multisine exci-
tation. Apply a diff window for the random noise excitation, and a rectangular window for the 
multisine excitation (why?). 

■ Plot for each excitation level the exact FRF, together with the measured FRF for the 
noise and the multisine. Make a plot for the amplitude and the phase. 

□ 
Discussion In Figures 3-23 and 3-24, the measured FRFs are shown. It can be seen that 

without an external reference signal (r = 0), the inverse controller characteristic C~' is 
measured (C = 1 in this example). When the power of the reference excitation grows, the 
measured FRF shifts from C~' to G0 for the noise excitation. For the multisine measure-
ments, the expected value (obtained by averaging over many periods of the multisine), equals 
G0. This reveals one of the very strong advantages of periodic excitations. 

3.6.2 Use of an external reference signal: The indirect 
method 

In the previous exercise it turned out that the FRF that is measured under feedback conditions 
using a nonperiodic excitation like noise is prone to systematic errors. Instead of switching to 
periodic excitations, it is possible to remove these errors by using the indirect method. Instead 
of measuring directly the FRF from u to y, we measure two FRFs: the first from r to u, and 
the second from r to y, resulting in Gur and Gyr. The estimate of the FRF from u to y is 
then finally obtained as 

G(k) 

SYR{k) 

Gyr(k) = ^SRR{kV = Sm{k) 
Gur(k) fSUR(ky\ SUR(k) 

(3-21) 
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Figure 3-23 Measurement of an FRF of a system captured in a closed loop, for a fixed 
process noise level (0.2 Vrms) and a varying input level. Light gray: Exact 
FRF. Dark gray: Noise excitation. Black: Multisine excitation. 

Amplitude 0.2 

100 

0 

100 

Amplitude 0 

- " - " • w ™ ^ 

\ 

, - , ■ > ■ ■ " 

20 40 
Amplitude 0.4 

20 40 
Amplitude 0.8 

100 

0 

-100 ■ \ 

. *> 
20 40 

Frequency (Hz) 
20 40 

Frequency (Hz) 
60 

Figure 3-24 Measurement of an FRF of a system captured in a closed loop, for a fixed process 
noise level (0.2 Vrms) and a varying input level. Light gray: Exact FRF. Dark gray: 
Noise excitation. Black: Multisine excitation. 

Exercise 50 (The indirect method) ■ Repeat Exercise 49, but use the indirect 
method (3-21) to process the measurements from the noise excitation. Plot the am-
plitude of the measured FRF and the amplitude of the complex error for the 4 excita-
tion levels. 

□ 
Discussion In Figure 3-25 the measured FRFs are shown. It can be seen that the sys-

tematic errors for the noise excitation are removed using the indirect method. The quality is 
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now comparable to the results of the multisine excitation. This illustrates that it is always a 
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Figure 3-25 Measurement of an FRF of a system captured in a closed loop using the 
indirect method, for a fixed process noise level (0.2 Vrms) and a varying input 
level. Black line: Exact FRF. Gray line: Errors indirect method. Black dots: 
Errors multisine excitation. 

good idea to store the reference signal r together with the measured input and output because 
it allows to get better results. A disadvantage of the indirect method compared to the multi-
sine is that some information will be lost if there are nonlinearities present in the actuator or 
in the controller because the linear approximations can not capture the nonlinear behavior of 
the relations between r and u, y. However, as long as the plant is linear, the nonlinearities 
will not introduce systematic errors on the FRF from « toy. 

3.6.3 What have we learned in Section 3.6? Further 
reading 

Measuring under feedback conditions should be done with care. The process noise is fed 
back to the input and this creates a nonzero cross-correlation between the input and the pro-
cess noise. This results eventually in a systematic error on the FRF if no special actions are 
taken. This problem is known for a long time, it was discussed by Wellstead (1977, 1981). 
Wellstead showed that the expected value of the direct method is given by 

E{G<tirec,(fc)} = GFFjk)Srr(k) - GFB(k)Svv 

Sr£k) + \GFB(k)\2Svv(k) 
(3-22) 

with GFF, and GFB respectively, the FRF of the feed forward and feed back, and Srr, Svv the 
power spectrum of the external reference signal and the process noise. From this expression it 
is seen that the GFF is retrieved when the reference signal dominates over the process noise, 
but the inverse feedback \/GFB is measured when the process noise dominates. Usually a 
mixture of both FRF's is obtained, resulting in a biased view on GFF. 

Exact expressions of the bias are given in Heath (2001). The indirect method avoids 
this bias by combining two direct measurements, respectively from the reference signal to the 
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input and to the output of the system. Alternatively, the bias can be removed by averaging the 
DFT's over multiple periods of a periodic excitation. 

3.7 FRF MEASUREMENTS USING ADVANCED SIGNAL 
PROCESSING TECHNIQUES: THE LPM 

In Exercises 39 and 40 we studied how to deal with leakage problems. The best solution is to 
measure the steady-state response to a periodic excitation (e.g. a multisine), but this is not al-
ways possible. Waiting till the transients are gone is a loss of measurement time, while in 
other applications it is not possible to apply periodic excitations. Instead nonperiodic or ran-
dom excitations are used. The windowing methods were developed during around the 1960s 
because they could be calculated very efficiently. However, nowadays the computers are 
much faster than 50 years ago which opens the possibility to use solutions with a better leak-
age rejection at a cost of making more calculations. In the next two exercises we will propose 
such a method. Compared to the windowing methods, the calculation time grows with a fac-
tor thousand, but with the computers that we have available nowadays it is still possible to 
calculate the FRF a thousands frequencies per second which is still very acceptable in many 
applications. At the same time the leakage errors are reduced to a level where they do no 
longer hurt for most applications. The basic idea is to observe that leakage errors are due to 
transient effects (see Exercise 38) which results in the exact relation (3-5). In this exercise we 
will make a polynomial approximation of the transfer function G0 and the transient T that 
are both smooth functions of the frequency. In the exercise we use a 2nd degree polynomial 
with complex coefficients. To keep the approximation error small, the approximation is only 
made in a small frequency band around the central frequency on which the FRF is estimated. 
Next this frequency window is shifted over the entire frequency band of interest. At the edges 
it is not possible to center the frequency band around the frequency of interest. Special ac-
tions should be taken there, using a non-symmetric selection of the frequencies but this is out-
side the scope of this exercise. 

3.7.1 Measuring the FRF using the local polynomial 
method 

Exercise 51 (The local polynomial method) Generate a random noise sequence 
u0(t) with length 128 x 16 + NTrans. Apply the resulting signal u{t) to a second-order dis-
crete time system with a resonance of 10 dB using, for example, the MATLAB® instruction 
[ b , a ] = c h e b y l ( 2 , 1 0 , 2 * f c / f s ) with fs - 128 Hz the sample frequency, and fc 

the cutoff frequency. Select fc/fs = 0.1. 

■ Apply the random noise excitation sequence to the system, and measure its input and 
output. Eliminate the first NTrans points of the simulated input and output so that the 
initial transients of the simulation are eliminated. 

■ Create a set of linear equations: 

Y(k + r) = G(k+r)U0(k + r) + T(k + r) (3-23) 

around the central frequency with r - [-n, ..., - 1 , 0, 1, ..., n] and n = 3 by using a local 
polynomial approximation around the central frequency for G0, T 
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G0(k + r) = G0(k) + a1r + a2r2, 
T(k+r) = T{k) + txr+t2r2. 

(3-24) 

Solve this set of equations in least square sense with respect to the coefficients 
[G0{k),ax,a2,T(k),tut2\ (e.g. using the \ operator of MATLAB®) and retrieve 
Gp0iy{k) = G0(k) at the k'h -FFT line. 

N Repeat this at all frequencies k = n, n + 1, "" 2 , with N = 128 x 16. 

■ Estimate the FRF GHan„ also with the Hanning method (see Exercise 39) using sub-
records with a length of 128 points. 

■ Plot the amplitude of G0, and the complex errors G0 - GPo/y and G0 - GHann. 
□ 

Discussion (see Figure 3-26) From the figure it can be seen that for the actual settings 
the errors of the LPM (local polynomial method) are much smaller than those for the Han-
ning window. Actually it can be shown that the errors drop as an 0(N~3), while it was men-
tioned before that for the Hanning method the errors are an 0((N/M)~A). Observe also that 
the resolution of the LPM is 16 times higher in this case. Unlike the Hanning method, the 
LPM does not split the original long data record in shorter subrecords. We encourage the 
reader to change the parameters (the degree of the polynomial approximation, the width of 
the window) to learn more about the properties of the algorithm. 
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Figure 3-26 Comparison of the FRF measured with the LPM method and the 
Hanning method. Full line: G0 Black dots: Errors of the Hanning 
windowing method. Gray dots: Errors of the LPM method. 

3.7.2 Estimating a nonparametric noise model using the 
local polynomial method 

Besides the estimate of the FRF, the user needs also an estimate of the power spectrum of the 
disturbing noise in order to calculate uncertainty bounds (see also Exercise 44). A first possi-
bility is to estimate the power spectrum of the output noise using estimates of the second or-
der cross- and auto-power spectra: 

SVV(k) = Sy^-lSyuik^/Svvik). (3-25) 
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However, the quality of this estimate is closely related to that of the windowing methods dis-
cussed before. For the LPM and alternative estimate can be obtained by analyzing the residu-
als of the least squares estimate in the previous solution: 

E(k+r) = Y(k + r)-(G(k+r)U0(k + r) + T(k+r)), (3-26) 

with G, T the estimated polynomial models evaluated in the frequency band centered 
around k for r = [-n, . . . , - 1 , 0, 1, . . . , « ] . 

Exercise 52 (Estimation of the power spectrum of the disturbing noise) 
■ Estimate the variance of the error at frequency k for the settings of the previous ex-

ercise using 

a\k) = 1 
2 n + l - 6 

X \E{k + r)\\ (3-27) 

The denominator in this expression accounts for the degrees of freedom in the residuals 
of the least squares fit. 

■ Plot the amplitude of the FFT of the output (normalized by l/jN) and the esti-
mated variance. 

□ 
Observations (see Figure 3-27) From this plot it is easy to get an idea of the quality of 

the method. Because there is no disturbing noise added to the simulation output, the observed 
errors are due to leakage errors. As it can be seen they became very low in this example. We 
encourage the user to change the settings of the algorithm and observe the behavior of the al-
gorithm also in the presence of disturbed output measurements. 

20 40 
'(Hz) 

Figure 3-27 Estimation of the power spectrum of the disturbances: Bold dots: 
Measured output. Gray dots: Estimated variance of the output 
disturbances using the LPM method (remark: 
dB(a2) = 101og10(a2) = 201og10(a)). 
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3.7.3 What have we learned in Section 3.7? Further 
reading 

A major problem of the classical FRF measurement techniques is the sensitivity to leakage. 
Classically, leakage errors are reduced using windowing methods, as illustrated in Section 
3.3. However, nowadays we can do much better using the local polynomial method at a cost 
of an increased number of calculations (typically a factor 1000), but even then we still can 
process a few thousand frequencies per second. The detailed study and illustrations of the 
properties of the local polynomial method is outside the scope of this book. The reader is re-
ferred to Schoukens et al. (2009b) for a first introduction to the topic. A detailed theoretical 
analysis of the properties is given in Pintelon et al. (2010a, 2010b). 

3.8 FREQUENCY RESPONSE MATRIX MEASUREMENTS 
FOR MIMO SYSTEMS 

3.8.1 Introduction 

Till now we considered in this chapter single-input single-output (SISO) systems. In this sec-
tion we will introduce the reader to the measurement of the frequency response function ma-
trix (FRM) of multiple-input multiple-output (MIMO) systems. For simplicity we will focus 
on systems with 2 inputs and 2 outputs. This allows to illustrate the additional problems that 
appear when moving from SISO to MIMO for a minimal increase of the complexity. The sca-
lar FRF response function (3-3) for a SISO system should be generalized to a frequency re-
sponse matrix for a MIMO system that relates the multiple inputs to the multiple outputs: 

Y[hn(k) 
Yl2,n(k) 

= Gu(k) Gl2(k) 
p2l(*) G22{k\ 

Ulhl](k) 
Ul2.n(k\ 

with Xlpq](k) the DFT of the p'h input or output of experiment q. Equation (3-28) shows 
that from a single experiment we get at each frequency two linear equations, while we have to 
measure 4 unknowns: (Gn(k), Gn(k), G2l(k), G22(k)). For that reason at least two experi-
ments should be combined to have as many equations as unknowns. 

3.8.2 Measuring the FRM using a rectangular window 

Questions that will be addressed in this section are: How to design the experiments? How to 
estimate the (co-)variance on the FRM estimate? In the first exercise we show how to solve 
the problem with multisines, next we discuss how random excitations can be used, and finaly 
we estimate also the covariance matrix of an FRM. 

Exercise 53 (Measuring the FRM using multisine excitations) In this exercise we 
will use multisine (periodic) excitations to measure the FRM so that we can focus the atten-
tion completely on the new MIMO aspects without having to deal with leakage problems. To 
do so the following series of steps can be made (among many other possibilities). 

■ Create the following MIMO system: 
G „ : c h e b y l ( 2 , 1 0 , 0 . 2 ) 
G12: c h e b y l ( 2 , 2 0 , 0 . 5 ) 
G21: b u t t e r ( 4 , 0 . 6 ) 
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G22: c h e b y l (2, 15 , 0 .8) 
Generate a multisine u{t) with a flat amplitude spectrum up to 0.4/s. Select 
fs= 128 Hz, and set the number of points in a period N = 128. 
Generate two experiments: 

y[i.i](0 = Gu(q)u(t) + Gl2(q)u(t) 
?[2.i](0 = G2](q)u(t) + G22(q)u(t) 

(3-29) 

and 

y[i,2](0 = Gn{q)u(t)-Gn(q)u(t) 
y[2,2](0 = G2](q)u{t)-G22{q)u{t) 

(3-30) 

using the f i l t e r instruction of MATLAB for each subsystem. Wait N Trans = 64 points 
to remove the initial transients and select next precisely one period of the input and output 
signals. 

■ Calculate the FFT of the input and outputs: U and Y[pq] with p, q = 1,2. 
■ At each frequency k the following set of equations is solved: 

^ [ i , i ]W M I , 2 ] W 

.W*) W*)_ 
G„(t) G12(*) 
G2i(*) G 2 2 « 

U[ul](k) Uu,2](k) 
U[2A](k) Ul2,2](k)_ 

(3-31) 

or 

Yi = Gt tA (3-32) 

using the \ operator of MATLAB®: GkEst = Yk/Uk with GkEst the estimate at 
frequency k of the FRM, consisting of the FRF's (Gn(k), Gl2(k), G21(k), G22(k)). 

■ Plot the amplitude characteristic of the estimated FRFs. 
Discussion (see Figure 3-28) In the figure it can be seen that in this exercise the FRFs 

are very well retrieved. The relative errors are less than -50 dB. These errors are due to re-
maining initial transient effects and can be further reduced by increasing the waiting time 
NTransient before the measurements are made. In this exercise we made only one possible 
choice for the design of the multisine excitations. A detailed discussion on the possible 
choices and the impact on the quality of the measurements is made in the paper Dobrowiecki 
et al. (2006). 

Exercise 54 (Measuring the FRM using noise excitations) In this exercise we will 
measure again the FRM of the system that was used in the previous exercise in the absence of 
disturbing noise, but this time using a noise excitation. In Exercise 37 we solved this problem 
on SISO systems using (3-4). The spectra were averaged over multiple realizations in order to 
reduce the sensitivity to leakage and noise errors. The auto- and cross-spectra were defined. 
In this exercise we follow exactly the same procedure, but this time we have that SYU and 
Suv are matrices. 

■ Consider the MIMO system defined in Exercise 53. 
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Figure 3-28 Measuring FRM of a 2 x 2 MIMO system using a multisine excitation. The FRF 
of Gu(k), Gl2(k), G2l(k), G22(k) is shown (from the left to the right and top to the 
bottom). Full line: The exact value. Gray dotted line: The amplitude of the complex 
error. 

Generate two filtered white noise sequences (generator filter is b u t -
t e r (4, 2*0 . 4)) of length 512 xM + NTrans, with M = 50 the number of real-
izations and apply these signals to the MIMO system and measure the output. Drop 
the first NTrans = 1024 points to eliminate the initial simulation transient effects. 
Segment the input/output records in M sub records, calculate the FFT on each of 
these segments, and calculate the cross- and auto-spectra: 

Svudc) = £ £ f[,..](*) 
|£/[ !..](*) */[2. •](*)_ » ] ' (3-33) 

and 

sutm = ^ x 
Ul2,s](k) [un.dk) t/[2. ,](*)] • (3-34) 

At each frequency k the following set of equations is solved: 

Syu(k) = GkSuu(k) (3-35) 

using the \ operator of MATLAB®: GkEst = SYU (k) /SUU (k) with GkEst 
the estimate at frequency k of the FRM, consisting of the FRF's 
(G„(*),G12(*),G21(*),G22(*)). 

Plot the amplitude characteristic of the estimated FRFs. □ 

Discussion (see Figure 3-29) m In the figure it can be seen that also in this exercise the 
FRF's are well retrieved, but this time the relative errors are in the order of -30 dB 



Chapter 3 ■ FRF Measurements 

which is significantly larger than those in Figure 3-28 even if more data points were 
processed. These errors are due to leakage effects as discussed in Exercise 37. Aver-
aging over more realizations will make the estimates smoother, but the leakage er-
rors create also systematic errors so that the error does not vanish to zero. The only 
possibility to reduce the error is to use longer sub-blocks. The reader can try this by 
increasing the length of the sub-blocks from 512 to 2048 or even higher. The errors 
will drop in l/jNBlock. In the figure we show also the variance of the estimated 
FRM (see also Exercise 55). It can be seen that the errors are scattered around this 
estimated value. 

Figure 3-29 Measuring FRM of a 2 x 2 MIMO system using a random noise excitation. The 
FRF of G, ,(fe), Gl2(k), G2,(k), Gn(k) is shown (from the left to the right and top to the 
bottom). Full line: The exact value. Gray dotted line: The amplitude of the complex 
error. Thin black line: The variance of the FRM (remark: 
dB(o2)^101og,0(c2) = 201ogI0(a)). 

Exercise 55 (Estimate the variance of the measured FRM). The covariance ma-
trix of the FRM is defined as the covariance matrix of the column vector 
[Gu(k), Gn{k), G2l(k), G22(k)]T. It is calculated from the measurements using 

*(*) = 1 Suuiky' ® (SYvik) - SyuikySuviky'Syuikf), 
M-n 

(3-36) 

with nu = 2 the number of inputs. A ® B is the Kronnecker product and is calculated in 
MATLAB® as k ron (A, B). It replaces each entry A[Lj] of A by the matrix A, SB. 

m Plot the estimated variance of the FRFs on top of the results of Exercise 54. The vari-
ances of the FRFs are at the main diagonal of CFRM(k). 

Discussion See Exercise 54 

Exercise 56 (Comparison of the actual and theoretical variance of the estimated 
FRM) In this exercise we verify the quality of the estimated variance of the FRM (3-36) by 
comparing it with the variance that is obtained from repeated simulations. 

■ Repeat Exercise 54 NRep =100 times using each time a different realization of the 
random inputs. Calculate for each realization the estimated FRM and the estimate 

56 



Section 3.8 ■ Frequency Response Matrix Measurements for MIMO Systems 89 

for the covariance matrix. Calculate from these results the variance of the estimated 
FRM. Average also the estimated variance for each of the FRFs at each frequency. 
Plot both results on top of each other. Compare the averaged FRM with the exact 
value and plot the amplitude of the complex difference. 

□ 
Discussion (see Figure 3-30) From the figure it is clear that the variance that is esti-

mated from the repeated simulations and the averaged "theoretical" variance coincide very 
well. It can also be observed that the error between the exact value of the FRM and the aver-
aged estimate is well below the plotted standard deviation. This shows that the stochastic con-
tribution to the leakage error on a single realization dominates at most frequencies the sys-
tematic leakage error. Only after averaging the result over a larger number of realizations, the 
systematic error will be the dominant one This can be seen in the figure by comparing the er-
ror of the averaged FRM with the standard deviation. If both become equal, the systematic er-
rors dominate, while the stochastic errors dominate at those frequencies where the errors is 
far below the standard deviation. 

f (Hz) ( (Hz) 

Figure 3-30 Measuring FRM of a 2 x 2 MIMO system using a random noise excitation and a 
rectangular window. The FRF of Gn(k), G , # ) , G2,(ft), G22(fc) is shown (from the left 
to the right and top to the bottom). Full line: The exact value of the FRF. White line: 
The measured standard deviation. Dark gray line: The averaged calculated variance 
(remark: dB(o2) = 101oglo(o2) = 201og10(a)). Light gray dots: The amplitude of the 
complex error on the averaged FRM. 

3.8.3 Measuring the FRM using random noise 
excitations and a Hanning window 

In Exercise 54 and 55 we measured the FRM using random noise excitations in combination 
with a rectangular window. No noise was added in order to focus on the leakage errors. In Ex-
ercise 39 it was shown that the impact of leakage on the FRF measurement could be reduced 
by using a Hanning window. In this exercise we will repeat this, but now for the FRM. 

Exercise 57 (Measuring the FRM using noise excitations and a Hanning 
window) 

■ Consider the setup of Exercise 54. Process the data in the same way, but use a Han-
ning window when calculating the FFTs of the subrecords (see also Exercise 39). 
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Repeat the simulations NRep 
Plot the results. 

100 times, and process the data as in Exercise 56. 

□ 
Discussion (see Figure 3-31) When comparing these results to those in the previous 

exercise obtained with the rectangular window, it can be seen that the skirts are much smaller 
now. However at the resonance frequencies, the reduction of the error is much smaller which 
is in agreement with the experience obtained before for the FRF measurements. 

Figure 3-31 Measuring FRM of a 2 x 2 MIMO system using a random noise excitation and a 
Hanning window. The FRF of Gn(k), Gn(k), G2l(k), G22(k) is shown (from the left 
to the right and top to the bottom). Full line: The exact value of die FRF. White line: 
The measured standard deviation. Dark gray line: The averaged calculated variance 
(remark: dB(a2) = 101og|0(a2) = 201ogi„(a)). Light gray line: The amplitude of 
the complex error on the averaged FRM. 

3.8.4 What have we learned in Section 3.8? Further 
reading 

Measuring the FRM is a more tedious task than measuring the FRF. The essential difference 
is that the impact of the different inputs on each output should be separated from each other. 
This requires to combine multiple subexperiments. The design of these experiments is criti-
cal, failing to make a good choice will result in extremely large uncertainties on the FRM. For 
multiple input systems, it is not enough to tune the power spectrum of the signal, also the re-
lation between the excitations at the different inputs of the system should be welltuned. In the 
literature, the design of orthogonal excitation signals has been discussed. If the number of in-
puts can be written as 2", Hademard matrices can be used, as proposed by Guillaume et al. 
(1997). Dobrowiecki et al. (2006) generalized this solution later on to orthogonal multisines 
for an arbitrary number of inputs. 



Identification of Linear 
Dynamic Systems 

What you will learn: This chapter learns the reader how to identify a parametric model for a 
linear dynamic single-input single-output system, starting from experimental data. Time and 
frequency domain methods will be discussed and compared. The following topics are ad-
dressed: 

- A first introduction to basic system identification aspects in the time domain (Exercise 
58) and the frequency domain (Exercise 59). The numerical conditioning of the problem (Ex-
ercise 60). 

- Simulation versus prediction errors (Exercise 62). 
- Shaping model errors in the time and the frequency domain (see Exercises 64 and 

65). 
- Study of the time domain prediction error framework using parametric noise models: 

identification of parametric plant and noise models; one step ahead prediction; identification 
under feedback conditions; model uncertainty (see Exercises 66, 67, 68, 69, and 70). 

- Frequency domain system identification using nonparametric noise models and peri-
odic excitations; its comparison with the time domain prediction error framework (see Exer-
cises 71, 72, and 73). 

- Frequency domain system identification using nonparametric noise models and ran-
dom excitations; its comparison with the time domain prediction error framework (see Exer-
cise 74). 

- Illustration of a typical identification run, using a time and a frequency domain identi-
fication toolbox (see Exercises 75 and 76). 

4.1 INTRODUCTION 

Consider the linear dynamic system G0 in Figure 4-1. The aim of this chapter is to find a 
parametric model for the system G0 starting from the measured input u(t) and output y(t). 
Due to process and measurement disturbances, the measured values u, y differ from the true 
values u0, y0, that are related by the true system y0(t) = G0(q)u0(t). In Figure 4-1 we added 
all possible disturbances: the input to the system is disturbed by generator noise ng(t), the 
output of the system is disturbed by process noise np(t). On top of that, the measured input 
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Figure 4-1 Frequency domain representation of the measurement process, with 
all possible disturbances. Note that the system can be captured in a 
feedback loop. 

and output is also disturbed by measurement noise mu(t), my(t). All these noise sources are 
not always present in every application, and their impact will depend upon the selected 
framework. In this chapter we will consider two situations with respect to the nature of the 
excitation signal that can be nonperiodic or periodic. 

■ Nonperiodic excitations: We consider the input signal to be an arbitrary or random 
signal. In that case the generator noise ng(t) is a part of the input that is applied to 
the system, it is not a disturbance in the measurement u(i). The measurement noise 
mu{t) acts always as a disturbance but it does not affect the evolution of the system. 
We have that u(i) = u0(t) + mu(t) with u0(t) = ug(t) + ng(t). 

■ Periodic excitations: We consider the input u0(t) to be periodic and all nonperiodic 
signals ng and mu, np, my act as disturbances but their impact will be different. We 
have that u0(t) = ug(t). Only the 2nd group of disturbances m„, np, my increases the 
variance of the plant estimates. The generator noise ns does not increase the 
variance for well-designed identification methods, nor does it contribute to the 
knowledge of the plant as it did under the "nonperiodic" situation. 

Initially we will assume that the input is exactly known, only the output is disturbed as shown 
in Figure 4-2. All output disturbances are combined in the noise source v(r). This is the typi-

Figure 4-2 Time domain representation of the simplified problem. 

cal setting of the classical time domain identification framework. A thorough study of this 
problem can be found in the books of Ljung (1999) or Soderstrom and Stoica (1989). The full 
problem, as shown in Figure 4-1 is discussed in detail in the book of Pintelon and Schoukens 
(2001) where a frequency domain approach is proposed. In this chapter you will learn how to 
solve both problems, and we illustrate what are the equivalences and differences between the 
time and frequency domain approach. At the end of this chapter, you will be able to select 
and use the proper method to solve your problem. 
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4.2 IDENTIFICATION METHODS THAT ARE LINEAR-IN-THE-
PARAMETERS. THE NOISELESS SETUP 

4.2.1 Introduction 

The aim of this section is to give a better understanding of the basic problems that should be 
addressed when identifying a linear dynamic system: What is the basic idea? What is the im-
pact of the initial state (transients) of the system? What is the relation between transients in 
the time domain and leakage effects in the frequency domain? Also numerical issues and the 
impact of model errors is studied. In order to keep the focus as much as possible on these as-
pects, we simplify the identification method in this section to a formulation that is linear-in-
the-parameters, avoiding the use of numerical optimization procedures to find the parameter 
estimates that minimize the cost function. These methods are optimal for a very specific be-
havior of the disturbing noise. In Sections 4.3, 4.4, and 4.5 we will address the general situa-
tion that considers disturbing process and measurement noise with an arbitrary power 
spectrum. 

4.2.2 Introduction to time domain and frequency 
domain identification 

A. Time Domain Identification 
Consider a single-input-single-output linear dynamic system: 

y0(t) = G0(q)u0(t), (4-1) 

with 

R(n, Yb bkq~k 

G (q) = ^w = ±±± ( with q-1 the backward shift operator: u0(t-l) = q-^u^f). 

(4-2) 

Such a system puts a relation on the input and output signal: 

y0(t) = G0(q)u0(t) = f ^ " o ( 0 , (4-3) 

or 

A(q)y0(t) = B{q)u0(t) t* A(q)y0(t) - B(q)u0(t) = 0. (4-4) 

which can be rewritten as 

y0(t) = b0u0(t) + blu0(t-\)+ ■■■ +bnhu0(t-nb)-a1y0(t-l) a„ay0{t - na), (4-5) 

with a0 normalized to a0 = 1. Writing (4-5) for t = 0, 1 N-l, a set of linear equa-
tions in 8J = \ax...an b0...bn] is obtained: 
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^("o. yo)Q0 = Jo. (4-6) 

with 

K(u0, y0) 

-Jo(-D ->o(-2) 
-v0(0) -y0(-l) 

-ya(-na) M0(0) 

- y o ( - « a + l ) «o(l) 
«o(-n») 

u0(-nb+ 1) 

-y0(AT-2) - y 0 ( ^ - 3) ... - y 0 ( ^ - 1 -«„) u0(N- 1) ... «„(#- 1 -« 6 ) 

y0(0) 

Jo(l) 

Jo(iV- 1) 

(4-7) 

Exercise 58 (Identification in the time domain) Goal: Identify a transfer function 
model of a linear dynamic system. 
Calculate the output of the linear dynamic system y0(t) = G0(q)u0(t) that is driven by filtered 
Gaussian noise u0(t) = GGtn(q)r(t) with length N + NTmm. The first A ^ s data points of the 
simulation are eliminated to get rid of the initial transients of the simulation. From the re-
maining N data points, the system parameters 90 are identified, by minimizing the least 
squares cost: 

V = eT(Q)em, and e(Q) = y0-K(u0,y0)8. (4-8) 

Notice that this kind of estimation problems is solved in Exercise 6 in Chapter 1 and can be 
solved using the \ operator of MATLAB . 

■ Generate the system G0 [ b 0 , a 0 ] = c h e b y l (3 , 5, 2*0 .1) 
■ Generate the generator filter 

GG(,n: [bGen,aGen] = c h e b y l (5 , 1, 2*0 . 45). 
■ Select N = 5000 and A'Trans = 1000. 
■ What is the minimal order na, nb of the model needed to describe the exact system? 
■ Estimate the model parameters 6 two times: 

i) The first time |j0(0), y0(\) y0(N'- l)]T is used as right-hand side in (4-6). The 
first rows of the corresponding matrix K(u0, y0) contain the unknown (not mea-
sured) values of u(k), y(k), k - - 1 , - 2 , . . . . Replace these unknown values by zero. 
ii) The second time [ya(n),y0(n + 1), ...,y0(N- l)]T with n - max(rca, nb) is used 
as right-hand side in (4-6). Now the first rows of the matrix K(u0, y0) do no longer 
contain unknown data M0(-l),y0(-l), ... so that all values u0(k),y0(k) in the matrix 
K are known, no values y0(k < 0), u0(k < 0) are needed. 

■ Plot for each of the solutions the amplitude of the complex error |G0(/0>) - G(jw, 9)| 
as a function of the frequency. 

Observations (see Figure 4-3) Although the models are estimated from undisturbed 
data (no disturbing noise is present), it turns out that there are model errors if the initial state 
effects are not removed. These effects are similar to the transient effects that were observed in 
Chapter 3, Exercise 38, and they will appear as an 0(N~X) when the length of the data N is 
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Figure 4-3 Identification of a third order Chebyshev filter using the ARX model 
implemented in the time domain. There is no disturbing noise added to the 
output. Gray: Initial state effects not removed. Black: The impact of the initial 
states is removed. 

growing to infinity. This can be easily checked by repeating this exercise on records of grow-
ing length. Notice also that the initial state effects are random effects for a random input. 
They vary from one realization to the other. 

It is easy to remove the initial state effects in this case, as explained in the exercise. In-
stead of starting at time t = 0 , the matrix K(u0, yQ) is formed starting at time t = n with 
n = max(na, nb). In that case no unknown data points are entering in the matrix K. The rel-
ative error on this solution is in the order of -250 or even -300 dB, corresponding to the 12 to 
15 digits of calculation precision which is indeed the MATLAB precision. 

B. Frequency Domain Identification 
Consider again the single-input-single-output linear dynamic system of Section A, but re-
write the equations in the frequency domain, using the DFT U0(k), Y0(k) of u0(t), y0(t), and 

Y0(l) = GJj&dUM + ni). (4-9) 

(see also Chapter 3, Exercise 38) with G0(/cu,) the transfer function of the system at fre-
quency 27t//0 = 2nlf/N - 12%/N (fs normalized to 1): 

G0(zr 
B(zd 
Mz,) 

XlMk 
(4-10) 

akzr 

and Zi = eil2ll/N the discrete domain frequency variable at frequency Z/0. T(l) is due to the 
begin- and end effects (leakage), and has a completely similar behavior as the initial state ef-
fects in the previous time domain exercise: 

T(z,) = Kzd 
Mzd 

IkZi 

akz, 
with n, = max(na, nh)-\. (4-11) 

The relation on the input and output DFT coefficients becomes 
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A(Zl)Y0(l) = B(z,)U0(l) + T(Zl) o A(z,)Y0(l) - B(Zl)U0(l) -I(z,) = 0, (4-12) 

Normalizing again a0 = 1, a set of linear equations is found: 

KB0 = [KG(U0, Y0) K,]Q0 = ?„, (4-13) 

with 9£ = [au..a, b0...b /„. . . / „ ] , and 

KG(U0, Y0) 

z0-%(0) 
zr%d) 

-z0-2n(0) .. 
-zr^od) •• 

• -Zo"^o(0) 

■ -zi"'Y0(l) 

C/0(0) .. 

t/o(D ■■ 

z„-"'t/0(0) 
zr"*t/0(i) 

-ztf/2Y0(N/2) -z-N
2

/2Y0(N/2) ... - z^ r 0 ( /V /2 ) t/„(iV/2) ... zjAUN/i(N/2) 

K, 

1 zo1 

i zr1 
Zo 

zr" 

1 Z«/2 ••• Zrih 

and Fo = 

^o(O) 

^0 (^ /2 ) 

(4-14) 

Notice that these equations are complex. A real equivalent is found by defining 

■^ real — 
real(/Q -

.imag(/0. 
and Pre 

real(Fo) 

imag(Fo). 
, With X'reaiOo = Preal. (4-15) 

Exercise 59 (Identification in the frequency domain) Goal: Identify a transfer 
function model of a linear dynamic system in the frequency domain. 
Consider the data from Exercise 58 and transform these data to the frequency domain using 
the FFT. Identify the system parameters 0O, by minimizing the least squares cost: 

V= eT(G)e(Q) and e(6) = Yr^-KUU0,Y0)Q. (4-16) 

Notice that this kind of estimation problems is solved in Exercise 6, using the \ operator. 
■ What is the minimal order na> nb of the model needed to describe the exact system? 
■ Estimate the model parameters 6 two times: 

(i) the first time formulating all equations without the transient term T so that the 
leakage effects are not included in the model, 
(ii) the second time using the full equations, including also the transient term. 

■ Plot for each of the solutions the amplitude of the complex error \G0(j(i)) - G(/'co, 6)| 
as a function of the frequency. 

Observations (see Figure 4-4) A completely similar behavior as for the previous exer-
cise is observed. If the full model equations are used, including the transient term to eliminate 
the begin and end effects, a solution that is exactly equal to the time domain solution is found. 
Actually, formulating the problem in the time or frequency domain does not change the solu-
tion, there is a full equivalence between the time and the frequency domain. If the transient 
term is not included, the solutions are different, but the average behavior is completely simi-
lar. In the frequency domain, leakage effects become visible. These can be interpreted as the 
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Figure 4-4 Identification of a third order Chebyshev filter using the ARX model 
implemented in the frequency domain. There is no disturbing noise added to 
the output. The error is plotted for models with and without "leakage" removal 
using an additional transient term. 

influence of the begin and end states of the system, completely similar to the initial state ef-
fects in the time domain. Again these effects disappear as an 0(N~l) (check this by calculat-
ing the solution for different record lengths). 

4.2.3 Numerical conditioning 

A. Introduction 
In this exercise, we study the numerical condition problems that appear when solving the es-
timation problem of the previous exercises. To do so, a linear least squares problem has to be 
solved. In practice, these calculations can become numerically ill conditioned, leading to 
poor solutions because of the increased sensitivity to calculation errors. This results in poor 
models, even in the absence of disturbing noise. As a user it is important to be aware of these 
problems, because these are often misinterpreted and not recognized as such. Using dedicated 
algorithms, it is possible to improve the numerical conditioning so that more complex sys-
tems can be identified. The next exercise illustrates on undisturbed data what parameters 
strongly affect the numerical conditioning. How to deal with these numerical problems is out 
of the scoop of this book. 

Exercise 60 (Numerical conditioning) Goal: Study the dominant parameters that af-
fect the numerical conditioning. 
The setup of this exercise is similar to that of Exercise 58. Calculate the output of the linear 
dynamic system y0(t) = G0(q)u0(t) that is driven by filtered Gaussian noise 
u0(t) = GGm(q)r(t) with length N + NTrms. The first A âns data points of the simulation are 
eliminated to get rid of the initial transients of the simulation. From the remaining A' data 
points, the system parameters 0O are identified, by minimizing the least squares cost in (4-8). 

■ Generate the bandpass system 
G 0 : [ b 0 , a 0 ] = chebyl(OrderGO,20,2*BW) 
scan for the OrderGO the values [1:15] 
and for the bandwidth BW = 0 .25 + [ -0 .2 0 . 2 ] / s , s = [1 :100] 

■ Generate the corresponding generator filter for each bandwidth: 
GGen: [bGen,aGen] = c h e b y l (5 , 5, 2*BW) ; 

■ Select N = 5000 and NTam = 1000. 
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■ Put na, nb equal to the model order 2 x OrderGO (the factor 2 accounts for the 
fact that G0 is a bandpass filter). 

■ Estimate the model parameters §, eliminating the initial state effects. 
■ Calculate for each problem the condition number of K using the MATLAB® in-

struction K = cond(K). 
■ Make a c o n t o u r plot of the condition number as a function of the relative band-

width: 0.2/(0.25 x s), and the system order. Use logarithmic scales for the relative 
bandwidth and for the condition number K. 

Observations (see Figure 4-5) On this figure, the evolution of the condition number K 

log 10(Relative Bandwidth) 1,n) 

Figure 4-5 Study of the minimum number of digits to calculate the ARX estimate 
of a Chebyshev filter with a ripple of 20 dB. The order and the relative 
bandwidth. 

can be seen. It is clear that the numerical conditioning deteriorates (condition number K be-
comes larger) if the order of the system increases and/or if the relative bandwidth becomes 
smaller. The number of digits needed is about log,0(K). MATLAB® calculates with 15 digits, 
so the upper limit for the allowed complexity of the system can be found immediately from 
the figure. The reader should be aware that it is possible to identify more complex systems, 
but then more robust numerical procedures than those used in this exercise are needed. 

4.2.4 Simulation and prediction errors 

A. Introduction 
Once an estimated model is available, it can be used to calculate the output of the system 
from a known input. During these calculations delayed inputs and outputs are needed. To im-
plement these calculations, two possibilities exist. Either delayed simulated or measured out-
put values are used. The behavior of both choices can be very different and will be illustrated 
in this exercise. Consider the estimated model with the leading coefficient of A(q) normal-
ized to one: a0 = 1. 

G ( g ,9) = i : i ° W * = * ( ^ . (4-17) 

From this equation it follows immediately that 

y(t) = B(q, &)u0(t)-A(q, §)y(f), (4-18) 
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where A(q, Q)y(t) = V "_ aky(t - k) depends only on past values of y{t). If these are re-
placed by the measured output y(t) = y0(t), we call y(t) = B(q, §)u0(t)-A(q, §)y0(t) a pre-
diction, and the output is called the "predicted" output. Alternatively, the past values can be 
replaced by the simulated values, and we call the output y(t) - B(q, §)u0(t) - A(q, 6)y(0 a 
'simulated' output. We will generalize and formalize these concepts later in Section 
4.3.3 that introduces the reader to the prediction error framework for system identification. 
We will illustrate the different behavior of "simulation" and "prediction" in the next exer-
cises. It will be shown that prediction is much more robust than the simulation, for example, a 
shorter simulation transient (initial state effects disappear much faster), much lower sensitiv-
ity to model errors. Of course the price that has to be paid for this advantage is that the mea-
sured outputs should be available. We first make the comparison in the absence of model 
errors. Later on we come back to the situation with model errors. Finally, the link between 
both approaches and the underlying disturbing noise model will be made clear. 

Exercise 61 (Simulation and one-step-ahead prediction) Goal: Calculation of the 
output using the known input and an estimated model. 

In this exercise we assume that an estimated model is available. Also the input u0(t) is 
known. Next the output will be calculated twice, a first time using the simulation method, 
next using also the past measured output values (prediction method). 

■ Consider the setup of Exercise 58 and 59. Select the estimated model parameters of 
the method that includes the initial state effects (time domain) or the leakage effects 
(frequency domain method). 

■ Calculate the simulation and prediction error. Notice that the simulated output can be 
easily calculated using the MATLAB® instruction 
ySim = f i l t e r ( b E s t , a E s t , u O ) . 

■ Plot both errors together with the output. 
Observations (see Figure 4-6) m In this figure it can be seen that both the simulation 

Figure 4-6 Comparison of the behavior of the prediction and the simulation error. 

and prediction error converge to zero (the estimated model equals the exact model 
within the MATLAB® calculation precision). However, the initial state effect of the 
predicted output vanishes much faster than it does for the simulated output. Indeed, 
from (4-18), it can be seen that for the prediction method, the impact of the initial 
states is completely removed after max(wa, nb) samples, so it is set by the order of 
the system. For the simulation method, the transient time is set by the time constants 
of the plant. 
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4.2.5 Influence of model errors 

A. Introduction: Impact of Model Errors 
In the previous exercises, we identified a linear dynamic system using a model that was 'rich' 
enough to describe the modelled system exactly, no model errors are present. In practice this 
is often not the case. Model errors that appear frequently are nonlinear distortions, and un-
modelled dynamics. The impact of nonlinear distortions is studied intensively in Chapter 5. 
In this exercise we focus on unmodelled dynamics. Theoretically, the best solution is to in-
crease the model complexity by adding poles and zeros to the model, or equivalently by in-
creasing the model order. However, in some applications this is an undesirable solution, and 
the user prefers to continue with a too simple model. In the next exercises we illustrate the 
impact of this choice on the identified model, the simulation and the prediction error. Next we 
also illustrate that by focusing the power on the frequency band of interest, it is possible to 
get a good match between the model and the plant in that frequency band. 

Exercise 62 (Identify a too-simple model) Goal: Illustrate the effect of using a too-
low model order. 
Consider the setup of Exercise 58, but use the following settings: 

■ Define the system G0: [ b 0 , a 0 ] = c h e b y l (5 , 5, 2*0 .1) 
■ Define the generator filter GGen: [bGen,aGen] = c h e b y l ( 5 , 1 , 2*0 .15*3) 
■ Select N = 5000 and NJr:ms = 1000. 
■ The exact system G0 is a fifth order system. Put n„ = nb - 4 for the model, so that 

model errors will be present. 
■ Estimate the model parameters 6, eliminating the initial state effects (see Exercise 

58). 
■ Plot the amplitude of both transfer functions \G0(j(d)\, \G(j(i>, @)| as a function of the 

frequency. 
Observations (see Figure 4-7) Just as in Exercises 58 and 59, there is no disturbing 
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Figure 4-7 Fit of a too-simple fourth order model on a fifth order system. 

noise in this exercise. But because the model order is too low to cover the full complexity of 
the plant, the identified model is different from G0. These differences are called model er-
rors. As can be seen in the figure, quite large errors appear in this case. 
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Exercise 63 (Sensitivity of the simulation and prediction error to model errors) 
Goal: The aim of this exercise is to check what happens with the simulation and predic-

tion errors in the presence of model errors. 
Consider the results of the previous Exercise 62, and use the estimated model parame-

ters to predict and to simulate the output of the system (see also Exercise 61). Make a plot of 
both errors, together with the output y0(t) of the system. 

Observations (see Figure 4-8) In this figure it can be seen that also in this case the tran-
11 , , , , . 

/\/-^y\/'vffi 
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Figure 4-8 Comparison of the prediction error (light gray) and simulation error 
(black) of the too simple model of Figure 4-7. 

sient of the prediction error vanishes much faster than that of the simulation error. However, 
on top of that it turns out that the simulation error is much more sensitive to the model errors 
than the prediction error does. The latter one becomes remarkably small, even in the presence 
of the large model errors as they were observed in the previous exercise. This result can be 
generalized: Prediction errors are less sensitive to model errors than simulation errors. The 
reason for that is the fact that the prediction method uses much more information, because it 
uses the measured past outputs, while the simulation method does not because it relies com-
pletely on the (wrong) model to simulate the past output data. 

Conclusion "Prediction" is much more robust to model errors than "simulation," but it 
can only be used if the measured output data are available. This is the typical situation in con-
trol, where the next output sample ypred(0 is predicted on the basis of the past measurements 
of the output and the known inputs up to time t. In simulation studies this is not possible, in 
that case we want to compute the system output ysim(t) in new situations without making the 
experiment and so the measured past output are not available. In that case only the simulation 
setup can be used. 

B. Introduction: Focusing the Identification 
Procedure on a User Selected Frequency Band 

In this exercise we will show that even with a too simple model it is possible to focus the 
model on a user selected frequency band: the model is no longer required to fit the data every-
where, only in the user selected frequency band a good match is desired. We selected in this 
exercise the frequency band around the first resonance of the system. There are two possibili-
ties to get this focus. In the time domain, the measured signals u0, y0 can be prefiltered. This 
does not affect the linear relation between both signals, but it will change the estimated 
model. In the frequency domain, the focus is obtained by selecting only those frequencies in 
the cost function that are in the frequency band of interest. Both approaches are illustrated in 
the next two exercises. 

- % 
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Exercise 64 (Shaping the model errors in the time domain: Prefiltering) 
Goal: Focus the model on the user selected frequency band [0.04 0.08] (fs= 1) us-

ing a prefilter. 
Consider the setup of Exercise 62 

■ Generate u0(t), y0(t) as described before in Exercise 62. 
■ Generate the prefilter L(q): [bL,aL] = b u t t e r (5 , [0 . 04, 0 . 08] *2) to 

focus on the frequency band of interest. 
■ Select N = 5000 and NTims = 1000 
■ Generate the prefiltered signals uL{t) = L(q)u0(t), yL(t) = L(q)y0(t). 
m Eliminate the first NTrans points to avoid the transients of the simulation. 
■ The exact system G0 is a fifth-order system. Put na = nb = 2 for the model, so that 

model errors will be present, but a single resonance can be covered. 
■ Estimate the model parameters 9, eliminating the initial state effects (see Exercise 

58). 
■ Plot |G0|, \G\ , and the amplitude of the complex error |G0(CO) - G(w, @)| as a func-

tion of the frequency. 
Observations (see Figure 4-9) There are still model errors visible, the model order is 

frequency 

Figure 4-9 Improving the quality of a too simple model by using a weighting filter 
L(co) implemented as a prefilter on the time domain signals. The gray region 
is the frequency band of interest. 

still too low to cover the full complexity of the plant, the identified model is different from 
G0. However, in the user selected frequency band, (the pass-band of the prefilter L(co) in 
Figure 4-9), we get a much smaller model error. Outside this band the errors are even larger 
than in Exercise 62, because we are using an even simpler model of order 2 instead of order 4. 
This illustrates that the user can strongly influence the behavior of the model errors. 

Conclusion The user can balance the complexity of the model, the model errors, and 
the noise sensitivity. By using a prefilter, it is possible to tune the model errors, keeping them 
small in a user-defined frequency band. 

Exercise 65 (Shaping the model errors in the frequency domain: frequency 
weighting) 

Goal: focus the model on the user selected frequency band L = [0.04 0.08] (fs= 1) 
by selecting only the frequencies of interest in the cost function. 
Consider the setup of Exercise 62 

■ Generate u0(t), y0(t) as described before. 
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■ Select N = 5000 and AfTrans = 1000. 
■ Eliminate the first AfTrails points to avoid the transients of the simulation. 
■ The exact system G0 is a fifth-order system. Put na = nb = 2 for the model, so that 

model errors will be present, but a single resonance can be covered. 
■ Estimate the model parameters § in the frequency domain, eliminating the leakage 

effects (see Exercise 59). In the cost function (4-16), only the frequencies of interest 
are considered L = {/:0.04<//A?<0.08}: 

K = eH(Q)e(fi) = £e( / ,9)e( / ,e ) , with e(l, 9) = G0(2nl) - G(2nl, 6). (4-19) 
Is L 

■ Plot the amplitude of the complex error |G0(co) - G(w, 9)| as a function of the fre-
quency. 

