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Preface

For many problems of the design, implementation, and operation of automatic con-
trol systems, relatively precise mathematical models for the static and dynamic be-
havior of processes are required. This holds also generally in the areas of natural
sciences, especially physics, chemistry, and biology, and also in the areas of medical
engineering and economics. The basic static and dynamic behavior can be obtained
by theoretical or physical modeling, if the underlying physical laws (first principles)
are known in analytical form. If, however, these laws are not known or are only par-
tially known, or if significant parameters are not known precisely enough, one has
to perform an experimental modeling, which is called process or system identifica-
tion. Then, measured signals are used and process or system models are determined
within selected classes of mathematical models.

The scientific field of system identification was systematically developed since
about 1960 especially in the areas of control and communication engineering. It is
based on the methods of system theory, signal theory, control theory, and statistical
estimation theory and was influenced by modern measurement techniques, digital
computations and the need for precise signal processing, control, and automation
functions. The development of identification methods can be followed in wide spread
articles and books. However, a significant influence had the IFAC-symposia on sys-
tem identification, which were since 1967 organized every three years around the
world, in 2009 a 15" time in Saint-Malo.

The book is intended to give an introduction to system identification in an easy
to understand, transparent, and coherent way. Of special interest is an application-
oriented approach, which helps the user to solve experimental modeling problems. It
is based on earlier books in German, published in 1971, 1974, 1991 and 1992, and
on courses taught over many years. It includes own research results within the last
30 years and publications of many other research groups.

The book is divided into eight parts. After an introductory chapter and a chapter
on basic mathematical models of linear dynamic systems and stochastic signals, part
I treats identification methods with non-parametric models and continuous time sig-
nals. The classical methods of determining frequency responses with non-periodic
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and periodic test signals serve to understand some basics of identification and lay
ground for other identifications methods.

Part I is devoted to the determination of impulse responses with auto- and cross-
correlation functions, both in continuous and discrete time. These correlation meth-
ods can also be seen as basic identification methods for measurements with stochas-
tic disturbances. They will later appear as elements of other estimation methods and
allow directly the design of binary test signals.

The identification of parametric models in discrete time like difference equations
in Part III is based mainly on least squares parameter estimation. These estimation
methods are first introduced for static processes, also known as regression analysis,
and then expanded to dynamic processes. Both, non-recursive and recursive param-
eter estimation methods are derived and various modifications are described, like
methods of extended least squares, total least squares, and instrumental variables.
The Bayes and maximum likelihood methods yield a deeper theoretical background,
also with regard to performance bounds. Special chapters treat the parameter estima-
tion of time-variant processes and under closed-loop conditions.

Part IV now looks at parameter estimation methods for continuous-time models.
First parameter estimation is extended to measured frequency responses. Then, the
parameter estimation for differential equations and subspace methods operating with
state variable filters are considered.

The identification of multi-variable systems (MIMO) is the focus of Part V. First
basic structures of linear transfer functions and state space models are considered.
This is followed by correlation and parameter estimation methods, including the
design of special uncorrelated test signals for the simultaneous excitation of sev-
eral inputs. However, sometimes it is easier to identify single-input multiple outputs
(SIMO) processes sequentially.

Of considerable importance for many complex processes is the identification of
non-linear systems, treated in Part V1. Special model structures, like Volterra series,
Hammerstein- and Wiener-models allow applying parameter estimation methods di-
rectly. Then, iterative optimization methods are treated, taking into account multi-
dimensional, non-linear problems. Powerful methods were developed based on non-
linear net models with parametric models like neural networks and their derivations
and look-up tables (maps) as non-parametric representations. Also, extended Kalman
filters can be used.

Some miscellaneous issues, which are common to several identification methods,
are summarized in Part VII, as e.g. numerical aspects, practical aspects of parameter
estimation and a comparison of different parameter estimation methods.

Part VIII then shows the application of several treated identification methods fo
real processes like electrical and hydraulic actuators, machine tools and robots, heat
exchangers, internal combustion engines and the drive dynamic behavior of automo-
biles.

