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Preface

For many problems of the design, implementation, and operation of automatic con-
trol systems, relatively precise mathematical models for the static and dynamic be-
havior of processes are required. This holds also generally in the areas of natural
sciences, especially physics, chemistry, and biology, and also in the areas of medical
engineering and economics. The basic static and dynamic behavior can be obtained
by theoretical or physical modeling, if the underlying physical laws (first principles)
are known in analytical form. If, however, these laws are not known or are only par-
tially known, or if significant parameters are not known precisely enough, one has
to perform an experimental modeling, which is called process or system identifica-
tion. Then, measured signals are used and process or system models are determined
within selected classes of mathematical models.

The scientific field of system identification was systematically developed since
about 1960 especially in the areas of control and communication engineering. It is
based on the methods of system theory, signal theory, control theory, and statistical
estimation theory and was influenced by modern measurement techniques, digital
computations and the need for precise signal processing, control, and automation
functions. The development of identification methods can be followed in wide spread
articles and books. However, a significant influence had the IFAC-symposia on sys-
tem identification, which were since 1967 organized every three years around the
world, in 2009 a 15th time in Saint-Malo.

The book is intended to give an introduction to system identification in an easy
to understand, transparent, and coherent way. Of special interest is an application-
oriented approach, which helps the user to solve experimental modeling problems. It
is based on earlier books in German, published in 1971, 1974, 1991 and 1992, and
on courses taught over many years. It includes own research results within the last
30 years and publications of many other research groups.

The book is divided into eight parts. After an introductory chapter and a chapter
on basic mathematical models of linear dynamic systems and stochastic signals, part
I treats identification methods with non-parametric models and continuous time sig-
nals. The classical methods of determining frequency responses with non-periodic



VI Preface

and periodic test signals serve to understand some basics of identification and lay
ground for other identifications methods.

Part II is devoted to the determination of impulse responses with auto- and cross-
correlation functions, both in continuous and discrete time. These correlation meth-
ods can also be seen as basic identification methods for measurements with stochas-
tic disturbances. They will later appear as elements of other estimation methods and
allow directly the design of binary test signals.

The identification of parametric models in discrete time like difference equations
in Part III is based mainly on least squares parameter estimation. These estimation
methods are first introduced for static processes, also known as regression analysis,
and then expanded to dynamic processes. Both, non-recursive and recursive param-
eter estimation methods are derived and various modifications are described, like
methods of extended least squares, total least squares, and instrumental variables.
The Bayes and maximum likelihood methods yield a deeper theoretical background,
also with regard to performance bounds. Special chapters treat the parameter estima-
tion of time-variant processes and under closed-loop conditions.

Part IV now looks at parameter estimation methods for continuous-time models.
First parameter estimation is extended to measured frequency responses. Then, the
parameter estimation for differential equations and subspace methods operating with
state variable filters are considered.

The identification of multi-variable systems (MIMO) is the focus of Part V. First
basic structures of linear transfer functions and state space models are considered.
This is followed by correlation and parameter estimation methods, including the
design of special uncorrelated test signals for the simultaneous excitation of sev-
eral inputs. However, sometimes it is easier to identify single-input multiple outputs
(SIMO) processes sequentially.

Of considerable importance for many complex processes is the identification of
non-linear systems, treated in Part VI. Special model structures, like Volterra series,
Hammerstein- and Wiener-models allow applying parameter estimation methods di-
rectly. Then, iterative optimization methods are treated, taking into account multi-
dimensional, non-linear problems. Powerful methods were developed based on non-
linear net models with parametric models like neural networks and their derivations
and look-up tables (maps) as non-parametric representations. Also, extended Kalman
filters can be used.

Some miscellaneous issues, which are common to several identification methods,
are summarized in Part VII, as e.g. numerical aspects, practical aspects of parameter
estimation and a comparison of different parameter estimation methods.

Part VIII then shows the application of several treated identification methods to
real processes like electrical and hydraulic actuators, machine tools and robots, heat
exchangers, internal combustion engines and the drive dynamic behavior of automo-
biles.

The Appendix as Part IX then presents some mathematical aspects and a de-
scription of the three mass oscillator process, which is used as a practical example
throughout the book. Measured data to be used for applications by the reader can be
downloaded from the Springer web page in the Internet.
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The wide topics of dynamic system identification are based on the research per-
formed by many experts. Because some early contributions lay the ground for many
other developments we would just like to mention a few authors from early semi-
nal contributions. The determination of characteristic parameters of step responses
was published by V. Strejc (1959). First publications on frequency response measure-
ment with orthogonal correlation go back to Schaefer and Feissel (1955) and Balchen
(1962). The field of correlation methods and ways to design pseudo-random-binary
signals was essentially brought forward by e.g. Chow, Davies (1964), Schweitzer
(1966), Briggs (1967), Godfrey (1970) and Davies (1970). The theory and appli-
cation of parameter estimation for dynamic processes was around 1960 until about
1974 essentially promoted by works of J. Durbin, R.C.K. Lee, V. Strejc, P. Eykhoff,
K.J. Åström, V. Peterka, H. Akaike, P. Young, D.W. Clarke, R.K. Mehra, J.M.
Mendel, G. Goodwin,

This was followed by many other contributions to the field which are cited in the
respective chapters, see also Table 1.3 for an overview over the literature in the field
of identification.

The authors are also indebted to many contributions for developing and applying
identifications methods from researchers at our own group since 1973 until now, like
M. Ayoubi, W. Bamberger, U. Baur, P. Blessing, H. Hensel, R. Kofahl, H. Kurz,
K.H. Lachmann, O. Nelles, K.H. Peter, R. Schumann, S. Toepfer, M. Vogt, and R.
Zimmerschied. Many other developments with regard to special dynamic processes
are referenced in the chapters on applications.

The book is dedicated as an introduction to system identification for undergrad-
uate and graduate students of electrical and electronic engineering, mechanical and
chemical engineering and computer science. It is also oriented towards practicing
engineers in research and development, design and production. Preconditions are ba-
sic undergraduate courses of system theory, automatic control, mechanical and/or
electrical engineering. Problems at the end of each chapter allow to deepen the un-
derstanding of the presented contents.

Finally we would like to thank Springer-Verlag for the very good cooperation.

Darmstadt, Rolf Isermann
June 2010 Marco Münchhof

     L. Ljung ,     and     T.    S derstr m.ö ö
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1

Introduction

The temporal behavior of systems, such as e.g. technical systems from the areas of
electrical engineering, mechanical engineering, and process engineering, as well as
non-technical systems from areas as diverse as biology, medicine, chemistry, physics,
economics, to name a few, can uniformly be described by mathematical models. This
is covered by systems theory. However, the application of systems theory requires
that the mathematical models for the static and dynamic behavior of the systems
and their elements are known. The process of setting up a suitable model is called
modeling. As is shown in the following section, two general approaches to model-
ing exist, namely theoretical and experimental modeling, both of which have their
distinct advantages and disadvantages.

1.1 Theoretical and Experimental Modeling

A system is understood as a confined arrangement of mutually affected entities, see
e.g. DIN 66201. In the following, these entities are processes. A process is defined
as the conversion and/or the transport of material, energy, and/or information. Here,
one typically differentiates between individual (sub-)processes and the entire pro-
cess. Individual processes, i.e. (sub-)processes, can be the generation of mechanical
energy from electric energy, the metal-cutting machining of workpieces, heat trans-
fer through a wall, or a chemical reaction. Together with other sub-processes, the
entire process is formed. Such aggregate processes can be an electrical generator, a
machine tool, a heat exchanger, or a chemical reactor. If such a process is understood
as an entity (as mentioned above), then multiple processes form a system such as e.g.
a power plant, a factory, a heating system, or a plastic material production plant. The
behavior of a system is hence defined by the behavior of its processes.

The derivation of mathematical system and process models and the representa-
tion of their temporal behavior based on measured signals is termed system analysis
respectively process analysis. Accordingly, one can speak of system identification
or process identification when applying the experimental system or process analy-
sis techniques described in this book. If the system is excited by a stochastic signal,

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_1, © Springer-Verlag Berlin Heidelberg 2011 
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Fig. 1.1. Basic procedure for system analysis

one also has to analyze the signal itself. Thus the topic of signal analysis will also
be treated. The title Identification of Dynamic Systems or simply Identification shall
thus embrace all areas of identification as listed above.

For the derivation of mathematical models of dynamic systems, one typically dis-
criminates between theoretical and experimental modeling. In the following, the ba-
sic approach of the two different ways of modeling shall be described shortly. Here,
one has to distinguish lumped parameter systems and distributed parameter systems.
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The states of distributed parameter systems depend on both the time and the location
and thus their behavior has to be described by partial differential equations (PDEs).
Lumped parameter systems are easier to examine since one can treat all storages and
states as being concentrated in single points and not spatially distributed. In this case,
one will obtain ordinary differential equations (ODEs).

For the theoretical analysis, also termed theoretical modeling, the model is ob-
tained by applying methods from calculus to equations as e.g. derived from physics.
One typically has to apply simplifying assumptions concerning the system and/or
process, as only this will make the mathematical treatment feasible in most cases. In
general, the following types of equations are combined to build the model, see also
Fig. 1.1 (Isermann, 2005):

1. Balance equations: Balance of mass, energy, momentum. For distributed param-
eter systems, one typically considers infinitesimally small elements, for lumped
parameter systems, a larger (confined) element is considered

2. Physical or chemical equations of state: These are the so-called constitutive
equations and describe reversible events, such as e.g. inductance or the second
Newtonian postulate

3. Phenomenological equations: Describing irreversible events, such as friction and
heat transfer. An entropy balance can be set up if multiple irreversible processes
are present

4. Interconnection equations according to e.g. Kirchhoff’s node and mesh equa-
tions, torque balance, etc.

By applying these equations, one obtains a set of ordinary or partial differential
equations, which finally leads to a theoretical model with a certain structure and de-
fined parameters if all equations can be solved explicitly. In many cases, the model
is too complex or too complicated, so that it needs to be simplified to be suitable
for subsequent application. Figure 1.2 shows the order of the execution of individ-
ual simplifying actions. The first steps of this simplification procedure can already
be carried out as the fundamental equations are set up by making appropriate sim-
plifying assumptions. It is very tempting to include as many physical effects into
the model as possible, especially nowadays, where simulation programs offer a wide
variety of pre-build libraries of arbitrary degrees of complexity. However, this often
occludes the predominant physical effects and makes both the understanding and the
work with such a model a very tiresome, if not infeasible, endeavor.

But even if the resulting set of equations cannot be solved explicitly, still the
individual equations give important hints concerning the model structure. Balance
equations are always linear, some phenomenological equations are linear in a wide
range. The physical and chemical equations of state often introduce non-linearities
into the system model.

In case of an experimental analysis, which is also termed identification, a mathe-
matical model is derived from measurements. Here, one typically has to rely on cer-
tain a priori assumptions, which can either stem from theoretical analysis or from
previous (initial) experiments, see Fig. 1.1. Measurements are carried out and the in-
put as well as the output signals are subjected to some identification method in order
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Fig. 1.2. Basic approach for theoretical modeling

to find a mathematical model that describes the relation between the input and the
output. The input signals can either be a section of the the natural signals that act
on the process during normal operation or can be an artificially introduced test sig-
nal with certain prespecified properties. Depending on the application, one can use
parametric or non-parametric models, see Sect. 1.2. The resulting model is termed
experimental model.

The theoretically and the experimentally derived models can be compared if both
approaches can be applied and have been pursued. If the two models do not match,
then one can get hints from the character and the size of the deviation, which steps
of the theoretical or the experimental modeling have to be corrected, see Fig. 1.1.

Theoretical and experimental models thus complement one another. The analysis
of the two models introduces a first feedback loop into the course of action for system
analysis. Therefore, system analysis is typically an iterative procedure. If one is not
interested in obtaining both models simultaneously, one has the choice between the
experimental model (case A in Fig. 1.1) and the theoretical model (case B in Fig. 1.1).
The choice mainly depends on the purpose of the derived model:

The theoretical model contains the functional dependencies between the physical
properties of a system and its parameters. Thus, this model will typically be preferred
if the system shall already be optimized in its static and dynamic behavior during the



1.1 Theoretical and Experimental Modeling 5

design phase or if its temporal behavior shall be simulated prior to the construction,
respectively completion of the system.

On the contrary, the experimental model does only contain numbers as para-
meters, whose functional relations to the process properties remain unknown. How-
ever, this model can describe the actual dynamics of the system better and can be
derived with less effort. One favors these experimental models for the adaptation of
controllers (Isermann, 1991; Isermann et al, 1992; Åström et al, 1995; Åström and
Wittenmark, 1997) and for the forecast of the respective signals or fault detection (Is-
ermann, 2006).

In case B (Fig. 1.1), the main focus is on the theoretical analysis. In this set-
ting, one employs the experimental modeling only once to validate the fidelity of
the theoretical model or to determine process parameters, which can otherwise not
be determined with the required accuracy. This is noted with the sequence B/1 in
Fig. 1.1.

In contrast to case B, the emphasis is on the experimental analysis in case A.
Here, one tries to apply as much a priori knowledge as possible from the theoretical
analysis, as the model fidelity of the experimental model normally increases with
the amount of a priori knowledge exploited. In the ideal case, the model structure is
already known from the theoretical analysis (path A/2 in Fig. 1.1). If the fundamental
equations of the model cannot be solved explicitly, if they are too complicated, or if
they are not even completely known, one can still try to obtain information about the
model structure from this incomplete knowledge about the process (sequence A/1 in
Fig. 1.1).

The preceding paragraphs already pointed out that the system analysis can typi-
cally neither be completely theoretical nor completely experimental. To benefit from
the advantages of both approaches, one does rarely use only theoretical modeling
(leading to so-called white-box models) or only experimental modeling (leading to
so-called black-box models), but rather a mixture of both leading to what is called
gray-box models, see Fig. 1.3. This is a rather suitable combination of the two ap-
proaches, which is determined by the scope of application of the model and the sys-
tem itself. The scope of application defines the required model accuracy and hence
the effort that has to be put into the analysis. This introduces a second feedback loop
into the schematic diagram presented in Fig. 1.1, which starts at the resulting models
(either theoretical or experimental) and goes back to the individual modeling steps,
hence one is confronted with a second iteration loop.

Despite the fact that the theoretical analysis can in principle deliver more infor-
mation about the system, provided that the internal behavior is known and can be
described mathematically, experimental analysis has found ever increasing attention
over the past 50 years. The main reasons are the following:

� Theoretical analysis can become quite complex even for simple systems
� Mostly, model coefficients derived from the theoretical considerations are not

precise enough
� Not all actions taking place inside the system are known
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Fig. 1.3. Different kinds of mathematical models ranging from white box models to black box
models

� The actions taking place cannot be described mathematically with the required
accuracy

� Some systems are very complex, making the theoretical analysis too time-
consuming

� Identified models can be obtained in shorter time with less effort compared to
theoretical modeling

The experimental analysis allows the development of mathematical models by
measurement of the input and output of systems of arbitrary composition. One major
advantage is the fact that the same experimental analysis methods can be applied to
diverse and arbitrarily complex systems. By measuring the input and output only,
one does however only obtain models governing the input-output behavior of the
system, i.e. the models will in general not describe the precise internal structure of
the system. These input-output models are approximations and are still sufficient for
many areas of application. If the system also allows the measurement of internal
states, one can obviously also gather information about the internal structure of the
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Table 1.1. Properties of theoretical modeling and identification

Theoretical Modeling Identification

Model structure follows from laws of
nature

Model structure must be assumed

Modeling of the input/output behavior
as well as the internal behavior

Only the input/output behavior is iden-
tified

Model parameters are given as function
of system properties

Model parameters are “numbers” only,
in general no functional dependency to
system properties known

Model is valid for the entire class of
processes of a certain type and for dif-
ferent operating conditions

Model is only valid for investigated sys-
tem and within operating limits

Model coefficients are not known ex-
actly

Model coefficients are more precise for
the given system within operating limits

Models can be build for non-existing
systems

Model can only be identified for an ex-
isting system

The internal behavior of the system
must be known and must be describable
mathematically

Identification methods are independent
of the investigated system and can thus
be applied to many different systems

Typically lengthy process which takes
up much time

Fast process if identification methods
exist already

Models may be rather complex and de-
tailed

Model size can be adjusted according to
the area of application of the model

system. With the advent of digital computers starting in the 1960s, the development
of capable identification methods has started. The different properties of theoretical
modeling and identification have been summarized and set in contrast in Table 1.1.

1.2 Tasks and Problems for the Identification of Dynamic Systems

A process with a single input and a single output (SISO) is considered in the follow-
ing. The process shall be stable to ensure a unique relation between input and output.
Both the input and the output shall be measured without error. The task of identifying
the process P is to find a mathematical model for the temporal behavior of the pro-
cess from the measured input u.t/ D uM.t/, the measured output y.t/ D yM.t/ and
optionally additional measured signals, see Fig. 1.4. This task is made more com-
plicated, if disturbances ´1 : : : ´i are acting on the process and are influencing the
output signal. These disturbances can have various causes. The disturbances seen in
the measured signals often stem from noise and hence will also be included in the
term noise in the remainder of this book. The output is thus corrupted by a noise
n.t/. In this case, one has to apply suitable techniques to separate the wanted signal
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yu.t/, i.e. the response of the system due to the input u.t/, from the disturbances
n.t/.

The term identification and the required subsequent tasks can thus be defined as
follows:

Identification is the experimental determination of the temporal behavior of a
process or system. One uses measured signals and determines the temporal behavior
within a class of mathematical models. The error (respectively deviation) between
the real process or system and its mathematical model shall be as small as possible.

This definition stems from Zadeh (1962), see also (Eykhoff, 1994). The measured
signals are typically only the input to the system and the output from the system.
However, if it is also possible to measure states of the process, then one can also
gather information about the internal structure of the process.

In the following, a linear process is considered. In this case, the individual distur-
bance components ´1; : : : ; ´i can be combined into one representative disturbance
n.t/, which is added to the wanted signal yu.t/, see Fig. 1.5. If this disturbance n.t/
is not negligibly small, then its counterfeiting influence must be eliminated by the
identification method as much as possible. For decreasing signal-to-noise ratios, the
measurement time TM must typically be increased.

For the identification itself, the following limitations have to be taken into con-
sideration:

1. The available measurement time TM is always limited, either due to technical
reasons, due to time variance of the process parameters or due to economical
reasons (i.e. budget), thus

TM � TM;max (1.2.1)

2. The maximum allowable change of the input signal, i.e. the test signal height
u0 is always limited, either due to technical reasons or due to the assumption of
linear process behavior which is only valid within a certain operating regime

umin � u.t/ � umax (1.2.2)

3. The maximum allowable change of the output signal, y0, may also be limited
due to technical reasons or due to the assumption of linear process behavior
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a)

b)

c)

t

Fig. 1.6. Examples of disturbance components. (a) high frequent quasi-stationary stochastic
disturbance. (b) low-frequent non-stationary stochastic disturbance. (c) disturbance with un-
known character

which again is only valid within a certain operating regime

ymin � y.t/ � ymax (1.2.3)

4. The disturbance n.t/ typically consists of different components, which can be
classified according to the following groups, see also Fig. 1.6:
a) High-frequent quasi-stationary stochastic noise n.t/ with Efn.t/g D 0.

Higher frequent deterministic signal with n.t/ D 0.
b) Low-frequent non-stationary stochastic or deterministic signal (e.g. drift, pe-

riodic signals with period times of one day or one year) d.t/
c) Disturbance signal of unknown character (e.g. outliers) h.t/

It is assumed that within the limited measurement time, the disturbance compo-
nent n.t/ can be treated as a stationary signal. The low-frequent component d.t/
must be treated as non-stationary, if it has stochastic character. Low-frequent deter-
ministic disturbances can be drift and periodic signals with long period times such
as one day or one year. Disturbance components with unknown character h.t/ are
random signals, which cannot be described as stationary stochastic signals even for
long measurement periods. This can be e.g. suddenly appearing, persistent, or disap-
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pearing disturbances and so-called outliers. These disturbances can e.g. stem from
electromagnetic induction or malfunctions of the measurement equipment.

Typical identification methods can only eliminate the noise n.t/ as the measure-
ment time is prolonged. Simple averaging or regression methods are often sufficient
in this application. The components d.t/ require more specifically tailored measures
such as special filters or regression methods which have been adapted to the very
particular type of disturbance. Almost no general hints can be given concerning the
elimination of the influence of h.t/. Such disturbances can only be eliminated man-
ually or by special filters.

Effective identification methods must thus be able to determine the temporal be-
havior as precisely as possible under the constraints imposed by

� the given disturbance yz.t/ D n.t/C d.t/C h.t/

� the limited measurement time TM � TM;max
� the confined test signal amplitude umin � u.t/ � umax
� the constrained output signal amplitude ymin � y.t/ � ymax
� the purpose of the identification.

Figure 1.7 shows a general sequence of an identification. The following steps
have to be taken:

First, the purpose has to be defined as the purpose determines the type of model,
the required accuracy, the suitable identification methods and such. This decision
is typically also influenced by the available budget, either the allocated financial
resources or the expendable time.

Then, a priori knowledge must be collected, which encompasses all readily avail-
able information about the process to be identified, such as e.g.

� recently observed behavior of the process
� physical laws governing the process behavior
� rough models from previous experiments
� hints concerning linear/non-linear, time-variant/time-invariant as well as propor-

tional/integral behavior of the process
� settling time
� dead time
� amplitude and frequency spectrum of noise
� operating conditions for conduction of measurements.

Now, the measurement can be planned depending on the purpose and the avail-
able a priori knowledge. One has to select and define the

� input signals (normal operating signals or artificial test signals and their shape,
amplitude and frequency spectrum)

� sampling time
� measurement time
� measurements in closed-loop or open-loop operation of the process
� online or offline identification
� real-time or not
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Fundamental Physical Equations
Initial Experiments

Operating Conditions
Task

Budget

Purpose

Planning of
Measurements

Signal Generation
Measurement
Results

Data Inspection
and Preprocessing

Application of
Identification Method

Assumption of
Model Structure

Determination of
Model Structure

Model Vali-
dation

Process Model

A-Priori Knowledge

ParametricNon-Para-
metric

Resulting
Model

Yes

No

Fig. 1.7. Basic sequence of the identification
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� necessary equipment (e.g. oscilloscope, PC, ...)
� filtering for elimination of noise
� limitations imposed by the actuators (saturation, ...).

Once these points have been clarified, the measurements can be conducted. This
includes the signal generation, measurement, and data storage.

The collected data should undergo a first visual inspection and outliers as well
as other easily detectable measurement errors should be removed. Then, as part of
the further pre-processing, derivatives should be calculated, signals be calibrated,
high-frequent noise be eliminated by e.g. low-pass filtering, and drift be removed.
Some aspects of disturbance rejection and the removal of outliers by graphical and
analytical methods are presented in Chap. 23. Methods to calculate the derivatives
from noisy measurements are shown in Chap. 15.

After that, the measurements will be evaluated by the application of identification
techniques and determination of model structure.

A very important step is the performance evaluation of the identified model, the
so-called validation by comparison of model output and plant output or comparison
of the experimentally established with the theoretically derived model. Validation
methods are covered in Chap. 23. Typically, an identified model with the necessary
model fidelity will not be derived in the first iteration. Thus, additional iteration steps
might have to be carried out to obtain a suitable model.

Therefore, the last step is the possible iteration, i.e. the repeated conduction of
measurements and evaluation of the measurements until a model meeting the im-
posed requirements has been found. One often has to conduct initial experiments,
which allow to prepare and conduct the main experiments with better suited para-
meters or methods.

1.3 Taxonomy of Identification Methods and Their Treatment in This
Book

According to the definition of identification as presented in the last section, the dif-
ferent identification methods can be classified according to the following criteria:

� Class of mathematical model
� Class of employed test signals
� Calculation of error between process and model

It has proven practical to also include the following two criteria:

� Execution of experiment and evaluation (online, offline)
� Employed algorithm for data processing

Mathematical models which describe the dynamic behavior of processes can be
given either as functions relating the input and the output or as functions relating
internal states. They can furthermore be set up as analytical models in the form of
mathematical equations or as tables or characteristic curves. In the former case, the
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Fig. 1.8. Different setups for calculating the error between model M and process P

parameters of the model are explicitly included in the equation, in the latter case, they
are not. Since the parameters of the system play a dominant role in identification,
mathematical models shall first and foremost be classified by the model type as:

� Parametric models (i.e. models with structure and finite number of parameters)
� Non-parametric models (i.e. models without specific structure and infinite num-

ber of parameters)

Parametric models are equations, which explicitly contain the process para-
meters. Examples are differential equations or transfer functions given as an alge-
braic expression. Non-parametric models provide a relation between a certain input
and the corresponding response by means of a table or sampled characteristic curve.
Examples are impulse responses, step responses, or frequency responses presented in
tabular or graphical form. They implicitly contain the system parameters. Although
one could understand the functional values of a step response as “parameters”, one
would however need an infinite number of parameters to fully describe the dynamic
behavior in this case. Consequently, the resulting model would be of infinite dimen-
sion. In this book, parametric models are thus understood as models with a finite
number of parameters. Both classes of models can be sub-divided by the type of
input and output signals as continuous-time models or discrete-time models.

The input signals respectively test signals can be deterministic (analytically de-
scribable) stochastic (random), or pseudo-stochastic (deterministic, but with proper-
ties close to stochastic signals).

As a measure for the error between model and process, one can choose between
(see Fig. 1.8) the following errors:

� Input error
� Output error
� Generalized equation error
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Process Process

Data
Storage

Data
Storage

Computer

Computer

Model

Model

Offline-Identification Online-Identification

Batch Processing Real-Time Processing

Non-Recursive Recursive

Direct
Processing

Iterative
Processing

Fig. 1.9. Different setups for the data processing as part of the identification

Because of mathematical reasons, typically those errors are preferred, which depend
linearly on the process parameters. Thus, one uses the output error if e.g. impulse
responses are used as models and the generalized equation error if e.g. differential
equations, difference equations, or transfer functions are employed. However, also
output errors are used in the last case.

If digital computers are utilized for the identification, then one differentiates be-
tween two types of coupling between process and computer, see Fig. 1.9:

� Offline (indirect coupling)
� Online (direct coupling)

For the offline identification, the measured data are first stored (e.g. data storage) and
are later transferred to the computer utilized for data evaluation and are processed
there. The online identification is performed parallelly to the experiment. The com-
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puter is coupled with the process and the data points are operated on as they become
available.

The identification with digital computers also allows to discern the identification
according to the type of algorithm employed:

� Batch processing
� Real-time processing

In case of batch processing, the previously stored measurements will be processed
in one shot, which is typically the case for offline applications. If the data are pro-
cessed immediately after they become available, then one speaks of real-time pro-
cessing, which necessitates a direct coupling between the computer and the process,
see Fig. 1.9. Another feature is the processing of the data. Here, one can discern:

� Non-recursive processing
� Recursive processing

The non-recursive methods determine the model from the previously stored measure-
ments and are thus a method of choice for offline processing only. On the contrary,
the recursive method updates the model as each measurement becomes available.
Hence, the new measurement is always used to improve the model derived in the
previous step. The old measurements do not need to be stored. This is the typical
approach for real-time processing and is called real-time identification. As not only
the parameters, but also a measure of their accuracy (e.g. variance) can be calculated
online, one can also think about running the measurement until a certain accuracy of
the parameter estimates has been achieved (Åström and Eykhoff, 1971).

Finally, the non-recursive method can further be subdivided into:

� Direct processing
� Iterative processing

The direct processing determines the model in one pass. The iterative processing
determines the model step-wise. Thus, iteration cycles are emerging and the data
must be processed multiple times.

1.4 Overview of Identification Methods

The most important identification methods shall be described shortly. Table 1.2 com-
pares their most prominent properties. A summary of the important advantages and
disadvantages of the individual methods can be found in Sect. 23.4.

1.4.1 Non-Parametric Models

Frequency response measurements with periodic test signals allow the direct deter-
mination of discrete points of the frequency response characteristics for linear pro-
cesses. The orthogonal correlation method has proven very effective for this task and
is included in all frequency response measurement units. The necessary measurement
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Table 1.2. Overview of the most prominent identification methods
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Table 1.2. Overview of the most prominent identification methods (continued)
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time is long if multiple frequencies shall be evaluated, but the resulting accuracy is
very high. These methods are covered in this book in Chap. 5.

Fourier analysis is used to identify the frequency response from step or impulse
responses for linear processes. It is a simple method with relatively small compu-
tational expense and short measurement time, but at the same time is only suitable
for processes with good signal-to-noise ratios. A full chapter is devoted to Fourier
analysis, see Chap. 3.

Correlation analysis is carried out in the time domain and works with continuous-
time as well as discrete-time signals for linear processes. Admissible input signals
are both stochastic and periodic signals. The method is also suitable for processes
with bad signal-to-noise ratios. The resulting models are correlation functions or in
special cases impulse responses for linear processes. In general, the method has a
small computational expense. Correlation analysis is discussed in detail in Chap. 6
for the continuous-time case and Chap. 7 for the discrete-time case.

For all non-parametric identification techniques, it must only be ensured a priori
that the process can be linearized. A certain model structure does not have to be
assumed, what makes these methods very well suited for both lumped as well as
distributed parameter systems with any degree of complexity. They are favored for
the validation of theoretical models derived from theoretical considerations. Non-
parametric models are favored since in this particular area of application, one is not
interested in making any a priori assumptions about the model structure.

1.4.2 Parametric Models

For these methods, a dedicated model structure must be assumed. If assumed prop-
erly, more precise results are expected due to the larger amount of a priori knowledge.

The most simple method is the determination of characteristic values. Based on
measured step or impulse responses, characteristic values, such as the delay time, are
determined. With the aid of tables and diagrams, the parameters of simple models can
then be calculated. These methods are only suitable for simple processes and small
disturbances. They can however be a good starting point for a fast and simple ini-
tial system examination to determine e.g. approximate time constants, which allow
the correct choice of the sample time for the subsequent application of more elabo-
rate methods of system identification. The determination of characteristic values is
discussed in Chap. 2.

Model adjustment methods were originally developed in connection with ana-
log computers. However, they have lost most of their appeal in favor of parameter
estimation methods.

Parameter estimation methods are based on difference or differential equations of
arbitrary order and dead time. The methods are based on the minimization of certain
error signals by means of statistical regression methods and have been complemented
with special methods for dynamic systems. They can deal with an arbitrary excita-
tion and small signal-to-noise ratios, can be utilized for manifold applications, work
also in closed-loop, and can be extended to non-linear systems. A main focus of the
book is placed on these parameter estimation methods. They are discussed e.g. in
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Chap. 8, where static non-linearities are treated, Chap. 9, which discusses discrete-
time dynamic systems, and Chap. 15, which discusses the application of parameter
estimation methods to continuous-time dynamic systems.

Iterative optimization methods have been separated from the previously men-
tioned parameter estimation methods as these iterative optimization methods can
deal with non-linear systems easily at the price of employing non-linear optimiza-
tion techniques along with all the respective disadvantages.

Subspace-based methods have been used successfully in the area of modal analy-
sis, but have also been applied to other areas of application, where parameters must
be estimated. They are discussed in Chap. 16.

Also, neural networks as universal approximators have been applied to experi-
mental system modeling. They often allow to model processes with little to no know-
ledge of the physics governing the process. Their main disadvantage is the fact that
for most neural networks, the net parameters can hardly be interpreted in a physical
sense, making it difficult to understand the results of the modeling process. How-
ever, local linear neural nets mitigate these disadvantages. Neural nets are discussed
in detail in Chap. 20.

The Kalman filter is not used for parameter estimation, but is rather used for
state estimation of dynamic systems. Some authors suggest to use the Kalman filter
to smoothen the measurements as part of applying parameter estimation methods. A
more general framework, the extended Kalman Filter allows the parallel estimation
of states and parameters of both linear and non-linear systems. Its use for parameter
estimation is reported in many citations. Chapter 21 will present the derivation of
the Kalman filter and the extended Kalman filter and outline the advantages and
disadvantages of the use of the extended Kalman filter for parameter estimation.

1.4.3 Signal Analysis

The signal analysis methods shown in Table 1.2 are employed to obtain parametric
or non-parametric models of signals. Often, they are used to determine the frequency
content of signals. The methods differ in many aspects.

A first distinction can be made depending on whether the method is used for
periodic, deterministic signals or for stochastic signals. Also, not all methods are
suited for time-variant signals, which in this context shall refer to signals, whose pa-
rameters (e.g. frequency content) change over time. There are methods available that
work entirely in the time domain and others that analyze the signal in the frequency
domain.

Not all methods are capable of making explicit statements on the presence or
absence of single spectral components, i.e. oscillations at a certain single frequency,
thus this capability represents another distinguishing feature. While many methods
are capable of detecting periodic components in a signal, many methods can still not
make a statement whether the recorded section of the signal is in itself periodic or
not. Also, not all methods can determine the amplitude and the phase of the peri-
odic signal components. Some methods can only determine the amplitude and some
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Table 1.2. Overview of the most prominent signal analysis methods
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methods can neither determine the amplitude nor the phase without a subsequent
analysis of the results delivered by the signal analysis method.

Bandpass filtering uses a bank of bandpass filters to analyze different frequency
bands. The biggest advantage of this setup is that past values do not need to be stored.
The frequency resolution depends strongly on the width of the filter passband.

Fourier analysis is a classical tool to analyze the frequency content of signals
and is treated in detail in Chap. 3. The biggest advantage of this method is the fact
that many commercial as well as non-commercial implementations of the algorithms
exist.

Parametric spectral estimation methods can provide signal models as a form
filter shaping white noise. They can also decompose a signal into a sum of sinusoidal
oscillations. These methods are much less sensitive to the choice of the signal length
than e.g. the Fourier analysis, where the sampling interval length typically has to be
an integer multiple of the period length. These methods are discussed in Sect. 9.2.

Correlation analysis is discussed in detail in Chaps. 6 and 7. It is based on the
correlation of a time signal with a time-shifted version of the same signal and is ex-
tremely well suited to determine whether a time signal is truly periodic and determine
its period length.

Spectrum analysis examines the Fourier transform of the auto-correlation func-
tion, while the ARMA parameter estimation determines the coefficients of an ARMA
form filter that generates the stochastic content of the signal. This will be presented
in Sect. 9.4.2.

Finally, methods have been developed that allow a joint time-frequency analysis
and can be used to check for changes in the signal properties. The short time Fourier
transform applies the Fourier transform to small blocks of the recorded signals. The
wavelet analysis calculates the correlation of the signal with a mother wavelet that is
shifted and/or scaled in time. Both methods are presented in Chap. 3.

1.5 Excitation Signals

For identification purposes, one can supply the system under investigation either
with the operational input signals or with artificially created signals, so-called test
signals. Such test signals must in particular be applied, if the operational signals do
not excite the process sufficiently (e. g. due to small amplitudes, non-stationarity,
adverse frequency spectrum), which is often the case in practical applications. The
favorable signals typically satisfy the following criteria:

� Simple and reproducible generation of the test signal with or without signal gen-
erator

� Simple mathematical description of the signal and its properties for the corre-
sponding identification method

� Realizable with the given actuators
� Applicable to the process
� Good excitation of the interesting system dynamics
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Fig. 1.10. Overview of some excitation signals. (a) non-periodic: step and square pulse. (b)
periodic: sine wave and square wave. (c) stochastic: discrete binary noise

P1

u1 yu2 P2

P

Fig. 1.11. Process P consisting of the subprocesses P1 and P2

Often, one cannot influence the input u2.t/ that is directly acting on the sub-
process P2, which is to be identified. The input can only by influenced by means
of the preceding subprocess P1 (e.g. actuator) and its input u1.t/, see Fig. 1.11. If
u2.t/ can be measured, the subprocess P2 can be identified directly, if the identifi-
cation method is applicable for the properties of u2.t/. Is the method applicable for
a special test signal u1.t/ only, then one has to identify the entire process P and the
sub-process P1 and calculate P2, which for linear systems is given as

GP2.s/ D GP.s/

GP1.s/
; (1.5.1)

where the G.s/ are the individual transfer functions.
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Process P
u y

u uM= +ξu y yM= +ξy

yu

yz

ξu ξy

Control-
ler

e yu
Process

w

-

yu
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Fig. 1.12. Disturbed linear process with
disturbed measurements of the input and
output

Fig. 1.13. Identification of a process in
closed-loop

1.6 Special Application Problems

There are a couple of application problems, which shall be listed here shortly to sen-
sitize the reader to these issues. They will be treated in more detail in later chapters.

1.6.1 Noise at the Input

So far, it was assumed that the disturbances acting on the process can be combined
into a single additive disturbance at the output, yz. If the measurement is disturbed
by a disturbance 
y.t/, see Fig. 1.12, then this can be treated together with the dis-
turbance yz.t/ and thus does not pose a significant problem. More difficult is the
treatment of a disturbed input signal u.t/, being counterfeit by 
u.t/. This is de-
noted as errors in variables, see Sect. 23.6. One approach to solve this problem is the
method of total least squares (TLS) or the principal component analysis (PCA), see
Chap. 10.

Proportional acting processes can in general be identified in open-loop. Yet, this
is often not possible for processes with integral action as e.g. interfering disturbance
signals may be acting on the process such that the output drifts away. Also, the pro-
cess may not allow a longer open loop operation as the operating point may start to
drift. In these cases as well as for unstable processes, one has to identify the process
in closed-loop, see Fig. 1.13. If an external signal such as the setpoint is measurable,
the process can be identified with correlation or parameter estimation methods. If
there is no measurable external signal acting on the process (e.g. regulator settings
with constant setpoint) and the only excitation of the process is by yz.t/, then one
is restricted in the applicable methods as well as the controller structure. Chapter 13
discusses some aspects that are proprietary to identification in closed-loop.

1.6.2 Identification of Systems with Multiple Inputs or Outputs

For linear systems with multiple input and/or output signals, see Fig. 1.14, one can
also employ the identification methods for SISO processes presented in this book.
For a system with one input and r outputs and one test signal, one can obtain r
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Fig. 1.14. Identification of (a) SIMO system with 1 input and r outputs, (b) MISO system
with p inputs and 1 output, (c) MIMO system with p inputs and r outputs

input/output models by applying the identification method r times to the individual
input/output combinations, see Fig. 1.14. A similar approach can be pursued for
systems with r inputs and one output (MISO). One can excite one input after the
other or one can excite all inputs at the same time with non-correlated input signals.
The resulting model does not have to be the minimum realizable model, though.

For a system with multiple inputs and outputs (MIMO), one has three options:
One can excite one input after the other and evaluate all outputs simultaneously, or
one can excite all inputs at the same time and evaluate one output after the other,
or one can excite all inputs simultaneously and also evaluate all outputs at the same
time. If a model for the input/output behavior is sufficient, then one can success-
fully apply the SISO system identification methods. If however, one has p inputs
which are excited simultaneously and r outputs, one should resort to methods specif-
ically tailored to the identification of MIMO systems, as the assumed model structure
plays an important role here. Parameter estimation of MIMO systems is discussed in
Chap. 17.

1.7 Areas of Application

As already mentioned, the application of the resulting model has significant influ-
ence on the choice of the model classes, the required model fidelity, the identifica-
tion method and the required identification hardware and software. Therefore, some
sample areas of application shall be sketched in the following.

1.7.1 Gain Increased Knowledge about the Process Behavior

If it proves impossible to determine the static and dynamic behavior by means of
theoretical modeling due to a lack of physical insight into the process, one has to re-
sort to experimental modeling. Such complicated cases comprise technical processes
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as e.g. furnaces, combustion engines, bio-reactors, biological and economical pro-
cesses. The choice of the identification method is mainly influenced by the questions
whether or not special test signals can be inserted, whether the measurements can
be taken continuously or only at discrete points in time, by the number of inputs
and outputs, by the signal-to-noise ratio, by the available time for measurements and
by the existence of feedback loops. The derived model must typically only be of
good/medium fidelity. Often, it is sufficient to apply simple identification methods,
however, one also applies parameter estimation methods quite frequently.

1.7.2 Validation of Theoretical Models

Due to the simplifying assumptions and the imprecise knowledge of process para-
meters, one quite frequently needs to validate a theoretically derived model with
experiments conducted at a real process. For a (linear) model given in the form of a
transfer function, the measurement of the frequency response provides a good tool
to validate the theoretical model. The Bode diagram provides a very transparent rep-
resentation of the dynamics of the process, such as resonances, the negligence of the
higher frequent dynamics, dead time and model order. The major advantage of the
frequency response measurement is the fact that no assumptions must be made about
the model structure (e.g. model order, dead time,...). The most severe disadvantage
is the long measurement time especially for processes with long settling times and
the necessary assumption of linearity.

In the presence of mild disturbances only, it may also be sufficient to compare
step responses of process and model. This is, of course, very transparent and natural.
In the presence of more severe disturbances, however, one has to resort to correlation
methods or parameter estimation methods for continuous-time models. The required
model fidelity is medium to high.

1.7.3 Tuning of Controller Parameters

The rough tuning of parameters, e.g. for a PID controller, does not necessarily re-
quire a detailed model (like Ziegler-Nichols experiment). It is sufficient to determine
some characteristic values from the step response measurement. For the fine-tuning
however, the model must be much more precise. For this application, parameter es-
timation methods are favorable, especially for self-tuning digital controllers, see e.g.
(Åström and Wittenmark, 1997, 2008; Bobál et al, 2005; O’Dwyer, 2009; Crowe
et al, 2005; Isermann et al, 1992). These techniques should gain more momentum in
the next decades as the technicians are faced with more and more controllers installed
in plants and nowadays more than 50% of all controllers are not commissioned cor-
rectly, resulting in slowly oscillating control loops or inferior control performance
(Pfeiffer et al, 2009).

1.7.4 Computer-Based Design of Digital Control Algorithms

For the design of model-based control algorithms, for e.g. internal model or pre-
dictive controllers or multi-variable controllers, one needs models of relatively high
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fidelity. If the control algorithms as well as the design methods are based on para-
metric, discrete-time models, parameter estimation methods, either offline or online,
are the primary choice. For non-linear systems, either parameter estimation methods
or neural nets are suitable (Isermann, 1991).

1.7.5 Adaptive Control Algorithms

If digital adaptive controllers are employed for processes with slowly time-varying
coefficients, parametric discrete-time models are of great benefit since suitable mod-
els can be determined in closed loop and online by means of recursive parameter
estimation methods. By the application of standardized controller design methods,
the controller parameters can be determined easily. However, it is also possible to
employ non-parametric models. This is treated e.g. in the books (Sastry and Bodson,
1989; Isermann et al, 1992; Ikonen and Najim, 2002; Åström and Wittenmark, 2008).
Adaptive controllers are another important subject due to the same reasons already
stated for the automatic tuning of controller parameters. However, the adaptation
depends very much on the kind of excitation and has to be supervised continuously.

1.7.6 Process Supervision and Fault Detection

If the structure of a process model is known quite accurately from theoretical con-
siderations, one can use continuous-time parameter estimation methods to determine
the model parameters. Changes in the process parameters allow to infer on the pres-
ence of faults in the process. The analysis of the changes also allows to pinpoint the
type of fault, its location and size. This task however imposes high requirements on
the model fidelity. The primary choice are online identification methods with real
time data processing or block processing. For a detailed treatment of this topic, see
e.g. the book by Isermann (2006). Fault detection and diagnosis play an important
role for safety critical systems and in the context of asset management, where all
production equipment will be incorporated into a company wide network and all
equipment will permanently assess its own state of health and request maintenance
service autonomously upon the detection of tiny, incipient faults, which can cause
harmful system behavior or stand-still of the production in the future.

1.7.7 Signal Forecast

For slow processes, such as e.g. furnaces or power plants, one is interested in fore-
casting the effect of the operator intervention by means of a simulation model to
support the operator and enable him/her to judge the effects of his/her intervention.
Typically, recursive online parameter estimation methods are exploited for the task
of deriving a plant model. These methods have also been used to the prediction of
economical markets as described e.g. by (Heij et al, 2007) as well as Box et al (2008).
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Table 1.3. Bibliographical list for books on system identification since 1992 with no claim
on completeness. X=Yes, (X)=Yes, but not covered in depth, C=CD-ROM, D=Diskette,
M=MatLab code or toolbox, W=Website. For a reference on books before 1992, see (Iser-
mann, 1992). Realization theory based methods in (Juang, 1994; Juang and Phan, 2006) are
sorted as subspace methods.
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1.7.8 On-Line Optimization

If the task is to operate a process in its optimal operating point (e.g. for large Diesel
ship engines or steam power plants), parameter estimation methods are used to derive
an online non-linear dynamic model which then allows to find the optimal operating
point by means of mathematical optimization techniques. As the price for energy and
production goods, such as crude oil and chemicals, is increasing at a rapid level, it
will become more and more important to operate the process as efficiently as possi-
ble.

