
Local Polynomial Method Frequency-Response Calculation
for Rotorcraft Applications

Benjamin Fragnière
Research Engineer

German Aerospace Center (DLR)
Braunschweig, Germany

Johannes Wartmann
Research Engineer

German Aerospace Center (DLR)
Braunschweig, Germany

ABSTRACT
Frequency-response function calculation is an essential element in rotorcraft data analysis, especially for system iden-
tification, model validation and model analysis. This article analyzes the performance of a recently developed method
for the calculation of frequency-response functions, called the local polynomial method (LPM), when applying it to
rotorcraft systems. The local polynomial method is presented as an alternative to the methods that are based on seg-
menting and windowing the data and is particularly effective in reducing the leakage error. The performance of both
methods is first compared based on simulated data from linear helicopter models in various conditions. The simulated
data allows to separately investigate the influence of: signal-to-noise ratio, signal length, frequency range, type of ex-
citation and input correlation. The conditions under which the local polynomial method is superior to the windowing
methods are given. Finally, flight test data are used to validate the results observed in the simulations.

NOTATION
fs sampling frequency (1/s)
Fxx autospectrum of x
Fxy cross-spectrum of x and y
G frequency-response function
gs Taylor coefficients of G
Inu identity matrix of dimension nu
J cost function (−)
k DFT line
LPM local polynomial method
LS-Spec least-squares of spectra method
ML-Amp maximum-likelihood of amplitude and

phase method
m number of segments
N number of samples of the signal
nu number of inputs
nWin number of windows
p roll rate (rad/s)
R order of the polynomial approximation
RMSE root mean square error (−)
SNR signal-to-noise ratio (−)
T DFT of the leakage term
ts Taylor coefficients of T
TWin window size (s)
u(t) input signal
U(k) DFT of the input signal
w(t) window function (−)
Wi weighting function
y(t) output signal
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Y (k) DFT of the output signal
α ,β curve fitting parameters for the SNR-

RMSE equation
δx longitudinal cyclic input (%)
δy lateral cyclic input (%)
εr random error (−)
φ phase of the FRF
γxy coherence of x and y (−)
ω frequency (rad)
Θ matrix of unknown parameters

INTRODUCTION
The characterization of a dynamical system from experimen-
tal data commonly starts with the calculation of its frequency-
response function (FRF). The FRF provides the gain and
phase of the output signal as a function of the input signal
frequency. In rotorcraft data analysis like in many other re-
search fields, an accurate calculation of the system’s FRF
is necessary to provide an optimal basis for further evalu-
ation. The FRF can be used as-is for the analysis of the
frequency behavior of a system, but it is most often used
as an intermediate step for system and parameter identifica-
tion or for model validation. FRF calculation methods have
been used for rotorcraft system identification since the 1980th,
see (Refs. 1–3). Over the last decades the applied methods
have been enhanced to account for the requirements of rotor-
craft environment: time-limited measurements, non-periodic
inputs, multiple-input and multiple-output (MIMO) systems,
poor signal-to-noise-ratio, etc.

A well-known phenomenon appearing when transforming
such finite and non-periodic signals from the time to the fre-
quency domain are leakage errors. In the frame of FRF calcu-
lation, leakage can be interpreted as a transient term resulting
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from neglecting the input coming before the start of the record
and the output coming after the end of the record, (Ref. 4).
Leakage yields a biased and thus corrupted estimate of the
FRF even in the absence of disturbing noise.

A classical way to reduce leakage is to multiply the sig-
nals by a special window before performing the transform into
the frequency domain. The window has the task of bringing
the initial and final condition of the signal record to the same
value (usually zero) while minimizing the spectral impact in
the frequency domain. No window is able to totally suppress
the leakage error. The shorter the duration of a record is, the
higher the level of leakage will be. Therefore the leakage issue
will especially be present when segmenting a signal record
into several (shorter) sub-records. When FRFs are sought that
are valid over a broad range of frequencies, different window
sizes are used and combined to form a composite FRF. There-
fore FRF calculation methods using windows to reduce leak-
age errors are called “composite windowing methods” here-
after.

Whereas the usage of windows has been a standard for
FRF calculation since the 1980’s, a new method, so-called
Local Polynomial Method (LPM), was developed at the end
of the 2000’s (Refs. 5–8). LPM is presented as an alterna-
tive to the windowing methods, with better performance due
to an improved reduction of the leakage error. Examples of
analysis of the LPM performance can be found for various
dynamical systems, such as electrical circuits, flexural vibra-
tions of a steel beam, flutter of an aircraft wing or vibrations
of an arc bridge (Refs. 7–9).