The Appendix as Part IX then presents some mathematical aspects and a de-
scription of the three mass oscillator process, which is used as a practical example
throughout the book. Measured data to be used for applications by the reader can be
downloaded from the Springer web page in the Internet.
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The wide topics of dynamic system identification are based on the research per-
formed by many experts. Because some early contributions lay the ground for many
other developments we would just like to mention a few authors from early semi-
nal contributions. The determination of characteristic parameters of step responses
was published by V. Strejc (1959). First publications on frequency response measure-
ment with orthogonal correlation go back to Schaefer and Feissel (1955) and Balchen
(1962). The field of correlation methods and ways to design pseudo-random-binary
signals was essentially brought forward by e.g. Chow, Davies (1964), Schweitzer
(1966), Briggs (1967), Godfrey (1970) and Davies (1970). The theory and appli-
cation of parameter estimation for dynamic processes was around 1960 until about
1974 essentially promoted by works of J. Durbin, R.C.K. Lee, V. Strejc, P. Eykhoff,
K.J. Astrém, V. Peterka, H. Akaike, P. Young, D.W. Clarke, R.K. Mehra, J.M.
Mendel, G. Goodwin, L. Ljung, and T. S6derstrom.

This was followed by many other contributions to the field which are cited in the
respective chapters, see also Table 1.3 for an overview over the literature in the field
of identification.

The authors are also indebted to many contributions for developing and applying
identifications methods from researchers at our own group since 1973 until now, like
M. Ayoubi, W. Bamberger, U. Baur, P. Blessing, H. Hensel, R. Kofahl, H. Kurz,
K.H. Lachmann, O. Nelles, K.H. Peter, R. Schumann, S. Toepfer, M. Vogt, and R.
Zimmerschied. Many other developments with regard to special dynamic processes
are referenced in the chapters on applications.

The book is dedicated as an introduction to system identification for undergrad-
uate and graduate students of electrical and electronic engineering, mechanical and
chemical engineering and computer science. It is also oriented towards practicing
engineers in research and development, design and production. Preconditions are ba-
sic undergraduate courses of system theory, automatic control, mechanical and/or
electrical engineering. Problems at the end of each chapter allow to deepen the un-
derstanding of the presented contents.

Finally we would like to thank Springer-Verlag for the very good cooperation.

Darmstadt, Rolf Isermann
June 2010 Marco Miinchhof
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Introduction

The temporal behavior of systems, such as e.g. technical systems from the areas of
electrical engineering, mechanical engineering, and process engineering, as well as
non-technical systems from areas as diverse as biology, medicine, chemistry, physics,
economics, to name a few, can uniformly be described by mathematical models. This
is covered by systems theory. However, the application of systems theory requires
that the mathematical models for the static and dynamic behavior of the systems
and their elements are known. The process of setting up a suitable model is called
modeling. As is shown in the following section, two general approaches to model-
ing exist, namely theoretical and experimental modeling, both of which have their
distinct advantages and disadvantages.

1.1 Theoretical and Experimental Modeling

A system is understood as a confined arrangement of mutually affected entities, see
e.g. DIN 66201. In the following, these entities are processes. A process is defined
as the conversion and/or the transport of material, energy, and/or information. Here,
one typically differentiates between individual (sub-)processes and the entire pro-
cess. Individual processes, i.e. (sub-)processes, can be the generation of mechanical
energy from electric energy, the metal-cutting machining of workpieces, heat trans-
fer through a wall, or a chemical reaction. Together with other sub-processes, the
entire process is formed. Such aggregate processes can be an electrical generator, a
machine tool, a heat exchanger, or a chemical reactor. If such a process is understood
as an entity (as mentioned above), then multiple processes form a system such as e.g.
a power plant, a factory, a heating system, or a plastic material production plant. The
behavior of a system is hence defined by the behavior of its processes.

The derivation of mathematical system and process models and the representa-
tion of their temporal behavior based on measured signals is termed system analysis
respectively process analysis. Accordingly, one can speak of system identification
or process identification when applying the experimental system or process analy-
sis techniques described in this book. If the system is excited by a stochastic signal,

R. Isermann, M. Miinchhof, Identification of Dynamic Systems,
DOI 10.1007/978-3-540-78879-9 1, © Springer-Verlag Berlin Heidelberg 2011
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Fig. 1.1. Basic procedure for system analysis

one also has to analyze the signal itself. Thus the topic of signal analysis will also
be treated. The title Identification of Dynamic Systems or simply Identification shall
thus embrace all areas of identification as listed above.