From this variety of examples, one can clearly see the strong influence of the in-
tended application on the choice of the system identification methods. Furthermore,
the user is only interested in methods that can be applied to a variety of different
problems. Here, parameter estimation methods play an important role since they can
easily be modified to not only include linear, time-invariant SISO processes, but also
cover non-linear, time-varying, and multi-variable processes.

It has also been illustrated that many of these areas of application of identification
techniques will present attractive research and development fields in the future, thus
creating a demand for professionals with a good knowledge of system identification.
A selection of applications of the methods presented in this book is presented in
Chap. 24.

1.8 Bibliographical Overview

The development of system identification has been pushed forward by new develop-
ments in diverse areas:

� System theory
� Control engineering
� Signal theory
� Time series analysis
� Measurement engineering
� Numerical mathematics
� Computers and micro-controllers

The published literature is thus spread across the different above-mentioned areas
of research and their subject-specific journals and conferences. A systematic treat-
ment of the subject can be found in the area of automatic control, where the IFAC
Symposia on System Identification (SYSID) have been established in 1967 as a trien-
nial platform for the community of scientists working in the area of identification of
systems. The symposia so far have taken place in Prague (1967, Symposium on Iden-
tification in Automatic Control Systems), Prague (1970, Symposium on Identification
and Process Parameter Estimation), The Hague (1973, Symposium on Identification
and System Parameter Estimation), Tbilisi (1976), Darmstadt (1979), Washington,
DC, (1982), York (1985), Beijing (1988), Budapest (1991), Copenhagen (1994), Ki-
takyushu (1997), Santa Barbara, CA (2000), Rotterdam (2003), Newcastle (2006)
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and Saint-Malo (2009). The International Federation of Automatic Control (IFAC)
has also devoted the work of the Technical Committee 1.1 to the area of modeling,
identification, and signal processing.

Due to the above-mentioned fact that system identification is under research in
many different areas, it is difficult to give an overview over all publications that have
appeared in this area. However, Table 1.3 tries to provide a list of books that are
devoted to system identification, making no claim on completeness. As can be seen
from the table many textbooks concentrate on certain areas of system identification.

Problems

1.1. Theoretical Modeling
Describe the theoretical modeling approach. Which equations can be set up and com-
bined into a model? Which types of differential equations can result? Why is the
application of purely theoretical modeling approaches limited?

1.2. Experimental Modeling
Describe the experimental modeling approach. What are its advantages and disad-
vantages?

1.3. Model Types
What are white-box, gray-box, and black-box models?

1.4. Identification
What are the tasks of the identification?

1.5. Limitations in Identification
Which limitations are imposed on a practical identification experiment?

1.6. Disturbances
Which typical disturbances are acting on the process? How can their effect be elimi-
nated?

1.7. Identification
Which steps have to be taken in the sequence of system identification?

1.8. Taxonomy of Identification Methods
According to which features can identification methods be classified?

1.9. Non-Parametric/Parametric Models
What is the difference between a non-parametric and a parametric model? Give ex-
amples.

1.10. Areas of Application
Which identification methods are suitable for validation of theoretical linear models
and the design of digital control algorithms.
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2

Mathematical Models of Linear Dynamic Systems and
Stochastic Signals

The main task of identification methods is to derive mathematical models of pro-
cesses and their signals. Therefore, the most important mathematical models of lin-
ear, time-invariant SISO processes as well as stochastic signals shall shortly be pre-
sented in the following. It is assumed that the reader is already familiar with time-
and frequency domain based models and methods. If this is not the case, the reader is
referred to the multitude of textbooks dealing with control engineering and covering
this topic in much more breadth (Åström and Murray, 2008; Chen, 1999; Dorf and
Bishop, 2008; Franklin et al, 2009; Goodwin et al, 2001; Nise, 2008; Ogata, 2009).
The following short discussion is only meant to agree upon the notation and allow
the reader to recall the most important relations.

Systems are termed linear, if the superposition principle can be applied. The sys-
tem output due to multiple input signals is then given as the superposition of the
corresponding output signals. In the most simple case, the behavior of the linear sys-
tem is described by means of a linear ordinary differential equation (ODE). If the
coefficients do not change, the system is termed time-invariant, otherwise, i.e. if the
system parameters change over time, one has to deal with a time-variant system.
Suitable models for non-linear processes are introduced with the respective identifi-
cation methods in later chapters. Systems are termed affine, if they have a constant
term added to the output.

The taxonomy of the models described in the following leans on criteria which
have been found useful with respect to the taxonomy of identification methods as
well as the latter scope of application of the resulting model. In general, a distinction
is made between parametric and non-parametric models, models in input/output or
state space representation, time domain and frequency domain based models.

2.1 Mathematical Models of Dynamic Systems for Continuous Time
Signals

First, the theory of mathematical models for dynamic systems in continuous-time
shall be reviewed shortly as the understanding of these fundamentals is indispensable

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_2, © Springer-Verlag Berlin Heidelberg 2011 
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u t( )

u (i )ω

y t( )

y (i )ω

g t( )

G (i )ω

Fig. 2.1. Dynamic process with input u
and output y

for the understanding and application of the identification methods presented in the
remainder of this book.

2.1.1 Non-Parametric Models, Deterministic Signals

Mathematical models of processes, but also of signals, can be either non-parametric
or parametric. Non-parametric models represent the relation between the input and
the output by means of a table or curve. They do not exhibit a certain structure, are
typically of infinite dimension and lay the foundation for so-called black-box meth-
ods. Thus, they shall be called black models in the following. The most prominent
non-parametric models of time-invariant, linear processes are the impulse response,
step response and the frequency response, see Fig. 2.1.

Impulse Response

The impulse response g.t/ is defined as the output of a process being excited by an
impulse (Dirac’s delta function) ı.t/. This impulse function is defined as

ı.t/ D
�1 for t D 0

0 for t ¤ 0
(2.1.1)

Z 1

�1
ı.t/ dt D 1sec : (2.1.2)

By means of the impulse response, one can determine the output of a linear process
for an arbitrary, deterministic input by employing the convolution integral as

y.t/ D
Z t

0

g.t � �/ u.�/d� D
Z t

0

g.�/ u.t � �/d� : (2.1.3)

The step function �.t/ is also called the Heaviside function H .t/. It is defined as

�.t/ D
�
1 for t � 0

0 for t < 0 : (2.1.4)

A step can be obtained by integrating the impulse with respect to time t . The system
output is defined as the step response h.t/ and can be calculated by convoluting the
input signal with the impulse response g.t/ as

h.t/ D
Z 1

0

g.�/ �.t � �/d� D
Z t

0

g.�/d� : (2.1.5)

The impulse response is thus the time-derivative of the step response, i.e.
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g.t/ D dh.t/
dt

: (2.1.6)

Note that the Heaviside function can also be defined as

Hc.t/ D
˚
1 for t > 0
c for t D 0

0 for t < 0 ;
(2.1.7)

where c D 0 (Föllinger, 2010), c D 1=2, which increases the symmetry (Bracewell,
2000; Bronstein et al, 2008) or c D 1 which makes the definitions of the continuous-
time and the discrete-time step function (which is also 1 for k D 0) quite similar.

Frequency Response, Transfer Function

The frequency response is the equivalent of the impulse response in the frequency
domain. It is defined as the ratio of the vectors of the input and output quantity, if
the process is excited by a harmonic oscillation and one waits until the steady-state
response is fully developed,

G.i!/ D y.!t/

u.!t/
D y0.!/ei.!tC'.!//

u0.!/ei!t
D y0.!/

u0.!/
ei'.!/ : (2.1.8)

By means of the Fourier transform, which is treated in detail e.g. in (Papoulis,
1962; Föllinger and Kluwe, 2003), the frequency response can also be determined
for non-periodic signals. The Fourier transform maps the function x.t/ in the time
domain to the function x.i!/ in the frequency domain as

F
˚
x.t/

� D x.i!/ D
Z 1

�1
x.t/e�i!t dt : (2.1.9)

The corresponding inverse Fourier transform is given as

F�1
˚
x.i!/

� D x.t/ D 1

2�

Z 1

�1
x.i!/ei!t d! : (2.1.10)

If f .t/ is piecewise continuous and absolutely integrable, i.e.
Z 1

�1
jx.t/j dt < 1 ; (2.1.11)

then the Fourier transform exists and is a bounded continuous function (Poularikas,
1999) The frequency response is defined for non-periodic signals as the ratio of the
Fourier transform of the output and the input,

G.i!/ D F
˚
y.t/

�
F
˚
u.t/

� D y.i!/
u.i!/

: (2.1.12)
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The relation of the input and output in the time domain by means of the convolution
is given as a simple multiplication

y.i!/ D G.i!/ u.i!/ (2.1.13)

in the frequency domain. Since the Fourier transform of the Dirac delta impulse is

F
˚
ı.t/

� D 1 sec ; (2.1.14)

one gets from (2.1.12)

G.i!/ D F
˚
g.t/

�
F
˚
ı.t/

� D
Z 1

0

g.t/ e�i!t dt
1

1 sec
; (2.1.15)

which shows that the frequency response is the Fourier transform of the impulse re-
sponse. The Fourier transform is treated again in Chap. 3, where the implementation
of the Fourier transform on digital computers and the effect of applying the Fourier
transform to data sequences of finite length are discussed in detail.

Since the Fourier transform does not exist for certain, often encountered input
signals, such as e.g. the step function or the ramp function, one is interested in a way
to determine the transfer function for these non-periodic signals as well. For this task,
the Laplace transform is given as

L
˚
x.t/

� D x.s/ D
Z 1

0

x.t/e�st dt ; (2.1.16)

assuming that x.t/ D 0 for t < 0, with the Laplace variable s D ı C i!; ı > 0 and
the inverse Laplace transform

L�1
˚
x.s/

� D x.t/ D 1

2� i

Z ıCi1

ı�i1
x.s/est ds : (2.1.17)

Now, the transfer function is given as the ratio of the Laplace transform of the
output and the input as

G.s/ D L
˚
y.t/

�
L
˚
u.t/

� D y.s/

u.s/
(2.1.18)

and in analogy to (2.1.15),

G.s/ D L
˚
g.t/

�
L
˚
ı.t/

� D
Z 1

0

g.t/ e�st dt
1

1 sec
: (2.1.19)

For ı ! 0 and thus s ! i!, the transfer function evolves into the frequency response

lim
s!i!

G.s/ D G.i!/ : (2.1.20)

This concludes the composition of the most important fundamental equations for
non-parametric, linear models and deterministic signals.
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2.1.2 Parametric Models, Deterministic Signals

Parametric models represent the relation between the input and output by means
of equations. In general, they contain a finite number of explicit parameters. These
equations can be set up by the application of theoretical modeling techniques as
was described in Sect. 1.1. By means of formulating balance equations for stored
quantities, physical or chemical equations of state and phenomenological equations,
a system of equations is constructed, which contains the physically defined para-
meters ci , which shall be called process coefficients (Isermann, 2005). This system
of equations reveals the elementary model structure and can be represented by means
of a detailed block diagram. Models that exhibit such an elementary model structure
can be called white models (white box) in contrast to the non-parametric, so-called
black models that have been introduced in the previous section, recall also Fig. 1.3
for a comparison of the different modeling approaches ranging from white-box to
black-box modeling.

Differential Equations

If only the input/output behavior of the process is of interest, then the system states
will be eliminated (if possible). The resulting mathematical model assumes the form
of an ordinary differential equation (ODE) for a lumped parameter system. In the
linear case, this ODE is given as

y.n/.t/C an�1y
.n�1/.t/C : : :C a1 Py.t/C a0y.t/

Dbmu
.m/.t/C bm�1u

.m�1/.t/C : : :C b1 Pu.t/C b0u.t/ :
(2.1.21)

The model parameters ai and bi are determined by the process coefficients ci . For
the transition from the physical process to the input/output model, the underlying
model structure may be lost. For processes with distributed parameters, one can ob-
tain similar partial differential equations (PDEs).

Transfer Function and Frequency Response

By application of the Laplace transform to the ODE in (2.1.21) and setting all initial
conditions to zero, one obtains the (parametric) transfer function

G.s/ D y.s/

u.s/
D b0 C b1s C : : :C bms

m

a0 C a1s C : : :C ansn
D B.s/

A.s/
: (2.1.22)

By determining the limit s ! i!, the (parametric) frequency response is obtained as

G.i!/ D lim
s!i!

G.s/ D ˇ̌
G.i!/

ˇ̌
ei'.!/ (2.1.23)

with the magnitude jG.i!/j and the phase (argument) '.i!/ D †G.i!/, which can
be expressed in dependence of the model parameters.
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u x x y
b � cT

A

d

Fig. 2.2. State space representation of a SISO system

State Space Representation

If one is not only interested in the behavior of the output, but also the internal states
of the system, one has to represent the system in its state space form. For a linear
time-invariant process with one input and one output, the equations are given as

Px.t/ D Ax.t/C bu.t/ (2.1.24)

y.t/ D cTx.t/C du.t/ : (2.1.25)

The elements of these equations are called state vector (x.t/), state matrix (A), input
vector (b), output vector (cT) and direct feedthrough (d ). The first equation is termed
state equation and the second output equation. A block diagram representation is
shown in Fig. 2.2.

The time solution of (2.1.24) and (2.1.25), which is important for the evaluation
of e.g. the Kalman filter (see Chap. 21) is given as

x.t/ D ˚.t � t0/x.t0/C
Z t

t0

˚.t � �/bu.�/d� (2.1.26)

with the transition matrix ˚ being determined by the matrix exponential

˚.t/ D eAt D lim
n!1

�
I CAt CA2 t

2

2Š
C : : :CAn t

n

nŠ

�
: (2.1.27)

Apart from the direct evaluation of the series as in (2.1.27), there are several other
ways to calculate the matrix exponential (e.g. Moler and van Loan, 2003). Using the
transition matrix, the output can be calculated as

y.t/ D cT˚.t � t0/x.t0/C cT
Z t

t0

˚.t � �/bu.�/d� C du.t/ : (2.1.28)

From the state space representation, one can also determine the transfer function in
continuous-time by
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y t( )

T0

y tD( )
A/D

Continuous Amplitude
Continuous Time

Continuous Amplitude
Discrete Time

Discrete Amplitude
Discrete Time

Sampling Analog-
Digital

Conversion

Fig. 2.3. Analog-digital conversion process and the subsequent generation of an amplitude-
modulated discrete-time and discrete-amplitude, discrete-time signal

G.s/ D y.s/

u.s/
D cT.sI �A/�1b ; (2.1.29)

leading to a rational transfer function as in the form of (2.1.22).

2.2 Mathematical Models of Dynamic Systems for Discrete Time
Signals

For the digital processing of measurements and thus also for the identification with
digital computers, the measurements are sampled and digitized in the analog-digital
converter (ADC). By this sampling and discretizing process, discrete signals are gen-
erated, which are both quantized in time and in amplitude. It is assumed that the
quantization error for the amplitude is so small that the amplitude values can be
assumed to be quasi-continuous. If the sampling process is periodic with the sam-
ple time T0, then an amplitude modulated train of pulses, apart by the sample time
T0, results, see Fig. 2.3. This sampled signal can then be processed inside the dig-
ital computer, e.g. for control purposes (Franklin et al, 1998; Isermann, 1991) or
for other purposes such as process identification. It is important to recognize that the
process model inevitable also contains the sampling process at the input of the digital
computer and the subsequent holding element as well as the sampling process at the
output of the computer. A detailed description of discrete-time signals can be found
in textbooks on digital control (Franklin et al, 1998; Isermann, 1991; Phillips and
Nagle, 1995; Söderström, 2002). Therefore, only a short synopsis shall be provided
in the following.

2.2.1 Parametric Models, Deterministic Signals

ı Impulse Series, ´-Transform

If the continuous-time input and output of a process are sampled with a sufficiently
high sample rate (compared to the process dynamics), one can obtain difference
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equations describing the process behavior by discretizing the differential equation
using finite differences as a replacement for the continuous-time derivatives. How-
ever, a more suitable treatment, which is valid also for large sampling times is to
approximate the pulses of the sampled signal xS.t/ which have the width h by an
area-equivalent ı impulse,

xS.t/ � xı.t/ D h

1sec

1X
kD0

x.kT0/ı.t � kT0/ : (2.2.1)

With the normalization h D 1sec, one gets

x�.t/ D
1X

kD0

x.kT0/ı.t � kT0/ : (2.2.2)

This expression can be subjected to the Laplace transform, yielding

x�.s/ D Lfx�.t/g D
1X

kD0

x.kT0/e�kT0s : (2.2.3)

The Laplace transform x�.s/ is periodic with

x�.s/ D x�.s C i	!0/; 	 D 0; 1; 2; : : : (2.2.4)

with the sampling frequency !0 D 2�=T0. Introducing the short hand notation

´ D eT0s D eT0.ıCi!/ ; (2.2.5)

one obtains the ´-transform

x.´/ D Zfx.kT0g D
1X

kD0

x.kT0/´
�k : (2.2.6)

If x.kT0/ is bounded, x.´/ converges for j´j > 1, which can be achieved for most
interesting signals by an appropriate choice of ı. Similarly to the Laplace transform,
it is assumed that x.kT0/ D 0 for k < 0 and ı > 0 (Poularikas, 1999; Föllinger
and Kluwe, 2003). x.´/ is in general a series of infinite length. For many test signals
however, one can provide closed-form expressions.

Discrete Impulse Response

Since the response of a system due to the excitation with a ı-impulse is the impulse
response g.t/, one obtains the convolution sum

y.kT0/ D
1X

�D0

u.	T0/g
�
.k � 	/T0

�
(2.2.7)
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u kT( )0

u z( )

y kT( )0

y z( )

g( )qT0

G( )z

Fig. 2.4. Dynamic process with sampled
input u and output y being characterized
by its (discrete) impulse response and its
´ transfer function

which can be used to calculate the system output due to an input u.kT0/, where

u�.t/ D
1X

kD0

u.kT0/ı.t � kT0/ (2.2.8)

is the ı-impulse approximation of the input. If the output is sampled synchronously
to the input, then the convolution sum is given as

y.kT0/ D
1X

�D0

u.	T0/g
�
.k � 	/T0

� D
1X

�D0

u
�
.k � 	/T0

�
g.	T0/ : (2.2.9)

´-Transfer Function

The sampled and ı-impulse approximated output

y�.t/ D
1X

kD0

y.kT0/ı.t � kT0/ (2.2.10)

is being subjected to the Laplace transform to obtain

y�.s/ D
1X

�D0

1X
�D0

u.�T0/g
�
.	 � �/T0

�
e��T0s : (2.2.11)

With the substitution q D 	 � � one gets

y�.s/ D
1X

qD0

g.qT0/e�qT0s

1X
�D0

u.�T0/e��T0s D G�.s/u�.s/ : (2.2.12)

Here,

G�.s/ D y�.s/
u�.s/

D
1X

qD0

g.qT0/e�qT0s (2.2.13)

is called the impulse transfer function. The impulse frequency response then becomes

G�.i!/ D lim
s!i!

G�.s/; ! � �

T0

: (2.2.14)

It must be kept in mind that for a continuous signal that has been sampled at the
angular frequency !0 D 2�=T0, only harmonic signals with an angular frequency
! < !S with



42 2 Mathematical Models of Linear Dynamic Systems and Stochastic Signals

!S D !0

2
D �

T0

(2.2.15)

can be detected correctly as harmonic signals with the true angular frequency !
according to Shannon’s theorem. For signals with ! > !S one gets phantom output
signals with a lower frequency upon sampling of the signal. This is described as the
aliasing effect.

Upon introduction of the short hand notation ´ D eT0s D eT0.ıCi!/ into (2.2.14),
one obtains the ´-transfer function (see Fig. 2.4)

G.´/ D y.´/

u.´/
D

1X
kD0

g.kT0/´
�k D Z

˚
g.kT0/

�
: (2.2.16)

For a given s-transfer function G.s/ one obtains the ´-transfer function by

G.´/ D Z

�h
L�1

˚
G.s/

�i
tDkT0

�
D �

˚
G.s/

�
: (2.2.17)

The abbreviation �f: : :g means to take the corresponding ´-transform for a given
s-transform from an s- and ´-transform table (e.g. Isermann, 1991).

If the process with the transfer function G.s/ is driven by a sample and hold
element of order zero, the resulting ´-transfer function is given as

HG.´/ D Z
˚
H.s/G.s/

� D �

�
1

s

˚
1 � e�T0s

�
G.s/

�

D ˚
1 � ´�1

�
�

�
G.s/

s

�
D ´ � 1

´
�

�
G.s/

s

�
:

(2.2.18)

Note that the parameters ai and bi of the ´-transfer function (2.2.19) are different
from those of the s-transfer function in (2.1.22).

´-Transfer Function

If the differential equation (2.1.21) of a linear process is known, one can determine
the corresponding s-transfer function by (2.1.22) and subsequently determine the
´-transfer function by means of (2.2.17) or (2.2.18) as

G.´�1/ D y.´/

u.´/
D b0 C b1´

�1 C : : :C bm´
�m

1C a1´�1 C : : :C an´�n
D B.´�1/

A.´�1/
: (2.2.19)

In many cases, the polynomial order of numerator and denominator will be the same.
If the process contains a dead time TD D dT0 with d D 1; 2; : : :, then the ´-transfer
function is given as

G.´�1/ D B.´�1/

A.´�1/
´�d : (2.2.20)
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u k( ) x(k+1) y k( )
b c

A

d

x(k)
I z

-1

Fig. 2.5. State space representation of a SISO system with sampled input and output

Difference Equations

If (2.2.19) is rewritten in the form

y.´/
�
1C a1´

�1 C : : :C an´
�n
� D u.´/

�
b0 C b1´

�1 C : : :C bm´
�m
�
; (2.2.21)

one can rewrite this in the time domain as

y.k/Ca1y.k�1/C : : :Cany.k�n/ D b0u.k/Cb1u.k�1/C : : :Cbmu.k�m/
(2.2.22)

with the short hand notation .k/ instead of .kT0/. The coefficients of this difference
equation will of course be different from the coefficients of the differential equation
in (2.1.21). The shape of the impulse response can be derived from the difference
equation by choosing the ı-impulse as input, which is equal to

u.k/ D
�
0 for k ¤ 0

1 for k D 0
(2.2.23)

in the discrete time. It follows from (2.2.22) with y.k/ D g.k/

g.0/ D b0

g.1/ D b1 � a1g.0/

g.2/ D b2 � a1g.1/ � a2g.0/

:::

g.k/ D bk � a1g.k � 1/ � : : : � akg.0/ for k � m

g.k/ D �a1g.k � 1/ � : : : � ang.k � n/ for k > m :

State Space Representation

For discrete-time signals, the state space representation is given as
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x.k C 1/ D Adx.k/C bdu.k/ (2.2.24)

y.k/ D cT
d x.k/C ddu.k/ (2.2.25)

with the state vector

x.k/ D �
x1.k/ x2.k/ : : : xm.k/

�T
; (2.2.26)

see Fig. 2.5. With the relations

Ad D ˚.T0/ D eAT0 (2.2.27)

bd D H .T0/ D
Z T0

0

eA.T0��/bd� (2.2.28)

cT
d D cT (2.2.29)
dd D d ; (2.2.30)

compare (2.1.27), one can calculate the discrete-time representation in the state space
from a continuous-time model. Furthermore, using

G.´�1/ D y.´/

u.´/
D cT

d .´I �Ad/
�1bd ; (2.2.31)

one can derive a transfer function representation in the form given in (2.2.19). The
derivation and further properties are in detail discussed e.g. in (Isermann, 1991; Heij
et al, 2007). In Sect. 15.2.2, techniques are presented that interpolate the input signal
u.k/ between the sampling points.

The response of the state space MIMO system to an arbitrary input is given as

x.k/ D Ak
d x.0/C

k�1X
�D0

Ak���1
d Bdu.	/ (2.2.32)

y.k/ D Cdx.k/CDdu.k/ (2.2.33)

and will become important for subspace identification methods presented in Chap. 16.
For discrete-time state space systems, a few more properties shall be introduced now,
also with respect to the later discussed subspace methods.

In the following, the index “d” will not be used for the discrete-time matrices.
The term realization will be used for a MIMO state space system consisting of the
matrices Ad, B, C , and D. There is an infinite number of realizations that describe
the same input/output behavior, therefore the term minimal realization will be intro-
duced. Such a realization has the least number of state variables necessary to describe
a certain input/output behavior.

A realization is called controllable if any final state x.t1/ can be reached in the
finite time interval Œt0; t1� from any arbitrary initial state x.t0/ by choosing an appro-
priate input sequence. A realization with state space dimension n is controllable, if
the controllability matrix QS
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QS D �
B AB : : : An�1B

�
(2.2.34)

has full rank (i.e. rank n). Other conditions that allow to test for controllability are
e.g. given in (Heij et al, 2007) and (Chen, 1999), where also the continuous-time
case is treated in detail and controllability indices are introduced.

Observability means that the states at time t0 and any other time t in the interval
Œt0; t1� can be reconstructed from a measurement of the input u.k/ and output y.k/
over the time interval Œt0; t1�. A realization with state space dimension n is observable
if the observability matrixQB defined as

QB D

˙
C

CA
:::

C n�1A

�
(2.2.35)

has full rank (i.e. rank n), see also (Heij et al, 2007) and (Chen, 1999). Observ-
ability does not depend on the measured data, but is a system property (Grewal and
Andrews, 2008). In the same citation, it is pointed out that due to the normally in-
evitable differences between the mathematical model and the real system, the formal
measure of observability might fall to short. One should always check the condition
number of the observability matrix to see how close this matrix is to being singular.
Finally, a realization is minimal, if and only if the realization is both controllable and
observable.

2.3 Models for Continuous-Time Stochastic Signals

The course of a stochastic signal is random in its nature and can thus not be charac-
terized exactly. However, by means of statistic methods, the calculus of probabilities
as well as averaging, properties of these stochastic signals can be described. Mea-
surable stochastic signals are typically not entirely random, but have some internal
coherences which can be cast into mathematical signal models. In the following, the
most important terms and definitions of stochastic signal models will be presented
in brief. The scope is limited to those terms and definitions required for the identifi-
cation methods described in this book. An extensive treatment of the subject matter
can be found e.g. in (Åström, 1970; Hänsler, 2001; Papoulis and Pillai, 2002; Söder-
ström, 2002; Zoubir and Iskander, 2004).

Due to the random behavior, there exists not only one certain realization x1.t/,
but rather an entire family (termed ensemble) of random time signals

˚
x1.t/; x2.t/; : : : ; xn.t/

�
: (2.3.1)

This ensemble of signals is termed a stochastic process (signal process). A single
realization xi .t/ is termed sample function.
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Statistical Description

If the signal value of all sample functions xi .t/ is considered at a certain point in
time t D t� , then the statistical properties of the signal amplitudes of the stochastic
process are described by the probability density function (PDF), p.xi .t�// for i D
1; 2; : : : ; n.

Internal coherences are described by the joint probability density function at dif-
ferent points in time. For the two points in time t1 and t2, the two-dimensional joint
PDF is given as

p
�
x.t1/; x.t2/

�
for

�
0 � t1 < 1
0 � t2 < 1 ; (2.3.2)

which is a measure for the probability that the two signals values x.t1/ and x.t2/
appear at t1 and t2 respectively. For the appearance of n signal values at the times
t1; t2; : : : ; tn, one has to consider the n-dimensional joint PDF

p
�
x.t1/; x.t2/; : : : ; x.tn/

�
: (2.3.3)

A stochastic process is fully characterized if the PDF and all joint PDFs for all n and
all t are known.

So far, it has been assumed that the PDF and all joint PDFs are a function of time.
In this case, the stochastic process is termed non-stationary. For many areas of ap-
plication however, it has not proven necessary to use such a broad all-encompassing
definition. Therefore, only certain classes of stochastic processes will be considered
in the following.

Stationary Processes

A process is strict sense stationary (SSS) if all PDFs are independent from a shift in
time. By calculation of the expected value, denoted by the linear operator Ef: : :g,

E
˚
f .x/

� D
Z 1

�1
f .x/p.x/dx ; (2.3.4)

one can derive characteristic values and characteristic curves of stationary processes.
With f .x/ D xn, one obtains the nth moment of a PDF. The moment of order 1 is
the (linear) mean

x D E
˚
x.t/

� D
Z 1

�1
x.t/p.x/dx (2.3.5)

of all sample functions at time t and the central moment of second order is the vari-
ance

�2
x D E

˚
.x.t/ � x/2� D

Z 1

�1
.x.t/ � x/2p.x/dx : (2.3.6)

The two-dimensional joint PDF of a stationary process is according to its definition
only dependent on the time difference � D t2 � t1, thus

p
�
x.t1/; x.t2/

� D p
�
x.t/; x.t C �/

� D p
�
x; �

�
: (2.3.7)
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The expected value of the product x.t/x.t C �/ is then

Rxx.�/ D E
˚
x.t/x.t C �/

� D
Z 1

�1

Z 1

�1
x.t/x.t C �/p.x; �/dx dx ; (2.3.8)

which is also only a function of � and is termed auto-correlation function (ACF).
A process is wide sense stationary (WSS) if the expected values

E
˚
x.t/

� D x D const (2.3.9)

E
˚
x.t/x.t C �/

� D Rxx.�/ D const (2.3.10)

are independent of time, i.e. the mean is time independent and the ACF does only
depend on the time difference � . Furthermore, the variance needs to be finite (Ver-
haegen and Verdult, 2007). The linear combination of stationary processes is also
stationary (Box et al, 2008).

Ergodic Processes

The expected values used so far are termed ensemble averages, since one averages
over multiple similar random signals, which have been generated by statistically
identical signal sources at the same time. According to the ergodic hypothesis, one
can obtain the same statistical information (which one gets from ensemble averag-
ing) also from averaging a single sample function x.t/ over time, if infinitely long
intervals of time are considered. Thus, the mean of an ergodic process is given as

x D E
˚
x.t/

� D lim
T !1

1

T

Z T
2

� T
2

x.t/dt (2.3.11)

and the quadratic mean as

�2
x D E

˚
.x.t/ � x/2� D lim

T !1
1

T

Z T
2

� T
2

�
x.t/ � x�2dt : (2.3.12)

Ergodic processes are always stationary. The opposite may not be true.

Correlation Function

Some first information about the internal coherences of stochastic processes can be
gathered from the two-dimensional joint PDF as well as from the ACF. For Gaussian
processes, this information does already determine all joint PDFs of higher order
and thus also all internal coherences. Since many processes can approximately be
assumed to be Gaussian, knowledge of the ACF is often sufficient to describe the
internal coherences of the signal. By multiplying the signal x.t/ with its time shifted
counterpart (in negative t -direction) x.t C �/ and averaging, one gets information
about the internal coherences respectively conservation tendency. If the product is
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R xxx( )=� 2

R xxx(0)=
2

Rxx( )τ

τ
0

Fig. 2.6. General shape of the auto-
correlation function of a stationary
stochastic process x.t/

large, then there is a strong internal coherence, if it is small, then there is little coher-
ence. By correlating the signals, however, the time information of x.t/, i.e. the phase
is lost.

The auto-correlation function is given as

Rxx.�/ DE
˚
x.t/x.t C �/

� D lim
T !1

1

T

Z T
2

� T
2

x.t/x.t C �/dt

D lim
T !1

1

T

Z T
2

� T
2

x.t � �/x.t/dt :
(2.3.13)

In the past, it had sometimes been termed correlogram (Box et al, 2008).
For stationary stochastic signals of infinite length, the ACF has the following

properties:

1. The ACF is an even function, Rxx.�/ D Rxx.��/
2. Rxx.0/ D x2.t/

3. Rxx.1/ D x.t/
2
, which means that for � ! 1, the signals can be considered

uncorrelated
4. Rxx.�/ � Rxx.0/

With these properties, one gets in principle the curve shown in Fig. 2.6. The faster
the ACF decays to both sides, the smaller the conservation tendency of the signal,
see Fig. 2.7b and Fig. 2.7c. The ACF can also be determined for periodic signals.
They show the same periodicity and are ideally suited to separate noise and periodic
signals, see Fig. 2.7d and Fig. 2.7e.

The statistical coherence between two different stochastic signals x.t/ and y.t/
is given by the cross-correlation function CCF,

Rxy.�/ D E
˚
x.t/y.t C �/

� D lim
T !1

1

T

Z T
2

� T
2

x.t/y.t C �/dt

D lim
T !1

1

T

Z T
2

� T
2

x.t � �/y.t/dt :
(2.3.14)
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Not Repre-
sentable

ω0-ω0

Signal

Rxx( )τ S  ( )xx ω

t ωt

Power Spectral
Density

Auto-Correlation
Function

x t( )

Fig. 2.7. Auto correlation function and power spectral densities of different signals. (a) white
noise, (b) high-frequent noise, (c) low-frequent noise, (d) harmonic signal, (e) harmonic signal
and noise, (f) constant signal
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The CCF is in contrast to the ACF not a symmetric function. The relative phase
between the two signals is conserved. The CCF has the following properties:

1. Rxy.�/ D Ryx.��/
2. Rxy.0/ D x.t/y.t/, i.e. mean of the product
3. Rxy.1/ D x.t/ y.t/, i.e. product of the means
4. Rxy.�/ � 1=2.Rxx.0/CRyy.0//

Covariance Function

The above defined correlation functions depend on the mean of the signals. If one
however subtracts the mean of each signal before calculating the correlation func-
tions, one gets the so-called covariance functions. For a scalar process x.t/, the
auto-covariance function is defined as

Cxx.�/ D cov.x; �/ D E
˚
.x.t/ � x/.x.t C �/ � x/� D E

˚
x.t/x.t C �/

� � x2 :

(2.3.15)
With � D 0, one gets the variance of the signal process. The cross-covariance func-
tion of two scalar processes is defined as

Cxy.�/ D cov.x; y; �/ D E
˚
.x.t/ � x/.y.t C �/ � y/� D E

˚
x.t/y.t C �/

� � xy :
(2.3.16)

If the mean of the two processes is zero, correlation and covariance function are
identical. Vectorial processes will be described by the covariance matrix accordingly.

Power Spectral Density

So far, the stochastic signal processes have been examined in the time domain. By
transforming the signals into the frequency domain, one gets a spectral representa-
tion. For a non-periodic deterministic function x.t/, the complex amplitude density
is defined as the Fourier transform of the signal x.t/. Accordingly, the power spec-
tral density of a stationary stochastic signal is defined as the Fourier transform of the
auto-correlation function, i.e.

Sxx.i!/ D
Z 1

�1
Rxx.�/e�i!� d� : (2.3.17)

The inverse Fourier transform is then given as

Rxx.�/ D 1

2�

Z 1

�1
Sxx.i!/ei!� d! : (2.3.18)

Since the auto-correlation function is an even function, i.e. Rxx.�/ D Rxx.��/, the
power spectral density is a real-valued function,

Sxx.!/ D 2

Z 1

0

Rxx.�/e�i!t d� D 2

Z 1

0

Rxx.�/ cos!�d� : (2.3.19)
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It is also an even function, since Sxx.!/ D Sxx.�!/. With � D 0, from (2.3.18)
follows

Rxx.0/ D E
˚
.x.t/ � x/2� D .x.t/ � x/2 D �2

x D 1

2�

Z 1

�1
Sxx.i!/d!

D 1

�

Z 1

0

Sxx.i!/d! :
(2.3.20)

The quadratic mean respectively the average power of the signal x.t/ � x is thus
proportional to the integral of the power spectral density. Some examples of shapes
of the power spectral density are shown in Fig. 2.7.

The cross power spectral density of two stochastic signals x.t/ and y.t/ is de-
fined as the Fourier transform of the cross-correlation function, i.e.

Sxy.i!/ D
Z 1

�1
Rxy.�/e�i!� d� (2.3.21)

and the inverse transform

Rxy.�/ D 1

2�

Z 1

�1
Sxy.i!/ei!� d! : (2.3.22)

Since Rxy.�/ is no symmetric function, Sxy.i!/ is a complex function with axis-
symmetric real part and point-symmetric imaginary part. As a side note, (2.3.17),
(2.3.18), (2.3.21), and (2.3.22) are termed Wiener-Khintchin relations.

2.3.1 Special Stochastic Signal Processes

Independent, Uncorrelated, and Orthogonal Processes

The stochastic processes x1.t/; x2.t/; : : : ; xn.t/ are termed statistically independent
if

p.x1; x2; : : : ; xn/ D p.x1/p.x2/ : : : p.xn/ ; (2.3.23)

that is if the joint PDF is equal to the product of the individual PDFs. Pairwise inde-
pendence

p.x1; x2/ D p.x1/p.x2/

p.x1; x3/ D p.x1/p.x3/
(2.3.24)

does not imply total statistical independence. It does only indicate that the non-
diagonal elements of the covariance matrix will be zero, meaning that the processes
are uncorrelated, i.e.

cov.xi ; xj ; �/ D Cxi xj
.�/ D 0 for i ¤ j : (2.3.25)

Statistical independent processes are always uncorrelated, the opposite may how-
ever not be true. Stochastic processes are termed orthogonal if they are uncorrelated
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and their means are zero, so that also the non-diagonal elements of the correlation
matrix become zero,

Rxi xj
.�/ D 0 for i ¤ j : (2.3.26)

Zero-mean random variables are orthogonal, if they are uncorrelated, the opposite
may not be true.

Gaussian or Normal Distributed Processes

A stochastic process is termed Gaussian or normal distributed, if it has Gaussian or
normal amplitude distribution. Since the Gaussian distribution is entirely determined
by the two first moments, i.e. the mean x and the variance �2

x , the distribution laws
of a Gaussian process are entirely defined by the mean and the covariance function.
From this follows that a Gaussian process which is wide-sense stationary is also
strict-sense stationary. Due to the same reason, uncorrelated Gaussian processes are
also statistically independent. Under all linear algebraic operations and also under
differentiation and integration, the Gaussian character of the distribution remains. A
short hand notation for a Gaussian process is given by .x; �x/.

White Noise

A signal process is designated as white noise if signal values, which are only in-
finitesimally small apart in time are still statistically independent, such that the auto-
correlation function is given as

Rxx.�/ D S0ı.�/ : (2.3.27)

White noise in continuous-time is thus a signal process with infinitely large ampli-
tudes which has no internal coherences. One can think of this process as a series of
ı-impulses with infinitesimally small distances. The power spectral density is given
as

Sxx.�/ D
Z 1

�1
S0ı.�/e�i!� d� D S0 : (2.3.28)

The power spectral density is thus constant for all angular frequencies. Therefore
all angular frequencies from zero to infinity are equally represented (alluding to the
frequency spectrum of white light, which contains all vsisble spectral components).
The mean power follows from (2.3.28) as

x2.t/ D 1

�

Z 1

0

Sxx.!/d! D S0

�

Z 1

0

d! D 1 : (2.3.29)

White noise in continuous-time is therefore not realizable. It is a theoretical noise
with infinitely large mean power. By applying suitable filters, one can generate broad
band-limited “white” noise with finite power or small band-limited colored noise.
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Periodic Signals

The correlation functions and power spectral densities are not limited to stochastic
signals, but can also be applied to periodic signals. For a harmonic oscillation

x.t/ D x0 sin.!0t C ˛/ with !0 D 2�

T0

; (2.3.30)

the auto-correlation function is given as

Rxx.�/ D 2x2
0

T0

Z T0
2

0

sin.!0t C ˛/ sin.!0.t C �/C ˛/dt D x2
0

2
cos!0� : (2.3.31)

It is sufficient to integrate over half a period. The ACF of a sine oscillation with
arbitrary phase ˛, is thus a cosine oscillation. Frequency !0 and amplitude x0 are
conserved, the phase information ˛ is lost. Harmonic signals thus have a harmonic
ACF. The harmonic signals are hence treated different than stochastic signals. This
is a feature, which makes the correlation function a well suited foundation for many
identification methods.

The power spectral density of a harmonic signal follows from (2.3.17) as

Sxx.!/ D x2
0

2

Z 1

�1
cos!0� cos!�d�

D x2
0

2

Z 1

�1
cos.! � !0/�d� C x2

0

2

Z 1

�1
cos.! C !0/�d�

D x2
0

2

�
ı.! � !0/C ı.! C !0/

�
:

(2.3.32)

As can be seen, the power spectral density of a harmonic oscillation thus con-
sists of two ı-impulses at the frequencies !0 and �!0. This allows an easy and
well performing separation of periodic signals from stochastic signals. The CCF
of two periodic signals x.t/ D x0 sin.n!0t C ˛n/ with n D 1; 2; 3; : : : and
y.t/ D y0 sin.m!0t C ˛m/ with m D 1; 2; 3; : : : is

Rxy.�/ D x0y0

T0

Z T
2

0

sin.n!0t C ˛n/ sin.m!0.t C �/C ˛m/dt D 0 if n ¤ m ;

(2.3.33)
which means that only harmonics of the same frequency contribute to the CCF. This
is another important property that is exploited in some identification methods, such
as the orthogonal correlation, Sect.5.5.2.

Linear Process with Stochastic Signals

A linear process with the impulse response g.t/ is driven by a stationary stochastic
signal u.t/ which evokes the zero-mean output signal y.t/. The CCF is then given
as
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Ruy.�/ D E
˚
u.t/y.t C �/

�
: (2.3.34)

If one substitutes the convolution integral for y.t C �/, the CCF becomes

Ruy.�/ D E
�
u.t/

Z 1

0

g.t 0/u.t C � � t 0/dt 0
�

D
Z 1

0

g.t 0/E
˚
u.t/u.t C � � t 0/�dt 0

D
Z 1

0

g.t 0/Ruu.� � t 0/dt 0 :

(2.3.35)

Similarly to the input u.t/ and output y.t/ of a linear system, compare (2.1.3), also
the ACF and CCF are linked by the convolution integral. The cross power spectral
density, i.e. the Fourier transform of the CCF, is given as

Suy.i!/ D
Z 1

�1
Ruy.�/e�i!� d�

D
Z 1

�1

Z 1

0

g.t 0/Ruu.� � t 0/dt 0e�i!� d�

D
Z 1

0

g.t 0/dt 0
Z 1

�1
Ruu.� � t 0/dt 0e�i!� d�

D
Z 1

0

g.t 0/e�i!t 0

dt 0 Suu.i!/ :

(2.3.36)

Thus, it follows, that
Suy.i!/ D G.i!/Suu.i!/ ; (2.3.37)

and furthermore

Syy.i!/ D G.i!/Syu.i!/ (2.3.38)
Syu.i!/ D Suy.�i!/ (2.3.39)

Syy.i!/ D G.i!/G.�i!/Suu.i!/ D jG.i!/j2Suu.i!/ : (2.3.40)

The term G.�i!/ stands for the complex conjugate of the transfer function G.i!/,
the complex conjugate transfer function is sometimes also denoted as G�.i!/, see
e.g. (Hänsler, 2001; Kammeyer and Kroschel, 2009). Using white noise with the
power spectral density S0 as input, one can generate different colored noises with
the power spectral density

Syy.i!/ D ˇ̌
G.i!/

ˇ̌2
S0 (2.3.41)

by shaping the frequency response with an appropriate filter.

2.4 Models for Discrete Time Stochastic Signals

Discrete time stochastic signals are typically the result of sampling a continuous-time
stochastic signal. The statistical properties are very similar to those just described for
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continuous-time signals, from the statistic representation to ergodicity up to the cal-
culation of the correlation functions and covariance functions. The main differences
are that one uses the discrete-time k D t=T0 D 0; 1; 2; : : : and that the integrals
are replaced by sums. The PDF (probability density function) does not change since
the amplitudes remain continuous. A thorough treatment of discrete-time stochastic
processes is e.g. presented by Gallager (1996) and Hänsler (2001).

Stationary Processes

The equations are given as follows:

� Mean

x D E
˚
x.k/

� D lim
N !1

1

N

NX
kD1

x.k/ (2.4.1)

� Quadratic mean (variance)

�2
x D E

˚
.x.k/ � x/2� D lim

N !1
1

N

NX
kD1

.x.k/ � x/2 (2.4.2)

� Auto-correlation function (ACF)

Rxx.�/ D E
˚
x.k/x.k C �/

� D lim
N !1

1

N

NX
kD1

x.k/x.k C �/ (2.4.3)

� Cross-correlation function (CCF)

Rxy.�/ D E
˚
x.k/y.k C �/

� D lim
N !1

1

N

NX
kD1

x.k/y.k C �/

D lim
N !1

1

N

NX
kD1

x.k � �/y.k/
(2.4.4)

� Auto-covariance function

Cxx.�/ D cov.x; �/ D E
˚
.x.k/ � x/.x.k C �/ � x/�

DE
˚
x.k/x.k C �/

� � x2
(2.4.5)

� Cross-covariance function

Cxy.�/ D cov.x; y; �/ D E
˚
.x.k/ � x/.y.k C �/ � y/�

DE
˚
x.k/y.k C �/

� � xy (2.4.6)
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Power Spectral Density

The power spectral density of a stationary signal is defined as the Fourier transform
of the auto-correlation function and is given as

S�
xx.i!/ D F

˚
Rxx.�/

� D
1X

�D�1
Rxx.�/e�i�!T0 (2.4.7)

or by applying the two-sided ´-transform

Sxx.´/ D Z
˚
Rxx.�/

� D
1X

�D�1
Rxx.�/´

�� : (2.4.8)

White Noise

A discrete-time signal process is termed white noise if the (finitely separated) sam-
pled signal values are statistically independent. Then, the correlation function is
given as

Rxx.�/ D �2
x ı.�/ ; (2.4.9)

where ı.�/ in this context refers to the Kronecker Delta function defined as

ı.k/ D
�
1 for k D 0

0 for k ¤ 0
(2.4.10)

and �2
x refers to the variance. The power spectral density (2.4.8) of a discrete white

noise signal is given as

Sxx.´/ D �2
x

1X
�D�1

ı.�/´�� D �2
x D Sxx0 D const : (2.4.11)

The power spectral density is thus constant in the interval 0 � j!j � �=T0. It
is noteworthy that the variance of a discrete-time white noise is finite and thus the
signal becomes realizable in contrast to a continuous-time white noise signal.