In this article, the performance of the LPM when applying
it to rotorcraft systems is assessed and compared to proven
composite windowing methods. For this aim, first simulated
data is used to investigate under which circumstances and to
which extend the LPM is superior to the composite window-
ing methods. Finally, flight test data of DLR’s research ro-
torcraft ACT/FHS (Active Control Technology/Flying Heli-
copter Simulator, a highly modified EC135, see e.g. (Ref. 10)
and Figure 1) is used for validation of the simulation results.

Fig. 1: DLR’s ACT/FHS research rotorcraft.

FREQUENCY-RESPONSE CALCULATION
METHODS

Common frequency-response calculation methods segment
the time domain input and output signals using different win-
dows before transforming the time domain signal into the fre-
quency domain. When FRFs are sought that are valid over
a broad range of frequencies, composite windowing methods
are often applied. These methods work with different segment
lengths and calculate the final composite FRF from the results
for each segment length though an optimization process. Two
investigated implementations of composite windowing meth-
ods and the new local polynomial method are described briefly
in this section.

Composite Windowing Methods

The overall frequency-response calculation sequence of com-
posite windowing methods is depicted in Figure 2. The first
windowing method considered in this paper has been pro-
posed in (Ref. 11) and is used in CIFER®. This method is
explained in detail in (Ref. 12) and has been extensively used
for rotorcraft system identification: e.g. Bo-105, UH-60, Bell-
206, AH-64, SH-2G etc. This method was implemented inde-
pendently at DLR by (Ref. 13). Therefore, the results of this
method are considered to be similar to the CIFER® results,
but are not generated with CIFER®.

The second method is presented in (Ref. 14). Both meth-
ods are used in DLR’s system identification tool FITLAB and
have been applied e.g. for model validation in the frequency
domain of DLR’s research rotorcraft ACT/FHS (Refs. 15,16).

Because the main difference between both methods lies
in the way, the composite FRF is calculated from the re-
sults for the individual windows, the first method is called
“LS-Spec” (Least-Squares of Spectra) and the second method
“ML-Amp” (Maximum-Likelihood of Amplitude and Phase)
in the following.

Segmenting and Windowing In the first step of frequency-
response calculation, the input and output signals are subdi-
vided into m segments and multiplied with a window function
w(t) in the time domain. The optimal window size Twin to
ensure leakage error suppression on one hand and preserva-
tion of the information content on the other is large for low
frequencies and small for high frequencies. Thus, there is no
optimal window setting and different window sizes Twin are
used consecutively. The results are composed afterward.

LS-Spec uses half-sine windows

w(t)half−sine = sin
(

π
t

Twin

)
(1)

with a window overlap of 67%. The minimum and maximum
window length are chosen based on the frequency range of
interest and the guidelines given in (Ref. 12). Generally, five
equally distributed windows are used.
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Fig. 2: Frequency-response calculation sequence of the
composite windowing methods.

ML-Amp applies the commonly used Hanning window

w(t)Hanning =
1
2

(
1− cos

(
2πt
Twin

))
(2)

with 50% overlap to segment and window the time domain
signals. The validity function

f1 ·
( m

10

)2
≤ fk ≤ f1 ·

(( m
10

)2
+14

m
10

+1
)

(3)

with f1 = m+1
2·N·ts describes for any number of segments m

which frequencies fk are in the the frequency range of va-
lidity. This function is empirical but provides good results
for helicopter response data. Based on the desired frequency
range, the validity function gives the minimum and maximum
number of segments necessary. All segment numbers between
these minimum and maximum values are used.

Chirp Z-transform In the next step, each segment for each
window size is transformed from the time into the frequency
domain using the Chirp Z-transform (CZT). The CZT is a fast
Fourier transform (FFT) that has the advantage, that the de-
sired frequency points can be specified and are not equally
distributed on the unit circle.

Segment Averaging The m CZT results for each segment
of one window are averaged afterward. The averaged input
autospectrum is given by

F̂xx(ω) =

(
1

Um

) m

∑
k=1

Fxx,k(ω) (4)

with the scaling factor U depending on the window function.
The output autospectrum F̂yy(ω) and cross-spectrum F̂xy(ω)
are determined in the same way.