Observations (see Figure 4-10) The results look very similar to those of Exercise 64 

0 0.05 0.1 0,15 0.2 
frequency 

Figure 4-10 Improving the quality of a too simple model by selecting the frequencies 
that contribute to the cost. The gray region is the frequency band of interest. 

where the frequency weighting was implicitly obtained using the prefiltering of the input and 
output signals. The major difference between both approaches is the increased flexibility for 
the user with the frequency domain method. An arbitrary frequency grid can be selected. It is 
no problem at all to eliminate a number of very narrow bands with spurious components (e.g., 
the frequency and harmonics of the mains), or using very complex patterns selecting for ex-
ample only the odd frequencies to eliminate even nonlinear distortions. It would be quite in-
volved to realize such requirements in the time domain using prefiltering. 

4.2.6 What have we learned in Section 4.2? Further 
reading 

In this section we presented a number of basic problems that the user faces when identifying 
a model for dynamic systems. In order to present the basic concepts as clear as possible, we 
started with an oversimplified situation where no disturbing noise is considered. Even then a 
number of fundamental issues and choices becomes visible. In the noiseless case the identifi-
cation problem can be formulated as a linear least squares problem using an ARX method 
(see Section 4.2.2) that can be solved in the time or in the frequency domain. Both solutions 
are completely equivalent and equal up to the MATLAB® calculation precision (Ljung, 1999; 
Soderstrom and Stoica, 1989; Pintelon and Schoukens, 2001). It turned out that special care 
had to be taken to deal with the initial conditions. In the frequency domain also the end con-
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ditions should be accounted for (Pintelon et al., 1997; Pintelon and Schoukens, 2001). The 
solution is disturbed by unmodeled transient effects if no explicit model term is added. These 
errors disappear as an 0(N~in). 

The numerical conditioning of the equations to be solved becomes a problem either 
when the system becomes more complex (increasing number of poles and zeros), or when the 
relative bandwidth of the system becomes very small (see Exercise 60). Well-selected robust 
numerical methods should be used to deal with this class of systems (Bultheel et ah, 2005; 
Pintelon and Schoukens, 2001; Pintelon and Kollar, 2005). 

Once a model is available, there are mainly two different possibilities to calculate the 
output. In the simulation mode, the output is calculated using past input values only. The 
measured output is not used. The alternative is to predict the output one step ahead using both 
the past input and output measurements (Ljung, 1999; Soderstrom and Stoica, 1989). While 
the simulation mode is very useful to simulate the systems behavior for new unobserved in-
puts (no new experiments need to be made), the prediction mode is often used in control de-
sign where only the short time behavior of the system should be predicted starting from the 
observed past inputs and outputs. Prediction errors are much more robust: The simulation 
transient decays much faster (Exercise 61). Simulation errors are more sensitive to model er-
rors than prediction errors (Exercise 63). Model errors can be tuned (i) by selecting a well 
choose power spectrum of the input, (ii) by choosing a focusing filter, or (iii) by selecting the 
frequency band of interest (Exercises 64 and 65) (Ljung, 1999; Soderstrom and Stoica, 1989; 
Pintelon and Schoukens, 2001). 

4.3 TIME DOMAIN IDENTIFICATION USING PARAMETRIC 
NOISE MODELS 

4.3.1 Introduction 

The aim of this section is to identify a linear dynamic system in the presence of disturbing 
noise. In Section 4.2 a basic introduction to the identification problem was given using a for-
mulation that is linear-in-fhe-parameters. The major advantage of this approach is that the pa-
rameters are obtained as the solution of a linear set of equations. In this section we will 
illustrate that this choice is often not the optimal one, because this solution can be very sensi-
tive to disturbing noise. More involved weighted least squares cost functions will be needed 
that also account for the noise behavior. The least squares cost function of the previous exer-
cises is replaced by a weighted least squares cost where the choice of the weighting function 
will be set by the noise model. This has a double impact on the identification problem: (i) in 
general a nonlinear optimization problem needs to be addressed to find the estimate, while for 
the simple solution only a set of linear equations needed to be solved; (ii) also a noise model 
needs to be selected and identified. Two major possibilities exist for the latter choice, either a 
parametric or a non parametric noise model can be used. 

The parametric approach models the noise as filtered white noise, and the noise model 
parameters are identified simultaneously with the plant parameters, which increases the com-
plexity of the numerical optimization methods. This leads to the classical prediction error 
framework that is almost always formulated and solved in the time domain (see Figure 4-2). 
This approach is followed in Section 4.3. 

Alternatively, a nonparametric noise model can be used. This is mostly done in the fre-
quency domain, by estimating at each frequency the variance of the noise in a nonparametric 
preprocessing step. Next it is used as a nonparametric weighting in the weighted least squares 
cost function. So only the plant model has to be estimated in the parametric model identifica-
tion step. This results in a simpler optimization problem to be solved and a smaller risk to get 
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stuck in a local minimum. This approach is illustrated in Section 4.4 (for periodic excitations) 
and 4.5 (for random excitations). In Section 4.7 we study how to deal with (correlated) noise 
on the input and output measurements assuming that periodic excitations are used. 

4.3.2 Parametric noise models 

In this section we learn how to use parametric noise models. First we introduce the concept of 
a noise model, showing that it is possible to predict the noise behavior. It will become clear 
when these methods are working well, and under what conditions they fail. Next these results 
are used to understand the full identification problem where a plant and a noise model are 
identified. Three different classes of disturbing noise models will be used which cover a wide 
set of practical problems. It will also be illustrated that each noise model corresponds to an 
identification method that is optimal for the specific situation. Mixing the noise model and 
the identification method leads to suboptimal results, with a larger uncertainty, and under 
some conditions even biased models are obtained. 

In the first exercise it will be shown that it is possible to predict future values of a col-
ored noise sequence. Two methods will be illustrated. In the first, very simple method, the 
predicted value of the noise is chosen equal to the last known value v(t) - v(t- 1). In the 
second method, an autoregressive model A(q, 0)v(r) = e(i), with e(t) white noise, is identi-
fied, normalizing the leading coefficient equal t o a 0 = 1. Next the noise value is predicted 
by putting e(t) - 0, and solving for v(/) as a function of the past values v(r- k) leading to 

v(t) = -A{q, 9>(?) = - ^ iakv(t- k). (4-20) 

This result is generalized in Section 4.3.3 to more complex noise model with 

v{t) = gfcSU). (4-21) 
A(q, 9) 

Exercise 66 (One-step-ahead prediction of a noise sequence) Goal: Illustrate the 
prediction of a noise sequence. 
Consider a colored noise sequence v(t) - H0{q)e{t) with e{t) white Gaussian noise. 

■ Generate the system H0: [bGen,aGen] = b u t t e r (5 , 2*BW) 
■ Put BW = [0.01 0.05 0.1 0.2 0.3 0.4] respectively 
■ Select N = 5000 and NTrans = 1000. 
■ Generate N + NTl:ms points, 

v = f i l t e r ( b G e n , a G e n , r a n d n ( 1 , N + N T r a n s ) ) 
and eliminate the first NTrans points to avoid transient effects. 

■ Make a first prediction using the last known value v(t) = v(f - 1) as prediction. 
■ Make a second prediction by estimating an AR-model. Use the ARX program of Ex-

ercise 58 and put the order nb = 0 (no input terms). Choose na = 5 and na = 50. 
Calculate for both models the predicted noise value by 
v>(/) = -Mq> §M0 = - V "_ akv(t - k), with the normalization a0 = 1. 

■ Plot the noise sequence, and both predicted sequences on one plot. Plot the predic-
tion error on another plot. Repeat this for all values BW of the bandwidth of the 
noise, and for both model orders. 
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Observations (see Figure 4-11) From both figures it can be seen that it is possible to 
make a reasonable good prediction for the noise. The simple method works better for noise 
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Figure 4-11 One-step-ahead prediction of the noise. Dotted line: The noise sequence to be predicted. 
Dark gray line: keep the last value of the noise. Light gray line: One-step-ahead prediction 
using an autoregressive model with order na — 5. . 

with a low bandwidth with respect to the sample frequency. For a higher bandwidth, the 
method fails completely. The auto-regressive AR-model does a much better job. But also here 
we see that the error increases with increasing bandwidth. Increasing the order of the model 
results again in a better prediction (see Figure 4-12). It can be shown that in general, the opti-
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Figure 4-12 One-step-ahead prediction of the noise. Dotted line: The noise sequence to be predicted. 
Dark gray line: Keep the last value of the noise. Light gray line: One-step-ahead prediction 
using an auto-regressive model with order na = 50. 

mal one step ahead prediction of the filtered noise v(t) is 

v ( fh - l ) = ^ " ^ O f c M f - f c ) 
(4-22) 
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with h(t) the impulse response of H0(q). In practice, the coefficients H0(q) has to be esti-
mated from a finite data record. In this exercise a specific choice H0(q) = l/A(q) is made to 
keep the exercise as simple as possible, but more general noise models are frequently used, 
for example in Section 4.3.3, as a part of the introduction to the prediction error framework 
system identification approach. 

4.3.3 Identification of parametric plant and noise 
models 

In the first set of exercises (Section 4.2) we identified the model of a system in the absence of 
disturbing noise. In the second series of exercises (Section 4.3.2), the disturbances were mod-
eled as filtered white noise. In the next step, we will identify a plant model in the presence of 
disturbing noise, using the observations y(t) and the known input signal u0(t): 

y(t) = G0(q)u0(t) + H0(q)e(t) = y0(t) + v(t). (4-23) 

Using the prediction i>(f If - 1) of the noise disturbance, the one-step-ahead prediction of the 
output becomes 

y(t\t- 1) = G0(q)u0(t) + v(t\t- 1). (4-24) 

Replacing v(t\t-\) = (1 -HJ{q))v(t) = (1 - H^\q)){y(t) - G0(q)u0(t)) [see (4-22)], leads 
eventually to the optimal prediction of the output: 

y(t\t - 1) = Ho\q)G0(q)uQ(t) + (1 - H-a\q))y{t). (4-25) 

The model parameters in G0(q, 0), H0(q, 9) can be estimated by minimizing the cost func-
tion: 

AjY (yW -Ht\t-1))2 = ^y (tfo'̂ XXO - G0(q, en©)) 2 , (4-26) 

which is known as the prediction error method. From (4-25) and (4-26) it can be seen that the 
optimal predictor depends on the properties of the disturbing noise, and hence different esti-
mation schemes will result. These are known as: 

■ ARX model: The disturbing noise and the system have a common denominator: 

y^ = Tr\u°W + -^-jHf) = G0(q)u0(t) + v(0- (4-27) 
A(q) A(q) 

Notice that this is the model that was used in the exercises of Section 4.2 and it leads 
to a problem that is linear-in-the-parameters (check this in equation (4-26)). If this 
model is corresponding to the reality (for example, the disturbing noise enters the 
system close to its input), we have that the noise v(/) carries also information about 
the poles of the system. 

■ ARMAX model: This is a slightly generalized model, the disturbing noise and the 
system have a common denominator but an additional filtering of the noise with 
C(q) is added. 
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* ' ) = 7T\ " ° W + Tr\e{t) = Go(^)"oW + v(0- (4-28) 
Mq) Mq) 

■ OE model (output error model): The output of the plant is disturbed by white noise 

y^ = f r W f l + e(t) = G0(q)u0(t) + v(t). (4-29) 

This corresponds to white noise disturbances added to the output of the system. 
■ Box-Jenkins model (BJ model): There is no relation between the plant model and 

the noise model. This is the most general model: 

y{t) = x§)u°{t)+§ie(0 = G°(q)u°(t)+v{t)- (4-30) 
All these models, besides the ARX model, result in a numerical optimization problem that is 
nonlinear in the parameters. Numerical optimization methods are needed, and the implemen-
tation of these methods is out of the scope of this book. Instead we advice the reader to use 
for example the MATLAB System Identification Toolbox that is based on the prediction er-
ror theory (Ljung, 1999). 

Exercise 67 (Identification in the time domain using parametric noise models) 
Goal: Identify a transfer function model of a linear dynamic system in the presence of dis-
turbing noise. 
Calculate the output of the linear dynamic system y(t) = G0{q)u0(t) + H0(q)e(t) that is 
driven by filtered Gaussian noise u0(t) - GGcn(q)r(t) for the input, with r(t) and e(i) white 
Gaussian noise with standard deviation 1 and 0.1 respectively. Generate records with a 
length N + NTrms. The first NTians data points of the simulation are eliminated to get rid of the 
initial transients of the simulation. From the remaining TV data points, the plant and noise pa-
rameters 60 are identified, by minimizing the least squares cost (4-26), using the MATLAB 
System Identification Toolbox. 

■ Generate the system G0: [ b 0 , a 0 ] = c h e b y l ( 2 , 1 0 , 2*0 . 36) 
■ Generate the generator filter GGen: [bGen,aGen] = b u t t e r ( 3 , 2*0 . 4) 
■ Select one of the following sets of noise filters coefficients for the noise filter H0: 

- ARX noise: bARX = 1; a ARX = aO 
- OE noise: H0 = 1, or bOE = 1; aOE = 1; 
-BJnoise: [bBJ ,aBJ] = b u t t e r ( 2 , 2 * 0 . 1 3 3 ) ; 

■ Select N = 5000 and NJrBBS = 1000. 
■ Estimate the plant and noise model parameters 9 for each of these three distur-

bances, using the ARX, OE, and BJ model. 
■ Repeat this 20 times, and calculate the rms value of the complex error 

\G0(j(i>) - G(j03, @)| as a function of the frequency. 
Observations (see Figure 4-13) The results for the different combinations of noise 

models are shown. Also the power spectrum of the disturbing noise is shown. From this fig-
ure it can be concluded that each model is optimal if it corresponds to the true noise model 
structure, leading to the following optimal pairs: ARX-ARX; OE-OE; BJ-BJ. However, it can 
also be seen that using the B J model gives a result that is very close to that of the ARX model 
and OE model for the ARX noise and OE noise, respectively. Only a slight increase of the 
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Noise filter 1/A (ARX) Noise filter white (OE) 
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Figure 4-13 Comparison of the different time domain models on three different disturbing noise situations. Black 
line: G0 . Gray line: Power spectrum disturbing noise. Root mean square value IGo '̂co) - G{j(0, §)| 
for: —: ARX model,...: OE model, thin black line: BJ model. 

rms error can be observed because more parameters are used in the BJ model than in the more 
specific noise models. So the BJ model could be selected as the general purpose tool. How-
ever, as mentioned before, the optimization of the parameters in this model is more prone to 
local minima, and needs on the average (much) more computation time. This is because two 
completely independent models have to be identified simultaneously. 

4.3.4 Identification under feedback conditions 

In this section we consider a very special but important problem: identification of a system 
under feedback conditions. The goal is to identify a system G0 where the input u0 does not 
only depend upon the user excitation r{t), but also on past values of the output y(t) that are 
fed back to the input. Notice that also the disturbance v(t) is fed back to the input which cre-
ates a correlation between the input signal and the noise. Many identification methods like 
those based on ARX, ARMAX, and OE models will result in general in a biased estimate. 
Only the BJ model will still give consistent estimates under the condition that both the plant 
and the noise model are complex enough to capture the true systems. This is illustrated in the 
next exercise. 

Exercise 68 (Identification Under Feedback Conditions Using Time Domain 
Methods) Consider the setup in Figure 4-14. A system y - G0u0 + v is captured in a unit 
feedback loop with controller C = 1: 

r(t) 

A 
"o(0 

?o(0 
y0(t) V 

—5H±>-

v(t) 
y(t) 

Figure 4-14 System captured in a unit feedback loop. 

The system G0 is given by the filter: 
[bFF,aFF] = c h e b y l ( 1 , 2 0 , 0 . 5 ) ; bFF(1) = 0;bFF = bFF*10; 

The reference signal r{t) is white Gaussian noise with standard deviation 1, filtered by the 
generator filter: 

[bGen,aGen] = b u t t e r ( 3 , 2 * 0 . 4 ) ; 
The process noise v is filtered Gaussian noise with standard deviation ov = 0.1, 0.5, 1 re-
spectively, the noise filter is 
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[bNoise , aNoise ] = b u t t e r (Orde rNo i se , 2*0 .133); 
with OrderNoise = 1. 

■ Calculate the relation between y(t) and r(t), v(t), and generate the output y(t). 

m Select N = 5000 and NTrans = 1000 (see Exercise 58). 

■ Estimate the plant model from u0(t), y(t) using the ARX, OE, and BJ model for each 
of the values of rjv. What is the order of the plant model to be used? What is the or-
der of the noise model in the BJ model? 

■ Repeat this 100 times, and calculate the rms value of the complex error 
|G0(/'(0) - G(/co, @)| as a function of the frequency. Calculate also the bias. Plot the 
results for the three models and for the three levels of the disturbing noise. 

■ Hint: u ( t ) = f i l t e r (b r , a r , r ) , with b r = bFF; a r = aFF+bFF. The 
signal r is the reference signal. The contribution of v(r) = H(q)e(t) to y{t) is given 
by f i l t e r (bv, av , e ) , with bv = conv (aFF, b N o i s e ) ; 
av = conv (aFF+bFF, aNoise) . The convolution of the polynomial coeffi-
cients calculates the coefficients of the product of the polynomials. 

Observations (see Figure 4-15 and Figure 4-16) The first figure shows the rms error for 

Noise filter std 0.1 Noise filter std 0.5 Noise filter std 1 

Frequency Frequency Frequency 

Figure 4-15 Comparison of the rms value of the error for different time domain models for identification 
under feedback conditions. Black line: G0 . Gray line: Power spectrum disturbing noise. —: ARX 
model. ...: OE model. Thin black line: BJ model. 

three different noise levels. For small noise levels, all models behave quite similarly, although 
the BJ model turns out to be slightly better than the others. This difference is increasing for 
increasing disturbing noise levels almost proportional to the noise level. 

In Figure 4-16 the bias error is shown for N = 5000 and N = 50,000. Here it can be 
seen that there is a significant bias on the ARX and OE model. Notice that the bias grows 
proportional to the variance of the noise (and not to the standard deviation!). The observed er-
ror on the BJ model is much smaller. A more detailed analysis would show that this error is 
not significantly different from zero, and hence no bias can be detected for the BJ model. This 
can be checked by increasing the length N of the simulation. In that case the error for the BJ 
will decrease in \/ JN because the stochastic error dominate (and these are an 

o{\/M), 
while the bias of the ARX and OE model will remain the same. This can be checked in 
Figure 4-16 (right) where N = 50,000 data points are processed in each simulation. 
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Figure 4-16 Comparison of the bias error for different time domain models for identification under feedback 
conditions. Left: N = 5000. Right N = 50000. Black line: G0 . Gray line: power spectrum 
disturbing nois.; —: ARX model. ...: OE model. Thin black line: BJ model. 

4.3.5 Estimating the variability of the estimated model 

An estimate without an uncertainty interval has no value. At any time, the user should have an 
idea about the reliability of the results. Classically this is done by providing the covariance 
matrix on the parameters: 

Ce = E { ( 0 - E { 8 } ) ( e - E { 6 } ) ' } . (4-31) 

From this knowledge, it is possible to calculate an approximate value of the variance of any 
related quantity using linearization. This is done in most packages, hidden for the user. In this 
exercise we will illustrate the use of these tools to compare the estimated standard deviation 
on the amplitude and phase characteristic of the estimated transfer function model. These will 
be compared to the results obtained from the simulations. 

Exercise 69 (Generating uncertainty bounds for estimated models) Goal: Calcu-
late the estimated variance of the amplitude and phase of the estimated transfer function 
model, starting from the estimated covariance matrix. 

Calculate the output of the linear dynamic system y{t) = G0(q)u0(t) + H0(q)e(t) that is 
driven by filtered Gaussian noise u0(t) - Gacri(q)r(t) for the input, with tit) and e{t) white 
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Gaussian noise with standard deviation 1 and 0.1, respectively. Generate records with a 
length N + NTrims. The first NTram data points of the simulation are eliminated to get rid of the 
initial transients of the simulation. From the remaining N data points, the plant and noise pa-
rameters 90 are identified, using the BJ model. 

■ Generate the system G0: 
bO = [0 .2 0 .6 0 . 3 ] , aO = [1 - 1 . 2 0 .9 ] 

■ Generate the excitation filter GGen: 
[bGen,aGen] = butter(3,2*0.2*1.5) 

■ Define the noise generating filter: 
bNo i se = [1 0 .7 0 . 7 ] ; aNo i se = [1 - 0 . 8 0 . 3 ] 

■ Select N = 1000 and NTrans = 500, and generate u0, y = y0 + v. Eliminate the 
first NTrans data points. 

■ Estimate the plant and noise model parameters § using the BJ model from u0, y. 
■ Repeat this 1000 times, and calculate the standard deviation of \G(j(0, 6)| and 

ZG(j(0, S) as a function of the frequency. Calculate also the standard deviation of 
the amplitude and phase characteristic, starting from the estimated covariance matrix 
(use the routines of the toolbox). 

Observations (see Figure 4-17) The figure compares the estimated and observed stan-
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Figure 4-17 Comparison of the standard deviation on the estimates obtained from 1000 repeated 
simulations (gray), and from the estimated covariance matrix obtained from a single 
realization (black). 

dard deviations. A very good agreement can be observed. Since the estimates are asymptoti-
cally normal distributed (see Exercise 3, Chapter 1), it is also possible to calculate for exam-
ple the 95% uncertainty bounds, using the two sigma interval. From these simulations we can 
also conclude that it is possible to generate uncertainty bounds starting from only one realiza-
tion. At the end of each estimation process, we end up we the numerical values of the esti-
mated parameters and their covariance matrix. 
Remarks: (i) The spike in the phase plot is due to small variations in the position of the 2 Jr. 
jump of the phase. As such, it does not indicate a large phase uncertainty, it is only an artifact 
that is due to the modulus 2n nature of the phase, (ii) The reader should be aware that the es-
timated covariance matrix will slightly vary from one realization to the other, and hence also 
the values of the theoretical standard deviations on the amplitude and phase will slightly 
change. 

4.3.6 Focusing the BJ model on a user defined 
frequency band using prefiltering 

A 

In this section we study how the BJ model can be focused on a user-defined frequency band. 
A first (and sound) possibility is to design an appropriate excitation signal that puts most of 
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its power in this band. However, for a given data set it is still possible to focus the identifica-
tion model by applying a prefilter Gp to both the input and output signal. Such an operation 
does not change the relations: 

y(t) = G0(q)u0(t) + v(t) ^ Gp{q)y(t) = G0(q)Gp(q)u0{t) + Gp(q)v(t). 
So the estimation can be done on the prefiltered signals yp(t) = Gp (q)y(t), and 

Wp(?) = Gp (q)u0(t) + vp(r). The reader should notice that the prefilter operation also changes 
the disturbing noise spectrum from H0 —> GpH0. When a full BJ identification is performed, 
the noise model order should be increased to account for this effect. Eventually the estimate 
is almost not influenced by the prefiltering step, at least in theory. The only difference is the 
larger number of parameters in the noise model. However, in practice, the BJ model should be 
initialized, which is done using nonoptimal estimators that can be affected by the prefiltering 
operation. This can influence the convergence properties of the numerical optimization rou-
tine. On the other hand, if the noise model order is not adapted for the prefiltering, a sub-opti-
mal result will be obtained because the noise model in use will be too simple. This results not 
only in a larger variability, also the uncertainty bounds that are calculated together with the 
estimate will be incorrect, because these rely heavily on the estimation of a correct noise 
model. All these aspects are illustrated in the next exercise. 

Exercise 70 (Study of the behavior of the BJ model in combination with 
prefiltering) Goal: identify a transfer function model of a linear dynamic system in the 
presence of disturbing noise using the BJ model, first without pre-filter, next using a pre-filter. 

Calculate the output of the linear dynamic system y(t) = G0(q)u0(t) + H0(q)e(t) that is 
driven by filtered Gaussian noise u0(t) = G0m(q)r(t) for the input, and e(t) white Gaussian 
noise with standard deviation 0.1. Generate records with a length N + NTrms. The first NTians 
data points of the simulation are eliminated to get rid of the initial transients of the simula-
tion. From the remaining N data points, the plant and noise parameters 0O are identified, us-
ing the BJ model. 

■ Generate the system G0: 
[ b 0 , a 0 ] = c h e b y l ( 2 , 5 , 2 * 0 . 0 8 ) ; bO (2) = b 0 ( 2 ) * 1 . 3 ; 

■ Generate the excitation filter GGen: 
[bGen,aGen] = butter(3,2*0.25); bGen(2) = 0.9*bGen(2); 

■ Define the noise generating filter: 
[bNoise,aNoise] = butter (2, 2*0 . 2); 
bNoise = bNoise+0.l*aNoise; 

■ Generate the prefilter: 
[ b f , a f ] = b u t t e r ( 3 , 2 * 0 . 0 1 ) ; bf = b f + 0 . 0 1 * a f ; 

■ Select N = 1024 and NTrms = 1000, and generate u0, y0, v(t). Generate also the 
prefiltered values up(t) = Gp(q)u0(t), yp(t) = Gp{q)y{i). Eliminate the first NTrans 
data points. 

■ Estimate the plant and noise model parameters 8 using the BJ model using: 
- y(t), u0(t) with the exact plant and noise model order (a), 
- vp(0, up{i) with the same orders as in the previous step (b), 
- yp(t), up(t) with an increased noise model order to account for the prefiltering (c). 

■ Repeat this 1000 times, and calculate the rms value of the complex error 
l * l 
|G0(/ft>) - G(/'co, 0)| as a function of the frequency for the three situations. Calculate 
also the standard deviation of the amplitude characteristic of the estimated models, 
and compare to the theoretical uncertainty bound obtained from the estimated mod-
els. 
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Observations (see Figure 4-18 and Figure 4-19) The first figure shows the rms error 
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Figure 4-18 Comparison of the rms value of the error of the BJ estimates without and 

with prefilter. The rms error is shown (i) without prefilter (np), (ii) with 
prefilter and full noise model (pf), and (iii) with prefilter and simple noise 
model (ps). 

for three simulations. Also the prefilter characteristic is plotted. It can be seen that the results 
of situation (a) and (c) are almost identical, as expected from the introduction. The rms error 
on the prefiltered data with the too simple noise model (situation b) is significantly larger. 
This is due to the nonoptimal frequency weighting by the too simple noise model. 

In Figure 4-19 the standard deviation is shown for situation (b) and (c). The plot for (a) 
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Figure 4-19 Comparison of the theoretic (t) and observed (e) uncertainty on the 

amplitude of the estimated transfer function for the full (f) and simple (s) 
noise model. o„ , asl and a/e, afl the estimated and theoretical standard 
deviation for, respectively, the simple and the full model. 

is identical to that of (c), and is not shown here. From this plot it is seen that for the (a) and (c) 
situation, the observed standard deviation is well described by that calculated from the esti-
mated model, using the data of the last run. For situation (b), this is no longer true. This is be-
cause the noise model is too simple, so that also the uncertainty bounds that are calculated 
starting from this model are incorrect. This brings us to the conclusion that prefHtering can be 
used to focus the BJ model at a cost of an increased variance on the estimated model. Also the 
estimated variance on the estimates can be wrong. 
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4.3.7 What have we learned in Section 4.3? Further reading 

The major new concept of this section is the observation that it is possible to predict colored 
noise. While white noise is unpredictable, it is possible to predict the value of colored noise 
with increasing precision for a decreasing bandwidth using a parametric noise model. In the 
full identification problem, a parametric plant and noise model are estimated simultaneously. 
In this section we focussed completely on time domain identification. An excellent and ex-
haustive introduction can be found in the books of Ljung (1999) and Soderstrom and Stoica 
(1989). Also for the parametric identification approach special care has to be taken for identi-
fication under feedback. Dedicated methods were developed to avoid systematic errors that 
are induced by the disturbing noise turning around in the loop (Van den Hof and Schrama, 
1995). In this book we focus completely on SISO identification. The reader can find more in-
formation on MIMO identification under the following topics: subspace identification; state 
space identification; common denominator models; left fraction modelling; and so on. 

4.4 IDENTIFICATION USING NONPARAMETRIC NOISE 
MODELS AND PERIODIC EXCITATIONS 

In the Section 4.3, parametric noise models were used: the noise was modeled as filtered 
white noise, and the filter coefficients were explicitly estimated simultaneously with the plant 
model. In this section, we will use a nonparametric model for the noise. We will study two 
situations, the first assuming that a periodic excitation is used and that the measurements are 
made under steady state conditions (Section 4.4); secondly we will show how to deal with 
random excitations (Section 4.5). 

4.4.1 Identification using nonparametric noise models 
and periodic excitations 

In Exercise 47 Chapter 3 it was illustrated how to estimate the signals U(k), Y(k) and the 
* 2 * 2 " 2 

noise levels Gu(k), Oy(k), Gw(k) if a periodic excitation is used, and a series of repeated 
(successive) periods is measured. We will make use here of these results. For the periodic ex-
citation we select a multisine signal (see Chapter 2). We advice the reader to make these exer-
cises before continuing here, because in the next sections we assume that the reader is 
familiar with these techniques. 

Once the averaged signal U(k), Y(k) and the noise (co-)variances Gu(k), GY(k), GYU(k) 
are obtained from the preprocessing step, the results are used to estimate the plant model by 
minimizing the following cost function (see also Figure 4-1): 

vMX-£ ^-r, lm>-C(n , .*W)l '^ 
F^= iCrik) + Ou(k)\G0(£lk, 0)|2-2Re(aYi{k)G(Clh 0){Q.k, 0)) 

which can be rewritten as 

V(fh i v / \A(nk,e)Y(k)-B(ah0)U(kf 
vF(t))=-y — — — . y*-i5) 

F^k=i ar(k)\A(Slk, 0)\2 + Ou(k)\B(£lk, 9)\2 - 2Re(GYU(k)A(Q.k, 9)B{Q.k, 6)) 
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~ 2 ~ 2 ~ 2 

In these expressions cdk), Cy(k), aYu(k) are the nonparametric noise models for the noise on 
the input, output and the covariance between both, as a function of the frequency. The fre-
quency Slk is 

&k = j®k for continuous time systems, 

and £ik = e N ' for discrete time systems (/s is the sample frequency). (4-34) 

The reader can remark that this setting is more general than that of the classical predic-
tion error framework in Section 4.3: 

■ Besides process and measurement noise on the output, we can deal here also with 
disturbing noise on the input. This leads to what is called the errors-in-variables 
framework. This generalized problem can be solved in the time or in the frequency 
domain. While it leads to much more complex methods in the time domain, the com-
plexity of the problem remains the same in the frequency domain, for the settings of 
this section. 

■ In the frequency domain, the switch from a discrete time to a continuous time model 
requires only a change of the frequency variable. In the time domain, the identifica-
tion of continuous time models requires again more advanced methods than those 
developed in the classical prediction error framework that is directed towards dis-
crete time models. 

We will not further elaborate on these aspects and refer the reader to the existing literature. In 
the next series of exercises we will learn how to apply the frequency domain identification 
methods using discrete time models and assuming that there is only disturbing noise on the 
output, the input is exactly known. Generalizing this to continuous time systems is straight 
forward by changing the frequency variable in the model. Also dealing with (correlated) in-
put and output noise remains very simple under the condition that periodic excitations are 
used. In Section 4.7 we deal with these generalizations. 

As a first exercise, we repeat Exercise 67, using this time periodic excitation signals, a 
nonparametric noise model, and a frequency domain method. The results will be compared to 
those obtained with the BJ model. The standard steps to use frequency domain identification 
methods in combination with periodic excitations and a nonparametric noise model are: 

■ Design a periodic excitation signal with a user specified amplitude spectrum (time 
domain equivalence: the power spectrum of the excitation), and with the desired res-
olution (time domain equivalence: the length of the experiment). These steps were il-
lustrated in Chapter 2. 

■ Measure an integer number of periods, and check mat the transients disappeared (see 
Exercises 35, Chapter 3). 

■ Calculate the sample mean and sample (co-)variances of the input and output DFT 
coefficients in the preprocessing step (see Exercise 46, Chapter 3). 

■ Optional: Select the frequencies that will be used during the identification step. This 
is the equivalence of prefiltering in the time domain (see Section 4.4.2). 

■ Start the identification process. Notice that no choice on the noise model should be 
made. In the time domain, a choice between the ARX, ARMAX, OE, or BJ model 
should be made. 
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Exercise 71 (Identification in the frequency domain using nonparametric noise 
models) Goal: Identify a transfer function model of a linear dynamic system in the pres-
ence of disturbing noise, using a nonparametric noise model. 
Calculate the output of the linear dynamic system y(t) = GQ(q)u0(t) + H0(q)e(t) that is ex-
cited by a multisine signal, and disturbed by filtered Gaussian noise H0(q)e(t), with e(t) 
white Gaussian noise with standard deviation 0.1. Generate records with a length 
NM + NTrins, with M the number of periods and N the number of data points in one period. 
The first A T̂rans data points of the simulation are eliminated to get rid of the initial transients 
of the simulation. From the remaining NM data points, a nonparametric noise model Gy(k) 
is extracted in the preprocessing step, and next the plant parameters 0O are identified, by min-
imizing the least squares cost (4-33), using the FDIDENT toolbox (Kollar, 1994) (see also 
Exercise 76). 

■ Generate the system G0: [bO,aO] = c h e b y l ( 2 , 1 0 , 2*0 . 36) 
■ Generate the system G0en: [bGen,aGen] = b u t t e r (3 , 2*0 . 4) 
■ Select N = 1024, M = 7, and iVTrans = 1024. 
■ Generate a random phase multisine. The amplitudes are set by the amplitude charac-

teristic the generator filter: 

\UUk)\ = G g e n ( ^ ) , k = 1, ...,N/2. (4-35) 

Scale the multisine so that its rms value is equal to that of a filtered Gaussian noise 
sequence Ggen(q)r(t), with Gr = 1. 
Generate M = 1 periods in steady state of y(f) = G0(q)uQ(t) + Ha(q)e(t) with 
ae = 0.1. 
Use for H0 one of the following sets of noise filters coefficients: 
- ARX noise: bARX = 1; aARX = aO 
- OE noise: H0 = l .orbOE = 1; aOE = 1; 
- BJ noise: [bBJ, aBJ] = b u t t e r (2, 2*0 .133); 
Calculate U(k), Y(k), and GY(k), used for frequency domain identification (we know 
that Gl(k) and GJu(k) equal zero). 

&<*>= isT.. ul'm -Hk) = s 2 T . . y W ( t ) ' (4-36) 

"^"Sr^rTZT-.I^W-^l2- (4"37) 

Notice that the extra division by M is made to get the (co-)variance on the mean val-
ues U(k), Y(k). 
Calculate also the mean values over the M periods in the time domain: u0(i), %t) 
(used for time domain identification). 
Time domain identification: Estimate the plant and noise model parameters 8 for 
each of these three disturbances, using respectively the ARX, OE, and BJ model for 
the AR, OE, and BJ noise source, starting from u0(t), y(t). 
Frequency domain identification FDIDENT: Estimate the plant parameters using the 
frequency domain estimator for each of the three noise filters. This can be done us-
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ing the following code: Generate the long input and output data records, and split 
them in M subrecords of length Nper, next load the data in the toolbox data structure 
and process them (Section 4.7 shows how to use the graphical user interface). 
uO = re shape (uO,NPer ,M) ; 
UO = fft(uO)/sqrt(N); U0=U0(Lines, : ); 
y = reshape(y,NPer,M); Y = fft(y)/sqrt(N); Y = Y(Lines,:); 
% calculate the Fourier data 
Fdat = fiddata(num2cell(Y,1), num2cell(UO,1),f(:)); 
% store the data in fiddata format 

Fdat = varanal(Fdat); 

% add variance analysis 

nb = OrderG; % order numerator 

na = OrderG; % order denominator 

MFD = e l i s ( F d a t , ' z ' , n b , n a , s t r u c t ( ' f s ' , 1) ); 
■ Repeat this 20 times, and calculate the rms value of the complex error 

|G0((0) - G(w, §)| as a function of the frequency for all these estimates. 
Observations (see Figure 4-20) From the results it can be seen that the rms value the er-
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Figure 4-20 Comparison of time and frequency domain identification methods for three different noise types 
and the corresponding time domain model. Black line: G0. Thin gray line: Power spectrum 
disturbing noise. ...: Rms error freq. dom. method. Bold gray line: Rms error time domain model 
(ARX, OE, BJ, respectively). 

ror for the frequency domain identification method is almost equal to that of the optimal time 
domain method for each of the three noise situations. A small loss in efficiency of 
( M - 2 ) / ( M - 3) on the variance of the frequency domain method can be observed. This is 
due to the fact that in the parametric noise model less parameters are used than in the non-
parametric one. Only in the ARX situation there can be a larger difference because in that 
case the noise model contributes to the knowledge of the plant model: the noise and plant 
model have the same poles. Of course this is only valid if the user can guarantee on the basis 
of prior knowledge that this is indeed the case, otherwise, a bias error will be introduced. This 
will be illustrated in Section 4.5. 

So we can conclude that both methods are almost equivalent to each other for the ex-
perimental conditions of this exercise (no disturbances on the input, periodic excitation). Se-
lecting between a parametric or a nonparametric noise model becomes a users choice (Can 
the user easily select the noise model structure and order? Can the user afford a loss of, e.g., 
1.5 dB in efficiency? Does the Box-Jenkins model get stuck in a poor local minimum?). 

Discussion In this exercise we knew from the setting that only aY(k) differs from zero, 
and we could put cl(k) and oru(k) equal zero. However in case ol(k) is different from 
zero, the user is not allowed to put oYU{k) = 0, even if this is known from prior information. 
In order to keep the consistency of the estimate, it is required to calculate and use oYu(k) in 
the cost function in combination with 



Section 4.4 ■ Identification Using Nonparametric Noise Models and Periodic Excitations 119 

^ = izT. im{k) - fm = i z T - . ^ - (4-38) 

(4-39) 
5^*) = i i r - rEr , (y['W - *(*))( ̂ 'W - &(*»• 

MM - 1 ^-" = i 

This is because the sample co-variances calculated for a finite number of repetitions M will 
not be equal to zero (Pintelon and Schoukens, 2001). 

4.4.2 Emphasizing a frequency band 

The goal of this section is to emphasize a frequency band during the identification. A similar 
study was made for the Box-Jenkins model where it was be shown that this is not straight-
forward. When the full noise model was used, the prefiltering operation does not affect the fi-
nal model properties, but it affected the initialization process. A similar result will be illus-
trated here if a nonparametric noise model is used. Prefiltering will not drastically change the 
properties of the estimate. However, in this case there is an alternative. In the frequency do-
main, it is possible to select arbitrarily what frequencies will be used in the cost function (4-
32), offering also the freedom to the user to focus the estimate on a user defined frequency 
band. This is illustrated in the next exercise. 

Exercise 72 (Emphasizing a frequency band) Goal: Emphasize a frequency band 
during the identification of a transfer function model of a linear dynamic system. 
Calculate the output of the linear dynamic system 

y(t) = G0(q)u0(t) + H0(q)e(t) = y0(t) + v(/) (4-40) 

that is driven by a multisine for the input, and e(t) white Gaussian noise with standard devia-
tion 0.1. Generate records with a length MN+ NTrans, with N the period of the multisine. 
The first AfTrans data points of the simulation are eliminated to get rid of the initial transients 
of the simulation. From the remaining data points, the plant and noise parameters 80 are 
identified, using the frequency domain method. 

■ Generate the system G0: 
[ b 0 , a 0 ] = c h e b y l ( 2 , 5 , 2 * 0 . 0 8 ) ; bO (2) = bO (2) *1 . 3; 

■ Generate the excitation filter GGen: 
[bGen,aGen] = butter(3,2*0.25); bGen(2) = 0.9*bGen(2); 

■ Define the noise generating filter: 
[bNoise,aNoise] = butter(2,2*0.2); 
bNoise = bNoise+0.l*aNoise; 

■ Generate the prefilter: 
[ b f , a f ] = b u t t e r ( 3 , 2 * 0 . 1 ) ; b f = b f+0 .01*af ; 

■ Generate a zero mean random phase multisine with a flat amplitude up to the 
Nyquist frequency (not included). Scale the rms value to be equal to 1. Use 
N - 1024, M = 7 , and NTans = 1024. Filter this signal with the generator filter 
to get w0. 
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■ Generate w0, y0, v(t). Generate also the prefiltered values up(t) = Gp(q)u0(t), 
yp(t) = Gp(q)y(t). Eliminate the first A âns data points. 

■ Estimate the plant and noise model parameters 9 using the frequency domain-
method with the settings of Exercise 71, for u0, y, the prefiltered data up, yp, and the 
restricted frequency band using only the FFT lines [ 2 : l : f l o o r ( 0 . 1 * N ) ] . 

■ Repeat this 100 times, and calculate the rms value of the complex error 
|G0(/CO) - G(/'co, S)| as a function of the frequency for the three situations: no prefil-
ter, prefilter, cut of the frequency band of interest. 

Observations (see Figure 4-21) The figure shows the rms error for three simulations. 
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Figure 4-21 Comparison of the rms value of the error of the FD estimates without 
(np), with prefilter (pf), and with a restricted frequency band (c). 

Also the prefilter characteristic is plotted. It can be seen that the results with and without pre-
filtering are identical in the centre of the frequency band of interest, as expected from the in-
troduction. Restricting the frequencies to the frequency band of interest results in a slightly 
larger uncertainty. This is because all information outside that band is not used in that case. 
Extending the selected frequency interval would reduce this loss. 

The reader should notice that selecting the frequencies of interest is a very flexible 
method. In combination with a good selection of the excitation signal, the user gets a full 
freedom to tune the experiment to the frequencies of interest. Very complex frequency pat-
terns can be used, avoiding for example to use the frequencies in the neighborhood of the 
mains frequency (and its higher harmonics). If also the excitation is tuned similarly using a 
multisine, no information loss will be present anymore. 

4.4.3 Identification under Feedback Conditions 

In this exercise, we repeat the feedback Exercise 68, but this time using a plant and noise sys-
tem of order 2. 

Exercise 73 (Comparison of the time and frequency domain identification under 
feedback) 

■ Consider the setup of Exercise 68. 
■ The system G0 is given by the filter: 

[bFF,aFF] = c h e b y l ( O r d e r G , 2 0 , 0 . 5 ) ; bFF(1) = 0; 
bFF = bFF*2; with OrderG = 2. 

■ The process noise v is filtered Gaussian noise with standard deviation 
ov = 0.1,0.5,1 respectively, the noise filter is 
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[bNoise,aNoise] = bu t te r (OrderNoise ,2*0 .133) ; 
with OrderNoise = 2. 

■ Replace the excitation signal by a multisine as specified in Exercise 71 (amplitude 
spectrum, period length TV = 1024). 

■ Make the simulation as in Exercise 71, measuring the input (not the reference input 
to the feedback) of the system captured in the feedback loop, and the corresponding 
output of the feedback loop. Calculate the variances and covariance of the input and 
output, frequency per frequency and use this as the nonparametric noise model. 

■ Identify the plant model using the BJ model and the frequency domain method using 
a nonparametric noise model. 

■ Repeat this 100 times. Do the following: 
- Calculate the rms value of the complex error \G0(j(O) - G(j(ti, @)| as a function of 
the frequency for both methods. 
- Calculate the mean value G(/co, 8) as a function of co over the 100 realizations for 
both methods. 
- Plot the results. 

Observations (see Figure 4-22 and 4-23) m From these results it can be observed that 

Noise filter std 0.01 Noise filter std 0.1 Noise filter stcl 1 

Figure 4-22 Comparison of rms-error of the time and frequency domain identification methods under feedback 
conditions. Black line: G0 ; gray line: rms error of Box-Jenkins;...: rms error freq. dom. method 

Noise filter std 0.1 Noise filter std 0.5 Noise filter std 1 

Figure 4-23 Comparison of bias error of the time and frequency domain identification methods under feedback 
conditions. Black line: G0. Gray line: Bias error of Box-Jenkins. ...: Bias error frequency domain 
method. 

both methods behave similarly for the simulation with low noise disturbances. For 
the other two noise levels, a (slight) difference can be observed between the time 
and frequency domain method, although both methods should be equivalent under 
these conditions. This difference is because the risk to get stuck in a local minimum 
is larger for the BJ model than for the frequency domain method, the latter has to 
solve a simpler optimization problem (only the plant model has to be identified). 
This can be verified by plotting all the estimated models on a single plot, making a 
few outliers visible for the BJ model (Figure 4-24). 
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Figure 4-24 Check for the presence of outliers of the time and frequency domain 
identification methods under feedback conditions. Amplitude FRF of 100 
simulations. Black line: Frequency domain. Gray curve: Box-Jenkins. 

4.4.4 What have we learned in Section 4.4? Further 
reading 

In Section 4.3 the parametric plant and noise model were simultaneous identified using arbi-
trary excitations, e.g. random or periodic excitations. If possible, we strongly advice the user 
to apply periodic excitations. This offers many potential advantages: Besides a full nonlinear 
analysis that can be made (see Chapter 5), it is also possible to extract a nonparametric noise 
model without any user interaction. This simplifies the identification process significantly be-
cause the simultaneously selection of the plant- and noise model order is a difficult task for 
unskilled users. For periodic excitations, it is easy to deal with (correlated) noise on the input 
and output data, and also direct identification under feedback conditions requires no special 
care. A detailed discussion is given in the book of Pintelon and Schoukens (2001). 

4.5 FREQUENCY DOMAIN IDENTIFICATION USING 
NONPARAMETRIC NOISE MODELS AND RANDOM 
EXCITATIONS 

In the previous section we restricted the excitation to be periodic in order to estimate in a pre-
processing step the nonparametric noise model. Here we consider again the general situation 
where the system is excited with random excitations. To extract the noise model under these 
conditions, we preprocess the data first with the local polynomial method (see Exercise 51, 
Chapter 4). While we could tolerate disturbing noise on the input and the output data in Sec-
tion 4.4, we impose here again that the input is exactly known as it was for the prediction er-
ror framework that was used in Section 4.3. So we will make this exercise under exactly the 
same conditions as defined for the classical time domain prediction error framework (see Sec-
tion 4.3) and we process exactly the same data as in Exercise 67 to emphasize this. 

Exercise 74 (Identification in the frequency domain using nonparametric noise 
models and a random excitation) Goal: Identify a transfer function model of a linear dy-
namic system in the presence of disturbing noise making use of a nonparametric noise model. 
Calculate the output of the linear dynamic system y(t) = G0(q)u0(t) + H0(q)e{t) that is 
driven by filtered Gaussian noise u0(t) = GGen(^r)r(f) for the input, with r(t) and e(i) white 
Gaussian noise with standard deviation 1 and 0.1, respectively. Generate records with a 
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length N + NTans. The first NTnns data points of the simulation are eliminated to get rid of the 
initial transients of the simulation. From the remaining N data points, the plant and noise pa-
rameters 60 are identified, by minimizing the least squares cost (4-26), using the MATLAB 
System Identification toolbox of Ljung. 

■ Generate the system G0: [bO,aO] = c h e b y l ( 2 , 1 0 , 2*0 . 36) 
■ Generate the system GGen: [bGen,aGen] = b u t t e r (3 , 2*0 . 4) 
■ Select the 'BJ noise' filter of Exercise 67: 

[bBJ ,aBJ] = b u t t e r ( 2 , 2 * 0 . 1 3 3 ) ; 
■ Select N = 5000 and yVTrans = 1000. 
■ Nonparametric preprocessing: Estimate the FRF, the cleaned output (leakage errors 

eliminated), and its variance using the "Local Polynomial Method" as explained in 
Chapter 3, Exercise 51. 

■ Estimate the plant model using the BJ model with the time domain data, and use the 
frequency domain identification method of the previous section using the data ob-
tained in the preprocessing step. Put the variance on the input and the covariance 
equal to zero. 

■ Repeat this at least 100 times, and calculate the rms value of the complex error 
|G0(co) - G(w, @)| as a function of the frequency for both methods. Plot the results. 