Linear Process with Stochastic Signals

In analogy to the continuous-time case, the ACF Ruu.�/ and the CCF Ruy.�/ are
linked by the convolution sum as

Ruy.�/ D
1X

kD0

g.k/Ruu.� � k/ : (2.4.12)

For the power spectral density, one gets

S�
uy.i!/ D G�.i!/S�

uu.i!/ in the interval j!j � �

T0

(2.4.13)

or
Suy.´/ D G.´/Suu.´/ (2.4.14)

respectively.
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Stochastic Signal Models

Deterministic Models with Stochastic Disturbance
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Fig. 2.8. Different models for stochastic signals and deterministic models with stochas-
tic ditsurbance. Model naming as follows: AR=Auto Regressive, MA=Moving Average,
X=eXogenous input, OE=Output Error, BJ=Box-Jenkins, FIR=Finite Impulse Response, 	
white noise, u process input, y (disturbed) process output, see also (Ljung, 1999; Nelles,
2001)

Stochastic Difference Equation

Scalar stochastic processes can be described by stochastic difference equations in the
form of a parametric model, which in the linear case is given as

y.k/Cc1y.k�1/C : : :Ccny.k�n/ D d0	.k/Cd1	.k�1/C : : :Cdm	.k�m/ ;
(2.4.15)

where y.k/ is the output of an imaginary filter with the ´-transfer function

GF.´
�1/ D y.´/

	.´/
D d0 C d1´

�1 C : : :C dm´
�m

1C c1´�1 C : : :C cn´�n
D D.´�1/

C.´�1/
(2.4.16)

and 	.k/ being a statistically independent signal, i.e. a white noise with .0; 1/, see
Fig. 2.8. Stochastic differential equations thus represent a stochastic process as a
function of a discrete-time white noise. For the analysis of stochastic processes, the
following typical cases must be considered.

The auto-regressive process (AR) of order n is described by the difference equa-
tion

y.k/C c1y.k � 1/C : : :C cny.k � n/ D d0	.k/ : (2.4.17)

In this case, the signal value y.k/ depends on the random value 	.k/ and the
weighted past values y.k � 1/; y.k � 2/; : : :, thus the term auto-regression, see
Fig. 2.8. The moving average process (MA) in contrast is governed by the differ-
ence equation
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y.k/ D d0	.k/C d1	.k � 1/C : : :C dm	.k �m/ : (2.4.18)

It is thus the sum of the weighted random values 	.k/; 	.k � 1/; : : : ; 	.k � m/,
which is a weighted average and can also be termed as an accumulating process. Pro-
cesses governed by (2.4.17) and (2.4.18) are called autoregressive moving-average
processes (ARMA), Fig. 2.8. Examples are given e.g. in the book by Box et al (2008).
If the output y.k/ of such an ARMA process is integrated 1 up to d times over time,
then an ARIMA process results, where the I stands for integrating. For the extensive
treatment of discrete-time stochastic processes, such as Poisson processes, renewal
processes, Markov chains, Random Walks and Martingales, the reader is referred to
(Gallager, 1996; Åström, 1970).

Deterministic Models with Stochastic Disturbances

If a deterministic model is combined with a stochastic disturbance, then several dif-
ferent model structures can result, see Fig. 2.8 for a selection of the most typical
ones. If the system is also controlled by an exogenous input u.k/, then one is faced
with an ARX, where the X stands for eXogenous input. The ARX model is given as

y.k/C c1y.k� 1/C : : :C cny.k�n/ D d0	.k/C b1u.k� 1/C : : :C bnu.k�n/ :
(2.4.19)

This model is most often used for identification tasks (Mikleš and Fikar, 2007).
Goodwin and Sin (1984) suggested to use a leading “D” to denote a deterministic
model. Typically a leading “N” refers to a non-linear model and “C” has been used
by some authors to denote a continuous-time model.

2.5 Characteristic Parameter Determination

To get a rough idea about the process to be identified and even find approximate val-
ues, it is often advisable to throw a glance at the step response or impulse response.
While the step response respectively impulse response is in many cases easy to mea-
sure, it can give some rough estimates of important system parameters as e.g. the
settling time, the damping coefficient, and such. This section will provide a compi-
lation of characteristic values of special cases of the generic transfer function

G.s/ D y.s/

u.s/
D B.s/

A.s/
D b0 C b1s C : : :C bm�1s

m�1 C bms
m

1C a1s C : : :C an�1sn�1 C ansn
(2.5.1)

based on some basic properties of e.g. step responses.
The individual characteristic values can directly be taken from the recorded step

responses (or sometimes impulse responses) and can be used to determine coeffi-
cients of special transfer functions by means of simple calculations. They are the ba-
sis of very simple identification methods. These simple identification methods have
been derived in the time around 1950–1965 and allow to generate simple parametric
models based on the characteristic values of easy to measure step responses. It is
assumed in the following that
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Fig. 2.9. Characteristics of the step re-
sponse of a first order system

� the recorded step response is almost disturbance-free
� the process can be linearized and approximated by a simple model
� the rough approximation is sufficient for the application at hand.

A detailed derivation of the characteristic values shall not be presented as this can be
found in many books on the fundamentals of controls engineering (e.g. Ogata, 2009).
In mechanical analysis, one often deals with the impulse response, when a structure
is hit e.g. by a hammer and the acceleration of different parts of the structure is
recorded.

2.5.1 Approximation by a First Order System

A first order delay is given by the transfer function

G.s/ D y.s/

u.s/
D b0

1C a1s
D K

1C sT
(2.5.2)

and the step response
y.t/ D Ku0

�
1 � e� t

T

�
: (2.5.3)

For a unit step with u0 D 1, the step response is given as

h.t/ D K
�
1 � e� t

T

�
: (2.5.4)

The step response is fully described by the gain K and the time-constant T . After
the time t D T; 3T; 5T , the step response has reached 63%, 95%, 99% of its final
value. The gain can easily be determined by the ratio between the final value y.1/

and the step height u0 as

K D y.1/

u0

: (2.5.5)

In order to obtain the time constant T , one can exploit the property that for any
arbitrary point in time

dy.t/
dt

D y.1/

T
e� t

T : (2.5.6)

If one constructs the tangent to the step response at an arbitrary point in time t1, then
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Fig. 2.10. Step response of a resistance thermometer (d D 5mm) surrounded by quiet air

�y.t1/=y.1/

�t
D e� t1

T

T
; (2.5.7)

i.e. it intersects the final value line at a distance T from point t1, see Fig. 2.9. Espe-
cially, for t1 D 0,

�y.0/

�t
D y.1/

T
; (2.5.8)

so that one can read out the time constant T by constructing the tangent to the step
response at the origin and considering the intersection of this tangent with the final
value line.

Example 2.1 (Transfer Function of a Resistance Thermometer (d D 5mm) Sur-
rounded by Quiet Air).

In this example, the transfer function of a digital thermometer has been identified.
For this experiment, the thermometer has first been covered by a shutter and has then
been exposed to the outside temperature. The measurements are shown in Fig. 2.10
and the time constant has been identified as T D 2:18 min. ut

2.5.2 Approximation by a Second Order System

A second order system is governed by the transfer function

G.s/ D y.s/

u.s/
D b0

1C a1s C a2s2
D K

1C T1s C T 2
2 s

2
D K

1C 2�
!n
s C 1

!2
n
s2
;

(2.5.9)
where K is the gain, � the damping ratio and !n the undamped natural frequency.
The two poles are given as
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s1;2 D !n

	
�� ˙

q
�2 � 1



: (2.5.10)

Depending on the size of �, the radicant is positive, zero, or negative. One can thus
distinguish three cases as discussed in the following. A parameter study of � can be
seen in Fig. 2.11

Case 1: Overdamped, � > 1, Two Real Poles

In this case, the poles are negative real and unequal. The system can hence be realized
by a series connection of two first order systems. The step response is given as

h.t/ D K

�
1C 1

s1 � s2
�
s2es1t � s1es2t

��
: (2.5.11)

Case 2: Critically Damped, � D 1, Double Pole on the Real Axis

Here, the poles are still negative real, but are now equal. This case can be realized by
the series connection of two identical first order systems and is characterized by the
shortest response time of all second order systems. The step response reads as

h.t/ D K
	
1 � e�!nt

�
1C !n.t/

�

: (2.5.12)

Case 3: Underdamped, 0 < � < 1, Conjugate Complex Pair of Poles

In contrast to the first two cases, the system will show damped oscillations. Two
additional characteristic values will now be introduced

!d D !n

q
1 � �2 Damped natural frequency (2.5.13)

� D �!n Damping coefficient : (2.5.14)

With these definitions, the step response is given as

h.t/ D K

 
1 � 1q

1 � �2

e��t sin.!dt C '/

!
(2.5.15)

with
' D arctan

!d

�
D arctan �

q
1 � �2 : (2.5.16)

(2.5.15) describes a phase-shifted damped sine function. The maximum overshoot
over the final value line is given by

ymax;K D ymax �K D K exp ���
!d

: (2.5.17)
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Fig. 2.11. Step response of a second order system for different damping factors �

For a given step response, one can first identify the intersection points of the step
response with the final value line. The period time of the oscillation TP leads to the
damped natural frequency as

!d D 2�

TP
: (2.5.18)

From the maximum overshoot, one can then determine the damping coefficient as

� D !d

�
ln

K

ymax;K
: (2.5.19)

From (2.5.13) and (2.5.14), one can calculate !0 and � as

� D 1	
!d
�


2 C 1

(2.5.20)

!n D �

�
: (2.5.21)

The amplitude of the frequency response has a maximum at the resonant frequency

!r D !n

q
1 � 2�2 (2.5.22)

for 0 < � < 1=
p
2 with the maximum magnitude given as
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jG.!r/j D K

�

q
1 � �2

: (2.5.23)

2.5.3 Approximation by nth Order Delay with Equal Time Constants

Aperiodic systems of order n are typically realized by a series connection of n mu-
tually independent storages of first order with different time constants, thus

G.s/ D y.s/

u.s/
D

nY
kD1

Kk

nY
kD1

.1C Tks/

D K

1C a1s C : : :C ansn

D Ks1s2 : : : sn

.s � s1/.s � s2/ : : : .s � sn/

(2.5.24)

with

a1 DT1 C T2 C : : :C Tn (2.5.25)
an DT1T2 : : : Tn (2.5.26)

sk D 1

Tk

: (2.5.27)

Thus, the behavior of the system is fully characterized by the gain K and the n time
constants, Ti . The corresponding step response is given as

h.t/ D K

�
1C

nX
˛D1

c˛es˛ t

�
; (2.5.28)

where
c˛ D lim

s!s˛

1

s
.s � s˛/G.s/ : (2.5.29)

For passive systems, the energy/mass/momentum stored in the system during the
step response is proportional to the individual time constant T˛ . Therefore, the total
amount of energy/mass/momentum stored in the whole system of order n must be
proportional to the sum of all time constants. Thus, the area A in Fig. 2.12 is given
as

A DKy.1/

nX
˛D1

T˛ D Ky.1/ .T1 C T2 C : : :C Tn/

DKy.1/T† D Ky.1/a1 :

(2.5.30)

In the following,
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Fig. 2.15. Step responses of an aperiodic system of order n with transfer function G.s/ D
1=.T s C 1/n and n D 1; 2; : : : ; 10

T† D
nX

˛D1

T˛ (2.5.31)

will denote the sum of time constants. It is an additional characteristic quantity to de-
scribe the systems behavior. The sum of time constants can be estimated by drawing
a parallel line to the y-axis at t D T†, such that the area A is divided into two areas
A1 and A2 of identical size, see Fig. 2.13. Figure 2.14 depicts the step responses of
aperiodic systems of order n with equal time constants

T D T1 D T2 D : : : D Tn : (2.5.32)

The step responses are shown in a time scale t which is referred to the sum of time
constants T†, which guarantees that all systems store the same amount, i.e. the area
A in Fig. 2.12 is the same. Step responses with equal time constants represent the
limiting case of a critically damped system. The step responses with n � 2 intersect
each other in one point. The variation of the order n is also shown in Fig. 2.15. It
graphs the step response of the system

G.s/ D K

.T s C 1/n
(2.5.33)

on the referred time scale t=T . The step responses are given as

h.t/ D K

 
1 � e� t

T

n�1X
˛D0

1

˛Š

�
t

T

�˛
!
: (2.5.34)
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Fig. 2.16. Impulse responses of an aperiodic system of order n with transfer function G.s/ D
1=.T s C 1/n and n D 1; 2; : : : ; 10

The impulse responses are governed by (Strejc, 1959)

g.t/ D K

T n

tn�1

.n � 1/Še
� t

T : (2.5.35)

These impulse responses for n D 1; 2; : : : ; 10 are shown in Fig. 2.16. The maximum
of the impulse response results as

gmax.tmax/ D K.n � 1/n�1

T .n � 1/Š e�.n�1/ (2.5.36)

at the time
t D tmax D .n � 1/T for n � 2 : (2.5.37)

For equal time constants, one gets in the limiting case n ! 1

G.s/ D lim
n!1.1C T s/�n D lim

n!1

�
1C T†

n
s

��n

D e�T†s (2.5.38)

with T† D nT and jT†s=nj < 1. Thus, it follows that the coupling of infinitely
many first order systems with infinitesimally small time constants shows the same
behavior as a dead time with TD D T†.

A common method to characterize the transfer function of systems with order
n � 2 is by means of the characteristic times TD and TS which can be determined by
constructing the tangent at the inflection point Q with tQ and yQ, see Fig. 2.17. From
(2.5.33), one can determine the characteristic quantities tQ, yQ, TD, and TS,
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tQ

T
D n � 1 (2.5.39)

yQ

y1
D 1 � e�.n�1/

n�1X
�D0

.n � 1/�
	Š

(2.5.40)

TS

T
D .n � 2/Š
.n � 1/n�2

en�1 (2.5.41)

TD

T
D n � 1 � .n � 2/Š

.n � 1/n�2

 
en�1 �

n�1X
�D0

.n � 1/�
	Š

!
: (2.5.42)

For n D 1; : : : ; 10, the values are tabulated in Table 2.1. The characteristic values
TD=TS and yQ do not depend on the time constant T but only the oder n. For 1 �
n � 7, the approximation

n � 10
TD

TS
C 1 (2.5.43)

is valid. By determining the values TD, TS, and y1 from the measured step response
according to Fig. 2.17, one can then use Table 2.1 to determine the parametersK, T ,
and n of the approximate continuous-time model according to (2.5.38).

For the approximation by an nth order system with equal time constants one
should use the following approach:

1. First of all, one has to test whether the system under investigation can in fact
be approximated by the system given in (2.5.38). To determine the feasibility,
one has to estimate the total time constant T† according to Fig. 2.13. Then,
the measured data can be drawn in a diagram with the axis t referred to the
total time constant T† and it can be checked whether the system can in fact be
approximated by the model in (2.5.38). If the system under scrutiny contains a
dead time, this dead time has to be subtracted from the delay time TD.

2. Designation of system order n: By means of the ratio between delay time and
settlement time, TD=TS, the system order can be read out from Table 2.1. The
result can be validated by checking the y coordinate of the inflection point. It
must be equal to yQ.
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Table 2.1. Characteristic values of a system of order nwith equal time constants (Strejc, 1959)

n TD
TS

tQ
T

TS
T

TD
T

yQ
y1

1 0 0 1 0 0

2 0:104 1 2:718 0:282 0:264

3 0:218 2 3:695 0:805 0:323

4 0:319 3 4:463 1:425 0:353

5 0:410 4 5:119 2:100 0:371

6 0:493 5 5:699 2:811 0:384

7 0:570 6 6:226 3:549 0:394

8 0:642 7 6:711 4:307 0:401

9 0:709 8 7:164 5:081 0:407

10 0:773 9 7:590 5:869 0:413

3. Specification of the time constant T : The characteristic values tQ, TD, TS allow
to determine the time constant T in three different ways based on Table 2.1.
Typically, the average of the three (different) estimates for T is taken.

4. Fixing the gain K: The ratio of the height of the step input, u0, and the final
displacement y1 of the system yields the gain K as

K D y1
u0

(2.5.44)

In the case of a non-integer system order n, one can obtain a better approximation
by choosing the next lower integer system order n, choosing the corresponding delay
time T 0

D and assigning the delta �TD D TD � T 0
D to a newly introduced dead time.

The approximation method described in this section requires little effort, but on the
other hand is very susceptible to noise and disturbances.

2.5.4 Approximation by First Order System with Dead Time

The step response of an nth order system can be approximated by a first oder system
with dead time as

QG.s/ D K

1C TDs
e�TSs (2.5.45)

with the delay time TD and the settlement time TS as defined in Fig. 2.17. The ap-
proximation fidelity achieved by this simple model is however in many cases not
sufficient.

Other identification methods with the determination of characteristic parameters
of step responses, as for second order systems or nth order systems with unequal or
staggered time constants are summarized in (Isermann, 1992).
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2.6 Systems with Integral or Derivative Action

The methods presented so far have been targeting proportional acting systems. How-
ever, with some easy modifications, also systems with integral or derivative action
can be investigated employing the methods derived so far.

2.6.1 Integral Action

An integral element with the transfer function

G.s/ D y.s/

u.s/
D KI

s
D 1

TIs
(2.6.1)

and the integral action coefficient KI or the integral time TI shows the response

y.t/ D u0

TI
t (2.6.2)

for a step input of height u0. The slope of the response is thus given as

dy.t/
dt

D u0

TI
: (2.6.3)

By determining the slope dy.t/=dt , the characteristic value TI can be determined as

TI D u0

dy.t/
dt

: (2.6.4)

If the system contains further delay elements according to

G.s/ D y.s/

u.s/
D 1

TIs

1
nY

kD1

.1C Tks/

; (2.6.5)

then for the step response with u.s/ D u0=s follows
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lim
t!1

dy.t/
dt

D lim
s!0

s2y.s/ D lim
s!0

sG.s/u0 D u0

TI
: (2.6.6)

The characteristic value TI can thus be determined from the final value of the slope of
the step response by means of (2.6.3) and (2.6.6), see also Fig. 2.18. If the derivative
of the step response of the system is created graphically or by means of a computer
and therefore

L

�
dy.t/

dt

�
D sy.s/ (2.6.7)

is treated as the system output, then the output can be generated by a proportional
acting system with

GP.s/ D y.s/

u.s/
D 1

TI

1
nY

kD1

.1C Tks/

; (2.6.8)

whose characteristic values Tk can be determined by means of the tools introduced
so far.

If the integral acting system with transfer function G.s/ is excited by a short
square pulse of height u0 and duration T , which can be approximated by a ı-impulse
of area u0T , then the Laplace transform of the output is given as

y.s/ D G.s/u0T D T

TI

1
nY

�D1

.1C T�s/

u0

s
: (2.6.9)

The response can thus be interpreted as that of a proportional-acting system respond-
ing to a step input of height u0 and can then be examined by the methods learned so
far to obtain K0 D T=TI and the Tk .

2.6.2 Derivative Action

Systems with the transfer function

G.s/ D y.s/

u.s/
D TDs

nY
kD1

.1C Tks/

; (2.6.10)

with the differential action time TD or differential action coefficient KD D TD have
step responses with the final value y.1/ D 0. If one integrates the recorded step
response and interprets the result as the response to a step input, then the input and
output are connected by the hypothetical proportional acting system

GP.s/ D
y.s/

s

u.s/
D TD

nY
�D1

.1C T�s/

; (2.6.11)
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and its characteristic values TD and Tk can again be identified by the methods pre-
sented so far.

Another method is to excite the system by a ramp

u.t/ D ct or u.s/ D c

s2
: (2.6.12)

Then one gets

y.s/ D TD
nY

�D1

.1C T�s/

c

s
; (2.6.13)

which corresponds to the step response of a proportional acting system. Thus one
can reduce the analysis of both systems with integral action as well as systems with
differencing action to the analysis of proportional acting systems.

2.7 Summary

After compiling some basic relations for continuous-time and discrete-time pro-
cesses and stochastic signals in the first section and defining some notations used
throughout the sequel chapters, some easy to apply methods for parameter determi-
nation of simple linear processes were described. These classic parameter determi-
nation methods use characteristic values from measured system responses for simple
models, and allow a fast and simple evaluation by hand. The methods described in
this chapter yield approximate models which allow a rough examination of the sys-
tem characteristics. They are in general only suitable for measurements with little to
no disturbances.

The determination of characteristic values for systems of first and second order
can be determined by visual inspection, thus no special methods are needed in this
case. For systems of higher order with low-pass characteristics, a bunch of meth-
ods has been developed in the past, which allow the determination of characteristic
values. While the approximation by a first order system with dead time is seldom ac-
curate enough, an approximation of a higher order system with equal time constants
can yield good results in many cases. Furthermore in this chapter, methods have
been shown that allow the application of techniques for proportional acting systems
(as described mainly in this chapter) to systems with integral and derivative action as
well.

Problems

2.1. Fourier Transform
Summarize the conditions for the direct application of the Fourier transform to a
signal. Why does the Fourier transform of the step response of a first order system
not exist?
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2.2. Impulse Response, Step Response, and Frequency Response
How are the impulse response, the step response, and the frequency response related
to each other? Calculate these responses for a first order system (G.s/ D K=.T s C
1/) with K D 0:8 and T D 1:5 s.

2.3. First Order Process
A process of first order with a time constant T D 10 s is sampled with a sample time
of T0 D 0:5 s. What is the largest frequency for determining the frequency response
by sinusoidal excitation of the input.

2.4. Sampling
Describe how a signal becomes amplitude- and time-discrete by sampling.

2.5. Stochastic Signals
By which characteristic values and parameters can stationary stochastic signals be
described?

2.6. White-Noise
What are the statistical properties of white noise? What is a fundamental difference
between continuous-time white noise and discrete-time white noise?

2.7. ARMA Processes
Give the ´-transfer function of an auto-regressive and a moving-average process of
second order.

2.8. First Order System
Determine the gain and time constant for the thermometer governed in Example 2.1.

2.9. Systems with Integral Action How can the system parameters of systems with
integral action be determined?

2.10. Systems with Derivative Action How can the system parameters of systems
with derivative action be determined?
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Part I

IDENTIFICATION OF NON-PARAMETRIC MODELS IN THE

FREQUENCY DOMAIN — CONTINUOUS TIME SIGNALS



3

Spectral Analysis Methods for Periodic and Non-Periodic
Signals

Calculating the spectrum of a signal is important for many applications. To be able to
automatically calculate the spectrum and also treat signals of arbitrary shape, there
is a special interest in methods for numerical determination of the Fourier trans-
form. These methods are typically implemented on digital computers, which makes
it necessary to sample and store the signal before it is transformed. This brings along
special ramifications that are discussed in later sections of this chapter. As the data
sequences can be quite long, one is also especially interested in computationally ef-
ficient implementations of the Fourier transform on digital computers.

3.1 Numerical Calculation of the Fourier Transform

Often, one is interested in the frequency content of non-periodic signals to determine
the frequency range and magnitude. In the context of identification, it is important to
analyze the frequencies, which are excited by a certain test signal or to determine the
frequency response function of a system due to non-periodic test signals. In the latter
case, the frequency response must be calculated with non-periodic test signals ac-
cording to (4.1.1), which necessitates knowledge of the Fourier transform of the input
and the output. If the input u.t/ and/or the output y.t/ are provided as sampled sig-
nals with measurements taken at the discrete-time points tk and k D 0; 1; 2; : : : ; N ,
then the Fourier transform (4.1.4) must be determined numerically. For the calcu-
lation of the Fourier transform of a sampled and time limited signal, one needs the
Discrete Fourier Transform (DFT). Of special interest is the Fast Fourier Transform
(FFT) which is a computationally more time saving realization of the discrete Fourier
transform. These aspects will be discussed in the following sections.

3.1.1 Fourier Series for Periodic Signals

Every periodic function x.t/ with period time T , i.e. x.t/ D x.t C kT / for any
integer k can be written as an infinite series

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_3, © Springer-Verlag Berlin Heidelberg 2011 
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x.t/ D a0

2
C

1X
kD1

ak cos.k!0t /C bk sin.k!0t / with !0 D 2�

T
: (3.1.1)

This series is termed a Fourier series. Typically, only a finite number of series ele-
ments is considered. The Fourier coefficients ak and bk can be determined via

ak D 2

T

Z T

0

x.t/ cos.k!0t /dt (3.1.2)

bk D 2

T

Z T

0

x.t/ sin.k!0t /dt ; (3.1.3)

where the integration can also be carried out over any other interval of length T .
With the complex exponential function, the above Fourier series can also be written
as

x.t/ D
1X

kD�1
ckeik!0t (3.1.4)

with

ck D 1

T

Z T

0

x.t/e�ik!0t dt : (3.1.5)

A side-note should be made to Gibbs phenomenon (Gibbs, 1899). It basically states
that a Fourier series cannot approximate a piecewise continuously differentiable pe-
riodic functions at jump discontinuities even if the number of series elements goes
towards infinity. There will always be an overshoot, whose height in the limit as
N ! 1 can be determined to be roughly 18% of the step height. This fact plays
an important role in signal processing as it introduces artifacts at stepwise discon-
tinuties e.g. in a signal or a picture that is processed by a 2 � D Fourier transform.
Figure 3.1 illustrates the approximation of a rectangular periodic signal by a Fourier
series with an increasing number of elements.

3.1.2 Fourier Transform for Non-Periodic Signals

Now, the interval length can formally be extended to T ! 1 to be able to treat
non-periodic signals. The Fourier transform was introduced in (2.1.9) as

F fx.t/g D x.i!/ D
Z 1

�1
x.t/e�i!t dt : (3.1.6)

If the non-periodic continuous-time signal x.t/ is sampled with a sample time T0,
then the signal can be written as a series of Dirac impulses with the appropriate
height

xı.k/ D
1X

kD�1
x.t/ ı.t � kT0/ D

1X
kD�1

x.kT0/ ı.t � kT0/ : (3.1.7)

Then (2.1.9) respectively (3.1.6) becomes
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Fig. 3.1. Gibbs phenomenon: Even as the number of series elements is increased, the rectan-
gular wave cannot be fully reconstructed

xı.i!/ D
Z 1

�1

1X
kD�1

x.kT0/ı.t � kT0/e�ik!T0dt D
1X

kD�1
x.kT0/e�ik!T0 :

(3.1.8)
This transformation is termed the Discrete Time Fourier Transform (DTFT). The
inverse transformation of the DTFT is given as

x.k/ D T0

2�

Z �
T0

� �
T0

xı.i!/eik!T0d! : (3.1.9)

As the continuous-time signal x.t/ is multiplied with a series of Dirac impulses,
the resulting Fourier transform xı.i!/ is periodic in the frequency domain. This can
be explained as follows: The multiplication in the time domain becomes a convolu-
tion in the frequency domain. The convolution of a frequency spectrum (i.e. the spec-
trum of the original, un-sampled signal) and a train of Dirac impulses leads to a pe-
riodic continuation. The periodicity can also be derived from the argument of the ex-
ponential function, which is periodic with 2� . Since the spectrum is periodic, it must
only be evaluated in the range between 0 � ! < 2�=T0 or ��=T0 � ! < �=T0.

The periodicity also motivates Shannon’s theorem, which states that only fre-
quencies up to

f � 1

2T0

D 1

2
fS ; (3.1.10)

where fS is the sampling frequency, can be sampled correctly. All other frequencies
will be sampled incorrectly due to the periodicity of the frequency spectrum leading
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to the so-called aliasing effect. A fault-free reconstruction of the signal is only possi-
ble, if the frequency spectrum is band-limited, i.e. x.i!/must vanish for j!j > !max,
which is only possible for periodic signals. Therefore, all time-limited signals cannot
have a band-limited frequency spectrum.

Since the computer has only limited storage capabilities, the summation in (3.1.8)
cannot be evaluated in the interval �1 � k � 1. The number of datapoints is hence
limited to N and sampled between 0 � k � N � 1. The Discrete Fourier Transform
is then given as

x.i!/ D
N �1X
kD0

x.kT0/e�ik!T0

D
N �1X
kD0

x.kT0/ cos.k!T0/ � i
N �1X
kD0

x.kT0/ sin.k!T0/

D Re
˚
x.i!/

�C Im
˚
x.i!/

�
:

(3.1.11)

The limitation of the number of datapoints that can be processed leads directly to the
notion of windowing, see Sect. 3.1.4.

The frequency spectrum is still a continuous, periodic function. However, due
to the fact that also in the frequency domain, the computer can only store a limited
number of datapoints, the frequency variable ! must be discretized, too. Due to the
periodicity, it is sufficient to sample the frequency spectrum in the interval between
0 � ! < 2�=T0. The continuous spectrum is hence also multiplied with a sampling
function, compare (3.1.8),

Qx.i	�!/ D
M�1X
�D0

x.i!/ı.i! � i	�omega/ ; (3.1.12)

where Qx.i	�!/ denotes the sampled Fourier transform, �! is the frequency incre-
ment andM is the number of sampling points, which is determined by the frequency
increment �! as M D 2�=.T0�!/. This leads to a convolution in the time domain
and means that the signal in the time domain is now also periodically continued out-
side the bounds of the sampling interval by the sampling in the frequency domain,
i.e.

x.kT0/ D x.kT0 C �Tn/; � D 0; 1; 2; : : : ; and Tn D 2�

�!
: (3.1.13)

The frequency increment is now chosen such that Tn D NT0 so that the periodicity
is equivalent to the duration of the measurement in the time domain. Hence, also
M D N points should be sampled in the frequency domain.

Finally, the pair of transforms for the DFT is given as
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Fig. 3.2. Scaling of the FFT: (a) time signal to be converted, (b) output of the FFT (un-
scaled), (c) output of the FFT, scaled according to (3.1.16) and the frequency axis calculated
by (3.1.17)

x.in�!/ D DFT
˚
x.kT0/

� D
N �1X
kD0

x.kT0/e�ikn�!T0 (3.1.14)

x.kT0/ D DFT�1
˚
xS.in�!/

� D
N �1X
kD0

x.in�!/eikn�!T0 : (3.1.15)

One can conclude that by application of the DFT and the inverse DFT, the signal
and its spectrum both become periodic.

For each frequency !, the DFT needsN multiplications and .N�1/ summations.
Therefore, for the complete spectrum, one will need N 2 products and N.N � 1/

summations. The computational expense is obviously quite high. In the next sec-
tion, more efficient algorithms, the so-called Fast Fourier Transforms will be intro-
duced. A detailed discussion of the Discrete Fourier Transform can be found e.g.
in (Brigham, 1988; Stearns, 2003).

As the DFT (and subsequently also the FFT) processes only a vector of numbers,
it shall finally shortly be discussed, how the output of the FFT must be interpreted.
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Figure 3.2 shows the FFT and the analytically determined Fourier transform of a
rectangular pulse. In order to determine the correct height of the amplitudes, the
output of the FFT must be scaled by the sample time T0 as

F
˚
x.kT0/

� D T0x.ik�!/ ; (3.1.16)

see (Isermann, 1991). The frequency vector belonging to the data is given as

! D �
0;�!; 2�!; : : : ; .N � 1/�!� with �! D 2�

TM
; (3.1.17)

where TM is the measurement time and N the number of samples.

3.1.3 Numerical Calculation of the Fourier Transform

The calculation of the DFT (3.1.14) necessitates the multiplication of the sampled
signal with the complex rotary operator

e�ikn�!T0 D W nk
N : (3.1.18)

Thus, the discrete Fourier transform can be rewritten as

x.n/ D
N �1X
kD0

x.k/W nk
N ; (3.1.19)

where the sample time T0 and the frequency increment�! will no longer be written
down.

For the derivation of algorithms for the Fast Fourier Transform, typically the fact
is exploited that the rotary operator W nk

N has cyclic and symmetric properties. The
Fourier transform can e.g. be split into two sums, one for the odd and one for the
even numbered elements

x.n/ D
N �1X
kD0

x.k/W nk
N

D
N
2 �1X
kD0

x.2k/W 2nk
N C

N
2 �1X
kD0

x.2k C 1/W
n.2kC1/

N

D
N
2 �1X
kD0

x.2k/W 2nk
N CW n

N

N
2 �1X
kD0

x.2k C 1//W 2kn
N

D xe.n/CW n
Nxo.n/ ;

(3.1.20)

which is the basis for the radix-2 decimation-in-time (DIT) FFT, a very easy to mo-
tivate and possibly the most commonly used form of the Cooley-Tuckey algorithm
(Cooley and Tukey, 1965). Both sums now have a rotary operator that is periodic
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Fig. 3.3. Application of the FFT to N D 8 data points (continued)

with N=2. The two sums have been denoted as “e” for even and “o” for odd. These
two sums can now again be split into two sums each. For each split, an additional
letter is added to the index, therefore “ee” denotes then even, even elements. The
principle of this divide et impera algorithm is illustrated for N D 8 in Fig. 3.3.

In the subsequent steps, the sums for the FFT are iteratively split up into two
sums, each processing half of the elements of the initial sum. The algorithm stops,
when the Fourier transform is applied to single numbers only, since the Fourier trans-
form of a single element is just that very element itself. The entire decomposition can
be seen in Fig. 3.3. One can also see from the figures that the recombination algo-
rithm works on adjacent elements throughout the entire algorithm. Before the first
recombination however, the samples have to be rearranged.
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Fig. 3.4. First step of the recursion in the FFT’s underlying algorithm in (3.1.20)

For this regrouping, the elements must be ordered according to their inverse
binary index. For example, the element with index n D 1002 becomes element
n D 0012 after this regrouping. This can be done by a simple, fast, and efficient
algorithm. In this algorithm, two pointers are maintained. One pointer k is walking
through the elements from 0 to N � 1. The other pointer l always maintains the cor-
responding inverse bit order of k. The variable n will hold the number of elements in
this algorithm.

The algorithm works in two stages: The first part of the loop adds 1 to the pointer
k and also the inverse pointer l utilizing the following rules:
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� if the LSB (Left-Most Bit) is 0, it is set to 1
� if the LSB (Left-Most Bit) is 1, it is set to zero and the second Left-Most Bit is

increased by 1. Once again there are two case:
– If the second Left-Most Bit is 0, it is set to 1
– If the second Left-Most Bit is 1, it is set to zero and the third Left-most Bit is

increased by one and so forth

One other result that can be exploited is the fact the while the inverse bit order of
k is l, at the same time, the inverse bit order of l is k. Thus, one can always swap two
elements. One only swaps elements if k is less than l to avoid back-swapping. The
second part of the algorithm covers the recombination, here one repeatedly multiplies
with the twiddle-factors, a name coined by Gentleman and Sande (1966). These fac-
tors should be computed ahead of time and stored in a table. Finally, the results of
these multiplications are added up as illustrated in Fig. 3.4.

Today, there is a multitude of algorithms for the Fast Fourier Transform available.
There are radix-4, radix-8 or radix-2n algorithms available, which, while processing
on larger data blocks, can bring down the total number of multiplications between
25% and 40% for the radix-4 and radix-8 algorithms respectively. Other authors that
have contributed to the FFT are Bruun (1978), Rader (1968), Bluestein (1970), and
Goertzel (1958). The Goertzel algorithm is of special interest whenever it is only
necessary to compute a few spectral lines and not the entire spectrum. Also, split-
radix techniques have been proposed (e.g. Sorensen et al, 1986).

Good implementations of the FFT and other algorithms can be found in the book
by Press et al (2007) and the FFTW library (Frigo and Johnson, 2005). The latter
is a software library for computing the discrete Fourier transform in one or more
dimensions with arbitrary input size and both of real and complex data.

While the DFT needed a total of N 2 complex multiplications and N.N � 1/

complex additions, where O.N/ operations could be saved, because they are trivial
(multiplication with 1), the FFT as implemented above can bring this number down
to N log2N complex multiplications and N log2N complex additions, where once
again, trivial operations are included in the count and could be saved.

The FFT accepts both real-valued and complex data as it is formulated for com-
plex data also in the time domain. If measurements, consisting of real-valued data
only, are supplied to the FFT, then unnecessary operations, e.g. multiplications with
zero, are carried out. One remedy would be to modify the calculation to accept real-
valued data only. However, after the first stage of the FFT, the data to be processed
will inevitably become complex. Therefore, one would need two realizations of the
same algorithm, one for real and one for complex data. A much better idea is to com-
bine two real-valued data points into one complex data point such that the results can
be separated again after the Fourier transform has been carried out (Kammeyer and
Kroschel, 2009; Chu and George, 2000).

One can transform two-real valued signals y.k/ and ´.k/ at the same time by
first combining the signals,

Qx.k/ D y.k/C i´.k/ ; (3.1.21)
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Table 3.1. Comparison of FLOPS for DFT and FFT

Complex-Valued Function in Time Domain, Complex Operations

N DFT FFT
Add Mul Add Mul

128 16 256 16 384 896 896

1 024 1 047 552 1 048 576 10 240 10 240

4 096 16 773 120 16 777 216 49 152 49 152

Complex-Valued Function in Time Domain, Real Operations

N DFT FFT
Add Mul Add Mul

128 65 280 65 536 3 584 3 584

1 024 4 192 256 4 194 304 40 960 40 960

4 096 67 100 672 67 108 864 196 608 196 608

Real-Valued Functions in Time Domain, Real Operations

N DFT FFT
Add Mul Add Mul

128 16 256 16 384 768 512

1 024 1 047 552 1 048 576 7 680 5 632

4 096 16 773 120 16 777 216 34 816 26 624

Note: For the calculation of the FFT, a radix-2 algorithm was assumed, because of its wide
spread.

then transforming the combined signal,

Qx.n/ D DFT
˚ Qx.k/� ; (3.1.22)

and then separating the results

y.n/ D 1

2

� Qx.n/C Qx�.N � n/� (3.1.23)

´.n/ D 1

2i

� Qx.n/ � Qx�.N � n/� : (3.1.24)

If only one sequence is to be transformed, one can divide it into two sequences
of half the length,

y.k/ D x.2k/

´.k/ D x.2k C 1/

�
with k D 0; : : : ;

N � 1
2

: (3.1.25)

Then, these sequences of real-valued data are merged into
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Qx.k/ D y.k/C i´.k/; (3.1.26)

and transformed into the frequency domain by

Qx.n/ D DFT
˚ Qx.k/� : (3.1.27)

Finally, the Fourier transform of x.k/ is given as

x.n/ D 1

2

� Qx.n/C Qx�.N � n/�C e�i �n
N
1

2i

� Qx.n/ � Qx�.N � n/� : (3.1.28)

This combination of two real-valued data points into one complex data point further
speeds up the calculation of the FFT by a factor of almost 2. Table 3.1 illustrates the
computational expense for different applications.

Every time-limited signal of length N can be augmented with an arbitrary num-
ber of zeros to the total length L,

x.k/ D
�
x.k/ for 0 � k � N � 1
0 for N � k � L � 1 and L > N (3.1.29)

with the effect of an increase in the resolution of the spectrum. This technique is
termed zero padding and is often used to bring the length of a signal to an opti-
mal length for the use of different FFT algorithms (Kammeyer and Kroschel, 2009).
However, zero padding will inevitably give cause to the leakage effect for periodic
signals.

3.1.4 Windowing

The limitation of the number of data points in the time domain can be understood as
a multiplication of the time function x.t/ with a so-called window function to obtain
the time-limited function xw.t/. The data that are sampled hence do not stem from
x.t/, but rather from the product

xw.t/ D x.t/ w.t/ : (3.1.30)

When applying the Fourier transform, one does not obtain the Fourier transform of
x.i!/ D Ffx.t/g, where x.t/ is a signal of long or infinite time duration, but rather

xw.i!/ D F
˚
xw.t/

� D F
˚
x.t/ w.t/

� D x.i!/ � f .i!/ ; (3.1.31)

i.e. the convolution of the frequency spectrum of the original signal and the frequency
spectrum of the window function.

The effect of the window functions can best be illustrated by considering a sin-
gle, distinct spectral line of a periodic sine at the moment. The considerations can
however easily be applied to arbitrary non-periodic signals as well. If considering a
single spectral line convoluted with the Fourier transform of the window function,
one will see that the spectral line has “spilled over” to adjacent frequencies, thus this
effect is also called spill over. The spill over effect can be controlled by means of
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so-called window functions, where one always has to find a compromise between a
narrow and high main maximum and the suppression of side maxima.

For example, the Bartlett Window achieves a strong suppression of the side max-
ima at the cost of a low and broad main maximum. An even stronger suppression of
the side maxima can be achieved by the Hamming Window. which in fact minimizes
the main maximum in the restricted band. The Hann window and the Blackmann win-
dow are other typical window functions and are all shown in Table 3.2. An overview
and detailed comparison of these along with many other window functions can be
found in the books by Poularikas (1999) and Hamming (2007). The function of win-
dowing is explained by Schoukens et al (2009) by showing that the Hann window
does nothing else than take the second derivative of the frequency spectrum, thereby
reducing the leakage effects. At the same time however, a smoothing of the spectrum
is carried out, which introduces a smoothing error. A different tradeoff between the
two types of errors is presented as the Diff window, which takes the difference be-
tween two adjacent spectral lines. For a thorough treatment of windowing, see also
(Harris, 1978).

3.1.5 Short Time Fourier Transform

The Fourier transform, which was introduced at the beginning of this chapter, has an
infinite time scale. However, in applications such as the identification of time-varying
systems or fault detection, one wants to know how the frequency content varies as a
function of the time. The Short Time Fourier Transform (STFT) has been introduced
as a tool which has been tailored to the specific task of a joint time-frequency analysis
and will be presented in the following, see also (Qian and Chen, 1996).

The Fourier transform as introduced in (2.1.9),

F
˚
x.t/

� D x.i!/ D
Z 1

�1
x.t/e�i!t dt : (3.1.32)

is again rewritten as a sum of sampled values. The summation is once again carried
out over a finite interval and the factor T0 neglected. Thus, one obtains

x.i!/ D
N �1X
kD0

x.kT0/e�i!kT0 : (3.1.33)

A window function is now introduced along with the time shift parameter � . The
resulting calculation rule for the STFT is then given as

x.!; �/ D
R�1X
kD0

x..k � �/T0/w.k/e�i!kT0 (3.1.34)

or

x.!; �/ D
R�1X
kD0

x.kT0/w.k C �/e�i!kT0 : (3.1.35)
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Table 3.2. Typical window functions (left: function over time; right: Fourier transform) (Har-
ris, 1978)

Name, Shape and Equation

Bartlett Window
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To see the changes of a signal over time, the signal is divided into small blocks and
the STFT is calculated for each block separately as defined in (3.1.34) or (3.1.35),
see Fig. 3.5. Therefore, the STFT depends on both the time and the frequency.

The two-dimensional plot of the STFT is termed spectrogram. The tuning para-
meters of the algorithm are the block length R and the overlap. A long block length
R provides a higher frequency solution and a coarser resolution in the time domain.
It is termed narrowband spectrogram. A short block length R on the contrary pro-
vides a higher time resolution and is termed wideband spectrogram. The overlap of
the individual blocks allows to use longer blocks and thus increase the frequency
domain resolution. It also allows to detect changes in the frequency spectrum earlier.

The spectrogram of a time-varying signal is shown in Fig. 3.6, where the STFT
has been applied to a chirp signal.
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Table 3.2. Typical window functions (left: function over time; right: Fourier transform (Harris,
1978)) (continued)

Name, Shape and Equation
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3.2 Wavelet Transform

The STFT determines the similarity between the investigated signal and a windowed
harmonic signal. In order to obtain a better approximation of short time signal
changes with sharp transients, the similarity with a short time prototype function
of finite duration can be calculated. Such prototype or basis functions which show
some damped oscillating behavior are wavelets that origin from a mother wavelet

.t/, see (Qian and Chen, 1996; Best, 2000). Table 3.3 shows some typical mother
wavelets, which can now be time-scaled (dilatation) by a factor a and time shifted
(translation) by � , leading to


�.t; a; �/ D 1p
a


	 t � �

a



: (3.2.1)
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Fig. 3.5. Application of the STFT: Calculation of five Fourier transforms for overlapping re-
gions of the time signal applied to a chirp signal starting at f D 0Hz for t D 0 s and ending
at f D 10Hz for t D 4 s

The factor 1=
p
a is introduced in order to reach a correct scaling of the power-density

spectrum. If the mean frequency of the wavelet is !0, the scaling of the wavelet by
t=a results in the scaled mean frequency !0=a.