MIMO Conditioning For coupled MIMO systems with cor-
related inputs, the spectra have to be conditioned to reduce the
influence of secondary inputs to the selected output. The gen-
eral solution for the FRF G used by the LS-Spec for multiple
inputs is formulated as the matrix equation

Ĝ(ω) = F̂−1
xx (ω)F̂xy(ω) (5)

and is then solved for each frequency point ω , (Ref. 17). ML-
Amp corrects the spectra iteratively, (Ref. 18).

Calculation of Composite Results The main difference be-
tween both methods lies in the way, the composite FRF is
calculated from the results for the different window lengths.
The LS-Spec method calculates all composite spectra from
one cost function, whereas the ML-Amp method calculates
the composite amplitudes, phases and coherences separately
from the results for the different windows.

For the LS-Spec method, the random error

εr =Cε

(
1− γ2

xy
) 1

2

|γxy|
√

2m
(6)

(with γxy the coherence function and Cε a constant to account
for window overlap) is used to calculate the weighting func-
tions Wi for each frequency ω and each window i

Wi =

(
εr,i

εr,min

)−4

. (7)

Then, the weighted least-squares cost function

J(ω) =
nWin
∑
i

Wi

[(
F̂xx,c−F̂xx,i

F̂xx

)2

+

(
F̂yy,c−F̂yy,i

Fyy

)2

(
F̂xy,c−F̂xy,i

Fxy

)2

+5.0
(

γ̂xy,c−γ̂xy,i
γxy

)2
] (8)

(with nWin the number of windows) is minimized iteratively
for each frequency ω to calculate the composite spectra. Note
that the real and imaginary parts of F̂xy are evaluated sepa-
rately. Several post processing steps ensure smooth spectra
after the optimization. The composite frequency-response and
coherence function are determined from the composite spec-
tra.

ML-Amp composes the frequency responses for each seg-
ment length by maximizing a log-likelihood cost function. A
Cauchy-Lorentz distribution of the weighted difference be-
tween the amplitude estimate and the mean amplitude for each
frequency point is used in the optimization. The differences
are weighted with the amplitude standard deviation

σ (|G(ω)|) = εr(ω)|G(ω)| (9)
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and are only used, if they satisfy the validity function in equa-
tion (3). The phase and coherence are optimized in a similar
way using the standard deviation

σ (ϕ(ω)) = σ (γxy(ω)) = arcsin(εr(ω)) . (10)

Thus, no composite spectra are estimated, but the final
frequency-response and the corresponding coherence are de-
termined directly.

Local Polynomial Method

Define local FRF G and local
Leakage T as Polynomials

fo
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Solve Y = GU +T for G and T
in the Neighbor Frequencies

Time Domain Signals

Fast Fourier Transform

Frequency Response

Assign local G(ωk) to
global FRF(ωk)

Fig. 3: Frequency-response calculation sequence of the
Local Polynomial Method.

An overview of the frequency-response calculation se-
quence of the Local Polynomial Method (LPM) is depicted
in Figure 3. In contrast to the windowing methods, the LPM
does not eliminate the leakage term through the application of
windows, but it considers the leakage as an unknown function
that has to be determined. Hence, the LPM assumes that the
discrete Fourier transform (DFT) of the input u(t) and output
y(t) measurements

U(k) =
1√
N

N−1

∑
t=0

u(t)e− j2πt/N

Y (k) =
1√
N

N−1

∑
t=0

y(t)e− j2πkt/N

(11)

are linked by the so-called extended transfer function model

Y (k) = G(ωk)U(k)+T (ωk)+V (k) (12)

for each DFT line k (k = 1, ...,N) of frequency ωk = 2πk fs/N.
Here fs is the sampling frequency, N the number of samples,
G(ωk) the FRF of the system, T (ωk) the leakage term and
V (k) the DFT of the disturbing noise, which is assumed to be

a filtered white noise, uncorrelated over the DFT lines k and
circular complex distributed.

The estimation of the FRF with the LPM is based on
the assumption that the FRF G(ω) and the leakage T (ω)
are smooth functions of frequency. Therefore, they can be
approximated by complex polynomials within a narrow fre-
quency band. The polynomial approximations at frequencies
ωk+r (r = ...,−2,−1,0,1,2, ...) of G(ω) and T (ω) of the or-
der R and centered around frequency ωk are given by

G(ωk+r) = G(ωk)+
R

∑
s=1

gs(k)rs,

T (ωk+r) = T (ωk)+
R

∑
s=1

ts(k)rs,

(13)

where gs and ts are the Taylor coefficients of G and T respec-
tively. R is a parameter of the method that has to be chosen by
the user, but is usually set to R = 2 in the literature.