Observations (see Figure 4-25) From these results it can be observed that both methods 

0.2 
Frequency 

Figure 4-25 Comparison of rms error of the Box-Jenkins estimate (time domain, 
parametric noise model) and the frequency domain method (frequency 
domain, preprocessing local polynomial method, nonparametric noise 
model). Bold line: G0 . Thin black line: rms error Box-Jenkins estimate. 
Thin gray line: rms error frequency domain method. 

behave very similarly although a small increase of 1.3 dB in the rms error can be observed for 
the nonparametric noise model. This loss is very typical for the use of nonparametric noise 
models. The major advantages of the nonparametric noise model are that (i) the user faces 
only the selection of the plant model structure instead of the simultaneous selection of the 
parametric plant and noise model structure; (ii) a simpler optimization problem needs to be 
solved, resulting in less convergence problems of the numerical optimization method. The 
major disadvantages are a small loss in efficiency, and it is impossible to express that the 
plant and noise model have common poles. 

4.6 TIME DOMAIN IDENTIFICATION USING THE SYSTEM 
IDENTIFICATION TOOLBOX 

In this section and Section 4.7, we familiarize the reader with the use of a time and fre-
quency-domain system identification toolbox. Starting from the data, we show how to deal 
with the model structure selection and the parameter estimation and eventually the model val-
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idation. To process the data in the time domain, we use the MATLAB® System Identification 
toolbox of the Mathworks that is based on the prediction error framework using parametric 
noise models (Section 4.6). The toolbox is written by Lennart Ljung (Linkoping University, 
Sweden). We want to acknowledge Lennart for providing us with the best practices how to 
deal with these data in the toolbox. The second toolbox that we will illustrate in Section 4.7 is 
the frequency domain system identification toolbox, FDIDENT, written by Istvan Kollar 
(Budapest University of Technology and Economics). Also Istvan contributed to the prepara-
tion of these examples. The FDIDENT toolbox makes use of nonparametric noise models. 

Exercise 75 (Using the time domain identification toolbox) Goal: Make a com-
plete identification run using the time domain identification MATLAB® toolbox, The system 
is excited with a filtered noise sequence. 

■ Generate the system G0: 
[bO,aO] = c h e b y l ( 2 , 1 0 , 2 * 0 . 2 5 ) ; b0(2) = b 0 ( 2 ) * 1 . 3 ; 

■ Define the noise generating filter: 
[bNoise,aNoise] = butter(1,2*0.2); 
bNoise = bNoise+0.l*aNoise; 

■ Generate a filtered random noise excitation: 
[bGen,aGen] = b u t t e r ( 3 , 0 . 3 ) ; 
uO = f i l t e r ( b G e n , a G e n , r a n d n ( l , N + N T r a n s ) ) ; 
uO = u 0 / s t d ( u 0 ) ; 
Use a data length N = 1024 x 7 , and JVTrans = 1000. 

■ Generate y0, v(t): y(t) = G0(q)u0 + v(t) with v(f) = 0.1Gnoise(^)e(f) filtered white 
noise e(t) ~ N{0, 1). Eliminate the first NTam data points to remove the transients of 
the simulation. 
yO = f i l t e r ( b 0 , a 0 , u 0 ) ; 
yNoise = filter(bNoise,aNoise,randn(1,N+NTrans)); 
yNoise = stdNoise*yNoise; 
y = yO+yNoise; uO(l:NTrans) = []; y(1:NTrans) = []; 

□ 

Discussion Processing the data. In the following, we discuss step by step the process-
ing of the data. 

A. Make an estimation and validation data set 
In the first step the data are split in two parts: (i) an estimation set that is used to esti-

mate the model parameters; (ii) a validation set that is used to verify the quality of the esti-
mated model and to tune the selection of the model order. 
tData = iddata(y(:),u0(:),1); 
tDataEst = tData(l:N/2); 
tDataVal = tData(N/2 + 1:end) ; 
plot(tDataEst) 

The results are shown in Figure 4-26 For the convenience of the reader with show the 
figures as they are plotted in the toolbox. 

B. Make an initial guess of the delay 
First we have to verify if there is a delay present in the system. Is there a direct term from the 
input to the output (e.g., the model is used to approximate band limited data), or is there one 
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Figure 4-26 Split of the data in an estimation and a validation set. 

or more samples delay between the input and the output (e.g., a zero-order-hold excitation). 
This is verified with the following instruction: 
nk = d e l a y e s t ( t D a t a E s t ) 

The result is nk = 0. No delay is detected which is in agreement with the presence of 
a term b0(l) * 0 in the definition of the system G0 in this exercise. 

C. Make an initial guess 
A first initial guess of the plant model is obtained by the instruction: 
m = pem(tDataEst,'nk',nk); 

This routine estimates a state space representation with common poles for the plant and the 
noise model (see the "Users Manual" of the MATLAB® System Identification Toolbox). 

This delivers a first estimate of the plant. The order is determined by the algorithm it-
self using a model selection rule that is based on the decrease of the singular values, indicat-
ing the rank of an internal matrix. Look at the model m in the work space of MATLAB®. In 
this case a state space model of order 3 is retrieved (this can vary depending upon the realiza-
tion of the input!). 

For the rest of this study we calculate also the other models of order 1 and 2 and store 
them in ml, m2, and m3. 
ml = p e r n ( t D a t a E s t , 1 , ' n k ' , n k ) ; % o r d e r 1 
m2 = p e r n ( t D a t a E s t , 1 , ' n k ' , n k ) ; % o r d e r 2 
m3 = p e r n ( t D a t a E s t , 3 , ' n k ' , n k ) ; % o r d e r 3 

These models are next evaluated: 
c o m p a r e ( t D a t a V a l , m l , m 2 , m 3 ) . 
For each model the "Fit" and the FPE (final prediction error) are calculated and tabled in Ta-
ble 4-1. The "Fit" is defined as: 

Fit = 100 1 
MSE(y-ysiJ 

MSE(y - meanly) (4-41) 

The FPE is obtained from the cost function by multiplying it with a model complexity term 
(see also the AlC-model selection criterion in Chapter 1). The fit value is calculated on the 
validation data. It measures the capability of the model to simulate the output. From Exercise 
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61, it is known that it is more demanding to get a small simulation error than to get a small 
prediction error. 

The results are also shown in Figure 4-27. 

TABLE 4-1 Study of the simulation and prediction 
error of the estimated models 

Model Fit FPE 

57.63% 0.0263241 
86.16% 0.0028511 
87.14% 0.0020932 
83.37% 0.00406543 
87,20% 0.00187675 
87,20% 0.00187869 

The table shows that the first model ml is poor, while the third model m3 is slightly better 
than the second one m2. In order to be sure not to miss important dynamics, we also test the 
model of order 4. The simulation error on the validation set starts to grow again, which points 
in the direction of over fitting (see Exercise 11 on model order selection in Chapter 1). We 
will continue with the model of order 3. 

y1. (sim) 

Figure 4-27 Comparison of models of order 1, 2, and 3. Left: Comparison of the simulated outputs on the 
validation data. Right: Quality of fit. 

D. Analysis of the residuals 
The validation of the model is continued by making an analysis of the residuals on the valida-
tion data. The difference between the simulation error and the measured output is analyzed 
using the command: 

r e s i d ( t D a t a V a l , m.3) 
This instruction tests if the residuals are uncorrelated (whiteness test), and if there is no cross-
correlation left between the input and the output (unmodeled dynamics). Both are shortly dis-
cussed below. 

(i) Whiteness test: For a perfectly tuned model, the simulation errors should be white. If 
there are no model errors, the dominating simulation errors are the noise disturbances. These 
are whitened by the noise model. White residuals correspond to uncorrelated residuals in the 
time domain, and that is verified in this test. In Figure 4-28 (top), the auto-correlation of the 
residuals are plotted, together with the 99% uncertainty interval around zero. It is seen that 

ml 
m2 
m3 
m4 

mbj2 
mb)3 

tDataVal; measured 

m l ; fit: 57.63% 

m2; fit: 86.16% 

m3; fit: 87.14% 
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the a few samples is outside this interval (more than 1%). It can be concluded that the residu-
als are not completely white within the statistical precision of the test, but the quality of the 
model is already very good. 
(ii) Unmodeled dynamics: We verify if the residuals are uncorrelated with the input. This test 
reveals if there are significant unmodelled dynamics left between the input and the residuals. 
These will become visible in a cross-correlation test between the input and the residuals. In 
Figure 4-28, it is seen that the same conclusions can be made as for the whiteness test. 

Because both tests do not indicate the presence of large model errors, we can conclude 
that the estimated model is complex enough to explain the data. It might still be possible that 
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Figure 4-28 Correlation analysis of the residuals for the model m3 (left) and the BJ model mbj2 (right). Top: 
autocorrelation test. The light box indicates the 99% uncertainty interval. Bottom: Cross-correlation 
between input and output. 

the simpler second order model would also be a valid choice. To analyze this we take a look 
at the poles and zeros of the third order model. 

E. Analysis of the poles/zeros 
In Figure 4-29 we plot the poles and zeros for the plant and noise model. Three stable poles 
are retrieved for the plant model. One pole is very close to a zero, suggesting that this is a 
candidate pole/zero pair that can be omitted from the model. Also the overlapping uncertainty 
bounds confirm this suggestion, although the reader should be careful to make a firm conclu-
sion because also the covariance should be considered (do the poles and zeros move together 
over different realizations or not). The fit values in step C point also in the same direction: 
The difference between the fit-values for model m2 and m3 are indeed very small, although 
the prediction errors differ more. 

On the right side of the figure, the poles and zeros of the noise model are shown. In this 
case a complex pole/zero pair is canceled. It can be observed that the canceled poles are com-
plementary in the plant and noise model. This points to the fact that the underlying assump-
tion of the initial model that the poles are shared is not valid. The zeros are used to separate 
the plant and noise model. Seemingly the previous model structure is not flexible enough to 
accommodate simultaneously a simple plant and noise model. Since the poles are common to 
both models, excess poles are needed that are canceled by the zeros in the model: one pole is 
canceled in the plant model, two poles are canceled in the noise model. This gives a strong in-
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From u1 From e@y1 

o 

Figure 4-29 Poles (x) and zeros (o) of the estimated third order system G (left) and the noise model 
(right). One pole and zero coincide almost completely for the plant model. For the noise model 
two complex poles/zeros are coinciding.. 

dication that a more flexible BJ model could do a better job, because it does not link the poles 
of plant and noise model. The pole/zero analysis suggests to use a second order plant model 
and a first order noise model. This is verified in the next step. 

F. Comparison with a Box-Jenkins model 
Motivated by the conclusions of the previous step, we try to identify a Box-Jenkins model on 
the data. We make two trials, the first time using a plant model of order two, and the second 
time of order three. In both case the noise model order is set to 1. The models are estimated 
using the instructions: 
mbj2 = bj(tDataVal,[3 1 1 2 0]); 

mbj3 = bj (tDataVal, [4 1 1 30]); 

compare(tDataVal,m3,mbj2,mbj3) 
The fit value of both models is about the same and close to the m3-results: fit = 87.14% 

for m3, and 87.2% for the Box-Jenkins models (see Table 4-1). Next we make again an anal-
ysis of the residuals. 

r e s i d ( t D a t a V a l , m b j 2 ) ; 
The results are shown in Figure 4-28 (right). It can be seen that the mb j2 model is passing 
the correlation and the cross-correlation test better than the m2 model (left) did. This brings 
us to the conclusion that we can retain the Box-Jenkins model mb j 2 as the best model. 

As a final test we simulate the output of the validation set and compare it to the exact 
output yO of the simulation. When we calculate the rms error for both models we find an error 
of 0.0070 for the m3 model and a slightly smaller value 0.0062 for the mbj2 model. 

The model parameters of mb j 2 model are close to the true values of the model param-
eters that are used in the simulation (scale the noise model parameter bNoi se (1) to 1): 

Discrete-time IDPOLY model: 
y(t) = [B(q)/F(q) ]u(t) + [C (q)/D (q) ] e (t) 

B(q) = 0.0902 + 0.2493 qA-l + 0.09116 qA-2 

C(q) = 1 + 0.9726 qA-l 

D(q) = 1 - 0.1579 qA-l 

F(q) = 1 - 0.5377 qA-l + 0.7357 qA-2 

Estimated using BJ from data set z 

Loss function 0.00186943 and FPE 0.00187675 
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G. Conclusion 
At the end of this procedure we retrieve as the best model the mb j 2 model that uses a sec-
ond-order plant model and a first order noise model. This model is slightly better than the ini-
tial m3 model. This is mainly due to the more flexible model structure that allowed the plant 
and noise models to be decoupled. The retrieved model structure corresponds also with the 
exact models that were used to generate the simulation data. 

4.7 FREQUENCY DOMAIN IDENTIFICATION USING THE 
TOOLBOX FDIDENT 

The goal of this exercise is to illustrate more advanced aspects of the identification pro-
cedure using the frequency domain identification toolbox FDIDENT (Kollar, 1994). This 
toolbox is completely directed to the use of nonparametric noise models. A full identification 
run will be made, starting from the raw data to a final model. Some model selection tools and 
model tests will be discussed in more detail. Here we illustrate the use of periodic excitation 
signals. We refer the reader to Exercise 74 to deal with non-periodic excitations. 

Exercise 76 (Using the frequency domain identification toolbox FDIDENT) 
Goal: Make a complete identification run using the FDIDENT toolbox. The same system as 
in Exercise 75 is identified, but this time using a periodic excitation. 

■ Generate the system G0: 
[bO,aO] = c h e b y l ( 2 , 1 0 , 2 * 0 . 2 5 ) ; b 0 (2) = b 0 ( 2 ) * 1 . 3 ; 

■ Define the noise generating filter: 
[bNoise,aNoise] = butter(1,2*0.2); 
bNoise = bNoise+0.l*aNoise; 

■ Generate a zero mean random phase multisine with a flat amplitude exciting the 
spectral lines: 
L i n e s = [ l : N P e r / 3 ] . 
Scale the rms value to be equal to 1. Use a period length N = 1024, and generate 
M = 7 + 1 periods. The first period is used to eliminate all transient effects in the 
simulations (AfTrans = 1024). 

■ Generate y0, v(t): y(t) = G0(q)u0 + v(t) with v(t) - 0AGnoise(o)e(t) filtered white 
noise e{t) ~ N(0, 1). Eliminate the first NTlaBS data points. 

■ Generate a time domain object that can be imported by FDIDENT, normalizing the 
sample frequency equal to 1: 
ExpData = tiddata(y(:),uO (:),1); 

■ Start the GUI of FDIDENT (type f d i d e n t in the command window) and follow 
the menu in the GUI as explained below. 

Observations The successive windows of the GUI are shown and shortly discussed. 

H. Main window 
The main window allows the data to be imported in the GUI, using either time or frequency 
domain data. Double click the 'Read Time Domain Data' to open the data importing window. 

/. Importing and preprocessing the data 
r e a d t i m e domain d a t a 

In a series of successive steps (see Figure 4-31), the data are 
■ loaded into the GUI (Get Data) , 
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^ ^ 

Figure 4-30 Opening window GUI-FDIDENT. 

■ the successive periods are separated (Segmenta t ion) , 

■ and converted to the frequency domain (Con. t o Freq) . 

■ A first possibility to select the frequencies of interest is offered (Freq S e l e c t ) . 
The corresponding windows are shown. 

Figure 4-31 Opening window GUI-FDIDENT. 

(i) Get the data: The data object ExpData that was created in the m-file is loaded. 
(ii) Segmentation: Put p e r i o d l e n g t h to 102 4 and click Apply P e r i o d s . 
(iii) Convert to frequency domain: The frequency domain results are shown. The user can se-
lect, for example, the FRF, the input-output Fourier coefficients, etc., by making the appro-
priate choice under the Type of F i g u r e instruction. 
(iv) Frequency selection: In this window a first selection of the active frequencies to be used 
in the identification process can be used. We postpone in this exercise this choice, and s e -
l e c t a l l f r e q u e n c i e s in this step. Notice that the system was not excited above 0.33 
Hz. 
At the end of these 4 substeps, the Read Time Domain Data block is highlighted indicating 
that the data are ready to be processed in the next block of the main menu. 
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Figure 4-32 Load the time domain object ExpData. 
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Figure 4-33 Frequency selection: all frequencies selected. The FRF is shown. 
Notice that above 3.3 Hz, no excitation was present which is indicated in 
the plot by the straight line. 

J. Nonparametric noise analysis 
v a r i a n c e s and a v e r a g i n g 

In this block, the data are averaged over the periods: the sample mean and sample variance 
are calculated. We advice to make the final frequency selection in this block in the window 
where the input and output data are shown. 

In this window, it is very easy to select the excited frequency lines in the input window, 
using the f r e q u e n c y s e l e c t i o n button. Selection of the not excited frequencies would 
not affect the MLE, but it would become more difficult to generate good initial estimates of 
the system parameters to start the nonlinear search. 
Once the frequencies are selected, we are ready to start the identification step, as is visible in 
the main menu. 

K. Parametric identification step 
Estimate plant Model 
or 
Computer Aided Model Scan 

All the information is now available to start the parametric model estimation step. In the tool-
box, the sample maximum likelihood (SMLE) is used, minimizing the cost function (4-33). 
First a series of simplified cost functions is minimized to generate starting values (hidden for 
the user). The SMLE cost function for each of these parameters is calculated, and the best re-
sult (lowest cost function) is retained to start the nonlinear search. The user can select a single 

Figure 4-34 The time domain data are imported and transformed to the frequency domain. 
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Figure 4-35 Sample mean and sample variances of the input and the output calculated in the 
nonparametric preprocessing. Notice that the noise level for the input is 300 dB 
below the actual input. This is the MATLAB calculation precision, 
corresponding to 15 digits (20 dB/digit). 

model, or a whole bunch of models with different orders can be scanned. The last option is 
chosen in this exercise because we will illustrate also the model selection procedures. Open-
ing the Computer Aided Model Scan offers a number of user choices (see Figure 4-
37). In this window, the user has to select the nature of the model (for example discrete or 
continuous time), the orders to be scanned (a selection - deselection tool is available). The 
discussion of the other optional choices is out of the scope of this book, and the user is re-
ferred to the h e l p functions of the GUI. The results are accessible in the E v a l u a t e o r 
Compare P l a n t Models window. 

Some of the available results are discussed in the next section. 

L. Evaluation of the estimated models 
Evaluate or Compare Plant Models window 

(i) Comparing the estimated models 

Once the estimates are available, it is tempting to select as "best" model the one corre-
sponding to the lowest cost function value, but it will be shown that this is not the best or even 
a good strategy (see also Exercise 11 in Chapter 1). 

Figure 4-36 The nonparametric preprocessing step is finished. The data are ready to start the 
parametric identification step. 
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Figure 4-37 Preparation for the computer-aided model scan. The user has to select 
- continuous or discrete time model, 
- selected set of model orders to be scanned. 

In this run, the lowest cost function was obtained for the model 5/5 (5 zeros, 5 poles). 
One could expect that the model 6/6 would do better than the 5/5 model, because the latter is 
a subset of the 6/6 class of models. Since the cost function for the 6/6 model is larger than 
that of the 5/5 model, it shows that the program got stuck in a local minimum for the 6/6. 

Notice that the observed cost functions are close to the theoretical expected value 
(number of frequencies - n e / 2 , with rce the number of free parameters in the model, for ex-
ample for a 2/2 model, n9 = 5 (the model is invariant with respect to a scaling of all param-
eters). This is an indication that the models are reasonable, the remaining residuals can be ex-
plained by statistical properties of the noise. In the value of the cost function, there is no 
evidence of the presence of model errors. A cost function that is much larger than the theoret-
ical value, is a strong indication of model errors. A cost function that is significantly smaller 
than the theoretic value is an indication for a wrong nonparametric noise model (e.g., the 
presence of a correlation of the noise over the frequencies). 

In Figure 4-39, the 2/2 model is compared to the 5/5 one. The FRF and the amplitude of 
the complex errors \G(j(Qk) - G(j(ah @)| is shown. These plots indicate that the behavior is 
quite similar. This points in the direction that 5/5 may be a too complex model for the data. 

(ii) Selecting the best model using a model selection tool 
In Chapter 1, Exercise 11, we learned that it is not always a good idea to choose the 

model corresponding to the lowest cost function. This can result in a higher model variability 

Rasdy. 

Figure 4-38 Evaluation and comparison of the estimated models: E v a l u a t e o r 
C o m p a r e P l a n t M o d e l s window. 
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Figure 4-39 E v a l u a t e o r Compare P l a n t Models window 
TF Magni tude + E r r o s is selected 

due to an increased noise sensitivity of complex models (see Exercise 10). In the previous 
section it was observed that 5/5 may be too complex. In order to make a better choice, model 
selection tools are developed that balance the model complexity versus the model variability 
by adding a penalty factor for the complexity to the cost function (4-33) (see also Excercise 
11). The Akaike information criterion (AIC) or the minimum description length (MDL) are 
two popular tools that start from the weighted least squares cost function V: 

vAir = v\\ + 2-£ 'MDL = V 1 + 2«elog 
N 

- " ) ■ (4-42) 

It can be seen from (4-42) that for the same value of the cost function V, a more complex 
model results in a higher AIC or MDL criterion. In Figure 4-40, the MDL criterion selects the 
2/2 model as the best one. 
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Figure4-40 E v a l u a t e o r Compare P l a n t Models window 
TF Magni tude + E r r o r s is selected; MDL criterion is selected 
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(iii) Residual analysis 
The residuals are that part of the data that the model could not reproduce. Since we 

have access in the frequency domain to good estimates of the FRF G(j03k), a lot of informa-
tion can be gained by analyzing the residuals between the measured and modeled FRF: 

£ F W = 
G(j(x>k) - GQcot, 6) 

oG(k) (4-43) 

If no model errors are left, eF should be white (Gaussian) noise. This is no longer so if some 
dynamics are missed (under modeling). Since these model errors have a smooth behavior, a 
correlation becomes visible that can be detected in a correlation test. Notice that this test does 
not protect against overmodeling, only under-modelling is detected. In Figure 4-41, the corre-
lation analysis is shown for the 2/2 model where no statistical significant correlation is visi-
ble. Also the 1/2 model is analyzed, and here it is obvious that the residuals are strongly 
correlated, which is a very strong indication for model errors. This is also confirmed by the 
much larger cost function of this model. 

(iv) Pole-zero cancellation 
What happens with the extra poles-zeros of the 5/5 model if a 2/2 model does fit the 

data well? Figure 4-42 shows the answer to that question: the 3 additional poles are canceled 
by the 3 additional zeros in pole-zero pairs that almost completely coincide. In order to be 
sure that within the uncertainty bounds the pole and zero coincide, a statistical test would be 
needed, keeping also in mind that often a strong correlation between these poles and zeros is 
present. However, if the pole-zero plot shows very close pole/zero pairs, then these are good 
candidates to be eliminated in an order reduction step without affecting the quality of the esti-
mated model. 

The presence of these pole/zero pairs affects also the behavior of the uncertainty of the 
model, which is visualized in the next section. 
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Figure 4-41 Evaluation and comparison of the estimated models: E v a l u a t e o r Compare 
P l a n t Models window; c o r r e l a t i o n a n a l y s i s is selected. 
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Figure 4-42 Evaluation and comparison of the estimated models: 
E v a l u a t e o r Compare P l a n t Models window 
p o l e - z e r o c a n c e l l a t i o n is selected. 

To get an idea of the variability of the model, many possibilities exist. Before we have 
seen that uncertainty bounds can be generated (see Exercise 69). An alternative is to draw a 
cloud of models. From the estimated model parameters and covariance matrix, a series of 
model parameters are generated within the 95% uncertainty bounds, and the corresponding 
FRF is drawn for each of these. This results in a "cloud of models" that gives a very good vi-
sual impression about the noise sensitivity of the estimated FRF (or the poles and zeros). Be-
cause this approach relies less on intermediate realizations, it can give a more realistic im-
pression of the system properties. In Figure 4-43, the cloud of models is shown for the 2/2 
and the 6/6 model. It can be seen that the cloud of the 6/6 model is thicker than that of the 2/2 
cloud. Also spikes can be seen in the 6/6 cloud, which is a very typical phenomenon that indi-
cates the presence of coinciding pole/zero pairs, and hence a particular indication of over-
modeling. 
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Figure4-43 Evaluation and comparison ofthe estimated models: E v a l u a t e o r Compare 
P l a n t Models window; Cloud of Models is selected. 
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Best Linear Approximation 
of Nonlinear Systems 

What you will learn: This chapter gives you a full understanding of the impact of the nonlin-
ear behavior of a system on classical frequency response function (FRF) measurements. This 
is important because all real life systems are, to some extent, nonlinear. Throughout the chap-
ter you will get the answers to the following basic questions: Does the concept of FRF mea-
surements still make sense for nonlinear systems? If so, under which conditions? What are 
the practical limitations of the linear framework? In the next chapter we will discuss what are 
the appropriate measurement procedures in the presence of nonlinear distortions. Before an-
swering all these questions you will first get an in-depth understanding of the response of a 
nonlinear system to periodic inputs. 
Chapter content: 

■ "Response of a nonlinear system to a periodic input", on page 137. 
■ "Best Linear Approximation of a Nonlinear System", on page 150. 
■ "Predictive Power of The Best Linear Approximation", on page 172. 

5.1 RESPONSE OF A NONLINEAR SYSTEM TO A PERIODIC 
INPUT 

5.1.1 Static nonlinear systems 

A. Single Sine Response 
The response y{t) of a static nonlinear system y = f{u) to a periodic input u(t) is a periodic 
signal with the same period as the input: 

If u(t + T0) = u{t) for all t, then y(t + T0) = j{u{t + T0)) = f(u(t)) = y(t) for all t. (5-1) 

The fundamental difference between a static nonlinear system and a linear time invariant 
(LTI) system is that a nonlinear system transfers energy from one frequency to other frequen-
cies, which is impossible for an LTI system. This is illustrated by the following exercise. 
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Figure 5-1 Response of even (top) and odd (bottom) static nonlinear systems to a single sine excitation: time 
signals (1 period) and DFT spectra (first 20 lines only). 

Exercise 77.a (Single sine response of a static nonlinear system) Consider the fol-
lowing static nonlinear systems 

fiji) = u2, cosh(M), M3, and sinh(w) (5-2) 

Calculate the response y = f(u) of these systems to the input u(f) = Acos(2itf0t), where 
A = 2 and f0= 1 Hz. Choose fs = 200 Hz and plot the input/output DFT spectra for one 
period T0 = 1 / / „ . Explain the results. Why has the sampling frequency been chosen that 
large? □ 

Observations From Figure 5-1 it can be seen that the response of y = u2 to 
u(t) = Acos(2nf0t) contains energy at DC (line zero) and 2/0 (line two), while the response 
of y = w3 contains energy at /0 (line one) and 3/0 (line three). It nicely illustrates that the in-
put energy at frequency f0 is distributed over different frequencies at the output. 

Discussion It can be explained by calculating explicitly y - u2, and w3. 
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(Acos(ov))2 = (!(«"""' + e^0 ' )) = j(ey2ra»' + 2 + e~i2^') = j(l + cos(2o)0f)), 
(5-3) 

(Acos(«V))3 = ^-(e,3<0»' + 3ey(0»'+3e^»' + e^3o,»') = ^-(3cos(a>0r) + cos(3(00r)), 8 4 

where co0 = 27C/0. Both y = u2, and w3 are special cases of the following result 

, w = ( ^ ) " = < 

where C'n = n ! / ( r ! (n - r ) ! ) and with x = co0f (proof: use (a + b)n = V"_ Cr
narb"-r). 

From (5-4) it can be concluded that for all n = 0, 1, 2, ... the response of y = u2n to 
u(t) = Acos(2jt/0f) only contains energy at even multiples of /„ , while the response of 
y = u2n + i only contains energy at odd multiples of f0. This result is also valid in general for 
even (fl-u) = flu)) and odd (/(-w) = -flu)) nonlinear functions; the only difference being 
that more harmonics are generated. Compare, for example, in Figure 5-1 the DFT spectrum 
of cosh(w) with that of w2, and the DFT spectrum of sinh(w) with that of u3. It can be seen 
that cosh(M) and sinh(w) contain significant energy till 16/0 (line sixteen) and 17/0 (line 
seventeen) respectively (-300 dB is the arithmetic precision of MATLAB®), while the highest 
harmonics of u2 and w3 are 2/0 (line two) and 3/0 (line three) respectively. These results 
also explain the choice of the sampling frequency fs: to avoid aliasing in the output DFT 
spectrum the choice should be such that / s / 2 is larger than the largest significant output har-
monic. 

Note that u2, COSII(M) , u3, and sinh(«) all satisfy (5-1), while u2 and cosh(«) also sat-
isfy y(t + T0/2) = y(t), and u3 and sinh(w) also validate y(t + T0/2) = -y(t) (see the time 
signals in Figure 5-1). This is a consequence of the fact that an even/odd function only gener-
ates even/odd harmonics of f0, respectively. 

B. Multisine Response 
With some care, the basic properties of the single sine response can be generalized to periodic 
signals consisting of the sum of harmonically related sinewaves (= multisine). This is illus-
trated in the following exercise. 

Exercise 77.b (Multisine response of a static nonlinear system) Calculate the re-
sponse of y = u2 and u3 to 

u(t) - V Akcos(k(£>0t + A) with d>k = -nk(k - 1 )/F (5-5) 
i-^k = 1 

for the following choices of the multisine parameters, with /0 = 1 Hz and fs = 200 Hz: 

■ Full multisine: F = 5 , and Ak - Jl/5 , k = 1, 2 5 . 

■ Odd multisine: F = 5 , Ax = A3 = A5 = 7 2 / 3 , and A2 - A4 = 0. 

YnC"'2 + 2^iZ"-2o"' C » c o s « n - 2r>x> n even> 
(5-4) 2^r zr<>i)/2 c» c o s«« - 2 r w n °dd' 
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Figure 5-2 Response of an even (top) and an odd (bottom) static nonlinear system to a full (left) and odd (right) 
multisine excitation. 

What is the rms value of the full and odd multisines? Plot one period of the input/output 
signals and the corresponding input/output DFT spectra. Compare the results with those of 
the single sine response in Figure 5-1. What do you conclude? Repeat the exercise for 
y = cosh(w) and sinh(w), for other choices of the phases <j)k, and for larger values of F 
(choose the amplitudes Ak such that the rms value of u(t) equals one). Generalize your 
conclusions. □ 

Observations From Figure 5-2 it can be seen that the responses of u2 and u3 to the full 
multisine (all harmonics of f0 are excited) contain all even and odd harmonics of f0, while 
the responses of u2 and w3 to the odd multisine (only the odd harmonics are excited) contain, 
respectively, even and odd harmonics only. 

Discussion This can be explained as follows. Using cos(*) = (ejx + e~jx)/2 it can eas-
ily be seen that 

( Zt=, A * c o s ^ C O o ? + ^ ) ) " = S 
F 

k.,k-.,.... k n Akcos(ki(Oot+0k), 
I = 1 i f 

(5-6) 
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which can be written as a sum of cosines with frequencies given by 

(X"= ,W» with *,. e {±k\k = 0, 1, .... F} , (5-7) 

which explains the responses to the full multisine. For example, for n = 3 the frequencies 
(k{ + k2 + fc3)/0 will be excited. For the odd multisine (5-7) is replaced by 

( J ^ i i l f o with it, e {±(2*+l) | i t = 0,1 ( F - l ) / 2 } (5-8) 

For example, for n = 2 the frequencies (k{ + k2)f0 will be excited. Combining (5-8) with 
the property that the sum of an even/odd number of odd integers is always even/odd, shows 
that the responses of u2n and u2n + ' to an odd multisine contain, respectively, even and odd 
harmonics only. 

These properties of the odd multisine are valid for general even/odd nonlinear func-
tions. Indeed, since the odd multisine satisfies u(t + TQ/2) = -u(i), it follows that 

|y(f) for flu) even, 
y(t + To/2) = fluif + r„/2)) = fl-u(t)) = V'f J2 ' (5-9) 

\-y(t) for flu) odd, 

showing that the response of an even and odd nonlinear function to an odd multisine contains, 
respectively, even and odd harmonics only (Selby, 1973). Note that any nonlinear function 
flu) can be written as the sum of an even fE(u) and an odd f0(u) part 

flu) = Mu)+f0(u) with/E(n) = (flu)+fl-u))/2 and/0(M) = (flu) -f(-u))/2 (5-10) 

Therefore, analyzing the harmonic content of the response to an odd multisine where some of 
the odd harmonics are not excited (e.g., 1 out of 3 consecutive odd harmonics) allows us to 
decide whether the nonlinear function contains only even, or only odd, or even and odd con-
tributions. Indeed, it is sufficient to verify whether only even, or only odd, or even and odd 
harmonics are present in the response spectrum. This is impossible with the full multisine. 
See, for example, the response of u? to the full multisine in Figure 5-2: from the output spec-
trum it can be seen that a third-degree nonlinearity should be present (the highest output fre-
quency equals three times the highest input frequency), but it is impossible to decide whether 
a second degree nonlinearity is present or not (in each case all output harmonics from DC to 
2/0 are excited). 

Conclusion Odd multisines where some of the odd harmonics are not excited are best 
suited for classifying the nonlinearities into even and odd contributions. The drawback w.r.t. 
the full multisine is the loss of a factor two in frequency resolution. 

5.1.2 Dynamic nonlinear systems 

A. Class of Nonlinear Dynamic Systems 
The class of nonlinear dynamic systems considered in this book is restricted to those nonlin-
ear dynamic systems which can be approximated arbitrarily well in least squares sense by a 
Volterra series [= generalization of a Taylor series for functions with memory, see Schetzen 
(1980)] on a given input domain. This class allows for an emphatic description of nonlinear 
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Figure 5-3 Uniform versus nonuniform polynomial approximation of a function. First column: Taylor series 
approximation a t a n function of degree 1, 3, 7, 15, and 23; second column: least squares 
approximation a t a n function of degree 1, 3, 7, 15, and 23; third column: least squares 
approximation triangle function of degree 2, 6, and 40; and fourth column: least squares 
approximation step function of degree 1,7, and 41. 

phenomena like saturation (e.g., amplifiers) and discontinuities (e.g., relays, quantizers). This 
is not in contradiction with the well-known fact that a Volterra series is only suitable for de-
scribing weakly nonlinear systems. Indeed, in a classical Volterra series expansion, the ap-
proximation error (difference between the true output and output of the Volterra series) 
converges everywhere to zero at the same rate as the number of terms in the series tends to in-
finity (= uniform convergence), while here it is only required that the power of the approxi-
mation error tends to zero (= pointwise convergence). The pointwise convergence does not 
exclude that the approximation error remains large at a discrete set of isolated points (similar 
to a Fourier series approximation of a discontinuous function), which is not the case for uni-
form convergence. These issues are illustrated in the following exercise. 

Exercise 78 (Uniform versus Pointwise Convergence) Calculate the Taylor series 
expansion of degrees 1, 3, 7, 15, and 23 of the function a t a n (u) at u - 0 , and make a 
polynomial least squares approximation of degrees 1, 3, 7, 15, and 23 of the a t a n function 
in the interval [-3, 3] (Hint: use the MATLAB® function p o l y f i t with N = 400 linearly 
spaced data points, and scale the input by its standard deviation to improve the numerical 
conditioning.) Compare the approximation errors of the least squares fits and the Taylor se-
ries expansions in the interval [-3, 3]. Explain your results. Why do we select only odd de-
grees? Consider further the triangle and the step functions 

triangle(w) = \u\ - 1.5 and step(w) = 
-1 for u < 0, 
0 for u = 0, 
1 for u > 0. 

(5-11) 

Do the Taylor series expansions of triangle(w) and step(w) exist at u = 0 ? Calculate for 
u e [-3, 3] a polynomial least squares approximation of degrees 2, 6, and 40 for triangle(w), 
and of degrees 1, 7, and 41 for step(w). Compare the approximation errors of the least 
squares fits of the triangle, step and a t a n functions. What do you conclude? Why do we 
select odd degrees for the step and even degrees for the triangle? □ 
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Observations From Figure 5-3 it can be seen that the Taylor series expansion of the 
a tar i function is much better than the corresponding polynomial least squares approxima-
tion for \u\ « 1, while it is much worse for |M| ~ 1, and even completely useless for \u\ > 1. 
The least squares fits performs well over the whole interval [-3, 3], and the approximation er-
ror converges uniformly to zero as the degree of the polynomial increases to infinity. 

Discussion The reason for the peculiar behavior of the Taylor series expansion of the 
a t an (u) function is that the convergence radius of the Taylor series expansion equals one at 
u = 0 (Henrici, 1974). The uniform convergence of the least squares fit of a t an (u) is a 
consequence of the fact that the a t a n function has continuous derivative over [-3, 3] (Kre-
ider etal, 1966). 

Observations Note that although the Taylor series expansions of the triangle and step 
functions (5-11) do not exist at u = 0, it is possible to approximate these functions very well 
in least squares sense by polynomials (see Figure 5-3). The behavior of the least squares ap-
proximation error for increasing polynomial degree of the triangle and step functions (5-11) 
is different from that of the a t a n function. While the convergence to zero of the triangle ap-
proximation error is still uniform, but at a much slower rate than that of the a t a n function, 
the convergence to zero of the step approximation error is no longer uniform but pointwise. 
Indeed, irrespective of the polynomial degree, the step approximation error at u = 0 remains 
equal to one. 

It can also be seen that for the odd functions (atan and step) only the coefficients of the 
odd powers are different from zero, while for the even functions only the even powers con-
tribute to the solution. 

Discussion These properties are a consequence of the fact that the a t an function is in-
finitely differentiable over [-3, 3], while the triangle function has only a piecewise continuous 
derivative, and the step function is discontinuous [the more derivatives exist, the higher the 
convergence rate: see Zygmund (1979)]. Note, however, that the (uniform) convergence of 
the least squares approximation to a function does not imply the convergence of the deriva-
tives. 

When a function is approximated by a sum of basis functions, then we have in general 
that the odd behavior of the function is captured by the odd basis functions, and the even be-
havior is captured by the even basis functions. 

Summarizing, the class of nonlinear dynamic systems considered in this book can be 
described roughly as those systems for which (i) the influence of the initial conditions van-
ishes asymptotically and (ii) the steady-state response to a periodic input is a periodic signal 
with the same period as the input. This class will be called PISPO (period in same period out) 
and it excludes nonlinear phenomena such as subharmonics, bifurcations, and chaos. 

B. Single Sine Response 
Simple nonlinear dynamic systems excited by a single sine can exhibit a very complex behav-
ior. This is illustrated in the following exercise 

Exercise 79.a (Normal operation, subharmonics, and chaos) Consider the Duffing 
oscillator 

<ilMl + <M1 _ 10X0 + I00y\t) = Acos(3.5f), (5-12) 

where the input amplitude A is an arbitrary parameter. Note that (5-12) can be rewritten as an 
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Figure 5-4 The Duffing oscillator (5-12) written as an unstable linear dynamic system 
l/(s2 + S-10) operating in closed loop with a static nonlinear feedback 
branch lOOy3. 

unstable linear dynamic system operating in closed loop with a static nonlinear feedback 
branch (see Figure 5-4). Calculate the response y(t) of (5-12) over a hundred periods of the 
input signal for the following four values of the amplitude: A = 0.67, 0.81, 0.82, and 0.9. 
Take N = 1024 data points per period, with initial conditions y(0) = 0.2 and 
y(1)(0) = (-0.2), and integrate the differential equation using the MATLAB® function 
ode4 5. Set the relative and absolute tolerance of the numerical integration method to 
lxl0~ and 1x10" respectively, and plot the following: 

■ The input Acos(3.5f) and the response y(t) over the hundred input periods. 
■ The input and the response over the last eight input periods. 
■ The input and response DFT spectra of the last eight input periods. 
■ The phase plane representation of the response: y(l)(t) as a function of y(t) (the 

MATLAB function ode4 5 calculates the solution and its derivative). 

Interpret the results. □ 

The solution of Exercise 79.a is shown in Figure 5-5. For A = 0.67 (first column) the 
steady state output has the same period as the input (= normal operation), for A - 0.81 (sec-
ond column) the output period is twice the input period (= period doubling), for A = 0.82 
(third column) the output period is four times the input period (= period quadrupling), while 
for A - 0.9 (last column) the output is irregular and looks like colored noise (= chaos). 

The first two rows of Figure 5-5 show the input and response over one hundred input 
periods (note the transient response from t - 0 till t = 20 s), while rows three and four 
show the input and response of the last eight input periods. Rows five and six show the first 
twenty DFT lines of the input and response DFT spectra of the time signals in rows three and 
four. Since the DFT of eight input periods is taken, DFT line number eight is the first non-
zero line in the input DFT spectrum (-300 dB is the MATLAB precision of the calcula-
tions). From the DFT spectra of the steady state responses (row six, columns one to three) it 
can be seen that the numerical integration errors are about -200 dB below the DC level (line 
zero). This corresponds to an accuracy of about ten significant digits. 

For an input amplitude of A = 0.67 (first column), the response (output) DFT spec-
trum (column one, row six) contains DC (line zero), the fundamental (line eight), and the sec-
ond harmonic (line sixteen). Harmonics three, four, ... are also present but not shown in the 
figure. For this input amplitude the steady state output has the same period as the input (= 
normal operation). 

For A = 0.81 (second column) period doubling occurs: the period of the response is 
twice that of the input (compare the figures in column two, rows three and four). This can 
also be seen in the output DFT spectrum (column two, row six) where, besides lines zero 

1 
s2 + s-10 

y(t) 
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Figure 5-5 Response of the Duffing oscillator (5-12) for different values of the amplitude A. First column 
(A = 0.67 ): normal operation; second column (A = 0.81 ): period doubling; third column 
(A = 0.82 ): period quadrupling; fourth column (A = 0.9 ): chaos. First two rows: Simulated input 
and response signals. Rows three and four: Input and response over the last eight input periods. 
Rows five and six: First twenty DFT lines of the input and response DFT spectra (black "+": excited 
frequency and harmonics; gray "+": subharmonics). Last row: Phase plane representation. 
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Figure 5-6 Steady state response of the Duffing oscillator (5-12) for different amplitudes A and different initial 
conditions >>(0) and yo,(0). First column (A = 0.67): Normal operation. Second column 
(A = 0.81 ): Period doubling. Third column (A = 0.82): Period quadrupling; fourth column 
(A = 0.9): Chaos. First row: Input signal. Second row: Response for ;y(0) = 0.2 and 
y(1>(0) = (-0.2);. Third row: Response for y(0) = 0.2 and y<l)(0) = -0.201. Last row: 
Response for y(0) = -0.2 and y(,)(0) = -0.2. 

(DC), eight (input fundamental), and sixteen (input second harmonic), also lines four (output 
fundamental), twelve (output third harmonic), and twenty (output fifth harmonic) are signifi-
cantly different from zero. 

Increasing the input amplitude to A = 0.82 (third column) gives period quadrupling: 
compare the figures in column three, rows three and four. It is more apparent in the output 
DFT spectrum (column three, row six) which contains now energy at all even DFT lines (two, 
four, six, ...). 

Increasing the input amplitude further to A - 0.9 (last column) drives the system into 
chaotic regime, and all the output DFT lines are significantly different from zero (see row six, 
last column). The response of a chaotic system is very sensitive to small changes in the initial 
conditions. This is illustrated in the following exercise. 

Exercise 79.b (Influence initial conditions) Change the initial conditions in 
Exercise 79.a to y(0) - 0.2 and )>(1)(0) = -0.201 and repeat the calculations. What do you 
observe? Change the initial conditions to y(0) = -0.2 and v(,)(0) = -0.2 and repeat the 
calculations. What do you observe now? Verify that the phase plane figures are those of 
Exercise 79.a mirrored w.r.t. the vertical axis. Explain your results. □ 
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Observations From Figure 5-6 it can be seen that the steady state responses 
(A = 0.67, 0.81, and 0.82) are insensitive to small changes in the initial conditions, while 
the chaotic response (A = 0.9) is very sensitive to these small changes (see Figure 5-6, sec-
ond and third rows). 

Discussion The latter is typical for chaotic systems. Large changes in the initial condi-
tions, however, result in large changes of the steady state responses (see Figure 5-6). This is 
due to the fact that (5-12) has two stable solutions (attractors) and, depending on the initial 
conditions, the steady-state response converges to one of both solutions. Note that these two 
solutions are mirrored (y -» -y), time-shifted versions of each other. 

C. Multisine Response 
The properties of the odd multisine for static nonlinear systems (see Section 5.1.1) are 

also valid for nonlinear dynamic PISPO systems. The following exercise illustrates this. 

Exercise 80 (Multisine response of a dynamic nonlinear system) Consider the fol-
lowing nonlinear dynamic PISPO systems 

m + O.m + v « = sW), u*Kt)) with 8{u(t), M«.)(0) = H ^ " " W ' (5-13) 
at1 at [u(t)ull\t). 

Calculate in MATLAB the exact steady state response of these systems to the full and odd 
multisines u(t) defined in equation (5-5) of Exercise 77.b (do not use numerical integration). 
What is the DC value of the steady-state responses? Explain. Compare the results with 
Figure 5-2 on page 140. Conclude. □ 

Since the derivative of the input um(t) is periodic with the same harmonic content as 
u{i), exactly the same reasoning of equations (5-6) to (5-8) can be applied, showing that 
u(t)ull)(t) and W2(?)M(I)(?) excite, respectively, (k{ + k2)f0 and (k{ + k2 + k3)f0 where 

ki e { ±k I k = 0, 1, ..., F} full multisine, 
(5-14) 

k,& {±(2Jfc+l)|Jfc = 0 , l , . . . , ( F - l ) / 2 } odd multisine. 

Hence, exactly the same conclusions can be drawn as in Section 5.1.1: The response of the 
even/odd dynamic nonlinear system (5-13) to an odd multisine contains, respectively, even 
and odd harmonics only, while the response to the full multisine contains all harmonics. This 
result can be generalized to the class of PISPO systems. Indeed, the output of a PISPO system 
can be written as y(t) - F(u(t)), where F(u(t)) is an operator which contains, among other 
things, derivatives and/or integrals. Similar to (5-10), F(u) can be split into an even FE(u) 
and an odd F0(u) part, thus showing that the response to an odd multisine can be classified/ 
quantified as even and odd contributions. This is impossible for the response to a full multi-
sine. 

5.1.3 Detection, quantification, and classification of 
nonlinear distortions 

From Exercises 77.b and 80 it follows that the steady-state response of a PISPO system 
to an odd multisine excitation can be split into even and odd nonlinear contributions (see 



148 Chapter 5 ■ Best Linear Approximation of Nonlinear Systems 

CO 

3 
Q. 
C 

S 

O 

0 

-100 

-200 

-300 

0 

-100 

-200 

-300 

+ + + + 

+ + + + 111111111111111111ii i 

0 10 20 30 
Frequency (Hz) 

+ + ■•■ + 

* * * * * 

* * * (OtOtOf 

U(k) 

NL 

10 20 30 
Frequency (Hz) 

Y(k) 

10 £0 30 
Frequency (Hz) 

m 
3 

1 
o 

0 

-100 

-200 

-300 

+ + + + 

V * * * * * » 
* 

* * * oeeceooaiGO 
10 20 

Frequency (Hz) 
30 

Figure 5-7 Steady-state response of the dynamic nonlinear system (5-15) to an odd (left column) and an 
odd-odd (right column) multisine. The output spectra (bottom row) are split in excited odd 
harmonics (black +), nonexcited even harmonics (gray *), and nonexcited odd harmonics (black 
o). 

Figure 5-2). More specifically, one can distinguish even in-band (in the frequency band of the 
excitation), even out-band (outside the frequency band of die excitation), and odd out-band 
distortions. If every in-band odd frequency is excited, then it is impossible to visualize the in-
band odd nonlinear contributions in the output spectrum. To reveal the in-band odd distor-
tions it is necessary to exclude some of the in-band odd harmonics in the excitation signal. 
This is illustrated in the following exercise. 

Exercise 81 (Detection, quantification, and classification of nonlinearities) 
sider the following nonlinear dynamic PISPO system 

Con-

1 d2y(t) 2Cdy(t) . , , . Jdu(t)Y a ,. Ju(t) 
M V A +*r ) = u{i) + (\-dT) +Pu2{t)-dT co? 

(5-15) 

with CO, = 30 Hz, £ = 0 . 2 , a= 1x10 7 s2, and P = 1x10 3 s. Calculate the exact 
steady-state response of (5-15) to the following excitations 

■ Odd multisine: (5-5) with f0 = 1 Hz, F = l, A2k+l = 1/J5 for 
k = 0, 1, 2, and, 3 , and A2k = 0. 

■ Odd-odd multisine: (5-5) with /„ = 0.5 Hz, F = 13, A2k = 0 , A4t+1 = l/Jl 
for k = 0, 1, 2, and, 3 , and Aik_, = 0 for k = 1,2, and, 3 . 