The continuous-time wavelet transform (CWT) then is given as

CWT.y; a; �/ D 1p
a

Z 1

�1
y.t/


	 t � �
a



dt ; (3.2.2)

which is real-valued for real-valued y.t/ and 
.t/. Note that in contrast, the STFT
is typically a complex-valued function. Some sample wavelet functions have been
tabulated in Table 3.3. The advantages of the wavelet transform stem from the signal
adapted basis function and the better resolution in time and frequency. The signal
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Fig. 3.6. Spectrogram of a chirp signal starting at f D 0Hz for t D 0 s and ending at f D
300Hz for t D 2 s

adaptation for example is illustrated by the Haar wavelet which does not give raise
to Gibbs phenomenon.

The wavelet functions correspond to certain band-pass filters where, for example,
by a reduction of the mean frequency through the scale factor also a reduction of the
bandwidth is achieved, compared to the STFT, where the bandwidth stays constant.

3.3 Periodogram

The periodogram is often also mentioned as a tool to determine the spectrum of a
signal. It is defined as

OSxx.i!/ D 1

N
jx.i!/j2 D 1

N
x.i!/x�.i!/ D 1

N

N �1X
�D0

N �1X
�D0

x.	/x.�/e�i!.�C�/T0 :

(3.3.1)
It can be shown (e.g. Kammeyer and Kroschel, 2009) that the expected value of the
estimate is given as

E
˚ OSxx.i!/

� D
N �1X

�D�.N �1/

wBartlett.	/Rxx.	/e�i!�T0 ; (3.3.2)

where Rxx.	/ denotes the auto-correlation function of the signal x.t/. Hence the
estimate of the spectrum is given as the true power spectral density Sxx.i!/ convo-
luted with the Fourier transform of the Bartlett window. So, the periodogram is only
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Table 3.3. Typical Wavelets Functions

Name, Shape and Equation Name, Shape and Equation
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asymptotically bias-free at the frequency points !n, it is not a consistent estimate as
the variance of the periodogram does not go to zero for k ! 1 (Verhaegen and Ver-
dult, 2007; Heij et al, 2007). Due to this negative property, the Periodogram should
not be used per se, but only with certain modifications.

Bartlett proposed to divide the measurement into several data sets, then calculate
the periodogram for each data set separately and finally average over the individual
periodograms (e.g. Proakis and Manolakis, 2007). It can be shown that the variance
can effectively be reduced by a factor 1=M if M individual periodograms are calcu-
lated. The expected value is still given by (3.3.2), hence the estimate still is biased
for a finite number of data points. Also, the number of data points for each individ-
ual periodogram is reduced, which reduces the spectral resolution. However, by the
averaging, the estimate becomes consistent in the mean square.
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Welch (1977) also divides the data into shorter sequences that are processed in-
dividually. However, a window function is applied to the individual time sequences
before they are processed. Furthermore, Welch suggested to use overlapping data
segments hence allowing to form more data segment. The overlap can be up to
50%, consequently doubling the number of available data sets for the averaging and
hence reducing the variance by 50%. Different window functions can be used, Welch
(1977) for example suggested a Hann window.

3.4 Summary

In this chapter, methods for the spectral analysis of non-periodic signals have been
presented. The Fourier transform has been introduced as a tool to determine the fre-
quency content of signals. While the Fourier transform is applied to continuous-time
signals and has an infinite time and frequency support, the signals that are processed
in experimental applications are typically sampled and furthermore only recorded
over a finite measurement interval.

Sampled data in the time domain can be processed by means of the Discrete
Time Fourier Transform. It was shown that by the sampling in the time domain,
the frequency spectrum becomes periodic. Also the frequency spectrum will only
be determined at a finite number of discrete frequencies, which leads to the discrete
Fourier transform.

As the DFT is very computationally demanding, different algorithms have been
developed that allow a much faster calculation of the Fourier transform and are called
the Fast Fourier Transform. The idea behind many of these algorithms is to divide
the original sequence into a number of shorter subsequences that are transformed
separately and then recombined appropriately. It has also been shown, how the output
of an FFT algorithm can be interpreted correctly.

Since the signals are evaluated over a finite interval by the DFT/FFT, the fre-
quency spectrum might get corrupted, which is the so-called leakage effect respec-
tively spill-over. The time signal can be multiplied with a window function to mit-
igate the leakage effect. In windowing, there is always a trade-off between a good
suppression of the side maxima and a narrow main lobe.

To analyze changes in the spectral properties as a function of time, joint time
frequency representation methods have been developed. Two examples, the short
time Fourier transform and the wavelet transform have been presented.

The periodogram has been introduced as an estimator for the power spectrum of
a signal. It was shown that this estimator is only asymptotically bias-free and that
furthermore the variance does not go to zero as N ! 1. Methods proposed by
Bartlett and Welsh, which are based on averaging multiple periodograms determined
from different intervals of the measured signal avoid this disadvantage.



96 3 Spectral Analysis Methods for Periodic and Non-Periodic Signals

Problems

3.1. Fourier Transform
How is the Fourier transform defined for analytical signals? Determine the Fourier
transform of the sawtooth:

TP t

u t( )

u0

How does the frequency spectrum change, if 2; 3; : : : sawtooth pulses are combined
in series? What calculation rule must be used for an infinite number of pulses? What
effects does this have on the resulting spectrum.

3.2. Fast Fourier Transform
Use the FFT algorithm as implemented in a numerical software package to deter-
mine the Fourier transform of the time signal x.t/ D sin.2�t/. Compare it to the
theoretically expected result and try to understand the scaling of the results as well
as the frequency resolution.

3.3. Fast Fourier Transform 1
In your own words, describe the algorithms involved in the Fast Fourier Transform.

3.4. Fast Fourier Transform 2
How can the resolution in the frequency domain be increased if the number of data-
points, that have been measured, is fixed?

3.5. Windowing 1
Describe the effect of the windowing. What is the typical trade-off in windowing?
Try to find more window functions.

3.6. Windowing 2
Why is the spectrum obtained by the DFT not falsified, if a periodic signal is sampled
over an integer number of periods?

3.7. Short Time Fourier Transform
Generate a chirp signal and analyze it using the short time Fourier transform. Com-
ment on overlapping and on the choice of the parameter R.

3.8. Short Time Fourier Transform and Wavelet Transform
What are differences between the wavelet transform and the short time Fourier trans-
form?

3.9. Periodogram
How is the periodogram defined? What is critical about the application of the peri-
odogram?
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4

Frequency Response Measurement with Non-Periodic
Signals

The Fourier analysis with non-periodic test signals can be applied to determine the
non-parametric frequency response function of linear processes by first bringing the
input and the output signal to the frequency domain and then determining the transfer
function by an element-wise division of the former two.

4.1 Fundamental Equations

The frequency response function in non-parametric form can be determined from
non-periodic test signals by means of the relation

G.i!/ D y.i!/
u.i!/

D F
˚
y.t/

�
F
˚
u.t/

� D
R1

0 y.t/e�i!t dtR1
0
u.t/e�i!t dt

; (4.1.1)

where the integral can furthermore be split up into real and imaginary part as

y.i!/ D lim
T !1

�Z T

0

y.t/ cos!tdt � i
Z T

0

y.t/ sin!t dt
�
: (4.1.2)

Here, the Fourier transform of the input as well as the output must be determined,
i.e. the (typically noisy) signals must be subjected to a Fourier transform. Since the
Fourier transform of many typical test signals, such as e.g. the step or the ramp
function, does not converge, one typically uses the Laplace transforms with the limit
s ! i! instead of (4.1.1). For the step and the ramp response, for example, there
exists with lims!i! u.s/; .! ¤ 0/ a representation, which is similar to the Fourier
transform, see Sec. 4.2.3. Hence, if the Fourier transform does not converge, one can
use the ratio of the Laplace transforms with the limiting value s ! i! instead of
(4.1.1) as

G.i!/ D lim
s!i!

y.s/

u.s/
D lim

s!i!

R1
0 y.t/e�st dtR1
0 u.t/e�st dt

D y.i!/
u.i!/

: (4.1.3)

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_4, © Springer-Verlag Berlin Heidelberg 2011 



100 4 Frequency Response Measurement with Non-Periodic Signals

The integral can furthermore be split up into real and imaginary part as

y.i!/ D lim
ı!0

T !1

�Z T

0

y.t/e�ıt cos!tdt � i
Z T

0

y.t/e�ıt sin!t dt
�
: (4.1.4)

The transform u.i!/ can be written correspondingly.
As far as the signals are concerned, one has to use the small signal quantities, i.e.

the deviation from their steady-state levels. If U.t/ and Y.t/ denote the large signal
values and U00, Y00 denote their respective steady-state values before the measure-
ment, then

y.t/ D Y.t/ � Y00 (4.1.5)
u.t/ D U.t/ � U00 : (4.1.6)

In order to simplify the generation and subsequent evaluation of the results, one
typically chooses test signals with a simple shape. Figure 4.1 shows some exam-
ples. For these simple signals, the Fourier transform can be determined a priori, see
Sect. 4.2. The simple analytical expressions allow for example to optimize the test
signal with respect to the identification task at hand, the plant under investigation
and so on. Furthermore, one must only determine the Fourier transform of the output
y.t/ (Isermann, 1967, 1982).

The frequency response function determination from non-parametric test signal
excitation is typically applied to get a first quick system model, which gives hints
on how to design the subsequent, more time-consuming experiments, which then
yield the final system model. This method is often used in the analysis of mechanical
structures, when e.g. the object is hit by a special hammer and the accelerations of
different parts of the structure are measured. The Fourier transform of an impulse is
just the height of the impulse or the contact force during the hammer hit respectively.
Therefore, the input signal does not need to be Fourier transformed at all.

4.2 Fourier Transform of Non-Periodic Signals

To be able to determine the frequency response according to (4.1.3) and to atten-
uate the influence of noise in the frequency band of interest, the Fourier transform
and amplitude density of various test signals in analytical form should be known.
Therefore, this section will provide the Fourier transforms of the test signals shown
in Fig. 4.1 and will analyze their amplitude density (Bux and Isermann, 1967). For
simplicity in notation, the pulse width TP is replaced by T .

4.2.1 Simple Pulses

First, the test signals a) through d) of Fig. 4.1 will be analyzed. They have in common
that the test signal is always positive. Their major disadvantage is that they are not
perfectly well suited for systems with integral action as the integrator will not come
back to zero at the end of the test signal. Further discussion of this topic can be found
later in following subsections.
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Fig. 4.1. Simple non-periodic test signals: (a) step function (b) ramp function (c) rectangular
pulse (d) trapezoidal pulse (e) double rectangular pulse (f) double trapezoidal pulse

Trapezoidal Pulse

The Fourier transform for the case T2 D T1 can be determined. By transforming the
three sections (ramp, constant, ramp) separately and adding the results together, one
gets from using (4.1.4)

utr.i!/ D u0.T � T1/

 
sin !T1

2
!T1

2

! 
sin !.T �T1/

2

!.T �T1/
2

!
e�i !T

2 : (4.2.1)
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Rectangular Pulse

The rectangular pulse can easily be determined from (4.2.1) by considering the limit
T1 ! 0. This limiting case is given as

usq.i!/ D u0T

 
sin !T

2
!T
2

!
e�i !T

2 : (4.2.2)

Pintelon and Schoukens (2001) suggest to choose the pulse length T as

T D 1

2:5fmax
; (4.2.3)

where fmax is the highest interesting frequency to be identified.

Triangular Pulse

With T1 D T2 D T=2 the Fourier transform follows from (4.2.1) as

utri.i!/ D u0

T

2

 
sin !T

4
!T
4

!2

e�i !T
2 : (4.2.4)

Dimensionless Representation

To be able to compare the Fourier transforms of the individual test signals in an easy
way, the related (starred) quantities

u�.t/ D u.t/

u0

(4.2.5)

t� D t

T
(4.2.6)

!� D !T

2�
(4.2.7)

are introduced. The Fourier transforms are furthermore normalized with respect to
the maximum possible amplitude of the Fourier transform of a rectangular pulse,

usq.i!/j!D0 D
Z T

0

u0dt D u0T : (4.2.8)

By the use of the referred quantities, test signals which are similar in their shape, but
differ in their height u0 and their pulse length T have the same amplitude density
ju�.i!�/j and the same phase †u�.i!�/. Thus, only the pulse shape determines the
Fourier transform. For the three pulse shapes introduced so far, one gets
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Fig. 4.2. Referred amplitude density of various non-periodic test signals

u�
tr.i!

�/ D .T � � T �
1 /

�
sin�!�T �

1

�!�T �
1

��
sin�!�.T � � T �

1 /

�!�.T � � T �
1 /

�
e�i	!�

(4.2.9)

u�
sq.i!

�/ D
�

sin�!�

�!�

�
e�i	!�

(4.2.10)

u�
tri.i!

�/ D 1

2

 
sin 	!�

2
	!�

2

!2

e�i	!�

: (4.2.11)

The amplitude density is plotted as a function of the referred angular frequency in
Fig. 4.2. The largest value of each amplitude density is at !� D 0 and is given as the
area under the pulse. With increasing frequency, the amplitude spectra of the pulses
decrease until the first zero is reached. This first zero is followed by additional zeros
and intermediate local maxima of the amplitude spectra. These individual zeros are
given as

� !1 D 2�n=T1 or !�
1 D n=T �

1 ) first row of zeros for trapezoidal pulse
� !2 D 2�n=.T � T1/ or !�

2 D n=.T � � T �
1 / ) second row of zeros for trape-

zoidal pulse
� ! D 2�n=T or !� D n ) only row of zeros for rectangular pulse
� ! D 4�n=T or !� D 2n ) only row of zeros for triangular pulse

with n D 1; 2; : : :. Trapezoidal and rectangular pulses have single zeros, triangular
pulses double zeros. In the former case, the amplitude density curve intersects the
!-axis, in the latter case, it is a tangent to the !-axis.
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Variation of the Pulse Width

If the duration T of a pulse is increased, then the amplitude density increases at
small frequencies, as the area underneath the pulse curve increases, see Fig. 4.3. The
decay at higher frequencies at the same time gets steeper, since the zeros move to-
ward smaller frequencies. One can construct an envelope which displays the highest
possible amplitude at any given angular frequency !. This envelope is given as

ju�
sq.i!

�/jmax D 1

�!� D 0:3183

!� (4.2.12)

for the rectangular pulse and

ju�
tri.i!

�/jmax D 0:2302

!� (4.2.13)

for the triangular pulse. For the trapezoidal test signal, one gets various envelopes
depending on the shape. They are all bounded by the envelopes for the rectangular
and triangular pulse respectively. Rectangular pulses have the largest amplitude at
low frequencies compared with all other single-sided pulses with the same maximum
height u0. One can state the following reasons for this:

� At low frequencies, the area underneath the pulse curve determines the ampli-
tude. Rectangular pulses have the maximum possible area for any given pulse
width T .

� For medium frequencies, the envelope determines the amplitude density. Rect-
angular pulses have the highest envelope and thus in the area at !� D 1=2 the
highest amplitude density. In Fig. 4.2, one can see that the rectangular pulse has
the highest amplitude density in the entire range of low to medium frequencies,
0 � !� � 1=2.

� For higher frequencies, rectangular pulses also have the highest amplitude den-
sity in certain areas left and right of the second, third, etc. extremum. This is for
most applications however not of interest as the excitation is too low.

4.2.2 Double Pulse

Point-Symmetric Rectangular Pulse

Next, the double rectangular pulse as depicted in Fig. 4.1e with height u0 and pulse
width T will be considered. The Fourier transform is in this case given as

u.i!/ D u0T

 
sin2 !T

4
!T
4

!
e�i !T ��

2 (4.2.14)

and with referred quantities as

u�.i!�/ D
 

sin2 	!�

2
	!�

2

!
e�i	 2!�

�1
2 : (4.2.15)
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Fig. 4.3. Amplitude density of rectangular pulses with different pulse width T

The zeros are located at

! D 4�

T
n or !� D 2n with n D 0; 1; 2; : : : : (4.2.16)

With exception of n D 0, all roots are double roots. The amplitude density thus
touches the !� axis for n D 1; 2; : : :. In contrast to the simple rectangular pulse, the
amplitude density is zero at !� D 0 and has a maximum at the finite frequency

ju�.i!�/jmax D 0:362 at !� D 0:762 ; (4.2.17)

see also Fig. 4.2.

Axis-Symmetric Rectangular Pulse

For an axis-symmetric double rectangular pulse, one gets

u.i!/ D u0T
sin !T

2
!T
2

2 cos!T : (4.2.18)

Figure 4.4 shows (for the time shifted double pulse) that the amplitude density at
!� D 0 and !� D 0:5 is twice as high as that of the single rectangular pulse. The
frequency interval of interest, !�

1 < !
� < !�

2 , is quite small. Outside of this area of
interest, the amplitude density is smaller than that of the single rectangular pulse. The
concatenation of two rectangular pulses yields an increase in the level of excitation
in the area around !� D 0:5 and all mutiples, i.e. !� D 1:5, !� D 2:5, etc. at the
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Fig. 4.4. Amplitude spectra of rectangular pulses with different number of rectangles

expense of an attenuation in the lower intermediate and all upper frequency ranges
except for integer multiples.

If one concatenates not only two, but even more rectangular pulses at a distance
of 2T , the amplitude density in the vicinity of !� D 0:5 (and !� D 0) grows ever
larger. At the same time the interval !�

1 < !� < !�
2 gets smaller. In the limiting

case of an infinite number of rectangular pulses, the Fourier transform develops to a
ı-impulse at !� D 0:5 (and !� D 0 as well as !� D 1:5, !� D 2:5 and so forth).

4.2.3 Step and Ramp Function

Step and ramp functions do not satisfy the convergence criteria (2.1.11) so that a
Fourier transform cannot directly be determined by (2.1.9) or (4.1.4) respectively.
However, there are still means to determine a frequency domain representation.

By calculating the limiting value s ! i!, one can obtain the Fourier transform
in a strictly formal way from the Laplace transform

ust.i!/ D lim
s!i!

L
˚
ust.t/

� D lim
s!i!

u0

s
D u0

i!
D u0

!
e�i �

2 : (4.2.19)

Rewriting this equation with referred quantities yields

u�
st.i!/ D 1

2�!� e� �
2 : (4.2.20)

Similarly, one can now cope with the ramp function. For a ramp with rise time
T1, see Fig. 4.1b), one gets
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ur.i!/ D lim
s!i!

Lfur.t/g D lim
s!i!

u0

T1s2

�
1 � e�T1s

� D u0

!

 
sin !T1

2
!T1

2

!
(4.2.21)

or

u�
r .i!

�/ D 1

2�!�

 
sin�!�T �

1

�!�T �
1

!
exp

	�
2

� �!�
 (4.2.22)

respectively.
The amplitude density of a step function follows as

just.i!/j D u0

!
or ju�

st.i!
�/j D 1

2�!� for ! ¤ 0; !� ¤ 0 (4.2.23)

and thus represents a hyperbolic function. Since there are no zeros, all frequencies
in the range 0 < ! < 1 will be excited. Figure 4.2 as well as (4.2.12) exhibit that
the amplitude spectrum of the step function is always half as high as the envelope
of the amplitude spectrum of the rectangular pulses. The amplitude density of a step
function and any rectangular pulse are equally high at

!sr D �

3T
or !�

sr D 1

6
D 0:1667 : (4.2.24)

In the area of small frequencies, 0 < ! < !sr, the step function has the larger
amplitude density compared to the rectangular pulse and thus the largest amplitude
density of all non-periodic test signals of height u0.

The amplitude density of a ramp function is by a factor

� D jur.i!/j
just.i!/j D sin !T1

2
!T1

2

(4.2.25)

smaller. This factor is equal to the shape of the amplitude density function of the
rectangular pulses. At ! D 2�n=T1, with n D 1; 2; : : : one can find zeros. This is
in contrast to the step function, which has no zeros. The first zero moves to higher
frequencies as the rise time T1 of the ramp gets smaller, which means that the edge
of the signal gets steeper. This points to a general property of all test signals: The
steeper the edges, the stronger the excitation at high frequencies.

In many cases, one is interested in whether a step function can be assumed for a
ramp-wise excitation with rise time T1. The factor � in (4.2.25) provides an answer
to this question. If one accepts an error of � 1% or � 5% up to the largest angular
frequency !max, then the factor � can be � � 0:95 or � � 0:99 respectively. Thus,
the rise time is limited to

T1;max � 1:1

!max
or T1;max � 0:5

!max
: (4.2.26)

In conclusion, the analysis of the amplitude density of different non-periodic test
signals shows that for a given test signal height u0, the highest amplitude density of
all possible test signals can be achieved with
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� step functions for small frequencies
� rectangular pulses for medium to high frequencies

Thus, according to (4.3.6), these signals provide the smallest error in the identi-
fication of the frequency responses from noisy measurements of the response (Iser-
mann, 1967). Non-periodic test signals in contrast to periodic test signals excite all
frequencies in the range 0 � ! < 1 at once with the exception of the zeros which
show up for pulse responses and ramp responses.

4.3 Frequency Response Determination

Now, the properties of the frequency response determination by means of (4.1.1), i.e.

OG.i!/ D y.i!/
u.i!/

D F
˚
y.t/

�
F
˚
u.t/

� ; (4.3.1)

will be analyzed. Here, special attention must be paid to the influence of noise on the
output: The systems response yu.t/ evoked by the test signal u.t/ is usually affected
by noise which is superimposed as

y.t/ D yu.t/C n.t/ : (4.3.2)

By substituting into (4.3.1), one gets

OG.i!/ D 1

u.i!/
lim

s!i!

�Z 1

0

yu.t/e�st dt C
Z 1

0

n.t/e�st dt
�

(4.3.3)

and
OG.i!/ D G0.i!/C�Gn.i!/ : (4.3.4)

The estimated frequency response OG.i!/ thus consists not only of the exact fre-
quency response G0.i!/, but also of the frequency response error �Gn.i!/ which is
evoked by the noise n.t/ and is given as

�Gn.i!/ D lim
s!i!

n.s/

u.s/
D n.i!/
u.i!/

: (4.3.5)

Hence, the magnitude of the error results as

j�Gn.i!/j D jn.i!/j
ju.i!/j : (4.3.6)

The frequency response error gets smaller as ju.i!/j becomes larger in relation to
jn.i!/j. Thus, for a given noise jn.i!/j, one must try to make ju.i!/j, i.e. the am-
plitude density at ! of the test signal u.t/, as large as possible. This can be achieved
by
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� Choosing the height u0 of the test signal as large as possible. However, limita-
tions on u0 are often imposed by the process itself, the operating range in which
the process can be linearized, limitations of the actuator and so on, see Sect. 1.2.

� Selecting an appropriate shape of the test signal so that the amplitude density is
concentrated in the frequency area of interest.

The influence of noise and the properties of the frequency response function estimate
will be discussed again in the next section.

Example 4.1 (Frequency Response Function). An example of a frequency response
function estimate of the Three-Mass Oscillator, see Fig. B.1, using a non-periodic test
signals is shown in Fig. 4.5. The test signal employed was a rectangular pulse with
the length T D 0:15 s. One can see the relative good match between the frequency
response determined by means of the orthogonal correlation described in Sect. 5.5.2
(which will serve as a reference) and the frequency response determined by the aid
of the Fourier transform for ! < 25rad=s. In Fig. 4.6 on the contrary, the excitation
was chosen as a triangular pulse, where the first zero coincides with the maximum
magnitude of the transfer function G.i!/. Hence, the frequency response can only
be determined for ! < 13:5Hz. ut

4.4 Influence of Noise

The output signals of many processes do not only contain the response to the test
signal, but also some noise, see Fig. 1.5. This noise can have manifold reasons.
Noise can be caused by external disturbances acting on the process or by inter-
nal disturbances located within the processes boundaries. As has been outlined
in Sect. 1.2, one can differentiate between higher-frequent quasi-stochastic distur-
bances (Fig. 1.6a), low-frequent non-stationary stochastic disturbances, e.g. drift,
(Fig. 1.6b), and disturbances of unknown character, e.g. outliers, (Fig. 1.6c).

Identifying a process with a single non-stationary test signal as described in this
chapter is typically only possible if the noise has a small amplitude compared to the
test signal and if the noise has a constant mean. If non-stationary noise or noise with
an unknown type is acting on the system, it is in most cases impossible to obtain
any useful identification results from the relative short time interval in which the
response y.t/ is recorded. One rather has to wait for a time period, where the noise
has constant mean or take resort to other identification methods that can better cope
with non-stationary noises.

In the following, the influence of stationary, stochastic noise n.t/with Efn.t/g D
0 on the fidelity of the identified frequency response will be investigated. The inves-
tigation will assume that the noise n.t/ is additively superimposed onto the undis-
turbed output yu.t/ evoked by the test signal (4.3.2). The noise can be created by a
form filter with transfer function Gn.i!/ from white noise with the power spectral
density S�0, see Fig. 4.7.
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Fig. 4.5. Frequency response measurement of the Three-Mass Oscillator with a rectangular
pulse of length T D 0:15 s. Measurement by Fourier transform (solid line), orthogonal cor-
relation as reference (dashed line), frequency range of the Bode diagram (gray shaded area).
The input signal is the torque MM.t/ applied by the electric motor, the output the rotational
speed !3.t/ of the third mass.
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Fig. 4.6. Frequency response measurement of the Three-Mass Oscillator with a triangular
pulse of length T D 0:09 s. First zero of the input frequency spectrum located at the first
resonant frequency at ! � 15 rad=s of the process. Erroneous results are obtained for angular
frequencies around ! � 13:5 rad=s and at all integer multiples k. Also for higher frequencies,
the excitation by the test signal is too small. Measurement by Fourier transform (solid line),
orthogonal correlation as reference (dashed line), frequency range of the Bode diagram (gray
shaded area)
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Fig. 4.7. Block diagram of a linear process
disturbed by a stochastic noise n.t/

Fig. 4.8. Error �Gn.i!/ of a frequency re-
sponse

In the following, the error caused by a disturbed response will be investigated. A
stochastic noise acting on the process in the time period 0 � t � TE causes the error

�Gn.i!/ D nT.i!/
u.i!/

(4.4.1)

in the frequency response, see Fig. 4.8. Its magnitude is given by

j�Gn.i!/j D jnT.i!/j
ju.i!/j : (4.4.2)

The auto-correlation function of noise of finite duration can be estimated by

O̊nn.�/ D 1

TE

Z TE

0

nT.t/nT.t C �/d� ; (4.4.3)

see Sect. 6.1. One can then determine the power spectral density and determine the
expected value. Knowledge of the power spectral densities of the noise and the input
(4.4.2) allows to determine the expected value of the magnitude of the error

E
˚j�Gn.i!/j2

� D E
˚
Snn.i!/

�
Suu.!/

: (4.4.4)

Since the test signal is deterministic,

Suu.!/ D ju.i!/j2
TE

: (4.4.5)

The variance of the relative frequency response error upon evaluation of a response
of length TE is thus given as

�2
G1 D E

� j�Gn.i!/j2
jG.i!/j2

�
D Snn.!/TE

jG.i!/j2ju.i!/j2 : (4.4.6)

If N responses are evaluated, then
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Suu.!/ D jNu.i!/j2
NTE

D N
ju.i!/j2
TE

: (4.4.7)

The standard deviation is in this case given as

�Gn D
p
Snn.!/TE

jG.i!/jju.i!/jpN : (4.4.8)

The error in the frequency response is thus inversely proportional to the signal-to-
noise ratio and inversely proportional to the square root

p
N of the number of re-

sponses recorded. Hence, in order to decrease the influence of a stochastic noise
n.t/, one can record more than one responses evoked by the same test signal and
determine the averaged response by

Ny.t/ D 1

N

N �1X
kD0

yk.t/ : (4.4.9)

Especially in the case of different test signals, one can also determine the mean fre-
quency response as

NG.i!/ D 1

N

NX
kD1

Gk.i!/ D 1

N

NX
kD1

Re
˚
Gk.i!/

�C i
1

N

NX
kD1

Im
˚
Gk.i!/

�
: (4.4.10)

As can be seen in (4.4.8), the standard deviation decays with a factor 1=
p
N such

that
�GN D 1p

N
�G1 : (4.4.11)

It is important however, that one may only take the mean of the real and imaginary
part and never the mean of the amplitude and phase.

For the form filter in Fig. 4.7, one can write

Snn.!/ D jGn.s/j2S�0 ; (4.4.12)

so that finally

�GN D jGn.i!/j
p
S�0TE

jG.i!/jju.i!/jpN : (4.4.13)

Example 4.2 (Influence of Noise on the Frequency Response Function Estimate). The
accuracy of the estimation in the presence of noise shall now be illustrated for the
Three-Mass Oscillator excited by rectangular pulses. The standard deviation of the
noise n.t/ given as �n shall be 1. The noise-to-signal ratio is given as

� D �n

ymax
� 4% D̂ 1 W 25 ; (4.4.14)
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which corresponds to a signal-to-noise ratio of 1=� D 25 W 1. Such a disturbance is
quite small, the peak-to-peak value for a Gaussian distribution of the signal ampli-
tudes is given as

b � 4�n : (4.4.15)

Figure 4.9 shows the noise-free case, whereas Fig. 4.10 depicts the case of a noisy
measurement. One can see that the results in the range of medium frequencies is still
relatively good, but the peak of the second resonance in the amplitude plot cannot be
determined any longer. Figure 4.11 shows how the fidelity of the estimated frequency
response can be increased by averaging multiple noisy measurements.

The agreement with the discrete measured frequency response is very good in
the range of medium frequencies, i.e. 10rad=s � ! � 25rad=s which validates the
analysis of the excitation signals in Sect. 4.2. ut

Summarizing, the spectral estimation of the transfer function as

OG.i!/ D y.i!/
u.i!/

(4.4.16)

has the following properties

lim
N !1 E

˚ OG.i!/� D G.i!/ (4.4.17)

lim
N !1 var

� OG.i!/� D Snn.i!/
Suu.i!/

; (4.4.18)

see (Ljung, 1999; Heij et al, 2007; Verhaegen and Verdult, 2007). As one can see,
the variance does not diminish as N ! 1. Also, the estimate is only unbiased if
there are no transients (Broersen, 1995), and if there is no noise acting on the input
u.t/. Transients can only be avoided if there are no responses due to u.t/ ¤ 0 for
t < 0 and also that the input signal is of finite duration and also the system response
has died out before the end of the measurement period. For signals that have not died
out at the end of the measurement period, the issue of windowing and the effect of
windowing on the estimates comes up. For this topic, see (Schoukens et al, 2006).
Windowing has already been discussed in detail in Sect. 3.1.4.

4.5 Summary

In this chapter, the estimation of the frequency response function by means of di-
viding the Fourier transform of the output y.t/ by the Fourier transform of the input
u.t/ was presented. As the quality of the estimate strongly depends on the excitation
of the dominant process dynamics, the amplitude density of different test signals has
been derived analytically and then compared with each other. Based on this analysis,
suggestions on the design of advantageous test signals can now be given. Windowing
can also have a detrimental effect on the identification results. The interested reader is
referred to the studies by Schoukens et al (2006) and Antoni and Schoukens (2007).
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The use of this method as an initial tool for quick system analysis is also suggested
by Verhaegen and Verdult (2007).

The term advantageous shall denote those realizable test signals, which have the
highest amplitude density in a certain frequency range. These signals will yield the
smallest error in the estimate of the frequency response in that particular frequency
range. As has already been shown in this chapter, the most advantageous test sig-
nals for small frequencies are the step signal and the rectangular pulse for medium
frequencies. (4.4.8) can be used to determine the required amplitude for the identifi-
cation of a process with stochastic disturbances as

ju.i!/jreq D
p
Snn.i!/TE

jG.i!/j�G.i!/
p
N
: (4.5.1)

In this equation, �G.i!/ denotes the maximum allowable standard deviation for
the frequency response error. From (4.5.1), one can see that the required amplitude
density of the test signal depends on the power spectral density of the noise and the
intended application, which determines �G.i!/. Generic requirements on the ampli-
tude density can hardly be formulated without knowledge of the process. The experi-
ence gained in controller synthesis (Isermann, 1991) however shows that the relative
frequency response error must be small in the medium frequency range, which is for
example fulfilled for short rectangular pulses.

It is now self-evident that one should use not only one test signal, but rather a
test sequence combined of different test signals, where each test signal is advanta-
geous for the identification of a certain frequency range. For processes, which may
be displaced permanently, one should use,

� a sequence of a few step responses to determine the frequency response at low
frequencies

� a sequence of rectangular pulses to determine the frequency response at medium
and high frequencies

A guiding value for the distribution can be 20% � 30% of the measurement time
for step responses and 80%�70% rectangular pulses. The length T of the rectangular
pulses is determined so that the highest amplitude density is approximately at the
highest interesting process frequency !max, i.e.

T D �

!max
: (4.5.2)

If possible, one should evaluate the response for both directions to attenuate certain
non-linear effects by the subsequent averaging. At this point, the close resemblance
between these test sequences and the binary test signals, which are treated later in
Sect. 6.3 shall already be pointed out.

After discussing the design of ideal test signals, the properties of the frequency
response function estimate have been discussed in detail. It has been shown that if the
system is excited with the same test signal u.t/ in each experiment, one can calculate
the average of the system response y.t/ and then determine the frequency response
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function based on this average. If different test signals are used, one can also estimate
a frequency response function for each measurement individually and then calculate
the average of all frequency response functions.

Problems

4.1. Frequency Response Measurement with Non-Periodic Test Signals
How can the frequency response of a linear system be determined with non-periodic
test signals? What are the advantages/disadvantages compared to periodic test sig-
nals?

4.2. Fourier Transform of Test Signals
Which test signals yield the highest amplitude density for very low, low, medium,
or high frequencies respectively? Assume that all test signals are constrained to the
same maximum height u0.

4.3. Trapezoidal Pulse
Determine the Fourier transform of the trapezoidal pulse.

4.4. Rectangular Pulse
Determine the Fourier transform of the rectangular pulse for T D 20 s.

4.5. Test Signals
How do the steepness of the edges and the excitation of high frequencies relate to
each other?

4.6. Noise
How can one improve the identification result, if the process is
(a) excited multiple times with the same test signals
(b) excited multiple times with different test signals

4.7. Advantageous Test Signals
Describe an advantageous test signal sequence.

References

Antoni J, Schoukens J (2007) A comprehensive study of the bias and variance of
frequency-response-function measurements: Optimal window selection and over-
lapping strategies. Automatica 43(10):1723–1736

Broersen PMT (1995) A comparison of transfer function estimators. IEEE Trans
Instrum Meas 44(3):657–661

Bux D, Isermann R (1967) Vergleich nichtperiodischer Testsignale zur Messung des
dynamischen Verhaltens von Regelstrecken. Fortschr.-Ber. VDI Reihe 8 Nr. 9.
VDI Verlag, Düsseldorf



120 4 Frequency Response Measurement with Non-Periodic Signals

Heij C, Ran A, Schagen F (2007) Introduction to mathematical systems theory :
linear systems, identification and control. Birkhäuser Verlag, Basel

Isermann R (1967) Zur Messung des dynamischen Verhaltens verfahrenstechnischer
Regelstrecken mit determinierten Testsignalen (On the masurement of dynamic
behavior of processes with deterministic test signals). Regelungstechnik 15:249–
257

Isermann R (1982) Parameter-adaptive control algorithms: A tutorial. Automatica
18(5):513–528

Isermann R (1991) Digital control systems, 2nd edn. Springer, Berlin
Ljung L (1999) System identification: Theory for the user, 2nd edn. Prentice Hall

Information and System Sciences Series, Prentice Hall PTR, Upper Saddle River,
NJ

Pintelon R, Schoukens J (2001) System identification: A frequency domain ap-
proach. IEEE Press, Piscataway, NJ

Schoukens J, Rolain Y, Pintelon R (2006) Analysis of windowing/leakage effects in
frequency response function measurements. Automatica 42(1):27–38

Verhaegen M, Verdult V (2007) Filtering and system identification: A least squares
approach. Cambridge University Press, Cambridge



5

Frequency Response Measurement for Periodic Test
Signals

The frequency response measurement with periodic test signals allows the determi-
nation of the relevant frequency range for linear systems for certain, discrete points
in the frequency spectrum. Typically, one uses sinusoidal signals at fixed frequencies,
see Sect. 5.1. However, one can also use other periodic signals such as e.g. rectan-
gular, trapezoidal, or triangular signals as shown in Sect. 5.2. The analysis can be
carried out manually or with the aid of digital computers, where the Fourier analysis
or special correlation methods come into play.

Based on the determination of correlation functions, special frequency response
measurement techniques have been developed, which work well even in the pres-
ence of larger disturbances and noise, Sect. 5.5. Here, Sect. 5.5.1 describes the gen-
eral approach in determining the frequency response from correlation functions. An
especially well suited approach for the determination of the frequency response is
governed in Sect. 5.5.2, which describes the orthogonal correlation, a very powerful
technique. It is remarkably well suited for disturbance rejection and performs very
reliably in the presence of large noise levels.

Special attention must be paid to the characteristics of the actuator, as was al-
ready stressed in Sect. 1.5. The use of sinusoidal test signals typically requires that
the static and dynamic behavior of the actuator is linear within the input signal in-
terval that is used for the experiments. If the static behavior is linear, then one can
realize a sinusoidal input to the plant by connecting the actuator to a signal generator.
This applies to actuators which are proportional acting or exhibit integral action with
variable actuation speed. For actuators with integral action, it is often advisable to
use an underlying position controller and supply a sinusoidal setpoint signal to this
controller to maintain a constant mean and avoid drifting of the actuator. For actua-
tors with integral action and constant speed operation (e.g. AC motor drives), one can
use a three point controller for the displacement of the actuated variable to generate
an approximate sinusoidal oscillation at lower frequencies. For higher frequencies
however, such an actuator can only generate trapezoidal or triangular signals.

Frequently, the static characteristics of the actuator is non-linear, so that the ac-
tuator generates distorted sinusoidal or trapezoidal signals, which show a frequency
spectrum that is different from the original test signal. One can try to determine the

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_5, © Springer-Verlag Berlin Heidelberg 2011 
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Fig. 5.1. Direct determination of the frequency response by analyzing the measured input and
output. Evaluation after the stationary oscillation has fully developed

frequency response of the subsequent process by analyzing the first harmonic of the
response only. The problem of the non-linear distortion can however be avoided by
employing rectangular signals (or trapezoidal signals with steep edges) as an input
signal. Here, one does only switch between two discrete points of the non-linearity
at the input of the actuator. Therefore the non-linear behavior between the two single
operating points must not be considered. If the actuator can be operated manually, it
is also possible to apply rectangular or trapezoidal signals by hand.

5.1 Frequency Response Measurement with Sinusoidal Test Signals

The easiest and probably most well-known identification method for the determi-
nation of a discrete point of the frequency response is the direct determination of
the amplitude ratio and phase angle of the recorded input and output oscillation, see
Fig. 5.1. For this identification technique, one needs only a two channel oscilloscope
or two channel plotter. The experiment has to be repeated for each frequency !k that
is of interest. The gain and phase can then be determined from

jG.i!�/j D y0.!�/

u0.!�/
(5.1.1)

†G.i!�/ D �t'!� ; (5.1.2)
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Fig. 5.2. Direct determination of the frequency response by analyzing the measured input and
output of the Three-Mass Oscillator

where t' denotes the time of the phase lag and is positive if the output y.t/ is “later”
than the input u.t/ or has a lag compared to the input. The phase †G.i!/ is in this
case negative. If disturbances are present, the gain and phase can be determined by
averaging the results from (5.1.1) and (5.1.2) for multiple points of the recorded input
and output signals.

Example 5.1 (Direct Determination of the Frequency Response).
The direct determination of the frequency response is shown for the Three-Mass

Oscillator in Fig. 5.2. The amplitude of the input signal is u0 D 0:4Nm. The ampli-
tude of the output oscillation is y0 D 9:85 rad=s. Thus, the gain is given as

jG.i!/j!D2:89 rad=s D y0

u0

D 9:85 rad=s
0:4Nm

D 24:63
rad

Nm s
: (5.1.3)

The phase can be determined by two subsequent zero crossings of the input and
output signal for stationary oscillation of the output. The input signal has a zero
crossing at t1 D 2:57 s and the output has its corresponding zero crossing at t2 D
3:06 s. The phase is thus given as

'.i!/j!D2:89 rad=s D �t'! D .3:06 s � 2:57 s/ 2:89
rad
s

D �1:41 rad D �81:36ı :
(5.1.4)

This result can later be compared with the frequency response as determined by the
orthogonal correlation. ut
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5.2 Frequency Response Measurement with Rectangular and
Trapezoidal Test Signals

In some cases, it is more convenient to apply rectangular signals or trapezoidal sig-
nals instead of the typical sinusoidal signals. In the following, a simple identification
method shall be described, which allows the recording of the frequency response
with rectangular waves and is especially well suited for slow processes with order
n � 3 (Isermann, 1963).

A rectangular wave of the amplitude u0 and the frequency !0 D 2�=T can be
written as a Fourier series,

u.t/ D 4

�
u0

�
sin!0t C 1

3
sin 3!0t C 1

5
sin 5!0 C : : :

�
: (5.2.1)

Figure 5.3 shows the first four harmonics and their superposition, which resembles a
rectangular wave already quite well. The response to this input is given as

y.t/ D 4

�
u0

	
jG.i!0/j sin

�
!0t C '.!0/

�

C 1

3
jG.i3!0/j sin

�
3!0t C '.3!0/

�

C 1

5
jG.i5!0/j sin

�
5!0t C '.5!0/

�C : : :


:

(5.2.2)

One starts off with the identification of the frequency response for high frequencies.
In this frequency range, the amplitude of the second harmonic with the frequency



5.2 Frequency Response Measurement with Rectangular and Trapezoidal Test Signals 125

I

II

III

ω

Im{G(i )}ω

Re{G(i )}ω

Fig. 5.4. Evaluation sections for the measurement of the frequency response with rectangular
waves

3!0 is by a factor of � D 1=3n (n is the order of a delay with identical time constants)
smaller than the amplitude of the fundamental. For n � 3 follows that � � 0:04.
The higher harmonics are thus damped so strongly that the resulting output closely
resembles a pure sinusoidal oscillation whose amplitude and phase with respect to
the input signal can easily be determined. In this manner, one can determine part I of
the Nyquist plot shown in Fig. 5.4 (Isermann, 1963).

For medium frequencies, the amplitude of the second harmonic at 3!0 grows to
a value where it can no longer be neglected, thus

y.t/ � 4

�
u0

	
jG.i!0/j sin

�
!0t C '.!0/

�C 1

3
jG.i3!0/j sin

�
3!0t C '.3!0/

�

:

(5.2.3)
The third harmonic with the frequency 5!0 can still be neglected as can be all higher-
frequent harmonics. One can obtain the response that belongs to the fundamental
frequency by subtracting the response evoked by the second harmonic

y3!0
.t/ D 4

�

1

3
u0jG.i3!0/j sin

�
3!0t C '.3!0/

�
(5.2.4)

from the measured system output y.t/. The amplitude and phase of the component
y3!0

are known from the frequency response identification for high frequencies (part
I of the Nyquist plot). One can thus obtain part II of the Nyquist plot shown in Fig. 5.4

For lower frequencies, part III of the Nyquist plot (see Fig. 5.4) can be determined
by subtracting the response due to as many harmonics as necessary.

The response due to the sinusoidal fundamental is given as
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4

�
u0jG.i!0/j sin

�
!0t C '.!0/

�

D y � u0

1

3
jG.i3!0/j sin

�
3!0t C '.3!0/

�

� u0

1

5
jG.i5!0/j sin

�
5!0t C '.5!0/

� � : : : :

(5.2.5)

One will however apply this method typically only for the identification of the
higher-frequent part of the frequency response where the evaluation work is small.

However, it is more efficient to determine the lower-frequent part of the fre-
quency response from recorded step responses, see Sect. 4.2.3 and 4.3. The eval-
uation can also be carried out by means of a Fourier analysis.

The advantages of this identification method can be summarized as follows:

� The rectangular wave test signal can often easier be realized than the sinusoidal
test signal.

� The static transfer behavior of the actuator does not need to be linear.
� For a given amplitude u0, the rectangular wave has the highest amplitude of the

fundamental sine wave compared to all other periodic input signals (e.g. sinu-
soidal, trapezoidal or triangular oscillation). Thus the ratio for a given distur-
bance with respect to the wanted output is the smallest.