For the derivation of mathematical models of dynamic systems, one typically dis-
criminates between theoretical and experimental modeling. In the following, the ba-
sic approach of the two different ways of modeling shall be described shortly. Here,
one has to distinguish lumped parameter systems and distributed parameter systems.
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The states of distributed parameter systems depend on both the time and the location
and thus their behavior has to be described by partial differential equations (PDE's).
Lumped parameter systems are easier to examine since one can treat all storages and
states as being concentrated in single points and not spatially distributed. In this case,
one will obtain ordinary differential equations (ODEs).

For the theoretical analysis, also termed theoretical modeling, the model is ob-
tained by applying methods from calculus to equations as e.g. derived from physics.
One typically has to apply simplifying assumptions concerning the system and/or
process, as only this will make the mathematical treatment feasible in most cases. In
general, the following types of equations are combined to build the model, see also
Fig. 1.1 (Isermann, 2005):

1. Balance equations: Balance of mass, energy, momentum. For distributed param-
eter systems, one typically considers infinitesimally small elements, for lumped
parameter systems, a larger (confined) element is considered

2. Physical or chemical equations of state: These are the so-called constitutive
equations and describe reversible events, such as e.g. inductance or the second
Newtonian postulate

3. Phenomenological equations: Describing irreversible events, such as friction and
heat transfer. An entropy balance can be set up if multiple irreversible processes
are present

4. Interconnection equations according to e.g. Kirchhoff’s node and mesh equa-
tions, torque balance, etc.

By applying these equations, one obtains a set of ordinary or partial differential
equations, which finally leads to a theoretical model with a certain structure and de-
fined parameters if all equations can be solved explicitly. In many cases, the model
is too complex or too complicated, so that it needs to be simplified to be suitable
for subsequent application. Figure 1.2 shows the order of the execution of individ-
ual simplifying actions. The first steps of this simplification procedure can already
be carried out as the fundamental equations are set up by making appropriate sim-
plifying assumptions. It is very tempting to include as many physical effects into
the model as possible, especially nowadays, where simulation programs offer a wide
variety of pre-build libraries of arbitrary degrees of complexity. However, this often
occludes the predominant physical effects and makes both the understanding and the
work with such a model a very tiresome, if not infeasible, endeavor.

But even if the resulting set of equations cannot be solved explicitly, still the
individual equations give important hints concerning the model structure. Balance
equations are always linear, some phenomenological equations are linear in a wide
range. The physical and chemical equations of state often introduce non-linearities
into the system model.

In case of an experimental analysis, which is also termed identification, a mathe-
matical model is derived from measurements. Here, one typically has to rely on cer-
tain a priori assumptions, which can either stem from theoretical analysis or from
previous (initial) experiments, see Fig. 1.1. Measurements are carried out and the in-
put as well as the output signals are subjected to some identification method in order
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Fig. 1.2. Basic approach for theoretical modeling

to find a mathematical model that describes the relation between the input and the
output. The input signals can either be a section of the the natural signals that act
on the process during normal operation or can be an artificially introduced test sig-
nal with certain prespecified properties. Depending on the application, one can use
parametric or non-parametric models, see Sect. 1.2. The resulting model is termed
experimental model.

The theoretically and the experimentally derived models can be compared if both
approaches can be applied and have been pursued. If the two models do not match,
then one can get hints from the character and the size of the deviation, which steps
of the theoretical or the experimental modeling have to be corrected, see Fig. 1.1.

Theoretical and experimental models thus complement one another. The analysis
of the two models introduces a first feedback loop into the course of action for system
analysis. Therefore, system analysis is typically an iterative procedure. If one is not
interested in obtaining both models simultaneously, one has the choice between the
experimental model (case A in Fig. 1.1) and the theoretical model (case B in Fig. 1.1).
The choice mainly depends on the purpose of the derived model:

The theoretical model contains the functional dependencies between the physical
properties of a system and its parameters. Thus, this model will typically be preferred
if the system shall already be optimized in its static and dynamic behavior during the
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design phase or if its temporal behavior shall be simulated prior to the construction,
respectively completion of the system.

On the contrary, the experimental model does only contain numbers as para-
meters, whose functional relations to the process properties remain unknown. How-
ever, this model can describe the actual dynamics of the system better and can be
derived with less effort. One favors these experimental models for the adaptation of
controllers (Isermann, 1991; Isermann et al, 1992; Astrom et al, 1995; Astrom and
Wittenmark, 1997) and for the forecast of the respective signals or fault detection (Is-
ermann, 2006).