Choose f„ = 200 Hz and plot the input/output DFT spectra as a function of the frequency. 
Classify the output DFT spectrum in odd excited, odd nonexcited, and even nonexcited 
contributions, and make conclusions. Repeat the exercise for the odd-odd multisine but now 
with phases <f>k uniformly distributed in (-7t, 7t] (= random phase odd-odd multisine). Try 
out different phase realizations. How do the nonlinear distortions behave? □ 

Observations The output spectra in Figure 5-7 can be split into two parts: an in-band 
part [0 Hz, 7 Hz] being the frequency band covered by the input signal, and the out-band 
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part (7 Hz, 100 Hz] being the remaining nonexcited frequency band. Due to the in-band 
nonexcited odd harmonics in the odd-odd multisine excitation it is possible to detect the in-
band odd harmonic distortions, while this is impossible for the odd multisine (see Figure 5-7, 
bottom row). 

Discussion The price to be paid for obtaining the in-band odd nonlinear distortion in-
formation, while maintaining the frequency resolution (1 Hz) of the original odd multisine, is 
the doubling of measurement time (2 s for the odd-odd multisine and 1 s for the odd multi-
sine). If the multisine contains a lot of frequencies, then a few frequencies can be sacrificed 
for detecting the odd nonlinear distortions (e.g., one out of three, or one out of four), giving a 
better compromise between the frequency resolution of the excited odd harmonics, the fre-
quency resolution of the nonexcited odd harmonics, and the measurement time (see Section 
6.1.2). 

Observations From the response to the odd-odd multisine (see Figure 5-7) it can be 
seen that the odd (o) and even (*) in-band distortions are about 40 dB and 60 dB below the 
contributions at the excited frequencies (+). Note also the amplification of the output spectra 
at the resonance frequency ca1/(2^) = 4.8 Hz (see Figure 5-7, bottom row, excited frequen-
cies "+") 

Discussion Due to the particular choice of a and /? in (5-15), the nonlinear system has 
a dominant linear behavior. As a consequence, the input/output behavior at the excited fre-
quencies (+) is mainly given by the linear transfer function 

{s/G>i)2 + 2£s/oil + 1 

This explains the amplification of the output spectra at the resonance frequency 4.8 Hz. 
Since the even nonlinearities have no contribution at the odd output harmonics, the deviation 
from the ideal linear behavior (5-16) at the excited frequencies (+) can only be explained by 
the odd nonlinearities. Comparing the levels of the nonexcited (o) and excited (+) odd output 
harmonics, one could predict a deviation of roughly 1% (-40 dB). Although it is tempting to 
make this extrapolation, there is no known reason as to why the levels of the nonlinear distor-
tions at the excited and nonexcited odd harmonics should be the same. This important issue 
will be discussed in more details in Sections 6.1.2 and 6.1.6. 

Repeating the simulation for different realizations of the random phase odd-odd multi-
sine gives similar results as in Figure 5-7; the main difference being that the levels of the non-
linear distortions vary from realization to realization. This phenomenon is explained in detail 
in Sections 5.2 and 6.1. 

5.1.4 What have we learned in Section 5.1 ? 

■ Unlike linear time invariant systems, nonlinear systems transfer energy from one 
frequency at the input to other frequencies at the output (Exercises 77.a and 79.a). 

■ For odd multisines the even and odd contributions of a nonlinear system are 
uniquely linked to, respectively, the even and odd harmonics in the output spectrum 
(Exercises 77.b and 80). 

■ Simple nonlinear dynamic systems can exhibit a very complex behavior, for exam-
ple, period doubling and chaos (Exercise 79.a). Typical of the chaotic behavior is 
the extreme sensitivity of the response to small changes in the initial conditions (Ex-
ercise 79.b). 
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■ The class of nonlinear systems considered in this book is restricted to the so-called 
PISPO (period in, same period out) systems. These are systems whose steady-state 
response to a periodic input is a periodic signal with the same period as the input. It 
excludes phenomena such as subharmonics, bifurcations and chaos, but allows for 
strong nonlinearities such as relays and quantizers. The theory of the PISPO sys-
tems is based on the polynomial/Volterra mean square approximation of a static/dy-
namic nonlinear system (Exercise 78). 

■ An odd multisine is well suited to detect the even in-band, the even out-band, and 
the odd out-band nonlinear distortions. To reveal the odd in-band nonlinear distor-
tions, one has to sacrifice some of the odd in-band harmonics in the excitation. 
Hence, odd multisines with missing in-band odd harmonics allow for a full detec-
tion, classification, and quantification of the nonlinearities (Exercise 81). 

5.2 BEST LINEAR APPROXIMATION OF A NONLINEAR 
SYSTEM 

The standard procedure for measuring the impulse response g(t) of a linear system is based 
on a correlation analysis 

RyM = g(t)*Ruu{t) (5-17) 

with u{t) the input signal, y(t) the output signal, * the convolution product, and Ryu{t) and 
Ruu(t) the cross- and autocorrelations, respectively 

Ryu(T) = Hy(tMt-r)} mdRuu(T) = E{u(t)u(t-t)} (5-18) 

Equation (5-17) is known as the Wiener-Hopf equation. For random excitations the solution 
to (5-17) minimizes 

mm-gitFum2} (5-19) 
w.r.t. g(t) (Eykhoff, 1974; Bendat and Piersol, 1980). Taking the Fourier transform of (5-17) 
gives 

G(ja) = i^m> (5-20) 

where the cross-power spectrum SYU(j<i>), the auto-power spectrum Svu(j(ii), and the fre-
quency response function G(/'co) are the Fourier transforms of, respectively, Ryu(t), Ruu{t), 
and g(t) (Eykhoff, 1974; Bendat and Piersol, 1980). 

If the system has a weak nonlinear behavior, then one could use equations (5-17) to (5-
20), where the mean values of the input/output signals have been removed, for determining 
some linear approximations of the nonlinear system (Pintelon and Schoukens, 2001; Enqvist 
and Ljung, 2005). For example, (5-19) becomes 

\u(t) = u(i)-E{u(t)} 
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Figure 5-8 Linear approximation of y[t) = «3(f) (black solid line) with (gray solid line) and without (black 
dashed line) removal of the input/output DC values. Left: u(t) uniformly distributed in [1, 2] (mean 
= 1.5, and variance = 1/12). Right: u(t) normally distributed with mean 1.5 and variance 1/12. 

(see also Exercise 82). Since (5-21) minimizes the mean square error between the true 
(shifted) output of the nonlinear system y(t)-E{y(t)} and the output of the linear model 
g(t)*(u(t) - E{u(f)}), this linear approximation will be called the best linear approximation 
£BLA(0 o r GBLA(/o>) of the nonlinear system for the given class of input signals u{t). It is 
clear that the best linear approximation will depend on the class of excitation signals used, for 
example, changing the amplitude of the excitation will result in a different frequency re-
sponse function. Hence, one could wonder whether the concept of a linear approximation of a 
nonlinear system makes sense at all. Other relevant questions that arise are "Which properties 
of the excitation influence GBLA(/a>) ?" "How does GBLA(/(0) depend on the nonlinearities?" 
"Can GBLA(/co) be measured using periodic excitation signals?" "What is the predictive 
power of GBLA(/©) ?" All these issues will be addressed in detail in the sequel of this chapter. 

5.2.1 Static nonlinear systems 

In the definition (5-21) of the best linear approximation (BLA) the mean values of the input 
and output signals are removed. The reason for this is that the best (in mean square sense) lin-
earization around the operating point is sought. What happens if the DC signal values are not 
removed? This is illustrated by the following exercise. 

Exercise 82 (Influence DC values signals on the linear approximation) Consider 
the static nonlinear system y(t) = u\t). Calculate the linear approximation y(i) = gu(t) via 
(5-19) and (5-21) for the following input signal u{t): 

■ White uniformly distributed noise in [1, 2] (mean = 1.5, and variance = 1/12). 

■ White normally distributed noise with mean 1.5 and variance 1/12. 

Use N = 4000 data points and calculate numerically the minimizers of (5-19) and (5-21) 
{Hint: replace the expected values by the sample means). Plot the nonlinear function and the 
linear approximations in the interval [1, 2] of the input. Repeat the calculations for different 
random realizations of the input and compare the estimates. What do you conclude? Repeat 
the calculations for N = 40,000 data points. What do you conclude now? Explain! Compare 
the results with the analytic solutions of (5-19) and (5-21). □ 
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Observations From Figure 5-8 it can be seen that the estimates obtained without re-
moval of the input/output DC values (black dashed lines) have much larger approximation er-
rors than those obtained with removal of the DC values (gray solid lines). 

Discussion The observation shows the importance of linearizing the nonlinear system 
around its operating point. Although the input/output signals are known exactly, one gets dif-
ferent (best) linear approximations for different random realizations of the input. The reason 
for this is that the expected values in (5-19) and (5-21) are approximated by their sample 
means, which depend on the actual random realization of the input. For a finite number of TV 
input and output samples, the minimizers of (5-19) and (5-21) are respectively given by 

* " = i ^ - , v , and*BLA = i - » - . , , , . „ ' (5"22) 

where x is the sample mean of x 

* = jfc1*')- (5'23) 

From (5-22) it can be seen that the random nature of the input u(t), together with the nonlin-
ear relationship between the output y(t) and the input u(t), cause the variability of the esti-
mates gLA and £BLA- AS N increases to infinity, the variability of the estimates decreases to 
zero, and the numerators and denominators in (5-22) converge to their expected values (law 
of large numbers, see Pintelon and Schoukens, 2001; Lukacs, 1975; and Chow and Teicher, 
1988). For independent and identically distributed Gaussian and uniform inputs u(t) with 
mean // and variance o2, the asymptotic values of (5-22) are, respectively 

(5-24) 

3cf + u* + 6u.2a2 _ , _ , , _ . ... 
gLA = tf + u2—' 8BLA = + M Gaussian u(t), 

SLA = - ^ f , , ; ^ — - gBLA = (9/5)<? + 3jU2 for uniform u(t). 

These values correspond to the analytic solutions of (5-19) and (5-21). 

For small values of N, the variability of the estimates (5-22) is larger than the differ-
ence between the results for Gaussian and uniformly distributed inputs, and one would 
wrongly conclude that the probability density function (pdf) of the input does not influence 
the (best) linear approximations. As N increases, the variability of the estimates decreases, 
and the difference between the results of the Gaussian and uniform inputs becomes visible. 
Due to the particular choice of ju and a2 in Exercise 82, these differences are marginal in 
Figure 5-8. The influence of the input pdf on the best linear approximation is made more ap-
parent in the following exercise. 

Exercise 83.a (Influence of rms value and pdf on the BLA) Calculate numerically 
via (5-22) the best linear approximation of the a tar i and dead zone functions, respectively: 
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Figure 5-9 Best linear approximation of the a t an (left) and dead zone (right) functions for different rms 
values (I: 0.1; II: 1.8; and III: 3), and inputs with different probability density function (gray dots: 
Gaussian; black dashes: uniform; and gray line: sine). 

y(t) = atan(«(0) and y(t) = 
o, 
"(0-1, 
u(t) + 1, 

| u ( f ) | < l , 

w ( 0 > l , 
u{t)<-\ 

(5-25) 

for the following three classes of random input signals: 

■ Zero mean, white normally distributed noise with standard deviation a. 
■ Zero mean, white uniformly distributed noise with standard deviation a. 
m Zero mean, white sine distributed noise with standard deviation a 

(u(t) = J2crsm(0(t)) with <j>(t) uniformly distributed in [-%,%]). 

where <7 has the values 0.1, 1.8, and 3. (Hint: Use (5-22) with, for example, N = 4000.) 
Plot the functions y(t) and their best linear approximations over the input interval [-3, 3 ] . 
What do you conclude? Explain. □ 

Observations From Figure 5-9 it can be seen that the best linear approximations de-
pend strongly on the rms value of the input. Except for a = 0.1, they also depend on the 
probability density function of the input signal. For a = 0.1, the best linear approximations 
(BLA) of the a tar i function almost coincide with the tangent line at u = 0 and, hence, are 
almost indistinguishable. Note that the BLAs of the dead zone function are exactly zero for 
(T= 0.1. 

Discussion These observations are a consequence of the fact that \u(t)\ never exceeds 
one for the uniformly and sine distributed inputs, and that the probability of having a value 
that exceeds ten times the standard deviation is negligibly small for N = 4000 normally dis-
tributed samples. Indeed, the latter equals 

Prob(max|«(r)| > 10a) = 1 - (Prob(|«| < 10<r))w 

= l - U - P r o b d K l ^ l O a ) ) " 
= M>rob(|w| > 10cr) 

(5-26) 

= 6.1x10" 
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Figure 5-10 Best linear approximations 6BLA(/CO) (left and middle column) of y(t) = «3(f) and their variance 
var(GBLAOw)) (right column) for (filtered) white uniform noise (top row) and (filtered) white 
Gaussian noise (bottom row) inputs u(f), all with the same variance. Black lines: white noise 
u(t) = 0.575e(f). Gray lines: Minimum phase filtered white noise u(f) = e(t) +0.5e(t- 1). Black 
dotted lines: Nonminimum phase filtered white noise u(t) = Q.5e(i) + e(t- 1). Remark: 
dB(a2)=101ogl0(o-2) = 201og10(a) = dB(a). 

where Prob(|w| > 10<r) is calculated in MATLAB® as erfc(10/V2) with e r f c the comple-
mentary error function. 

As one could expect, the best linear approximations (BLA) of the static nonlinear func-
tions in Exercises 82 and 83.a are static functions (straight lines). In the following exercise 
the examples due to Enqvist (2005) show that this is not always true: the BLA of a static non-
linear function can be dynamic. 

Exercise 83.b (Influence of power spectrum coloring and pdf on the BLA) 
sider the following three classes of excitation signals 

Con-

u{t) = H{q)e{t) w i t h e r 1 ) = (75 /2 ) , (1+0.5Z"1), and 0.5+z" (5-27) 

where e(t) is zero mean, independent and identically distributed noise with variance 
a2 = (1 /3) , and H{z~l) are filters. Show that these three classes have the same rms value, 
but a different coloring of the power spectrum (the first class is white, while the second and 
the third classes have the same coloring). Calculate numerically the best linear approximation 
of the static nonlinear function yit) = u\t) via equation (5-20) for the three respective 
classes of input signals (5-27), where e{t) is Gaussian and uniformly distributed noise (hint: 
first replace the expected values in (5-18) by their sample means over M = 8000 subrecords 
of N - 512 samples each; next replace the Fourier transforms in (5-20) by the DFTs over N 
samples; and finally, in order to suppress the leakage errors, difference the input/output DFT 
spectra of each subrecord). Repeat the calculations for M = 800 and M = 80. What do you 
conclude? Calculate analytically the uncertainty of the estimated best linear approximations. 
Compare the results obtained with the sample variance obtained from a hundred runs. Are the 
variations of the BLAs over the frequency significant? Why? Use the same approach to verify 
that the best linear approximations in Exercises 82 and 83.a are static functions. Why is this 
so? □ 

130 
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Using the MxN input/output samples u(t) and y(t), t = 0, 1, .... (MN- 1), and fol-
lowing the lines of the linear case, the best linear approximation (5-20) and its variance are 
estimated as 

<~rBLA{J("k+l/2) ~ 7 " 
Suufj(Ok+U2) l^M 

ILJWKW (5-28) AT 

-A , . , . ^ 1 5yi</(0t+1/2) - |5ytX/(0t+ i/2)l2/^C/lK/0|H. 1/2) 
Var(CrBLA(/fi>t+l/2)) = 77 7 7 , 

M-\ SuV(j<Dt+1/J 

where Xdiff<fc) = X(£ + 1) -X(k), and A-!""]® is the DFT spectrum of the mth subrecord 

XM(k) = -\=YN~' x({m -l)N+ t)e-2*Jk,/N (5-29) 

The leakage errors are attenuated by the difference operation and tend to zero as N tends to 
infinity. For finite M, the random nature of the input u(t) causes the variability of the esti-
mated cross- and auto-power spectra SYU and Suu, and, hence, also that of the estimated best 
linear approximation GBLA. Compared to the linear case, the static nonlinearity introduces an 
extra variability in the cross-power spectrum estimate SYU (see Section 5.3). Therefore, a 
large number of averages are needed to obtain an accurate estimate. As both M and TV tend 
to infinity, the estimate (5-28) converges to (5-20), and its variability decreases to zero. 

Observations From Figure 5-10 it can be seen that for the (filtered) white Gaussian 
noise excitations the BLAs of the static nonlinearity are static (within its uncertainty, GBLA 
has a frequency independent amplitude and zero phase), and independent of the coloring of 
the power spectrum. For the (filtered) white uniform noise excitations the picture is totally 
different: (i) the BLAs are dynamic for nonwhite power spectra; and (ii) the BLAs not only 
depend on the coloring of the power spectrum, but also on the phase of the signal filter H(z~{) 
in (5-27). 

Conclusion For non-Gaussian excitations the complete dependency over time matters 
and not only the correlation. 

Observations The behavior of the uncertainty of the estimated BLAs (see Figure 5-10, 
right column) is somewhat different from that of the BLAs. Indeed, irrespective of the pdf of 
the input, the variance of the BLA estimate is frequency dependent for colored input power 
spectra, and frequency independent for white input power spectra. 

Conclusion In the Gaussian case, the variance of a static BLA can be frequency depen-
dent. 

The reason why the BLAs in Exercise 82 are static is explained as follows. Consider 
the static nonlinear system y(t) = J{u(t)) where u(t) is discrete-time, zero mean, indepen-
dent and identically distributed non-Gaussian noise. Assume furthermore that v(f) has zero 
mean. The best linear approximation is then calculated via the cross- and autocorrelations (5-
18), to give 

RyJiT) = E{fiu(t))u(t-t)} = E{y(f)ii(r) }<?(*) = (J]US(T), 
RUU(T) = Uu(t)u(t-T)} = E{u\t)}S(t) = oZS(T), 
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Figure 5-11 Best linear approximation (left and middle) of y(t) = u\t) and its variance (right) for (filtered) 
white uniform noise inputs u(t) with the same variance. Black solid lines: No filter (white noise). 
Gray solid lines: second-order filter. Black dotted lines: Thirty-fifth-order filter. Remark: 
dB(o2)=101og10(o2) = 201og,0(a) = dB(a ) . 

Figure 5-12 Probability density function of the input. Gray solid line: Distribution estimated from the time series 
u(t) Black solid line: Normal distribution with same mean and variance as u(i). Left: No filter. 
Middle: Second order filter. Right: Thirty-fifth-order filter. 

where in (5-30) the second equality uses the independence over time of u(t), and with S(f) 
the Kronecker delta (S(t) = 0 if r =£ 0 and S(0) = 1). Since the corresponding cross- and 
auto-power spectra 

(5-31) 

are frequency independent, it follows that the BLA is static 

GBLA(/«) = SyuUnVSuvija}) = a\u/a\. 

Note that this result has been obtained without using the distribution function of u(t). 
For filtered white noise excitations u(t) = H(q)e(t) where e{t) is non-Gaussian, one 

may wonder what the effect of the length of the impulse response of the signal filter H(z~l) is 
on the BLA. This is studied in the following exercise. 

Exercise 83.c (Influence of length of impulse response of signal filter on the 
BLA) Calculate numerically the best linear approximation of the static nonlinear function 
y(t) = u\t) via (5-28), with M = 8000 and N = 512, for the following three classes of 
filtered input signals u(t) - H(q)e(i): 

■ No filtering: H{z~x) = Jl/2 . 
■ Second-order Chebyshev filter (cutoff frequency / s / 4 ; passband ripple 1 dB): 

[ c , d ] = c h e b y l ( 2 , 1 , 2 * 0 . 2 5 ) ; 

130 
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Figure 5-13 Generalized Wiener-Hammerstein (GWH) system: Cascade of a first linear dynamic block C„ a 
nonlinear finite impulse response system (NFIR), and a second linear dynamic block G2. 

u = f i l t e r (c , d, e ) ; 
u = s q r t ( 5 / 1 2 ) * u / s t d ( u ) ; 

■ Thirty-fifth order chebyshev filter (cutoff frequency / s / 4 ; passband ripple 1 dB): 
[ c , d] = c h e b y l ( 3 5 , 1, 2 * 0 . 2 5 ) ; 
u = f i l t e r ( c , d, e ) ; 
u = s q r t ( 5 / 1 2 ) * u / s t d ( u ) ; 

where e(t) is uniformly distributed in [-1, 1] (Note: all inputs w(f) have the same variance as 
in Exercise 83.b). Plot the best linear approximations and their uncertainty. Compare your 
results with those of Figure 5-10. What do you conclude? Explain! (Hint: Calculate 
numerically the probability density function of each input via the MATLAB® function 
h i s t (u, s q r t ( l e n g t h (u) )), and compare it to a normal distribution with the same 
mean value and variance). □ 

Observations Comparing Figure 5-11 to Figure 5-10 on page 154 it can be seen that, 
within the excitation bandwidth, the best linear approximations of the filtered white uniform 
inputs converge for increasing order to the BLAs of the Gaussian inputs (|GBLA| = 1.9 dB, 
and ZGBLA = 0). 

Discussion The explanation for this can be found in Figure 5-12: as the order of the fil-
ter increases the input tends to a normally distributed random variable. This is a consequence 
of the central limit theorem (Pintelon and Schoukens, 2001; Billingsley, 1995; Chow and Te-
icher, 1988; Brillinger, 1981). Indeed, as the order of the filter increases, its impulse response 
h(t) becomes longer, and the number of random variables that significantly contribute to the 
convolution product u(t) = H(q)e(t) 

u(t) = V°° h(t-n)e(n) (5-32) 

increases. The more significant random variables are added in (5-32), the more the sum u(t) 
behaves as a Gaussian random variable (central limit theorem). 

5.2.2 Dynamic nonlinear systems 

For dynamic nonlinear systems the best linear approximation (BLA) is calculated theoreti-
cally via equation (5-20). Since in practice the input/output signals are always observed dur-
ing a finite time, (5-20) is approximated by (5-28), which is prone to leakage errors. In the 
following exercise we verify whether the BLA can be measured using periodic excitation sig-
nals, which have the advantage that they are not subject to leakage errors if an integer number 
of periods is measured. As a test example we use a generalized Wiener-Hammerstein system 
(see Figure 5-13), which consists of the cascade of a first linear dynamic system Gu a non-
linear finite impulse response (NFIR) system, and a second linear dynamic system G2. 
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Figure 5-14 Best linear approximations (solid lines) and their standard deviation (dashed lines) of a generalized 
Wiener-Hammerstein system, for the classes of Gaussian noise and random phase multisines. Top 
row: Comparison of the BLAs obtained with Gaussian noise (G0auss, black lines) and random phase 
multisines with phases uniformly distributed in [0,2%) (G™if, gray lines). Bottom row: 
Comparison of the BLAs obtained with random phase multisines with phases uniformly distributed 
in [0, 27t) (G™if, gray lines) and phases equal to zero or it with probability 1/2 (GJjjf, black 
lines). Right column: Magnitude of the complex difference between the 2 BLAs (black line), and 
standard deviation of the complex error (gray line). 

Exercise 84.a (Comparison of Gaussian noise and random phase multisine) 
Consider the generalized Wiener-Hammerstein (GWH) system shown in Figure 5-13 

with 

G.fe-1) = 1 
1 - 0.5z-' + 0.9r 

, z(t) = x\t- 1) atan(x(0), G2(zrl) = . ^ + ? f n 7 r (5-33) 
1 - 1.5z ' +0Jz 

Calculate via (5-28), with N = 1024 and M = 104, the best linear approximation of the 
GWH system for the class of filtered, zero mean, white Gaussian noise excitations 

ii(0 = L(q)e(t) with L{z-') = ! ~ ° ; 8 z " ' + ° ; U " 2 and var(e(0) = l. (5-34) 
1 — u.Zz 

Do the same for the following class of random phase multisines 

u(t) = -l=YN/2~'2\L{zj;])\cos(k(dot+0k) with zk = exp(j2%k/N), (5-35) 

where (j)k is independent and uniformly distributed in [0, 27i). Use N = 1024 data points 
per period, and M = 104 independent realizations of the phases <pk. Show that (5-35) has 
exactly the same power in each DFT bin of width fs/N as the filtered white Gaussian noise 
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excitation (5-34). Simplify (5-20) and (5-28) for periodic excitation signals. Is the d i f f 
operation in equation (5-28) still necessary for the periodic signal (5-35)? Explain! Compare 
the BLAs obtained with (5-34) and (5-35). Explain. Repeat the calculations for the signal 
class (5-35), where <pk can only take the values 0 and % with equal probability. Is there any 
difference with the previously obtained BLAs (Hint: Compare the complex difference 
between the BLAs to the square root of the sum of the variances of the BLAs)? Explain. □ 

For periodic excitation signals, (5-20) reduces to 

r (im\ - S*M(a) - UY(k)U(k)} _ l{Y(k)U(k)} _ JY(k)\ 
G B L A ( / ( 0 ) " S^M - E{|£«} = | W " \W)\- ( } 

Using M realizations of the random phase multisine, the best linear approximation (5-36) 
and its uncertainty are estimated as 

c nm) - l v M Y[m^k) 
G B L A ( / % ) - ^ r a = 1Z7F^)' 

(5-37) 
VmXk) 1 „ M V-m\k) 2 

var(GBLA(/co*)) - M ( M _ 1 ) Z m . , JJ[^ ~ ^Zm., Jji^ 

where X[m](k) is the DFT spectrum of the m th multisine realization. Note that (5-37) is a 
special case of (5-28), where the d i f f operation has been removed. Show this [Hint: follow 
the lines of (5-36)]. Compared with the linear case, the random nature of the multisine u(t) 
increases the variability of the estimated BLA (5-37). Therefore, a larger number of averages 
M is needed to obtain an accurate estimate. As M tends to infinity, the estimate (5-37) con-
verges to (5-36), and its variability decreases to zero. 

Observations Although a very large number of averages has been taken (M = 104), 
the estimated BLAs (5-28) and (5-37) for, respectively, the class of Gaussian and random 
phase multisines are still noisy (see Figure 5-14). Note that for one realization (M = 1) the 
standard deviations of the BLAs are 40 dB (<JW) larger than those given in Figure 5-14. 
Hence, for one realization, the uncertainty of GBLA is larger than GBLA over almost the whole 
frequency band. 

Discussion The random nature of the BLA estimate shows that the frequency response 
function estimates can be written as 

GBLA(M) = GBLA(j(ak) + Gs(j(ak), (5-38) 

where GBLA are the BLAs (5-28) and (5-37), and with Gs the "nonlinear noise source." The 
large variability of the BLA estimate for one realization of the input motivates the many aver-
ages for calculating the best linear approximations. 

From Figure 5-14 one can conclude that the BLAs of the three classes of excitation sig-
nals coincide within their uncertainty (the errors are of the same order of magnitude as their 
standard deviation). Since the best linear approximation of a nonlinear system depends on 
both the power spectrum (rms value and coloring) and the probability density function (pdf) 
of the excitation (see Section 5.2.1), and since the three classes of excitation signals have, by 
construction, the same power spectrum, it can be concluded that the three classes should have 
statistical properties (moments up to a certain degree dictated by the nonlinearity) similar to 
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that of a normal distribution. This statement is verified in the following exercise, where it is 
shown that random phase multisines behave as Gaussian noise. 

Exercise 84.b (Amplitude distribution of a random phase multisine) Consider 
the random phase multisine (5-35), where N = 1024, and where the F excited frequencies 
are uniformly distributed over (0, 0.5 )/ s . Calculate the probability density function of the 
multisine u(t) for each of the following phase distributions <f)k and number of frequencies F, 

■ Independent and uniformly distributed in [0, 2ft), and F = 1, 3, and 15. 
■ Independent and equal to zero or n with equal probability, and F = 1, 15, and 255. 

and for each of the following signal filters L(z~l) 

■ No signal filter: (L(z">) = 1 ) . 
■ Second order highpass filter: See (5-34). 
■ Sixth order Butterworth bandpass filter: L(z_1) = P(z~x)/Q{z~x) where the coeffi-

cients of P and Q are given by [p, q] = b u t t e r (3 , 2 * [ 0 . 2 , 0 . 3 ] ) . 

(hint: generate M = 104 random phase multisines u(t) and calculate numerically the 
probability density function of the MxN data points via the MATLAB function h i s t (u, 
s q r t ( l e n g t h (u) ))). Compare the pdf's with that of a normal distribution with the same 
mean value and variance. Explain the results. □ 

Observations From Figure 5-15 it can be concluded that both classes of random phase 
multisines are normally distributed if the number of significantly contributing frequencies in 
the sum (5-35) is sufficiently large. 

Discussion This is a consequence of the central limit theorem which roughly states that 
the sum of independently distributed random variables is asymptotically (as the number of 
significantly contributing random variables tends to infinity) normally distributed (Pintelon 
and Schoukens, 2001; Billingsley, 1995; Chow and Teicher, 1988; Brillinger, 1981). In fact, 
the only phase conditions for (5-35) to be asymptotically normally distributed are that the 
<j>k 's are independent (over k) random variables, and that 

E{e"*'} = 0 (5-39) 

(Pintelon and Schoukens, 2001; Pintelon and Schoukens, 2002). The minimum number of 
frequencies required for an almost Gaussian behavior strongly depends on the coloring of the 
signal filter and the phase distribution. Indeed, fewer sinewaves are needed for the uniformly 
[0, 2TC) distributed phases than for the binary zero/it distributed phases, and many more sin-
ewaves are needed for the bandpass signal filter than for the two other filters. The latter can be 
explained by the fact that, from the fifteen uniformly distributed frequencies, only five lie in 
the passband [0.18, 0.32]/s of the filter. For the 255 sines this number is 71. The slower con-
vergence to normality of the binary zero/Jt random phase multisines compared with the uni-
form random phase multisines, is due to the discrete pdf of the former compared with the 
continuous pdf of the latter. 

Observations The pdfs for 1 sinewave in Figure 5-15.b contain 3 dirac impulses, while 
those in Figure 5-15.a are continuous functions. 

Discussion For 1 sinewave at DFT line k = N/4, the signal u(t) (5-35) reduces to 
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Figure 5-15 Probability density function (pdf) of random phase multisines u(t) with a different number of 
frequencies uniformly distributed in (0, 0.5 )/s (columns 2, 3, and 4), and different amplitudes 
(column 1). Gray solid lines: pdf estimated from the time series u{t). Black solid lines: Normal pdf 
with the same mean and variance as u(t). (a) Phases uniformly distributed in [[0,2;i)] . (b) Phases 
equal to zero or n with probability 1/2. Remark: dB(a2) = 101og,0(rj2) = 201og10(a) s dB(a) . 
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u(t) = -jr\L(z-NU)\ cos( |f + f2>„/4), (5-40) 

where t = 0,1, ...,N-l and </>N/A = 0 or % with equal probability. Hence, the cosine func-
tion in (5-40) can only take the values -1,0, and 1, which clarifies the 3 peaks in the second 
column of Figure 5-15.b. For a uniformly distributed phase $y /4, the pdf of u(t) (5-40) is 
continuous. 

In Exercise 84.a, the equivalence between the class of Gaussian noise excitations and 
the class of random phase multisines for measuring the best linear approximation (BLA) has 
been illustrated for multisines which excite all harmonics (= full multisines). Provided that 
the power spectra (rms value and coloring) of both signal classes are the same, it followed 
that the BLA and its variance are exactly the same for the two classes. Although the sum of a 
moderate number of random phase sines is approximately normally distributed (see Exercise 
84.b), one can wonder whether the full equivalence still holds when not all harmonics of the 
multisine are excited (e.g., odd multisines). This is analyzed in the following exercise. 

Exercise 84.c (Influence of harmonic content multisine on BLA) Consider the 
generalized Wiener Hammerstein (GWH) system shown in Figure 5-13 with NFIR part 

z(t) = x\t- l)atan(x(?)) + 10|jc(f- 2)| (5-41) 

and where G, and G2 defined in (5-33). Calculate via (5-37), with N = 1024 and 
M - 104, the best linear approximation of the GWH system for the class of random phase 
multisines (5-35) where all harmonics are excited (= full multisine). Repeat the same for the 
following classes of odd random phase multisines (even harmonics are not excited in (5-35)) 
with the same rms value as the full multisines: 

■ Odd multisines: harmonics 2k - 1, with k - 1,2,..., N/4. 
■ Odd-odd multisines: harmonics 4k- 3 , with k = 1,2,..., N/S . 
■ Odd-random (harmonic grid) multisines: odd multisines where out of each group of 

two consecutive odd harmonics one randomly selected harmonic is not excited. 
■ Odd-sparse (harmonic grid) multisines: odd multisines where only a few odd har-

monics are excited mk-(m-l), with k = 1,2, ...,N/(2m), and m = 8, 16, 
and 32 (respectively 64, 32, and 16 excited frequencies). 

Show that the amplitudes of the excited harmonics of the odd multisines are about Jl as 
large as those of the full multisine. For the odd-odd and odd-random multisines this factor is 
about two. Explain. Compare the BLAs and their variances. Are they equal (hint: compare 
the complex difference between the BLAs to the square root of the sum of the variances of 
the BLAs)? Why (not)? Compare the results of the oddsparse multisines with the odd 
multisines. What do you conclude? □ 

Observations From Figure 5-16 it can be concluded that the BLAs are the same for the 
classes of full, odd, odd-odd, and odd-random multisines: The complex error is everywhere 
of the same order of magnitude as its standard deviation, except in the neighborhood of 
0.2///s (see below). However, their variances (strongly) differ (see Figure 5-17). If the num-
ber of frequencies in the multisine is not sufficiently large, then the BLA depends on the 
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Figure 5-16 Best linear approximations (solid lines) and their standard deviation (dashed lines) of the 
generalized Wiener-Hammerstein system for the classes of full, odd, odd-odd, and odd-random 
(harmonic grid), random phase multisine excitations with the same power spectra (rms value and 
colouring). Top row: Comparison full (gray lines) and odd multisines (black lines). Middle row: 
Comparison odd (gray lines) and odd-odd multisines (black lines). Bottom row: Comparison odd 
(gray lines) and odd-random multisines (black lines). Right column: Magnitude of the complex 
difference between the BLAs (black line), and standard deviation of the complex error (gray line). 

Figure 5-17 Difference between the standard deviations in decibels of the BLAs obtained by the classes of full, 
odd, odd-odd, and odd-random multisines (see Figure 5-16, left column). Black solid line: 
Difference between full and odd multisines. Gray solid line: Difference between odd and odd-odd 
multisines. Black dotted line: Difference between odd and odd-random multisines. 

number of frequencies F (see Figure 5-18). From the right column of Figure 5-18 it can be 
seen that the difference between the BLAs decreases with about 6 dB per frequency doubling. 
The same is valid when comparing the peak around 0.2///s in the bottom right error plot of 
Figure 5-18 (64 excited frequencies) with those in the middle right and bottom right error 
plots of Figure 5-16 (128 excited frequencies). 
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Figure 5-18 Best linear approximations (solid lines) and their standard deviation (dashed lines) of the generalized 
Wiener-Hammerstein system for the classes of odd, and odd-sparse (harmonic grid), random phase 
multisine excitations with the same power spectra (rms value and colouring). The BLAs and their 
uncertainty are only shown at the excited frequencies of the odd-sparse multisine. Top row: 
Comparison odd (gray lines) and odd-sparse with 16 frequencies (black lines). Middle row: 
Comparison odd (gray lines) and odd-sparse with 32 frequencies (black lines) Bottom row: 
Comparison odd (gray lines) and odd-sparse with 64 frequencies (black lines). Right column: 
Magnitude of the complex difference between the BLAs (black line), and standard deviation of the 
complex error (gray line). 

Discussion This can be explained as follows. In Schoukens et al. (1998) and Pintelon 
and Schoukens (2001) it has been shown that the dependence on the number of frequencies is 
given by 

G B LA,f (M) = G B L A ( M ) + 0(F~l) (5-42) 

The 0(F_1) term in (5-42) is consistent with the observation from Figure 5-18 that the differ-
ence between the BLAs decreases with about 6 dB per frequency doubling. It also shows that 
the peaks around 0.2///s in the error plots of Figure 5-16 are due to the 0(F~l) term in equa-
tion (5-42). This peak is no longer visible in the top right error plot of Figure 5-16 (256 ex-
cited frequencies), showing that for F = 256 the 0(F~l) term is smaller than or equal to the 
uncertainty of the BLA estimate. 

Conclusion As long as the effective power per frequency band is the same, and the 
number of frequencies is sufficiently large, the BLA does not depend on the harmonic content 
of the multisine (Schoukens et al., 2009a). 

Observations The variability of the full multisine BLA strongly differs from those of 
the odd multisine BLAs (see Figure 5-17). From Figure 5-17 it can also be seen that the stan-
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dard deviation of the odd-odd multisine BLA only differs from that of the odd multisine BLA 
for frequencies below 0. l/s and above 0.4/s with a maximal difference of 3 dB (factor Jl). 
The difference between the standard deviations in decibels of the odd and odd-random mult-
isines is about 3 dB over the whole frequency band. 

Discussion Since the response of a nonlinear system to an odd multisine has no even 
nonlinear contributions at the odd harmonics (see Section 5.1), the best linear approximation 
- which is calculated at the excited frequencies - only contains odd nonlinear contributions. 
The response of the GWH to the full multisine, however, contains both the even and odd non-
linear contributions at the excited harmonics (see Section 5.1). It explains the larger variabil-
ity of the full multisine BLA compared with all the odd multisine BLAs. The difference be-
tween the standard deviations in decibels of the odd and odd-random multisines of about 3 
dB corresponds exactly to the square root of the ratio of the number of excited harmonics in 
the odd and odd-random multisines (see Section 6.1.4 for a detailed discussion). 

Conclusion All these observations show that the "nonlinear noise source" Gs in the es-
timated best linear approximation (5-38) depends on the input power spectrum (rms value, 
coloring, and harmonic content) and the even and/or odd nonlinear distortions (Schoukens et 
at, 1998; Pintelon and Schoukens, 2001). 

Comparing Figure 5-16 to Figure 5-14 it can be seen that, although the NFTR parts (5-
41) and (5-33) are different, the BLAs of the two GWH systems are remarkably similar (in 
fact they are exactly the same). The explanation for this can be found in the following exer-
cise. 

Exercise 85 (Influence of even and odd nonlinearities on BLA) Consider the gen-
eralized Wiener-Hammerstein (GWH) systems shown in Figure 5-13 on page 157 with NFIR 
parts z(t) = x(t) + ZNLW where ZNL(0 is given by 

■ Even nonlinearity: zNL(0 = |x2(/-l)atan(x(f))|. 
■ Odd nonlinearity: ZNL(?) = x2(t- l)atan(jc(?)). 

and where G{ and G2 are defined in (5-33). Calculate via (5-37), with N = 1024 and 
M = 104, the best linear approximation of the GWH systems for the class of odd random 
phase multisine inputs 

N/A 

u{t) = ay cos((2k-l)(£>0t+02k-i) (5-43) 
Jm-Jk - 1 

with 02/t-i uniformly in [0, 27i] and where a is chosen such that the rms value of u(t) 
equals \/ J2. Show that a equals J2/N. Compare the best linear approximations with the 
product G, G2 of the transfer functions of the linear dynamic blocks. What do you conclude? 
Explain. Repeat all calculations for the following class of chi-squared distributed random 
excitations u{t) - (e\t) - l ) / 2 , where e(t) is normally distributed with zero mean and unit 
variance [Hint: Use (5-28)]. Show that the standard deviation of u{t) equals \/ Jl. Compare 
the BLAs with the underlying linear system. Are the conclusions different from those of the 
odd random phase multisines? Explain why. (Hint: Verify the skewness - third-order central 
moment divided by the cube of its standard deviation - of the signals.) □ 

Observations It follows from Figure 5-19 that the best linear approximation of the 
GWH system with the even nonlinearity coincides with the underlying linear system GiG2 
(the difference is at the level of the arithmetic precision of MATLAB®), while the BLA of the 
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Figure 5-19 Comparison of the best linear approximation (BLA) of a generalised Wiener-Hammerstein (GWH) 
system (gray solid lines) with the true underlying linear system (black solid lines), for the class of 
odd random phase multisines. Top row: GWH with even nonlinear part. Bottom row: GWH with odd 
nonlinear part. Right column: Magnitude of the complex difference between the BLA and the true 
underlying linear system (black line), and standard deviation of the complex error (gray line). 

GWH system with the odd nonlinearity clearly differs from GXG2 (the difference is signifi-
cantly larger than its uncertainty). 

Discussion This can be explained as follows. Since the response of an even nonlinear-
ity to an odd multisine will only contain contributions at the even harmonics (see Section 
5.1.3), the best linear approximation (5-36) - which is calculated at the excited frequencies 
only - is not affected by even nonlinearities. Odd nonlinearities, however, create contributions 
at the odd harmonics that are phase-coherent with the input and, hence, push the BLA away 
from the underlying linear system (Schoukens et al, 1998; Pintelon and Schoukens, 2001). 
Both observations show that the best linear approximation (5-36) can be written as 

GBLAO'GO) = G0(/(a) + GB(/'(fl) (5-44) 

where G0 is the true underlying linear system (if it exists), and where GB is the bias contri-
bution that depends on the power spectrum of the input (rms value and coloring) and the odd 
nonlinearities only. Note that since the random phase multisines behave as Gaussian noise 
(Exercises 84.a and 84.b), these conclusions are also valid for the class of Gaussian noise ex-
citations. 

Observations For the class of chi-squared distributed excitations the conclusions are 
different from those of the class of random phase and Gaussian noise excitations (compare 
Figure 5-20 with Figure 5-19): The BLA depends on the odd as well as the even nonlineari-
ties. 

Discussion This can be explained by the (a)symmetry (skewness) of the pdf of the sig-
nals. Indeed, the BLA of an even nonlinearity is exactly zero for symmetrically distributed 
signals, while it is nonzero for asymmetric distributions. For random phase multisines and 
Gaussian noise excitations the pdf's of the signals u(t) and x(t) in Figure 5-13 are perfectly 
symmetric (zero skewness), while for the chi-squared distributed excitations they are non-
symmetric (nonzero skewness). This can be verified by calculating the sample skewness of 
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Figure 5-20 Comparison of the best linear approximation (BLA) of a generalised Wiener-Hammerstein (GWH) 
system (gray solid lines) with the true underlying linear system (black solid lines), for the class of 
chi-squared distributed noise. Top row: GWH with even nonlinear part. Bottom row: GWH with odd 
nonlinear part. Right column: Magnitude of the complex difference between the BLA and the true 
underlying linear system (black line), and standard deviation of the complex error (gray line). 
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Figure 5-21 Cascade of two generalised Wiener-Hammerstein (GWH) systems. Each block consists a nonlinear 
FIR system sandwiched between two linear dynamic systems (see Figure 5-13). 

u{t) and x(t). For the chi-squared distributed excitations we find, respectively, 2.84 and 
0.147, which should be compared with the value 1.13x10" for Gaussian random variables. 
Although the second-order linear dynamic system G, (see Figure 5-13) reduces the skewness 
of the signal (from 2.84 to 0.147), it is still large enough to generate significant even nonlin-
ear contributions to the BLA. 

Observations Comparing Figure 5-20 with Figure 5-19, it can be seen that the best lin-
ear approximations (gray lines) and the corresponding standard deviations are different for 
both classes of excitations signals. It illustrates once more the influence of the pdf on the esti-
mated BLA. 

A final issue that merits attention is the question of whether the best linear approxima-
tion of the cascade of two nonlinear systems equals the cascade of the BLAs of each system 
separately. This is analyzed in the following exercise. 

Exercise 86 (BLA of a cascade) Consider the cascade of two identical generalized 
Wiener-Hammerstein (see Figure 5-21) systems, where each system has the NFIR part 

z(t) = l+0.5x2(r-l)atan(x(r)) (5-45) 

and linear dynamic blocks G, and G2 defined in (5-33). Calculate via (5-37), with 
N = 1024 and M = 4x10 , the best linear approximation of the cascade of the GWH sys-
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terns (see Figure 5-21: From u(t) to y{t)) for the class of odd random phase multisines 

u{i) = j=^N
k__i2\L(z-2l.l)\cos((2k-l)(a0t+^k_l), (5-46) 

where L(z_1) is defined in (5-34). Calculate for the same input u(t) the BLA of the first (see 
Figure 5-21: from u(t) to w{t)) and the second (see Figure 5-21: from w(t) to y{i)) GWH 
system. Compare the BLA of the cascade with the cascade of the BLAs. Are they the same? 
Why (not)? Calculate the coherence function X/00) = iSruU®)]/ JSrYU^SuvU®1) °f m e 

BLA of the cascade and compare it with the previous figure. What do you conclude? Replace 
one of the two GWH systems by a linear dynamic system, and repeat the calculations. What 
do you conclude now? Explain. □ 

Observations As could be expected, the BLA of the cascade of the two nonlinear sys-
tems is not equal to the cascade of the BLAs of each nonlinear system separately (see 
Figure 5-22). Indeed, the difference between both is everywhere larger than the standard de-
viation of the difference, except in the band [0.17, 0.23 ] / s (see Figure 5-22, right plot). In the 
band [0.17,0.23]/s, however, the BLA of the cascade equals the cascade of the BLAs (see 
Figure 5-22, left and middle plots). The method for detecting the frequency bands where the 
cascade rule applies is discussed in the next paragraphs. 

Using M realizations of the random phase multisines the coherence function of the es-
timated BLA of the cascade is calculated as 

m = \SrvV(Ok)\ 1 

JSrYUtodSuuVtok) 
(5-47) 

1+M 
var(GBLA(/CQt)) 

|GBLA(M)|2 

where GBLA and var(GBLA) are defined in (5-37). 
Observations Comparing the BLAs and the coherence function (see Figure 5-23), it 

can be seen that the BLA of the cascade equals the cascade of the BLAs in those frequency 
bands where the coherence function of the estimated BLA of the cascade is larger than or 
equal to -6 dB (0.5 < / < 1). This simple rule of thumb allows us to verify a posteriori in 
which frequency bands the cascade rule applies to the sub-blocks of a complex nonlinear sys-
tem. 
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Figure 5-24 Cascade of a linear and a nonlinear dynamic system (top), or cascade of a nonlinear and a linear 
dynamic system (bottom). 

Discussion Note that the cascade rule only applies if the BLAs of the first and second 
subsystem are measured using respectively the input u(t) and the intermediate signal w(t) of 
the cascade in Figure 5-21. It is also remarkable that the cascade rule remains valid for coher-
ence values as low as 0.5. Indeed, the standard deviation of the FRF measurement using one 
random phase multisine (7Mstd(GBLA) in (5-47)) equals then V3|GBLA| ! If one of the two 
nonlinear systems in the cascade is linear (see Figure 5-24), then the cascade rule is always 
valid. Indeed, using the following property of the cross-power spectrum 
S(w (W.Y)(W2U) WlSYUW2 (Bendat and Piersol, 1980) it can easily be verified that 

^YU 
JY(G^W) •JyivGi 

G-1 2 'BL A 2 " ! (5-48) 

for the cascade of a linear dynamic system G, and a nonlinear dynamic system with BLA 
GBLA2 (see Figure 5-24, top row), and 

}(G2W)U G?Sn = G2Gj, (5-49) 

for the cascade of a nonlinear dynamic system with BLA GBLAi and a linear dynamic system 
G2 (see Figure 5-24, bottom row). We refer the reader to the paper of Dobrowiecki and 
Schoukens (2002) for more information. 
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5.2.3 What Have we Learned in Section 5.2? 

■ The best linear approximation (BLA) of a nonlinear system minimizes the mean 
square error between the true (shifted) output of the nonlinear system 
y(t)-E{y(t)} and the output of the linear model £BLA(0*(M(0 ~ E{«(0}) [see 
equation (5-21)], and is defined for a class of excitation signals. Before calculating 
the best linear approximation, the DC values of the input/output signals should be 
removed (Exercise 82). In the frequency domain, the solution of minimization prob-
lem (5-21) boils down to the division of the cross-power by the auto-power spec-
trum: GBLA(/ro) = Syuijo^/Siiuijoi). In practice this formula is approximated by 
(5-28) and (5-37) for, respectively, random and periodic excitations u(t) (Exercises 
83.b and 84.a). 