The jump from Cu0 to �u0 must not be carried out in an infinitely small time
interval, but can take a certain time T �

1 . As can be seen by a comparison of the coef-
ficients of the Fourier transformed trapezoidal and rectangular pulse, the coefficients
of the Fourier transform of the trapezoidal pulse are by a factor

� D sin !T1

2
!T1

2

(5.2.6)

smaller. If one accepts an error of 5% (respectively 1%), which means � D 0:95

(respectively � D 0:99), then the switching time from Cu0 to �u0 and vice versa
may be as large as

T �
1 <

1:1

!max
resp. T �

1 <
0:5

!max
; (5.2.7)

where !max is the highest frequency of interest. If the actuation time T �
1 gets larger

and the error resulting by the approximation with a rectangular pulse should be
avoided, then one has to determine the Fourier coefficients of the trapezoidal os-
cillation.

5.3 Frequency Response Measurement with Multi-Frequency Test
Signals

The periodic test signals treated in the last section use only the basic frequency. This
requires several evaluation runs with each having an unused settling phase before
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Fig. 5.5. Example for a binary multi-frequency signal for 6 frequencies
!0; 2!0; 4!0; 8!0; 16!0; 32!0 and N D 256 intervals

reaching stationary oscillations. This drawback can, however, be avoided if test sig-
nals are designed which contain several frequency components at once with relatively
low amplitudes.

Levin (1960) superimposed several sinusoidal oscillations at the frequencies
!0; 2!0; 4!0; 8!0; : : :. Using binary signals, Jensen (1959) designed a multifre-
quency signal with 7 frequencies at !0; 2!0; 4!0; : : : with u.t/ D u.t/=ju.t/j. An-
other proposal was made by Werner (1965) with rectangular oscillations of frequen-
cies !0; 3!0; 9!0; : : : and amplitudes u0; 2=3u0; 2=3u0; : : :. However, these sig-
nals did not result in best efficiency or only in small amplitudes with regard to the us-
able frequencies. Therefore, van den Bos (1967) then optimized binary signals with
regard to the largest amplitudes for 6 frequencies !0; 2!0; 4!0; 8!0; 16!0; 32!0,
with periods T0 of the lowest frequency asN D 512; 256; or 128 intervals. The size
of the amplitudes is about u0 D 0:585a.

Figure 5.5 shows a binary multifrequency signal forN D 256. The discrete-time
instants for switches are for half a period 12C 2� 4C 2� 23C 12� 3C 13� 5C
2 � 6C 1 � 6C 12 � 4C 6�.

The evaluation of the frequency response due to the multisine signal follows from
the Fourier coefficients as

ay� D 2

nTP

Z nTP

0

y.t/ cos!� tdt

by� D 2

nTP

Z nTP

0

y.t/ sin!� tdt

ƒ
(5.3.1)

with integer values for n representing the total measurement time TM D nTP and

jG.i!�/j D 1
u0�

q
a2

y� C b2
y�

'.!�/ D arctan ay�

by�

)
: (5.3.2)

Finally, a Schroeder multisine (Schroeder, 1970) is given as
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u.t/ D
NX

kD1

A cos.2�fkt C 'k/ (5.3.3)

with

fk D lkf0 with lk 2 N (5.3.4)

'k D �k.k C 1/�

N
: (5.3.5)

The goal in designing this signal was to reduce the maximum amplitude of the com-
bined signal as much as possible.

5.4 Frequency Response Measurement with Continuously Varying
Frequency Test Signals

In telecommunication engineering, analysis of electronic circuits and audio engi-
neering, one often uses a sweep sine test signal, which is also referred to as a chirp
signal. Here, the frequency of the signal varies as a function of time. This brings up
the question, how the current frequency of a signal can be measured. The Fourier
transform is only defined for an infinite time interval and also the short time Fourier
transform requires at least an interval of finite length and hence does not allow to
determine the frequency of a signal at a single point in time. Here, the notion of the
instantaneous frequency (Cohen, 1995) of a signal comes into play. The instanta-
neous frequency is defined as the time derivative of the phase of a complex valued
signal,

! D d
dt

�†x.t/� : (5.4.1)

This notion can easily be applied to the sweep sine signal.
A sweep sine is given as

x.t/ D sin
�
2�f .t/ t

�
: (5.4.2)

The phase is hence given as the argument of the sine function and the instantaneous
frequency can therefore be determined as

! D d
dt

�
2�f .t/ t

�
: (5.4.3)

Now, a function f .t/ shall be defined for the case of a linear transition from
frequency f0 to f1 in time T and for a logarithmic transition. For the linear transition,
the frequency function f .t/ will be given as

f .t/ D at C b : (5.4.4)

Hence, the instantaneous frequency is given as
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! D d
dt

�
2�.at C b/ t

� D 2�.2at C b/ : (5.4.5)

To obtain the instantaneous frequency !.t D 0/ D 2�f0 at t D 0 and !.t D T / D
2�f1 at T , one has to select the frequency function f .t/ as

f .t/ D f0 C f1 � f0

2T
t : (5.4.6)

With a similar derivation, one can determine the frequency function f .t/ for an ex-
ponential transition as

f .t/ D f0

�
f1

f0

� 1
T

: (5.4.7)

These two frequency sweeps have been shown in Table 5.1. Sweep sines are often
used in circuit and network analysis. Here, a so-called wobble generator produces a
sweep sine in linear or exponential form which is then used as an input to a circuit.
The output is analyzed, the amplitude and phase are determined and are displayed
on a screen or saved for later reference.

5.5 Frequency Response Measurement with Correlation Functions

The frequency response measurement methods presented so far have mainly only
been suitable for small disturbances. For larger disturbances, techniques are required,
which automatically separate the wanted, useful signal from the noise. Especially
well suited for this task are correlation methods which correlate the test signal and
the disturbed output. In Sects. 5.5.1 and 5.5.2, identification techniques based on
the determination of correlation functions are presented. The methods are basically
exploiting the fact that the correlation of a periodic function is again periodic and
thus is easily separable from the correlation functions of stochastic disturbances, as
was already illustrated in Sect. 2.3.

5.5.1 Measurement with Correlation Functions

For a linear system, the auto-correlation function (ACF) of the input signal is given
as

Ruu.�/ D lim
T !1

1

T

Z T
2

� T
2

u.t/u.t C �/dt ; (5.5.1)

see (2.3.8). For the cross-correlation function (CCF) follows from (2.3.14)

Ruy.�/ D E
˚
u.t/y.t C �/

� D lim
T !1

1

T

Z 1
T

� T
2

u.t/y.t C �/dt

D lim
T !1

1

T

Z 1
T

� T
2

u.t � �/y.t/dt :
(5.5.2)



130 5 Frequency Response Measurement for Periodic Test Signals

Table 5.1. Linear and Exponential Sine Sweep

Name, Shape and Equation
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They are both connected by means of the convolution integral, (2.3.35),

Ruy.�/ D
Z 1

0

g.t 0/Ruu.� � t 0/dt 0 : (5.5.3)

These relations have been developed for stochastic signals in Sect. 2.3, but are also
valid for periodic signals. In order to determine the frequency response, one could
determine the impulse response g.t 0/ from (5.5.3) and then calculate the Fourier
transform of the impulse response to determine the frequency responseG.i!/. How-
ever, due to some special features of the correlation function, a direct determination
of the amplitude and phase of the frequency response can be derived as is shown in
the following. For a sinusoidal test signal

u.t/ D u0 sin!0t (5.5.4)

with the frequency

!0 D 2�

TP
; (5.5.5)

the ACF is given as (2.3.31)

Ruu.�/ D 2u2
0

T0

Z T0
2

0

sin.!0t C ˛/ sin
�
!0.t C �/C ˛

�
dt D u2

0

2
cos!0� : (5.5.6)

The CCF of the test signal (5.5.4) and the test signals response

y.t/ D u0jG.i!0/j sin
�
!0t � '.!0/

�
(5.5.7)

yield with (5.5.3)

Ruy.�/ D jG.i!0/j2u
2
0

TP

Z TP
2

0

sin!0.t � �/ sin
�
!0t � '.!0/

�
dt

D jG.i!0/ju
2
0

2
cos
�
!0� � '.!0/

�
:

(5.5.8)

Due to the periodicity of the CCF, one can confine the integration to half a period.
By considering (5.5.6), one obtains

Ruy.�/ D jG.i!0/jRuu

�
� � '.!0/

!0

�
: (5.5.9)

If the ACF and CCF are graphed over time, see Fig. 5.6, then the amplitude of the
frequency response is always the ratio of the CCF at the point � to the ACF at the
point � � '.!0/=!0 (Welfonder, 1966),

jG.i!0/j D Ruy.�/

Ruu

	
� � '.!0/

!0


 D Ruy;max

Ruu.0/
D
Ruy

	
'.!0/

!0



Ruu.0/

: (5.5.10)
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Fig. 5.6. ACF and CCF for sinusoidal input signal

The phase can be determined from the time lag �� of the two correlation functions

'.!0/ D �!0�� : (5.5.11)

�� can best be determined from the zero crossings of the two functions. Amplitude
and phase can thus be determined from four discrete points of the two correlation
functions only. However, for averaging, one can process more points of the periodic
correlation functions as necessary.

The application of the method is not limited to sinusoidal signals. One can em-
ploy any arbitrary periodic signal since the higher harmonics of the test signal do
not influence the result as long as the input and output are correlated with sinusoidal
reference signals (Welfonder, 1966).

If stochastic disturbances n.t/ are superimposed onto the output, then one will
use larger measurement periods for the determination of the CCF according to
(5.5.2). The influence of stochastic signals on the determination of the ACF is cov-
ered in Chap. 6. It will be shown there that the error vanishes if the stochastic distur-
bance n.t/ is not correlated with the test signal u.t/ and either u.t/ D 0 or n.t/ D 0.
This is also valid for arbitrary periodic signals as long as their frequency is different
from the measurement frequency !0.

Example 5.2 (Determination of the Frequency Response Using Correlation Func-
tions).

An example of the determination of the frequency response function using cor-
relation functions, again applied to the Three-Mass Oscillator, is shown in Fig. 5.7.
Here, noise has been added to the output signal with �ny D 4 rad=s. As can clearly
be seen from the input signal and the output signal graphed in Fig. 5.7, the direct de-
termination of the frequency response is impossible due to the noise superimposed
onto the systems measured output. Thus, the ACF and CCF of the input and output
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Fig. 5.7. Frequency response measurement with correlation functions for a noisy output signal
of the Three-Mass Oscillator

have to be determined. As can be seen from the bottom diagram in Fig. 5.7, the CCF
shows a smooth course and is obviously not much affected by the noise. The zero
crossings and the maximum amplitude of the CCF can easily be determined.

The amplitude of the ACF can be read out at the time difference � D 0

as Ruu.0/ D 0:1152Nm2 (note the scaling of the ACF with a factor of 20 in
Fig. 5.7), the maximum amplitude of the CCF is given as max.Ruy.�// D Ruy;max D
3:217Nm rad=s. Thus, the gain is given as
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jG.i!0/j!D2:8947 rad=s D Ruy;max

Ruu.0/
D 1:99Nm rad

s

0:081Nm2
D 24:49

rad
s

Nm
: (5.5.12)

The phase can be determined by two subsequent zero crossings of the input and the
output signal. The auto-correlation function has a zero crossing at � D 0:053 s and
the cross-correlation function has its corresponding zero crossing at � D 0:542 s.
The phase is thus given as

'.i!/j!D2:8947 rad=s D ���! D .0:542 s � 0:053 s/ 2:8947
rad
s

D �1:41 rad D �81:1ı :
(5.5.13)

One can see that the amplitude matches relatively well with the value derived by the
direct evaluation, see Example 5.1.

5.5.2 Measurement with Orthogonal Correlation

The following section will cover the most important frequency response measure-
ment technique for linear systems that allow the injection of special test signals and
offline identification.

The Principle

The characteristics of the frequency response for a certain frequency !0 can be de-
termined from two points of the CCF of the test signal and the system output. Real
and imaginary part can both be estimated from the CCF, (5.5.8),

jG.i!0/j cos
�
!0� � '.!0/

� D Ruy.�/

u2
0

2

: (5.5.14)

For � D 0, one obtains the real part of the frequency response as

Re
˚
G.i!0/

� D jG.i!0/j cos
�
'.!0/

� D Ruy.0/

u2
0

2

(5.5.15)

and for � D TP=4 D �=2!0 or !0� D �=2, the imaginary part of the frequency
response can be determined as

Im
˚
G.i!0/

� D jG.i!0/j sin
�
'.!0/

� D
Ruy

	 �

2!0



u2

0

2

: (5.5.16)

Thus, one has to determine the CCF merely for two points and not its entire course
as a function of � . The CCF for � D 0 can according to (5.5.2) be calculated by
multiplying the test signal with the system output as
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Ruy.0/ D u2
0

2
Re
˚
G.i!0/

� D u0

nTP

Z nTP

0

y.t/ sin!0t dt (5.5.17)

and the CCF for � D TP=4 can similarly be determined by a multiplication of the
phase shifted test signal with the output as

Ruy

�
TP

4

�
D u2

0

2
Im
˚
G.i!0/

� D � u0

nTP

Z nTP

0

y.t/ cos!0t dt ; (5.5.18)

where the phase shift by �=2 transforms the sine into a cosine of the same frequency.
The multiplied signals are subsequently integrated over n full periods.

This measurement principle exploits the orthogonality relations of the trigono-
metric functions. Signal components which are (integer multiple) harmonics of the
fundamental frequency !0 as well as signal components which have the same fun-
damental frequency !0, but are orthogonal to sin!0t or cos!0t do not contribute to
the identification of the real and imaginary part respectively.

Figure 5.8 shows the corresponding experimental setup (Schäfer and Feissel,
1955; Balchen, 1962; Elsden and Ley, 1969). Before starting the integration, one
must wait for transient effects to have settled. In contrast to the technique presented
in the preceding section, the orthogonal correlation allows to directly display the real
and imaginary part immediately after each integration over n periods.

Despite the fact that the relations for the real and imaginary part have already
been shown in (5.5.15) and (5.5.16), the relations will be derived from scratch again
in the following. This time the CCFs will be considered as they are shown in Fig. 5.8.

At the output of the integrators, the following values can be tapped according to
(5.5.17) and (5.5.18)

Ruy.0/ D 1

nTP

Z nTP

0

u0 sin!0ty0 sin.!0t C '/dt

D 1

nTP
u0y0

Z nTP

0

.sin!0t cos' C cos!0t sin'/ sin!0t dt

(5.5.19)

Application of the orthogonality relation then yields
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Ruy.0/ D 1

nTP
u0y0

�Z nTP

0

sin2 !0t cos'dt C
Z nTP

0

sin!0t cos!0t sin'dt 
D0

�

D y0

u0

u2
0

2
cos' D jG.i!0/j cos'

u2
0

2
D Re

˚
G.i!0/

�u2
0

2
:

(5.5.20)

Similarly, one obtains for Ruy.TP=4/

Ruy

�
TP

4

�
D 1

nTP

Z nTP

0

u0 cos!0ty0 sin.!0t C '/dt

D Im
˚
G.i!0/

�u2
0

2
:

(5.5.21)

Amplitude and phase of the frequency response can then be determined by the rela-
tions

jG.i!0/j D
q

Re2fG.i!0/g C Im2fG.i!0/g (5.5.22)

'.!0/ D arctan
ImfG.i!0/g
RefG.i!0/g : (5.5.23)

This measurement principle has found widespread distribution and is also part of
commercially available frequency responses measurement systems (Seifert, 1962;
Elsden and Ley, 1969). Due to its easy application, it is not only used in the presence
of large disturbances, but often also in the case of little or no disturbances. Frequency
response measurement systems that are based on this working principle are termed
correlation frequency response analyzers. The competing measurement principle is
the sweep frequency response analysis, which is based on a sweep sine generator and
a spectrum analyzer carrying out an FFT, see Sect. 5.4.

Example 5.3 (Orthogonal Correlation).
The orthogonal correlation has been applied to the Three-Mass-Oscillator and

the measured frequency response has been compared with the theoretically derived
frequency response, see Fig. 5.9. Experiment and theory match very well. ut

Stochastic signals and periodic signals with ! ¤ !0 do not influence the result
in the case of infinite measurement time as was the case for the technique presented
in the preceding section. However, in practical applications, the measurement time
is always limited and in many cases quite short. Due to this, attention will be paid to
the resulting errors in the case of a finite measurement time nTP in the next section.

Influence of Noise

The disturbances yz.t/, which are superimposed onto the response yu.t/ (see Fig. 1.5)
cause the following error in the determination of the real and imaginary part of the
frequency response according to (5.5.17) and (5.5.18)
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�Re
˚
G.i!0/

� D 2

u0nTP

Z nTP

0

yz.t/ sin!0tdt (5.5.24)

�Im
˚
G.i!0/

� D � 2

u0nTP

Z nTP

0

yz.t/ cos!0tdt : (5.5.25)

The magnitude of the resulting error in the frequency response is then given as

j�G.i!0/j2 D �Re2
˚
G.i!0/

�C�Im2
˚
G.i!0/

�
: (5.5.26)

Now, the influence of a stochastic noise n.t/, a periodic disturbance p.t/, and a drift
d.t/ will be investigated.

For a stationary stochastic disturbance n.t/, the expected value of the squared
error of the real part is given as

E
˚
�Re2.!z/

� D 4

u2
0n

2T 2
P

E
�Z nTP

0

n.t 0/ sin!0.t
0/dt 0

Z nTP

0

n.t 00/ sin!0.t
00/dt 00

�

D 4

u2
0n

2T 2
P

Z nTP

0

Z nTP

0

E
˚
n.t 0/n.t 00/

�
sin!0t

0 sin!0t
00dt 0dt 00 :

(5.5.27)

With
Rnn.�/ D Rnn.t

0 � t 00/ D E
˚
n.t 0/n.t 00/

�
(5.5.28)

and the substitution � D t 0 � t 00 follows

E
˚
�Re2.!0/

� D 4

u2
0nTP

Z nTP

0

Rnn.�/

��
1 � �

nTP

�
cos!0� C sin!0�

!0nTP

�
d� :

(5.5.29)
The derivation is shown in (Eykhoff, 1974) and (Papoulis and Pillai, 2002). For
Ef�Im2.!0/g, one can derive a similar equation with a minus sign in front of the
last addend. Plugging these terms into (5.5.26) yields

E
˚j�G.i!0/j2

� D 8

u2
0nTP

Z nTP

0

Rnn.�/

�
1 � j� j

nTP

�
cos!0�d�

D 4

u2
0nTP

Z nTP

�nTP

Rnn.�/

�
1 � j� j

nTP

�
e�i!0� d� :

(5.5.30)

One has to take into account that Ef�Re.!0/�Im.!0/g D 0 (Sins, 1967; Eykhoff,
1974). If n.t/ is a white noise with the power spectral density S0 and thus

Rnn.�/ D S0ı.�/ ; (5.5.31)

then (5.5.30) simplifies to

E
˚j�G.i!0/j2

� D 4S0

u2
0nTP

: (5.5.32)
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The standard deviation of the relative frequency response error is then given as

�G D
s

E
� j�G.i!0/j2

jG.i!0/j2
�

D 2
p
S0

jG.i!0/ju0

p
nTP

: (5.5.33)

Now, it is assumed that n.t/ is a colored noise that has been derived by filtering
the white noise 	.t/ with the power spectral density S�0. The filter can e.g. be a first
order low-pass filter with the corner frequency !C D 1=TC,

G�.i!/ D n.i!/
	.i!/

D 1

1C i!TC
: (5.5.34)

The ACF is then given as

Rnn.�/ D S�0

2TC
e� j�j

TC : (5.5.35)

and Rnn.�/ � 0 for j�maxj < kTC where e.g. k > 3. Then, from (5.5.30) follows for
large measurement times nTP 	 j�maxj

E
˚j�G.i!0/j2

� � 4

u2
0nTP

Snn.!0/ : (5.5.36)

Therefore, for a colored noise n.t/ with the power spectral density Snn.!/ for large
measurement periods follows

�G � 2
p
Snn.!0/

jG.i!0/ju0

p
nTP

(5.5.37)

with
Snn.!/ D jG�.i!/j2S�0 (5.5.38)

and with (5.5.34)

�G �
p
2S�0!C

jG.i!0/ju0
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!0

!Cs
�

�
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�
!0

!C

�2
1p
n

�
�

Q

: (5.5.39)

The factor Q is shown in Fig. 5.11. For a given colored noise created by a filter
with the corner frequency !C, the absolute frequency response error is largest for the
measurement frequency !0 D !C. The error diminishes proportionally to the square
root of the number of full periods measured.

Example 5.4 (Disturbance Rejection of the Orthogonal Correlation).
The good rejection of disturbances can be seen in Fig. 5.10. Here, noise has been

added to the output of the Three-Mass Oscillator. The topmost plot shows the noisy
measurement. The lower two plots illustrate that the frequency response despite the
large noise is still measured and that the first resonance can be detected relatively
precisely for ! < 20 rad=s. ut
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For a periodic disturbance p.t/

p.t/ D p0 cos!t (5.5.40)

the error of the real and the imaginary part of the frequency response can be calcu-
lated according to (5.5.24) and (5.5.25). Calculating the integral yields
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The magnitude of the relative frequency response error is then given as
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The approximation can be derived by taking the average of cos2.: : :/ D 0:5. The
factor P which is decisive for the frequency dependency of the frequency response
error is graphed in Fig. 5.12, see (Balchen, 1962; Elsden and Ley, 1969). The factor
has zeros at !=!0 D j=n with j D 0; 2; 3; 4; 5; : : :. Periodic disturbances which
have a frequency ! that is an integer multiple of the measurement frequency !0 do
not contribute to the error of the frequency response measurement. Periodic distur-
bances with any other frequency ! cause an error in the frequency response mea-
surement for finite measuring periods nTP, which are proportional to the factor P .
The most severe error is caused by disturbances whose frequency ! is quite close to
measuring frequency !0. If one interprets P.!=!0/ as a filter, then the “pass-band”
gets smaller as the measuring time increases. For n ! 1, the identified frequency
response can only be falsified by periodic disturbances with the very same frequency
!0 as the measuring frequency. The envelope of P.!=!0/ is given as
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For !=!0 ¤ j=n the error diminishes proportionally to the number of full periods
n, which is faster than for stochastic disturbances.

Finally, the influence of very low frequent disturbances shall be investigated.
Over the measurement period, these can be seen approximately as a non-periodic
disturbance d.t/. From (5.5.24), (5.5.25), and (5.5.26) follows
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(5.5.45)

with dT.i!/ being the Fourier transform of the disturbance of length T D nTP. For
a drift

d.t/ D at (5.5.46)

of duration T D nTP follows

dT.i!/ D
Z nTP

0

ate�i!0t dt D �2�n
!2

0

i (5.5.47)

and the frequency response error becomes

j�G.i!/j D
p
2a

u0!0

: (5.5.48)

The error in the frequency response caused by a drift does not diminish as the mea-
surement time increases and is proportional to the drift factor a. Thus, one has to
employ special means to suppress the disturbance of low frequent disturbances. One
example is to filter the signal by means of a high-pass filter with the transfer function

GHP.s/ D TDs

1C T1s
; (5.5.49)

where the time constants have to be adapted to the measurement frequency !0.
Another remedy is to approximate the drift-wise disturbance by a polynomial

d.t/ D a0 C a1t C a2t
2 C : : : (5.5.50)

and subsequently eliminate d.t/ by subtraction of the polynomial drift model from
the measured signal. A method for drift elimination that is based on this approach
has been presented by Liewers (1964).



144 5 Frequency Response Measurement for Periodic Test Signals

5.6 Summary

The direct methods for the determination of the frequency response allow a point-
wise determination of the frequency response with little effort and quite good re-
sults as long as the disturbances acting on the process are small. It is however time-
consuming for processes with slow dynamics as the transitional phases between the
measurements cannot be exploited. For linear processes with larger disturbances, the
frequency response measurement with correlation functions has proven to be a pow-
erful tool. The therefrom derived method of orthogonal correlation is employed in
many commercial frequency response measurement devices and software tools.

Due to its long measuring time, it is mainly used for processes with small set-
tling times. A reduction of the total time can be achieved if the frequency response
for small frequencies is determined by means of the Fourier analysis of recorded step
responses as was shown in Chap. 4 and only the frequency response for the higher
frequencies is determined by means of correlation methods. Thus, one can combine
non-periodic and periodic test signals into “advantageous” test signal sequences (Is-
ermann, 1971).

Problems

5.1. Frequency Response Measurement with Monofrequent Signals
What are the advantages and disadvantages of determining the frequency response
with monofrequent signals as illustrated in this chapter?

5.2. Rectangular Wave Test Signal
How can the frequency response be determined with rectangular waves?

5.3. Orthogonal Correlation
Derive a method to employ the orthogonal correlation method with rectangular waves
as an input.

5.4. Orthogonal Correlation
How does the frequency response measurement error decay in the presence of
stochastic or periodic disturbances as the number of measurement periods increases?
By which factor must the measurement time be increased to reduce the influence of
these disturbances by half.
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6

Correlation Analysis with Continuous Time Models

The correlation methods for single periodic test signals, which have been described
in Chap. 5 provide only one discrete point of the frequency response at each mea-
surement with one measurement frequency. At the start of each experiment, one must
wait for the decay of the transients. Due to these circumstances, the methods are not
suitable for online identification in real time. Thus, it is interesting to employ test
signals which have a broad frequency spectrum and thus excite more frequencies at
once as did the non-periodic deterministic test signals. This requirement is fulfilled
by the properties of stochastic signals and the therefrom derived pseudo-stochastic
signals. The stochastic signals can be generated artificially or one can use the signals
which appear during normal operation of the plant, if they are suitable. By the corre-
lation of the test signal and the output signal, the response evoked by the test signal
is weighted differently than the noise. This results in an automatic separation of the
wanted signal from the noise and thus a suppression of the noise.

This chapter covers correlation methods for the identification of non-periodic
models for continuous-time signals. Since nowadays, the correlation functions are
typically evaluated by digital computers, the use of correlation functions will also
be presented in Chap. 7 for the discrete-time case. Section 6.1 covers the estimation
of correlation functions in finite time and formulates conditions for the convergence
of the estimate. Next, the identification of processes which are excited by stochastic
signals by means of the ACF and CCF will be presented in Sect. 6.2. The correlation
analysis with binary test signals, especially with pseudo-random binary signals and
generalized random binary signals, is covered in Sect. 6.3. Issues of the identification
by the aid of the correlation analysis in closed-loop are discussed in Sect. 6.4.

6.1 Estimation of Correlation Functions

In this section, the estimation of the CCF and the ACF of stationary stochastic signals
for limited measurement periods is covered.

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_6, © Springer-Verlag Berlin Heidelberg 2011 
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Fig. 6.1. Block diagram for the estimation of the cross-correlation function

6.1.1 Cross-Correlation Function

The cross-correlation function (CCF) (Hänsler, 2001; Papoulis, 1962) in the case of
two continuous-time stationary random signals x.t/ and y.t/ is according to (2.3.14)
defined as

Rxy.�/ D E
˚
x.t/y.t C �/

� D lim
T !1

1

T

Z T
2

� T
2

x.t/y.t C �/dt

D lim
T !1

1

T

Z T
2

� T
2

x.t � �/y.t/dt
(6.1.1)

and

Ryx.�/ D E
˚
y.t/x.t C �/

� D lim
T !1

1
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Z T
2

� T
2

y.t/x.t C �/dt

D lim
T !1

1

T

Z T
2

� T
2

y.t � �/x.t/dt
: (6.1.2)

Therefore,
Rxy.�/ D �Ryx.�/ : (6.1.3)

In most applications however, the measurement period is quite limited and only of
the (short) finite duration T . Thus, the influence of the measurement period T on the
estimation of the correlation function must be taken into account and will now be
investigated.

It is assumed that the signals x.t/ and y.t/ are known in the time interval 0 �
t � T C � and that Efx.t/g D 0 and Efy.t/g D 0. (The case of a time interval
0 � t � T is covered in Chap. 7). The CCF can then be estimated by

ORxy.�/ D 1

T

Z T

0

x.t/y.t C �/dt

D 1

T

Z T

0

x.t � �/y.t/dt :
(6.1.4)

Figure 6.1 shows the block diagram of this estimator. First, one signal must be de-
layed by the time � and then the two signals must be multiplied with each other.
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Finally, the mean of the product has to be determined. The expected value of this
estimation is given as

E
˚ ORxy.�/

� D 1

T

Z T

0

E
˚
x.t/y.t C �/

�
dt

D 1

T

Z T

0

Rxy.�/dt D Rxy.�/ :

(6.1.5)

Thus, the estimate is unbiased. The variance of this estimate is given as

var ORxy.�/ D E
˚ ORxy.�/ �Rxy.�/

�2 D E
˚ OR2

xy.�/
� �R2

xy.�/

D 1
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0

Z T

0

�
x.t/y.t C �/x.t 0/y.t 0 C �/

�
dt 0dt �R2

xy.�/ :
(6.1.6)

Under the assumption that x.t/ and y.t/ are normally distributed, one obtains

var ORxy.�/ D 1

T 2

Z T

0

Z T

0

�
Rxx.t

0 � t /Ryy.t
0 � t /

CRxy.t
0 � t C �/Ryx.t

0 � t � �/�dt 0dt :
(6.1.7)

By substituting t 0 � t D 
 , and dt 0 D d
 and exchanging the order of the inte-
grals (Bendat and Piersol, 2010), it follows that

var ORxy.�/ D 1

T

Z T

0

�
1 � j
j

T

��
Rxx.
/Ryy.
/

Rxy.
 C �/Ryx.
 � �/�d
 D �2
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(6.1.8)

If the correlation functions are absolutely integrable, which necessitates Efx.t/g D 0

or Efy.t/g D 0, it follows that

lim
T !1 var ORxy.�/ D 0 ; (6.1.9)

which means that (6.1.4) is consistent in the mean square.
For T 	 � , the variance of the estimate is given as

var ORxy.�/ � 1

T

Z T

�T

�
Rxx.
/Ryy.
/CRxy.
 C �/Ryx.
 � �/�d


D 1

T

Z T

�T

�
Rxx.
/Ryy.
/CRxy.� C 
/Rxy.� � 
/�d
 :

(6.1.10)

The variance of the estimate of the CCF is only determined by the stochastic nature
of the two signals. In a finite time horizon T , it is not possible to determine the
stochastic correlation between two random signals without a certain uncertainty. This
is termed the intrinsic statistic uncertainty (Eykhoff, 1964).

If one can assume Rxy.�/ � 0 for large � and additionally T 	 � , then (6.1.10)
can be simplified as
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var ORxy.�/ � 2

T

Z T

0

Rxx.
/Ryy.
/d
 : (6.1.11)

Often, one must use correlation functions because one signal is disturbed by a
stochastic disturbance n.t/, as e.g.

y.t/ D y0.t/C n.t/ : (6.1.12)

This additive noise n.t/ shall be zero-mean, Efn.t/g D 0, and statistically inde-
pendent from the useful signals y0.t/ and x.t/. Then, it holds for the correlation
functions

Ryy.
/ D Ry0y0
.
/CRnn.
/ (6.1.13)

Rxy.
/ D Rxy0
.
/ : (6.1.14)

According to (6.1.5) follows that the estimation is unbiased, i.e.

E
˚ ORxy.�/

� D Rxy0
.�/ : (6.1.15)

The variance of the estimate, (6.1.8) is augmented by another term as

var
� ORxy.�/

�
n D 1

T

Z T

�T

�
1 � j
j

T

�
Rxx.
/Rnn.
/d
 D �2

R2
(6.1.16)

with
lim

T !1 var
� ORxy.�/

�
n D 0 ; (6.1.17)

such that the estimate is still consistent in the mean square. The influence of the dis-
turbance is eliminated as the measurement period T is increased, so that the variance
of the estimate of the CCF decays inversely proportional to the measurement time T .
If the disturbance is superimposed onto the other signal x.t/,

x.t/ D x0.t/C n.t/ ; (6.1.18)

one can derive analogous results, which means that with respect to the convergence
it does not matter which signal is disturbed. Now, it is assumed that both signals are
similarly disturbed, i.e.

y.t/ D y0.t/C n1.t/ (6.1.19)
x.t/ D x0.t/C n2.t/ : (6.1.20)

With Efn1.t/g D 0 and Efn2.t/g D 0 follows that

Ryy.
/ D Ry0y0
.
/CRn1n1

.
/ (6.1.21)
Rxx.
/ D Rx0x0

.
/CRn2n2
.
/ ; (6.1.22)

and, if the two disturbances are statistically independent from the respective useful
signals, then
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Rxy.
/ D Rx0y0
.
/CRn1n2

.
/ : (6.1.23)

The estimation of the CCF is in this case only unbiased if n1.t/ and n2.t/ are uncor-
related. Under this prerequisite, the additional term for (6.1.16) is given as
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d
 :
(6.1.24)

For T ! 1, this variance also approaches zero. However, for finite T , its magnitude
is larger than for the case of only one disturbance acting on the system.

Theorem 6.1 (Convergence of the Cross Correlation Function).
For the estimation of the cross-correlation function of two stationary stochastic

signals according to (6.1.5), errors are caused by

� the intrinsic statistical uncertainty according to (6.1.8)
� the uncertainty due to disturbances n.t/ according to (6.1.16)

The estimate of the CCF for a finite time horizon T is unbiased, if the disturbance
n.t/ is statistically independent from the respective wanted signal x0.t/ and y0.t/

and Efn.t/g D 0. For the variance of the estimate in the presence of a disturbance
n.t/ follows, see (6.1.8) and (6.1.16),

var ORxy.�/ D �2
R1 C �2

R2 : (6.1.25)

If both signals are affected by disturbances, then the estimate is only unbiased if both
disturbances are uncorrelated with each other. ut

6.1.2 Auto-Correlation Function

As an estimate for the auto-correlation function (ACF) of a continuous-time station-
ary random signal x.t/, which exists in the time interval 0 � t � T C � , it is
suggested to use

ORxx.�/ D 1

T

Z T

0

x.t/x.t C �/dt : (6.1.26)

The expected value of this estimate is

E
˚ ORxx.�/

� D Rxx.�/ : (6.1.27)

The estimate thus is unbiased. For a normally distributed signal x.t/ follows from
(6.1.8) that
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(6.1.28)
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If the ACF is absolutely integrable, then

lim
T !1 var ORxx.�/ D 0 ; (6.1.29)

which means that (6.1.26) is consistent in the mean square. The variance �R1 is
caused by the intrinsic uncertainty.

For T 	 � , it follows that

var ORxx.�/ � 1

T

Z T

�T

�
R2

xx.
/CRxx.
 C �/Rxx.
 � �/�d
 : (6.1.30)

Under the assumption of large measurement times T , the following special cases can
be discussed:

1. � D 0:

var ORxx.0/ � 2

T

Z T

�T

R2
xx.
/d
 : (6.1.31)

2. � large and thus Rxx.�/ � 0: Due to R2
xx.
/ 	 Rxx.
 C �/Rxx.
 � �/ it follows

that

var ORxx.0/ � 1

T

Z T

�T

R2
xx.
/d
 : (6.1.32)

The variance for large � is thus only half as large as for � D 0.
If the signal x.t/ is disturbed by n.t/, such that

x.t/ D x0.t/C n.t/ ; (6.1.33)

then the ACF is given as

Rxx.�/ D Rx0x0
.�/CRnn.�/ ; (6.1.34)

provided that the useful signal x0.t/ and the noise n.t/ are uncorrelated and further-
more Efn.t/g D 0. The auto-correlation function of the disturbed signal is thus the
sum of the two auto-correlation functions for the noise free signal x.t/ and the noise
n.t/.

6.2 Correlation Analysis of Dynamic Processes with Stationary
Stochastic Signals

6.2.1 Determination of Impulse Response by Deconvolution

According to (5.5.3) or (2.3.35) respectively, the auto-correlation function and the
cross-correlation function are linked by the convolution integral, i.e.

Ruy.�/ D
Z 1

0

g.t 0/Ruu.� � t 0/dt 0 ; (6.2.1)
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where g.t/ is the impulse response of the process with input u.t/ and output y.t/.
As estimates of the correlation functions for a finite time horizon T , one uses

ORuu.�/ D 1

T

Z T

0

u.t � �/u.t/dt (6.2.2)

ORuy.�/ D 1

T

Z T

0

u.t � �/y.t/dt (6.2.3)

according to (6.1.4) and (6.1.26). The required impulse response g.t 0/ can be deter-
mined by de-convolution of (6.2.1). First however, the equation must be discretized
with the sample time T0 as

ORuy.	T0/ � T0

MX
�D0

g.�T0/ ORuu
�
.	 � �/T0

�
: (6.2.4)

To determine the impulse response for k D 0; : : : ; N , one must formulate N C 1

equations of the form (6.2.4). This is covered in Sect. 7.2.1. The direct convolution
of the input u.t/ and the output y.t/ is used by Sage and Melsa (1971). While this
will result in the inversion of a lower triangular matrix, it is not advisable to do so as
the calculation of the correlation functions beforehand will reduce the influence of
noise already.

Since the correlation functions are estimated according to (6.1.26) and (6.1.5) and
thus are only approximately known for finite measurement times T , the estimated
impulse response will be counterfeit to some degree.

As had been shown in Sect. 6.1, the ACF and the CCF are estimated bias-free
for stationary signals u.t/ and y.t/ in the absence of noise. More important for the
application however is the case of a disturbed output y.t/, (6.1.12) through (6.1.15),
which will be reviewed in the following.

For a stochastically disturbed output

y.t/ D yu.t/C n.t/ : (6.2.5)

follows according to (6.1.12) and (6.1.14)

E
˚ ORuy.�/

� D R0
uy.�/C E

˚
�Ruy.�/

�
(6.2.6)

with

R0
uy.�/ D 1

T

Z T

0

E
˚
u.t � �/yu.t/

�
dt (6.2.7)

E
˚
�Ruy.�/

� D 1

T

Z T

0

E
˚
u.t � �/n.t/�dt D Run.�/ : (6.2.8)

If the input and the disturbance are uncorrelated, then it follows

E
˚
u.t � �/n.t/� D E

˚
u.t � �/�E˚n.t/� ; (6.2.9)
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so that if either Efu.t/g D 0 or Efn.t/g D 0, then

E
˚
�Ruy.�/

� D 0 : (6.2.10)

The CCF according to (6.2.6) is henceforth unbiased even for estimation over a finite
time horizon T . The variances of the estimated correlation functions can be deter-
mined as follows: Due to the stochastic nature of the input signal, the ACF has an
intrinsic statistical uncertainty according to (6.1.28)

var
˚ ORuu.�/

� D 1

T

Z T

�T

�
1 � j
j

T

��
R2

uu.
/CRuu.
 C �/Ruu.
 � �/�d
 : (6.2.11)

The CCF also has an intrinsic statistical uncertainty, which can be determined from
(6.1.8) as

var
� ORuy.�/

� D 1

T

Z T

0

�
1� j
j

T

��
Ruu.
/Ryy.
/Ruy.
C �/Ryu.
 � �/�d
 (6.2.12)

and an additional uncertainty if a noise n.t/ is superimposed onto the output, see
(6.1.16),

var
� ORuy.�/

�
n D 1

T

Z T

�T

�
1 � j
j

T

�
Ruu.
/Rnn.
/d
 : (6.2.13)

All these variances vanish for T ! 1, if the individual correlation functions respec-
tively their products are absolutely integrable, which means that at least Efu.t/g D 0.
Then, all correlation function estimates are consistent in the mean square.

Theorem 6.2 (Convergence of the Correlation Functions for a Linear Process).
The auto-correlation function Ruu.�/ and the cross-correlation function Ruy.�/

for a linear process with the impulse response g.t/ are estimated consistently in the
mean square according to (6.2.2) and (6.2.3) under the following conditions:

� The useful signals u.t/ and yu.t/ are stationary
� Efu.t/g D 0

� The disturbance n.t/ is stationary and uncorrelated with u.t/
ut

As has been shown in Sect. 6.1, the above theorem also holds true if the input
u.t/ is disturbed by n.t/ or if both the input u.t/ and the output y.t/ are disturbed
by n1.t/ and n2.t/ respectively, where n1.t/ and n2.t/ may not be correlated. If
the theorem is valid for a given application, then the impulse response can also be
estimated consistently in the mean square according to (6.2.4), see Sect. 7.2.1 An
example for the assessment of the resulting error in the estimation of the frequency
response is shown in the following section (Sect. 6.2.2).
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6.2.2 White Noise as Input Signal

Ideal White Noise

If the input signal is a white noise, then its ACF is given as

Ruu.�/ D Su0 ı.�/ (6.2.14)

and from (6.2.1) with the masking property of the ı-function

Ruy.�/ D Su0

Z 1

0

g.t 0/ı.� � t 0/dt 0 D Su0 g.�/ : (6.2.15)

The required impulse response is thus proportional to the CCF as

g.�/ D 1

Su0
Ruy.�/ (6.2.16)

and the de-convolution of the correlation functions is hence unnecessary. This ideal-
ized white noise with constant, frequency independent power spectral density Su0 is
however not realizable. Therefore, this investigation shall thus be carried out again
using broadband noise which has an approximately constant power spectral density
in the interesting frequency range.

Broad-Band Noise

A broadband noise can be generated hypothetically by filtering a white noise. It then
has the power spectral density

Suu.!/ D jGF.i!/j2Su0 : (6.2.17)

For a filter of first order with the corner frequency !C D 1=TC, one obtains by using
(2.3.22) and the tables for Fourier transform of simple linear dynamic systems

Ruu.�/ D 1

2�

Z 1

�1
jGF.i!/j2Su0ei!t d!

D 1

�

Z 1

0

Su0

1C T 2
C!

2
cos!�d!

D 1

2
Su0!Ce�!Cj� j :

(6.2.18)

The shape of the ACF and the corresponding power spectral density Suu is shown
in Fig. 6.2. For a sufficiently large bandwidth, i.e. corner frequency !C, the ACF
approaches the shape of a ı-function, so that the conditions for the application of
(6.2.16) are approximately staisfied.

The error which stems from the limited bandwidth of the excitation and the sub-
sequently “wrong” application of (6.2.16) has been investigated e.g. by Hughes and
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Fig. 6.2. Power spectral density and auto-correlation function of a broadband noise of first
order

Norton (1962) and Cummins (1964). For this investigation, the ACF according to
(6.2.18) has been approximated by a triangular pulse of width TC D 1=!C. The
largest error of the impulse response estimate turns up at � D 0 and amounts to

�g.0/

g.0/
� 1

3!C

Pg.0/
g.0/

: (6.2.19)

For a filter of first order with the time constant T1, one gets

�g.0/

g.0/
� � 1

3T1!C
: (6.2.20)

If one chooses !C D 5=T1, then one gets for �g.0/=g.0/ � 0:07. The error which
is caused by the finite bandwidth of the test signal gets smaller as the bandwidth is
increased. However, the error which is caused by the disturbances gets larger. Thus,
the bandwidth !C D 1=TC may not be chosen to large.

6.2.3 Error Estimation

For the case of a white noise, the variance of the estimated impulse response g.�/, a
non-parametric process model, shall be calculated.

The intrinsic statistical uncertainty of the CCF causes according to (6.2.12),
(6.2.14), and (6.2.16) for large measurement periods T 	 � a variance of the im-
pulse response which is given as

�2
g;1 D varg.�/ D E

˚
�g2.�/

�

� 1

S2
u0T

Z T

�T

�
Ruu.
/Ryy.
/CRuy.� C 
/Ruy.� � 
/�d


D 1

S2
u0T

 
Ryy.0/C Su0

Z T

�T

g.� C 
/g.� � 
/d

!
:

(6.2.21)

For � D 0 and processes without a direct feedthrough (i.e. g.0/ D 0) or for large �
with g.�/ � 0 follows
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�2
g;1 � 1

S2
u0T

Ryy.0/ D 1

S2
u0T

y2.t/ D 1

S2
u0T

�2
y : (6.2.22)

Ryy.0/ is in this case given as

Ryy.�/ D
Z 1

0

g.t 0/Ruy.� C t 0/dt 0 ; (6.2.23)

which follows from (2.3.14) in analogy to (2.3.35). With (6.2.15), one obtains

Ryy.�/ D Su0

Z 1

0

g.t 0/g.� C t 0/dt 0 (6.2.24)

and

Ryy.0/ D Su0

Z 1

0

g2.t 0/dt 0 : (6.2.25)

Finally,

�2
g;1 � 1

T

Z 1

0

g2.t 0/dt 0 (6.2.26)

follows. The variance of the impulse response estimate caused by the variance from
the intrinsic uncertainty of the CCF is thus independent from the amplitude of the
test signal and depends only on the measurement time T and the quadratic area of
the impulse response.