Considering equation (12) at frequency k + r and using
equation (13) leads to

Y (k+ r) =

(
G(ωk)+

R

∑
s=1

gs(k)rs

)
U(k+ r)

+

(
T (ωk)+

R

∑
s=1

ts(k)rs

)
+V (k+ r)

= ΘK(k+ r)+V (k+ r)

(14)

where Θ is the matrix of the unknown complex parameters,
namely the Taylor coefficients of G and T at frequency k,

Θ = [G(ωk) g1(k) g2(k) ... gr(k) T (ωk) t1(k) t2(k) ... tr(k) ] . (15)

K(k+ r) contains the input data

K(k+ r) =
[

K1(r)⊗U(k+ r)
K1(r)

]
(16)

with

K1(r) =


1
r
...

rR


Collecting equation (14) for the 2n+ 1 neighbours of fre-

quency k (r = −n,−n+ 1, . . . ,n) gives the following set of
equations

Yn = ΘKn +Vn (17)

where Yn, Kn and Vn are matrices with the form

Yn = [Y (k−n) Y (k−n+1) ... Y (k) ... Y (k+n) ] . (18)

n is a parameter of the method that has to be chosen by
the user under the constraint 2n+ 1 ≥ (R+ 1)(nu + 1), with
nu being the number of inputs. The constraint ensures that
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equation (17) is an over-determined set of equations for the
unknown estimate Θ̂ that is to be solved in least-square sense

min
Θ
‖Yn−ΘKn‖ . (19)

The choice of the parameter n is a trade-off between an ef-
fective noise reduction (n big) and a low interpolation error
(n small). In (Ref. 19), a method is described that allows
choosing the optimal n at every frequency k. Thus Θ̂ pro-
vides the best fitting complex polynomials for G and T around
frequency k. The FRF estimate at k-th frequency is obtained
from Θ̂ using

Ĝ(ωk) = Θ̂

[
Inu

0

]
(20)

with Inu being the identity matrix of dimension nu. The steps
above are repeated for every frequency k of the spectrum.
Note that special attention has to be paid to the lower and
higher edge frequencies of the spectrum. There, the 2n+ 1
neighbouring frequencies cannot be centered around the fre-
quency k, but have to be shifted to the right or to the left re-
spectively.

LPM is available for both SISO and MIMO systems and is
described in details in (Ref. 4). It has been shown in (Ref. 8)
that using concatenated data leads to a reduced bias and vari-
ance error of the FRF estimate. The MIMO algorithm of the
LPM can be used unchanged for concatenated data.

COMPARISON OF THE METHODS

In order to systematically compare the performance of the
LPM and the composite windowing methods, a set of sim-
ulations has first been run using analytical linear helicopter
models, whose true FRF is known. The input and output sig-
nals from these simulations have been used to calculate an
estimate of the FRF through the different methods. The use
of analytical models allows comparing the respective errors
of the FRF estimates. Two different helicopter models have
been used and simulations have been run with varying signal-
to-noise ratios, signal lengths, excitation types, noise spectral
distributions and correlations between the input signals.

Simulation Models

The first simulation system is the identified Bo-105 helicopter
model from (Ref. 11), reduced to the states of pitch and roll
rates, longitudinal and lateral flapping angles and two lateral
lead-lag canonical states. This model has the advantage to
present three distinct FRF profiles along the spectrum: largely
constant in the lower frequencies, with a resonance shape at
medium frequencies and with a quickly decreasing profile for
the higher frequencies. The transfer function from the lateral
cyclic δy to the roll rate p for this model is shown in a Bode
diagram in Figure 4.

The second model used for the simulations is a high-
order model of the ACT/FHS at 60 knots with 35 internal
states. This model is a result of the identification performed
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Fig. 4: Transfer function from δy to p of the simplified Bo-
105 model.

in (Ref. 16) and has been slightly modified to be stable. Its
transfer function from δy to p is shown in a Bode diagram in
Figure 5.
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Fig. 5: Transfer function from δy to p of the stabilized
high-order model of the ACT/FHS.