■ Assuming that the input/output signals are observed without errors, the BLA mea-
sured via (5-28) and (5-37) can be written as 

GBLA(/'%) = GBLA(/'<»*) + Gs(/'oot), (5-50) 

where Gs denotes the "nonlinear noise source" (E{GS} = 0). The stochastic non-
linear contributions Gs depend on the power spectrum (rms value and coloring) and 
the probability density function (pdf) of the input (Exercises 83.b, 83.c, and 85), and 
on the even and odd nonlinearities (Exercises 84.c and 85). They decrease to zero 
for increasing number of averages over random phase realizations of the multisine. 

■ The best linear approximation of a nonlinear system can be written as 

GBLA(/'G>*) = G0(j(Ok) + GB(/'<%), (5-51) 

with G0 the true underlying linear system (if it exists), and where GB denotes the 
"nonlinear bias contribution." The systematic nonlinear contributions GB depend 
on the power spectrum (rms value and coloring) and the pdf of the input (Exercises 
83.a, 83.b, and 85), and, in general, on the even and odd nonlinearities (Exercise 
85). For non-Gaussian inputs not only does the autocorrelation (power spectrum) 
affect GB, but also all higher order correlations over time (the complete dependency 
over time). Consequently, for filtered white non-Gaussian noise the BLA also de-
pends on the phase of the filter (Exercise 83.b). For Gaussian noise and random 
phase multisines the systematic nonlinear contributions GB do not depend on the 
even nonlinearities (Exercises 84.c and 85). 

■ For Gaussian noise excitations, the BLA of a static nonlinearity is static and inde-
pendent of the coloring of the power spectrum (Exercise 83.b). However, the BLA 
of a static nonlinearity is dynamic for nonwhite, non-normally distributed inputs 
(Exercise 83.b). Although this is, at first glance, a completely counter intuitive re-
sult, one should in fact not be surprised. Indeed, since Sua(j(i)) is frequency-depen-
dent for nonwhite noise, and since SYU(j(iJ) is in general not proportional to 
S(/(/(/c°) for a nonlinear system, the best linear approximation 
GBLA(/a>) = Syi/ij^/Suaijai) will in general be frequency-dependent. In fact, it is 
surprising that the BLA of a static nonlinear system is still static for colored Gaus-
sian noise. In both (Gaussian and non-Gaussian) cases the variance of the BLA 
measurement depends on the coloring of the power spectrum (Exercise 83.b). 

■ Filtered white non-Gaussian noise behaves asymptotically (as the length of the im-
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pulse response of the filter tends to infinity) as Gaussian noise (Exercise 83.c). 
■ A random phase multisine 

u(t) = — ^ 2 ~ ' A , C O S ( A : C 0 0 ? + ^ ) (5-52) 

A with Ak the user defined amplitudes, and <pk the independent (over k) distributed 
phases such that E{e"**} = 0, behaves asymptotically (for N—>°°) as Gaussian 
noise (Exercises 84.a and 84.b). Hence, the BLA for the class of the random phase 
multisines is asymptotically (for N -»<=°) the same as the BLA for the class of 
Gaussian noise with the same power spectrum (rms value and coloring). For finite 
values of N, the random phase multisine BLA GBLAA, is related to the Gaussian 
noise BLA GBLA as 

GBLAN(j(Ok) = GBLA(/cot) + O(AH) (5-53) 

(Exercise 84.c). If TV is sufficiently large, then the systematic nonlinear contribu-
tions GB in (5-51) do not depend on the harmonic content (full, odd, odd-odd, odd 
random harmonic grid, ...) of the multisine, as long as the (equivalent) power per 
frequency band remains the same (Exercise 84.c). The stochastic nonlinear contri-
butions G s , however, strongly depend on the harmonic content (Exercise 84.c). 

■ Summarizing, in the absence of input/output measurement errors the best linear ap-
proximations estimated via (5-28) and (5-37) can be written as 

GBLA(/%) = (GBLA(/co,) + 0B(AM)) + (GsO'W*)+ °s(N-"2)), (5-54) 

with GBLA(j(Qk) = G0(j(Hk) + GE(j(ak), OB(N~1) the bias term on the BLA measure-
ment due to the finite number of frequencies (random phase multisine excitations) 
or the leakage errors (noise excitations), and Os(N~112) the stochastic term 
(E{Os} = 0) due to the leakage errors (noise excitations only) which is zero for 
the random phase multisines. GB and Gs are, respectively, the bias and stochastic 
(E{GS} = 0) contributions of the nonlinearities to the BLA. These contributions 
cannot be eliminated by increasing N (GB is independent of N, and 
var(Gs) = 0(N°)). Gs is suppressed by averaging the measurements over a large 
number of realizations (multisines) or blocks (noise excitations) M [see (5-28) and 
(5-37)]. To reduce 0B, the period length (number of frequencies in the multisines) 
or the block length (noise excitations) N is increased. Finally, Os (noise excitations 
only) is diminished by increasing M and/or TV. 

■ The best linear approximation of the cascade of two nonlinear systems is not equal 
to the cascade of the best linear approximation of each nonlinear system separately 
(Exercise 86). From a practical point of view the cascade rule is valid in those fre-
quency bands where the coherence function of the BLA measurement of the cas-
cade is larger than -6 dB. The cascade rule is always valid if one of the two 
nonlinear systems is linear. 
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<=> 

Figure 5-25 The output of the nonlinear system (left diagram) can exactly be written as the sum of the 
output of the best linear approximation and the stochastic nonlinear distortions (right 
diagram). 

5.3 PREDICTIVE POWER OF THE BEST LINEAR 
APPROXIMATION 

Although no noise is added in the simulations, it follows from the previous section that the 
best linear approximation calculated via (5-28) and (5-37) is noisy. It strongly suggests that a 
part of the nonlinear distortions acts as "noise" and that the actual output y(t) of the nonlin-
ear system can be written as the sum of the output of the BLA >>BLA(0 and the stochastic non-
linear distortions ys(t) 

y(t) = JBLACO + ys(t) with yBLA(f) = gBhA(t)*u(t) (5-55) 

(see Figure 5-25). Note that an equation of the form (5-55) is EXACTLY true for ANY linear ap-
proximation (LA) gLA(t), viz: 

A') = yLA(0 + v(0 with yhK(t) = gLA(0*w(0 (5-56) 

as long as the properties of the residuals v(t) are not specified. What makes (5-55) peculiar is 
that ys(t) has similar stochastic properties as measurement noise. This will be shown in the 
sequel of this section. It explains why _ys(/) is indistinguishable from the measurement noise 
in classical frequency response function measurements using random excitations (5-28). 

Summarizing, in this section we analyze the stochastic properties of the residuals (= 
stochastic nonlinear distortions) ys(t), and establish the link between the output residuals 
ys(t) (5-55) and the stochastic nonlinear distortions Gs(/'cot) on the BLA measurement 
(5-54). Further, the predictive power of the best linear approximation is verified. 

5.3.1 Static nonlinear systems 

In the following exercise we analyze some time domain properties of the residuals ys(t) 
(probability density function, and cross-correlation with the input w(f)) of the (best) linear 
approximations of a static nonlinear system excited by uniformly distributed white noise. The 
predictive power of the (best) linear approximations is verified within the class of uniformly 
distributed white noise. 

Exercise 87.a (Predictive power BLA — static NL system) Calculate via (5-22), 
with N = 104, the best linear approximation gBLA of y(t) = u3(t) for the class of uniformly 
[-1,1] distributed white noise u{t). Define further the linear approximations 
gLA = 0.9gBLA and gLA = 1.1 gBLA, and calculate the cross-correlation 
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Figure 5-26 Properties of the linear approximation (LA) of the static nonlinear system y(t) - u\t) 
excited by white uniformly [-1, 1] distributed noise: best linear approximation (BLA) 
gBLA 0eft column), LA with gain 0.9gBLA (middle column), and LA with gain l.lgBLA 
(right column). Top row: Cross-correlation between the input u(t) and the stochastic non-
linear distortions ys(t) (black), and its 95% uncertainty bounds (gray dashed lines). Middle 
row: True output (black), output of the (B)LA (light gray), and output error of the (B)LA 
(dark gray). Bottom row: Probability density function (pdf) of the output error of the 
(B)LA. 

R (T) = l{u(t)ys(t-t)} with ys(t) = y(t) - g9)LAu(t) (5-57) 

between the input u(t) and the residuals ys(t) of the (best) linear approximations g(B)LA 
(Hint: Approximate (5-57) by the sample cross-correlation, and calculate its uncertainty 
assuming that ys(t) and u(t) are independent). What do you conclude? Next generate a 
validation set of 104 data points and compare the output predicted by the (B)LA's with the 
output of the static nonlinearity. At a glance the difference between the true output and the 
output of the (B)LA (residual ys(t)) appears to be the smallest for the linear approximation 
£LA = 1-1#BLA- Explain the apparent contradiction [Hint: Analyze the variance and the 
probability density function of the residuals ys(t).] □ 

The sample cross-correlation Ruys(t) between the input u(t) and output residuals ys(t) 
(t = 0, 1 N- 1) is given by 

/V — x*-^1 - T (5-58) 

Assuming that u(t) and vs(f) are independent, it can easily be verified that the variance of 
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Ruy,(T) is given by 

var(/Us(r)) = O * O £ / ( A T - T ) (5-59) 

(u(t) and ys(t) are zero mean stationary stochastic processes). Since Ruyjj) (5-58) is asymp-
totically normally distributed (central limit theorem), calculating ±2std(RUys(x)) via (5-58) 
gives the 95% confidence bound of the sample cross-correlation under the hypothesis that 
u(t) and ys(t) are independently distributed. 

Observations The results of the cross-correlation analysis are shown in the top row of 
Figure 5-26. It can be seen that the output residuals of the BLA are uncorrelated with the in-
put (the fraction inside the 95% confidence bounds equals 94.8%), while those of the LAs are 
correlated with the input at x = 0 (the cross-correlation at x = 0 lies significantly outside 
the 95% confidence interval). 

Discussion The observation that the output residuals of the BLA are uncorrelated with 
the input is in fact not surprising. Indeed, it is a direct consequence of the general property of 
least squares estimators that the residuals are uncorrelated with the regressors (Ljung, 1999), 
applied to the linear least squares problem (5-21) (Enqvist, 2005). 

Observations Comparing the output predicted by the (best) linear approximations with 
the true output of the static nonlinear system (see Figure 5-26, middle row), one would 
wrongly conclude that the linear approximation gLA = 1.1 gBLA has the smallest output error. 
Indeed, the standard deviation of the output errors ys(t) equals 0.151, 0.155, and 0.155 for, 
respectively, gBLA, gLA = 0.9gBLA, and gLA = l.lgBLA. 

Discussion The apparent contradiction can be explained by the probability density 
function of ys(?) (see Figure 5-26, bottom row): (i) although the extreme values of ys(f) are 
larger for gBLA and gLA = 0.9gBLA than for gLA = l.lgBLA, they have a low probability; and 
(ii) for the linear approximation gLA = 1.1 gBLA the pdf is maximal for \ys(t)\ > 0.2, while for 
the two other approximations the pdf is maximal for |ys(f)| < 0.2. 

Observations Note that the pdf of the output residuals (stochastic nonlinear distortions) 
ys(t) strongly deviates from the uniform pdf of the input (see Figure 5-26, bottom row). 

Discussion It emphasizes that the best linear approximation of a static nonlinear func-
tion is a second order equivalent, and shows that the higher order moments of ys(0 contain 
information about the nonlinear behavior of the system. 

5.3.2 Dynamic nonlinear systems 

In this section we analyze the time and frequency domain properties of the output residuals of 
the best linear approximation (BLA) of a generalized Wiener-Hammerstein system excited 
by odd random phase multisines. The number of odd excited frequencies is chosen suffi-
ciently large such that the odd random phase multisines behave as Gaussian noise (see Sec-
tion 5.2.2). Next, the predictive power of the BLA is verified within the class of odd random 
phase multisines. 

Exercise 87.b (Properties of output residuals — dynamic NL system) Consider 
the generalized Wiener Hammerstein (GWH) system shown in Figure 5-13 on page 157 with 
NFIR part 

z(t) = jc(f) + 0.01jc2(f-l)tanh(x(0), (5-60) 
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where G{ and G2 are defined in (5-33). Calculate via (5-37), with N = 1024 and 
M = 104, the best linear approximation (BLA) of the GWH system for the class of odd ran-
dom phase multisines 

w(f) = ^ i r i 4 . c ° s ( ( 2 *- i ) < D ° r + *»- ' ) (5-6D 

with <f>lk_ | uniformly distributed in [0, 2TC]. Using the BLA, calculate the output residuals 

ylm\t) = yM(t) - gBiA(t)*ui™Kt) (5-62) 

for m = 1, 2, ..., M and r = 0, 1, ..., N- 1 (Hint: make the calculations in the frequency 
domain and convert to the time domain), and draw the following figures: 

■ var(ys(0) as a function of time (Hint: approximate the variance by the sample vari-
ance of ylm](t) over the realizations m as a function of time t; next, to verify the 
variability of the sample variance over time, calculate the sample mean and sample 
standard deviation over / of the sample variance over the realizations). Is var(ys(r)) 
constant? 

■ The probability density function (pdf) of ys (hint: use ylm](t) for m = 1,2 M 
and t = 0, 1, ..., N- 1). Compare with a Gaussian pdf with the same mean and 
variance. Is ys normally distributed? Why (not)? 

■ The cross-correlation between the input u(t) and the output residual ys(i) 

RUJs(T) = E{u(t)ys(t-T)} m\hys(t) = y(t) -g^K(t)*u(t) (5-63) 

(Hint: approximate (5-63) by the sample cross-correlation over time via the MAT-
LAB® instruction x c o r r (x, y, ' u n b i a s e d ' ) ; next, to verify its variability, cal-
culate the sample mean and sample standard deviation over the last thousand 
realizations). Are u(t) and ys(t) uncorrelated? 

■ The probability density function of \Ys(k)\ and ZYs(k) at one excited frequency 
(hint: use Ylm](k), m = 1, 2, ..., M). Compare the pdf's to respectively a Rayleigh 
distribution with second order moment var(Ys(k)) (Hint: use the MATLAB® in-
struction r a y l p d f (x, b) with 2b2 = var(Ys(k))), and a uniform [0, 2%] distri-
bution. What do you conclude? 

■ The autocorrelation of frequency domain output residuals Ys(k) at the excited fre-
quencies 

RYs(k) = \E{Ys(l)Ys(l-k)} with Ys(k) = Y(k)-GBLA(j(Ok)U(k) (5-64) 

(Hint: approximate (5-64) by the sample cross-correlation over frequency via the 
MATLAB® instruction x c o r r (x, x, ' u n b i a s e d ' ); next, to verify its variabil-
ity, calculate the sample mean and sample standard deviation over the last thousand 
realizations). Is Ys (k) correlated over the frequency? 

■ The variance of Ys(k) at the excited frequencies (Hint: calculate the sample vari-
ance of Y^"\k) over m). Is the variance a smooth function of the frequency? Repeat 
the calculations for N = 512, and 256. What do you conclude? 
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Discuss the results. □ 

First of all note that the output residual ys(t) of a nonlinear PISPO systems (see Section 
5.1.2.A) excited by a periodic input, is a periodic signal with the same period as the input. 
Therefore, the sample cross-correlation between the input u(t) and the output residuals (sto-
chastic nonlinear distortions) ys(t) is calculated as 

^.(T) = k - o M ( f W t " T ) (5"65) 

[a time-efficient implementation of (5-65) uses the FFT: see Rabiner and Gold (1975)]. By 
definition of the best linear approximation (5-21), and by construction of the random phase 
multisines, ys(t) has zero mean value over, respectively, time (one period) and realizations, 
viz., 

^xr="oly»(0 = ° md l { y ^ } = ° <5-66) 

Observations Although vs(r) is periodic, it follows from (5-66) and the top row of 
Figure 5-27 that, within one period, ys(t) behaves as second order stationary, non-Gaussian 
distributed noise: E{ys(?)} = 0, var(ys(f)) is independent of t, and ys(t) is uncorrelated 
with the input u(t) (fractions inside the 95% confidence bounds are, respectively, 94.7% and 
98.4%). 

Conclusion ys(t) is a non-Gaussian, zero mean, second order cyclo-stationary random 
process, whose higher-order moments contain information about the nonlinear system. It 
confirms the close connection between Gaussian noise and random phase multisines with a 
sufficiently large number of excited frequencies (see Section 5.2.2). 

A zero mean complex random variable z = x+jy with variance of = E{|z|2} is cir-
cular complex distributed if E{z2} = 0: 

E{z2} = 0<^< (5-67) 
\l{xy} = 0 

(x and v are uncorrelated random variables with zero mean and variance of/2). The com-
plex random variable z is circular complex normally distributed if in addition to (5-67) x and 
y are normally distributed. For circular complex normally we have that E{z"} = 0 for each 
finite ne M . It can be shown that z is circular complex normally distributed if and only if 
the amplitude \z\ and phase Zz are, respectively, Rayleigh and uniformly distributed 

, , , K 2|z| - ? A f ( / , J 1/(271), Zze[-7C,Ji] 
fk\(\z\) = -iie z a n d fzzUz) = \ (5-68) 

ot 0, elsewhere 

(Papoulis, 1981). 
Observations Using result (5-68), it can be concluded from the middle row of Figure 5-

27 (left and middle plots) that Ys(k) is circular complex normally distributed. This is consis-
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Figure 5-27 Properties of the stochastic nonlinear distortion y,(t) of a generalized Wiener-Hammerstein 
system excited by an odd random phase multisine u(t). Top row left: Variance over the 
realizations of ys(t) (black solid line), mean value of the variance over time (gray solid line), 
and 95% confidence interval of the variance (gray dashed lines). Top row middle: Probability 
density function (pdf) of ys (black), and gaussian pdf with the same variance (gray). Top 
row right: Cross-correlation between u(t) and ys(r) (black solid line), and its 95% 
confidence interval (gray dashed lines). Middle row left: pdf of \Y,\ (black), and Rayleigh 
pdf with the same second order moment (gray). Middle row middle: pdf of ZYS (black), and 
uniform pdf in [-Jt, n] (gray). Middle row right: Auto-correlation of Ys(k) at the excited 
odd harmonics (black), and its 95% confidence interval (gray dashed lines). Bottom row: 
Variance Ys at the excited frequencies for three different values of N (total number of odd 
excited frequencies equals N/A ). Remark: dB(a2) = 101ogl0(o2) = 201ogI0(a) s dB(a) . 

tent with the theoretical result that Ys(k) is asymptotically (as the number of excited frequen-
cies tends to infinity) circular complex normally distributed (Pintelon and Schoukens, 2001). 

The sample autocorrelation of the frequency domain output residuals Ys(2k - 1) at the 
excited odd harmonics is calculated as 

■.<*> - N7^rri^^Ys(U-l)U2k-l-2l) (5-69) 

with / the lag between the odd harmonics. Since RYS(1) (5-69) is asymptotically circular 
complex normally distributed (central limit theorem applied to a sum of circular complex dis-
tributed random variables), j3std(RYs(l)) gives the 95% confidence bound of \RYS(1) . 

Observations From the middle right plot of Figure 5-27 it can be concluded that 
Ys(2k - 1) is uncorrelated over the frequency (only i?ys(0) lies significantly outside the 95% 
confidence bound). 
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Discussion This is consistent with the theoretical result that Ys(k) is mixing over k of 
order infinity (see Pintelon and Schoukens, 2001), which means that the dependency between 
Ys{k) and Ys(l) vanishes sufficiently fast as the difference k-l tends to infinity. 

Observations From the bottom row of Figure 5-27 it can be concluded that var(Fs(&)) 
is a smooth function of the frequency. It can also be seen that the variance does not decrease 
as N increases (var(Ks(*;)) = 0(N°)). 

Discussion The smooth behavior of var(Fs(£)) explains why the stochastic nonlinear 
distortions can be approximated very well by filtered white noise (see Chapter 5 on paramet-
ric modeling). Since (var(Ys(k)) = 0(N°)), the influence of the stochastic nonlinear distor-
tions will not decrease by increasing the measurement time (period length N or the number 
of excited frequencies). Although this seems to be counter-intuitive, the observation is normal 
because the nonlinear distortion at the output is an intrinsic property of the time-invariant 
nonlinear system that cannot vanish by measuring the output over longer times. 

In the following exercise we verify the predictive power of the BLA obtained in Exer-
cise 87.b for well chosen signals within the class of odd random phase excitations. 

Exercise 87.c (Predictive power of BLA — dynamic NL system) Use the best lin-
ear approximation obtained in Exercise 87.b to predict the output of the GWH system defined 
in Exercise 87.b, for the following three excitations: 

■ Odd random phase multisine: (5-61) with (p2k-1 uniformly distributed in [0, 2TC] . 

■ Odd Schroeder multisine: (5-43) with ( ^ _ , = 2n(2k- \){2k-2)/N). 

■ Zero phase multisine: (5-43) with (<jh.k_i = 0 ) . 

Compare the output of the BLAs with the output of the GWH system. What do you observe? 
Explain. □ 

Observations The best linear approximation obtained from M - 104 realizations of 
the odd random phase multisine (5-61) gives output residuals (stochastic nonlinear distor-
tions) ys with an average standard deviation of 0.082 (see the top left plot of Figure 5-27). It 
means that on the average, the rms value of the output error y(t) - JBLAW °f t ne BLA will not 
be smaller than 0.082. This is verified for the following three multisines specially selected 
from among a class of odd random phase multisines: a random phase, a Schroeder phase, and 
a zero phase multisine. From Figure 5-28 it can be seen that the output error of the BLA is 
very good for the random phase, but not good enough for the Schroeder phase, and bad for 
the zero phase. The corresponding rms values of the output error y(t) - yBLA(t) equal 0.082, 
0.17, and 0.46. Note that the prediction via the BLA fails at the extreme values of y(f). 

Discussion The observed rms values of the output error of the Schroeder phase (0.17) 
and zero phase (0.46) multisines are not in contradiction with that of the class of random 
phase multisines (0.082), because the probability of selecting the Schroeder phase or zero 
phase multisines by random phase generation is exactly zero for a continuous phase distribu-
tion, and is negligibly small for a discrete phase distribution if the number of excited frequen-
cies is sufficiently large. Hence, one can always find signals from the signal class for which 
the output error is much worse than the average behavior, however, the probability of ran-
domly selecting such a signal is very small or zero. Note that the output error can be much 
larger if the BLA is used for signals which do not belong to the class of excitations the BLA 
was calculated for, for example, other rms value, and/or other coloring power spectrum, and/ 
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Figure 5-28 Predictive power of the best linear approximation (BLA) of a generalised Wiener-
Hammerstein system. Top row: Output nonlinear system y(t) (black), output >>BLA(0 of the 
BLA (light gray), and output error y(t) - yBLK(t) for respectively a random phase (left), 
Schroeder phase (middle), and zero phase (right) odd multisine. Bottom row: Zoom of the 
output errors in the top row. 

or other probability density function. This is of course an extrapolation which is known to be 
potentially dangerous. 

5.3.3 Relationship between the stochastic nonlinear 
distortions at the output and those on the best 
linear approximation 

In the previous section the stochastic properties of the output residuals ys(t) have been 
studied in detail. In this section we establish the relationship between the output residuals 
Ys(k) and the stochastic nonlinear distortions Gs(j(ak) on the BLA measurement (5-54). 

For the /nth realization of a random phase multisine, (5-55) can be written in the fre-
quency domain as 

yi»i(*) = GnJjnWKQ + YlrKk) 

Dividing (5-70) by U[m](k) 

yi»i(*)/tfi"](*) = GELA(](i>k)+Y!rKk)/UM(k) 

(5-70) 

(5-71) 

and comparing the result (5-71) to (5-37) and (5-50) gives 

YlmKk) Gs(joyk) -r with va^GsO'ooJ) = 
var(Fs(fc)) 
M\U(k)\2' (5-72) 

It shows that Gs and Ys have exactly the same stochastic properties. Hence, Gs(j(tik) is as-
ymptotically (for the number of excited frequencies going to infinity) circular complex nor-
mally distributed, and mixing of order infinity over k (the dependency over the frequency 
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index k tends quickly to zero as the index difference increases). It explains why the stochas-
tic nonlinear distortions behave as measurement noise in FRF measurements. 

For random excitations (5-70) is replaced by 

1™(*) = GBLA(/C0,) lfl"\k) + YlrKk) + TBLA(jak), (5-73) 

where TBLA = 0(N~U2) accounts for the leakage errors (see Chapter 3). Applying the diff 
operator Xdif£k) = X(k+ 1)-X(k) to the input/output DFT spectra suppresses the leakage 
error 

HBW = GBLA(jak+1/2)U®(k) + Y&Uk). (5-74) 

Multiplying (5-74) by U$)(k) and summing over m gives 

Syu(j(Ok+l/2) = GBLA(jO)k+]/2)Suu(j(>ik+]/2) + Srsu(j(Ok+U2), (5-75) 

where the (cross-)power spectra are calculated as in (5-28). Comparing (5-75) to (5-28) and 
(5-50) shows that 

„ . . . Srsu(j(Ok + l/2) ... , „ , . ,, var(r s (£+l /2)) 
Gs(jwk+U2) = with var(Gs(/C0*+1/2)) = , . „ .. r - (5-76) 

Hence, the same conclusions hold as for the random phase multisines. 

5.3.4 What have we learned in Section 5.3? 

■ The output y(t) of a PISPO (period in, same period out) system excited by a station-
ary random process or a random phase multisine u(t) can be written as 

y(t) = S B L A ( 0 * « M + ? . ( 0 (5-77) 

with £BLA(0 the impulse response of the best linear approximation (BLA), and 
ys(f) the output residuals (stochastic nonlinear distortions). For stationary random 
processes y^t) is a zero mean, non-Gaussian distributed, stationary process, that is 
uncorrelated with the input u(t) (Exercise 87.a). For random phase multisines with 
a sufficiently large number of excited frequencies, ys(f) is a zero mean, non-Gaus-
sian distributed, second order cyclo-stationary process, that is uncorrelated with 
(but not independent of) u(t) (Exercise 87.b). In both cases the higher order mo-
ments of the residuals ys(t) contain information about the nonlinear behavior of the 
system. 

■ In the frequency domain (5-77) is written as 

Y(k) = GBLA(/-cot)[/W + TBLA(j(Ok) + Ys(k), (5-78) 

where TBLA = 0(N~U2) contains the initial and final conditions of the experiment 
(leakage errors) for random excitations, and is exactly zero for random phase multi-
sines. The input DFT spectrum U(k) and the output residuals Ys(k) are both an 
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0(N°). It means that Ys(k) does not decrease as the measurement time (propor-
tional to N) increases (Exercise 87.b). For the class of Gaussian excitations and 
random phase multisines with a sufficiently large number of frequencies, the output 
residual has the following properties (Pintelon and Schoukens, 2001; Exercise 
87.b): (i) Ys(k) is a zero mean, circular complex (E{ Yi(k)} = 0) normally distrib-
uted random variable; (ii) var(Ys(k)) is a smooth function of the frequency; and (iii) 
Ys(k) is mixing of order infinity, which means that Ys(k) and Ys(l) rapidly become 
independent as the difference k - 1 increases. All these properties allow us to calcu-
late uncertainty bounds with a given confidence level. 

The best linear approximation (BLA) of a nonlinear system excited by a certain 
class of excitation signals can be used to predict the output of that nonlinear system 
within that particular class of excitation signals. Within this particular class of exci-
tation signals, the rms value of the output error y(t) - yBLA(0 (= difference between 
the true and the output of the BLA) equals std(ys). The latter gives the lower bound 
on the predictive power of the BLA of the nonlinear system. It is always possible to 
find signals within the considered class (e.g., Schroeder phase, or zero phase) for 
which the rms value of the output error is much larger than std(vs) (Exercise 87 .c). 
However, the probability of randomly selecting such a signal is negligibly small or 
zero. Using the BLA for signals which do not belong to the class of excitations that 
the BLA was calculated for is an extrapolation which is potentially dangerous 
(nothing can be guaranteed about the rms value of the output error). 

If the linear approximation used for predicting the output of a nonlinear system is 
different from the BLA of that system, then the variance of the output error 
v(0-yLA(f) is always larger than var(ys) (Exercise 87.a). Hence, the BLA is the 
best second-order linear time invariant equivalent (Enqvist, 2005). 

The stochastic nonlinear distortions Gs(j(x>k) on the BLA measurements (5-28) and 
(5-37) have exactly the same stochastic properties as the output residual Ys(k). This 
explains why it is difficult to distinguish Gs(jOik) from the measurement noise. The 
variances of Gs(j(dk) and Ys(k) are related by 

-"w™-^--««"*» " S 
for, respectively, random phase multisines and random excitations. 

□ 



Measuring the Best Linear 
Approximation of a 
Nonlinear System 

What you will learn: In the previous chapter we learned to understand the behavior of a non-
linear systems. Its output was split in the best linear approximation (BLA) and a nonlinear 
noise source. In this chapter we learn how to measure the FRF of the BLA. We also show how 
to measure the nature and the level of the nonlinear distortions. Efficient algorithms are ex-
plained to obtain all this information in one single measurement procedure. 
Chapter content: 

■ "Measuring the Best Linear Approximation," on page 183. 
■ "Measuring the nonlinear distortions," on page 224. 
■ "Guidelines," on page 233. 
■ "Projects," on page 233. 

6.1 MEASURING THE BEST LINEAR APPROXIMATION 

This section describes nonparametric methods for identifying the best linear approximation 
(BLA) GBLA(j(£>k) and the variance of the stochastic nonlinear contributions Gs(ja>k) (or 
Ys(k)) from noisy input-output observations of a nonlinear system excited by random phase 
multisines (see Figure 6-1). Two measurement procedures are discussed and compared: (i) a 
robust (slow) method that measures the stochastic nonlinear contributions via different ran-
dom phase multisine experiments directly and (ii) a fast (nonrobust) method that estimates 
Gs(jQ>k) via one single experiment with a specially designed random phase multisine. Fi-
nally, an attempt is made to estimate the order of magnitude of the bias contribution GB on 
the BLA (deviation from the true underlying linear system) starting from the variance of the 
stochastic nonlinear distortions, var(Gs). 

6.1.1 Robust method 

We distinguish three cases in the measurement setup of Figure 6-1: (i) known input u0(t) and 
noisy output measurements y(t), (ii) noisy input/output measurements u(t), y(t), and (iii) 
noisy input/output measurements u(t), y(t) with known reference signal r(t) (typically the 
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ny(t) 

Z ny(t)+ys(t) 

JBLA(0 T yW 
— + Q ► 

Figure 6-1 Noisy input/output measurements u(t), y(t) of a nonlinear system driven by an actuator with 
Gaussian input Ht) (top diagram), and the corresponding best linear approximation representation 
(bottom diagram). 

signal stored in the arbitrary waveform generator). Since each case results in a different pro-
cessing of the measured input/output data, we handle them separately. 

A. Measurement in the Presence of Output Noise 
Assuming that the input is known exactly (n„ = 0 in Figure 6-1), the nonparametric estima-
tion of the BLA ( GBLA(j(Ok) ), the variance of the stochastic nonlinear distortions 
(var(Gs(/u)^)) or var(Y£k))), and the noise variance (\at(NG(k)) or va.r(Ny(k)), is based on 
the analysis of the sample mean and sample variance of the frequency response function over 
different multisine periods and multisine realizations (see Figure 6-2): 

1. Choose the frequency resolution f0, the excited harmonics k e {1,2, ..., N/2 - 1} , 
the amplitudes Ak, and the rms value of the random phase multisine r(t) (see eq. (5-
52). 

2. Make a random choice of the phases <pk of the non-zero harmonics of the random 
phase multisine (5-52) such that E{ei*k} - 0 (e.g. <pk is uniformly distributed in 
[0, 2it)), and calculate the corresponding time signal rit). 

3. Apply the excitation r(t) to the actuator (see Figure 6-1) and measure P frequency 
response functions from P > 2 consecutive periods of the steady-state response 
u0(t), y(t) (at least two periods are needed to calculate the noise variance). 

4. Repeat steps 2 and 3 preferably M>7 times (at least seven realizations are needed 
to preserve the properties of the maximum likelihood estimator in the parametric 
modelling step; see Chapter 4). 
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Figure 6-2 Robust measurement procedure: P > 2 periods of the steady-state 

response to a random phase multisine excitation are measured; and 
this experiment is repeated for M > 1 different random phase 
multisine realizations. 

Since ny{t) is a stochastic process, and ys(t) is a periodic signal, depending on the phase real-
ization of the reference signal tit), the FRF of the mth realization and pth period is related 
to the best linear approximation, the stochastic nonlinear distortions, and the output noise as 

yi'»./>](•£) Y{m](k) N^-^Xk) 
u\r\k) uirKk) u\r\k)' (6-1) 

This shows that the sample variance over the P periods only depends on the output noise, 
while the sample variance over the M realizations depends on both the stochastic nonlinear 
distortions and the output noise. From the MxP noisy frequency response functions 
Glm'p](j(dk) (6-1), m = 1, 2, ..., M and p = 1, 2, ..., P, one can calculate for each experi-
ment (random phase multisine realization) the average frequency response function (FRF) 
Glm](j(ok) and its sample variance Oow(fc) over the P periods, viz., 

l w GlmJ(/<o,) = £i;=1G [""'1(M), a^(k) = £ |G^iQ-(0j-G[mWr 
p=i P(P-l) 

(6-2) 

Additional averaging over the M experiments gives the final FRF GBLA(/CO*) and its sample 
variance crlBhA(k) of the whole measurement procedure 

&^> -x.,Zp>. aoe - E;=rw-e-(«r M ( M - l ) 
(6-3) 

and an improved estimate of the noise variance 

4LA.n(*) = ^ i : = 1 ^ « (6-4) 

Using (6-1) to (6-4) and the fact that | (7iml| is independent of m, it can easily be verified that 
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MP 
(6-5) 

f , y „A 1 _ var(Gs(/cot)) var(iVc(£)) 

with 

where £/0(&), Ny(k) and Fs(fc) are DFT spectra calculated over one signal period. Hence, the 
scaled difference between the total variance and the noise variance is an estimate of the vari-
ance of the stochastic nonlinear contributions, viz., 

var(Gs(/co,)) » M( alBLA(k) - a|BLA, „(*)). (6-7) 

Two special cases are worth mentioning: (i) either P > 7 periods of M = 1 realization 
or (ii) P = 1 period of M > 7 realizations are available. In the first case the FRF and its 
noise variance are obtained via (6-2). No indication about the level of the nonlinear distor-
tions can be given. In the second case the FRF and its total variance is calculated via (6-3). 
Since no noise variance information is available, the contribution of the nonlinear distortions 
in the total variance cannot be quantified. 

Exercise 88.a (Robust method for noisy FRF measurements) Implement the ro-
bust method for noisy FRF measurements in MATLAB®. 

■ Apply this program to the setup of Figure 6-1 where the input is observed without 
errors (n„ = 0), the reference signal r(i) is a full random phase multisine [see 
equation (5-52)] consisting of five hundred frequencies in the band [4 Hz, 2 kHz] 
and rms value equal to one; the actuator is a fourth order analog Chebyshev filter 
with a passband ripple of 6 dB and a cutoff frequency of 2 kHz, and the nonlinear 
system is a Wiener-Hammertein system (see Figure 5-13 on page 157) with linear 
dynamic blocks 

G,(s) = -. TTTT-^ TJ-, and G2(s) = -r-^— (6-8) 
1 +S/(Q(£)0)+S2/G)$ l + TS 

(Q = 10, co0 = 2J I / 0 , /O = 1 kHz, and r = l/(6007t) s), and static nonlinear 
block 

z(t) = 5tanh(jt(f)/5). (6-9) 

At the sampling instances ny(t) is zero mean white noise with standard deviation 
1/(10-72). Choose /s = 50 kHz (What is the corresponding number of points per 
period ./V ? Why is fs chosen that large?) and apply the robust method for noisy FRF 
measurements with P = 2 and M = 60. 

■ Using (6-3), (6-4), and (6-7), plot the frequency response function, its total variance 
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Figure 6-3 Measurement of the best linear approximation (BLA) of a Wiener-Hammertein system from 
noiseless input and noisy output measurements - robust method. Left: BLA of the multisine 
experiment (black), its total variance (dark gray), its noise variance (medium gray), and the 
variance of the stochastic nonlinear distortions w.r.t. one multisine realization (6-7) (light 
gray). Middle: BLA of the Gaussian noise experiment (black), and its total variance (dark 
gray). Right: Comparison of the total variances of the multisine BLA (black) and the 
Gaussian noise BLA (dark gray). 

(noise and stochastic nonlinear distortions), its noise variance, and the variance of 
the stochastic nonlinear distortions w.r.t. one realization of the random phase multi-
sine. Verify the expected values (6-5). 

■ Compare the previous results with the FRF measurement obtained using a Gaussian 
noise excitation with the same bandwidth and rms value as the multisine excitation. 
Generate, for this purpose, NxMxP data points of the input/output signals (Hint: 
neglect the transient terms and calculate the output of the linear blocks via the in-
verse DFT of Gi{j(Ok)U(k) and G2(j(ak)Z(k)), split these signals into M blocks of 
NxP data points, and calculate the BLA and its uncertainty according to equation 
(5-28). Proceeding in this way the averaging of the stochastic nonlinear distortions 
is exactly the same for the random phase multisines and the Gaussian noise excita-
tion. Is the averaging of the output noise the same in both cases? If not, what is the 
difference? Explain. 

What would happen with the variances of the BLA estimates if the rms value of the excitation 
is doubled? Explain. □ 

The ratio of the sampling frequency (50 kHz) to the largest excitation frequency (2 
kHz) equals 25, resulting in an oversampling factor of 12.5. It is chosen that large to avoid 
aliasing in the output spectrum of the harmonics created by the static nonlinearity. The num-
ber of time domain samples NxP = 75,000 per block, for calculating the BLA of the 
Gaussian noise experiment via (5-28), is large enough to allow for neglecting the transient 
(leakage) effects when transforming the random input/output samples to the frequency do-
main and vice versa. 

Observations Figure 6-3 compares the estimated best linear approximation (BLA) and 
its variance obtained via the robust random phase multisine procedure, with that of the Gaus-
sian noise excitation. It can be seen that the total variances (noise and stochastic nonlinear 
distortions) of both estimates (see Figure 6-3, right plot) almost coincide from 4 Hz till about 
1.2 kHz. Above 1.2 kHz the total variance of the Gaussian noise BLA is larger than that of the 
random phase multisine BLA. 

Discussion The reason for this is that the output noise is P - 2 times less averaged for 
the Gaussian noise BLA, giving an increase in noise variance of 3 dB w.r.t. the random phase 
multisine case. Since the stochastic nonlinear distortions are dominant, this increase in noise 
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variance is not apparent below 1.2 kHz. The frequency resolution of the Gaussian BLA esti-
mate is, however, twice that of the random phase multisine estimate. 

Observations Doubling the rms value of the excitation reduces the noise variance of the 
BLA by 6 dB (explain!), and increases the variance of the stochastic nonlinear distortions by 
about 8 dB. Since the latter are dominant in the band 4 Hz to about 1.2 kHz (compare the dark 
gray line with the medium gray line in the left plot of Figure 6-3), the total variance of the 
BLA will increase in that frequency band. 

Conclusion This counterintuitive phenomenon - increasing the excitation rms value re-
sults in a larger FRF variance - can easily be understood via the robust random phase multi-
sine procedure, but would remain a mystery if only Gaussian noise experiments were avail-
able (see Figure 6-3, middle plot). 

B. Measurement in the Presence of Input/Output 
Noise - Unknown Reference Signal 

If the reference signal r(t) in Figure 6-1 is unknown, then averaging of the input/output spec-
tra over the different realizations in the measurement scheme of Figure 6-2 would be impossi-
ble. Indeed, since EfV*} = 0 by definition of the random phase multisine r(t) [see 
equation (5-52)], we have 

E{U0(k)} = \E{A(j(»k)R(k)} = A(/<ot)|K(*)|E{^} = 0, 
(6-1U) 

E { W * ) } = E{GBLA(/'co*) £/„(*)} = GBLA(M)E{t/0(fc)} = 0, 

where /l(/C0) and GBLA(/co) are, respectively, the actuator characteristic and the best linear 
approximation (see Figure 6-1). Hence, the sample means of the measured input/output spec-
tra over different realizations of the random phase multisine excitation r(t) converge to zero 
as the number of realizations M tends to infinity. This explains why averaging of the input/ 
output spectra is only performed over the different periods in the following procedure (steps 
one, two, and four are the same as those in Section 6.1.1.A): 

1. Choose the frequency resolution /0, the excited harmonics ke {1,2, . . . , N/2 - 1} , 
the amplitudes Ak, and the rms value of the random phase multisine tit) [see equa-
tion (5-52)]. 

2. Make a random choice of the phases <pk of the nonzero harmonics of the random 
phase multisine (5-52), and calculate the corresponding time signal r(t). 

3. Apply the excitation r(t) to the actuator (see Figure 6-1) and measure P > 2 consec-
utive periods of the steady-state response u(t), y(t) (at least two periods are needed 
to calculate the input/output noise (co-)variances). 

4. Repeat steps 2 and 3 M > 7 times (at least seven realizations are needed to preserve 
the properties of the maximum likelihood estimator in the parametric modelling 
step; see Chapter 4). 

Since nu(t) and ny(t) are stochastic processes, and ys(t) is a periodic signal depending on the 
phase realization of the reference signal r(t), the input/output spectra of the mth realization 
and pth period are related to the input/output noise, the best linear approximation, and the 
stochastic nonlinear distortions as 
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mm-p\k) = uim](k)+N\jm-p\k), 

^■p\k) = GnJjatJUIrKk) + Y^(k) + Np-'Kk). { ~U) 

From the MxP noisy input/output spectra U{m-p\k), Y^m'P\k) (6-11), m = 1, 2, .... Af and 
p = 1, 2, ..., P, one can calculate for each experiment (random phase multisine realization) 
the average input/output spectra Ulm\k), ¥m]{k) and the corresponding sample (co-)vari-
ances of,im](k), Oy[m)(k), ofw #»](&) over the P periods 

ulm\k) = l-yp u^"\k), ^Xk) = -yp Y^-p\k), 
Pi—Jp = 1 pt—'p = 1 

^ \u^p\k)-u{mXkf % m _ ^p 
^-i P(P-D •°*m,w-2«~i P(P-D 

aut), y:_, l ^ w - ^ W , ^m - jfm i ̂ - _ ^ y \ (M2, 

-2 /M w {ylm-pKk)-Yim\k))W-pKk)-u[m\k)) oawm = £_, pjpz^ 

with x the complex conjugate of x. Using (6-12), the frequency response function of the 
mth experiment is calculated as 

G l "W = J ^ (6-13) 
U[m\k) 

Additional averaging over the M experiments gives (i) the final FRF GBLAOOO*) and its sam-
ple variance 0"GBLA(£) °f m e whole measurement procedure as 

r rr^ rM 6 " " W # ,n v ^ 1G [ , "W-GBLA( / -CO, ) | 2 

GBLAOCO,) = Xm = , —Jj— • < W * > = I M = , M ( M - 1 ) ' (6"14) 

(ii) an improved estimate of the input/output noise (co-)variances w.r.t. one multisine experi-
ment 

"2 1 __,M "2 / i \ A 2 / , N 1 *-[M "2 ,,s 

(6-15) 
Ofim](,lm]n(k) - TiTJm=1 Oyi»<lul»il(k), 

and (iii) an estimate of the noise variance of the BLA 

-y2 ,,. _ 1GBLA(M)| Oyt"],„(fc) <%["], nW _ 2Rc(t7^ml^t""'1'<'^) 
M 

(6-16) 

where Sv0v0(k), SY0Y0(k) and SYou0(k) are calculated as 
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(6-17) 

Note that Su„u„(k) and Sygu„(k) are unbiased estimates of, respectively, |£/0(&)|2 and 
F0(&) ^o(^). while SY0r0(k) is biased by the stochastic nonlinear distortions. This can easily be 
verified via (6-11) and 

f / y m , VM(Nu(k)) -2 M l var^/fc)) 

(6-18) 
t{OY[m]^] {k)} - . 

Using (6-11) to (6-18) and the fact that \Ulm]\ is independent of m, it can be verified that 

var(NG(k)) 
£ « , ( * ) } - MP 
IT f A2 m i var(Gs(/(%)) var(JVG(fc)) 

(6-19) 

with 

Na(k) = —— , GsC/ffljt) = 7 7 - 7 - , (6-20) 
C/0(̂ ) U0(k) 

where £/0(&) > Nf/fc). Nr(k), and Fs(&) are DFT spectra calculated over one signal period. 
Hence, the noise (co-)variances and the variance of the stochastic nonlinear distortions can be 
estimated as 

var^A;)) » P(&~u(fi> var(iV^)) « P ^ M „(£), 

covar(JVy(£), A^A:)) = F ^ t / i - u W . 

var(Gs(/G)t))« M(crlBLA(k) - OoBLA,„(£))> 

(6-21) 

(6-22) 
var(Fs(*)) - S^WvartGsO'co,)), 

where Su0u0(k) is defined in (6-17). 

Exercise 88.b (Robust method for noisy input/output measurements without 
reference signal) Write a MATLAB® program for the robust method using input/output 
data without a reference signal. 

■ Apply this program to the setup of Figure 6-1 where the reference signal r{t) is a 
full random phase multisine [see equation (5-52)] consisting of five hundred fre-
quencies in the band [4 Hz, 2 kHz] and rms value equal to one. The actuator is a 
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Figure 6-4 Measurement of the best linear approximation (BLA) of a Wiener-Hammertein system from 
noisy input/output measurements without (top row) and with (bottom row) reference signal -
robust method. Left and middle: Respectively, input and output DFT spectrum of one 
multisine period. Right: BLA of the multisine experiment. Black: Amplitude of the input/ 
output DFT spectra (left and middle) or the BLA (right). Light gray: Variance of the stochastic 
nonlinear distortions w.r.t. one multisine realization (middle and right). Medium gray: The 
noise variance (left, middle, and right). Dark gray: The total variance (right). 

fourth-order analog Chebyshev filter with a passband ripple of 6 dB and a cutoff fre-
quency of 2 kHz, and the nonlinear system is a Wiener-Hammertein system (see 
Figure 5-13 on page 157) with linear dynamic blocks and static nonlinear block de-
fined in, respectively, (6-8) and (6-9). At the sampling instances (/s = 50 kHz) the 
input/output errors nu(t) and ny(t) are zero mean white noise sources with standard 
deviations 0.1 and 1/(10V2), respectively. 

Using (6-14) to (6-16), (6-21) and (6-22), plot the input/output DFT spectra of one 
signal period together with the noise variance and the variance of the output sto-
chastic nonlinear distortions. Plot also the frequency response function, its total 
variance (noise and stochastic nonlinear distortions), its noise variance, and the vari-
ance of the stochastic nonlinear distortions w.r.t. one realization of the random 
phase multisine. 

Compare the stochastic nonlinear distortions with those obtained in Exercise 
What do you conclude? Verify the expected values in (6-18). 

S.a. 

Using (6-18), show that Su0u0(k) and SY0ua(k) in (6-17) are unbiased, and that the bias of 
Sy0Y0(k) is given by vas(Ys(k)). Justify expression (6-16) for the noise variance of the BLA 
and verify the expected values (6-19). □ 

Observations The simulation results are shown in Figure 6-4. Compared with the ro-
bust method for noisy FRF measurements (see Figure 6-3), the robust method for noisy input/ 
output measurements can recover the noise variances of the input/output DFT spectra (re-
spectively, -20 dB and -23 dB), and the variance of the stochastic nonlinear distortions at the 
output. From the output DFT spectrum (see Figure 6-4, top row, middle plot) it can be seen 
that the stochastic nonlinear distortions are about 20 dB below the signal level. Hence, the 



Chapter 6 ■ Measuring the Best Linear Approximation of a Nonlinear System 

FRF 10 without ref. 10 with ref. 

-60 

Frequency (kHz) Frequency (kHz) Frequency (kHz) 

Figure 6-5 Measurement of the best linear approximation (BLA) of a Wiener-Hammertein system from 
noisy input/output measurements: Robust FRF method (left), Robust 10 method without 
reference (middle), and robust IO method with reference (right). 

difference between the actual output of the nonlinear system and the output of the BLA is 
about 10%. 