The uncertainty caused by the noise n.t/ follows from (6.2.13) for large mea-
surement times as

�2
g;2 D var

�
g.�/

�
n � 1

S2
u0T

Z T

�T

Ruu.
/Rnn.
/d


D 1

S2
u0T

Rnn.0/ D 1

S2
u0T

n2.t/ D 1

S2
u0T

�2
n :

(6.2.27)

If n.t/ is a white noise with power spectral density N0, then

�2
g;2 D N0

Su0

1

T
: (6.2.28)

The variance gets smaller as the signal-to-noise ratio �2
n =Su0 or N0=Su0 decreases

and as the measurement period T increases. The variance of the impulse response
estimate is then given as

�2
g D �2

g;1 C �2
g;2 : (6.2.29)

To get a better insight for the magnitude of the two components contributing to
the variance of the impulse response estimation error, the terms shall be calculated
for a first order system with the transfer function

G.s/ D y.s/

u.s/
D K

1C T1s
(6.2.30)
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Table 6.1. Standard deviations of the impulse response, identifying a first order system with
the CCF and white noise excitation as a function of the measurement time

T
T1

50 250 1000


g1
gmax

0.100 0.044 0.022


g2
gmax

0.063 0.028 0.014


g
gmax

0.118 0.052 0.026

and the impulse response

g.t/ D K

T1

e� t
T1 ; (6.2.31)

which will be excited by a white noise with power spectral density Su0. The intrinsic
statistical uncertainty of the CCF contributes as

�2
g1 � 1

T

Z 1

0

g2.t 0/dt 0 D K2

2T1T
; (6.2.32)

and the uncertainty due to the disturbance n.t/ contributes as

�2
g2 � �2

n

Su0T
(6.2.33)

If the variances are normalized with respect to gmax D g.0/ D K=T1, then one
obtains for the standard deviations of the relative impulse response error

�g1

gmax
D
r
T1

2T
(6.2.34)

�g2

gmax
D
p
T1

K

�np
Su0

r
T1

T
: (6.2.35)

Consequently, if the input to the system is now a discrete binary noise with the am-
plitude a and a small cycle time � and thus with the power spectral density

Su0 � a2� ; (6.2.36)

see Sect. 6.3, it follows that

�g2

gmax
D 1

K

�n

a

r
T1

�

T1

T
: (6.2.37)

For K D 1, �n=a D 0:2, �=T1 D 0:2, one obtains the standard deviations of the
impulse response estimate listed in Table 6.1.

This example illustrates that the contributions from the intrinsic statistical uncer-
tainty of the CCF and the uncertainty caused by the disturbance are roughly of the
same magnitude. Only for very unfavorable (small) signal-to-noise ratios �y=�u does
the latter dominate. In Chap. 7 an example for an application of the identification
with correlation functions (de-convolution) will be shown.
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Fig. 6.3. Discrete random binary signal (DRBS)

6.2.4 Real Natural Noise as Input Signal

For some applications, it may be necessary to determine the dynamic behavior of
a process without disrupting its operation by injecting artificial test signals. Then,
one can only try to use the disturbances which appear during normal operation of
the plant as test signals. This natural input signal must however fulfill the following
properties:

� Stationarity
� The bandwidth must exceed the highest interesting frequency of the process
� The power spectral density must be larger than the disturbances acting on the

output of the process to avoid extremely long measurement times
� It may not be correlated with other disturbances
� No closed-loop control, also no manual control

However, the requirements can only be satisfied in few rare cases. Thus, it is in
general advisable to inject an artificial test signal. One can try to work with very
small amplitudes as not to unnecessarily disturb the process.

6.3 Correlation Analysis of Dynamic Processes with Binary
Stochastic Signals

The detailed discussion of deterministic non-periodic and periodic test signals has
shown that for given constraints on the amplitude of the test signal, square signals,
i.e. binary signals, have delivered the largest amplitude density (or oscillation ampli-
tudes) and thus utilized the given amplitude range in the best way.

Continuous-Time Random Binary Signals (RBS)

A binary stochastic signal, which is also termed random binary signal (RBS) is char-
acterized by the following two properties: First, the signal u.t/ has two states, Ca
and �a, and second, the change from one state to the other can occur at any arbitrary
time. Compared to other random signals with a continuous amplitude distribution,
these signals have the following advantages:
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Fig. 6.4. Auto correlation function of a ran-
dom binary signal (RBS)

Fig. 6.5. Auto correlation function of a dis-
crete random binary signal (DRBS)

� Simple generation
� Simple calculation of the cross-correlation function as the output of the system

under investigation must only be multiplied with Ca or �a respectively
� Largest amplitude density under constraints on the signal amplitude

While the first two points do not have much weight given the nowadays typically
available computational possibilities, the third point still represents a strong argu-
ment for the use of binary test signals.

The ACF of an RBS can be determined as follows (Solodownikow, 1964): The
probability of n sign changes in a given period of time�t is Poisson-distributed with

P.n/ D .��t/n

nŠ
e���t ; (6.3.1)

where � is the average number of sign changes over a given period of time.
The product u.t/u.t C �/ of an RBS signal assumes the values Ca2 or �a2

depending on whether both values u.t/ and u.t C �/ have the same sign or opposite
signs. Consequently, the expected value Efu.t/u.t C �/g is Ca2 for � D 0. For
� > 0, the product becomes �a2 if, compared to � D 0, a total of 1; 3; : : : (i.e.
an odd number) of sign changes took place. On the contrary, the product is Ca2 if
0; 2; 4; : : : (i.e. an even number) of sign changes took place. Since the sign changes
are random, one obtains with �t D j� j,

E
˚
u.t/u.t C �/

� D a2
�
P.0/C P.2/C : : :

� � a2
�
P.1/C P.3/C : : :

�

D a2e��j� j
�
1 � ��

1Š
C .��/2

2Š
˙ : : :

�

D a2e�2�j� j :

(6.3.2)

The shape of the ACF for an RBS is shown in Fig. 6.4. Basically, it has the same
shape as a broadband noise of first oder. The ACFs are identical for

a2 D Su0!C

2
and � D !C

2
; (6.3.3)

which means that �, i.e. the average number of sign changes in a given time period,
is equal to half the corner frequency.
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Discrete Random Binary Signals

Due to its easy generation by means of shift registers and digital computers, the
discrete random binary signal (DRBS) is much more widespread used in practice.
Here, the sign changes take place at discrete points in time k� with k D 1; 2; 3; : : :

where � is the length of the time interval and is also termed cycle time, see Fig. 6.3.
The ACF,

Ruu.�/ D lim
T !1

Z T

�T

u.t/u.t � �/d� ; (6.3.4)

of the DRBS can be calculated as follows. For � D 0, there will only be positive
products and the integral thus covers the area 2a2T , so that Ruu.0/ D a2. For small
shifts in time j� j < �, there will also be negative products so that Ruu.�/ < a

2. The
areas that have to be counted negatively under the integration are proportional to � .
For j� j � �, there are as many positive as negative products, such that Ruu D 0.
Thus, in total,

Ruu.�/ D
˚
a2

�
1 � j� j

�

�
for j� j < �

0 for j� j � � :

(6.3.5)

The power spectral density of a DRBS follows from the Fourier transform ac-
cording to (2.3.17) as the Fourier transform of a triangular pulse of the width 2�, see
(4.2.4), as

Suu D a2�

�
sin !�

2

!�
2

�2

: (6.3.6)

The discrete-time power spectral density is given as

Suu.´/ D
1X

�D�1
Ruu.´/´

�� D Ruu.0/ D S�
uu.!/ D a2 for 0 � j!j � �

T0

: (6.3.7)

The ACF of a discrete random binary signal is shown in Fig. 6.5
If one equates the magnitude of this power spectral density for ! D !C with the

power spectral density of the band limited noise, Suu.!C/ D Su0=2, (6.2.18),

Su0 D a2� and � � 2:77

!C
(6.3.8)

follows. Thus, band limited noise and a DRBS have approximately the same power
spectral density for ! < !C.

As the cycle time gets smaller, the ACF approaches a small impulse with the area
a2�. If � is small compared to the total time constant of the subsequent plant, then
one can approximate the triangular ACF by a ı-function with the same area, i.e.

Ruu.�/ D a2�ı.�/ ; (6.3.9)

and the power spectral density becomes
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Su0 � a2� : (6.3.10)

The estimation of the impulse response can be performed according to Sect. 6.2.1 in
analogy to the determination of the impulse response by white noise excitation. In
this case

g.�/ D 1

a2�
Ruy.�/ for � � �

g.0/ D 2

a2�
Ruy.0/ :

(6.3.11)

For � D 0, one has to use twice the value of the CCF, since in this case only one
half of the triangular ACF (� � 0) is in effect. For this simplified evaluation, the
error estimation as presented in Sect. 6.2.3 remains valid. For a given amplitude a,
the cycle time � may not be chosen too small, because otherwise the variance of the
estimate of the impulse response might grow too large.

All of the above considerations are only valid for infinite measurement times. For
finite measurement times, the correlation function and power spectral density has to
be calculated for each experiment individually.

The use of a discrete random binary signal has the big advantage that the ampli-
tude a and cycle time � can better be matched with the process under investigation
than the parameters of a stochastic signal with a continuous amplitude distribution.
However, the intrinsic uncertainty in the determination of the ACF and CCF is still
cumbersome. Furthermore, the experiments cannot be reproduced due to the stochas-
tic nature of the test signal. These disadvantages can however be eliminated by the
use of periodic binary test signals, which have almost the same ACF as the DRBS.

Pseudo-Random Binary Signals (PRBS) for Continuous-Time

Periodic binary signals can for example be generated by clipping N samples from a
discrete random binary signal and repeating it one or multiple times. The problematic
aspects of this admittedly simple approach are manifold: First of all, the random
sequence cannot be parameterized easily. Secondly, the properties shown in (6.3.5)
and (6.3.6) are only valid for sequences of infinite length. For sequences of finite
length, the ACF and the power spectral density must be determined for each sequence
individually.

Due to these impracticalities, one prefers periodic binary sequences, which have
almost the same ACF as a stochastic DRBS. They are typically generated by means
of shift registers with n stages whose outputs are fed back. For a shift register with n
stages, the binary information 0 or 1 is passed on to the next stage as the clock input is
activated. The shift register is augmented with a feedback to allow the generation of
periodic sequences with a length N > n. Typically, two or more stages are fed-back
to an XOR gate, see Fig. 6.6.

The XOR gate is a non-equal element, which outputs a zero if both input gates
have equal states (i.e. 0=0 or 1=1) and outputs a one, if both input gates have unequal
states (i.e. 0=1 or 1=0). If one excludes the case that all states of the shift register
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Fig. 6.6. Pseudo random binary signal generator
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Fig. 6.7. Pseudo random binary signal generated by a shift register with 4 stages and N D 15

Table 6.2. Feed-back structures of shift registers for PRBS signals of maximum possible
length N

No. of Stages Feedback Law Length

2 1 XOR 2 3
3 1 XOR 3 or 2 XOR 3 7
4 1 XOR 4 or 3 XOR 4 15
5 2 XOR 5 or 3 XOR 5 31
6 1 XOR 6 or 5 XOR 6 63
7 1 XOR 7 or 3 XOR 7 or 4 XOR 7 or 6 XOR 7 127
8 1 XOR 2 XOR 7 XOR 8 255
9 4 XOR 9 or 5 XOR 9 511

10 3 XOR 10 or 7 XOR 10 1023
11 2 XOR 11 or 9 XOR 11 2047

Remark: “XOR” denotes the XOR gate, “or” denotes different possible feedback laws result-
ing in the same maximum possible sample length
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Fig. 6.8. Auto correlation function of a pseudo-random binary signal for continuous time

are zero, then one obtains a periodic signal for any arbitrary initialization of the shift
register. Since for a shift register with n stages, the maximum number of different
states is 2n and since the case of zeros in all states is excluded, the maximum possible
length of the signal (maximum period) sequence generated by the shift register is

N D 2n � 1 ; (6.3.12)

because after each clock pulse, there will be a new composition of the states of the
shift register. A signal sequence with the maximum possible sequence length can
however only be obtained for certain feedback set-ups (Chow and Davies, 1964;
Davies, 1970), see Table 6.2. If one maps the output 0 to �a and the output 1 to
Ca, then one obtains the desired pseudo-random binary signal. Figure 6.7 shows the
signal generated by a shift register with 4 stages.

In the following, the properties of a continuous-time PRBS random signal will be
investigated (Davies, 1970). The clock time or cycle time is denoted with �. Due to
its periodicity, the PRBS becomes a deterministic signal. It is reproducible and can
be tuned to suit individual processes. Since the ACF for this signal is exactly known,
there will be no intrinsic statistical uncertainty in the determination of the ACF and
CCF. The discrete ACF of a PRBS signal is given as

Ruu.�/ D
�
a2 for � D 0

� a2

N
for � � j� j < .N � 1/� : (6.3.13)

Due to the uneven number N , there is an offset of �a2=N which can be neglected
for large N . Reconsidering the calculation of the ACF of a DRBS, one obtains for
the continuous-time ACF

Ruu.�/ D a2

�
1 � j� j

�

�
1C 1

N

��
for 0 < j� j � � : (6.3.14)

Thus, the signal has the same triangular shape of the ACF as the DRBS. This ex-
plains the denomination as pseudo-random. By the periodicity, the ACF however
also becomes periodic, see Fig. 6.8,
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Ruu.�/ D

�
a2

�
1 �

�
1C 1

N

� j� � 	N�j
�

�
for j� � 	N�j � �

�a
2

N
for .�C 	N�/ < j� j < .N � 1/�C 	N� :

(6.3.15)

If one looks at the distribution of the amplitudes, one can note the following:

� A PRBS signal contains .N C1/=2 times the amplitude Ca and .N �1/=2 times
the amplitude �a. The mean is thus given as

u.k/ D a

N
: (6.3.16)

� If one regards the PRBS signal as a concatenation of square pulses of amplitude
Ca and �a respectively, then the frequencies of occurrence for the individual
pulse lengths are given as

˛ D

‚

1
2

N C1
2

impulses of length �
1
4

N C1
2

impulses of length 2�
1
8

N C1
2

impulses of length 3�
:::

…
˛ > 1

1 impulse of length .n � 1/�
1 impulse of length n�

�
˛ D 1

: (6.3.17)

The number of pulses with amplitude Ca and �a is always equal except that there is
only one pulse of length .n � 1/� for the amplitude Ca and one pulse of length n�
for the amplitude �a.

The power spectral density does not have a continuous spectrum, but rather dis-
crete spectral lines because of the periodicity. These discrete spectral lines can be
calculated from the Fourier transform of the ACF as

Suu.!/ D
Z 1

�1
Ruu.�/e�i!� d� : (6.3.18)

The ACF will first be developed into a Fourier series (Davies, 1970)

Ruu.�/ D
1X

�D�1
c�e�i�!0� (6.3.19)

with the Fourier coefficients

c�.i	!0/ D 1

TP

Z TP
2

� TP
2

Ruu.�/e�i�!0� d�

D 2

TP

Z TP
2

0

Ruu.�/ cos 	!0�d� :

(6.3.20)
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Using (6.3.13) and (6.3.14) yields

c�.i	!0/ D 2
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Z �

0

a2

�
1 � �

�

�
N C 1

N

��
cos 	!0�d�

C 2

TP

Z TP
2

�

�a
2

N
cos 	!0�d�

D 2a2

N�

�
1

	!0

sin 	!0� � N C 1

N�.	!0/2
.cos 	!0� � 1/

� N C 1

N	!0

sin 	!0�C 1

N	!0

sin 	!0�

�

D 2a2.N C 1/

.N�	!0/2
.1 � cos 	!0�/

D a2.N C 1/

N 2

�
sin �!0�

2

�!0�
2

�2

:

(6.3.21)

The Fourier coefficients are thus real-valued and the Fourier series for the ACF
is given as

Ruu.�/ D
1X

�D�1

a2.N C 1/

N 2

�
sin �!0�

2

�!0�
2

�2

cos 	!0� : (6.3.22)

Inserting the above term in (6.3.18) yields

Suu.!0/ D a2.N C 1/

N 2

1X
�D�1

�
sin �!0�

2

�!0�
2

�2

ı.! � 	!0/ (6.3.23)

with

Suu.0/ D a2.N C 1/

N 2
ı.!/ : (6.3.24)

The form factor in (6.3.23) has been denoted as Q and is given as

Q.	!0/ D a2

N

�
1C 1

N

��
sin �!0�

2

�!0�
2

�2

D a2

N

�
1C 1

N

��
sin �

N
�

�
n
�

�2

(6.3.25)

has been graphed in Fig. 6.9 for different values 	 D 0; 1; 2; : : :. The resulting dis-
crete spectrum has the following properties:

� The spectral lines have the distance �! D !0 D 2�=N�

� The lines diminish as the frequency increases with zeros at 	!0 D 2�j=� with
j D 1; 2; : : :

� The bandwidth of the signal can be defined by taking the first zero (Fig. 6.10)
into account as

!B D 2�

�
: (6.3.26)
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Fig. 6.9. Factor Q of the discrete power spectral density of a PRBS with period length TP D
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� The cut-off frequency is with Suu.!c/ D Suu=2 in accordance to (6.3.8) defined
as

!c � 2:77

�
: (6.3.27)

� For 	 � N=3, the factor Q.	!0/ has decreased by a factor of 3 dB compared to
Q.0/. Which means that one can assume a constant power spectral density up to
the frequency

!3dB D !B

3
D 2�

3�
: (6.3.28)

Figure 6.10 shows the factorQ of the discrete power spectral density for changes
in the cycle time �. Figure 6.10a shows Q for the original PRBS with a cycle time
�1 and TP D N1�1. Now the cycle time is increased under different assumptions:



170 6 Correlation Analysis with Continuous Time Models

0

0.5

1

0

0.5

1

1.5

2

0

0.5

1

2π
λ1

π
λ1

4π
λ1

λ λ λ= =2 =22 1

N N= =72 �

T NP 2 2= =14λ λ�N1 1

N1

2

λ λ λ= =2 =23 1

N N N= = =153 1

T NP 3 3= =2λ λN1 1=30

λ λ= =11

N N= =151

T NP 1 1= λ

ω

ω

ω

Q(ω)

Q( )ω

Q( )ω

a)

b)

c)

Fig. 6.10. Factor Q of the discrete power spectral density of a PRBS for different values of
the period length N and cycle time �



6.3 Correlation Analysis of Dynamic Processes with Binary Stochastic Signals 171

� Cycle time � is increased while the period time TP remains constant. Figure 6.10b
shows Q for the case � D 2�1, i.e.

Q.	!0/ D 2
a2

N1

�
1C 2

N1

��
sin k!0�1

k!0�1

�2

: (6.3.29)

– The distance of the spectral lines �! D 2�=TP remains the same
– The first zero is located at ! D 2�=�2 D �=�1, i.e. is reached at lower

frequencies
– There are less, but higher spectral lines (The total power remains approxi-

mately constant)
� The cycle time � is increased at a constant cycle length N : Figure 6.10c shows

for � D �1

Q.	!0/ D a2

N1

�
1C 1

N1

��
sin

�!0�1

2

�!0�1

2

�2

: (6.3.30)

– The distance of the spectral lines �! D 2�=2N1�1 D �=N1�1 gets smaller
– The first zero is located at ! D 2�=�2 D �=�1, i.e. is reached at lower

frequencies
– There are more, but equally high spectral lines

This parameter study illustrates in both cases that a stronger excitation of the
lower frequent dynamics can be obtained by increasing the cycle time �. For a large
period time TP with respect to the transient time and thus for a � 
 N and a largeN ,
the ACF of the PRBS approaches the ACF of the DRBS (6.3.5), where also the DC
value �a2=N gets negligibly small. Then the impulse response can be determined
according to the simplifications derived for the DRBS. If in addition the cycle time
� is small compared to the total time constant of the process, then

˚uu.�/ � a2�ı.�/ (6.3.31)

with the power spectral density

Su0 � a2� (6.3.32)

g.�/ D 1

a2�
Ruy.�/ ; (6.3.33)

and the evaluation can be carried out in analogy to the case with a white noise input
driving the system, see (6.2.16). The de-convolution with discrete-time signals is
covered in Sect. 7.2.1.

For this case, the error estimation for a disturbance n.t/ can be carried out ac-
cording to Sect. 6.2.3. One has to bear in mind however that due to its deterministic
nature, the CCF does not have an intrinsic uncertainty (6.1.8) and thus the term �g1,
(6.2.32) gets zero.

For the choice of the free parameters a, �, and N of a PRBS, the following rules
of thumb can be helpful:
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� The amplitude a shall always be chosen as large as possible so that the corruption
of the output signal by a given disturbance n.t/ gets as small as possible. One
however has to take the process limits for the input u.t/ and output y.t/ into
account

� The cycle time � should be chosen as large as possible, so that for a given ampli-
tude a the power spectral density Suu.!/ gets as large as possible. If the impulse
response is determined by the simplified approach in (6.2.16), then the evalua-
tion becomes erroneous and an error according to (6.2.20) is introduced. Thus
the cut-off frequency of the test signal !c D 1=� may not be too small and con-
sequently � may not be chosen too large. It is thus suggested to chose � � Ti=5

where Ti denotes the smallest interesting time constant of the process
� The period time TP D N� may not be smaller than the transient time T95 of the

system under investigation so that there is no overlap of the impulse responses.
A guiding value is TP � 1:5T95.

The number M of the periods of the PRBS signal is determined by the total
required measurement time T D MTP D MN� which for given signal parameters
a, � and, N depends mainly on the signal-to-noise ratio, see Sect. 6.2.3.

For a discrete-time PRBS, the choice of the cycle time � is coupled to the choice
of the sample time T0 as � can only be an integer multiple of the sample time, i.e.

� D �T0 with � D 1; 2; : : : : (6.3.34)

For � D 1 and large N , the properties of the discrete-time PRBS approach those
of a discrete white noise. If one increases � by a choice of � D 2; 3; : : :, then the
excitation of the lower frequencies is increased for both N D const as well as TP D
const. Pintelon and Schoukens (2001) pointed out that a PRBS signal is not ideally
suited for the determination of the frequency response function as it never has a
period length of 2n, which would be ideally suited for the Fast Fourier Transform. A
further side-note should be made on the applicability of PRBS signals for non-linear
systems. A PRBS signal can in general not be used to detect non-linearities at the
input, i.e. is unsuitable for e.g. a Hammerstein model, see Chap. 18.

A different way of generating RBS signals is described by Ljung (1999) as fol-
lows: A zero-mean white noise Gaussian signal is first filtered by a form filter to
generate a test signal with the appropriate frequency content and then, just the sign
of resulting signal is retained and scaled accordingly to the requirements on the test
signal amplitude. This non-linear operation however changes the frequency content,
so that the spectrum of the resulting RBS signal must be analyzed to ensure the suit-
ability of the signal.

Generalized Random Binary Signals (GRBS) for Discrete Time

The generalized random binary signal (GRBS) (Tulleken, 1990) is a generalized
form of the random binary signal. For a discrete random binary signal, one assumes
that the change of the amplitude is random, i.e. at each time step k the probability
that the signal keeps the same amplitude is 50% as is the probability that the signal
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Fig. 6.11. Comparison of the frequency spectra of an PRBS signal (�T0 D 1 s, a D 1,
N D 15) and a GRBS signal (T0 D 0:1s, p � 0:9) (Zimmerschied, 2002)

changes its amplitude. For such a signal, it is not very likely that a signal level is held
for a long time.

Therefore, the generalized random binary signal introduces a different value for
the probability of a change and the probability that the signal value is held respec-
tively. In the following, the probability that the signal value is held is denoted as p,
such that

P
�
u.k/ D u.k � 1/� D p (6.3.35)

P
�
u.k/ ¤ u.k � 1/� D .1 � p/ : (6.3.36)

The expected impulse length is then given as

E
˚
TP
� D

1X
kD1

.kT0/p
k�1.1 � p/ D T0

1 � p : (6.3.37)

One can see that longer impulse lengths appear more often if p is increased. An
important difference to the PRBS signal is however that also an impulse of length
T0 can always appear. For a PRBS, the minimum impulse length was given by �T0.
The auto-correlation function of a GRBS of infinite length is given as

Ruu.�/ D a2.2p � 1/j� j : (6.3.38)

The power spectral density is then given as

Suu D .1 � ˇ/2T0

1 � 2ˇ cos!T0 C ˇ2
with ˇ D 2p � 1 : (6.3.39)



174 6 Correlation Analysis with Continuous Time Models
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Fig. 6.12. Amplitude-modulated pseudo-random binary signal (APRBS)

A comparison between the frequency spectra of a PRBS signal and a GRBS signal
is shown in Fig. 6.11. One can see that the excitation using the GRBS signal covers
a wider frequency range than the PRBS signal, which has zeros in the frequency
spectrum at comparably low frequencies due to its periodicity (Zimmerschied, 2002).

Amplitude-modulated PRBS and GRBS

For the identification of non-linear systems, the PRBS (see Sect. 6.3) and GRBS
(see Sect. 6.3) are not well suited as they do only have two different values of
u.k/ and hence do not excite non-linear systems over their full input range u.k/ 2
.umin : : : umax/. Therefore, one must use test signals that do not only vary the fre-
quency of the excitation, but also the amplitude. This means that now there are much
more design parameters that have to be taken into account, such as (Doyle et al,
2002):

� length of the input sequence N
� range of input amplitudes u.k/ 2 .u�

min : : : u
�
max/

� distribution of input amplitudes u.k/
� frequency spectrum or shape of the resulting signal respectively

As a basis for the development of non-linear excitation signals, one can use the
PRBS signal or GRBS signal. They have proven well in many applications and their
properties are well known. A simple and straightforward extension to the design of
input sequences suitable for non-linear systems is as follows:

One uses the PRBS or GRBS signal to determine the length of each impulse. The
length of each impulse is then taken from a set of predefined amplitudes. Here, one
can either split the input range from umin to umax equidistantly and use each of these
amplitude levels exactly one time. An alternative is to use a random number gener-
ator to randomly chose values of u.k/ from the interval umin to umax. Although the
distribution of amplitudes and frequencies of the resulting test signal is not equally
distributed over the entire operating range, this does not present a severe drawback
for sufficiently long test signal sequences, see Fig. 6.12.
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Fig. 6.13. Block diagram for the correlation analysis in closed-loop

The auto-correlation functions of an APRBS or AGRBS signal are very similar to
the auto-correlation functions of the PRBS and GRBS signal. According to (Pearson,
1999), the auto-correlation function of an AGRBS is given as

Ruu.�/ D �2 C �2p.�/ : (6.3.40)

Here � is the mean and �2 the variance of the signal. The second term correlates
to the auto-correlation function of the GRBS signal, compare (6.3.38) (Zimmer-
schied, 2002). An example of an amplitude modulated pseudo-random binary signal
is shown in Fig. 6.12.

6.4 Correlation Analysis in Closed-Loop

If a disturbed process GP as shown in Fig. 6.13 is operated in closed loop, then the
input u.t/ to the process is correlated with the disturbance n.t/ by means of the feed-
back loop and the controller GC. In this case, it is typically impossible to determine
the dynamic behavior of the process from the cross-correlation functionRuy.�/. This
is independent of the location where the test signal is injected into the control loop.
If one nevertheless tries to identify a model in the previously described way, one will
typically have non-zero values for negative times in the impulse response (Godman
and Reswick, 1956; Rödder, 1973, 1974).

The dynamic behavior of the process can be identified, if its input and output are
correlated with an external test signal, e.g. w.t/. Then, one obtains

Rwu.�/ D E
˚
w.t � �/u0.t/

�C E
˚
w.t � �/un.t/

�œ
D0

; (6.4.1)

where u0.t/ denotes the part of u.t/ that can be attributed to w.t/ and un.t/ denotes
the part evoked by the reaction of the controller to n.t/. Since the disturbance is not
correlated with the set-point, one obtains
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Rwy.�/ D E
˚
w.t � �/y0.t/

�C E
˚
w.t � �/n.t/�›

D0

: (6.4.2)

From Rwu.�/ one obtains the impulse response gwu.�/ and, by application of the
Fourier transformation, the transfer function

Guw D u.s/

w.s/
D GC

1CGCGP
; (6.4.3)

and in analogy, one obtains the impulse response gwy.�/ from the correlation func-
tion Rwy.�/ and from there

Gwy D GCGP

1CGCGP
: (6.4.4)

From these two equations, one can determine GP by

GP D Gwy

Gwu
: (6.4.5)

If the process however is undisturbed between u.t/ and y.t/, it can identified
error-free if the test signal is injected in an appropriate place into the control loop
(Rödder, 1974).

6.5 Summary

The correlation analysis with stochastic or pseudo-stochastic test signals allows the
estimation of non-parametric models for linear processes. They can be used for on-
line identification in real-time and deliver the impulse response of the process if the
process is driven by a colored or white input signal. For a white noise input sig-
nal, the impulse response is directly proportional to the cross-correlation function.
Since the cross-correlation of stationary signals automatically separates the wanted
signal from the noise, one can apply these methods even in the presence of large
disturbances and unfavorable signal-to-noise ratios. The only requirement is that a
sufficiently long measurement time is allowed. While the use of real natural noise as
a test signal is possible under certain conditions, it is seldom advisable to do so. In
practice, it is in general better to use an artificial test signal. Pseudo-random binary
signals (PRBS) have found wide-spread use, since they can easily be generated, have
an easy to determine and favorable auto-correlation function, and allow to identify
impulse responses directly. In addition to pseudo-random binary signals, also gen-
eralized binary random signals have been introduced in this chapter. They have a
wider frequency range that is excited compared to the pseudo-random binary sig-
nals, which have zeros in the amplitude spectrum at comparably low frequencies.
For the excitation of non-linear systems, binary signals are not well suited if also
the non-linearities shall be identified, because a binary signal does not cover the full
input range u 2 .umin; umax/.
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Problems

6.1. Auto-Correlation Function
Describe the shape of the auto-correlation function of a white noise and a broadband
noise of first order with the corner frequency fC D 1Hz.

6.2. Cross-Correlation Function
Determine the cross-correlation function of input and output for a first order process
with the transfer function G.s/ D K=.1C T s/ with K D 1 and T D 0:2 s and the
input signals from Problem 6.1

6.3. Discrete Random Binary Signal
Determine the auto-correlation function of a discrete random binary signal with a D
2V and � D 2 s.

6.4. Correlation Analysis
Describe, how one could measure the frequency response of a process GP if the
control loop may not be opened, i.e. the system must always be operated in closed-
loop. However, it is possible to choose the setpoint w.t/ freely and to measure the
actuated variable u.t/ as well as the (disturbed) output y.t/. Software is available
to determine correlation functions and to calculate the Fourier transform. Describe
the overall approach, which correlation functions have to be determined and how the
frequency response in continuous-time can be determined.

6.5. Discrete Random Binary Signal and Pseudo-Random Binary Signal
Discuss the differences between a discrete random binary signal and a pseudo-
random binary signal under the following aspects: Reproducible generation, mean,
auto-correlation function, power spectral density, and periodicity.
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7

Correlation Analysis with Discrete Time Models

Based on the fundamentals of the correlation analysis as outlined in Chap. 6 for
the continuous-time case, the discrete-time case will now be examined more closely
in this chapter. This case is required for the implementation on digital computers.
The difference in the treatment of continuous-time and discrete-time signals is rather
small as it only affects the calculation of the correlation functions, where basically
the continuous-time integration must be replaced by the summation of discrete val-
ues. In Sect. 7.1, the estimation of the correlation function is treated again. This time
however, it is closely analyzed for the case of signal samples of finite length and the
subsequently appearing intrinsic estimation uncertainty. Also, a fast implementation
of the calculation of the correlation function is presented in this section. An attrac-
tive feature for online applications is to estimate the correlation functions recursively.
Section 7.2 covers the correlation analysis of sampled linear dynamic systems in the
discrete-time case. Binary test signals, which are well suited as test signals for the
de-convolution have already been treated in the preceding chapter in Sect. 6.3 and
will only shortly be discussed.

7.1 Estimation of the Correlation Function

7.1.1 Auto-Correlation Function

The auto-correlation function of a discrete-time stationary stochastic process x.k/
with the discrete-time k D t=T0 D 0; 1; 2; : : : and T0 being the sample time, is
according to (2.4.3) given as

Rxx.�/ D E
˚
x.k/x.k C �/

� D lim
N !1

1

N

NX
kD1

x.k/x.k C �/ : (7.1.1)

In this simple case, it has been assumed that the measurement period is infinitely
long. Recorded signals however, are always of limited length. It is henceforth in-
teresting to determine the possible accuracy of the estimate of the auto-correlation
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function of a signal x.k/ of an individual sample function fx.k/g based on a series of
datapoints of finite lengthN and constant sample time T0. From (7.1.1), the estimate
can first be written as

ORxx.�/ � RN
xx.�/ D 1

N

N �1X
kD0

x.k/x.k C �/ : (7.1.2)

If x.k/ has however only been sampled in the finite interval 0 � k � N � 1, then

ORxx.�/ D 1

N

N �1�j� jX
kD0

x.k/x.k C j� j/; for 0 � j� j � N � 1 (7.1.3)

since x.k/ D 0 for k < 0 and k > N � 1 or x.k C j� j/ for k > N � 1 � j� j
respectively. In this case, only N � j� j product terms exist. Thus, one could use the
alternative estimate

OR0
xx.�/ D 1

N � j� j
N �1�j� jX

kD0

x.k/x.k C j� j/; for 0 � j� j � N � 1 ; (7.1.4)

where one divides by the effective number of terms N � j� j.
Now, the question arises, which of the two estimates is more favorable. For this

investigation, it will be assumed that Efx.k/g D 0. The expected values of the two
estimates can then be determined for the interval 0 � j� j � N � 1

E
˚ ORxx.�/

� D 1

N

N �1�j� jX
kD0

E
˚
x.k/x.k C j� j/� D 1

N

N �1�j� jX
kD0

Rxx.�/

D
�
1 � j� j

N

�
Rxx.�/ D Rxx.�/C b.�/

(7.1.5)

and
E
˚ OR0

xx.�/
� D Rxx.�/ : (7.1.6)

It can be seen from (7.1.2) that the estimate has a systematic error b.�/ (bias) for a
finite sample length N , which however vanishes for N ! 1 and j� j 
 N ,

lim
N !1 E

˚ ORxx.�/
� D Rxx.�/ for j� j 
 N : (7.1.7)

Hence, the estimate is consistent. (7.1.4) however is also unbiased for finite measure-
ment periods N .

For a signal with Gaussian distribution, the variance of the estimate (7.1.2) fol-
lows from the variance of the cross-correlation function, which is covered in the
following section, as

lim
N !1 var ORxx.�/ D lim

N !1 E
˚� ORxx.�/ �Rxx.�/

�2�

D lim
N !1

N �1X
�D�.N �1/

�
R2

xx.	/CRxx.	 C �/Rxx.	 � �/� : (7.1.8)
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This represents the intrinsic uncertainty of the estimated auto-correlation func-
tion, see Chap. 6. If the auto-correlation function is finite and Efx.k/g D 0, then the
variance diminishes as N ! 1. The estimation of the ACF according to (7.1.2) is
thus consistent in the mean square. From (7.1.8), one can derive the following special
cases for large N :

� � D 0:

var ORxx.�/ � 2

N

N �1X
�D�.N �1/

R2
xx.
/ : (7.1.9)

If x.k/ is a white noise, then

var ORxx.0/ � 2

N
R2

xx.0/ D �
x2.k/

�2
: (7.1.10)

� Large � : It holds that

R2
xx.	/ 	 Rxx.	 C �/Rxx.	 � �/ since Rxx.�/ � 0 : (7.1.11)

Thus, one obtains

var ORxx.�/ � 1

N

N �1X
�D�.N �1/

R2
xx.	/ : (7.1.12)

From (7.1.10) and (7.1.11), it can furthermore be shown that

var ORxx.0/ � 2 var ORxx.�/ : (7.1.13)

The variance for large � is thus only half as big as the one for � D 0.
For the biased estimate, (7.1.2) one has to replace the term N by N � j� j in

(7.1.9) and thus it follows for finite N that

var OR0
xx.�/ D N

N � j� j var
� ORxx.�/

�
: (7.1.14)

The unbiased estimate therefore always delivers estimates with a larger variance for
j� j > 0. For j� j ! N , the variance approaches infinity. Thus, one typically uses
the biased estimate in (7.1.2). Table 7.1 summarizes the main features of the two
estimates.

Since Efx.k/g D 0 has been assumed, all equations can similarly be applied
to the estimation of the auto-covariance function Cxx.�/. For additionally superim-
posed disturbances n.t/, the considerations from Sect. 6.1 are equally applicable.

7.1.2 Cross-Correlation Function

The cross-correlation function of two discrete-time stationary processes is according
to (2.4.4) given as
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Table 7.1. Properties of the estimates of the auto-correlation function

Estimate Bias for Finite N Variance for Finite N Bias for N ! 1
ORxx.�/ � j� j

N
Rxx.�/ var

� ORxx.�/
�

0

OR0
xx.�/ 0 N

N �j� j var
� ORxx.�/

�
0

Rxy.�/ D E
˚
x.k/y.k C �/

� D lim
N !1

1

N

N �1X
kD0

x.k/y.k C �/ D E
˚
x.k � �/y.k/� :

(7.1.15)
As an estimate for the cross-correlation,

ORxy.�/ � RN
xy.�/ D 1

N

N �1X
kD0

x.k/y.k C �/ (7.1.16)

will be introduced according to (7.1.2). For �.N � 1/ � � � .N � 1/ follows

ORxy.�/ D

˚

1

N

N �1��X
kD0

x.k/y.k C �/ for 0 � � � N � 1

1

N

N �1X
kD��

x.k/y.k C �/ for � .N � 1/ � � < 0

(7.1.17)

since y.k/ D 0 and x.k/ D 0 for k < 0 and k > N � 1. The expected value of this
estimate is given as

E
˚ ORxy.�/

� D
�
1 � j� j

N

�
Rxy.�/ ; (7.1.18)

compare (7.1.5).
For finite measurement times N , the estimate is thus biased, the bias vanishes

only for N ! 1,
lim

N !1 E
˚ ORxy.�/

� D Rxy.�/ : (7.1.19)

If one would divide by N � j� j instead of N in (7.1.17), then the cross-correlation
function estimate would also be bias-free for finite measurement periods, but the
variance would increase as was the case for the auto-correlation function.

Now, the variance of (7.1.17) will be determined. The first calculation of the
variance (but for the auto-correlation function) can already be found in (Bartlett,
1946).

According to the definition of the cross-correlation function,

var ORxy.�/ D E
˚� ORxy.�/ �Rxy.�/

�2� D E
˚� ORxy.�/

�2� �R2
xy.�/ ; (7.1.20)

where the result in (7.1.19) has been exploited. Furthermore, one can rewrite the
expected value of the estimate as
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Fig. 7.1. Summation area of (7.1.25)

E
˚� ORxy.�/

�2� D 1

N 2

N �1X
kD0

N �1X
k0D0

E
˚
x.k/y.k C �/x.k0/y.k0 C �/

�
: (7.1.21)

To simplify the notation, the boundaries of (7.1.15) will be used instead of those in
(7.1.17). It is now assumed that both x.k/ and y.k/ have a Gaussian distribution.
In this case, (7.1.21) contains four random variables ´1, ´2, ´3, and ´4, for which,
according to Bendat and Piersol (2010), one can write

E
˚
´1; ´2; ´3; ´4

� D E
˚
´1; ´2

�
E
˚
´3; ´4

�C E
˚
´1; ´3

�
E
˚
´2; ´4

�
� E

˚
´1; ´4

�
E
˚
´2; ´3

� � 2´1 ´2 ´3 ´4 :
(7.1.22)

If Efx.k/g D 0 or Efy.k/g D 0, then

E
˚
x.k/y.k C �/x.k0/y.k0 C �/

�
D R2

xy.�/CRxx.k
0 � k/Ryy.k

0 � k/CRxy.k
0 � k C �/Ryx.k

0 � k � �/ :
(7.1.23)

Thus, by inserting (7.1.23) into (7.1.21) follows that

var ORxy.�/ D 1

N 2

N �1X
kD0

N �1X
k0D0

	
Rxx.k

0 � k/Ryy.k
0 � k/

CRxy.k
0 � k C �/Ryx.k

0 � k � �/


:

(7.1.24)

Now, k0 � k D 
 , which leads to

var ORxy.�/ D 1

N 2

N �1X
kD0

N �1�kX
�D�k

�
Rxx.
/Ryy.
/CRxy.
 C �/Ryx.
 � �/� : (7.1.25)

The addend shall be denoted with F.
/. Its summation area is shown in Fig. 7.1.
After exchanging the order of the sums, one obtains



184 7 Correlation Analysis with Discrete Time Models

N �1X
kD0

N �1�kX
�D�k

F.
/ D
N �1X
�D0

F.
/

N �1��X
kD0

1

œ
Right Triangle

C
0X

�D�.N �1/

F.
/

N �1X
kD��

1

�
Left Triangle

D
N �1X
�D0

.N � 
/F.
/C
0X

�D�.N �1/

.N C 
/F.
/

D
N �1X

�D�.N �1/

.N � j
j/F.
/ :

(7.1.26)

With these considerations, (7.1.25) can be written as

var ORxy.�/ D 1

N

N �1X
�D�.N �1/

�
1 � j
j

N

��
Rxx.
/Ryy.
/CRxy.
 C �/Ryx.
 � �/�

(7.1.27)
and finally

lim
N !1 var ORxy.�/ D lim

N !1
1

N

N �1X
�D�.N �1/

�
Rxx.
/Ryy.
/CRxy.
 C �/Ryx.
 � �/� :

(7.1.28)
This variance is only determined by the stochastic nature of the two random signals.
It expresses the intrinsic uncertainty of the CCF, see Sect. 6.1. For N ! 1, the
variance becomes zero if the correlation functions are finite and either Efx.k/g D 0

or Efy.k/g D 0. Henceforth, the estimation of the correlation function according
to (7.1.19) is consistent in the mean square for Gaussian distributed signals. In the
case of additionally superimposed disturbances, the considerations in Sect. 6.1 can
be applied accordingly.

7.1.3 Fast Calculation of the Correlation Functions

As the correlation functions often have to be calculated for large numbers of data
pointsN , computationally efficient algorithms shall now be discussed. An algorithm
which is based on the Fast Fourier Transform (Sect. 3.1.3) shall be outlined (Kam-
meyer and Kroschel, 2009). This algorithm makes use of the fact that the biased
estimate of the correlation function,

ORxx.�/ D 1

N

N �1�j� jX
kD0

x.k/x.k C j� j/; for 0 � j� j � N � 1 ; (7.1.29)

which was presented in (7.1.4), can be expressed as a convolution in the time domain
and hence a multiplication in the frequency domain.

The signal x.k/ is augmented with zeros to bring it to the total length L as
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xL.k/ D
�
x.k/ for 0 � k � N � 1
0 for N � 1 < k � L � 1 : (7.1.30)

The estimate of the auto-correlation function can be rewritten as

ORxx.�/ D 1

N

N �1�j� jX
kD0

x.k/x.k C j� j/ D 1

N

L�1�j� jX
kD0

xL.k/xL.k C j� j/ : (7.1.31)

Due to the symmetry of the auto-correlation function, only the values for � � 0must
be determined, since Rxx.��/ D Rxx.�/. Hence, it can be assumed in the following
that � > 0 and therefore, the absolute value operator can be disposed.

ORxx.�/
ˇ̌
��0

D 1

N

L�1��X
kD0

xL.k/xL.k C �/

D 1

N

L�1X
�D�

xL.	 � �/xL.	/ D 1

N

L�1X
�D�

xL.�.� � 	//xL.	/ :

(7.1.32)

Since xL.�.� � 	// D 0 for �.� � 	/ < 0 and hence 	 < � , the index can also start
from 	 D 0 instead of 	 D � . The addends in the range 0 � 	 � � are zero, because
xL.�.� � 	// D 0 in this interval and therefore, these addends do not contribute to
the sum.

ORxx.�/
ˇ̌
��0

D 1

N

L�1X
�D0

xL

��.� � 	/�xL.	/

D 1

N
xL.�k/ � xL.k/

(7.1.33)

for 0 � j� j � N � 1, which represents the convolution of the signals xL.k/ and
xL.�k/. This convolution can in the frequency domain be determined as a simple
multiplication. Therefore, a solution to calculate the correlation function is to first
transform the series xL.k/ and xL.�k/ into the frequency domain, then multiply
the two Fourier transforms and finally bring this product back into the time domain.
Although this may look like a cumbersome and slow process at first, this approach
greatly benefits from the many efficient implementations of the Fast Fourier Trans-
form, see Chap. 3.

While the extension of the signals with zeros at first seemed arbitrarily, its reason
will become clear by looking at Fig. 7.2 and noting that the discrete pair of Fourier
transforms will be used to calculate the correlation function.