Signal-to-Noise Ratio

The first set of simulations used for the calculation of a FRF
estimate is run with a white noise excitation in one input and
no excitation in the others. The output is taken without any
disturbing noise. A white noise has been chosen as input sig-
nal because this type of excitation permits to have a homoge-
neous power distribution along the frequency spectrum and is
therefore optimal for a generic analysis. The section Type of
Excitation below investigates the difference of results between
a white noise excitation and a sweep excitation. All simula-
tions performed in this study confirm the theoretical result that
the LPM always performs better than the windowing methods
in the absence of disturbing noise, (Ref. 6). See Figure 6 for
an example of the FRF estimate of the different methods from
lateral cyclic δy excitations to roll rate p for the ACT/FHS
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model. In this example, the simulation duration is 90 seconds
with samples collected at 500 Hz. The error depicted in Fig-
ure 6 is the relative error defined as

Error(k) =
|FRFestimate(k)−FRFtrue(k)|

|FRFtrue(k)|
(21)

for each frequency k of the spectrum.

For cases with added noise, the results observed in the sim-
ulations vary considerably. No theoretical quantitative indica-
tion is given in the literature that allows to compare the LPM
with composite windowing methods in presence of disturbing
noise. (Ref. 6) states as a general trend that the covariance of
the FRF estimate is smaller for the LPM than for the window-
ing methods. But the same article reveals that some simula-
tions showed opposite results to this general trend.
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Fig. 6: True and estimated FRF from δy to p of the
ACT/FHS model in the case without noise.

In order to assess the performance of the different meth-
ods with respect to a disturbing noise, simulations have been
run with different signal-to-noise ratios (SNR) and the cor-
responding root mean square (relative) errors (RMSE) of the
FRF estimate have been calculated. The results show that for
all methods the RMSE is inversely proportional to the square
root of the SNR until a threshold value below which the error
remains constant, assumed to be the remains of the leakage
error. This behavior is modeled with

RMSE = α +β/SNR1/2 (22)

with α and β being the curve fitting parameters.

Figure 7 shows an example of the RMSE extracted from
simulations with different SNR and the fitting curves using
equation (22) for both the simplified Bo-105 model and the
high order ACT/FHS model. Note that for the the flight tests
performed at DLR, SNR ranging from about 20 dB to 40 dB
are usually observed.
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(a) Simplified Bo-105 model
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Fig. 7: RMSE of the FRF estimate as a function of SNR
for the different methods. The vertical lines indicate the
crossover SNR for the two windowing methods.

The following result was observed in most simulations: the
RMSE of the LPM is lower than the RMSE of the windowing
methods when the SNR is higher than a certain value. In-
versely, the RMSE of the LPM is slightly higher than the one
of the windowing methods when the SNR is lower than this
value. In this paper, this value is called the “crossover SNR”
and is used to estimate under which conditions the LPM is
superior to the windowing methods (see Figure 7 for an ex-
ample). A lower crossover SNR means that the LPM per-
forms better than the windowing methods over a wider range
of SNR, and vice-versa.
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Frequency Range

As seen in the previous section, the superiority of one or the
other method depends on the level of noise and on the leak-
age error present in the data. As both of these characteristics
vary with frequency, it is to be expected that the local per-
formance of the methods varies depending on the frequency
range considered. In general, every combination of FRF pro-
file, excitation spectrum and noise spectrum gives a different
result, but some trends can be given on where the noise level
and leakage error will be most present along the spectrum:

a) The lower frequencies commonly have a low SNR. This is
due to the fact that not only the sensor noise is considered,
but also the equivalent noise caused by non-measured in-
puts, such as the wind. The wind is an important source of
noise in flight test measurements and contains its energy in
the lower frequencies. Additionally, low frequency excita-
tions lead to larger amplitude and thus to non-linear heli-
copter dynamics. Under certain conditions, non-linearities
can act as a noise in the FRF calculation (Ref. 7).

b) Both the ML-Amp and the LS-Spec methods use smaller
windows for calculating the FRF at the higher frequen-
cies. As the leakage error increases with decreasing num-
ber of samples N with O(N−1/2), the FRF estimate will
be more corrupted by leakage at higher frequencies than at
the lower ones, (Ref. 4).

c) The leakage error of the windowing methods is propor-
tional to the second derivative of the true FRF d2G(ω)

dω2 ,
(Ref. 4). Therefore, the LPM will be advantageous in the
frequency bands where this second derivative is high, typ-
ically in resonance areas.

d) The spectral distribution of the leakage along the frequen-
cies is closely linked to the spectral distribution of the FRF.
This is due to the fact that the leakage function has by na-
ture the same poles as the FRF of the system (Ref. 4).
Therefore, the leakage error is likely to be higher in the
frequency bands where the spectral power of the FRF is
important, typically in the resonance areas.