Discussion One can also apply the robust FRF method of Section 6.1. LA to the noisy 
input/output measurements, and the systematic errors introduced by the input noise both on 
the estimated FRF and its confidence bounds are negligibly small if the input signal-to-noise 
ratio (SNR) | U0(k)\ /std(Nu(k)) of one signal period is larger than or equal to 20 dB (Pintelon 
etal., 2003). Since this is the case for the simulation example of Exercise 88.b, the results ob-
tained by the robust FRF method coincide with those obtained by the robust input/output (IO) 
method without a reference signal (see Figure 6-5). Due to the averaging of the input/output 
spectra over P periods, the condition on the input SNR of one signal period is relaxed to 
20 dB - 101og10(P) for the robust IO method. 

The underlying reasoning leading to equation (6-16) is the linearization of the input/ 
output noise contribution to the measured frequency response function. Rewriting the FRF as 

r r „ . Y(k) Y0(k) + Ny(k) ^,.r^l+Ny(k)/Y0(k) G(J^ = W)= Tmrm = ^^TTN-muk) (6"23) 

and using the approximation 1 / (1 + x) ~ 1 - x for |x| « 1, it can be seen that 

G(/co,) - G0(j^)(l + —J[l - — J - GoOco^l + — - — J (6-24) 

if |NtXfc)/£/0(/t)| « 1 and \Ny(k)/Y0(k)\ « 1. From (6-24) it immediately follows that 

van •(G(/a>t)) = \G0(jak)\2{ . . + , l2 -2Re( = ) I, (6-25) 
V \Y0(k)\ \U0(k)\ Y0(k)U0(k) 

which is conceptually similar to formula (6-16) for the noise variance of the BLA. It also ex-
plains why unbiased estimates of the (cross-)power spectra | Y0(k)\2, | U0{k)\2, and Y0(k) U0(k) 
are needed in (6-16). 

C. Measurement in the Presence of Input/Output 
Noise — Known Reference Signal 

If the reference signal r(i) in Figure 6-1 is known, then the measured input/output spectra 
can be projected on this signal, giving 

130 
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*(*) *(*) ( 6 2 6 ) 

YR{K) = W) = Ym{k) + W)+W) 
with 

UR0(k) = A(jak), 
YR0(k) = GBLA(j(ok)UR0(k), 

where A(j(d) is the linear actuator characteristic. Since the phases of UR0(k) and Ym{k) are 
only dependent on both the actuator transfer function and the best linear approximation, it 
follows from (6-26) that the projected input/output DFT spectra UR(k), YR(k) can be aver-
aged over both the periods and the realizations in the measurement scheme of Figure 6-2. 

Note that in (6-26), one can as well divide the input/output DFT spectra by eizmk) in-
stead of R(k) 

(6-28) 
Y m - m i - Y (k) i Uk) I NM 

gjZR(k) " « u v ' eJZR(k) eJZR(k) 

with 

UR0(k) = A(j®k)\R{k)\, 
(6-29) 

Ym{k) = GBLA(j®k)UUk). 

The advantage of (6-28) over (6-26) is that the projected input/output spectra UR(k) and 
YR(k) have the same physical interpretation as the original input/output DFT spectra. 

Applying steps 1 to 4 of Section 6.1.1.B, the projected input/output spectra (6-26) or 
(6-28) of the mih realization and pth period are related to the input/output noise, the best 
linear approximation, and the stochastic nonlinear distortions as 

j , (6-30) 

n-w = GBLA(/-co,)f/^w+g|+^f • 

Calculating the sample means and sample (co-)variance of UR
m-p](k) and YR

m-p](k) over the P 
periods gives 
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u[
s
m\k) = I g = , uir'Kk), ftm\k) = i y j _ , nc-'W 

°M*> = I ,= , F(pTT) • °Hf' <*>= IP =. P(P _ i) 
In^w-itW 

■ j P = i ^ ( f - i ) 

(6-31) 

Additional averaging over the M experiments gives 

^ ) = ixM , W*). to = iy" .yJr'w, 
Am], ■# ,M_^ it/ro-fowl2 # m _ v * \nm\k)-YR(k)\2 

av«W ~ Lm =, M ( M - l ) ' ^ « W " 2*. =, M ( M - l ) ' 

>tmV 
°W*J - 2.B=1 M(M-l) 

(6-32) 

and an improved estimate of the input/output noise (co-)variances, viz., 

(6-33) 

Finally, the FRF GBLAOW/I) > i ts t o t a l variance o^ (k), and its noise variance oL, .,„(&) are 
found as 

GBLA(M) 

^ G B L A W = | 6 B L A ( / 0 ) * ) | 

^ B L A . n W = |GBLA(/'COt)| 

#„(*) , o&,(*) . „ , HKut(k) + — - 2Re(-
YR(k)\2 \uR(kf YR(k)UR(k)J V | 1 R I 

(6-34) 

•p rj + p; 12 ~ / K e*-T ) 

Using (6-30) to (6-34) and the fact that I/?1™1! is independent of m, it can easily be verified 
that 

I F / ^ (v\\ ™T(Nu(k)) r , ^ 2 flAX var(AMft)) 

icf^.2 m , covar(Ny(k), Nu(k)) 
E{<^&,.n(*)} = M F | ^ } | 2 . 

(6-35) 
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- , , v^jNuik)) F , -2 , , . , var(Fs(A:)) varjNtf)) 
^ [ ab"Wi ~ MP\R(k)V L [ °** W } " M\R(k)\> MP\R(k)\>' 
m/-? „ A ) _ covarjNyjk),Nv(k)) 
tl^&,(*)} MP\R{k)\2 • 

IF/ %2 (v\\ v a r ( G s (M)) ^ var(A Ĝ(fc)) 

nrr-2 , , . , var(iVG(£)) 

(6-36) 

(6-37) 

where iVc(£), Gs(/cot) are defined in (6-20) and where i?(fc), Nj/fc), Ny(k) and ys(fc) are 
DFT spectra calculated over one signal period. Hence, the noise (co-)variances and the vari-
ance of the stochastic nonlinear distortions can be estimated as 

varflVjX*)) « MP\R{k)\^n{k), var(A^)) » MP\R(k)V%R^{k), 
(6-38) 

covaiW*), N,j{k)) « MP|fl(fc)|2^,n(fc), var(7s(fc)) » Af|tf(*)p(o*,(*) - o£,. „(*)), 

var(;VG(A:)) » MPalBLAJk), var(Gs(/co<)) - AHO^Qc) - ^ B L A , „ « ) . (6-39) 

Exercise 88.c (Robust method for noisy input/output measurements with reference 
signal) Program the robust method for input/output data with reference signal in MAT-
LAB®. 

■ Apply this program to the simulation example of Exercise 88.b. Using (6-32) to (6-
34), (6-38), and (6-39), plot the DFT spectrum of one noisy output period together 
with the noise variance and the variance of the stochastic nonlinear distortions. 

■ Plot the frequency response function, its total variance (noise and stochastic nonlin-
ear distortions), its noise variance, and the variance of the stochastic nonlinear dis-
tortions for one multisine experiment. Compare the results with those of Exercises 
88.a and 88.b. What do you conclude? Explain. 

So far it has been assumed that the actuator in the setup of Figure 6-1 is linear. What happens 
if the actuator is nonlinear? How would you detect the nonlinear behavior of the actuator? □ 

Observations Figure 6-4 shows the simulation results. It can be seen that they coincide 
with those of Exercise 88.b (robust IO method without reference), and Exercise 88.a (robust 
FRF method, see Figure 6-5). 

Discussion The reason for this is that the input signal-to-noise ratio of one period of the 
simulation (25 dB < 201og10(|C/0(A:)/A £̂/(jk)|) < 31 dB) is sufficiently large for each of the 
three methods: at least 20 dB for the robust FRF method (no averaging of the input/output 
spectra), 20 dB - 101og,0(P) for the robust IO method without reference (averaging of the in-
put/output spectra over the P periods), and 20 dB - 101og10(MP) for the robust IO method 
with reference (averaging of the input/output spectra over the P periods and the M realiza-
tions). 

If the actuator behaves nonlinearly, then the measured input/output spectra are given by 
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(6-40) 
yi«-'](*) = JW/'<»0K l*W + W * ) + A^'i(*). 

where J4BLA and HBLA are the best linear approximations of, respectively, the actuator and the 
cascade of the actuator and the nonlinear plant, and where the input stochastic nonlinear dis-
tortions Us are correlated with the output stochastic nonlinear distortions Ys. Projection of 
the input/output spectra on the reference signal gives 

U\r-"Kk) = ABLA(j(Ok) + Ui-Kk)/RM(k) + N\?'P\k)/{R{m\k),) 
(6-41) 

Y^-p\k) = HB1Jj(iik) + Ylm\k)/Rim\k)+N[m-pKkyRimKk) 

with XR = X/(R.) Applying the averaging procedure (6-31) to (6-34) to these projected in-
put/output spectra shows that: 

■ GBLAOWJT) (6-34) is an estimate of HBLA(j(tik)/ABLA(j(nk) and, hence, depends on 
the actuator characteristics (see also Exercise 86), 

■ the expected values of the sample (co-)variances (6-32) are given by 

F i X m i - var(^sW) , var(A^)) 
M ^ W ) - M\R{k)V MP\R(k)\*' 

F / P r 2 r , u var(rs(^)) , var(A^)) , , A1, 
E {a'^k) ] = nm¥+M/WF (6"42) 

p, „ ^ _ covar(rs(fc), Us(k)) , covar(JV#), A^A:)) 
t I CTyRaRW) - M\R{k)\2 + MP\R{k)\2 ' 

■ the stochastic nonlinear distortions Gs on the BLA are related to the input Us and 
output Ys stochastic nonlinear contributions as 

U0(k) 

with U0(k) = ABLA(/a>t)*(*), 
■ the expected values of the noise (co-)variances in (6-35) and (6-37) remain valid. 

To reveal the nonlinear behavior of the actuator, it is sufficient to verify whether CJ(jR{k) is 
significantly larger than of,B,n(fc) [compare (6-35) with (6-42)]. Note that this test cannot be 
performed if the reference signal is not available. 

6.1.2 Fast method 

The basic idea of the fast method consists of measuring the system with one random phase 
multisine excitation where some of the in-band harmonics are omitted (= detection lines). If 
these detection lines are randomly chosen among the excited in-band harmonics (= random 
phase multisine with random harmonic grid), then the output level at the detection lines cor-
responds to the stochastic nonlinear distortions at the neighboring excited lines (Schoukens et 
al., 2005). However, the interpretation of the level of the detection lines at the output can be 
jeopardized by spectral impurities at the input. These impurities can be due to the nonlinear 
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behavior of the generator/actuator, and/or the nonlinear interaction between the nonlinear 
system under test and the generator/actuator. A method is proposed to deal with this problem. 
We first explain the design of the random phase multisines with random harmonic grid, and 
next describe the fast measurement procedure. Finally, it is shown that spurious signal energy 
at the even input detection lines may introduce a bias on the estimated level of the odd or even 
nonlinear distortions; even if the output has been corrected for the spectral impurity of the in-
put. 

A. Design of Random Phase Multisines with 
Random Harmonic Grid 

A random phase multisine with random harmonic grid is a random phase multisine given by 

u(t) = YN/2~lAkcos(k(i>ot+0k) with E{e"H = 0, (6-44) 
i-^k = 1 

where in-band harmonics are randomly omitted (= detection lines). To guarantee a minimal 
resolution of the detection lines, the excited harmonics are split into groups of equal number 
of consecutive lines, and one harmonic randomly chosen from each group is eliminated (for 
example, a hundred excited harmonics are split into twenty five groups of four consecutive 
excited harmonics, and one out of the four harmonics is randomly eliminated in each group). 
The amplitudes Ak of the harmonics, the frequency distribution of the harmonics fk (e.g. uni-
form or logarithmic), the type of the excited harmonics (odd or even and odd), and the num-
ber of consecutive harmonics in each group Fgroup, are set by the user. The design of such 
multisines is illustrated in the following exercise. 

Exercise 89.a (Design of baseband odd and full random phase multisines with 
random harmonic grid) Design baseband random phase multisines (6-44) with a linear 
(uniform) frequency distribution fk in the band [1 Hz, 100 Hz], equal amplitudes Ak, rms 
value equal to one, and phases <j)k uniformly distributed in [0, 2jt) 

■ odd-random multisine: k = 1, 3, 5, 7, ..., i „ , in (6-44), with a frequency resolu-
tion of 2 Hz between the odd harmonics, and one odd detection line randomly cho-
sen in each group of three consecutive odd harmonics (Fgroup = 3). &max is chosen 
such that fcmax/o ~ 100 Hz . 

■ full-random multisine: k - 1, 2, 3, 4, ..., kmax in (6-44), with a frequency resolu-
tion of 1 Hz, and one detection line randomly chosen in each group of four consecu-
tive harmonics (FgTmf = 4). £max is chosen such that fcmax/o ~ 100 Hz. 

Compare the period length and the amplitudes of the harmonics of both multisines. Explain. 
What is the (average) frequency resolution of the even and odd detection lines for the odd-
random and full-random multisines? What is the average frequency resolution of the BLA 
measurement? Choose a sampling frequency of 400 Hz and plot one period of the time signal 
and the corresponding DFT spectrum. □ 

Exercise 89.b (Design of bandpass odd and full random phase multisines with 
random harmonic grid) Repeat Exercise 89.a for bandpass random phase multisines 
(6-44) with a logarithmic frequency distribution fk in the band [100 Hz, 10 kHz], equal 
harmonic amplitudes Ak, rms value equal to one, and phases <pk uniformly distributed in 
[0,2n) 
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■ Odd-random multisine: k = 2r+ I, r = r^n, rmin+ 1 rmax, in (6-44), with a 
frequency resolution of 10 Hz between the odd harmonics, a frequency ratio be-
tween two consecutive odd excited harmonics of 1.1, and one odd detection line 
randomly chosen in each group of three consecutive odd harmonics (Fgroup = 3). 
rmin and rmax are chosen such that (2rinin + l ) / 0= 100 Hz and 
(2r m a x +l) / 0 =10kHz. 

■ Full-random multisine: k = £,„„, kmin + 1, ..., £max in (6-44), with a frequency reso-
lution of 5 Hz, a frequency ratio between two consecutive excited harmonics of 
JlA , and one detection line randomly chosen in each group of four consecutive 
harmonics (Fgroup = 4). kmin and &max are chosen such that kmiaf0= 100 Hz and 
£ma*/o=10kHz. 

Justify the choice of the frequency resolution, and the frequency ratio between the excited 
harmonics for the logarithmic full-random multisine. Choose a sampling frequency of 120 
kHz and plot one period of the time signal and the corresponding DFT spectrum. Can the 
frequency distribution of the multisine be exactly logarithmic? Explain? □ 

For each frequency distribution (linear or logarithmic), the frequency resolution 
(fk+i -fk = /o) of the full-random multisine is twice the frequency resolution of the odd har-
monics (f2k+i —fik- I = 2/0) of the odd-random multisine, giving the same period length for 
both multisines. Since the odd-random and full-random multisines have the same rms value, 
and since the respective one third and one fourth of their excited harmonics serve as detection 
lines, the ratio between the amplitudes of the harmonics of the odd-random and full-random 
multisines is given by 

t A \ \lx2F 

(A2k+l J odd-random _ 4 
(■A2*+l)full-random \ - X F 

= 1.5 = 3.5 dB (6-45) 

with F the total number of in-band odd harmonics (Proof: Use the fact that the signal power 
is equally distributed over the excited harmonics.) If the probability p = 1 /Fgroup that an in-
band (odd) harmonic is used as detection line is the same for the odd-random and full-ran-
dom multisines, then (6-45) is exactly equal to J2, viz., 

= f}-P\x2! = 72 = 3 dB. (6-46) \^2k+ l )odd -random 

(&2k + 1 )full-random V (I - p) X F 

This is achieved by grouping the (odd) harmonics in the same number Fgroup of consecutive 
(odd) harmonics for, respectively, the odd-random and full-random multisines. 

The frequency resolution of the detection lines of the odd-random multisine with uni-
form frequency distribution (linear tone) equals 2/0 for the even harmonics, and on the aver-
age Fgrmp x 2/0 for the odd harmonics (minimal (2Fgroup - 1) x 2/0 and maximal 2/0), with 
Fgmup the number of consecutive odd harmonics in one group. For the full-random multisine 
(linear tone) the average frequency resolution equals Fp^ xf0 (minimal (2Fgmap- 1) x / 0 
and maximal / 0 ) , with Fgroup the number of consecutive harmonics in one group. 

The average frequency resolution of the BLA measurement is 2/0 x F^^/(FgTOap - 1) 
and /0 x ^oup/(^group_ 1) f°r> respectively, the odd-random and full-random multisines. To-
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Figure 6-6 Odd and full random phase multisines with linear (uniform) and logarithmic frequency 
distribution (tone), and random distribution of the detection lines (odd: one out of three 
consecutive harmonics. Full: One out of four consecutive harmonics). Left column: One period of 
the time signals. Middle column: DFT spectrum. Right column: Zoom of the in-band harmonics. 

gether with the expressions for the detection lines this allows us to make a motivated choice 
for .Fgroup, which is a trade-off between the frequency resolution of the detection lines and the 
BLA measurement. 

Observations Figure 6-6 shows the designed multisines. It can clearly be seen that the 
frequency resolution of the full-random multisines is twice that of the odd-random multi-
sines. The frequency distribution of the log tones is quasi-logarithmic since the logarithmic 
distributed frequencies are rounded to the nearest DFT frequency; otherwise the signal would 
not be periodic. 

Conclusion The log tones are very useful when the frequency band of interest covers 
several decades. This is the case in, for example, acoustics, electrochemical impedance spec-
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troscopy, and electrical machines. In those applications a linear tone would have too much 
power in the highest decade. 

B. Fast Measurement Procedure 
Consider the setup of Figure 6-1 on page 184 where the reference signal r(t) is a random 
phase multisine with a random harmonic grid. The nonparametric estimation of the BLA 
(GBLA(/<Bj.)), the variance of the stochastic nonlinear distortions (va.r(Gs(j(Qk)) or 
var(Y£k))), and the noise variance (var{NG(k)) or vaT(Ny(k)), is based on the analysis of the 
sample mean and sample variance of the input/output signals over the periods (measurement 
scheme of Figure 6-2 with M = 1): 

1. Choose the frequency resolution / 0 , the frequency distribution (e.g., linear or loga-
rithmic), the excited harmonics ke {1,2, ...,N/2- 1} (odd-random multisine: 
odd only; full-random multisine: even and odd), the amplitudes Ak, and the rms 
value of the random phase multisine rif) [see equation (6-44) on page 197]. 

2. Create the random harmonic grid: choose F^^ and split the harmonics (odd-ran-
dom multisine: odd only; full-random multisine: even and odd) into groups of equal 
number of consecutive harmonics F^^; next, randomly eliminate one harmonic 
from each group. 

3. Choose randomly the phases <pk of the nonzero harmonics of the random phase mul-
tisine (5-52) such that Eje'***} = 0 (e.g., <pk is uniformly distributed in [0, 2JT) ), 
and calculate the corresponding time signal r(f). 

4. Apply the excitation r(t) to the actuator (see Figure 6-1 on page 184) and measure 
P > 2 consecutive periods of the steady-state response u(t), y(t) (at least two peri-
ods are needed to calculate the noise (co-)variances; however, seven periods are 
needed to preserve the properties of the maximum likelihood estimator in the para-
metric modeling step; see Chapter 4). 

The input/output spectra of the pth period are related to the input/output noise, the best linear 
approximation, and the stochastic nonlinear distortions as 

W\k) = U0(k)+Ntf\k), 

yw(*) = GBLAO'CO*) U0(k) + Ys(k) + N\P\k), 

where U0(k) * 0 at the excited harmonics, and U0(k) = 0 at the nonexcited in-band and out-
band harmonics (detection lines). From the P noisy input/output spectra Ulp](k), Y[<'\k), 
p = 1, 2, ..., P, one can calculate the average input/output spectra (J(k), Y(k) and the cor-
responding sample (co-)variances <%„(&), o> n(k), o^ „(£:) 

&<*> = !>%=,ulPKk)' **> = ?£ - , y["w' 
~? P \unk)-V{kf # (k)_^p \YW{k)-Y{kf 
° t t . W - 24,-1 />(/>_ 1) ' ^ . n W - 2 ^ , p ( p _ l ) ' (6"48) 

p2 „ . _ „/> {Y^\k)-Y{k))(U^Kk)-U{k)) 
Oyi,.Ak) - 2 , p = 1 P ( P - l ) 

at all the DFT frequencies (excited and nonexcited harmonics). Using (6-48) at the excited 
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harmonics gives the FRF estimate GBLA(/U\) and its noise sample variance 0feBI ,,„(£) 

h ,- N Y(k) 
GBLA(/G>*) = ■^L-L, U(k) 

OcBlA.nW = |G B LA(M) | 
JiWl2 |f/«l2 £(*)&(*) J 

(6-49) 

Equation (6-48) also allows us to verify whether the detection lines (nonexcited harmonics) 
in the input/output spectra contain signal energy or not. This is done as follows: Assuming 
that no signal energy is present (X0(k) - 0), the ratio \x{k)\/<T\n(k) is F -distributed with 
2, 2P - 2 degrees of freedom (Stuart and Ord, 1987), and the following null hypothesis test 
can be constructed: If 

\X(k)\2/bln(k)<FQM,2,2P-2 (6-50) 

with Fo.95,2,2P-2 the 95% percentile of a FX2P_2 distributed random variable, then the null 
hypothesis X0(k) = 0 is accepted, otherwise it is rejected (F09SZ2P_2

 c a n be calculated via 
the MATLAB® function f i n v ( 0 . 9 5 , 2 , 2 *P-2) of the Statistics Toolbox). If the detection 
lines at the input contain no signal energy (the null hypothesis U0(k) = 0 is accepted), then 
the presence of signal energy at the output detection lines is directly linked to the nonlinear 
behavior of the system. However, if the input detection lines contain signal energy (the null 
hypothesis U0(k) = 0 is rejected), then the signal energy at the output detection lines is (par-
tially) due to input energy at those frequencies, and a direct link with the nonlinear behavior 
of the system cannot be established. Indeed, the signal energy at the input detection lines (= 
spectral impurity) can be due to the nonlinear behavior of the actuator and/or the nonlinear 
interaction between the nonlinear plant and the actuator (feedback or nonlinear loading). A 
first order correction to compensate for the influence of the impurities at the output can be 
made as explained below. Impurities due to actuator distortions should be small in order to 
get valid results (the level at the input detection lines is at least 10 dB below that of the ex-
cited harmonics), while there are no constraints to compensate for impurities due to a nonlin-
ear feedback. 

1. The BLA at the nonexcited in-band harmonic co, is calculated via linear interpola-
tion of the BLA (6-49) at the closest excited harmonics a>k < co, and com > co, 

(JBLA(j(i)i) = : • (0-51) 
m — k 

This is automatically performed by the function i n t e r p l in MATLAB . 

2. The output spectrum at the nonexcited in-band harmonic co, is corrected as 

YC(D = F(Z)-GBLA(/co,)c7(0 (6-52) 

where GBLA(/CO,) is defined in (6-51). The noise variance of (6-52) is calculated as 
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°h „(0 = U. „(0 + |6BLA(/'CO,)| 2U, „(0 - 2Rc(Hu, „(/)GBLA(/'CO()) (6-53) 

with (T(j,„(/), <?>„(/), and a>£, „(/) the estimated input/output noise (co-)variances 
(6-48). ' 

Formula (6-52) is motivated as follows. If the input signal amplitude at the nonexcited fre-
quencies (detection lines) is small compared with that at the excited frequencies, then the 
nonlinear contributions of input detection lines at the output spectrum (interactions between 
the detection lines and the detection lines and the excited harmonics) can be neglected w.r.t. 
those of the excited input harmonics. Hence, the linear contribution of the input detection 
lines at the output is dominant and can be removed via (6-52). 

The corrected output spectrum (6-52) can be analyzed without ambiguity: if the detec-
tion lines Yc(l) contain significant signal energy (the null hypothesis Yc0(l) - 0 (6-50) is re-
jected), then the plant behaves nonlinearly; otherwise the plant behaves linearly and the sig-
nal energy at the detection lines is solely due to the nonlinear behavior of the generator/ 
actuator. For odd multisines the even and odd detection lines of the corrected output spectrum 
correspond to, respectively, the even and odd nonlinear contributions of the plant (see Section 
5.2.2). 

Finally, the level of the nonlinear distortion on the BLA measurement is estimated by 
extrapolating the level of the detection lines in the corrected output spectrum to the excited 
frequencies: 

1. The level of the stochastic nonlinear distortions at the excited harmonics | Yc(k)\ is 
calculated via linear interpolation of the power of the closest in-band detection lines 
/ < k and m > k 

|^(jk)|2 = (m-k)\t(l)\2 + (k-l)\Um)\2 

m-l 

(use the MATLAB® function i n t e r p l ) . Here, all detection lines are used for the 
full-random multisines, and only the odd detection lines are used for the odd-ran-
dom multisines (for odd-random multisines the odd output harmonics are disturbed 
by the odd nonlinear distortions only, see Section 5.2.2). 

2. Since Fc(/) in (6-52) also contains the contribution of the input and output noise 
N~v(l) and N^l), the ratio 

where k denotes an excited harmonic, is an estimate of the total variance (stochastic 
nonlinear distortion + input/output noise) of GBLA(/C°*) ( s e e Exercise 89.c). 

3. Finally, the variance of the stochastic nonlinear distortions are calculated as 

var(G s(M))« (%BLA(k) - H^Jk)), 
(poo) 

var(rs(*)) = |£(*)|2var(Gs(M)), 
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where U(k), o|BLA,„(fc), and crlBhA(k) are defined in (6-48), (6-49), and (6-55), re-
spectively. 

Note that the variance (6-55) should always be calculated using the corrected output spectrum 
(6-52) and (6-54), even if it is known beforehand that the input is spectrally pure (the noise-
less detection lines have zero magnitude). Indeed, if Yz(k) is replaced by Y(k) in (6-55), then 
o"cBLA(&) does not contain the influence of the input noise and the difference 
°cBLA(^) ~ °oBLA, nW m (6-56) can become negative at frequencies with poor input signal-to-
noise ratio. 

The fast measurement procedure is illustrated in two exercises: first by an example 
where the input is spectrally pure (linear actuator and nonlinear system operating in open 
loop), and next by an example where the nonlinear system is captured in a feedback loop. The 
feedback loop jeopardizes the spectral purity of the input of the nonlinear system and, hence, 
complicates the interpretation of the output DFT spectrum. 

Exercise 89.c (Fast method for noisy input/output measurements — open loop 
example) Write a MATLAB program for the fast measurement procedure. Apply this pro-
gram to the noisy input/output observations u{t), y(t) of the setup in Figure 6-1 on page 184, 
where the actuator is equal to one, and the nonlinear plant is a discrete-time Wiener-Ham-
mertein system (see Figure 5-13 on page 157) with linear dynamic blocks 

G l ( Z _ 1 ) = 1 - 0 . 2 ; ' + 0 . 9 ^ a n d G ^ 1 } = l-0.5+z-°'5+0.9^ ( 6 _ 5 7 ) 

and static nonlinear block 

z(t) = x(f) +0.1*2(f) +0.00 lx3(0. (6-58) 

The input nu(t) and output ny{t) errors are zero mean white noise sources with standard devi-
ation 0.1 and 0.2, respectively. Choose /s = 4 GHz and make the nonlinearity analysis 
(measurement scheme of Figure 6-2 on page 185 with M = 1 and P - 6) for odd and full 
bandpass random phase, random harmonic grid multisine excitations (6-44), with 

■ a linear (uniform) frequency distribution fk in the band [700 MHz, 1100 MHz], 
■ a frequency resolution of the excited harmonics of, respectively, 1 MHz (odd) and 

0.5 MHz (full), 
■ one (odd) detection line randomly chosen in each group of three consecutive (odd) 

harmonics (Fpmv = 3), 
■ equal amplitudes Ak, 
■ an rms value equal to one, 
■ phases uniformly distributed in [0, 2%) (see Exercise 89.a). 

Plot the input and output DFT spectra from DC to Nyquist. Can you draw any conclusion 
from the output DFT spectrum? Justify your answer? Is it possible to classify the nonlinear 
distortions into even and odd contributions? Justify your answer? Plot the corrected output 
DFT spectrum. In which frequency band can it be shown? Justify your answer? Compare the 
uncertainty of the corrected output DFT spectrum with that of the original spectrum. Explain. 
Proof expression (6-56) assuming that (i) the BLA varies linearly between the interpolation 
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Figure 6-7 Response of a discrete-time Wiener-Hammertein system to a random phase multisine with 
random harmonic grid (one third detection lines): Input (left column) and output (middle column) 
DFT spectra of one signal period. Top row: Odd-random multisine. Bottom row: Full-random 
multisine. Black "+": Excited harmonics (top: odd only; bottom: odd and even). Dark gray "o": 
nonexcited odd harmonics. Light gray "*": Nonexcited even harmonics. Dark gray "A": 
Nonexcited harmonics. Solid lines: Standard deviation of the corresponding harmonics. 

frequencies, (ii) the input signal-to-noise ratio is sufficiently large, and (iii) the signal energy 
at the input detection lines is small compared with that at the excited harmonics (Hint: first 
show that Yc(l) ~ Ys(l) + N~Y(l) - GBLA(/CDf)iV&(/)). Plot the estimated BLA (6-49), its noise 
variance (6-49), its total variance (6-55), and the variance of the stochastic nonlinear 
distortions (6-56). □ 

Observations Figure 6-7 shows the noisy input/output DFT spectra of one random 
phase multisine realization. Using the null hypothesis test (6-50), where F0952,2P-2 — 

4.10 
for P - 6, it can be verified that the input is spectrally pure ((6-50) is satisfied at 95.0% of 
the input detection lines) while the output contains significant in-band and out-band nonlinear 
distortions ((6-50) is violated at almost all output detection lines). 

Discussion It shows that the plant behaves nonlinearly, and that it produces significant 
in-band and out-band nonlinear distortions. For the odd multisines the even and odd nonlin-
ear contributions of PISPO systems are uniquely linked to the presence of signal energy at, 
respectively, the even and odd harmonics in the output spectrum (see Section 5.2.2). 

Observations From the top row of Figure 6-7 it can be seen that the in-band distortions 
([700 MHz, 1100 MHz]) are odd (dark gray "o"), while the out-band distortions are even 
(light gray "*": [0 Hz, 400 MHz] and [1.4 GHz, 2 GHz]) or odd (dark gray "o": 
[300 MHz, 700 MHz] and [1.1 GHz, 1.5 GHz]). 

Discussion This is a direct consequence of the polynomial nonlinearity (6-58) and the 
fact that the 400 MHz bandwidth of the odd multisine is smaller than the 700 MHz of the 
smallest excited harmonic (see Exercise 77.b). This classification is in general impossible for 
the full multisine. 

Observations The corrected output DFT spectrum is shown in Figure 6-7. It can only 
be calculated in the excited frequency band because the correction (6-52) requires the best 
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linear approximation. Compared with the original DFT spectrum, the uncertainty of the cor-
rected output DFT spectrum at the detection lines is much larger (see Figure 6-7: in the right 
plots the dark gray solid line is much larger than the black solid line, while in the middle plots 
they are at exactly the same level). Note also that the even detection lines (light gray '*') in 
the corrected output DFT spectrum (upper right plot) are significantly larger than those in the 
original spectrum (upper middle plot). 

Discussion The increased variability of the corrected output DFT spectrum is due to 
the noise on the input detection lines. The even nonlinear distortions are still zero after cor-
rection, because the noise standard deviations at the even detection lines are increased by the 
same amount (the light and dark gray solid lines coincide). 

Equation (6-56) for estimating the stochastic nonlinear distortions is proven as follows. 
If the input signal amplitude at the nonexcited frequencies (detection lines) is small compared 
with that at the excited frequencies, then the input/output DFT spectra (6-48) at a detection 
line can be written as 

0(1) = u0(i) + Nb(D, 

Yd) = GBLA(j(0,)Ud(l) + Ys(l) + Nfi). 
(6-59) 

Assuming that GBLA(/co) varies linearly between (ak and com, the estimated BLA GBLA(/CU/) 
at detection line / (6-51) is related to the true BLA GBLA(/co;) as 

GBLA(/»() = GBLACM) + AGBLA, (6-60) 

where 

AGR 
{m - /)AGBLA(/C0J + (/ - ^)AGBLA(/C0J 

m-k 
(6-61) 

with k, m the excited harmonics and 

AGBLA(/cor) = GBLA(/cor) 
Ny(r) Nifir-K ;V>(r) - GBLA(/C0r)iV&(r) 
Y0(r) U0(r) U0(r) 

(6-62) 

for r = k,m (see (6-24)). Using (6-59) and (6-60), the corrected output DFT spectrum Yc(l) 
(6-52) at detection line I becomes 

YC{1) = Fs(0 + ^(0-GB L A0-CO /)^(/)+AGB L A( i /0(0+^(/)) . (6-63) 

Combining (6-61) and (6-62), we find an upper bound for AGBLA(U0(l) + N^(l)) in (6-63): 

|AGBLA([/0(/) + A^(/))|< m-l 
m-k 

l-k 

|Ar#)-GBLA(M)Ar#)| U0(l) + N^l) 
U0(k) U0(k) 

m-k 
\NJrn) - GBLA(/COm)^fr(m)| US) +

 NvW 
U0(m) U0(m) 

(6-64) 
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Since the magnitudes of the noise A^(/) and the input U0(l) at detection line / are much 
smaller than the magnitude of an excited input harmonic r, viz. 

\U0(l)/U0(r)\«l and \N0(l)/U0(r)\«l for r = k,m, (6-65) 

and since \{m - l)/(m - k)\ < 1 and |(/ - k)/(m - k)\ < 1, it follows from (6-64) and (6-65) 
that 

|AGBLA([/„(/) + ^ ( / ) ) | « \N-Y(l) - GBLA(/co;)iV&(0| 

Hence, 

YC{1) « Ys(l) + Nft) - GBLA(/co;W&(/) (6-66) 

and (6-55) is an estimate of the total variance of the best linear approximation. 
Observations The left column of Figure 6-8 shows the estimated best linear approxima-

tion, its noise variance, its total variance, and the variance of the stochastic nonlinear distor-
tions. Since 0cBLA,„(&) « ^GBLA(^) w e n a v e t n a t var(Gs(/(Q*)) ~ 0GBLA(&) f° r o n e multisine 
measurement and, hence, the light (var(Gs(/coft))) and dark (0GBLA(&)) gray solid lines coin-
cide. From the right column of Figure 6-8 it can be seen that the noise variance of the full-
random multisine BLA is about 3 dB larger than that of the odd-random multisine BLA. 

Discussion This is due to the fact that the signal power of the full-random multisine is 
distributed over about twice as many frequencies compared with the odd-random multisine, 
resulting in a decrease of the input and output signal-to-noise ratios of about 3 dB. However, 
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Figure 6-8 Measurement of the best linear approximation (BLA) of a discrete-time Wiener-Hammertein 
system using random phase multisines with random harmonic grid (one third detection lines). Left 
column: Fast method (one realization). Middle column: Comparison of the robust method (solid 
lines) and the fast method ("+") rms averaged over the realizations (both coincide). Right column: 
Zoom of the noise (medium gray) and total (dark gray) variances of the robust method. Top row: 
Odd multisines. Bottom row: Full multisines. Black: BLA. Dark gray: Total variance (sum noise 
and stochastic nonlinear distortions). Medium gray: Noise variance. Light gray: Variance of 
stochastic nonlinear distortions w.r.t. one multisine realization. 
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Figure 6-9 Discrete-time Wiener system (from u0(t) to y0(t)) captured in a unity delay feedback. 

the variances of the stochastic nonlinear distortions are the same for the full-random and 
odd-random multisine BLAs. The reader is referred to Section 6.2 for a detailed explanation. 

Exercise 89.d (Fast method for noisy input/output measurements — closed loop 
example) Apply the fast measurement procedure to noisy input/output observations u(t), 
y(t) of a Wiener system, consisting of the cascade of a first-order linear dynamic system 
G(z-') 

G(z~]) 
100(1 „-Wf*h 

1 - (1 - e -lA*/„> )zr 
(6-67) 

( r = 0.5 s) and a static nonlinearity fix) = tanh(x), and captured in a unity delay feedback 
loop (see Figure 6-9). The noiseless input/output signals u0(t), y0(t) are disturbed by zero 
mean white measurement noise with standard deviation 1x10" and 2x10" respectively. 
Choose/s = 160 Hz and make the nonlinearity analysis (measurement scheme of Figure 6-2 
on page 185 with M = 1 and P = 6) for odd and full base band random phase, random har-
monic grid multisine excitations (6-44), with 

■ a linear (uniform) frequency distribution fk in the band [0.01 Hz, 2 Hz], 
■ a frequency resolution of the excited harmonics of, respectively, 0.01 Hz (odd) and 

0.005 Hz (full), 
■ one (odd) detection line randomly chosen in each group of three consecutive (odd) 

harmonics (Fgroup = 3), 
■ equal amplitudes Ak, 
■ an rms value equal to 0.2, 
■ phases uniformly distributed in [0,27t) (see Exercise 89.a). 

Plot the input and output DFT spectra in the excited frequency band. Can you draw any 
conclusion from the output DFT spectrum? If not, why not? Plot the corrected DFT spectrum 
and compare the level of the nonlinear distortions with that of the original spectrum. Explain 
{Hint: replace the Wiener system in Figure 6-9 by the sum of the BLA and the stochastic 
nonlinear distortions as shown in Figure 5-25). Plot the estimated BLA (6-49), its noise 
variance (6-49), its total variance (6-55), and the variance of the stochastic nonlinear 
distortions (6-56). Calculate the FRF from the noiseless input u0(t) to the noiseless output 
y0(t) of the Wiener system at the nonexcited harmonics in the band [0.01 Hz, 16 Hz] and 
compare it to the transfer function -l/z~l. What do you conclude? Explain (use the same 
hint as before). □ 
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Figure 6-10 Response of a discrete-time Wiener system captured in a unity delay feedback system to a random 
phase multisine with random harmonic grid (one third detection lines): Input (left column) and 
output (middle column) DFT spectra of one signal period. Top row: Odd-random multisine. Bottom 
row: Full-random multisine. Black "+": Excited harmonics (top: odd only; bottom: odd and even). 
Dark gray "o": Nonexcited odd harmonics. Light gray "*": Nonexcited even harmonics. Dark gray 
"A": Nonexcited harmonics. Solid lines: Standard deviation of the corresponding harmonics. 

Observations Figure 6-10 (left and middle columns) shows the noisy input/output DFT 
spectra in the excited frequency band of one random phase multisine realization. As could be 
expected (tanh(*) is an odd function) the (odd) input and output detection lines are well 
above the noise level (solid lines), while the even detection lines of the odd-random multisine 
measurements are at the noise level ((6-50) is satisfied at about 95% of the even detection 
lines). Since the input detection lines contain significant signal energy, it is impossible to de-
cide whether the nonlinear distortions at the output stem from the generator/actuator or the 
plant. Therefore, one should look at the corrected output DFT spectrum (right column). It can 
be seen that significant (odd) nonlinear distortions are present, showing the nonlinear behav-
ior of the plant. Moreover, the nonlinear distortions in the corrected output (-30 dB to -20 dB) 
are much higher than in the original spectrum (-60 dB to -50 dB). 

Discussion To explain this phenomenon the Wiener system in Figure 6-9 is replaced by 
the sum of its BLA and the stochastic nonlinear distortions (see Figure 6-11). Note that the 
diagram of Figure 6-11 is exact, without any approximation (see Section 6.1.3). Using this di-
agram it can easily be verified that 

Y0(k) = G B L A ( / ^ ) + 1 
1 + Zl' GBLA(M) 1 + Zil GBLA(M) 

U0(k) = 1 -Mk) zi' 
1 + zi' GBLA(/co,) 1 + zi1 GBLA(jak) 

Ys{k), 

Ys(k), 
(6-68) 

where zk - exp(j2izk/N). It shows that the contribution of the stochastic nonlinear distor-
tions Ys(k) to the output Y(k) is small if the open loop gain is large |GBLA(/co,t)| » 1, which is 
the case in the band [0, 2 Hz] (see Figure 6-12). What we have shown here is a special case 
of a general property of a feedback loop with high open loop gain: it suppresses the influence 
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Figure 6-11 Discrete-time Wiener system of Figure 6-9 replaced by its best linear approximation (see 
Figure 5-25). 
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Figure 6-12 Measurement of the best linear approximation (BLA) of a discrete-time Wiener system captured in 
a unity delay feedback using random phase multisines with random harmonic grid (one third 
detection lines). Left column: Fast method (one realization). Middle column: Comparison of 
robust method (solid lines) and fast method ("+") rms averaged over the realizations. Right 
column: Zoom of the noise (medium gray) and total (dark gray) variances of the robust method. 
Top row: Odd-random multisines. Bottom row: Full-random multisines. Black: BLA. Dark gray: 
Total variance (sum noise and stochastic nonlinear distortions). Medium gray: Noise variance. 
Light gray: Variance stochastic nonlinear distortions w.r.t. one multisine realization. 

of any disturbance (noise, time variation, nonlinearity) in the forward path (Goodwin et al., 
2001). From (6-68) it also follows that subtracting GBLA(j(Ok)U0{k) from the output Y0(k) re-
covers the exact stochastic nonlinear distortions Ys(k). Although this is true without any re-
striction on the signal-to-distortion ratio |/?(Jfc)|/std(ys(fc)) (see Section 6.1.3), one should 
keep in mind that the BLA should be estimated from the observed input/output data. In feed-
back, this nonparametric estimate is biased by the presence of the stochastic nonlinear distor-
tions Ys(k) (see Chapter 3). This bias can be neglected if the signal-to-distortion ratio 
\R(k)\/std(Ys(k)) is sufficiently large, which is compatible with the assumption made for cal-
culating the corrected output spectrum (6-52): The input signal-to-distortion ratio is at least 
10 dB. Note that the bias on the BLA due to noisy inputs can be avoided via the indirect 
method for measuring an FRF (see Section 6.1.3). 
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Figure 6-13 Discrete-time Wiener system captured in a unity delay feedback system and excited by a random 
phase multisine with random harmonic grid (one third detection lines). Black: Frequency response 
function (FRF) Y0(k)/U0(k) calculated at the nonexcited in-band and out-band harmonics 
(detection lines). Left column: Amplitude FRF. Right column: Phase FRF. Gray: Magnitude of the 
complex difference between the FRF and - 1 / z j 1 . 

Observations The left column of Figure 6-12 shows the estimated best linear approxi-
mation, its noise variance, its total variance, and the variance of the stochastic nonlinear dis-
tortions. Note that the results are similar as those in Figure 6-8. 

Discussion The same conclusions can be made as in Figure 6-8: (i) the variance of the 
stochastic nonlinear distortions (light gray) coincides with the total variance (dark gray), (ii) 
the noise variance (medium gray) of the full multisine BLA is about 3 dB larger than that of 
the odd multisine BLA (see Figure 6-12, right column), and (iii) the variance of the stochastic 
nonlinear distortions of full and odd multisine BLAs are the same (see Figure 6-12, right col-
umn). 

Observations Calculating the FRF from the noiseless input u0(t) to the noiseless output 
y0(t) of the Wiener system in Figure 6-9 at the nonexcited harmonics in the band 
[0.01 Hz, 16 Hz], gives the results shown in Figure 6-13. Comparing this FRF to -1 / z - 1 

shows that they are equal within the numerical precision of the MATLAB calculations. 

Discussion This can be explained using the diagram of Figure 6-11 and equation (6-
68). Indeed, at the detection lines, the reference signal is zero (R(k) = 0) while the stochas-
tic nonlinear distortions are different from zero (Ys(k)). Hence, at those lines the FRF, 
Y0(k)/U0(k), where Y0(k) and UQ(k) are defined in (6-68), reduces to 

Y0(k) 
U0(k) (6-69) 

which is exactly minus one over the feedback transfer function z~l ■ From the left column of 
Figure 6-13 it can be seen that the complex error (gray line) between the FRF Y0(k)/U0(k) 
and -\/ikX increases above 5 Hz . This is due to the decreasing amplitude of the out-band 
output harmonics. Due to the poor signal-to-noise ratio at the detection lines, the ratio 
Y(k)/U(k) is a (very) noisy estimate of (6-69). 
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C. Bias on the Estimated Levels of the Odd and 
Even Nonlinear Distortions 

If the odd-random multisine contains signal energy at the even detection lines, then the esti-
mated level of the odd or even nonlinear distortions in the corrected output spectrum can be 
biased. This is illustrated in the following exercise. 

Exercise 89.e (Bias on the estimated odd and even distortion levels) Apply the 
fast method to the setup of Figure 6-1 on page 184, where the reference signal r(t) is an odd-
random multisine covering the band [4 Hz, 2 kHz] with a frequency resolution of 4 Hz, rms 
value equal to one, and one odd detection line randomly chosen in each group of two consec-
utive odd harmonics Fgroup = 2 (see Section 6.1.2.A for the design). At the sampling in-
stances, the input/output signals are disturbed by normally distributed white noise with zero 
mean and standard deviation 1x10 . The actuator is a fourth-order analog Chebyshev filter 
with a passband ripple of 6 dB and a cutoff frequency of 2 kHz, and the nonlinear dynamic 
system is a Wiener-Hammertein system (see Figure 5-13 on page 157) with linear dynamic 
blocks Gj, G2 defined in (6-8), and with static nonlinear block 

z(t) = 4 0 + ccx2(t) + fix\i) (6-70) 

Choose /s = 50 kHz, a - 0.01, J3 = 5xl0"3 and apply the fast method of Section 6.1.2.B 
with P = 2 for the following four odd-random multisine excitations with the same rms 
value 

■ Undistorted odd-random: no signal energy at the detection lines. 

■ Odd distorted odd-random: no signal energy at the even detection lines, and a dis-
tortion-to-signal ratio of -20 dB at the odd in-band detection lines. 

■ Even distorted odd-random: no signal energy at the odd detection lines, and a dis-
tortion-to-signal ratio of -20 dB at the even in-band detection lines. 

■ Fully distorted odd-random: a distortion-to-signal ratio of -20 dB at all in-band de-
tection lines. 

where the amplitudes of the distortion are constant and the phases are uniformly distributed 
in [0, 2n) . Repeat the procedure for M = 1000 realizations of the random phase multisines 
and calculate the rms value of (i) the estimated level of the odd Yfd(k) and even yfveiW 
nonlinear distortions in the corrected output spectrum, and (ii) the estimated level of the 
stochastic nonlinear distortions Gs(j(Hk) on the best linear approximation (BLA). Compare 
the results of the three odd-random multisines. What do you conclude? Explain the results. 
Repeat the exercise for a = 0.01 and jB = 5x10 . □ 

Observations Figure 6-14 compares the results of the undistorted multisine with those 
of the even distorted multisine. It can be seen that: 

1. In the first example (Figure 6-14, top row) die even distorted multisine overestimates 
the level of the even nonlinear distortions in the band [500 Hz, 1200 Hz] . 

2. In the second example (Figure 6-14, bottom row) the even distorted multisine multi-
sine overestimates the level of the odd nonlinear distortions in the bands 
[0 Hz, 500 Hz] and [1200 Hz, 2000 Hz]. 



212 Chapter 6 ■ Measuring the Best Linear Approximation of a Nonlinear System 

Odd (o) and even (*) 

CD 

1000 
Frequency (Hz) 

2000 

S 

-20 

30 

40 

Robust (-) and last {+) 

^ 
^ * W ^ " \ 

V 
1000 

Frequency (Hz) 
2000 1000 

Frequency (Hz) 
2000 

Odd (o) and even (*) Robust (-) and fast (+) 

□a 
T3 

I 
1000 

Frequency (Hz) 
2000 

CD 

O 

1000 
Frequency (Hz) 

2000 1000 
Frequency (Hz) 

2000 

Figure 6-14 Fast method using odd multisines applied to the Wiener-Hammertein system of Figure 5-13 on 
page 157 with G, and C2 defined in (6-8), and with static nonlinearity 
z(() = 4 0 + ax2(t) + flx\t). Left column: Comparison between |db(std(ygdd)/std(K|ven))| 
(light gray) and the ratio of the effective input power spectral densities of the odd excited lines 
and the even detection lines (dark gray). Middle and right columns: Estimated level of the 
stochastic nonlinear distortions on, respectively, the output and the BLA for the undistorted 
(light gray) and distorted (dark gray) odd random multisines. Top row: a = 0.01 , 
P = 5x10 3 . Bottom row: a = 0.01 , /3 = 5xl0"4 . 