Figure 7.2a shows the normal calculation of the correlation function. The se-
quence and its time-shifted time counterpart are multiplied in the interval � � k �
N � 1. Here, two problems of using the Fourier transform to compute the convolu-
tion of the two sequences immediately become apparent, see also Fig. 7.2b: First, the
summation index for the convolution always runs from 0 to N � 1, if the sequence
has N elements. Secondly, the discrete Fourier transform causes a periodic repeti-
tion of the signal, i.e. x.k C iN / D x.k/ ¤ 0 for i D : : : ;�3;�2;�1; 1; 2; 3; : : :.
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While the original data points have been marked as black circles in Fig. 7.2b, one
can also see white circles that symbolize this periodic repetition. A remedy to avoid
the adverse effects of this periodic repetition is to introduce additional zeros into the
signal, see Fig. 7.2c. The summation is now carried out overL � NC�max elements,
where the additionally introduced zero elements lead to a suppression of the adverse
effects of the repetition of the signal outside the measurement interval.

To summarize the above statement: If the FFT is used to determine the frequency
domain representations of the signal x.k/, the signal will be repeated periodically
outside the measurement interval and furthermore, the summation is always carried
out over the full N respectively L elements. By introducing additional zeros and
bringing the signal to any length

L � N C max � ; (7.1.34)

an error by this cyclical repetition introduced by the Fourier transform of the discrete-
time signals can be avoided. L can be chosen arbitrarily large and can conveniently
be chosen as a power of 2 or 4 to apply computationally efficient realizations of the
Fast Fourier Transform. Note also that all results for � > N � 1 must be disposed as
they are invalid.

Now, the auto-correlation function can be calculated as

ORxx.�/ D 1

N
DFT�1

n
DFT

˚
xL.�k/

�
DFT

˚
xL.k/

�o

D 1

N
DFT�1

nˇ̌
DFT

˚
xL.k/

�ˇ̌2o
:

(7.1.35)

Hence, the calculation of the auto-correlation function can be formulated as a
problem in the frequency domain (Kammeyer and Kroschel, 2009; Press et al, 2007).
Further tricks can be employed to speed up the calculation of the correlation function
by applying the Fourier transform repeatedly to smaller blocks of data (Rader, 1970).

In the following, the calculation will be developed for the cross-correlation of
two signals x.k/ and y.k/ as the auto-correlation is automatically included in this
more general case. In this setting, one is interested in providing an estimate

ORxy.�/ D 1

N

N �1�j� jX
kD0

x.k/y.k C j� j/ D 1

N
xL.�k/ � yL.k/ (7.1.36)

for 0 � j� j � N �1 of the cross-correlation function for x.k/ and y.k/. A reflection
in the time domain results also in a reflection in the frequency domain

xL.�k/ · xL.�i!/ : (7.1.37)

Typically, the length N of the dataset is much larger than the maximum value of
� that is of interest. This can be exploited to speed up the calculation of the corre-
lation function. The same technique is also used for the fast convolution. The time
sequences x.k/ and y.k/ are split up into sequences
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xi D
�
x.nC iM/ for 0 � n � M � 1; i D 0; 1; 2; : : :

0 forM � n � 2M � 1 (7.1.38)

and
yi D y.nC iM/ for 0 � n � 2M � 1; i D 0; 1; 2; : : : ; (7.1.39)

where M D max j� j and a total of I blocks have been formed. It is now assumed
that the last block has been padded with zeros to the length 2M . Furthermore � > 0
from now on.

Then (7.1.36) can be rewritten

ORxy.�/ D 1

N

N �1�j� jX
kD0

x.k/y.k C j� j/

D 1

N

N �1�j� jX
kD0

x.k/y.k C j� j/

D 1

N

I�1X
iD0

M�1X
kD0

x.k C iM/y.k C iM C �/

D 1

N

I�1X
iD0

M�1X
kD0

xi .k/yi .k C �/

D 1

N

I�1X
iD0

DFT�1
n
DFT

˚
xi .�k/

�
DFT

˚
yi .k/

�o

D 1

NL

I�1X
iD0

N �1X
nD0

DFT
˚
xi .�k/

�
DFT

˚
yi .k/

�
W nk

N

D 1

NL

N �1X
nD0

I�1X
iD0

DFT
˚
xi .�k/

�
DFT

˚
yi .k/

�
W nk

N

D 1

N
DFT�1

(
I�1X
iD0

DFT
˚
xi .�k/

�
DFT

˚
yi .k/

�)
:

(7.1.40)

For the de-convolution, only values of Ruy.�/ for � � 0 are of interest. If one also
wants to obtain values of Ruy.�/ for � < 0 one can either exploit the fact that
Rxy.��/ D Ryx.�/ and Ryx.�/ for � � 0 can be determined with the algorithm
that was just presented. Fransaer and Fransaer (1991) presented a method, which is
based on a change of the vectors xi .k/ by xiC1.k/.

As was already discussed above, it may at first not seem likely that this approach
is computationally more efficient than the direct evaluation of the convolution sum.
A short look at the numerical expense may however give an idea, why the method is
more efficient.

Provided that the convolution of a series with N elements shall be determined in
the range 0 � � � M �1, the direct evaluation will require additions and multiplica-
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tions in an amount of the order of NM multiplications and NM additions, provided
that M 
 N . By using the FFT and the segmentation as described above, the effort
can be brought down to the order ofN log2M for both additions and multiplications.
Obviously, for large values of M , the saving can become quite tremendous.

7.1.4 Recursive Correlation

The correlation functions can also be determined recursively. This will now be ex-
plained for the cross-correlation function as the transfer to the auto-correlation func-
tion is again straightforward. For the time-step k � 1, the non-recursive estimation is
given as (7.1.16)

ORxy.�; k � 1/ D 1

k

k�1X
lD0

x.l � �/y.l/ : (7.1.41)

For the time k, the estimate can then be written as

ORxy.�; k/ D 1

k C 1

kX
lD0

x.l � �/y.l/

D 1

k C 1

 
k�1X
lD0

x.l � �/y.�/›
k ORxy.�;k�1/

Cx.k � �/y.k/
!
:

(7.1.42)

Thus,

ORxy.�; k/ D ORxy.�; k/ C 1

k C 1

�
x.k � �/y.k/ � ORxy.�; k � 1/�

New
Estimate

Old
Estimate

Correction
Factor

New
Product

Old
Estimate

: (7.1.43)

If the last addend is interpreted as an error or innovation

e.k/ D x.k � �/y.k/ � ORxy.�; k � 1/ ; (7.1.44)

then one can also write

ORxy.�; k/ D ORxy.�; k � 1/C �.k/e.k/ : (7.1.45)

The correction factor is given as

�.k/ D 1

k C 1
(7.1.46)

and weights the new contribution with less weight as the measurement period k
increases, which is in line with the normal averaging, where all terms 0 � l � k

have the same weight.
If the correction factor is fixed to a certain k1, then all new contributions are

weighted with the same weight �.k1/. The recursive estimation algorithm then cor-
responds to a discrete low-pass filter. With these modifications, it is also possible to
analyze slowly time-varying processes.
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Fig. 7.3. Values of the correlation functions needed for de-convolution

7.2 Correlation Analysis of Linear Dynamic Systems

By means of the correlation functions, an easy to apply identification technique for
the time-domain can be derived, which is termed de-convolution and will be devel-
oped in the following.

7.2.1 Determination of Impulse Response by De-Convolution

If a linear, stable, and time-invariant process is excited by a stationary colored
stochastic input signal u.k/, then the output y.k/ will also be a stationary stochas-
tic signal once the transients have vanished. Therefore, one can estimate the auto-
correlation function ORuu.�/ and the cross-correlation function ORuy.�/.

It is for now assumed that both Efu.k/g D 0 and Efy.k/g D 0. Then, both
correlation functions are linked by the convolution sum (2.4.12)

Ruy.�/ D
1X

�D0

Ruu.� � 	/g.	/ ; (7.2.1)

where g.k/ denotes the discrete-time impulse response. It is now assumed that both
Ruu.�/ and Ruy.�/ have been determined for different � , as e.g. shown in Fig. 7.3.

Now, the impulse response g.	/ shall be determined. According to (7.2.1), one
obtains for each � an equation with a different number of elements. In order to de-
termine the individual values of the impulse response, g.0/, g.1/, up to g.l/, these
individual equations will be written as a system of l C 1 equations as
�

Ruy.�P C l/
:::

Ruy.�1/
Ruy.0/

Ruy.1/
:::

Ruy.M/

˘

�
ORuy

�

�

Ruu.�P C l/ : : : Ruu.�P /
:::

:::

Ruu.�1/ : : : Ruu.�1 � l/
Ruu.0/ : : : Ruu.�l/
Ruu.1/ : : : Ruu.1 � l/
:::

:::

Ruu.M/ : : : Ruu.M � l/

˘

“

ORuu

�
g.0/
:::

g.l/

�

g̃

:

(7.2.2)



7.2 Correlation Analysis of Linear Dynamic Systems 191

The largest negative time shift of Ruu.�/ is �min D �P and the largest positive
time shift is �max D M . The system of equations then consists of P � l C M C 1

equations. If one chooses M D P C 2l , then there are l C 1 equations such that O̊uu
becomes a square matrix and it follows that

g � OR�1
uu

ORuy : (7.2.3)

If one chooses P D l in addition, then for positive and negative values � of the ACF
Ruu, the same number of elements is used (a symmetric ACF, since �min D �P D �l
and �max D M D l). Considering the impulse response g.	/ only up to the finite
value 	 D l , instead of 	 ! 1 causes a round-off error. The estimate in (7.2.3)
typically gets more accurate as l increases.

A condition for the existence of the inverse of ORuu in (7.2.3) is that

det ORuu ¤ 0 ; (7.2.4)

which means that the system of equations may not contain linearly dependent rows
or columns. At least one value of Ruu.�/ must change from one line to the next,
which is guaranteed if the process is driven by a dynamically exciting input u.k/.

As can be seen from Fig. 7.3, not all available values of Ruy.�/ and Ruu.�/ are
employed to determine g.	/. If one wants to use also the other values of the cor-
relation functions, which are different from zero and thus employ more available
information about the process, then one can shift P further to the left and M further
to the right. One now obtains .P C M C 1/ > l C 1 equations to determine the
l C 1 unknown values of g.	/. By means of the pseudo inverse, one can determine a
typically more accurate estimate of g as

Og D � ORT
uu

ORuu
��1 ORT

uu
ORuy : (7.2.5)

The estimation of the impulse response can drastically be simplified by exciting the
process using a white noise with the auto-correlation function

Ruu.�/ D �2
u ı.�/ D Ruu.0/ı.�/ (7.2.6)

with

ı.�/ D
�
1 for � D 0

0 for � ¤ 0
: (7.2.7)

Then follows from (7.2.1) that

Ruy.�/ D Ruu.0/g.�/ (7.2.8)

and thus
Og.�/ D 1

ORuu.0/
ORuy.�/ : (7.2.9)

The impulse response is in this case proportional to the cross-correlation function.
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Fig. 7.4. Detail of the excitation of the Three-Mass Oscillator with a PRBS signal. The ex-
citation has the parameters: � D 50, n D 11, T0 D 0:003 s and hence a period time of
TP D 307:5 s

Example 7.1 (De-Convolution Applied to the Three-Mass Oscillator).
In the following example, the Three-Mass Oscillator is excited with a PRBS sig-

nal. To avoid the negative side effects of the break-away torque due to adhesive and
Coulomb friction, the oscillator is operated around a certain mean rotational velocity.
This can be interpreted as the operating point, around which the system is linearized.
Figure 7.4 shows the PRBS signal u.t/ that has been used for the excitation of the
system as well as the rotational velocity of the third mass, !3.t/. The PRBS gen-
erator had a cycle time of � D 0:15 s. The measurements have been sampled at
T0 D 0:003 s, therefore the output of the PRBS is always held for � D 50 samples.

The ACF and CCF for a PRBS excitation are shown in Fig. 7.5. One can see that
the calculated ACF converges to the exact course after t D 80 s and that the CCF then
approximates the direct measured impulse response according to (7.2.9). Despite the
good results, it should be kept in mind that the ACF of a PRBS satisfies (6.3.15)
only for full periods. Also, in Fig. 7.6, the de-convolution is calculated based on the
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Fig. 7.5. Estimated ACF and CCF for the signals in Fig. 7.4 for measurement intervals 0 �
t � T of different length. Estimated (solid line) and directly recorded (dashed line) impulse
response
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matrix inversion of Ruu.�/ governed by (7.2.5). Here, one can see that the estimate
of the impulse response converges to the true impulse response much earlier, a good
match is already obtained for t D 20 s. ut

7.2.2 Influence of Stochastic Disturbances

Now, the influence of stochastic disturbances in the output signal on the determi-
nation of the cross-correlation function Ruy.�/ shall be determined. For this exami-
nation, it is again assumed that the exact output signal yu.k/ shall be affected by a
superimposed stochastic disturbance n.k/, such that

y.k/ D yu.k/C n.k/ (7.2.10)

and the input signal u.k/ and its auto-correlation function Ruu.�/ shall be known
exactly. Then, the cross-correlation follows from

ORuy.�/ D 1

N

N �1X
�D0

u.	/y.	 C �/ : (7.2.11)

With (7.2.10), the error is given as

�Ruy.�/ D 1

N

N �1X
�D0

u.	/n.	 C �/ : (7.2.12)

If the disturbance n.k/ is not correlated with the input signal and either Efn.k/g D 0

or Efu.k/g D 0, then follows

E
˚
�Ruy.�/

� D 1

N

N �1X
�D0

E
˚
u.k/

�
E
˚
n.k C �/

� D E
˚
u.k/

�
E
˚
n.k/

� D 0 : (7.2.13)

The variance of the error is given as

E
n�
� ORuy.�/

�2o D 1

N 2
E

(
N �1X
�D0

N �1X
�0D0

u.	/u.	0/n.	 C �/n.	0 C �/

)

D 1

N 2

N �1X
�D0

N �1X
�0D0

Ruu.	
0 � 	/Rnn.	

0 � 	/
(7.2.14)

if u.k/ and y.k/ are statistically independent. If the input is a white noise with the
auto-correlation function according to (7.2.6), then (7.2.14) can be simplified to

E
n�
� ORuy.�/

�2o D 1

N
Ruu.0/Rnn.0/ D 1

N
Suu0 n2.k/ : (7.2.15)

The standard deviation of the impulse response estimation error,



196 7 Correlation Analysis with Discrete Time Models

�g.�/ D 1

Suu0
� ORuy.�/ ; (7.2.16)

is then given as

�g D
q

E
˚
�g2.�/

� D
s
n2.k/

Suu0N
D
q
n2.k/

�u

1p
N

D �n

�u

1p
N
: (7.2.17)

The standard deviation of the impulse response is proportional to the noise-to-signal
ratio �n=�u and inversely proportional to the square root of the measurement timeN .

Thus, in the presence of disturbances n.k/, it follows from (7.2.13) and (7.2.17)
that

E
˚ Og.�/� D g0.�/ (7.2.18)

and
lim

N !1 var Og.�/ D 0 : (7.2.19)

The impulse response according to (7.2.9) is determined consistent in the mean
square. A corresponding examination of the convergence can also be carried out
for the more general estimation given in (7.2.3) and (7.2.5). Under the prerequisite
that the estimates of the correlation functions are both consistent, then

lim
N !1 E

˚ Og� � lim
N !1 E

˚ OR�1
uu

ORuy
�

� lim
N !1 E

˚ OR�1
uu

�
lim

N !1 E
˚ ORuy

� D R�1
uu Ruy

� g0 :

(7.2.20)

Since also the variances of the correlation function estimates go to 0 as N ! 1
(as shown in Sect. 7.1), it follows (disregarding the effects of the truncation of the
impulse response):

Theorem 7.1 (Convergence of the Impulse Response Estimate Based on Corre-
lation Functions).

The impulse response g.k/ of a linear time-invariant process can be estimated
consistent in the mean square by de-convolution according to (7.2.3), (7.2.5), or
(7.2.9) under the following necessary conditions:

� The signals u.k/ and yu.k/ are stationary
� Efu.k/g D 0

� The input signal is persistently exciting so that det ORuu ¤ 0

� The disturbance n.k/ is stationary and uncorrelated with u.k/
ut

If the auto-correlation function is known exactly, as e.g. for a PRBS, then the
intrinsic uncertainty of the ACF according to (7.1.8) will vanish. Furthermore, from
(7.1.28) and (7.2.13) follows that Efu.k/g may be non-zero if Efy.k/g D 0 and
Efn.k/g D 0.



7.3 Binary Test Signals for Discrete Time 197

u k( )

k

a

-a

T0

Fig. 7.7. Discrete random binary signal (DRBS)

This can also be illustrated with the following reflection. If the input or output
has a non-zero mean, then it follows

u.k/ D U.k/ � U00 (7.2.21)
y.k/ D Y.k/ � Y00 (7.2.22)

with U00 D U.k/ and Y00 D Y.k/ and after plugging the large signals values into
(7.2.11) follows

ORuy.�/ D 1

N

N �1X
�D0

�
U.	/Y.	 C �/

� � U00Y00 : (7.2.23)

Thus, the mean values of U.k/ and Y.k/ have to be determined separately during the
measurement and their product must be subtracted. If however U00 D 0 or Y00 D 0

and Efn.k/g D 0, then one does not have to carry out this separate averaging since
in this case (7.2.23) and (7.2.13) yield the same results. However, due to the finite
word length and the resulting computational errors, it is usually recommended to
program the deviation from the signal due to (7.2.21) and (7.2.22) and determine
the operating point U00 and Y00 separately, if U00 and Y00 are constant during the
dynamic measurement.

7.3 Binary Test Signals for Discrete Time

The identification of linear processes for sampled signals via correlation functions
is preferably performed with binary test signals. A discrete binary random signal
(DRBS) is generated by random changes of the binary values at discrete-time instants
kT0, see Fig. 7.7.

The discrete-time auto-correlation function of such a discrete random binary sig-
nal is given as

Ruu.�/ D
�
a2 for � D 0

0 for � ¤ 0
; (7.3.1)
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Fig. 7.8. Auto correlation function of a discrete random binary signal (DRBS)
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Fig. 7.9. Auto correlation function of a pseudo-random binary signal for discrete time

see Fig. 7.7. For � ¤ 0, positive and negative values appear equally often, hence
the auto-correlation function becomes zero, see Fig. 7.8. The power spectral density
follows as

Suu.�/ D
1X

�D�1
Ruu.�/´

�� D Ruu.0/ D S�
uu.!/ D a2 for 0 � j!j � �

T0

: (7.3.2)

The discrete random binary signal hence has the same auto-correlation function and
power spectral density as a discrete white noise with an arbitrary amplitude density.

(7.3.1) and (7.3.2) are only valid for infinitely long measurement times. For finite
measurement times, the auto-correlation and the power spectral density can deviate
drastically from the values in (7.3.1) and (7.3.2) and hence have to be determined
individually for each measurement. Due to this, one typically prefers periodic binary
signals, which are deterministic signals, but have almost the same auto-correlation
function already for finite measurement times as the stochastic signals have for t !
1. The auto-correlation function for the discrete pseudo-random binary signal is
shown in Fig. 7.9. Such a signal is generated from a shift register as was presented
in Sect. 6.3, see (Chow and Davies, 1964; Pittermann and Schweizer, 1966; Davies,
1970).
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7.4 Summary

Correlation functions are defined for an infinitely long measurement interval. In prac-
tice, however, the measurement interval is always confined to a maximum of N data
points. Two estimates for the discrete-time auto-correlation function have been pre-
sented that individually cope with the finite measurement time for sampled data. One
estimate is bias-free, whereas the other one has a smaller variance. The advantages
and disadvantages of the two estimates have been discussed. The results have then
been generalized to include the cross-correlation as well. An approach for the fast
calculation of the correlation functions has been presented that interprets the calcu-
lation of the correlation function as a convolution of the two signals. The convolution
is then carried out in the frequency domain. By means of the discrete Fourier trans-
form, the two signals are transformed into the frequency domain, then multiplied
with each other and then transformed back into the time domain. This method can
reduce the computational effort for large data sets and a large number of different
time lags to be calculated. By dividing the time sequence into smaller blocks that
can be processed separately, the calculation of the correlation function can be accel-
erated even more. Also, a recursive formulation of the correlation function estimation
is presented. The estimates of the correlation function can then be used to determine
the impulse response of a system by means of the de-convolution.

The presented correlation analysis with stochastic as well as pseudo-stochastic
signals is well suited for the identification of non-parametric models of linearizable
processes with discrete-time signals. The method can be implemented easily on dig-
ital signal processors or micro-controllers. In its recursive form, it is also well suited
for online application in real-time.

Problems

7.1. Estimation of the Correlation Functions
Describe the two ways to estimate the auto-correlation function for finite time mea-
surements and discuss their bias and variance in dependence of the measurement
time.

7.2. Fast Calculation of Correlation Functions
Program the fast calculation of the correlation functions using the built-in Fourier
transform routines of a mathematical software package.

7.3. De-Convolution I
How can you determine the impulse response of a linear system by means of the
de-convolution. How does the problem simplify for a white noise input signal.

7.4. De-Convolution II
Given is the process

G.´/ D y.´/

u.´/
D 0:5´�1

1 � 0:5´�1
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As input signal u.k/ use a PRBS signal withN D 4 and the initial values .1; 0; 0; 1/.
The following questions can either be answered by manual calculation or by use of
a mathematical program.
a) Determine the values of y.k/ for k D 1; 2; : : : ; 25.
b) Determine the auto-correlation and cross-correlation functions.
c) Determine the impulse response by de-convolution.
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8

Least Squares Parameter Estimation for Static Processes

This chapter lays the foundation of the least squares parameter estimation, which
allows to determine model parameters from (noisy) measurements. The fundamental
method described in this chapter for static non-linear systems will be applied to linear
dynamic discrete-time systems in Chap. 9. In Chap. 9, also a recursive formulation
will be presented. This allows to identify processes in real time. Several modifica-
tions to this basic approach for linear dynamic processes will then be presented in
Chap. 10. The method of least squares will also be applied to linear dynamic contin-
uous time processes in Chap. 15. Furthermore, the method will be employed for the
identification of processes from frequency response data (Chap. 14), for processes in
closed-loop (Chap. 13), for non-linear systems (Chap. 18), and for MIMO systems
(Chap. 17).

8.1 Introduction

The fundamental task of the parameter estimation can be formulated as follows:
Given is a real process with the parameters

�T
0 D �

�10 �20 : : : �m0

�
(8.1.1)

and the output yu.k/. It is assumed that this process follows physical laws with the
parameters �0, like a planetary system, where only outputs can be observed,

yu.k/ D f .�0/ : (8.1.2)

The output can however not be measured directly. One can only measure yP.k/which
is the true process output falsified by a superimposed disturbance n.k/, see Fig. 8.1.

Furthermore, a model of the process shall be known

yM D f .�/ ; (8.1.3)

where

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_8, © Springer-Verlag Berlin Heidelberg 2011 
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yu( )k
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yP( )k

yM( )k

Σe
2
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Optimizer

-

e( )k V

Fig. 8.1. Schematic diagram of the general arrangement for the method of least squares

�T D �
�1 �2 : : : �m

�
(8.1.4)

are the unknown model parameters. The task now is to find the model parameters �
that result in a model which best fits with N observations yP.k/.

This task has first been solved by Gauss in the year 1795 (at the age of 18 years).
Gauss later published the papers Theoria combinatoris observationum erroribus min-
imis obnoxiae I and II in the years 1821 and 1823, where he motivated and formally
derived the method of least squares. In this original problem formulation, the para-
meters �i were the orbit parameters of planets, the model yM D f .� were Kepler’s
laws of planetary motion, the model output yM were the coordinates of planets at
different times and the measurements yP their observed, i.e. “measured” positions.

There, the best fit had been defined by first introducing the observation error

e.k/ D yP.k/ � yM.k/ (8.1.5)

and determining the minimum of the sum of the squared errors,

V D e2.1/C e2.2/C : : :C e2.N / D
NX

kD1

�
e.k/

�2
: (8.1.6)

The arrangement can be seen in Fig. 8.1.
There are several reasons which promote the choice of a quadratic cost function.

First of all, it is easier to minimize than many other cost functions, as e.g. the absolute
error je.k/j. The main reason is however that for a normally distributed noise, it
yields asymptotically the best unbiased estimates in terms of the parameter error
variance , as will be shown later in Sect. 8.5.

The quadratic criterion however overemphasizes the effect of single, large out-
liers compared to small, but steadily occurring errors due to model impurities. There-
fore, other criteria have been promoted as well as e.g. the least absolute value cost
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e( )k V

Fig. 8.2. Schematic diagram of the general arrangement for parameter estimation of a process
with measured input and output signals with the method of least squares

function or a mixed linear/quadratic cost function, see Sect. 19.1 and (e.g. Pintelon
and Schoukens, 2001).

The above formulated problem is the starting point for this chapter as well as for
the following chapters on parameter estimation. The method of least squares will be
introduced in this chapter for the simple case of static processes now with measur-
able input and output signals, see Fig. 8.2. This is made in an easy to understand
tutorial style, beginning with scalar calculations and then transferring the procedure
to vectorial notation. Two different derivations will be presented. One is based on
the differential calculus and the other on a geometrical interpretation. In other con-
texts, the method of least squares is one of several regression methods. The following
chapters will deal with the more difficult case of dynamic processes as well as re-
cursive formulations of the parameter estimation problem, modifications for special
applications, and, finally, computationally efficient methods.

8.2 Linear Static Processes

The static behavior of a simple linear process shall be given

y D Ku : (8.2.1)

In general, it must be assumed that at least the sampled output yu.k/ of the pro-
cess (so-called wanted or useful signal) is affected by disturbances n.k/, so that the
measured output is given as

yP.k/ D yu.k/C n.k/ ; (8.2.2)

where n.k/ is a discrete-time stationary random signal with Efn.k/g D 0. Then, the
disturbed process is given as
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n( )k

yP( )k

yM( )k
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-
e( )k
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Fig. 8.3. Linear static process with one parameter, arrangement of process and model for
calculation of error e.k/

yP.k/ D Ku.k/C n.k/ ; (8.2.3)

see the topmost part of Fig. 8.3. The task is now to determine the parameter K
from N measurements given as pairs of u.k/ and yP.k/ as .u.1/; yP.1// up to
.u.N /; yP.N //.

Since the structure of the process is known, one can now place a model of the
form

yM.k/ D KMu.k/ (8.2.4)

in parallel to the process (see Fig. 8.3), so that the error between the process and the
model is given as the difference between the corresponding output signals, i.e.

e.k/ D yP.k/ � yM.k/ : (8.2.5)

With (8.1.5) and (8.2.4), one obtains

e.k/ D yP.k/ � KMu.k/

Error Observation Model Prediction : (8.2.6)

For the method of least squares, the cost function

V D
NX

kD1

e2.k/ D
NX

kD1

�
yP.k/ �KMu.k/

�2 (8.2.7)

has to be minimized for the parameterKM. To find the minimum, one first determines
the first derivative with regard to the model parameter KM

dV
dKM

D �2
NX

kD1

�
yP.k/ �KMu.k/

�
u.k/ : (8.2.8)

The first derivative of (8.2.7) with respect to KM is set to zero to find the optimum
value of KM that minimizes (8.2.7). This optimal choice shall be denoted as the
parameter estimate OK, i.e.
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dV
dKM

ˇ̌̌
ˇ
KMD OK

ŠD 0 ) �2
NX

kD1

�
yP.k/ � OKu.k/�u.k/ D 0 : (8.2.9)

This equation can be solved to provide an estimate for the model coefficient as

OK D

NX
kD1

yP.k/u.k/

NX
kD1

u2.k/

(8.2.10)

and, after multiplying 1=N into the numerator and denominator,

OK D
ORuy.0/

ORuu.0/
: (8.2.11)

The best estimate OK is thus the ratio of the estimates of the cross-correlation function
and the auto-correlation function for � D 0. A condition for the existence of the
estimate is that

NX
kD1

u2.k/ ¤ 0 or ORuu.0/ ¤ 0 : (8.2.12)

This equation demands that the input signal u.k/ must be non-zero or to rephrase
it: The input signal u.k/ must “excite” the process with its parameter K. K is also
termed the regression coefficient, since in mathematical settings, the parameter esti-
mation problem is also known under the name regression problem.

In the following, the convergence of the estimation shall be investigated. For a
review of the definition of notions for the convergence, see also App. A. Considering
(8.2.2) and (8.2.10), the expected value of OK is given as

E
˚ OK� D E

˚

NX
kD1

yP.k/u.k/

NX
kD1

u2.k/

�

D E

˚

NX
kD1

�
yu.k/C n.k/

�
u.k/

NX
kD1

u2.k/

�

D 1

NX
kD1

u2.k/

 
NX

kD1

yu.k/u.k/C
NX

kD1

E
˚
n.k/u.k/

�! D K ;

(8.2.13)

if the input signal u.k/ is uncorrelated with the noise n.k/ and thus

E
˚
u.k/n.k/

� D E
˚
u.k/

�
E
˚
n.k/

�
(8.2.14)
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and Efn.k/g D 0 and/or Efu.k/g D 0. The estimate according to (8.2.10) is thus
bias-free.

Given (8.2.2), (8.2.10), and (8.2.13), the variance of the parameter estimate OK
can be calculated as

�2
K D E

˚
. OK �K/2� D 1 

NX
kD1

u2.k/

!2
E

( 
NX

kD1

n.k/u.k/

!2)
: (8.2.15)

If n.k/ and u.k/ are uncorrelated, then

E

(
NX

kD1

n.k/u.k/ �
NX

k0D1

n.k0/u.k0/
)

D
NX

kD1

NX
k0D1

Rnn.k � k0/Ruu.k � k0/ D Q :

(8.2.16)
This equation can be simplified if either n.k/ or u.k/ is a white noise.

In the first case, it is assumed that n.k/ is a white noise. In this case

Rnn.�/ D �2
n ı.�/ D n2.k/ı.�/ (8.2.17)

Q D NRuu.0/ n2.k/ D n2.k/

NX
kD1

u2.k/ (8.2.18)

�2
K D n2.k/

NX
kD1

u2.k/

: (8.2.19)

If the other case is investigated, i.e. if u.k/ is a white-noise, identical results can be
obtained. The standard deviation of the estimated parameter is thus given as

�K D
q

E
˚
. OK �K/2� D

p
n2.k/

u2.k/

1p
N

D
�
�n

�u

�
1p
N
; (8.2.20)

if u.k/ and/or n.k/ is a white noise. The standard deviation thus gets smaller as
the signal-to-noise ratio .�u=�n/ gets better (i.e. bigger) and is furthermore inversely
proportional to the square root of the number of measured data points N . The true
but unknown process parameter shall be denoted as K0 in the following. Since both

E
˚ OK� D K0 (8.2.21)

and
lim

N !1 E
˚
. OK �K0/

2
� D 0 (8.2.22)

are fulfilled, the the estimation in (8.2.13) is consistent in the mean square (App. A).
Now, the vectorial notation will be introduced for this parameter estimation problem.
Upon introduction of the vectors
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u D

˙
u.1/

u.2/
:::

u.N /

�
; yP D

˙
yP.1/

yP.2/
:::

yP.N /

�
; e D

˙
e.1/

e.2/
:::

e.N /

�
; (8.2.23)

the equation for the error can be written as

e D yP � uK ; (8.2.24)

and the cost function is given as

V D eTe D .yP � uK/T.yP � uK/ : (8.2.25)

Taking the first derivative of the cost function yields

dV
dK

D deT

dK
e C eT de

dK
: (8.2.26)

The derivatives can be determined as

de
dK

D �u and
deT

dK
D �uT : (8.2.27)

Equating the first derivative (8.2.26) to zero and considering (8.2.27) yields

dV
dK

ˇ̌̌
ˇ
KD OK

D �2uT.yP � uK/ ŠD 0 : (8.2.28)

The solution is given as

uTu OK D uTyP , OK D �
uTu

��1
uTyP : (8.2.29)

This solution is identical to (8.2.10).
If one wants to work with the large signal quantities U.k/ and Y.k/, then one

obtains

YP.k/ � Y00 D K
�
U.k/ � U00

�C n.k/ (8.2.30)

YM.k/ � Y00 D KM
�
U.k/ � U00

�
: (8.2.31)

The error is then given as

e.k/ D YP.k/ � YM.k/ D yP.k/ � yM.k/ D yP.k/ �KM
�
U.k/ � U00

�
(8.2.32)

and is identical to (8.2.5).
The DC quantity Y00 cancels out and thus does not have to be known exactly (or

can be chosen arbitrarily). The DC value U00 must however be known exactly. This
will lead to
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U

Y

( (1), (1))U Y

Y k( )

Y k( )

^

Y U( )
^e k( )

U k( )

Fig. 8.4. Parameter estimation for a non-
linear (polynomial) static process

Theorem 8.1 (Convergence of the Parameter Estimation of a Linear Static Pro-
cess).

The parameter K of a linear static process is estimated consistently in the mean
square by the methods of least squares if the following necessary conditions are
satisfied:

� The input signal u.k/ D U.k/ � U00 is exactly measurable and U00 is known
exactly.

�
NX

kD1

u2.k/ ¤ 0, i.e. the process is sufficiently excited

� The disturbance n.k/ is stationary and thus Efn.k/g D const
� The input signal u.k/ is uncorrelated with the disturbance n.k/
� Either Efn.k/g D 0 or Efu.k/g D 0

ut

8.3 Non-Linear Static Processes

Now, a static process shall be considered, where the output depends non-linearly on
the input quantity U.k/, but linearly on the process parameters Ki

Yu.k/ D K0 CU.k/K1 CU 2.k/K2 C : : :CU q.k/Kq D K0 C
qX

�D1

U �K� ; (8.3.1)

see Fig. 8.4. This process is called to be linear in parameters.
It is again assumed that U.k/ shall be known exactly. If the measured output

signal is affected by random disturbances n.k/, then the output is given as

Y.k/ D Yu.k/C n.k/ : (8.3.2)

The following matrices and vectors shall be agreed upon,
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� D

˙
1 U.1/ U 2.1/ : : : U q.1/

1 U.2/ U 2.2/ : : : U q.2/
:::

:::
:::

:::

1 U.N / U 2.N / : : : U q.N /

�
;

as well as

y D

˙
YP.1/

YP.2/
:::

YP.N /

�
e D

˙
e.1/

e.2/
:::

e.N /

�
n D

˙
n.1/

n.2/
:::

n.N /

�
� D

˙
K0

K1

:::

Kq

�
;

where at this point, the notation is changed to the well-established notation for the
regression problem, with � being the data matrix, � the parameter vector, and y the
output vector. The process equation is then given as

y D ��0 C n ; (8.3.3)

where �0 denotes the true (but unknown) parameters and the model equation can be
written as

Oy D �� ; (8.3.4)

where Oy shall denote the model output from now on. Process and model are once
again placed in parallel so that the error between process and model amounts to

e D y � �� : (8.3.5)

The cost function is then given as

V D eTe D �
yT � �T� T��y � ���

D yTy � �T� Ty � yT�� C �T� T��
(8.3.6)

and
V D yTy � �T� Ty � �

� Ty
�T
� C �T� T�� : (8.3.7)

With the calculus for vectors and matrices, see App. A.3, the derivative of the above
term with respect to the parameter vector � can be determined as

d
d�

�
�T� Ty

� D � Ty (8.3.8)

d
d�

	�
� Ty

�T
�



D � Ty (8.3.9)

d
d�

�
�T� T��

� D 2� T�� ; (8.3.10)

and thus
dV
d�

D �2� Ty C 2� T�� D �2� T�y � ��� : (8.3.11)
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From the optimality condition

dV
d�

ˇ̌̌
ˇ
�D O�

ŠD 0 ; (8.3.12)

follows the estimation as
O� D �

� T�
��1
� Ty : (8.3.13)

For the existence of the solution, � T� may not be singular, thus the condition for a
sufficient excitation of the process is given as

det
�
� T�

� ¤ 0 : (8.3.14)

The expected value of this estimation is given as

E
˚ O�� D � C E

˚
.� T� /�1� Tn

� D � ; (8.3.15)

if the elements from � and n, i.e. input and noise, are not correlated and Efn.k/g D
0. O� thus is a bias-free estimate. The variance can be determined similarly to the
approach presented in Chap. 9, see also (Ljung, 1999).

Theorem 8.2 (Convergence of the Parameter Estimation of a Non-Linear Static
Process). The parameters � of a non-linear static process according to (8.3.1) are
estimated consistently in the mean square by the method of least squares, (8.3.13), if
the following necessary conditions are satisfied:

� The input signal U.k/ is exactly measurable
� det.� T� / ¤ 0

� The disturbance n.k/ is stationary and zero-mean, i.e. Efn.k/g D 0

� The input signal U.k/ is uncorrelated with the disturbance n.k/
ut

8.4 Geometrical Interpretation

The method of least squares can also be interpreted geometrically (Himmelblau,
1970; van der Waerden, 1969; Björck, 1996; Golub and van Loan, 1996; Ljung,
1999; Verhaegen and Verdult, 2007) by means of the orthogonality relation. In this
section, the problem is thus revisited under geometrical aspects.

The error e has been defined as the difference between the model output Oy and
the process output y ,

e D y � Oy D y � � O� : (8.4.1)

The cost function then is given as

V D eTe : (8.4.2)

The vector product eTe can be rewritten as the squared Euclidian distance, therefore
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ψ1

ψ2
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e y y= -^

^ ^

Fig. 8.5. Geometric interpretation of the
method of least squares

V D eTe D kek2
2 : (8.4.3)

To find the optimal parameter set, the minimum Euclidian distance must be deter-
mined, i.e.

min
O


kek2 D min
O


ky � Oyk2 D min
O


ky � � O�k2 : (8.4.4)

The Euclidian distance of e becomes the smallest, if the vector e is orthogonal
to the plane spanned by the regressors  1 and  2, which are the columns of the data
matrix � . This is obvious from the geometric point-of-view, but can also be proven
mathematically. As was already shown before, the optimality criterion

dV
d�

ˇ̌̌
ˇ
�D O�

ŠD 0 (8.4.5)

requires that
� T�y � � O�� D 0 : (8.4.6)

As (8.4.6) can be rewritten in terms of the error e, one can see that

� T�y � � O�� D � Te D 0 : (8.4.7)

To satisfy (8.4.7), the orthogonality relation demands that the error e must be or-
thogonal to the regressors, i.e. the columns of � .

This shall now be illustrated for an experiment with three measurements, see
Fig. 8.5: These three measurements are made at different times k D 1; 2; 3 as
. 1.1/;  2.1/; y.1//, . 1.2/;  2.2/; y.2//, and . 1.3/;  2.3/; y.3// or in vector ma-
trix notation,

� D
	
 1.1/  2.1/

 1.2/  2.2/

 1.3/  2.3/



(8.4.8)

and

y D
	
y1

y2

y3



: (8.4.9)

The model output Oy is now given as
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Oy2

Oy3



–

Oy

D �1

	
 1.1/

 1.2/

 1.3/



™

 1

C�2

	
 2.1/

 2.2/

 2.3/



™

 2

: (8.4.10)

Hence, one now tries to represent the vector y of the measurements by the vector
Oy of the model output. The model output Oy is given as a linear combination of the
column vectors  1 and  2 of � . This means that the vector y must be projected
onto the plane spanned by the vector  1 and  2.

The error e between the model output Oy and the process output y has the small-
est norm, which can be seen as the shortest length, if it stands orthogonally on the
plane spanned by  1 and  2. This is what the orthogonality relation states. This or-
thogonality relation will be revisited in Chap. 16 for the derivation of the subspace
methods and Chap. 22 in the derivation of numerically better suited methods for the
parameter estimation by the method of least squares. Numerically improved meth-
ods typically avoid the direct inversion as used e.g. in (8.2.10) and (8.3.13), but rather
construct an orthonormal basis of� . TheQR-decomposition, described in Chap. 22,
also presents an attractive way of solving the method of least squares by decompos-
ing the cost function V , which is written as the squared 2-norm. Such a derivation is
also shown by Verhaegen and Verdult (2007).

For linear static processes according to Sect. 8.2, the output signal y and the
error e have been linearly dependent on the input signal u and the single parameter
K. The non-linear static processes that have been treated in depth in Sect. 8.3 also
had a linear dependency between y and the parameters � as well as e and � , but
have been non-linear in  . The parameter estimation that has been described in this
chapter is thus also suited for non-linear processes as long as the error e is linear
in the parameters � , i.e. the error e depends linearly on the parameters � to be
estimated.

Although this seems quite confining at first, the limitation is rather small for
many practical applications. One can often apply transformations to come up with a
problem that is linear in its parameters. For example,

Yu.k/ D K1e�K2U.k/

can be transformed into

logYu.k/ D logK1 �K2U.k/ ;

which is linear in its parameters. Another often needed case is the estimation of
amplitude and phase of an oscillation

Yu.k/ D a sin.!kT0 C '/ :

To identify a and ', one can use

Yu.k/ D b cos.!U.k//C c sin.!U.k// with U.k/ D kT0 ;
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where the equation is linear in the parameters b and c. From there, one can obtain
estimates of ' and a by

Oa D
q

Ob2 C Oc2 and O' D arctan
Ob
Oc :

Such non-linear expressions, which can be transformed so that they become linear in
parameters, are called intrinsically linear (Åström and Eykhoff, 1971).

Furthermore, many functions can sufficiently precisely be approximated by poly-
nomials of low order (e.g. 2 or 3) as

Yu.k/ D f
�
U.k/

� � K0 CK1U.k/CK2U
2.k/ : (8.4.11)

One can also use piecewise linear approximations, splines and many other ap-
proaches.

8.5 Maximum Likelihood and the Cramér-Rao Bound

Initially in this chapter, it has been claimed that the least squares cost function is
a natural cost function to choose in the case of disturbances at the output which
follow a Gaussian distribution in their probability density function. In the following,
a proof of this claim will be presented and also the quality of the estimator will be
investigated. The question here is what is the best estimate that one can obtain.

Before however the estimation quality is discussed, the terms likelihood shall be
introduced and the maximum likelihood estimator shall be derived.

The maximum likelihood estimate is based on the conditional probability of the
measurement. This function is given as

py.yju;�/ (8.5.1)

and is termed likelihood function. One can clearly see that the probability that a
certain series of values y is measured (“observed”) depends on the input u and the
parameters � that are to be estimated. The input u is now neglected in the argument
to come to a more compact notation.

The idea is now to select the parameter estimate O� such that it maximizes the
likelihood function as estimates for the true parameters � , hence

py.yj�/ˇ̌
�D O� ! max : (8.5.2)

Thus, those parameters are taken as the estimates, which make the measurement most
likely to occur. The maximum can be determined by the classical way in calculus, i.e.
by taking the first derivative with respect to the unknown parameters � and equate it
to zero, i.e.

@py.yj�/
@�

ˇ̌̌
ˇ
�D O�

ŠD 0 : (8.5.3)
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This technique shall now be applied to the estimation of a static non-linearity.
The measured output is given as

y D �� C n : (8.5.4)

Each noise sample n.k/ is Gaussian distributed with the probability density function

p
�
n.k/

� D 1q
2��2

n

exp

 
� .n.k/ � �/2

2�2
n

!
; (8.5.5)

where � D 0 because the noise was assumed to be zero-mean. For white noise, the
individual elements are uncorrelated, the probability density function for the entire
noise sequence n with N samples is therefore given as the product of the individual
probability density functions of each sample,

p.n/ D
N �1Y
kD0

1q
2��2

n

exp
�

� .n.k//
2

2�2
n

�
D 1

.2�/
N
2

p
det˙

e� 1
2n

T˙�1n ; (8.5.6)

which is an N -dimensional Gaussian distribution with ˙ being the covariance ma-
trix. For uncorrelated elements, ˙ D �2

n I where I is the identity matrix and
det˙ D N�2

n .
Now, the probability density function of the measurements y with y D �� C n

and hence n D y � �� is given as

p.yj�/ D 1

.2�/
N
2

p
N�n

exp
�

� 1

2�2
n
.y � ��/T.y � ��/

�
; (8.5.7)

For this function, the maximum must now be determined. A rather common approach
in the calculation of maximum likelihood estimates involving Gaussian distributions
is to take the logarithm first as p.x/ and logp.x/ have their maximum at the same
value of x, but the resulting terms are much easier to work with. Hence,

@ log f .yj�/
@�

ˇ̌̌
ˇ
�D O�

D 1

2�2
N

	�
y � � O��T�

y � � O��
 ŠD 0 : (8.5.8)

Solving this equation for O� leads to

O� D �
� T�

��1
� Ty ; (8.5.9)

which is identical to (8.3.13). Hence the least squares estimator and the maximum
likelihood estimator yield identical solutions.

Now, the quality of the estimate shall be discussed. The question is whether there
exists a lower bound on the variance of the estimate. If this is the case, then the
estimator that delivers estimates with the minimum attainable variance would be the
best estimator that is available. This measure of quality will be called efficiency of an
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estimator (see App. A), and a lower bound on the minimum attainable variance will
be derived as the Cramér-Rao bound.