In this section, the RMSE of the FRF estimates are calcu-
lated separately for three frequency ranges: lower frequencies
(1-13 rad/s), resonances area (13-17 rad/s) and higher frequen-
cies (17-30 rad/s), for the simplified model of the Bo-105. Ad-
ditionally, as the local SNR depends on the distribution of the
disturbing noise, a set of filtered white noises with cut-off fre-
quencies ranging from about 1 rad/s to 20 rad/s has been ap-
plied. The low-pass shape of the noise accounts for the usual
low frequency concentration of the noise present in data com-
ing from a flight test. Note that a high level of noise can also
occur locally at higher frequencies due to the vibrations of the
rotor and of structural parts, but is not modeled in this simu-
lation.

Regarding the low frequency range, the resulting RMSE
curves of the different methods are almost overlapping each
other and the curve of the LPM separates only slowly from
the other curves. Therefore, in this section the definition of
crossover SNR is slightly modified: it is not exactly the SNR

at which the curves cross, but the SNR at which the curves
separate by 3 dB. For each noise cut-off frequency and each
frequency range, this crossover SNR is shown in Figure 8 for
the two windowing methods.
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Fig. 8: Crossover SNR for different noise cut-off frequen-
cies and different ranges of the frequency domain, based
on the Bo-105 model (LF = low frequencies, RES = reso-
nance, HF = high frequencies).

Considering that the SNR of a good flight test typically
has a value between 20 dB and 40 dB, it can be seen that in-
dependently of the cut-off frequency the LPM does not per-
form better than the windowing methods at the lower frequen-
cies, but it always performs better around the resonance area.
At the higher frequencies, the superiority of one or the other
method highly depends on the cut-off frequency of the dis-
turbing noise.

This analysis has been performed with 60’000 samples,
corresponding to a simulation time of 2 minutes. The next
sections analyzes the impact of the number of samples on the
relative performance.

Signal Length

It is shown in (Ref. 4) that for discrete-time systems, the leak-
age error disappears with O(N−1/2), N being the number of
samples. The LPM should consequently be superior to the
windowing methods for small numbers of samples. Simula-
tions have been performed with N ranging from 15’000 to
90’000 samples, which corresponds to a simulation time of
30 seconds to 3 minutes. The values of α and β from equa-
tion (22) have been calculated separately for the lower fre-
quencies, the resonance area and the higher frequencies of the
Bo-105 model and are shown in Figure 9a and Figure 9b.

The interpretation of these two parameters is as follows: α

corresponds to the minimum RMSE that the FRF estimate can
reach and indicates the performance of the method in high-
SNR conditions. It can be seen from Figure 9a that the LPM
exhibits a lower value of α than the windowing methods for
every number of samples. The difference between the α of the
composite windowing methods and the α of the LPM gives an
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Fig. 9: Value of α (a) and β (b) from equation (22), for the
FRF estimate of the Bo-105 model with varying number
of samples (LF = low frequencies, RES = resonance, HF =
high frequencies).

idea of the potential benefit of using the LPM rather than the
windowing methods. It indicates the maximum improvement
that the LPM can reach compared to the windowing methods.
For this model, this improvement varies from 3 % (−30 dB) to
10 % (−20 dB) around the resonance, and from <1 % (−48 dB)
to 3 % (−30 dB) outside of the resonance area. The same order
of possible improvement is obtained for the ACT/FHS model.
Additionally, as was expected, the value of α decreases with
increasing number of samples (i.e. with decreasing leakage
error).

The parameter β represents the dependency of the RMSE
on the level of noise and indicates the performance at the
lower SNR conditions. The results shown in Figure 9b reveals
that if the test duration is longer than one minute (30’000 sam-
ples), the value of β is higher for the LPM than for the win-
dowing methods.

Consequently, the LPM is better for low-noise data and
worse for noisy data, when compared to the windowing meth-
ods. The LPM improvement is best for smaller signal lengths.
The crossover SNR for the whole frequency spectrum is

shown in Figure 10 for both the Bo-105 and the ACT/FHS
models.

As a side result, it can be observed that with decreasing N
the value of α is increasing faster for the ML-Amp method
than for the LS-Spec method, and the opposite is true for the
value of β . Therefore, comparing just the two windowing
methods, LS-Spec should be preferred for low-noise data and
ML-Amp for noisy data. Nevertheless, for long measurement
times, ML-Amp and LS-Spec methods converge to similar
performances.
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Fig. 10: Crossover SNR for different numbers of data sam-
ples on the whole spectrum for the Bo-105 and for the
ACT/FHS models.