3. In the two examples the even distorted multisine overestimates the level of the sto-
chastic nonlinear distortions on the BLA in those frequency bands where the esti-
mates of odd nonlinear distortions are overbiased. 

In addition, it also turns out that (not shown in Figure 6-14): 

4. The results of the undistorted and odd distorted multisines are the same. 
5. The results of the even and fully distorted multisines coincide. 

Discussion All these observations can be explained as follows. Since ax\i) and 
/5x\i) combine, respectively, two and three frequencies of x(t) (see Section 5.1. LB), the 
dominant stochastic nonlinear contributions at the even detection lines 2m in z(t) are of the 
type 

ax\i): aX(2kx + l)X(2k2 + 1), 
Px\t): j3X(2k3 + \)X(2kA + l)X(2l), 

2kx + 2k2 + 2 = 2m, 
2k3 + 2kA + 2l + 2 = 2m, 

(6-71) 

where X(2kt + 1), i = 1, ..., 4 , are excited odd harmonics and X(2l) is an even distortion 
line. If \(3X(2l)\ is not much smaller than |o j , then the third degree contribution in (6-71) will 
bias the estimated level of the even nonlinear distortions. As a rule of thumb this bias can be 
neglected if the ratio of the variances of the odd and even nonlinear distortions is much 
smaller than the ratio of the effective power spectral densities of the odd excited harmonics to 
the even distortion lines 
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where U(2k +1) is an odd excited harmonic and U(2k) an even distorted detection line. 

Similarly, the dominant stochastic nonlinear contributions at the odd detection lines 
2m + 1 in z(i) are of the form 

ax\t)\ aX{2kx + l)X(2t), 2ky + 2l+\ = 2m + 1, 
fixKt): /3X(2k2+l)X(2ki+l)X(2k4+l), 2k2 + 2k3 + 2k4 + 3 = 2m+1, 

where X(2&, + 1), i = 1 4 , are excited odd harmonics and X(2l) is an even distortion 
line. If | «| is not much smaller than \/3X(2k2 + 1)|, then the even contribution in (6-73) will 
bias the estimated level of the odd nonlinear distortions. As a rule of thumb this bias can be 
neglected if 

varQT6") \U(2k+lWFgimp-l 
va rdT) \U{2k)V Fgroup ' ^ ' V 

where U(2k +1) is an odd excited harmonic and U(2k) an even distorted detection line. 
Observations The left column in Figure 6-14 plots the left (light gray)- and right (dark 

gray)-hand sides of inequalities (6-72) and (6-74). From the left and middle columns of 
Figure 6-14 it can be seen that the bias on estimated level of the even or odd nonlinear distor-
tions is apparent in those frequency bands where, respectively, (6-72) or (6-74) is not satis-
fied. Comparing the middle and right columns of Figure 6-14 it can also be seen that the bias 
on var(Gs(/(0^)) is independent of the bias on var(F|ven) and only depends on the bias on 
var(y§dd). 

Discussion The latter is explained by the fact that for odd multisines, the variance of 
the stochastic nonlinear distortions var(Gs(/'0)t)) on the BLA only depends on the stochastic 
nonlinear distortions at the odd harmonics. If the odd-multisine is not distorted at the even de-
tection lines then, ax\t) and fix\f) in (6-70) combine, respectively, two and three odd har-
monics and, hence, influence only the even and odd harmonics respectively (see Section 
5.1.1.B). It explains why the odd distorted multisine behaves as the undistorted multisine, and 
why the results of the even distorted multisine are similar to those of the fully distorted mult-
isine. 

6.1.3 The indirect method for measuring the best Linear 
approximation 

In this section we introduce the indirect method for measuring the frequency response func-
tion (or best linear approximation) of a dynamic system. The approach requires the knowl-
edge of the reference signal. 

Consider a nonlinear system captured in a linear feedback loop (see Figure 6-15). Due 
to the feedback loop the input of the nonlinear system depends on the stochastic nonlinear 
distortions. Hence, the direct methods (5-20) and (5-36) for measuring the best linear approx-
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Figure 6-15 The output of a nonlinear system captured in a linear feedback loop (top diagram) can exactly be 
written as the sum of the output of the best linear approximation and the stochastic nonlinear 
distortions (bottom diagram). The stochastic nonlinear distortions y,(t) are uncorrelated with - but 
not independent of the reference signal lit). 

imation (BLA) of a nonlinear system captured in a linear feedback loop will be biased. 
Therefore, the BLA of nonlinear systems operating in feedback is redefined as 

GBLA( /» ) = 
SyR(j(a) 
SuJj®)' 

(6-75) 

Dividing the numerator and denominator of (6-75) by the auto-power spectrum SRR(ja>) of 
the reference signal 

GBLAC/W) = 
SYR(ja)/SRR(j(a) = Gry(j(d) 
SUR(ju>)/SRR(j(si) Gru(j(a) 

(6-76) 

it follows that the BLA (5-50) of the nonlinear system is the ratio of the BLA from reference 
to output Gry(j(£>) by the BLA from reference to input Gru(j(i>). The so-called indirect 
method for measuring the frequency response function of a dynamic system (6-75) is closely 
related to the instrumental variables approach (Wellstead, 1981). For random phase multi-
sines (6-75) simplifies to 

GBLA( /«>) = 
E{Y(k)R(k)} = E{r(fc)e--^*»>} 
HU(k)R(k)} UU(k)e-^Y 

(6-77) 

where the second equality uses the fact that \R(k)\ is independent of the random phase real-
ization. 
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Figure 6-16 Measurement of the best linear approximation (BLA) of a discrete-time Wiener system operating 
in feedback (see Figure 6-9) for 2 different input rms values (left 0.2, and right 0.5). Gray lines: 
The fast method and the robust method without reference. Black lines: The robust method with 
known reference. Solid lines: Mean BLA. Dashed lines: Total variance (noise + NL distortions) 
of the mean BLA. 

Exercise 90 (Indirect method for measuring the best linear approximation). 
Repeat the simulation of Exercise 89.d for M =100 independent random phase realizations 
of the multisine excitation. Calculate over these M realizations the mean and standard 
deviation of the BLA estimated via the fast method. Compare the results with those of the 
robust method with and without known reference signal (see Section 6.1.1). What do you 
conclude? Repeat the simulation with an input rms value of 0.5. Do the previous conclusions 
still hold? If not, why not? Show that the BLA measured via the robust method with known 
reference signal is an estimate of the BLA obtained via the indirect method (6-77). Is this also 
true for the fast method? What goes wrong in the fast method for small signal-to-distortion 
ratios? Show that the indirect method (6-75) reduces to the direct method (6-42) when the 
nonlinear system in Figure 6-15 operates in open loop (the feedback branch is removed). 
Hint: use the results of Exercise 86. Motivate the bottom block diagram of Figure 6-15. □ 

Observations Figure 6-16 shows that the direct (fast and robust without reference) and 
indirect (robust with known reference) methods coincide for an input rms value of 0.2, while 
they differ significantly for an input rms value of 0.5. For the high input rms value the BLA of 
the direct method is underbiased and has a larger variability. 

Discussion These observations can be explained as follows. Comparing (6-28) and (6-
34) to (6-77) it can easily be seen that the BLA measured via the robust method with known 
reference signal (see Section 6.1.1 .C) converges to (6-77) as the number of random phase re-
alizations M tends to infinity. The fast method (see Section 6.1.2.B) and the robust method 
without reference (see Section 6.1.1.B) calculate (5-36) for respectively one and M random 
phase realization(s) and, hence, are estimates of the direct method (5-36). The resulting BLA 
will be unbiased if the input signal-to-total-distortion ratio is larger than 10 dB: 

201og, \W)\ 
D<r#) 

>10dB (6-78) 

with ofjik) the total variance (noise variance + variance nonlinear distortions). For the robust 
method with known reference signal (indirect method) this condition is relaxed to 
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2 0 1 o g 1 0 ^ l ^ ) l > 10 dB (6-79) 
°&„(*) 

with o\ (k) the total variance (motivation: use (6-32) and (6-33)). Equation (6-79) can be 
used for determining the minimum number of realizations M needed to get an unbiased esti-
mate of the BLA. 

If the nonlinear system in Figure 6-15 operates in open loop (the feedback branch is re-
moved), then the BLA GfS,ect(/co) measured by the indirect method (6-75) equals the BLA 
GBLAU®) of the direct method (6-42). Indeed, using definition (6-75) and the property that 
the BLA of the cascade of a linear and a nonlinear system equals the FRF of the linear system 
multiplied by the BLA of the nonlinear system (see Exercise 86), we find 

GSffirO'fl)) = Gry(j«>)G-M®) = GilT(J(o)GM(ja)G-c\(j(i)) = GgEfl/co), 

where Gacl(/'co) is the frequency response function of the actuator. 
The bottom block diagram of Figure 6-15 is motivated as follows. The indirect method 

(6-75) calculates the ratio of the BLA from reference to output to the BLA from reference to 
input (see (6-76)). Hence, the input/output DFT spectra are related to the reference signal as 

Y{k) = Gry(j®k)R(k) + Uk), 
(6-8U) 

U(k) = Gru(J03k)R(k) + £/,(*), 

where the stochastic nonlinear distortions Us(k) and Y^k) are uncorrelated with R(k). Mul-
tiplying the second equation by GBLA(j(Hk) and subtracting the result from the first equation 
gives 

Y(k) - GBLA(M) U(k) = Ys(k) - GBLA(M) &,(*) = Y£k), (6-81) 

where Ys(k) is uncorrelated with R(k) because Us(k) and Ys(k) are uncorrelated with R(k). 
This shows the validity of the block diagram of Figure 6-15. 

6.1.4 Comparison of the fast and robust methods 

In this section we compare and discuss the pros and cons of the robust (Section 6.1.1.B) and 
fast (Section 6.1.2) methods for estimating the best linear approximation, its noise variance, 
and the variance of the stochastic nonlinear distortions, starting from noisy input/output mea-
surements without reference signal. We also verify the conditions under which both ap-
proaches lead to the same results. 

Exercise 91 (Comparison robust and fast methods) Calculate in Exercise 89.e the 
variance of the stochastic nonlinear distortions on the estimated BLA also via the robust 
method, and compare the results with those of the fast method. What do you conclude? Re-
peat Exercises 89.c and 89.d for M = 20 different random phase realizations of full-random 
and odd-random multisine excitations (measurement scheme of Figure 6-2 on page 185 with 
M = 20 and P = 6). Note that the same choice of the random harmonic grid and the same 
rms value should be used for all realizations. Calculate for each realization the BLA, its noise 
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variance, its total variance, and the variance of the stochastic nonlinear distortions. Compare 
the mean value over the M realizations (arithmetic mean for the BLA, and rms averaging for 
the variances) with the results of the robust method for noisy input/output signals without ref-
erence signal (see Section 6.1. LB). What do you conclude? Discuss the pros and cons of the 
fast and the robust methods. Repeat Exercises 89.c and 89.d with M = 20 and P = 6 for 
the following two classes of odd multisine excitations: 

■ Odd random harmonic grid: one odd detection line randomly chosen in each group 
of two consecutive odd harmonics (Fgroup = 2). 

■ Odd-rodd harmonic grid: every second odd harmonic is a detection line (4k- 1 
with k = 1,2, . . . ) . 

Compare the mean BLA and its uncertainty bounds with the results of the robust method. 
What do you observe? Explain. □ 

Observations From the middle and right columns of Figure 6-14 on page 212 it can be 
seen that, although the estimated level of the odd nonlinear distortions is overbiased in some 
frequency bands (middle column), the fast method still coincides with the robust method ap-
plied to the distorted multisine (right column). Note also that the difference between 
var(Gs(/coJ) of the undistorted and distorted multisines is only visible in those frequency 
bands where var(y§dd(<:)) is biased. 

Observations Figure 6-8 on page 206 and Figure 6-12 on page 209 show the simulation 
results for the full and odd random harmonic grid multisines (fgroup = 3 : one (odd) detection 
line randomly chosen in each group of three consecutive (odd) harmonics). It can be seen that 
the fast estimates of the BLA and its uncertainty bounds, averaged over the M realizations, 
coincide with the robust estimates. Note also that the variability of the fast estimates using 
one realization is much larger than that of the robust estimates. 

The fast method has the following advantages: (i) representation of the in-band and out-
band distortions; (ii) classification of the nonlinearities in even and odd contributions (odd 
multisine only); and (iii) smaller measurement time (P > 7 periods are needed). Its disadvan-
tages are: (i) larger uncertainty of the variance estimates; (ii) the interpolation of the BLA and 
the stochastic nonlinear distortion over the frequency which requires a sufficiently high fre-
quency resolution; (iii) the input signal-to-nonlinear distortion ratio should be sufficiently 
high; and (iv) the level of the even or odd nonlinear distortions are overbiased if the even in-
put detection lines contain too much distortion signal (inequalities (6-72) and (6-74) are not 
satisfied). 

The main advantages of the robust method are: (i) no interpolation is involved and 
hence there are no constraints on the frequency resolution; (ii) no constraints on the input sig-
nal-to-distortion ratio; (iii) works for any type of random phase multisine; and (iv) smaller 
uncertainty of the variance estimates. Its disadvantages are: (i) longer measurement time 
(P>2 periods and M > 7 realizations are needed); (ii) no classification of the nonlinear dis-
tortions; and (iii) no estimate of the out-band distortions. 

It is of course possible to combine the advantages of both methods by using the robust 
method with an odd random harmonic grid multisine as we did in Exercise 91. However, if 
the measurement time is an issue, then the fast method is the prime choice. 

Observations Figure 6-17 illustrates the importance of the random position of the de-
tection lines. For the Wiener-Hammertein system operating in open loop (top row) it can be 
seen that the odd-rodd harmonic grid multisine predicts a linear in-band behavior (top right): 
the total variance (dark gray "+") coincides with the noise variance (medium gray "+"); while 
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Figure 6-17 Measurement of the best linear approximation (BLA) and its uncertainty bounds using random 
phase multisines with (i) odd random harmonic grid (left column), and (ii) odd-rodd harmonic grid 
(right column). Comparison between the robust method (solid lines) and the fast method ("+") rms 
averaged over the realizations. Top row: Wiener-Hammertein system of Exercise 89.c. Bottom 
row: Wiener system of Exercise 89.d. Black: BLA. Dark gray: Total variance (sum of noise and 
stochastic nonlinear distortions). Medium gray: Noise variance. Light gray: Variance of stochastic 
nonlinear distortions of one multisine realization. 

the odd random harmonic grid multisine predicts the correct distortion level (top left). For the 
Wiener system operating in feedback (bottom row) the odd-rodd harmonic grid multisine se-
riously underestimates the level of the stochastic nonlinear distortions (bottom right: the dark 
and light gray "+" are below the dark and light gray solid lines); which is not the case for the 
odd random harmonic grid multisine (bottom left). 

Discussion This can be explained as follows. Due to the periodicity of the detection 
lines in the odd-rodd multisine, more nonlinear combinations of frequencies fall at the ex-
cited harmonics and less at the detection lines. In the extreme case of a bandpass odd-rodd 
multisine whose bandwidth is smaller than the smallest excited harmonic, it can easily be ver-
ified that all the odd excited frequency combinations all fall at the excited odd harmonics and 
none at the odd detection lines. Take, for example, a third degree polynomial nonlinearity, 
and three in-band excited odd-rodd harmonics 4/cj + 1, 4k2 + 1, and 4k3 + 1. Any third de-
gree frequency combination resulting in an in-band frequency 

(4kp+l)-(4kq+l) + (4kr+\) = 4(kp-kq + kr) + l with p, q, r e {1, 2, 3} (6-82) 

always falls at an excited odd-rodd harmonic. It can be concluded that the randomness of the 
detection lines is an essential condition for predicting the correct level of the stochastic non-
linear distortions via the fast method. The reader is referred to Schoukens et al. (2009a) for an 
in depth theoretical analysis. 

6.1.5 Calculation of confidence bounds on the 
measured best linear approximation 

Using the robust (Section 6.1.1) and fast (Section 6.1.2) measurement procedures results in 
the estimates of the best linear approximation, 

130 
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GBLA(M) = GBLAO'OJ*) + NG(k) + Gs(jak) (6-83) 

its noise variance \ar(NG(k)), its total variance var(GBLA(/a>,t)), and the variance of the sto-
chastic nonlinear distortions var(Gs(/'cot)). The exercise in the sequel to this section ad-
dresses how to construct uncertainty bounds for GBLAO©*) with a given confidence level 
from these estimates. The basic assumption made to construct the uncertainty bounds are that 
NG(k) and Gs(j(Hk) are circular complex normally distributed. The latter is asymptotically 
true for the number of excited frequencies approaching infinity (Exercise 87 .b), while the 
former is true if the input signal-to-noise ratio (SNR) before division of the input/output DFT 
spectra is at least 20 dB (Pintelon et at, 2003). For frequency response function (FRF) data, 
input/output (I/O) data without reference signal, and input/output data with reference signal, 
the conditions on the input signal-to-noise ratio SNR^fc) = \U0(k)\/std(Nu(k)) of one signal 
period are, respectively, 

FRF data: SNR^^) > 20 dB, 
I/O data without ref.: SNRJX*:) > 20 dB - 101og10(/>), (6-84) 
I/O data with ref.: S N R ^ ) > 20 dB - 101og10(MF). 

These three cases cover the three robust methods as well as the fast method (input/output data 
without reference). 

Exercise 92 (Confidence intervals for the BLA) Assuming that GBLAOG)*) is 
circular complex normally distributed with mean value GBLA(j(tik) and known variance 
aG (k), construct the most compact 100 xp% confidence region (Hint: 
|GBLA- G B L A | 2 /OO is chi-squared distributed with two degrees of freedom.) In practice, 
only a sample estimate OGBLA of aG is available and, hence, the confidence region should 
be constructed using GBLAO'CO*) and cr<L A. This is done in three steps. First, find the 
distribution of the sample variances (TQ„ A „(k), aG„ A, and var(Gs). Next, find the 

I A | A A i BLA' BLA 

distribution of |GBLA-G B L A | /<TGBLA {Hint: the ratio of two independent chi-squared 
distributed random variables is F -distributed.) Finally, calculate the confidence level of a 
circular confidence region. □ 

For normally distributed random variables x e IR" with mean value ju and covariance 
matrix Cx, the quadratic form (x - ju)TC-] (x - ju) is chi-squared ( J 2 ) distributed with n de-
grees of freedom (Stuart and Ord, 1987). Hence, a 1 0 0 x p % ( 0 < p < l ) ellipsoidal confi-
dence region can be constructed as 

Prob((x -M)TC^(x-ju)<Zln) = P, (6-85) 

where xj, n is the 100 x p % percentile of a xl -distributed random variable (xl,« c a n be cal-
culated via the MATLAB® function c h i 2 i n v (p, n)) . Among all possible 100 Xp% confi-
dence regions, (6-85) is for Gaussian random variables, the one with the smallest volume 
(Kendall and Stuart, 1979). For circular complex normally distributed noise z, the ellipsoids 
(6-85) reduce to circles because the real and imaginary parts of z are uncorrelated and have 
equal variance (Cx = (<72/2)/2 with of = var(z) and x = [Re(z), lm(z)]T). 

Since GBLAO©*) is circular complex normally distributed, the ratio 
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|GBLA(/'«>*) - GBLA(j(ak)\2/<ThBJk) (6-86) 

is chi-squared distributed with two degrees of freedom (Stuart and Ord, 1987). Hence, the 
most compact 100 xp% confidence region for GBLAOCOJ is a circle with centre GBLAOCO )̂ 
and radius (7GBLA(k) J-log(l -p), 

Prob(|G- GBLAI < aGBLAJ-log(l-p)) = p, (6-87) 

where -21og( l -p ) is the 100x/?% percentile of an xl-distributed random variable 
(-21og( 1 -p) can also be calculated via the MATLAB function c h i 2 i n v (p, 2)) . 

Now, consider the case where the true variance of the BLA is replaced by the sample 
variance OGBLA based on R independent observations. Since NG(k) and GsO'G)*) in (6-83) are 
circular complex normally distributed, the sample variance 0GBLA is chi-squared distributed 
with 2R-2 degrees of freedom. Hence, 

|GBLA(M) - GBLA(j(Okf/alBLA(k) (6-88) 

is the ratio of two independent chi-squared distributed random variables with 2 and 2R-2 
degrees of freedom respectively (the sample mean and sample variance of Gaussian random 
variables are independent). Hence, (6-88) is F2_ 2R- 2 -distributed, and a 100 x p % confidence 
region for GBLAOW*:) can be constructed as a circle with center GBLAOW*) and radius 

2R-2' 

Prob(|G - GBLAI < ObBLA^.2,2*-2) = P, (6-89) 

where FPiX2R_2 is the 100x/?% percentile of an F11R^2-distributed random variable 
(FP, 2.2R-2 can be calculated via the MATLAB® function f i n v (p, 2 , 2 *R-2)) . If R is suf-
ficiently large (R>20), then Fp22R_2 = -log(l -p), and (6-89) reduces to (6-87). In the se-
quel of this section we discuss the use of (6-89) for the robust and fast methods (see also 
Table 6-1). 

For the robust method (6-89) is valid with R - MP for the noise variance 
OcBhA - o|BLA,n (equations (6-4), (6-16), or (6-34)), and R = M for the total variance 
^BLA = ^GBLA^ (equations (6-3), (6-14), or (6-34)) and the variance of the stochastic non-
linear distortions CGBLA = var(Gs(/'cot)) (equations (6-7), (6-22), or (6-39)). 

For the fast method (6-89) is valid with R = P for the noise variance 0GBLA = o|BLA, „ 
(6-49), and 2 < R < 3 for the total variance OGBLA = o|BLA (6-55) and the variance of the sto-
chastic nonlinear distortions OcBLA = var(Gs) (6-56). The reason for the latter is that o|BLA 
(6-55) is obtained via linear interpolation (6-54) of the power of the nearest output detection 
lines. Indeed, if m-k = k-l in (6-54), then 2R-2 = 4 ; and if m-k» k-l or 
m-k«k-l, then 2R-2 = 2. To reduce the radius of the circle (6-89) for 
<7GBLA = c4BLA» var(Gs), it is recommended to average (6-55) and (6-56) over K (for exam-
ple, two or three) neighboring frequencies. In (6-89) 2R-2 should then be replaced by 
K(2R-2). 

6.1.6 Deviation from the true underlying linear system 

Assuming that the input/output signals are observed without errors, the best linear approxi-



Section 6.1 ■ Measuring the Best Linear Approximation 221 

TABLE 6-1 Use of the confidence region of the BLA (6-88). 

FAST 

ROBUST 

Noise var 

R = P 

R = MP 

Total var or var NL distortions 
^ B L A = ^ B L A 0 r ^BLA = V 3 r ( G s ) 

Re (2,3] 

R = M 

mation (BLA) of a PISPO system measured using a random phase multisine can be written as 

GBLA(/CO*) - GBLA(/co*) + Gs(j(ak) (6-90) 

with GBLA(j(Ok) the BLA, and Gs(j(t>k) the stochastic nonlinear distortions (see Section 
5.2.3). Denning the underlying linear system G0(jOb) as the limit value of the BLA when the 
rms value of the input tends to zero, then, the BLA can be split in two contributions: 

GBLA(M) = G0(j(Ok) + GBO'ODJ) (6-91) 

with GB(j(S}k) the nonlinear bias. Since for random phase multisines GB(j(Ok) depends exclu-
sively on the odd nonlinear distortions, one can wonder as to whether its order of magnitude 
can be predicted via the odd stochastic nonlinear distortions. This is explored in the following 
exercise. 

Exercise 93 (Prediction of the bias contribution in the BLA) Consider the dis-
crete-time Wiener-Hammertein system of Exercise 89.c. Show that the underlying linear sys-
tem G0(J(a) equals Gl(e~jmT*)G2(e~i'aT''). Calculate the best linear approximation GBLA(/co), 
the variance of the odd stochastic nonlinear distortions, and the nonlinear bias contribution 
GB(/'co) = GBLA(/'co) - G0(/w) for the following two classes of bandpass random phase mult-
isines (6-44): 

■ Odd multisines: all odd in-band harmonics are excited. 
■ Odd random harmonic grid multisines: one odd detection line randomly chosen in 

each group of two consecutive odd in-band harmonics (Fgroup = 2). 

Choose in (6-44) fs = 4 GHz, a linear (uniform) frequency distribution fk in the band 
[700 MHz, 1.1 GHz], a frequency resolution of the excited harmonics of 1 MHz, equal 
amplitudes Ak, rms value equal to one, and phases uniformly distributed in [0, 2%). Apply 
the robust method for frequency response functions with P = 1 (no noise is added to the 
input/output signals) and M = 400 (see Section 6.1.1.A). Why can the robust method be 
used for estimating the standard deviation of the in-band odd stochastic nonlinear distortions? 
Plot the BLA, its standard deviation, and the nonlinear bias contribution. Compare the results 
of the two classes of excitation signals. What do you conclude? □ 

Since the bandwidth of the multisine excitation (400 MHz) is smaller than the lowest 
excited frequency (700MHz), the even frequency combinations fk±ft all fall outside the 
band [700 MHz, 1.1 GHz]. Hence, the in-band nonlinear distortions only stem from the odd 
part of the static nonlinearity, independent of the harmonic content of the excitation (odd, 
even, or odd and even). It explains why the robust method measures solely the odd stochastic 
nonlinear contributions in this example. However, in general this is not true, and the standard 
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Figure 6-18 Best linear approximation (black) together with the standard deviation of the 
stochastic nonlinear distortions (light gray) and the bias contribution (dark gray). 
Left: Odd multisine. Right: Odd random harmonic grid multisine with F = 2. 

deviation of the odd stochastic nonlinear distortions is then measured via the fast method — 
possibly averaged over different realizations — using odd random harmonic grid multisines. 

Observations The simulation results are shown in Figure 6-18. It can be seen that 
GBLA(/Q)) and GB(/co) are the same for both classes of multisines, which is in agreement with 
the findings of Section 5.2. The variances of the stochastic nonlinear distortions, however, 
differ by 3 dB (see Section 6.2 for a detailed explanation). From Figure 6-18 it also follows 
that std(Gs(/co)) predicts GB(/o>) in some frequency bands quite well, but in other bands it 
can be 6 dB (odd) or 9 dB (odd random harmonic grid) off, which is in agreement with the re-
sults of Schoukens et al. (2002). 

Discussion Extensive simulations have shown that the ratio std(Gs(/'G)))/|GB(/w)| can 
be as large as ± 20 dB . Therefore, it can be concluded that std(Gs(/Cu)) is only suitable to 
predict the order of magnitude (in the broad sense) of the bias contribution GB(/'co). The 
reader is referred to Schoukens et al. (2010b) and Schoukens and Pintelon (2010) for a de-
tailed analysis. 

Note that the true underlying linear system G0(jai) in (6-91), which is defined as the 
limit value of the BLA when the rms value of the input tends to zero, does not always exist. 
This is illustrated in the following exercise. 

Exercise 94 (True underlying linear system) 
ear system: 

Consider the following static nonlin-

y(u) = sgn(a) 
- 1 , w<0, 
0, u = 0, 
1, u>0, 

(6-92) 

excited by zero mean white Gaussian noise with variance <72. Calculate analytically the BLA 
y(t) = gBLAu(t) via (5-18), and study the behavior of gBLA as a function of au. Explain the 
result. □ 

Minimizing (5-18) w.r.t. gBLA gives gBLA = E { |M| }/E { w2} = j2/nozl. For 
<7„ —» 0, the BLA gBLA increases to infinity and, hence, the true underlying linear system g0 
does not exist. This is due to the infinite slope of the sign function (6-92) at the origin. For 
au —> oo we find gBLA = 0 and, therefore, g0 = 0. This is due to the zero slope of the sign 
function (6-92) at ±°o. 
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6.1.7 What have we learned in Section 6.1 ? 

■ Measuring the best linear approximation (BLA) and its uncertainty bounds (noise 
and stochastic nonlinear distortions) of a PISPO (period in, same period out) system 
for the class of Gaussian inputs with a given power spectrum (rms value and color-
ing), can be done in two different ways using random phase multisine excitations. 
The first approach (= robust method) is based on P > 2 successive periods of the 
steady-state response to M > 7 different realizations of a random phase multisine 
(see Section 6.1.1.). The second approach (= fast method) uses P> 7 periods of the 
steady-state response to one odd or full random phase, random harmonic grid mult-
isine (see Section 6.1.2). 

■ If the input signal-to-noise ratio and the number of excited harmonics are suffi-
ciently large, then 100 xp % circular confidence bounds can easily be constructed 
for the measured BLA (Exercise 92). 

■ The robust method starts either from frequency response (FRF) data (Exercise 88.a), 
input/output data without reference signal (Exercise 88.b), or input/output data with 
reference signal (Exercise 88.c). The information about the stochastic nonlinear dis-
tortions is obtained through averaging over different random phase realizations of 
the multisine excitation. The plant behaves nonlinearly if the total variance of the 
BLA is significantly larger than its noise variance. If the reference signal is avail-
able, then the spectral purity of the input can be verified by comparing the total in-
put variance with the noise input variance (Exercise 88.c). 

■ The fast method starts from input/output data without reference signal (Exercises 
89.c and 89.d). The information about the stochastic nonlinear distortions is ob-
tained via the detection lines (nonexcited harmonics) in the output DFT spectrum. If 
these detection lines are randomly chosen among the (odd) excited harmonics (Ex-
ercises 89.a and 89.b) then, the distortion level predicted by the fast method coin-
cides with that of the robust method (Exercise 91). Compared with the full random 
harmonic grid multisines, the odd ones have the advantage to allow for a classifica-
tion of the nonlinear distortions in even and odd contributions (Exercise 89.c). The 
plant behaves nonlinearly if the detection lines at the corrected output DFT spec-
trum contain significant signal energy. This is verified via the null hypothesis test 
(6-50). The same test is used to verify the spectral purity of the input signal. If the 
distortion at the even input detection lines is too large, then the estimated level of 
the even or odd nonlinear distortions in the corrected output spectrum is overbiased 
(Exercise 89.e). The predicted total variance of the best linear approximation, how-
ever, is still correct. To avoid a bias in the estimated level of the odd or even nonlin-
ear distortions, the spectral purity of the even input detection lines should be 
imposed. This is possible via an iterative procedure based on measurements with a 
spectrum analyzer (Rabijns et al., 2004). 

■ The pros and cons of the robust and fast methods are summarized in Table 6-2. The 
advantages of both methods can be combined by using the robust procedure with 
random harmonic grid multisines (Exercise 91). The only drawback is the increased 
measurement time. 

■ The BLA of a nonlinear system operating in feedback is defined as the ratio of the 
BLA from reference to output by the BLA from reference to input. 

■ If the measured NL system is captured in a linear feedback loop, then the frequency 
response function at the detection lines (nonexcited harmonics) is exactly equal to 
minus one over the feedback transfer function (Exercise 89.d). 
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TABLE 6-2 Pros and cons of the robust and fast measurement methods 

Robust method with known reference Fast method 

Pros - no constraints on the frequency resolution - smaller measurement time 
- no constraints on the input signal-to- - classification of the nonlinear distortions in 
distortion ratio even and odd contributions 

- any type of random phase multisine - estimation in-band and out-band distortions 
- smaller uncertainty estimates - easy verification of the input spectral purity 

Cons - larger measurement time - larger uncertainty estimates 
- no classification of the nonlinear distortions - sufficiently high input signal-to-distortion ratio 

in even and odd contributions - sufficiently high frequency resolution 
- no estimation out-band distortions - estimates odd or even nonlinear distortions are 
- the reference signal is needed overbiased if the distortion at even input 

detection lines is too large 

■ The fast method and the robust method without reference are direct methods for 
measuring the BLA. These methods are biased if either the input signal-to-noise-ra-
tio or the input signal-to-distortion ratio are smaller than 10 dB (Exercise 90). The 
bias introduced by the input noise can always be removed by measuring enough pe-
riods P. The bias introduced by the input stochastic nonlinear distortions can only 
be removed by averaging over sufficient different random phase realizations M. 

m The robust method with known reference is an indirect method for measuring the 
BLA, where the reference signal is used as instrumental variable. This method is bi-
ased if either the input signal-to-noise ratio or the input signal-to-distortion ratio are 
smaller than 10 dB. The bias introduced by the input noise or input stochastic non-
linear distortions can always be removed by measuring enough periods P or ran-
dom phase realizations M (Exercise 90). 

■ The order of magnitude of the bias contribution GB(/0)t) on the BLA can be pre-
dicted from the standard deviation of the stochastic nonlinear contribution Gs(j(£>^ 

r 'std(G s(M)) < IGBO'CM * 7Std(Gs(/(B*)) (6-93) 

As a rule of thumb, one can use y = 10, however, this bound should be used with 
great care (Exercise 93). 

6.2 MEASURING THE NONLINEAR DISTORTIONS 

In Section 5.2.2 (see Exercise 84.c) we learned that the best linear approximation (BLA) does 
not depend on the harmonic content of the random phase multisine, as long as the effective 
power per frequency band is the same, and the number of excited frequencies is sufficiently 
large. However, the variance of the stochastic nonlinear distortions Gs(j(ak) strongly depends 
on the harmonic content. Indeed, from Figure 5-16 on page 163 it can be seen that 
var(Gs(/a>*)) of the full multisine BLA differs considerably from that of the odd multisine 
BLA (top left plot), which in turn differs from that of the odd-random (harmonic grid) multi-
sine BLA (bottom left plot). In this section, we first give a detailed explanation of this strange 
behavior; next, show how to predict the var(Gs(/C0j.)) of the full, odd, and full-random (har-
monic grid) multisine BLAs via the fast measurement method using odd random harmonic 
grid multisines; and finally we discuss the pros and cons of full-random (harmonic grid) and 
odd-random multisines. 
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In the following exercise we analyze, in detail, the influence of the harmonic content of 
the random phase multisine on the variance of the stochastic nonlinear distortions. As a re-
sult, a procedure is constructed for predicting var(Gs(/co*)) of the full, odd, and full-random 
multisine measurements starting from the odd-random multisine measurements. 

Exercise 95 (Prediction of the nonlinear distortions using random harmonic grid 
multisines) Consider the generalized Wiener-Hammertein system of Figure 5-13 on 
page 157, with linear dynamic blocks G^z'1) and G2(z'x) defined in (5-33), NFIR block 

z(t) = x(t) + (atan(x(t))x2(t - 1) + I0\x(t - 2)| )/2000 (6-94) 

and where the input/output signals are observed without errors. Using the robust method for 
noisy FRF measurements with M = 1000 and P = 1 (see Section 6.1.1.A), calculate the 
best linear approximation and its standard deviation of this PISPO system for the following 
classes of random phase multisines (6-44), where co0 = 2nfs/N, N = 1024, and 
Ak - d\L{ZkV)\ with L(z~x) defined in (5-34) and a chosen such that wrms = 1.1653, 

■ Full: all harmonics k are excited, k = 1,2,..., N/2 - 1. 

■ Odd: all odd harmonics 2k - 1 are excited, k = 1,2,..., N/4 - 1. 

■ Full-random: full random harmonic grid with Fgroup = 3 (one-third detection lines). 

■ Odd-random: odd random harmonic grid with Fgroup = 3 (one-third odd detection 
lines). 

Plot the ratio of the standard deviations of the full and full-random BLAs (Hint: use the 
MATLAB® function i n t e r p l to get the values at the same frequencies). Do the same for 
the odd and odd-random BLAs. What do you conclude? Explain (Hint: Gaussian input 
signals u(t) with the same power spectral density V 2 /Hz, generate stochastic nonlinear 
distortions ys(0 with the same power spectral density VVHz). Plot the difference between 
the variances of the full and odd BLAs. What does it represent? Explain. Using the fast 
method for input/output measurements (see Section 6.1.2.B), calculate the variance of the 
output stochastic nonlinear distortions for the full-random and odd-random multisines. 
Average the results over the M realizations. What kind of averaging should be used? Explain. 
Add the variances of the even and odd output distortions of the odd-random multisine and 
compare the result with the variance of the output distortions of the full-random multisine 
(Hint: use the MATLAB® function i n t e r p l to get the values at the same frequencies). 
What do you observe? Explain. What is the ratio of signal amplitudes of the full-random and 
odd-random multisines at the excited harmonics? Explain. What do you conclude concerning 
the signal-to-distortion ratio? Using all previous results, predict the variance of the robust odd 
and full multisine measurements from the fast odd-random multisine measurement. Compare 
the values to those obtained by the robust method. □ 

The two key observations to understand the simulation results of Exercise 84.c and Ex-
ercise 95 are 

1. Gaussian input signals u(t) with the same power spectral density VVHz generate 
stochastic nonlinear distortions ys(?) with exactly the same power spectral density 
VVHz. 
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2. Full, odd, full-random, and odd-random multisines with the same rms value, the 
same coloring of the amplitude spectrum, and a sufficiently large number of frequen-
cies have approximately the same effective power spectral density. 

While observation 1 is trivial, observation 2 remains to be proven. To justify observation 2 we 
calculate the input signal power in a frequency band whose width A/ depends on the har-
monic content of the random phase multisine 

A/ = 

f. 
N' 
2/,/N, 

* group U s ' ^* /» 

Fpmp(2f/N), 

full multisine, 

odd multisine, 
full-random multisine, 
odd-random multisine. 

(6-95) 

with N/fs the signal period. The effective power spectral density PSDeff(A:) is then the ratio 
of the signal power in the given frequency band divided by its width A/ (6-95) 

PSD^*) = 

\Um(k)\2 

f/N ' 

2f./N ' 

\r group ~ 1 ) I ^ full-random W | 

P(/;/AO 

{F* D| Ua M2 

FgrouJ2fs/N) 

full multisine, 

odd multisine, 

full-random multisine, 

odd-random multisine. 

(6-96) 

For notational simplicity, the signal power in (6-96) is located in the middle of the frequency 
band, and it is assumed that the power of the excited harmonics of the full-random and odd-
random multisines is constant within each group of Fgroup consecutive (odd) harmonics. If the 
latter is not true, then | Um_mniom(k)\2 and |£/0dd-random(£)| m (6-96) should be interpreted as the 
mean power of the (Fgmup - 1) excited harmonics. Since the full, odd, full-random, and odd-
random multisines have, by assumption, the same rms value (= same power), and the same 
coloring of the amplitude spectrum; and since their number of excited frequencies is given by 

no. of excited harmonics 

F/2, 
F - 1 
1 group L p 

F - 1 
fgroup 1

( f / 2 ) i 

* prnnn 

full multisine, 
odd multisine, 

full-random multisine, 

odd-random multisine. 

(6-97) 

where F is sufficiently large; the amplitude squared of their DFT spectra are approximately 
related as 
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•^ " group * group ^ 

This relationship is exact if the signal power is continuously distributed over infinite frequen-
cies. Combining (6-96) and (6-98) reveals that the four classes of multisines have approxi-
mately the same power spectral density. 

The direct consequence of observations 1 and 2 is that the effective power spectral den-
sity of the stochastic nonlinear distortions ys(f) is approximately the same for the four classes 
of random phase multisines. Taking into account that (i) the even F|ven and odd Y^d stochas-
tic nonlinear distortions are uncorrelated (Pintelon and Schoukens, 2001), and (ii) for full and 
full-random multisines F|ven and Fsdd are distributed over all harmonics, while for odd and 
odd-random multisines y§v™ and Y^6 only appear at, respectively, the even and odd har-
monics (see Exercise 80), it immediately follows that the variances of the stochastic nonlinear 
distortions Ys(k) are approximately related as 

var(7S-fu„(A:)) = var(rSifull.random(rc)) 

varflt3d(*)) = var(ri:Sd-ra„domW) 
(6-99) 

var(Ks««dd«) - var(ys°%.random(fc)) 
v a r d W * ) ) = (var(yi-d d«) + var(Fs-'0d

dd(fc)))/2 

This relationship is exact if the signal power, and hence also the stochastic nonlinear distor-
tion power, is continuously distributed over infinitely many frequencies. 

Combining (6-98) and (6-99) shows that the variance of the stochastic nonlinear distor-
tions var(Gs(/coJ.)) = var(ys(rc))/|f/(A:)|2 of the BLA measurements are related as 

F 
var(Gs>M1(/M,)) = grou^ var(Gs, !uiumiom(j®k)) 

" group ^ 

var(Gi:o"dd(/co,)) = P"* var(G|:odd.rai,dom(/'co,)) 
" group -*• 

'artG^C/co,)) = ^ var(Gs°°0Vrandom (/%)) 
" group *-

{Gs.m(j®d) = var(Giyo"dd(/'co,)) + va^Gl^O'co,)) 

(6-100) 

V; 

vari 

where G|ven and Gfd stand for the respective even and odd contributions. From (6-100) it 
can be seen that the variance of the full multisine BLA can be predicted as 

var(Gs,full(M)) = ^^(varCGirah^tanO'm*)) + var(G§d
0
d
dd.random(/w*))) (6-101) 

* group 1 

where var(G§yo
n
dd.ra„dora(/Grj,)) and var(Gldd

dd.random(/(Ot)) are estimated from input/output mea-
surements with one realization of an odd random harmonic grid multisine (use (6-54) to 
(6-56) at the respective even and odd detection lines). 

Observations Formula (6-100) explains the simulations results shown in Figure 5-16 
(Exercise 84.c) and Figure 6-19 (Exercise 95). Indeed, from the bottom left plot of 
Figure 5-16, it can be seen that the ratio between the variances of the odd and odd-random 
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Figure 6-19 Best linear approximation (solid lines) and standard deviation of the stochastic nonlinear distortions 
(dashed lines) of a generalized Wiener-Hammertein system, calculated via the robust method for 
the following classes of random phase multisines: full, odd, full random harmonic grid, and odd 
random harmonic grid (top row). Bottom row: Difference (left), and ratio (middle and right) of the 
variances of the BLAs in the top row. 

multisine BLAs is about 3 dB, while the same ratio is about 1.8 dB in Figure 6-19 (bottom 
right plot). Since F^^ = 2 in Exercise 84.c and Fgroup = 3 in Exercise 95, the observed ra-
tios correspond to the factor Fgroup/(Fgroup- 1) in (6-100). Note that the same conclusion 
holds for the ratio of the variances of the full and full-random BLAs in Figure 6-19 (bottom 
middle plot). The last formula of equation (6-100) also shows that the difference between the 
variances of the full and odd multisine BLAs (top left plot of Figures 5-16 and 6-19) is equal 
to var(Gs™d(/coJr)), the variance of the even nonlinear contributions. This is the quantity 
drawn in the bottom left plot of Figure 6-19. 

Observations Equations (6-98) and (6-99) explain the simulation results of Figure 6-
20. Indeed, the amplitude ratio at the excited harmonics of the odd-random and full-random 
multisines is about 3 dB (compare the bottom right plot to the first formula of equation (6-
98)), and the same is true for the ratio of the total variance (even + odd) of the stochastic non-
linear distortions (compare the bottom right plot to the last formula of equation (6-99)). It 
shows that the odd-random multisine measurements can easily be used to predict the distor-
tion level of a full-random multisine experiment. 

Observations Finally, in Figure 6-21, the variances of the full and odd multisine BLAs 
are predicted via (6-100) and (6-101) using the fast measurement method with odd-random 
multisines (see Section 6.1.2.B). It can be seen that the predictions coincide with the actual 
values obtained via the robust measurement procedure with full and odd multisines. 

Note that in order to ease the comparison with the results of the robust method, the 
magnitude of the nonlinear distortion levels in Figures 6-20 and 6-21 obtained via the fast 
method with full-random and odd-random multisines have been smoothed via rms averaging 
over the M realizations. The reason for rms averaging is that the magnitude squared (= 
power) of a detection line is an estimate of the variance of the stochastic nonlinear distortion. 

In Exercises 89.c, 89.d, and 95 full-random and odd-random multisines have been used 
for measuring the best linear approximation, its noise variance, its total variance (noise + 
nonlinear distortions), and the variance of the stochastic nonlinear distortions. In the follow-

130 
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Figure 6-20 Response (top row) of a generalised Wiener-Hammertein system to random phase multisines with, 
respectively, full (top left) and odd (top right) random harmonic grid (one third detection lines): 
Excited harmonics of one realization ("+"); and nonexcited harmonics (" A ", even "*", and odd 
"o") rms averaged over the realizations. Bottom left: Total variance " A " (sum of the even "*" and 
the odd "o" variances of the top right plot) predicted by the odd random phase response. Bottom 
right: Ratio of the excited harmonics (black) and the total variances " A " (gray) of the odd by the 
full random phase responses. 
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Figure 6-21 Top row: Comparison of the odd (dark gray line), the even (black line), and the total (light gray) 
variances of the BLAs obtained by the robust method using full and odd multisines, with the 
variance of the BLAs predicted by the fast method using odd random harmonic grid multisines 
("+"). Bottom row: Ratio of the actual (robust method) and the predicted (fast method) standard 
deviations in the top row. 
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ing exercise the advantages and disadvantages of both classes of multisines are analyzed. It is 
also verified as to which signal class leads to the smallest uncertainty on the estimates. 

Exercise 96 (Pros and cons full-random and odd-random multisines) Compare 
in Figures 6-7 and 6-10 the results of the full-random and odd-random multisines. What do 
you observe? Taking into account the conclusions of Exercises 89.c, 89.d, and 95, give some 
pros and cons of both classes of multisines. In Figures 6-8 and 6-12 the signal-to-noise ratio 
of the full-random multisine BLA (medium gray lines) is 3 dB smaller than that of the odd-
random multisine BLA, while the signal-to-distortion ratios of both BLAs (light gray lines) 
are exactly the same. Explain. Do the same conclusions hold for the classes of full and odd 
multisines? Which of the two BLA measurements - full-random or odd-random - contains 
most information? Explain. Can this result be generalized to any PISPO system? If not, show 
under which condition(s) the full-random multisine BLA measurement contains more 
information than the odd-random multisine BLA measurement. Is this result also valid for 
full and odd multisine BLA measurements? □ 

The major advantage of the odd-random multisine is its ability to distinguish between 
even and odd nonlinear distortions (see Figure 6-7) and, hence, to predict the variance of the 
stochastic nonlinear distortions of the full and odd multisine BLA measurements (see 
Figure 6-21). Its main disadvantage is the loss in frequency resolution by a factor of two com-
pared with the full-random multisine (see Figures 6-7, 6-10, and 6-20). 

Since the signal period of both classes of multisines is the same, the input/output noise 
(co-)variances (6-48) are exactly the same. Taking into account that the excited harmonics of 
the odd-random multisines contain twice as much power (see equation (6-98)), it follows that 
the noise variance (6-49) of the odd-random multisine BLA measurement is a factor 2 (3 
dB) smaller than that of the full-random multisine BLA measurement. Applying a similar 
reasoning to the classes of the full and odd multisines gives 

F 
var(JVGtfull(A:)) = 8rou_P var(JVG , M i . n m d o m(fc)) , 

* group * 

var(A? G o d d ( /c) ) = grou^ var( iVG i o d d . r a n d o m(fe)) , 
" group *■ 

var(tfGiM1(*)) = 2var(iVG, ^(k)), 

where NG(k) is the noise (6-20) on the BLA measurement. 
In Exercise 89.c, there are no even in-band distortions (see Figure 6-7), while in Exer-

cise 89.d the PISPO system contains no even nonlinear terms. Hence, only odd nonlinear dis-
tortions contribute to the variance of the stochastic nonlinear distortions of the full-random 
multisine BLA measurement. Taking into account that the odd-random multisine BLA mea-
surement is only influenced by the odd stochastic nonlinear distortions, it follows that the 
variance of the stochastic nonlinear distortions of the full-random multisine BLA equals that 
of the odd-random multisine BLA 

Var(Gs.full-randomO*0*)) = V a r ( " < j , odd-random (/«>*)) (6-103) 

(see equation (6-100)). This shows that the signal-to-distortion ratio is the same for both 
classes of multisines. Combining (6-100) and (6-103) proves that the same is true for the 
classes of full and odd multisines. 
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What about the information content of the BLA measurements in Exercises 89.c and 
89.d? Suppose that the frequency resolution is large enough such that the full-random BLA 
measurement can be averaged over two neighboring frequencies without introducing signifi-
cant bias errors. The variance of the resulting BLA GBLA, Mi-random is then reduced by a factor 
two. Hence, the noise variance of GBLA, Mi-random equals that of the odd-random multisine 
BLA GBLA. odd-random, while the variance of the stochastic nonlinear distortions is half that of 
the odd-random multisine BLA 

var(Giyfull.random(/'co,)) = var(Gs°%.random(/co*))/2 (6-104) 

(see equation (6-103)). This shows that the total variance of the averaged full-random multi-
sine BLA is smaller than that of the odd-multisine BLA and, therefore, the full-random mult-
isine BLA measurements in Exercises 89.c and 89.d contain more information than the odd-
random ones. Note that a parametric estimator of the BLA measurements implicitly performs 
the averaging over the frequencies without introducing bias errors (see Chapter 5 and 7). The 
effect of the presence of even nonlinear distortions is discussed in the sequel of this section. 