In case B (Fig. 1.1), the main focus is on the theoretical analysis. In this set-
ting, one employs the experimental modeling only once to validate the fidelity of
the theoretical model or to determine process parameters, which can otherwise not
be determined with the required accuracy. This is noted with the sequence B/1 in
Fig. 1.1.

In contrast to case B, the emphasis is on the experimental analysis in case A.
Here, one tries to apply as much a priori knowledge as possible from the theoretical
analysis, as the model fidelity of the experimental model normally increases with
the amount of a priori knowledge exploited. In the ideal case, the model structure is
already known from the theoretical analysis (path A/2 in Fig. 1.1). If the fundamental
equations of the model cannot be solved explicitly, if they are too complicated, or if
they are not even completely known, one can still try to obtain information about the
model structure from this incomplete knowledge about the process (sequence A/1 in
Fig. 1.1).

The preceding paragraphs already pointed out that the system analysis can typi-
cally neither be completely theoretical nor completely experimental. To benefit from
the advantages of both approaches, one does rarely use only theoretical modeling
(leading to so-called white-box models) or only experimental modeling (leading to
so-called black-box models), but rather a mixture of both leading to what is called
gray-box models, see Fig. 1.3. This is a rather suitable combination of the two ap-
proaches, which is determined by the scope of application of the model and the sys-
tem itself. The scope of application defines the required model accuracy and hence
the effort that has to be put into the analysis. This introduces a second feedback loop
into the schematic diagram presented in Fig. 1.1, which starts at the resulting models
(either theoretical or experimental) and goes back to the individual modeling steps,
hence one is confronted with a second iteration loop.

Despite the fact that the theoretical analysis can in principle deliver more infor-
mation about the system, provided that the internal behavior is known and can be
described mathematically, experimental analysis has found ever increasing attention
over the past 50 years. The main reasons are the following:

Theoretical analysis can become quite complex even for simple systems
Mostly, model coefficients derived from the theoretical considerations are not
precise enough

e Not all actions taking place inside the system are known
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Fig. 1.3. Different kinds of mathematical models ranging from white box models to black box
models

e The actions taking place cannot be described mathematically with the required
accuracy

e Some systems are very complex, making the theoretical analysis too time-
consuming

o Identified models can be obtained in shorter time with less effort compared to
theoretical modeling

The experimental analysis allows the development of mathematical models by
measurement of the input and output of systems of arbitrary composition. One major
advantage is the fact that the same experimental analysis methods can be applied to
diverse and arbitrarily complex systems. By measuring the input and output only,
one does however only obtain models governing the input-output behavior of the
system, i.e. the models will in general not describe the precise internal structure of
the system. These input-output models are approximations and are still sufficient for
many areas of application. If the system also allows the measurement of internal
states, one can obviously also gather information about the internal structure of the
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Table 1.1. Properties of theoretical modeling and identification

Theoretical Modeling

Identification

Model structure follows from laws of
nature

Modeling of the input/output behavior
as well as the internal behavior

Model parameters are given as function
of system properties

Model is valid for the entire class of
processes of a certain type and for dif-
ferent operating conditions

Model coefficients are not known ex-
actly

Models can be build for non-existing
systems

The internal behavior of the system
must be known and must be describable
mathematically

Typically lengthy process which takes
up much time

Models may be rather complex and de-
tailed

Model structure must be assumed

Only the input/output behavior is iden-
tified

Model parameters are “numbers” only,
in general no functional dependency to
system properties known

Model is only valid for investigated sys-
tem and within operating limits

Model coefficients are more precise for
the given system within operating limits
Model can only be identified for an ex-
isting system

Identification methods are independent
of the investigated system and can thus
be applied to many different systems

Fast process if identification methods
exist already

Model size can be adjusted according to
the area of application of the model

system. With the advent of digital computers starting in the 1960s, the development
of capable identification methods has started. The different properties of theoretical
modeling and identification have been summarized and set in contrast in Table 1.1.