Type of Excitation

In the previous sections the helicopter models have been ex-
cited by white noise to allow a generic analysis. This section
aims at verifying that the results obtained in the previous sec-
tions with a white noise input are also valid for a sweep input,
which is the most common excitation used for system identi-
fication. The sweep signals are taken from a flight test cam-
paign of the ACT/FHS (see Figure 12 for an example) and all
have a duration of about 100 seconds (50’000 samples), which
is an appropriate duration for the frequency range considered
in the identification of the ACT/FHS model (0.5-30 rad/s).

Simulations have been run with a sweep excitation and the
same analysis was made as before, except that due to the lim-
ited frequency bandwidth of the sweep signal the disturbing
noise had to be filtered, in order to prevent unrealistically high
SNR in the high frequencies. Figure 11 shows the crossover
SNR for different noise cut-off frequencies and for different
frequency ranges, similar to Figure 8 but with sweep exci-
tation. When comparing Figure 8 and Figure 11, one can see
that the results of the LS-Spec methods are quite similar, while
the crossover SNR of the ML-Amp method have decreased by
5-10 dB for each situation. However, the conclusions drawn
for the white noise excitation are still valid. As all the sweep
signals available from flight tests have a similar duration, a
variation of the signal duration could not be performed. How-
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ever, when compared to the values of α with white noise ex-
citation at 50’000 samples (Figure 9a), the results with sweep
excitation are similar for LS-Spec but deteriorate by 3-8 dB
for ML-Amp. The LPM performance got worse by 5-10 dB
but is still much better than both windowing methods.
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Fig. 11: Crossover SNR for different noise cut-off frequen-
cies and different ranges of the frequency domain, with a
sweep excitation and based on the Bo-105 model (LF = low
frequencies, RES = resonance, HF = high frequencies).

This difference of performance between white noise exci-
tation and sweep excitation can be explained by a different
leakage error in the data. Additionally, as can be seen on Fig-
ure 9a, the dependency of α on a variation of number of sam-
ples (and thus on a variation of leakage error) is very little for
LS-Spec, but is more important for ML-Amp and for LPM.
This can explain why α depends on the excitation type for
ML-Amp and for LPM but not for LS-Spec.

Input Correlation

When a MISO or MIMO system is excited simultaneously
in several axes and when these excitations are correlated, a
MIMO conditioning step has to be added in the FRF calcula-
tion through the windowing methods, as mentioned in the pre-
vious section. This conditioning is required to free the cross-
spectra from the influence of the off-axis excitations. The
LPM does not proceed through the calculation of the cross-
spectra and takes all the input axes into account for the cal-
culation of the FRF estimate. Therefore, it does not require
a conditioning step. As the LPM and the windowing meth-
ods deal with the issue of input correlation through a different
approach, a comparison of the performances under correlated
data is performed in this section. To do so, the lateral cyclic
δy and longitudinal cyclic δx are excited simultaneously with

δy = S1 (23)
δx = λ ·δy +(1−λ ) ·S2.

where S1 and S2 are manual excitations signals taken from a
flight test; they are represented in Figure 12. δy is a sweep sig-
nal and δx are the small corrections made by the pilot to keep

the helicopter in the trim attitude. Simulations are run with
different values of λ , leading to different levels of correlation.
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Fig. 12: Manually performed sweep excitation in δy and
manual trim corrections in δx.

The resulting values of α and β as a function of correla-
tion are shown in Figure 13. As expected, the two param-
eters increase with the correlation level but regarding α the
loss of performance is much more important for the window-
ing methods than for the LPM. As previously said, α repre-
sents the maximum improvement that the LPM can achieve
compared to the windowing methods. As can be seen in Fig-
ure 13a, α can considerably exceed the 10% (−20 dB) men-
tioned in the section Signal Length, when the correlation level
is high.

Figure 14 shows the evolution of the crossover SNR with
the input correlation level. One can see that the crossover SNR
stays at low SNR level (<15 dB) under all conditions.

VALIDATION WITH FLIGHT TEST DATA

To validate the conclusions drawn in the previous section, the
LPM and the composite windowing methods have finally been
applied to flight test data. The data used in this section comes
from the ACT/FHS system identification campaign performed
in 2009 at the DLR. It consists of a series of manual sweep
excitations independently in each axis, with only small cor-
rective inputs in the other axes to maintain the helicopter trim
(see Figure 12).