If the full-random multisine measurement is disturbed by even nonlinear distortions, 
then, depending on the level of these distortions, the full-random multisine BLA measure-
ment is more or less informative than that of the odd-random one. However, if the even non-
linear distortions are smaller than or equal to the odd nonlinear distortions 

var(G!ve"O'C0fc» S var(G§dd(/'w*)) , (6-105) 

then, using (6-100), we obtain 

var(Gs, fu„.random(M)) < 2var(Gg%_ra,,dom(/'<%)). (6-106) 

and, hence, following the same reasoning as before, 

var(GlVrandom(/-co,)) = v^G^^om(J^k)) < var(Gs°d
0Vrandom(/co,)) (6-107) 

Since the noise variances are equal, (6-107) shows that the total variance of the averaged full-
random BLA measurement is smaller than or equal to that of the odd-random BLA measure-
ment. It can be concluded that the full-random BLA measurements are more informative than 
the odd-random ones if (6-105) is satisfied. The same conclusion holds for the classes of full 
and odd multisines, because the full, full-random, odd, and odd-random BLA variances are 
related as 

var(GSifull(/'cot)) var(Gs°%(/(0,)) _ var(Gf:eodd(/'co,)) 
var(Gs, fUi1.random(/<»*)) var(Gs°%.random(/'cot)) var(Gfye

0"dd.random(/G)t)) 
var(JVG,fu„(fc)) _ var(N&odd(fc)) 

var(N0, Wi_ra„dom(£)) var(7VGt ^ .^^(fc)) 

(6-108) 

(see equations (6-100) and (6-102)). 
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6.2.1 What have we learned in Section 6.2? 

■ Using the steady-state response of a PISPO system to one realization of a random 
phase, odd-random (harmonic grid) multisine, one can estimate the noise variance 
and the variance of the stochastic nonlinear distortions of the odd-random, odd, 
full-random, and full multisine BLA measurements. First, the noise variance 
var(NG? odd-random(£)) and the variance of the even and odd stochastic nonlinear distor-
tions varCGiySd-randomO'ro*)) and var(Gî dd.raildomO"oo*)) of the odd-random multisine 
BLA measurement are estimated via, respectively, (6-49), and (6-54) to (6-56) ap-
plied to the respective even and odd detection lines. Next, the noise variances and 
the variances of the stochastic nonlinear distortions of the other multisine BLA 
measurements are obtained via, respectively, (6-102) and (6-100). 

■ Using the steady-state response of a PISPO system to one realization of a random 
phase, full-random (harmonic grid) multisine excitation, one can estimate the noise 
variance and the variance of the stochastic nonlinear distortions of the full-random, 
and full multisine BLA measurements. First, the noise vanance vartTVg fUu-random(̂ )) 
and the variance of the stochastic nonlinear distortions var(Gs fuii-randomO*0*)) of the 
full-random multisine BLA measurement are estimated via, respectively, (6-49), 
and (6-54) to (6-56) applied to all the detection lines. Next, the noise variance and 
the variance of the stochastic nonlinear distortions of the full multisine BLA mea-
surement are obtained via, respectively, (6-102) and (6-100). 

■ The extrapolation ability of the odd-random multisine experiment to the odd, full-
random, and full multisine experiments is a consequence of the fact that these four 
classes of multisines have the same effective power spectral density. The same holds 
for the extrapolation of the full-random to the full multisine experiment. 

■ If the variance of the even stochastic nonlinear distortions is smaller than that of the 
odd stochastic nonlinear distortions, then full(-random) multisine experiments result 
in parametric transfer function estimates with a smaller uncertainty than that of 
odd(-random) multisine experiments. This condition is typically satisfied for band-
pass multisine excitations whose signal bandwidth is smaller than the lowest excited 
frequency. If the condition is not satisfied and/or a classification of the nonlinear 
distortions in even and odd contributions is needed, then odd(-random) multisines 
should be used. 

■ The pros and cons of the odd-random and full-random are summarized in Table 6-3. 

TABLE 6-3 Pros and cons of the odd-random and full-random multisines. The properties in italic are also 
valid for the odd and full multisines. 

Odd-random multisine Full-random multisine 

Pros - classification in even and odd nonlinear - larger frequency resolution 
contributions - smaller uncertainty transfer function model 

- extrapolation to odd, full-random, estimate if the even distortions are smaller than 
and full multisine experiments the odd distortions 

Cons - reduced frequency resolution - no classification of the nonlinear contributions 
- larger uncertainty transfer function model - extrapolation limited to full multisine 

estimate if the even distortions are smaller experiments 
than the odd distortions 

Together with Table 6-2 it allows for a motivated choice of the excitation signal. 
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6.3 GUIDELINES 

The best linear approximation (BLA) of a PISPO system depends on the power spectrum 
(coloring and rms value) and the multivariate probability density function (pdf) of the excita-
tion. Hence, the operational perturbations of the system should belong to the class of signals 
(power spectrum, pdf) used for identifying the system. In general, the BLA of a static nonlin-
ear system is dynamic. 

If the operational perturbations are normally distributed, then the identification experi-
ment can be performed using the class of random phase multisine excitations with the same 
effective power spectral density (coloring and rms value) and a sufficiently large number of 
excited frequencies. 

■ If the measurement time is not the limiting factor, then the robust method for input/ 
output measurements with reference signal is recommended because it allows for 
the poorest input signal-to-noise ratio. Advantages of the robust method: no as-
sumptions concerning the input signal-to-distortion ratio, nor the frequency resolu-
tion. 

■ If the measurement time is a critical issue and/or a classification of the nonlinear 
distortions in even and odd contributions is required, then the fast method using 
odd-random (harmonic grid) multisines should be applied. Advantage of the fast 
method: it allows us to predict the noise and distortion levels of the odd, full-ran-
dom, and odd-random multisine BLA measurements. 

■ In some applications it is known that the even distortions are smaller than the odd 
ones. This is often the case for bandpass excitations where the bandwidth is smaller 
than the lowest excited frequency. Full (-random) multisine measurements result in 
parametric transfer function estimates with a smaller uncertainty than that of the 
odd (-random) multisine experiments. 

The Gaussian BLA of a static nonlinear system is static. 
The predictive power of the best linear approximation is limited by the stochastic non-

linear distortions. This is the difference between the actual output of the nonlinear system and 
the output predicted by the BLA. If the level of the stochastic nonlinear distortions is too high 
for the intended application, then the linear framework is insufficient and a nonlinear model 
should be identified. 

6.4 PROJECTS 

Project 1 (Use of Full and Odd Multisines for Parametric Estimation) Consider 
the static nonlinear system y{t) = w3(f). Calculate the best linear approximation and its vari-
ance for the classes of odd and full random phase multisines (6-44) with N = 1024, ampli-
tudes Ak = 1, phases <j)k uniformly distributed in [0, 2TC) , and rms value equal to one. Use 
the robust measurement procedure of Section 6.1.1.A with P = 1 and M = 104. Compare 
the signal-to-distortion ratios of the BLA measurements. What do you conclude? Explain the 
result. Using the input-output DFT spectra at the excited harmonics of one multisine realiza-
tion, estimate the static gain gBLA of the BLA by minimizing 

£ ^ = 1 I *W-*BLA £/(*)!2 (6-109) 
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w.r.t. #BLA» where F represents the number of excited harmonics. Note that gBLA is a 
parametric model of the BLA GBLAOW*) (5-36). Calculate the minimizer of (6-109) for each 
of the M = 104 multisine realizations. Compare the sample means and sample variances 
over the M realizations of the odd and full multisine estimates. What is the ratio of the 
sample means, and the ratio of the sample variances? Explain the results. Repeat the 
calculations for the static nonlinearity y(t) = au2(t) + u\t), where a is chosen such that the 
odd and even stochastic nonlinear distortions have the same power (Hint: show that 
a = 1.9711.) What is the ratio of the sample means, and the ratio of the sample variances of 
estimates? Explain the results. What is the general conclusion? □ 

Project 2 (Prediction Ability of Odd Random Phase Multisines) Consider the 
nonlinear system shown in Figure 5-13 on page 157 where 

G,(s) = \,z(t) = x(t) + ax2(f) + Px\t) and G2(s) = 1/(1 + s/(2%f0)) (6-110) 

with a - 3x10" , f3 = 1x10" , and f0 = 300 Hz (= Hammerstein system). Design an odd 
random phase multisine (6-44) with rms value equal to one, equal harmonic amplitudes Ak, 
and about a hundred logarithmically distributed frequencies fk in the band [0 Hz, 10 kHz] 
with frequency ratio of 1.05 (= logtone). Make an appropriate choice for the sampling 
frequency fs and the number of time domain samples N in one period. Using the robust 
measurement procedure of Section 6.1.1.A with P = 1 (the data is noiseless) and 
M = 100, calculate the stochastic nonlinear distortions Ys(k) and Gs(j(Ok) at the output and 
best linear approximation respectively. Design, further, an odd random phase, random 
harmonic grid (Fgroup = 2) multisine with uniform frequency distribution (= lintone) that has 
the same effective power spectral density (Hint: the total power of both signals should be the 
same in each band [fk, fk+,) of the logtone). Show that the overall behavior of the amplitudes 
of the lintone is given by Ak+\/Jfk. Using the fast measurement procedure of Section 
6.1.2.B with P = 1 (the data is noiseless), predict the stochastic nonlinear distortions Ys(k) 
and Gs(j(Hk) of the logtone measurement (Hint: Ys and Gs of the logtone measurement only 
depend on the odd stochastic nonlinear distortions). Average the predictions over M = 100 
random phase realizations and compare with the logtone results. What do you conclude? 
Replace the odd logtone by a full logtone and repeat the exercise (Hint: Ys and Gs of the 
logtone measurement depend on the odd and even stochastic nonlinear distortions). Add 
measurement noise to the input and output signals and repeat the exercise with P > 1. What 
do you conclude as far as the signal-to-noise ratios of the logtone and lintone measurements 
are concerned? Which signal is to be preferred? Motivate your choice. □ 

Project 3 (Nonlinear Model Selection via BLA Measurements) Consider the fol-
lowing nonlinear block structures: 

■ Wiener system: see Exercise 88.a, equations (6-8) and (6-9), where G2(s) = 1. 
■ Hammerstein system: see Project 2, equation (6-110). 
■ Wiener-Hammertein system: see Exercise 88.a, equations (6-8) and (6-9). 
■ Generalized Wiener-Hammertein system: see Exercise 84.a, equation (5-33). 
■ Nonlinear feedback system: see Exercise 79.a, equation (5-12), where the right-

hand-side is replaced by u(t). 

Using the robust measurement procedure of Section 6.1.1 .A, calculate the best linear approx-
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imation (BLA) and its variance of the five nonlinear block structures for the class of odd ran-
dom phase multisines. For each nonlinear system, perform the calculations for different 
settings of the input power spectrum (rms value and coloring) 

■ Vary the rms value of the input while maintaining the coloring (shape) of the power 
spectrum. 

■ Vary the shape of the power spectrum while keeping the rms value of the input con-
stant. 

Compare the amplitude and phase of the BLAs over the different rms values and shapes of 
the input power spectrum. What do you observe? Does the phase change or not? Does the 
shape of the amplitude remain the same or not? Summarize your observations in a table. 
Which of the nonlinear block structures can be distinguished via the BLA measurements with 
different rms values and shapes of the input power spectrum? Compare your results to 
Lauwers et al. (2008). □ 

Project 4 (Best Linear Approximation of a Multivariable Nonlinear PISPO 
System) Consider a multivariable nonlinear PISPO system with nu inputs and ny outputs. 
The system operates in open loop and is excited by Gaussian noise u{t) with auto-power 
spectrum Svv{j(£>) e C " *"". The best linear approximation is then defined as 

GBLAO'W) = SrlM<0)Si,lv(j<Q) (6-111) 

with SyfX/to) e C"'*"" the cross-power spectrum, and GBLA(/'co) the nyxnu frequency re-
sponse matrix. In practice the auto- and cross-power spectra are calculated from a record of 
MxN input/output samples as 

M c o t + 1/2) = j^=im(k)(Umk))H (6-112) 

with Xiitf(k) = X(k + l)-X(k), and X^m\k) the DFT spectrum of the mth subrecord. This 
results in the following BLA estimate 

GBLA(/G>*+1/2) = Syi/0'<»t+1/2)5y£/(/<»*+l/2)- (6-113) 

Assuming that the input is known exactly, the covariance matrix of the estimated BLA 
(6-113) is obtained as 

Cov(vec(GBLA(/cot+1/2))) = ^(SuuU^.wi) ® C^k)), 
(6-114) 

C "W = ^777 ; (U'% t i /2)-Wffl l t i /2)ft ' t ' ( ; ' i 'hi /2)S?i/(/ ' (0, t i /2)) , 
2(M-nu) 

where vec(x) stacks the columns of the matrix x on top of each other (MATLAB® instruc-
tion x ( : ) ) , and with C = A® B the Kronecker product of two matrices (MATLAB® in-
struction C = k ron (A, B)): C is a matrix with block entry AUJ]B . The reader is referred 
to Brewer (1978) for an exhaustive overview of the properties of the Kronecker product. 
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■ Show that Cv(k) in (6-114) is an estimate of the covariance matrix of the output dis-
turbances (noise and/or nonlinear distortions). Hint: for each block of N samples 
we have after differencing the input/output DFT spectra 

mm«GBLA(j(ok)um) + iffim+tmvo. 
with Ylm](k) and N[m](k) respectively the output stochastic nonlinear distortions 
and the output noise of the m th block. Next, show that Cov(Zdiff(^)) ~ 2Cov(X(k)) 
for stochastic processes X(k) with a smooth power spectrum. Finaly, show that the 
factor M/{M-nu) in (6-114) removes the bias in the expected value of tv(k). 

■ Proof the formula for the covariance matrix of vec((jBLA(/C°/fc+i/2)) • Hint: use the 
following properties of the Kronecker product: 

vec(ABQ = (C r®A)vec(B), {A®B)(C®D) = (AC)®(BD), and 
(v®A)B = (v®A)(l®B) = v®(AB), 

where A , B, C, and D are matrices of appropriate size, and where v is a vector. 

From one single experiment with periodic inputs 

Y(k) = GBLA(j<ok)U(k), (6-115) 

one can in general not estimate the BLA. Indeed, (6-115) contains ny equations with nynu 
unknowns. Therefore, nu experiments must be performed with linearly independent sets of 
input signals giving 

yi"(Jt) y [ 2 W ... y["J(/k)] = G^jti®k)\jjv\k) UW(k) ... Ul""] (*)_ (6-116) 

with U{m\k) the nu x 1 input DFT spectrum of the m th experiment. The BLA is then esti-
mated as 

GBLAtM) = Y(*)U-»(*) (6-117) 

with X(k) = \x^Xk) X[2\k) X["\ky[ ^ ^ = >̂ f/• The input signals of the nu experi-
ments are constructed as 

U(*) = Ak 

U{(k) 0 ... 0 
0 U2(k) ... 0 

0 0 .. U„(k) 

0 e>^k) 
0 
0 

0 0 ... e'"• 

(6-118) 

where each column of U(k) defines the input DFT spectra of 1 experiment. Ur(k), 
r = 1,2 nu, are random phase multisines with rms values equal to 1 and constant ampli-
tude spectra; Te C""x"" is an arbitrary orthogonal matrix (TH = 71-1); 0m(k), 
m = 1, 2, ..., nu, are random (over the frequency k and the experiments m) phases such 
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«i(0 

u2(t) 

G.(z-') 

G2(rl) 

NL 
Mt) 

G3(z-1) 
y(t) 

Figure 6-22 Nonlinear two-input, one-output discrete-time system: G^z'1), G2(z^), and G^z'1) are single-
input, single output LTI systems, and NL is a static7 two-input, one-output static nonlinear system. 

that E{e'^r{k)} - 0; and the matrix Ak e C""x"" defines the coloring of the amplitude spectra 
of the multisines and the correlation among the inputs as a function of the frequency. Equa-
tion (6-118) defines the so-called full random orthogonal multisines. 

■ The output DFT spectrum of the mth experiment can be written as 

y i -W = GBLA(j(i)k)Ui-Kk) + Yl"'Kk) 

Show that for the choice (6-118), the nyxl vector of the stochastic nonlinear dis-
tortions Y\m\k) is uncorrelated over the experiments m, m = 1,2, ...,nu (Hint: 
using the fact that the phases <j>m(k) are randomly chosen over the experiments m 
and the frequency k, show that two different columns of U(k) are mutually uncor-
related and uncorrelated over the frequency). 

■ If the matrix Ake C- *"« in (6-118) is chosen such that 

AW = §5w(/'coO, 

then the BLA obtained via (6-117) equals the BLA (6-111). Proof this statement 
(Hint: show that the covariance matrix of each column of U(&) equals AkA§, and 
use the fact that two different columns of U(k) are uncorrelated). 

Consider the two-input, one-output system of Figure 6-22, with linear dynamic blocks 

GiCr1) = 1 
1 - 0.5z-' + 0.9z~ 

G3(z-») = 

z-i + 0 5z~2 

G 2 ( z " ' ) = l - l . 5 z - ' ' + 0 . 7 r " a a d 

z~[ - 0.2z'2 

l -0 .8z- ' + 0.U-2 

and static nonlinear block 

w(t) = Zl(t) + z2(t) + 0.01z,(/)z2(f) + 0.02zKt)z2(t) - 0.02Zl(t)z2(t)-

m Excite the system in Figure 6-22 with independent (over time and inputs) and iden-
tically distributed Gaussian noise with zero mean and variance equal to one, and 
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calculate the response for MxN data points with M = 4000 and N = 1024. Esti-
mate the BLA and its variance via (6-113) and (6-114). 

■ Construct full random orthogonal multisines (6-118), with nu = 2 , Ak = In for 
k = 1,2, . . . , A V 2 - l , a n d 

1 1 
1 -1 

Show that T is an orthogonal matrix (T" = T_1). Calculate the steady-state re-
sponse of the two-input, one-output system in Figure 6-22 to the full random orthog-
onal multisines for one period of N samples and M/2 = 512 different random 
phase realizations. Calculate the mean value of the BLA (6-117) and its variance 
over these 512 different random phase realizations. 

Plot the BLAs and their variances obtained via the Gaussian white noise inputs and the full 
random orthogonal multisines. What do you conclude? Are the variances of both BLAs the 
same? If so, explain why (Hint: for the full random orthogonal multisines the stochastic 
nonlinear distortions are averaged over the 2 experiments and the M/2 random phase 
realizations). Is the measurement time of both Gaussian noise and full random orthogonal 
multisine experiments the same? Generalize your conclusions for a multivariable nonlinear 
system with n„ inputs: How many random phase realizations of the full random orthogonal 
multisines are needed in order to have the same covariance of the stochastic nonlinear 
distortions of the BLA estimate as for the Gaussian excitations? □ 
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Identification of Parametric 
Models in the Presence of 

Nonlinear Distortions 

What you will learn: In this chapter we bring all the methods and ideas that were explained 
in the Chapters 4, 5, and 6 together. We identify the best linear approximation of a nonlinear 
system. First we will use random excitations, next we focus on the use of periodic excitation 
signals. In the latter case it is possible to tell much more about the presence and the level of 
the nonlinear distortions. This allows the user to decide about the risks and problems when 
using a linear model in a nonlinear setting. The reader will learn more about the following 
topics: 

- Identifying the best linear approximation starting from experiments with random ex-
citations using time domain methods with parametric noise models (Exercise 97), and fre-
quency domain methods with nonparametric noise models (Section 7.4). 

- Study of the impact of nonlinear distortions on the uncertainty interval (Exercise 98). 
- Identifying the best linear approximation starting from experiments with periodic ex-

citations, using only one realization (Exercise 99), or multiple realizations (Exercise 100). 

7.1 INTRODUCTION 

In the previous chapters we learned how to identify a model for a linear dynamic system un-
der idealized conditions: estimation a linear model for a linear system. However, in real life 
applications, the user faces nonlinear distortions because most systems behave nonlinearly. 
The best choice to describe such a system would be to built a nonlinear model, but that is of-
ten too expensive or time consuming. For that reason, linear system identification is also of-
ten used to model (weakly) nonlinear systems. This is a sound solution as long as the user 
knows what is the impact of the violation of the linearity assumption on the quality of the 
model. Also the use of these models is affected and limited by the presence of nonlinear dis-
tortions. The exercises in this chapter address some of these questions, so that the reader will 
be better equipped and trained to deal with real life situations. 

In each system identification process, the user has to address three major questions: (1) 
How to design the experiment? (2) What model complexity should be used (number of poles 
and zeros)? (3) What noise weighting should be used when matching model and data? 
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Figure 7-1 Wiener-Hammerstein (WH) system: Cascade of a first linear dynamic block G,, a static nonlinear 
system z(t) = flx(t)), and a second linear dynamic block G2. 

The answer to these questions is strongly influenced by the presence of nonlinear dis-
tortions. The exercises in this chapter will learn the reader how to operate under these condi-
tions. 

7.2 IDENTIFICATION OF THE BEST LINEAR 
APPROXIMATION USING RANDOM EXCITATIONS 

In this exercise we identify a parametric plant model for the best linear approximation GBLA 
of a nonlinear system. As was shown in Chapter 6, GBLA strongly depends on the applied ex-
citation signal. In this exercise we use filtered Gaussian distributed noise. The user can shape 
the power spectrum using a generator filter, but the distribution is fixed. The data of this ex-
periment will be processed two times: a first time in the time domain using a Box Jenkins 
model that makes use of a parametric noise model; a second time in the frequency domain us-
ing a nonparametric noise model that is estimated first in the nonparametric preprocessing 
step. Both results will be compared to each other, a linear validation test will be made, and 
the observed standard deviation of the model will be compared to the theoretical expected 
value. As a test system we will use a Wiener-Hammerstein system (see Figure 7-1). For such 
a system it can be shown that for Gaussian excitations GBLA(/ra) = aG,(/'u))G2(/co). 

Exercise 97 (Parametric estimation of the best linear approximation GBLA) Esti-
mate the best linear approximation of a Wiener-Hammerstein system using a filtered Gaus-
sian random noise excitation. 

(i) Process a single data set, the output is disturbed by additive white noise 
■ Generate a Wiener-Hammerstein system (see Figure 7-1) with: 

G]: [ b l 0 , a l 0 ] = b u t t e r ( 2 , 2 * 0 . 2 5 ) ; 
G 2 : [ b 2 0 , a 2 0 ] = c h e b y l ( 2 , 1 0 , 2 * 0 . 2 5 ) ; 
f[x) = x + x2 + x3 

■ Generate the signals, using filtered Gaussian noise as excitation signal: 
Ggen: [bGen,aGen] = b u t t e r ( 3 , 2*f0 . 45); 
uO = filter(bGen,aGen,randn(N+NTrans, 1) ); 
yO = WienerHammerstein(uO); 
Add white disturbing Gaussian noise M), o2 = 0.052 to the output. 
Choose N = 5000 and NTrami = 500. Delete at the end of the generation of the sig-
nals the first iVxrans data points to eliminate the transient effects of the simulation. 

■ Estimate the BLA using the time domain identification toolbox: 
bj([y uO],[OrderG+1 OrderNoise OrderNoise OrderG 0],... 
'maxiter',IterMax,'tol',le-6,'lim',0); 
with OrderG = 4 and OrderNoise = 5. Put IterMax = 100. 

■ Estimate the BLA using the frequency domain identification toolbox. Use the arbi-
trary excitation option in the setting of the toolbox. A nonparametric noise model is 
automatically generated by the toolbox during the preprocessing of the data. 
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Plot the FRF of the estimated transfer functions. Compare the result with the theo-
retic value GBLA(/a>) = aG,0'co)G20'«)) • 

(ii) Process 100 data sets, the output is disturbed by additive white noise. 
■ Repeat this NRep=100 times. Use in that case also the command line implementa-

tions for the frequency domain identification, making use of the following routines: 
U0 = f f t ( u 0 ( : ) ) / s q r t ( N ) ; Y = f f t ( y ( : ) ) / s q r t ( N ) ; 
U0(N/2+l:end) = []; Y(N/2+1:end) = []; 

Data . U = U0 (:) . '; Data . Y = Y (:) . '; 

Data.Freq = [0:N/2]'/N; 

Method.moment = 6; 

[CY, Ym, TY, Gnp] = LocalPolyAnal(Data,Method); 

YVar=squeeze(CY.m_nt); 

Ynt=squeeze(Ym.m_nt); 

fs= 1; f = [0:N/2-l]'/N*fs; 

Fdat = fiddata(Ynt,UO,f,YVar,0); 

nb = OrderG; na = OrderG; 

MFD = elis(Fdat,'z',nb,na,struct('fs',1)); 
■ Verify visually that none of the individual simulation results ended in a local mini-

mum. To do so plot the difference between the estimated and the median FRF and 
eliminate the outliers. 

Plot the mean value and the observed standard deviation of the amplitude of the esti-
mated transfer functions and compare it to the theoretical value obtained with the Box-
Jenkins method (see also Exercise 69 in Chapter 4). 

(iii) Validation: Process a single data set, no disturbing noise is added to the output 
Run a single realization of the simulation and put the disturbing noise equal to zero so 

that only the nonlinear distortions are present. Make a validation test using 
e = r e s i d ( M b j , [ y uO]); 

Observations: We study successively (i) the presence of systematic errors, (ii) the stan-
dard deviation, and (iii) the linear validation test. 

Systematic errors? The mean value GBLAm of the transfer function over the 100 re-
peated simulations is shown in Figure 7-2. The results for the time and frequency domain co-
incide completely on this figure. Also the ratio GBLAm/GBLAth is shown. As expected it is a 

Frequency 
Figure 7-2 Bmtd 

best linear^ approximation. Bold black: GBLA0. Thin black line: 
Estimated GBLA with Box-Jenkins (parametric noise model) and 
with frequency domain (nonparametric noise model). Broken black 
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constant. This proves also that the estimated BLA coincides with GBLAth (verify also that the 
phases are equal). 

Statistical properties: Calculate the mean value and standard deviation. In Figure 7-3 

0 DO 

<D - 2 0 

§ -40 
"p--60 
< -80 

- — -' ^^A/w 
0 

Frequency 
0.5 

Figure 7-3 Study of 
the theoretic and simulated standard deviation of GBLA . Bold black: 
GBI.AO ■ Thin black line: Theoretic standard deviation of Box-Jenkins 
(parametric noise model). Gray line: Simulated standard deviation with 
Box-Jenkins. Broken gray line: Simulated stdandard deviation, with 
frequency domain (nonparametric noise model). Broken black line: Error 

the mean value, the theoretic and observed standard deviation are shown. Also the difference 
between the averaged time and frequency domain results is added to the plot. From the plot it 
can be seen that the theoretical predicted standard deviation is about 3 to 8 dB too small with 
respect to the actual standard deviation obtained from the simulations. 

The difference between the averaged time and frequency domain result is 20 dB 
smaller than the standard deviation, hence there is no statistical significant difference (even 
by taking into account that the standard deviation of the averaged values is scaled down by 20 
dB with respect to that of a single realization). 

Validation test: In this test the disturbing noise was put equal to zero, the only errors are 
due to the nonlinear distortions. The validation results under these conditions are shown in 
Figure 7-4. The autocorrelation of the residuals is shown in the top figure. As can be seen this 
is almost zero within the uncertainty bounds. This is an indication that the coloring of the 
nonlinear distortions is well captured by the BJ noise model, the residuals are white. This is 
confirmed by the fit analysis of the residuals as shown in Figure 7-5. Also the cross-correla-
tion between the input and the residuals is shown in Figure 7-4. Here it can be concluded that 
it is not significantly different from zero. This lead to the final conclusion that the linear 
model passes the classical validation test. The presence of the nonlinear distortions is not de-
tected. 

Discussion From this exercise three lessons can be learned on the behavior of linear 
identification methods in the presence of nonlinear distortions using random excitations. The 
first lesson is that the Box-Jenkins model is flexible enough to include that part of the nonlin-
ear distortions that was not captured by the linear model in the noise model. For the user, 
these errors seem to behave as another additive noise source. This is also why the validation 
test fails to detect the presence of the nonlinear distortions: during the analysis of the residu-
als no flag is turned up to warn the user (lesson 2). This creates a potentially dangerous situa-
tion because the user will be confident in the linear model. From the analysis of the variability 
of the identified models, it turns out that the theoretical calculated standard deviation under 
estimates the actual standard deviation. For a cubic system, the provided uncertainty bounds 
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Figure 7-4 Validation of the Box-Jenkins model (plots taken from the 
Mathworks System Identification toolbox). Upper figure: 
Autocorrelation of the prediction errors. Lower figure: Cross-
correlation between input and the prediction errors. The gray boxes 
indicate the 99% confidence regions. 

can be a factor 3 too small. For nonlinearities of a higher degree, the under estimation can be 
even worse. The user should account for these too optimistic bounds during the rest of the de-
sign (lesson 3). 

7.3 GENERATION OF UNCERTAINTY BOUNDS? 

In the previous exercise, we observed that the theoretic uncertainty bounds are too small with 
respect to the true variance of the estimated models. In this exercise we study this phenome-
non in more detail on a very simple system: y{t) = u0(t)" without disturbing noise. 

Exercise 98 Variance of the parametric estimate of the BLA of y = «g-
Part 1: a cubing system y = ul 
■ Generate a random noise excitation u0~N(0, 1) with length N, and calculate 

y0 = ul. No disturbing noise is added to the output. 
■ Estimate the aBLA in least-square-sense: vBLA = aBLA"o: 

ffl 20 

? ° 
E-20 
1.-40 
I -60 0 

Frequency 
0.5 

Figure 7-5 Striy 
of the prediction errors. Black lines: FFT of the prediction 
errors. Gray line: FFT of the output. 
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V y0(k)u0(k) 
(7-1) 

Calculate the error signal e(t) = y0(t) - aBLAu0(t) and the theoretical variance: 

1 l " e{tY 

ol N XT N 

■* u0(k)2 y u0(ky 
"k=\ ^ = 1 

(7-2) 

■ Repeat this 100 times and estimate the actual variance of aBLA from these results. 
■ Plot the estimated variance and the theoretical variance ajj, for each of the 100 real-

izations of the input. 
Part 2: y = un

0 

m Repeat the previous simulations for y = ul, n = 3, 5, 7, 9 , and N = 1000. Esti-
mate from 100 realizations the actual variance of aBLA, and an averaged estimate of 

■ Plot the results. 
Observations (see Figures 7-6 and 7-7) From Figure 7-6, it can be seen that the calcu-

lated standard deviation varies a lot from one realization to the other, especially for short data 
records. This is due to the random input u0. For a growing length of the data record, the re-
sult becomes more stable. From the figure it is also seen that the actual standard deviation is 
about a factor 2.5 larger than the theoretical one. From Figure 7-7 it seen that the under esti-
mation of the variance grows with the degree of the nonlinearity. 

Discussion As mentioned at the end of the previous exercise, the uncertainty bounds 
that are calculated on the parametric BLA estimates under estimate the actual standard devia-

N N = 10 100 

Q 5 

CO l̂î WU ĥ K^iJi^Jhhw 
50 

N = 1000 
100 °0 50 

N = 10000 
100 

50 
Exp. Nr. 

0 

A A W S I ^ A ^ W ^ ^ M K ' V ^ * 1 M*A«A/> 

100 0 50 
Exp. Nr. 

100 

Figure 7-6 Study of the observed and theoretical standard deviation of the best linear 
approximation of y = u3. The normalized observed standard deviation 
(aihjN) is plotted for 100 realizations of an experiment with varying 
record length N = 10, 100, 1000, and 10,000 , and compared to the actual 
values estimated from the 100 realizations (horizontal line). 
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Figure 7-7 Study of the experimental and theoretical standard deviation of the best linear 
approximation of v = u" as a function of the nonlinear degree n. Left: 
Simulated standard deviation; Right: Ratio of the simulated and theoretical 
standard deviation. 

tion. When the nonlinear distortions are the dominating error source, it can be shown that this 
underestimation is cj/al = In + 1, with n the degree of the nonlinearity. This factor goes 
to 1 when the disturbing noise dominates. The user should keep this under estimation in mind 
whenever it is not sure that there are no nonlinear distortions present. This can be verified us-
ing a nonparametric distortion analysis using the methods of Section 6.2. The under estima-
tion of the variance is NOT present in a nonparametric analysis. The reader is referred to 
Schoukens etal. (2010a, 2010b). 

7.4 IDENTIFICATION OF THE BEST LINEAR 
APPROXIMATION USING PERIODIC EXCITATIONS 

In Chapter 6 it was explained that it is possible, using well designed multisines, to measure 
the FRF, and to detect simultaneously the presence of nonlinear distortions. Two possibilities, 
the fast and the robust method, were discussed. In the fast method, a well designed multisine 
is used to measure the FRF at the excited frequencies. At the same time the nonlinear distor-
tions are detected, qualified, and quantified a the detection lines (a set of well-chosen nonex-
cited frequencies). In the robust method, multiple realizations of a random phase multisine 
are used to measure separately the nonlinear distortions and the disturbing noise level. In both 
cases we can use this information to estimate GBLA, using a frequency weighting that in-
cludes also the nonlinear distortion levels. This is different compared to the frequency do-
main identification methods that were illustrated in Section 4.4. In that case the frequency 
weighting was set solely by the variance of the disturbing noise. In Section 7.2, the paramet-
ric noise model captured both the noise and nonlinear distortions, but the user didn't get any 
warning for the presence of the nonlinear distortions. That is the major difference with the ap-
proach presented in this section, where explicit information of the nonlinear distortions is 
passed to the user. In the next exercises we will illustrate how to use the fast and the robust 
method to estimate a parametric model for GBLA. In opposite to the other exercises in this 
book we will give here a guided tour, using the GUI of the frequency domain identification 
toolbox. We advice the reader to follow this tour on her/his own computer, and to experience 
directly the impact of the choices that are made by varying some of the settings of the param-
eters that we advice. 
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7.4.1 Single realization of a well designed random 
phase multisines 

Exercise 99 (Estimate a parametric model for the best linear approximation GBLA 
using the Fast Method) In this exercise we illustrate the fast method using the frequency 
domain system identification toolbox FDident. First the special multisine excitation is de-
signed using the GUI of FDident. Next the nonlinear simulation is done, and the simulation 
results are captured in the GUI using the "Read Time Domain Data" window. These data are 
further processed in the "Variances; Nonlin. Anal.; Averaging" window before a parametric 
transfer function estimate is made using the "Computer Aided Model Scan" window.. 

Figure 7-8 Basic window of the GUI of the FDident toolbox. 

To make this exercise, the following options should be switched on in the general win-
dow: The signal type should be switched to "periodic only," the model type to "nonlinear er-
rors," and the user level should be set to "advanced." 

A. Generate a random phase multisine with a 
random harmonic grid for the fast nonlinear 
analysis 

In this step we generate a well-designed odd multisine as explained in Section 6.1. A number 
of randomly selected odd frequencies is also not excited. The parametric model will be esti-
mated using the excited frequencies, while the nonexcited frequencies are used to detect and 
analyze the nonlinear distortions. Because we use an odd multisine, the even nonlinear distor-
tions will not disturb the measurements and the estimated linear model (see Section 5.1). The 
signal design parameters are set by opening the "Excitation Signal Design" window (see 
Figure 7-9). Make the following settings: Number of samples is 1000; clock frequency is 
1000 Hz; fmin = 1 and fmax = 499 Hz. Set the number of generated periods to "Reps" = 8, 
and only 1 realization is made by setting "Exps"=l. Push next "Adjust freqs." to create the 
random harmonic grid, followed by "Design." The resulting spectrum can be visualized with 
"view spect." Once the design is finished, the window should be closed and the arrow data ex-
ported to the MATLAB work space by clicking on the highlighted arrow (see Figure 7-10). 

B. Simulate the nonlinear system 
Extract the excitation signal from the time domain object (uO = name . i n p u t ) and make 
the following simulation on a Wiener-Hammerstein system yO = G2(f(Gl(u0))): 

■ [bl0,al0] = butter(OrderGl,2*fMaxl); % Gl 

■ [b20,a20] = chebyl(OrderG2,10,2*fMaxl); % G2 

■ StdNoise = 0.01; % std. dev. of the disturbing noise 

■ NTrans = 1000; % to eliminate the simulation transients 
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Figure 7-9 Step 2: Setting of the excitation parameters. 

■ pO = filter(blO,alO,uO); % first linear system Gl 

■ qO = pO+pO.~2+p0."3; % static nonlinearity function 

■ yO = filter(b20,a20,q0); % 2nd linear system G2 

■ y = yO+StdNoise*randn(size(yO)); % add disturbing noise 

■ uO(l:NTrans) = []; y (1:NTrans) = []; %eliminate transients 

■ tdData = tiddata(y(:),uO(:),1); % create object 
tdData.periodlength = 1000; % set the period length 
After the elimination of the simulation transients, 7 periods remain available. These 

data are loaded in the GUI using the "Read Time Domain Data" window. Next the data are 
preprocessed: the 7 periods are split in individual subrecords, the FFT is calculated, and the 
frequency band of interest is selected (see Figure 7-11) 

The data are now ready to be processed in the "Variances; Nonlin. Anal.; Averaging" 
window (see Figure 7-12). It is in this window that the user can choose to extract the nonlin-
ear frequency weighting information from the non excited frequencies by setting the thumb 
nail "Interp. Nonlin. Var. Anal.". In practical experiments, it often happens that the detection 
lines are not perfectly equal to zero. A first order correction is automatically applied to com-
pensate for these errors (see Section 6.1.2.B). The result of this nonparametric preprocessing 
step is shown in Figure 7-13. The measured FRF, the impact of the nonlinear distortions and 
the disturbing noise is plotted. It is clear that in this example the nonlinear distortions are the 
dominating errors that are far more important than the disturbing noise distortions. These re-

■ Otfffoirf$ I 

- EZwJXJIrU' 
or QwSpBj* 

w_ 

Figure 7-10 Step 3: The excitation signal is ready, export the result to the MATLAB work space. 
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Figure 7-12 Step 5: The time domain data are transformed to the frequency domain. 
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Figure 7-13 Step 6: Nonparametric estimate of the FRF, the nonlinear distortions, and the 

disturbing noise level. 

suits are used to estimate a parametric model for GBLA, using a frequency weighting that ac-
counts for the nonlinear distortions and the disturbing noise. 

C. Parametric estimate of GBLA 

In the next step, the preprocessed data can be used to identify the best linear approximation 
starting from the averaged input and output discrete Fourier transform data, using the non-
parametric distortion analysis results as a frequency weighting. The nonlinear distortions are 
considered as an additive noise source to the output, the input is assumed to be exactly 

130 
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Figure 7-14 Step 7: Identify all proper models up to degree 4. 

known. Make a scan over all proper model structures for the plant model up to order 4. This 
can be done using the "Computer Aided Model Scan" window (see Figure 7-14). Study the 
identification results, select the best model using the AlC-criterion; analyze the residuals. 

Observations (see Figures 7-15, 7-16, and 7-17). From the first figure, it is seen that 
the best model is of order na - 4 and nb = 4 . The theoretical value of the cost function is 
close to the theoretical expected value of the cost function. The errors between the model and 
the measurements are well described by the 50% and the 95% error bounds. In the next fig-
ure, the whiteness of the normalized residues is verified. Also here a reasonable good agree-
ment is found. In the last figure the poles and zeros of 6BLA are shown. 

Discussion Identification in the presence of nonlinear distortions The models mat are 
found using this approach are very similar to those obtained using a random excitation with 
the same flat power spectrum as was done in Section 7.2 using the Box-Jenkins model. The 
major difference is that the user gets much more information about the level of the nonlinear 
distortions that is present, using the periodic excitation approach. This is very valid informa-
tion because this nonlinear level provides a natural bound on the reliability of the model. It 
does not make much sense to push a linear design beyond the nonlinear distortions level. 
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Figure 7-15 Step 8: Selection of the "best" model. 
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Figure 7-16 Step 9: Study of the residuals. 

Changing the nature or the level of the excitation signal will create variations in the model 
that are in the same order of magnitude as what is provided by this bound. We encourage the 
reader to process the same data also using the linear setting, extracting the variance informa-
tion of the disturbing noise from the repeated periods only (the detection lines are not used to 
extract information about the nonlinear distortions level). 

From Figure 7-13, it can be seen that the disturbing noise is white in the frequency 
band of interest at a level that is 30 to 40 dB below the nonlinear distortion level. In Figure7-
18, the result of FDident using this setting is shown. The cost function was 1000 times larger 
than the theoretical expected value, although the fit is quite good. This corresponds to the 
nonlinear distortions that are about 30 dB above the noise floor. It can be seen that the residu-
als are also much larger than the error bounds that are obtained on the basis of the noise vari-
ance information. This points very strongly to the presence of nonlinear distortions, which 
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Figure 7-17 Step 10: Poles and zeros of the identified parametric model. 
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Figure 7-18 Identification result if only the disturbing noise variance is used as frequency weighting. 

are known to be present from the previous analysis. In practice, the user can use this as an in-
dication to switch to a nonlinear analysis of the data. 

7.4.2 Multiple realizations of the random phase 
multisine 

In this section we use the robust method to characterize the noise and the nonlinear distortion 
level. The reader is referred to Section 6.1.1 for a detailed discussion. The starting point is to 
generate M realizations of a random phase multisine, and for each realization we measure P 
periods in steady state. From the repeated periods, the disturbing noise variance is estimated. 
Next the variance of the nonlinear noise distortions plus the variance of the disturbing noise is 
estimated from the variations over the realizations. In each step a proper scaling of the vari-
ances should be made to account for the averaging effects. In order to get an idea of the abso-
lute distortion levels, it is necessary to scale the estimated variances back to a single 
realization with only one period measured. However, for the estimation of the parametric 
GBLA model, the variance on the averaged data should be used as a frequency weighting be-
cause it are these data that are used as raw measurement input to the identification scheme. 

Exercise 100 (Estimating a parametric model for the best linear approximation 
GBLA using the robust method) 

A. Generate a set of random phase multisines 
In the first step we generate M = 1 realizations of a random phase multisine. This can be 
done either with the routines written before, or using the "Excitation Signal Design" of the 
GUI (see Figure 7-9). Select the option "Robust multi-experiment" and use the following pa-
rameters for the signal: number of points in a period N = 1000, clock frequency 
fs = 1000 Hz, /min = 1 Hz, /max = 449 Hz, number of repetitions M = 7 , and number of 
periods P = 3 (one period will be used to eliminate the transients in the simulation). Push 
next "Design" and export the data from the highlighted arrow to the workspace. 

B. Simulate the nonlinear system 
Apply the simulation to each of these M = 1 realizations of the random phase multisine, us-
ing the settings of Exercise 99 and delete each time the first period to eliminate the transient 
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Figure 7-19 Robust method: results of the noise and distortion analysis. 

effects of the simulation. Load the data in the GUI using the "Read Time Domain Data" win-
dow and apply the preprocessing (see Figure 7-11). In the next step the distortion and noise 
analysis using the "Variances, Nonlin. Anal., Averaging" window (see Figure7-13). The re-
sult of this analysis is shown in Figure 7-19 The FRF is shown together with the standard de-
viation of the disturbing noise and the nonlinear distortion. The latter are the dominating 
errors in this example. Two nonlinear distortion curves are plotted. The first shows the actual 
level of the distortions as they are present at the output of the system. However, to estimate 
the model, the data that are averaged over the 7 realizations. Although averaging does not 
eliminate the presence of the nonlinear distortions, their impact on the variance of the esti-
mated FRF of GBLA is reduced and it is the latter variance that should be used during the 
identification since the averaged data are used in the identification step. 

C. Parametric Estimate GBLA 
The preprocessed data are used to identify the parametric model for GBLA. Again a scan over 
the model order can be made. The results for the model of order na - 4 and nb = 4 is 
shown in Figure 7-20. The analysis of the residues is shown in Figure 7-21. 

Observations (see Figures 7-20 and 7-21) From these figures it can be seen that the re-
sults are again very similar to those that were obtained before. Also in this case, the cost func-
tion is very close to its expected value. The correlation test of the residues does not indicate 
the existence of remaining errors, the residues are white within the uncertainty bounds. 

Discussion Compared with the previous Exercise 99, the reliability of the disturbance 
levels in this test are more reliable because the nonlinearity levels are obtained from M - 1 
realizations of the random phase input, instead of extrapolating the results from a small num-
ber of detection lines as was done before. The reader should realize that also in this case the 
confidence intervals are under estimating the true variability of the parametric estimates, the 
conclusions obtained in Exercise 98 remain also valid here. 

7.5 ADVISES AND CONCLUSIONS 

In this chapter we applied the linear identification approach in the presence of nonlinear dis-
tortions. 

For Gaussian noise or random phase multisine excitations, the estimate converges to 
the parametric best linear approximation GBLA(0) without needing to change the use of the 
algorithms. Depending upon the choice of the excitation signal and the selected preprocess-

HesLt: Wagiitudas C trt and VariMcae 

n var. /Vial. 

- isma info -
d1l = 0 DD1 Hz 

■ frfcqs = 419 

H"rn = D.0Di H I 

'Tm3S?D443Hz 

Unaxrari^Ma' ' 

■irli 
15 

j Frequancy rl^lrHin ■ 

i. CDncal 

L » W : 

disturbing noise 

nonlinear 
distortions 

averaged 
nolinear 
distortions 

disturbing noise 



Section 7.5 ■ Advises and conclusions 

17-Nw-2Dlrjt£[G:49 
Dan Btv. 2*-1 
.■><?ar QaamfJas 
Cost 5e2,iHecr5a-3.fl,r4orJHrarJ 

MSL604.S 

Maen ii-od±l e-ror ■: :6633 

'<-« 

. . . 

E 
& 

S f f f l i v ;iua«s 

B s t B Model; ■ ' 

-Sr! ' . Wt f^UHB. . [ CMMI I 

Figure 7-20 Identification result using the weighting obtained from the robust distortion analysis method. 

M m e l f l r t i n U 

- 2 M -1IM 

S « « M o d * 

17-Msv-aMotsaiJe 
D o m l p T l M 
■I MV Oswntfoi 

Cost 5E2.1hraf: 5334. Nonlrmr ' 
MOL804.1 

Mean model error: 0JHS3] 

I Cross Qua 1 

I dQM 1 

Figure 7-21 Correlation test of the residues. 

ing procedure, the user gets whether or not a warning for the presence of nonlinear distor-
tions. 

For random excitations, the (non)parametric noise variance estimate that is retrieved is 
<*noise + N̂Ldistortion • The linear model that is estimated, using this noise weighting, passes all 
validation tests without indicating the presence of the nonlinear distortions. 

For periodic excitations, the result depends upon the followed procedure, but in all 
cases it is possible to warn the user for the presence of nonlinear distortions if the methods 
are properly applied. Below we discuss briefly the three possible situations: 
(i) If the variance is estimated over successively measured periods of a single realization of 
the random phase multisine, only the disturbing noise variance a£,ise is retrieved. The pres-
ence of the nonlinear distortions is visible in the value of die cost function that will be (much) 
larger man the theoretical value, while the whiteness test is still ok. 
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(ii) If the variance is estimated over multiple realizations of a random phase multisine, again 
the sum c%oise + 0"NLdistortion is retrieved and the presence of the nonlinear distortions is no 
longer reflected in the value of the cost function. However, if for each realization at least two 
periods are measured, it is still possible to separate both variance contributions. This gives the 
user already in the preprocessing step access to the full analysis of the nonlinear distortions 
and the noise. 
(iii) If a random grid multisine is used, it is possible to detect the presence of the nonlinear 
distortions at the "detection lines," while the variance of the noise can still be measured from 
the successively measured periods. In that case, it is also possible to generate a frequency 
weighting that accounts for the nonlinear distortions, but this method is less robust than the 
method based upon multiple realizations of the excitation signal. 

From the exercises it also became clear that the theoretic uncertainty bounds that are 
calculated from the linear identification theory are underestimating the variability of the 
model that is induced by the nonlinear distortions. The user should account for that when us-
ing these bounds in later designs. 
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