1.2 Tasks and Problems for the Identification of Dynamic Systems

A process with a single input and a single output (SISO) is considered in the follow-
ing. The process shall be stable to ensure a unique relation between input and output.
Both the input and the output shall be measured without error. The task of identifying
the process P is to find a mathematical model for the temporal behavior of the pro-
cess from the measured input u(t) = up(¢), the measured output y(¢) = ym(¢) and
optionally additional measured signals, see Fig. 1.4. This task is made more com-
plicated, if disturbances 7, ... z; are acting on the process and are influencing the
output signal. These disturbances can have various causes. The disturbances seen in
the measured signals often stem from noise and hence will also be included in the
term noise in the remainder of this book. The output is thus corrupted by a noise
n(t). In this case, one has to apply suitable techniques to separate the wanted signal
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£ Process P z - Process P [ .
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Fig. 1.4. Dynamic process with input u, Fig. 1.5. Disturbed dynamic process with
output y and disturbances z; input u, output y, and noise n

yu(t), i.e. the response of the system due to the input u(z), from the disturbances
n(t).

The term identification and the required subsequent tasks can thus be defined as
follows:

Identification is the experimental determination of the temporal behavior of a
process or system. One uses measured signals and determines the temporal behavior
within a class of mathematical models. The error (respectively deviation) between
the real process or system and its mathematical model shall be as small as possible.

This definition stems from Zadeh (1962), see also (Eykhoff, 1994). The measured
signals are typically only the input to the system and the output from the system.
However, if it is also possible to measure states of the process, then one can also
gather information about the internal structure of the process.

In the following, a linear process is considered. In this case, the individual distur-
bance components z1,...,Zz; can be combined into one representative disturbance
n(t), which is added to the wanted signal y,(¢), see Fig. 1.5. If this disturbance n(t)
is not negligibly small, then its counterfeiting influence must be eliminated by the
identification method as much as possible. For decreasing signal-to-noise ratios, the
measurement time 7y must typically be increased.

For the identification itself, the following limitations have to be taken into con-
sideration:

1. The available measurement time Ty is always limited, either due to technical
reasons, due to time variance of the process parameters or due to economical
reasons (i.e. budget), thus

TM =< TM,max (121)

2. The maximum allowable change of the input signal, i.e. the test signal height
up is always limited, either due to technical reasons or due to the assumption of
linear process behavior which is only valid within a certain operating regime

Umin = u(t) =< Umax (122)

3. The maximum allowable change of the output signal, yy, may also be limited
due to technical reasons or due to the assumption of linear process behavior
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Fig. 1.6. Examples of disturbance components. (a) high frequent quasi-stationary stochastic
disturbance. (b) low-frequent non-stationary stochastic disturbance. (c) disturbance with un-
known character

which again is only valid within a certain operating regime

Ymin < Y(f) < Ymax (1.2.3)

4. The disturbance n(t) typically consists of different components, which can be
classified according to the following groups, see also Fig. 1.6:
a) High-frequent quasi-stationary stochastic noise n(z) with E{n(¢)} = 0.
Higher frequent deterministic signal with n(¢) = 0.
b) Low-frequent non-stationary stochastic or deterministic signal (e.g. drift, pe-
riodic signals with period times of one day or one year) d(t)
¢) Disturbance signal of unknown character (e.g. outliers) /(¢)

It is assumed that within the limited measurement time, the disturbance compo-
nent n(¢) can be treated as a stationary signal. The low-frequent component d(t)
must be treated as non-stationary, if it has stochastic character. Low-frequent deter-
ministic disturbances can be drift and periodic signals with long period times such
as one day or one year. Disturbance components with unknown character A(t) are
random signals, which cannot be described as stationary stochastic signals even for
long measurement periods. This can be e.g. suddenly appearing, persistent, or disap-
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pearing disturbances and so-called outliers. These disturbances can e.g. stem from
electromagnetic induction or malfunctions of the measurement equipment.

Typical identification methods can only eliminate the noise n(¢) as the measure-
ment time is prolonged. Simple averaging or regression methods are often sufficient
in this application. The components d () require more specifically tailored measures
such as special filters or regression methods which have been adapted to the very
particular type of disturbance. Almost no general hints can be given concerning the
elimination of the influence of 4(¢). Such disturbances can only be eliminated man-
ually or by special filters.

Effective identification methods must thus be able to determine the temporal be-
havior as precisely as possible under the constraints imposed by

the given disturbance y,(t) = n(t) + d(¢t) + h(¢)

the limited measurement time Ty < 7w, max

the confined test signal amplitude upyi, < u(f) < Umax

the constrained output signal amplitude ypi, < y(f) < Ymax
the purpose of the identification.