The FRF from the lateral cyclic δy to the roll rate p is
shown in Figure 15 at the last page for the three methods.
Figure 16 provides a zoom-in view of the FRF amplitude on
the lower frequencies, around the resonance and on the higher
frequencies. Additionally, in order to show the consistency
between the simulation results and the flight test results, the
FRFs obtained with a simulation of the ACT/FHS model ex-
cited by the same sweep signal are shown in Figure 17 and
Figure 18 for comparison. One can see that the simulation
data gives similar results to the flight test results and that the
outcome corresponds to the trends described in the previous
section. At the low frequencies the FRF estimate of the LPM
does not seem to provide better results than the windowing
methods. The resonance appears to be more precisely cap-
tured by the LPM than by the windowing methods; the latter

9



0 0.25 0.5 0.75 1

-50

-40

-30

-20

-10

0

10

Correlation coefficient (-)

V
a

lu
e

 o
f 
α

 (
d

B
)

 

 
ACT/FHS
LPM

ACT/FHS
ML-Amp

ACT/FHS
LS-Spec

Bo-105
LPM

Bo-105
ML-Amp

Bo-105
LS-Spec

(a) Value of α , the RMSE in the case without noise.

0 0.25 0.5 0.75 1
-15

-10

-5

0

5

10

15

20

Correlation coefficient (-)

V
a

lu
e

 o
f 
β
 (

d
B

)

 

 
ACT/FHS
LPM

ACT/FHS
ML-Amp

ACT/FHS
LS-Spec

Bo-105
LPM

Bo-105
ML-Amp

Bo-105
LS-Spec

(b) Value of β , the part of the RMSE depending on the SNR.

Fig. 13: Value of α (a) and β (b) from equation (22), for the
FRF estimate of the Bo-105 and ACT/FHS models, when
excited with a sweep signal, with varying level of correla-
tion.

tend to smooth the peak of the resonance. At high frequencies
the estimate of the LPM gives a straight result, while the other
estimates oscillate slightly around the true FRF.

No flight test data with a high level of input correlation was
available, therefore the superior performance of the LPM for
correlated inputs could not be validated in flight.

CONCLUSIONS

In this paper, two variants of the composite windowing
method traditionally used for estimating the frequency-
response functions (FRF) of rotorcraft systems have been pre-
sented, as well as the recently developed Local Polynomial
Method (LPM), whose utilization on rotorcraft systems does
not appear in the literature, to the author’s knowledge. The
performance of the LPM has been assessed against the other
methods, based on data coming from simulations of linear
models of two helicopters. Simulations have been made in
different configurations (signal-to-noise ratio (SNR), signal
length, frequency range, type of excitation and input correla-
tion) and the errors of the FRF estimates have been compared.
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Fig. 14: Crossover SNR for the Bo-105 and ACT/FHS
models, when excited with a sweep signal, with varying
level of correlation.

Finally, data from a flight test of DLR’s ACT/FHS research
helicopter has shown consistency with the conclusions drawn
from the simulations.

The LPM is not as a whole better or worse than the win-
dowing methods. The LPM is much more effective to counter
the leakage effect but rather less effective to counter a disturb-
ing noise. Therefore, in all cases treated here, above a certain
threshold of SNR ratio, the LPM always performs better than
the other methods and below this threshold, it performs rather
worse. The value of this crossover SNR is an indication of the
superiority of one or the other method. The following depen-
dencies have been observed:

• The LPM performs better for low-noise data (high SNR).
• The LPM is clearly superior around resonance areas (or

in general when the shape of the FRF varies) and per-
forms better at the higher frequencies than at the lower
ones.

• The superiority of the LPM is most important for short
measurement times (small amounts of samples).

• In the MISO/MIMO case, the LPM is much less affected
by a correlation between the input signals.

It is important to note that when the LPM becomes supe-
rior, the performance of the other methods is already quite
good. In the simulations made in this article, the LPM gave
an improvement of up to 10% around the resonances and up
to 3% outside of the resonances. Therefore the advantage of
using the LPM is rather to fine tune FRF estimates, rather than
to improve very noisy FRF estimates. However, when several
axes are excited simultaneously, this improvement can greatly
exceed the 10% if the inputs are correlated. It is also interest-
ing to note that the LPM captures resonances more precisely,
which can be desirable for the calculation of the parametric
transfer function. As the windowing methods usually smooth
the peaks, they overestimate the damping ratios.
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Fig. 15: Estimate of the ACT/FHS FRF from δy to p, based
on flight test data.
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Fig. 16: Zooms on the FRF Estimate based on flight test
data.
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Fig. 17: Estimate of the ACT/FHS FRF from δy to p, based
on simulation data.
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Fig. 18: Zooms on the FRF Estimate based on simulation
data.
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