Figure 1.7 shows a general sequence of an identification. The following steps
have to be taken:

First, the purpose has to be defined as the purpose determines the type of model,
the required accuracy, the suitable identification methods and such. This decision
is typically also influenced by the available budget, either the allocated financial
resources or the expendable time.

Then, a priori knowledge must be collected, which encompasses all readily avail-
able information about the process to be identified, such as e.g.

recently observed behavior of the process

physical laws governing the process behavior

rough models from previous experiments

hints concerning linear/non-linear, time-variant/time-invariant as well as propor-
tional/integral behavior of the process

settling time

dead time

amplitude and frequency spectrum of noise

operating conditions for conduction of measurements.

Now, the measurement can be planned depending on the purpose and the avail-
able a priori knowledge. One has to select and define the

e input signals (normal operating signals or artificial test signals and their shape,
amplitude and frequency spectrum)

sampling time

measurement time

measurements in closed-loop or open-loop operation of the process

online or offline identification

real-time or not
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Fig. 1.7. Basic sequence of the identification
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necessary equipment (e.g. oscilloscope, PC, ...)
filtering for elimination of noise
limitations imposed by the actuators (saturation, ...).

Once these points have been clarified, the measurements can be conducted. This
includes the signal generation, measurement, and data storage.

The collected data should undergo a first visual inspection and outliers as well
as other easily detectable measurement errors should be removed. Then, as part of
the further pre-processing, derivatives should be calculated, signals be calibrated,
high-frequent noise be eliminated by e.g. low-pass filtering, and drift be removed.
Some aspects of disturbance rejection and the removal of outliers by graphical and
analytical methods are presented in Chap. 23. Methods to calculate the derivatives
from noisy measurements are shown in Chap. 15.

After that, the measurements will be evaluated by the application of identification
techniques and determination of model structure.

A very important step is the performance evaluation of the identified model, the
so-called validation by comparison of model output and plant output or comparison
of the experimentally established with the theoretically derived model. Validation
methods are covered in Chap. 23. Typically, an identified model with the necessary
model fidelity will not be derived in the first iteration. Thus, additional iteration steps
might have to be carried out to obtain a suitable model.

Therefore, the last step is the possible iferation, i.e. the repeated conduction of
measurements and evaluation of the measurements until a model meeting the im-
posed requirements has been found. One often has to conduct initial experiments,
which allow to prepare and conduct the main experiments with better suited para-
meters or methods.

1.3 Taxonomy of Identification Methods and Their Treatment in This
Book

According to the definition of identification as presented in the last section, the dif-
ferent identification methods can be classified according to the following criteria:

e Class of mathematical model
e C(lass of employed test signals
e Calculation of error between process and model

It has proven practical to also include the following two criteria:

e Execution of experiment and evaluation (online, offline)
o Employed algorithm for data processing

Mathematical models which describe the dynamic behavior of processes can be
given either as functions relating the input and the output or as functions relating
internal states. They can furthermore be set up as analytical models in the form of
mathematical equations or as tables or characteristic curves. In the former case, the
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Generalized Equation Error

Fig. 1.8. Different setups for calculating the error between model M and process P

parameters of the model are explicitly included in the equation, in the latter case, they
are not. Since the parameters of the system play a dominant role in identification,
mathematical models shall first and foremost be classified by the model type as:

Parametric models (i.e. models with structure and finite number of parameters)
Non-parametric models (i.e. models without specific structure and infinite num-
ber of parameters)

Parametric models are equations, which explicitly contain the process para-
meters. Examples are differential equations or transfer functions given as an alge-
braic expression. Non-parametric models provide a relation between a certain input
and the corresponding response by means of a table or sampled characteristic curve.
Examples are impulse responses, step responses, or frequency responses presented in
tabular or graphical form. They implicitly contain the system parameters. Although
one could understand the functional values of a step response as “parameters”, one
would however need an infinite number of parameters to fully describe the dynamic
behavior in this case. Consequently, the resulting model would be of infinite dimen-
sion. In this book, parametric models are thus understood as models with a finite
number of parameters. Both classes of models can be sub-divided by the type of
input and output signals as continuous-time models or discrete-time models.

The input signals respectively test signals can be deterministic (analytically de-
scribable) stochastic (random), or pseudo-stochastic (deterministic, but with proper-
ties close to stochastic signals).

As a measure for the error between model and process, one can choose between
(see Fig. 1.8) the following errors:

e Input error
e QOutput error
e Generalized equation error
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Fig. 1.9. Different setups for the data processing as part of the identification

Because of mathematical reasons, typically those errors are preferred, which depend
linearly on the process parameters. Thus, one uses the output error if e.g. impulse
responses are used as models and the generalized equation error if e.g. differential
equations, difference equations, or transfer functions are employed. However, also
output errors are used in the last case.

If digital computers are utilized for the identification, then one differentiates be-
tween two types of coupling between process and computer, see Fig. 1.9:

e Offline (indirect coupling)
e Online (direct coupling)

For the offline identification, the measured data are first stored (e.g. data storage) and
are later transferred to the computer utilized for data evaluation and are processed
there. The online identification is performed parallelly to the experiment. The com-
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puter is coupled with the process and the data points are operated on as they become
available.

The identification with digital computers also allows to discern the identification
according to the type of algorithm employed:

e Batch processing
e Real-time processing

In case of batch processing, the previously stored measurements will be processed
in one shot, which is typically the case for offline applications. If the data are pro-
cessed immediately after they become available, then one speaks of real-time pro-
cessing, which necessitates a direct coupling between the computer and the process,
see Fig. 1.9. Another feature is the processing of the data. Here, one can discern:

e Non-recursive processing
e Recursive processing

The non-recursive methods determine the model from the previously stored measure-
ments and are thus a method of choice for offline processing only. On the contrary,
the recursive method updates the model as each measurement becomes available.
Hence, the new measurement is always used to improve the model derived in the
previous step. The old measurements do not need to be stored. This is the typical
approach for real-time processing and is called real-time identification. As not only
the parameters, but also a measure of their accuracy (e.g. variance) can be calculated
online, one can also think about running the measurement until a certain accuracy of
the parameter estimates has been achieved (Astrom and Eykhoff, 1971).
Finally, the non-recursive method can further be subdivided into:

e Direct processing
e [terative processing

The direct processing determines the model in one pass. The iferative processing
determines the model step-wise. Thus, iteration cycles are emerging and the data
must be processed multiple times.

1.4 Overview of Identification Methods

The most important identification methods shall be described shortly. Table 1.2 com-
pares their most prominent properties. A summary of the important advantages and
disadvantages of the individual methods can be found in Sect. 23.4.

1.4.1 Non-Parametric Models

Frequency response measurements with periodic test signals allow the direct deter-
mination of discrete points of the frequency response characteristics for linear pro-
cesses. The orthogonal correlation method has proven very effective for this task and
is included in all frequency response measurement units. The necessary measurement
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Table 1.2. Overview of the most prominent identification methods
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Table 1.2. Overview of the most prominent identification methods (continued)
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time is long if multiple frequencies shall be evaluated, but the resulting accuracy is
very high. These methods are covered in this book in Chap. 5.

Fourier analysis is used to identify the frequency response from step or impulse
responses for linear processes. It is a simple method with relatively small compu-
tational expense and short measurement time, but at the same time is only suitable
for processes with good signal-to-noise ratios. A full chapter is devoted to Fourier
analysis, see Chap. 3.

Correlation analysis is carried out in the time domain and works with continuous-
time as well as discrete-time signals for linear processes. Admissible input signals
are both stochastic and periodic signals. The method is also suitable for processes
with bad signal-to-noise ratios. The resulting models are correlation functions or in
special cases impulse responses for linear processes. In general, the method has a
small computational expense. Correlation analysis is discussed in detail in Chap. 6
for the continuous-time case and Chap. 7 for the discrete-time case.

For all non-parametric identification techniques, it must only be ensured a priori
that the process can be linearized. A certain model structure does not have to be
assumed, what makes these methods very well suited for both lumped as well as
distributed parameter systems with any degree of complexity. They are favored for
the validation of theoretical models derived from theoretical considerations. Non-
parametric models are favored since in this particular area of application, one is not
interested in making any a priori assumptions about the model structure.

1.4.2 Parametric Models

For these methods, a dedicated model structure must be assumed. If assumed prop-
erly, more precise results are expected due to the larger amount of a priori knowledge.

The most simple method is the determination of characteristic values. Based on
measured step or impulse responses, characteristic values, such as the delay time, are
determined. With the aid of tables and diagrams, the parameters of simple models can
then be calculated. These methods are only suitable for simple processes and small
disturbances. They can however be a good starting point for a fast and simple ini-
tial system examination to determine e.g. approximate time constants, which allow
the correct choice of the sample time for the subsequent application of more elabo-
rate methods of system identification. The determination of characteristic values is
discussed in Chap. 2.

Model adjustment methods were originally developed in connection with ana-
log computers. However, they have lost most of their appeal in favor of parameter
estimation methods.

Parameter estimation methods are based on difference or differential equations of
arbitrary order and dead time. The methods are based on the minimization of certain
error signals by means of statistical regression methods and have been complemented
with special methods for dynamic systems. They can deal with an arbitrary excita-
tion and small signal-to-noise ratios, can be utilized for manifold applications, work
also in closed-loop, and can be extended to non-linear systems. A main focus of the
book is placed on these parameter estimation methods. They are discussed e.g. in
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Chap. 8, where static non-linearities are treated, Chap. 9, which discusses discrete-
time dynamic systems, and Chap. 15, which discusses the application of parameter
estimation methods to continuous-time dynamic systems.

Iterative optimization methods have been separated from the previously men-
tioned parameter estimation methods as these iterative optimization methods can
deal with non-linear systems easily at the price of employing non-linear optimiza-
tion techniques along with all the respective disadvantages.

Subspace-based methods have been used successfully in the area of modal analy-
sis, but have also been applied to other areas of application, where parameters must
be estimated. They are discussed in Chap. 16.

Also, neural networks as universal approximators have been applied to experi-
mental system modeling. They often allow to model processes with little to no know-
ledge of the physics governing the process. Their main disadvantage is the fact that
for most neural networks, the net parameters can hardly be interpreted in a physical
sense, making it difficult to understand the results of the modeling process. How-
ever, local linear neural nets mitigate these disadvantages. Neural nets are discussed
in detail in Chap. 20.

The Kalman filter is not used for parameter estimation, but is rather used for
state estimation of dynamic systems. Some authors suggest to use the Kalman filter
to smoothen the measurements as part of applying parameter estimation methods. A
more general framework, the extended Kalman Filter allows the parallel estimation
of states and parameters of both linear and non-linear systems. Its use for parameter
estimation is reported in many citations. Chapter 21 will present the derivation of
the Kalman filter and the extended Kalman filter and outline the advantages and
disadvantages of the use of the extended Kalman filter for parameter estimation.

1.4.3 Signal Analysis

The signal analysis methods shown in Table 1.2 are employed to obtain parametric
or non-parametric models of signals. Often, they are used to determine the frequency
content of signals. The methods differ in many aspects.

A first distinction can be made depending on whether the method is used for
periodic, deterministic signals or for stochastic signals. Also, not all methods are
suited for time-variant signals, which in this context shall refer to signals, whose pa-
rameters (e.g. frequency content) change over time. There are methods available that
work entirely in the time domain and others that analyze the signal in the frequency
domain.

Not all methods are capable of making explicit statements on the presence or
absence of single spectral components, i.e. oscillations at a certain single frequency,
thus this capability represents another distinguishing feature. While many methods
are capable of detecting periodic components in a signal, many methods can still not
make a statement whether the recorded section of the signal is in itself periodic or
not. Also, not all methods can determine the amplitude and the phase of the peri-
odic signal components. Some methods can only determine the amplitude and some
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methods can neither determine the amplitude nor the phase without a subsequent
analysis of the results delivered by the signal analysis method.

Bandpass filtering uses a bank of bandpass filters to analyze different frequency
bands. The biggest advantage of this setup is that past values do not need to be stored.
The frequency resolution depends strongly on the width of the filter passband.

Fourier analysis is a classical tool to analyze the frequency content of signals
and is treated in detail in Chap. 3. The biggest advantage of this method is the fact
that many commercial as well as non-commercial implementations of the algorithms
exist.

Parametric spectral estimation methods can provide signal models as a form
filter shaping white noise. They can also decompose a signal into a sum of sinusoidal
oscillations. These methods are much less sensitive to the choice of the signal length
than e.g. the Fourier analysis, where the sampling interval length typically has to be
an integer multiple of the period length. These methods are discussed in Sect. 9.2.

Correlation analysis is discussed in detail in Chaps. 6 and 7. It is based on the
correlation of a time signal with a time-shifted version of the same signal and is ex-
tremely well suited to determine whether a time signal is truly periodic and determine
its period length.

Spectrum analysis examines the Fourier transform of the auto-correlation func-
tion, while the ARMA parameter 