For the derivation of this bound, an arbitrary bias-free estimate O� shall be con-
sidered, hence Ef O�j�g D � . With this prerequisite, one can now try to determine the
variance of the estimate Ef.� � O�j�/2g.

The following derivation of the Cramér-Rao bound has been described by Hänsler
(2001) and is in more depth presented there. The idea behind the derivation is that
for a bias-free estimate, the expected value of Ef O� � �g is zero, i.e.

E
˚ O� � �� D

Z 1

�1
� O� � ��py.yj�/dy : (8.5.10)

One can take the derivative with respect to the parameter vector � and then one
obtains Z 1

�1
@

@�

	� O� � ��py.yj�/dy



D 0 : (8.5.11)

With the Cauchy-Schwartz inequality .Efxyg/2 � Efx2gEfy2g, one can state a
lower bound for the variance of the estimate as

E
˚
. O� � �/2� � 1

E
��

@

@�
logpy.yj�/

�2� (8.5.12)

or
E
˚
. O� � �/2� � �1

E
�
@2

@�2
logpy.yj�/

� : (8.5.13)

A detailed derivation can also be found in (e.g. Raol et al, 2004).
An estimator is termed efficient if it attains this lower bound of the variance. The

term BLUE stands for best linear unbiased estimator and hence denotes the estimator
that attains the minimal variance of all unbiased estimators. According to the Gauss-
Markov theorem, the least squares estimator is the best linear unbiased estimator,
it will in the following be shown that this estimator also reaches the Cramér-Rao
bound in the case of Gaussian distributed noise n.k/ respectively errors e.k/. The
Cramér-Rao bound is not always attainable, because it is too conservative as pointed
out by Pintelon and Schoukens (2001). Relaxed bounds exist, but are very difficult
to calculate and are hence seldom used.

The Cramér-Rao bound can now also be applied to the least squares estimator,
which in this case is equivalent to the maximum likelihood estimator. The minimum
attainable variance is hence given as

E
˚
. O� � �/2� � �1

E
�
@2

@�2
logpy.yj�/

� D �2
e E
˚
.
T
/�1

�
: (8.5.14)
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If the error e.k/ / noise n.k/ is Gaussian distributed, then the estimator attains the
Cramér-Rao bound and hence the minimum variance of all estimators. The denomi-
nator is termed Fisher information matrix (Fisher, 1922, 1950). An extension of the
Cramér-Rao bound to biased estimates is discussed in (van den Bos, 2007).

8.6 Constraints

Constraints are additional conditions that the solution must satisfy. One can discern
equality and inequality constraints. Linear inequality constraints require the para-
meters to satisfy the set of inequalities

A� � b ; (8.6.1)

whereas equality constraints require that the parameters satisfy a set of equations
given as

C� D d : (8.6.2)

The inclusion of equality constraints shall be introduced first as it can easily be
solved directly (e.g. Björck, 1996). It is required that C has linearly independent
rows so that the system of equations in (8.6.2) is consistent. Then, one can first solve
the unrestricted problem of least squares as usual as

O� D �
� T�

��1
� Ty : (8.6.3)

Then, the solution to the restricted problem, Q� can be determined as

Q� D O� � �
� T�

��1
C
	
C
�
� T�

��1
C T

�1�

C O� � d� ; (8.6.4)

see e.g. (Doyle et al, 2002).
Inequality constraints can in theory be solved with active set methods, although

in numerical implementations prefer alternatives, such as interior point methods (No-
cedal and Wright, 2006). The basic idea is that inequality constraints can either be
inactive, then they do not need to be regarded as part of the solution of the optimiza-
tion problem. Or, if they are active, then they can be treated as equality constraints
as the design variable is fixed to the boundary of the feasible space. Active in this
context means a constraint that actively constrains the solution, whereas inactive con-
straints are currently not influencing the solution. The critical part in this algorithm
is the determination of the active set, which can be of exponential complexity. The
recursive method of least squares (RLS) also allows the inclusion of constraints in a
very elegant way, see Sect. 9.6.1.

8.7 Summary

In this chapter, the method of least squares was derived for linear and non-linear
processes. It is well suited for static processes described by linear and non-linear
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algebraic equations. Important for the direct, i.e. non-iterative solution is the con-
dition that the error between the process output and the model output is linear in
the parameters. However, also many functions which are at first non-linear in para-
meters can either be transformed so that they become linear in parameters or can be
approximated by polynomials or piecewise linear models.

With the Gauss-Markov theorem, it can be shown that for these applications, the
method of least squares provides the best linear unbiased estimate. It has further-
more been shown that the method of least squares for Gaussian noise at the output
is equivalent to the maximum likelihood estimator and that the variance of the esti-
mate asymptotically attains the Cramér-Rao bound, which is a lower bound for the
variance of an estimate. This makes it an asymptotically efficient estimator.

Problems

8.1. Non-Linear Static SISO Process
The process shall be modeled with a non-linear static model of second order,

y.k/ D K0 CK1u.k/CK2u
2.k/

The parameter K0 is zero, so it does not have to be considered in the following. De-
termine the parameters K1 and K2 based on the measured data points

Data point k 1 2 3 4 5

Input signal u -1.5 -0.5 4.5 7 8
Output signal y 5.5 1.5 -3.5 4.5 8.5

using the method of least squares.

8.2. Non-Linear Static MISO Process
A MISO process is described by a non-linear second order model

y.k/ D K0 �K1u1.k/u2.k/CK2u
2
1.k/

The process shall be identified by the method of least aquares. Set up the data matrix
� , data vector y , and the parameter vector � . Given the measurements

Data point k 1 2 3 4 5

Input signal u1 -1 -0.5 0 1 2
Input signal u2 2 2 2 2 2
Output signal y 3.5 1.875 0 -4.5 -10

determine the parameters K1 and K2 under the assumption that K0 D 0.

8.3. Non-Linear Static SISO Process
A static non-linear process with the structure
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y.k/ D
p
au.k/C .b C 1/u2.k/

shall be identified for the measurements

Data point k 1 2 3 4 5

Input signal u 0.5 1 1.5 2 2.5
Output signal y 2.2247 5.7321 11.1213 18.4495 27.7386

Set up the data matrix � , data vector y and the parameter vector � . Then, deter-
mine the parameters a and b.

8.4. Sinusoidal Oscillation
In the following, the methods of least square shall be utilized to determine the phase
' and amplitude A of an oscillation with known frequency !0, i.e.

y.t/ D A sin.!0t C '/

The signal has been sampled with the sample time T0 D 0:1 s. The frequency of the
oscillation is known to be !0 D 10 rad=sec. The following measurements have been
determined:

Data point k 0 1 2 3 4

Output signal y.k/ 0.52 1.91 1.54 -0.24 -1.80

Determine the parameters A and '.

8.5. Consistent Estimate and BLUE
What is a consistent estimate? What does the term BLUE stand for?

8.6. Bias
What is a bias? How is it defined mathematically?
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9

Least Squares Parameter Estimation for Dynamic
Processes

The application of the method of least squares to static models has been described in
the previous chapter and is well known to scientists for a long time already. The ap-
plication of the method of least squares to the identification of dynamic processes has
been tackled with much later in time. First works on the parameter estimation of AR
models have been reported in the analysis of time series of economic data (Koop-
mans, 1937; Mann and Wald, 1943) and for the difference equations of linear dy-
namic processes (Kalman, 1958; Durbin, 1960; Levin, 1960; Lee, 1964).

The application of the method of least squares to dynamic processes is dealt with
in this chapter for the discrete-time case and later in Chap. 15 for the continuous-
time case, as well. In the chapter at hand, first the original non-recursive setting is
derived, then the recursive form is presented in detail. Also, the weighted method
of least squares is presented and the highly important case of least squares with
exponential forgetting.

In order not to conceal the train of thoughts for the application of the method
of least squares to dynamic systems, only one mathematical solution of the problem
will be presented. In Chap. 22, different ways of solving the least squares problem
are presented and compared in terms of accuracy and speed. Modifications to the
method of least squares, which e.g. allow better estimation results for noise acting
on the input and other cases can be found in Chap. 10.

9.1 Non-Recursive Method of Least Squares (LS)

In the following, the classical method of least squares for discrete-time linear pro-
cesses will be derived.

9.1.1 Fundamental Equations

The transfer function of a discrete-time linear process is given as

G.´�1/ D y.´/

u.´/
D b0 C b1´

�1 C : : :C bm´
�m

1C a1´�1 C : : :C am´�m
D B.´�1/

A.´�1/
; (9.1.1)

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_9, © Springer-Verlag Berlin Heidelberg 2011 
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Fig. 9.1. Block diagram for the non-recursive parameter estimation according to the method
of least squares

with

u.k/ D U.k/ � U00

y.k/ D Y.k/ � Y00
(9.1.2)

as deviations of the signals from the steady-state values U00 and Y00, see also
(2.2.19). The parameter b0 will be disregarded in the following as biproper systems,
i.e. systems that can directly follow a step input, are hardly ever encountered in nature
and the dimensionality of the subsequent parameter estimation problem is reduced
by one dimension by neglecting b0. The process (9.1.1) will now be extended by
introducing a dead time Td with integer values d D Td=T0 D 0; 1; : : :. It is further
assumed that the model order and dead time are known exactly. If this is not the case,
one can apply the methods described in Chap. 23 to determine an appropriate model
order and dead time.

The transfer function is then given as

GP.´/ D yu.´/

u.´/
D B.´�1/

A.´�1/
´�d D b1´

�1 C : : :C bm´
�m

1C a1´�1 C : : :C am´�m
´�d : (9.1.3)

The measurable signal y.k/ is assumed to be a superposition of the real process
output yu.k/ (useful signal) and a stochastic disturbance n.k/ as

y.k/ D yu.k/C n.k/ ; (9.1.4)

see Fig. 9.1
Now, the task is to determine the unknown parameters ai and bi of the process

transfer function (9.1.3) from N pairs of the input signal u.k/ and the measured
output y.k/. First, some assumptions have to be made:

� The process is for k < 0 in its steady state
� The model order m and dead time d are known exactly (see Chap. 23 on how to

determine the model order m and dead time d if they are not known a priori)
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� The input u.k/ and its DC value U00 are known exactly
� The disturbance n.k/ must be stationary with Efn.k/g D 0

� The DC value Y00 must be known exactly and must belong to U00

(9.1.3) will be transformed to the time domain, resulting in the difference equa-
tion

yu.k/Ca1yu.k�1/C : : :Camyu.k�m/ D b1u.k�d�1/C : : :Cbmu.k�d�m/ :
(9.1.5)

Now, the measured values y.k/ are used instead of the model output yu.k/ and fur-
thermore the estimated parameters are plugged into the equation, leading to

y.k/C Oa1.k � 1/y.k � 1/C : : :C Oam.k � 1/y.k �m/
� Ob1.k � 1/u.k � d � 1/ � : : : � Obm.k � 1/u.k � d �m/ D e.k/ :

(9.1.6)

The equation error e.k/ (residual) is introduced which is caused by the use of the
measured values y.k/ instead of the “true” output yu.k/ and the use of parameter
estimates instead of the “true” parameters. Figure 9.1 shows the overall setup. Ac-
cording to Chap. 1 (see Fig. 1.8), this setup is called the generalized equation error.
This error definition is linear in parameters, which is a requirement for the applica-
tion of direct methods of parameter estimation. As was already stated in Sect. 1.3,
direct methods allow the determination of the parameter estimates in one pass.

(9.1.6) can be interpreted as the prediction Oy.kjk�1/ of the output signal y.k/ for
one time step ahead into the future (one-step prediction) based on the measurements
that have been available up to the time step k � 1. In this context, (9.1.6) can be
written as

Oy.kjk � 1/ D �Oa1.k � 1/y.k � 1/ � : : : � Oam.k � 1/y.k �m/
C Ob1.k � 1/u.k � d � 1/C : : : � Obm.k � 1/u.k � d �m/

D  T.k/ O�.k � 1/
(9.1.7)

with the data vector

 T.k/ D ��y.k � 1/ : : : �y.k �m/ u.k � d � 1/ : : : u.k � d �m/ � (9.1.8)

and the parameter vector

O�T.k/ D � Oa1 : : : Oam
Ob1 : : : Obm

�
: (9.1.9)

As one can see, (9.1.7) corresponds to the regression model in the non-linear static
case, (8.3.3). The equation error in (9.1.6) can thus be interpreted as

e.k/ D y.k/ � Oy.kjk � 1/
Equation New One Step Prediction

Error Observation of the Model
: (9.1.10)

Now, the input and output are sampled for the data points k D 0; 1; 2; : : : ; mCdCN .
For the time step k D mC d , the data vector  (9.1.8) can be filled up for the first
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time. For the time steps k D mCd;mCd C 1; : : : ; mCd CN , a system of N C 1

equations of the form

y.k/ D  T.k/ O�.k � 1/C e.k/ (9.1.11)

can be set up. In order to determine the 2m parameters, one needs at least 2m equa-
tions, thus N � 2m � 1. In order to suppress the influence of the disturbance n.k/,
one will typically use much more equations, so that N 	 2m � 1.

These N C 1 equations can be written in matrix form as

y.mC d CN/ D � .mC d CN/ O�.mC d CN � 1/C e.mC d CN/ (9.1.12)

with

yT.mC d CN/ D �
y.mC d/ y.mC d C 1/ : : : y.mC d CN/

�
(9.1.13)

and the data matrix

� .mC d CN/ D˙ �y.mC d � 1/ : : : �y.d/ u.m � 1/ : : : u.0/

�y.mC d/ : : : �y.d C 1/ u.m/ : : : u.1/
:::

:::
:::

:::

�y.mC d CN � 1/ : : : �y.d CN/ u.mCN � 1/ : : : u.N /

�
:

(9.1.14)

For the minimization of the cost function

V D eT.mC d CN/e.mC d CN/ D
mCdCNX
kDmCd

e2.k/ (9.1.15)

with

eT.mC d CN/ D �
e.mC d/ e.mC d C 1/ : : : e.mC d CN/

�
; (9.1.16)

one must in analogy to Sect. 8.3 determine the first derivative of the cost function,
see (8.3.11), and equate it to zero,

dV
d�

ˇ̌̌
ˇ
�D O�

D �2� T�y � � O�� ŠD 0 : (9.1.17)

For the time step k D m C d C N , the solution of the over-determined system of
equations is given as

O� D �
� T�

��1
� Ty ; (9.1.18)

compare (8.3.13). With the abbreviation

P D �
� T�

��1
; (9.1.19)

the equation is given as
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O� D P� Ty : (9.1.20)

To calculate the parameter estimate O� , one must thus invert the matrix

� T� D P�1 see next page (9.1.21)

and multiply it with the vector

� Ty see next page ; (9.1.22)

see e.g. (Åström and Eykhoff, 1971).
The matrix� has the dimension .NC1/�2m and thus grows quite large for large

measurement periods. The matrix � T� is for stationary input and output signals
symmetric and has independent of the measurement period the dimension 2m� 2m.
In order for the inverse to exist, the matrix � T� must have the (full) rank 2m or

det
�
� T�

� D det
�
P�1

� ¤ 0 : (9.1.23)

This necessary condition means among others that the process under investigation
must be excited sufficiently by the input signal, see Sect. 9.1.4. According to (9.1.17),
the second derivative is given as

dV
d�d�T D � T� : (9.1.24)

In order for the cost function to be (locally) minimal at the optimum determined
from (9.1.17) and for O� to have a unique solution, the matrix � T� must be positive
definite, i.e.

det� T� > 0 : (9.1.25)

If both � T� and � Ty are divided by N , then the individual elements of the
matrix and the vector are correlation functions with different starting and ending
points as (9.1.21) and (9.1.22) show. For large N however, one can neglect these
different starting and ending times and build a “correlation matrix”

.N C 1/�1� T� D
˙

ORyy.0/ ORyy.1/ : : : ORyy.m � 1/ � ORuy.d/ : : : � ORuy.d Cm � 1/
ORyy.1/ ORyy.0/ : : : ORyy.m � 2/ � ORuy.d � 1/ : : : � ORuy.d Cm � 2/
:::

:::
:::

:::
:::

: : : ORyy.0/ � ORuy.d �mC 1/ : : : � ORuy.d/
ORuu.0/ : : : ORuu.m � 1/

:::
:::

:::
:::

:::
ORuu.0/

�

(9.1.26)

and a “correlation vector”
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.N C 1/�1� Ty D

˙

� ORyy.1/

� ORyy.2/
:::

� ORyy.m/
ORuy.d C 1/

:::
ORuy.d Cm/

�

: (9.1.27)

The method of least squares can thus for the dynamic case also be expressed by
correlation functions. If one determines O� according to

O� D
�

1

N C 1
� T�

��1
1

N C 1
� Ty ; (9.1.28)

then the elements of the matrix and the vector will approach constant values of the
correlation function in case of convergence. Thus, the entries of the matrix and the
vector are very well suited as non-parametric and easy to interpret intermediate re-
sults to check the progress of the parameter estimation.

One should keep in mind that only the following correlation functions are em-
ployed,

ORyy.0/; ORyy.1/; : : : ; ORyy.m � 1/
ORuu.0/; ORuu.1/; : : : ; ORuu.m � 1/

ORuy.d/; ORuy.d C 1/; : : : ; ORuy.d Cm � 1/ :
Thus, always m values will be used for the calculation of the correlation functions.
If the correlation functions are also considerably different from zero for other time
shifts � , i.e. � < 0 and � > m � 1 or � < d and � > d C m � 1 respectively,
the technique does not employ the entire available information about the process
dynamics. This topic will again be discussed in Sect. 9.3.

In order to calculate the estimates for the parameters, one has the following op-
tions:

� Set up � and y . Calculate � T� and � Ty . Then solve the parameter estimation
problem using (9.1.18)

� Determine the elements of � T� and � Ty in form of the sums given by (9.1.21),
(9.1.22). Then use (9.1.18)

� Determine the elements of .N C 1/�1� T� and .N C 1/�1� Ty in the form of
the correlation functions according to (9.1.26), (9.1.27). Then use (9.1.28)

9.1.2 Convergence

In order to examine the convergence, the expected values and the convergence of
the parameter estimates will be analyzed for the case assumed in (9.1.4), where the
output has been affected by a stochastic noise n.k/.
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For the expected value of the estimate, one obtains by inserting (9.1.12) into
(9.1.18) under the assumption that the estimated parameters O� of the model (9.1.12)
already agree with the true process parameters �0,

E
˚ O�� D E

˚
.� T� /�1� T��0 C .� T� /�1� Te

� D �0 C E
˚
.� T� /�1� Te

�
;

(9.1.29)
where

b D E
˚
.� T� /�1� Te

�
(9.1.30)

is a bias. The afore mentioned assumption that O� D �0 is satisfied, if the bias van-
ishes. This leads to

Theorem 9.1 (First Property of the Bias-Free Parameter Estimation).
If the parameters of the dynamic process governed by (9.1.5) are estimated bias-

free by the method of least squares, then � T and e are uncorrelated and furthermore
Efeg D 0. Then

b D E
˚
.� T� /�1� T�Efeg D 0 (9.1.31)

for an arbitrary, also finite measurement time N . ut
This means that according to (9.1.27),

.N C 1/�1Ef� Teg D E

‚�

� ORye.1/
:::

� ORye.m/

� ORue.d C 1/
:::

� ORue.d Cm/

ƒ̆

D 0 : (9.1.32)

For O� D �0, the input signal u.k/ is not correlated with the error signal e.k/, so that
Rue.�/ D 0. (9.1.32) will be revisited later, see (9.1.54).

It will now be investigated, which conditions must be fulfilled so that a bias-
free parameter estimate can be obtained. For this investigation, it is assumed that the
signals are stationary processes, so that the estimates of the correlation functions are
consistent and furthermore

lim
N !1 E

˚ ORuu.�/
� D Ruu.�/

lim
N !1 E

˚ ORyy.�/
� D Ryy.�/

lim
N !1 E

˚ ORuy.�/
� D Ruy.�/ :

From the theorem of Slutsky, see App. A.1, it follows with (9.1.28) for the conver-
gence of the parameters in probability

plim
N !1

O� D
�

plim
N !1

1

N C 1
� T�

��1�
plim

N !1
1

N C 1
� Ty

�
: (9.1.33)
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This includes

lim
N !1 E

˚ O�� D
�

lim
N !1 E

�
1

N C 1
� T�

���1�
lim

N !1 E
�

1

N C 1
� Ty

��
: (9.1.34)

This means that the terms in brackets each individually converge to steady values
and are then statistically independent. Now (9.1.34) is separated for the useful signal
and the disturbance. With (9.1.4), (9.1.8) becomes

 T.k/ D ��yu.k � 1/ : : : �yu.k �m/ u.k � d � 1/ : : : u.k � d �m/ �
C ��n.k � 1/ : : : �n.k �m/ 0 : : : 0 �
D  T

u .k/C T
n .k/

(9.1.35)

and consequently
� T D � T

u C � T
n : (9.1.36)

Furthermore, according to (9.1.4)

y.k/ D yu.k/C n.k/ D  T
u .k/�0 C n.k/ ; (9.1.37)

where the �0 are the true process parameters and thus

y D �u�0 C n D �
� � �n

�
�0 C n : (9.1.38)

If (9.1.38) is inserted into (9.1.34)

lim
N !1 Ef O�g D

�
lim

N !1 E
�

1

N C 1
� T�

���1

�
lim

N !1 E
�

1

N C 1
� T�� � �n

�
�0 C 1

N C 1
� Tn

��

D �0 C b ;

(9.1.39)

where

lim
N !1b D

�
lim

N !1 E
�

1

N C 1
� T�

���1

�
lim

N !1 E
�

1

N C 1
� Tn � 1

N C 1
� T�n�0

�� (9.1.40)

represents an asymptotic bias. As an abbreviation, a “correlation matrix” is intro-
duced as

OR.N C 1/ D 1

N C 1
� T� (9.1.41)

R D lim
N !1 E

�
1

N C 1
� T�

�
; (9.1.42)
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and it follows on the basis of (9.1.26) and (9.1.27)

lim
N !1b D

R�1 lim
N !1 E

�� � ORyn.1/
:::

� ORyn.m/

0
:::

0

�

�

�

a1
ORyn.0/C : : :C am

ORyn.1 �m/
:::

a1
ORyn.m � 1/C : : :C am

ORyn.0/

0
:::

0

��

;

(9.1.43)

where ORun.�/ D 0, i.e. it is assumed that input signal u.k/ and the noise n.k/ are
uncorrelated. For the CCF, one obtains with y.k/ D yu.k/C n.k/

E
˚ ORyn.�/

� D E
�

1

N C 1

NX
kD0

y.k/n.k C �/

�

D E
�

1

N C 1

NX
kD0

yu.k/n.k C �/

�

	

D0

CE

(
1

N C 1

NX
kD0

n.k/n.k C �/

)

D Rnn.�/ ;

(9.1.44)

and thus

lim
N !1b D �R�1 lim

N !1 E

�� ORnn.1/C a1
ORnn.0/C : : :C am

ORnn.1 �m/
:::

ORnn.m/C a1
ORnn.m � 1/C : : :C am

ORnn.0/

0
:::

0

��

:

(9.1.45)
The bias vanishes if for N ! 1,

mX
j D0

ajRnn.� � j / D 0 for 1 � � � m and a0 D 1 : (9.1.46)

This is the Yule-Walker equation of the auto-regressive signal process (2.4.17)

n.k/C a1n.k � 1/C : : :C amn.k �m/ D 	.k/

A.´�1/n.´/ D 	.´/
; (9.1.47)
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Fig. 9.2. Required structure of a process for the bias-free parameter estimation with the method
of least squares, 	 is a white noise

where 	.k/ is a statistically independent Gaussian random signal with .	; ��/ D
.0; 1/. (9.1.47) means that the noise n.k/ must be generated from white noise 	.k/
by a filter with the transfer function 1=A.´�1/ so that a bias-free estimate can be
obtained with b D 0. Therefore,

G�.´/ D n.´/

	.´/
D 1

A.´�1/
; (9.1.48)

see Fig. 9.2. The output is then given as

y.´/ D 1

A
	.´/C B

A
u.´/ (9.1.49)

and the error signal as

e.´/ D � OBu.´/C OAy.´/ D � OBu.´/C
OA
A
	.´/C OAB

A
u.´/ (9.1.50)

If the process and model parameters match exactly, i.e. O� D �0 or OA D A and
OB D B respectively and thus the bias b vanishes, then

e.´/ D 	.´/ : (9.1.51)

Theorem 9.2 (Conditions for a Consistent Parameter Estimation).
The parameters of a dynamic process governed by (9.1.5) are estimated consis-

tent (asymptotically bias-free) by the method of least squares, if the error e.k/ is
uncorrelated, that is if
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Ree.�/ D �2
e ı.�/ with ı.�/ D

�
1 for � D 0

0 for � ¤ 0
(9.1.52)

is valid and e.k/ is furthermore zero-mean, i.e.

E
˚
e.k/

� D 0 : (9.1.53)

ut
An annotation to the above theorem: If the conditions of the above theorem are sat-
isfied, then the parameter estimates are also bias-free for finite measurement times
N .

From (9.1.32) follows for a bias-free estimate in finite measurement time N

ORye.�/ D 1

N C 1

mCdCNX
kDmCd

e.k/y.k � �/

D 1

N C 1

mCdCNX
kDmCd

e.k C �/y.k/ D 0 for � D 1; 2; : : : ; m

: (9.1.54)

For e.k/, one obtains by considering (9.1.4), (9.1.7), (9.1.10), (9.1.35), and O� D �0

e.k/ D y.k/ � T.k/�0 D yu.k/C n.k/ � T
u .k/�0 � T

n .k/�0

D n.k/ � T
n .k/�0

(9.1.55)

and
 T

n .k/ D ��n.k � 1/ : : : �n.k �m/ 0 : : : 0 � : (9.1.56)

The equation error then only depends on n.k/.
If one introduces (9.1.4) into (9.1.54) and bears in mind that upon convergence

with O� D �0 the wanted signal yu.k/ does not correlate with e.k/, then follows

E
˚ ORye.�/

� D E

(
1

N C 1

mCdCNX
kDmCd

e.k/n.k � �/
)

D Rne.�/ for � D 1; 2; : : : ; m :

(9.1.57)
If the disturbance n.k/ can be governed by an auto-regressive signal process accord-
ing to (9.1.47), then it follows from multiplication of this equation with n.k� �/ and
determination of the expected value

Rnn.�/C a1Rnn.� � 1/C : : :C amRnn.� �m/ D Rne.�/ : (9.1.58)

According to the Yule-Walker equation and for � > 0, the term Rne.�/ vanishes,

Rnn.�/C a1Rnn.� � 1/C : : :C amRnn.� �m/ D 0 (9.1.59)

with
Rne.�/ D 0 for � D 1; 2; : : : ; m ; (9.1.60)
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and thus, according to (9.1.32) and (9.1.57), the bias b vanishes, i.e. b D 0.
The theorems that have been presented in this chapter so far are valid assuming

a special form filter for the noise acting on the systems output, (9.1.48). Then, the
parameter estimates are also unbiased for finite measurement periods.

The necessary form filter

G�.´
�1/ D D.´�1/

C.´�1/
D 1

A.´�1/
(9.1.61)

is quite particular. For dynamic systems of an order greater than 1, the numerator of
the disturbance transfer function D.´�1/ is typically not equal to 1, but rather has
the form

D.´�1/ D d0 C d1´
�1 C d2´

�2 C : : : : (9.1.62)

Therefore, the parameter estimation will typically yield biased results for dynamic
processes affected by disturbances. As (9.1.40) shows, the bias grows larger as the
amplitude of the disturbance n.k/ increases compared to the wanted signal. The
model structure as depicted in Fig. 9.2 is termed ARX (Ljung, 1999).

If the conditions in Theorem 9.2 cannot be satisfied, biased parameter estimates
will result. The magnitude of the bias is given by the results from (9.1.43) and the
annotations to Theorem 9.2 as

E
˚
b.N C 1/

� D �E
˚
R�1.N C 1/

�

D E

�� ORnn.1/C a1
ORnn.0/C : : :C am

ORnn.1 �m/
:::

ORnn.m/C a1
ORnn.m � 1/C : : :C am

ORnn.0/

0
:::

0

��

:
(9.1.63)

For the special case of the noise n.k/ being a white noise, this equation can be
simplified using

E
˚ ORnn.0/

� D Rnn.0/ D E
˚
n2.k/

� D �2
n ; (9.1.64)

resulting in

E
˚
b.N C 1/

� D �E
˚
R�1.N C 1/

�

�

a1

:::

am

0
:::

0

�

�2
n

D �E
˚
R�1.N C 1/

��I 0
0 0

�
�0�

2
n :

(9.1.65)

Further studies on the bias can be found e.g. in (Sagara et al, 1979).
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9.1.3 Covariance of the Parameter Estimates and Model Uncertainty

Considering (9.1.29) and assuming O� D �0, the covariance matrix of the parameter
estimates is given as

cov�� D E
˚
. O� � �0/. O� � �0/

T�
D E

˚�
.� T� /�1� Te

��
.� T� /�1� Te

�T�
D E

˚
.� T� /�1� TeeT� .� T� /�1

�
:

(9.1.66)

One has to consider that ..� T� /�1/T D .� T� /�1, since .� T� / is a symmetric
matrix. If � and e are statistically independent, then

cov�� D E
˚
.� T� /� T�E˚eeT�E˚� .� T� /�1

�
(9.1.67)

and if furthermore e is uncorrelated,

E
˚
eeT� D �2

e I : (9.1.68)

Under these conditions and satisfying the requirements of Theorem 9.2, i.e. for a
bias-free parameter estimate, the covariance matrix becomes

cov�� D �2
e E
˚
.� T� /�1

� D �2
e EfPg

D �2
e E
˚
..N C 1/�1� T� /�1

� 1

N C 1
D �2

e
1

N C 1
E
˚ OR�1.N C 1/

�
:

(9.1.69)

For N ! 1, one obtains

lim
N !1 cov�� D R�1 lim

N !1
�2

e

N C 1
D 0 : (9.1.70)

The parameter estimates are thus consistent in the mean square if Theorem 9.2 is
satisfied.

In general, �2
e is unknown. It can be estimated bias-free by (Stuart et al, 1987;

Kendall and Stuart, 1977b,a; Johnston and DiNardo, 1997; Mendel, 1973; Eykhoff,
1974)

�2
e � O�2

e .mC d CN/ D 1

N C 1 � 2me
T.mC d CN/e.mC d CN/ ; (9.1.71)

where
e D y � � O� : (9.1.72)

Thus, one cannot only determine the parameter estimates according to (9.1.18)
or (9.1.28), but at the same time also estimates for the variances and covariances
employing (9.1.69) and (9.1.71).

Besides expressions for the covariance of the parameter estimates, it is also in-
teresting to find metrics for the model uncertainty. There is no unique way to do so.
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Hence, in the following, some methods that are presented in literature are summa-
rized, providing a tool-set to judge the model uncertainty.

The first approach is based on the covariance matrix of the parameter estimates.
It is assumed that the parameter error O���0 is Gaussian distributed around zero with
the covariance matrix P� . Then, each single parameter error is Gaussian distributed
with the probability distribution function

p. O�k/ D 1p
2�P�;kk

exp

 
�

O�k � �0;k

2P�;kk

!
; (9.1.73)

where O�k is the estimate of the kth parameter, �0;k the true parameter and P�;kk the
corresponding element on the diagonal ofP� . One can use this equation to determine
the probability that the estimate O�k is more than a distance a away from the true value
�0;k by evaluating the integral

P.j O�k � �0;kj > a/ D 1 �
Z a

�a

1p
2�P�;kk

exp
�

� x

2P�;kk

�
dx ; (9.1.74)

see also (Ljung, 1999; Box et al, 2008) for a similar derivation.
Next, a confidence interval for the parameter vector shall be determined. Here,

the �2 distribution will be used. The sum of k independent Gaussian distributed
random variables has a �2 distribution with k degrees of freedom. Consequently, the
quantity

r2 D
X

k

� O�k � �0;k

�2
P�;kk

(9.1.75)

is �2 distributed with d D dim� degrees of freedom. Confidence intervals which
state that r does not exceed rmax with a certain probability can be taken from any
table for the �2 distribution as found in textbooks on statistics and can be used to
calculate confidence ellipsoids, see also (Ljung, 1999).

By means of the rules of error propagation, one can now deduce the uncertainty
of the resulting model as well. The model, which shall be denoted as M in the fol-
lowing, is basically a non-linear function of the estimated parameters, i.e.

M D f . O�/ : (9.1.76)

Then, the covariance can be transformed as

cov f . O�/ D
�
@f .�/

@�

ˇ̌̌
ˇ
�D O�

�
P�

�
@f .�/

@�

ˇ̌̌
ˇ
�D O�

�T

(9.1.77)

see e.g. (Vuerinckx et al, 2001). Consequently, the covariance of the output of a
system with the model y D �� is given as

cov Oy D � cov� O�� T : (9.1.78)
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The above derivations are all based on the assumptions that the estimated para-
meters are random variables with Gaussian distribution and are estimated bias-free.
As this does not have to be the case, especially for finite, short sample lengths N ,
alternatives will be mentioned in the following.

An extension of the confidence intervals to the case of finite sample lengths has
been described in (Campi and Weyer, 2002; Weyer and Campi, 2002).

For the location of poles and zeros in transfer functions, it is suggested to deter-
mine the confidence regions by perturbing each estimated zero and pole respectively
and check whether the resulting model still represents the system with a sufficient
fidelity, (Vuerinckx et al, 2001). It has been shown that the shape of the confidence
intervals can differ drastically from the typically assumed ellipsoids, see also (Pin-
telon and Schoukens, 2001). The uncertainty ellipsoids have also been discussed in
(Gevers, 2005) and (Bombois et al, 2005), where it has been pointed out that the cal-
culation of uncertainty ellipsoids in the frequency domain is often based on wrong
assumptions about the underlying distribution as the uncertainty is analyzed at each
point separately. A survey on further methods to determine the model quality can be
found in (Ninness and Goodwin, 1995).

Example 9.1 (First Order System for LS Parameter Estimation).
The method of least squares for dynamic systems shall now be illustrated for two

examples. First, a simple difference equation of first order will be analyzed, then the
Three-Mass Oscillator will be treated.

The simple difference equation of first order is given as

yu.k/C a1yu.k � 1/ D b1u.k � 1/ (9.1.79)
y.k/ D yu.k/C n.k/ : (9.1.80)

This difference equation e.g. represents a first order continuous-time systems with a
ZOH (Zero Order Hold). As a process model for the parameter estimation, one will
use in analogy to (9.1.6) the model

y.k/C Oa1y.k � 1/ � Ob1u.k � 1/ D e.k/ : (9.1.81)

A total of N C 1 values of u.k/ and y.k/ will be measured,

� D

˙ �y.0/ u.0/

�y.1/ u.1/
:::

�y.N � 1/ u.N � 1/

�
(9.1.82)

and

y D

˙
y.1/

y.2/
:::

y.N /

�
: (9.1.83)
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Then,

.N C 1/�1� T� D
� ORyy.0/ � ORuy.0/

� ORuy.0/ ORuu.0/

�
(9.1.84)

.N C 1/�1� Ty D
�� ORyy.1/

� ORuy.1/

�
: (9.1.85)

The inverse is then given as

.N C 1/
�
� T�

��1 D 1

ORuu.0/ ORyy.0/ � � ORuy.0/
�2
� ORuu.0/ ORuy.0/

ORuy.0/ ORyy.0/

�
(9.1.86)

and the parameter estimates finally become
� Oa1

Ob1

�
D 1

ORuu.0/ ORyy.0/ � � ORuy.0/
�2
�� ORuu.0/ ORyy.1/C ORuy.0/ ORuy.1/

� ORuy.0/ ORyy.1/C ORyy.0/ ORuy.1/

�
:

(9.1.87)
If the requirements in Theorem 9.2 are not satisfied, then the resulting bias can ac-
cording to (9.1.45) be estimated as

b D �E
n
.N C 1/

�
� T�

��1
o
E
� ORnn.1/C Oa1

ORnn.0/

0

�

D � 1

ORuu.0/ ORyy.0/ � � ORuy.0/
�2
�� ORuu.0/ ORnn.1/C Oa1

ORuu.0/ ORnn.0/

� ORuy.0/ ORnn.1/C Oa1
ORuy.0/ ORnn.0/

�
:

(9.1.88)

This expression becomes much easier to read if for both u.k/ and n.k/, one assumes
a white noise such that Ruy.0/ D g.0/ D 0. Then

E
˚
� Oa1

� D �a1

Rnn.0/

Ryy.0/
D �a1

n2.k/

y2.k/
D �a1

1

1C y2
u .k/

n2.k/

(9.1.89)

E
˚
� Ob1

� D 0 : (9.1.90)

The bias of Oa1 gets larger as the noise amplitude increases. The parameter Ob1 is in
this example estimated bias-free.

The covariance matrix of the parameter error is according to (9.1.69) given as

cov
�
� Oa1

� Ob1

�
D E

(
�2

e

ORuu.0/ ORyy.0/ � � ORuy.0/
�2
� ORuu.0/ ORuy.0/

ORuy.0/ ORyy.0/

�)
1

N C 1
:

(9.1.91)
If u.k/ is a white noise, then the variances can be obtained as

var� Oa1 D e2.k/

y2.k/

1

N C 1
(9.1.92)
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and

var� Ob1 D e2.k/

u2.k/

1

N C 1
: (9.1.93)

If furthermore n.k/ is a white noise, then one obtains for the bias-free estimation
O� D �0 after squaring (9.1.55)

var� Oa1 D �
1C a2

1

�n2.k/

y2.k/

1

N C 1
(9.1.94)

var� Ob1 D �
1C a2

1

�n2.k/

u2.k/

1

N C 1
: (9.1.95)

The standard deviation of the parameter estimates thus diminishes proportionally to
the square root of the measurement time. An interesting aspect is the fact that

var
�
� Ob1

�
var
�
� Oa1

� D y2.k/

u2.k/
D y2

u .k/

u2.k/
C n2.k/

u2.k/
: (9.1.96)

The variance of the parameter Ob1 gets smaller in relation to the variance of the pa-
rameter Oa1 the smaller n.k/ and the smaller yu.k/, i.e. as the input signal u.k/ has a
higher-frequent content. ut
Example 9.2 (First Order System in Continuous Time for LS Estimation).

Now, a first order system with the transfer function

G.s/ D K

1C sT1

(9.1.97)

will be studied. The system parameters have been chosen as K D 2 and T1 D 0:5 s.
As the parameter estimation has so far only been introduced for discrete-time dy-

namic systems, the system must first be subjected to the ´-transform. For the treat-
ment of continuous-time systems, the reader is referred to Chap. 15. The discrete-
time model is given as

G
�
´�1

� D b1´
�1

1C a1´�1
D 0:09754´�1

1 � 0:9512´�1
(9.1.98)

with the coefficients being given as

b1 D K
	
1 � e� T0

T1



D 0:09754 (9.1.99)

and
a1 D �e� T0

T1 D 0:9512 (9.1.100)

for a sample time of T0 D 0:025 s.
The matrix � is set up according to (9.1.82) and the vector y analog to (9.1.83).
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Table 9.1. Parameter estimation results for the first order process

�n Oa1
Ob1

OK OT1 � OKŒ%� � OT1Œ%� Remark

� 0 �0:9510 0:09802 2 0:4975 � 0 �0:50
0:0002 �0:9500 0:09807 1:9617 0:4875 �1:92 �2:51 see Fig. 9.3
0:002 �0:9411 0:09851 1:6735 0:4121 �16:32 �17:59
0:02 �0:8607 0:10241 0:7354 0:1667 �63:23 �66:66 see Fig. 9.4
0:2 �0:4652 0:12148 0:2272 0:0327 �88:64 �93:47
2:0 �0:0828 0:1399 0:1525 0:0100 �92:37 �97:99 see Fig. 9.5

A white noise has been generated and has been superimposed onto the output.
Three different noise levels have been added to the output and the results have been
graphed in Figs. 9.3 through 9.5. The first case, depicted in Fig. 9.3, represents a very
small noise level (�n D 0:0002). One can see that the parameter estimates match
very well with the theoretical values that have been marked by the dash-dotted lines.
Moderate noise (�n D 0:02) has been added in Fig. 9.4 and one can already witness
a bias in the parameter estimates. Finally, Fig. 9.5 illustrates the effect of even larger
noise (�n D 2). Despite the long time-base, the parameter estimates do not converge
to the real values, but rather settle to the biased values. The diagrams have been
generated with the DSFI algorithm, see Chap. 22, which is numerically more robust.
The results however are comparable to those that would have been obtained with the
direct calculation of the pseudo-inverse of the matrix � .

When using the method of least squares to determine a discrete-time model of
a physical process, which is governed by ODEs, one has to convert the parameters
of the discrete-time model back to the parameters of the corresponding model in
continuous-time to obtain physical parameters such as e.g. inductances, spring con-
stants, and such. The two physical parameters of the first order system are given
as

K D b1

1C a1

(9.1.101)

and
T1 D � T0

ln �a1

: (9.1.102)

The estimated results, the errors and such are tabulated in Table 9.1. One can see
that the bias of the estimated system parameters can become quite large, rendering
the estimated parameter values useless. As can be seen, the bias mainly affects the
parameter estimate Oa1, while the estimate Ob1 still converges to the true value (see
Example 9.1). Regarding the noise, one should however keep in mind that the noise
levels chosen for the illustration of the bias are really large. Secondly, in many cases
one can resort to other methods, which are better suited for noisy signals, such as
e.g. the orthogonal correlation, see Sect. 5.5.2.

Example 9.3 (Discrete Time Model of the Three-Mass Oscillator). To apply the
method of least squares to a real process, another example will now be presented. The
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Fig. 9.3. Parameter estimation for a first order system. True parameter values (dash-dotted
line), �n D 0:0002, �n=�y D 0:0004
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Fig. 9.4. Parameter estimation for a first order system. True parameter values (dash-dotted
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Three-Mass Oscillator will be covered now. In this chapter, a discrete-time model
will be identified, an estimation of the physical parameters of a continuous-time
model will be presented in Chap. 15.

The continuous-time transfer function from the torque of the motor to the po-
sition of the last mass is given as a state space model with six states. In transfer
function notation, the system has six poles, thus the discrete-time transfer function
will theoretically also be of order six and is thus given as

G.´�1/ D b1´
�1 C b2´

�2 C b3´
�3 C b4´

�4 C b5´
�5 C b6´

�6

1C a1´�1 C a2´�2 C a3´�3 C a4´�4 C a5´�5 C a6´�6
: (9.1.103)

The setup of the matrix � , see (9.1.82), and the vector y , see (9.1.83), is shown here
to clarify the case of a higher order system. � is written as

� D

˙ �y.5/ �y.4/ : : : �y.0/ u.5/ : : : u.0/

�y.6/ �y.5/ : : : �y.1/ u.6/ : : : u.1/
:::

:::
:::

:::
:::

�y.N � 1/ �y.N � 2/ : : : �y.N � 6/ u.N � 1/ : : : u.N � 6/

�

(9.1.104)
and y as

y D

˙
y.6/

y.7/
:::

y.N /

�
: (9.1.105)

The parameter vector � then consists of the elements

�T D �
a.1/ a.2/ : : : a.6/ b.1/ : : : b.6/

�
: (9.1.106)

The process has been excited with a PRBS signal (see Sect. 6.3). The process in-
put is the torque of the motorMM acting on the first mass. The output is the rotational
speed of the third mass, !3 D P'3, as shown in Fig. 9.6. The parameters can reliably
be estimated in 20 seconds of the excitation as can be witnessed in Fig. 9.7. An im-
portant issue in the estimation of discrete-time models is the sample rate. The data for
the Three-Mass Oscillator have been sampled with a sample time of T0 D 0:003 s.
This sample rate was too high to obtain reasonable results, thus the data have been
downsampled by a factor of N D 16, leading to T0 D 48ms. Section 23.2 discusses
the optimal choice of the sample rate.

In order to judge the quality of the estimated model, the frequency response of
the discrete-time model has been graphed against the frequency response determined
by direct measurement with the orthogonal correlation (see Sect. 5.5.2). This com-
parison in Fig. 9.8 demonstrates the good fidelity of the estimated model. ut
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Fig. 9.6. Input and output signals for the parameter estimation of a discrete-time model of the
Three-Mass Oscillator

9.1.4 Parameter Identifiability

Before applying any parameter identification method, one has to check the identi-
fiability of the parameters. Identifiability in general relates to the issue whether the
true system can be described by means of a model that is identified using a certain
identification method. This property hence depends on the

� System S
� Experimental setup X
� Model structure M
� Identification method I

Many different definitions have been introduced. In (Bellmann and Åström, 1970),
identifiability is defined to be satisfied if the identification criterion, i.e. the cost func-
tion, has an unambiguous minimum. In most cases however, identifiability is linked
to the consistency of the estimation. For a parametric system model, the model pa-
rameters � are identifiable, if their estimates O�.N / converge to the true values �0

for N ! 1. The convergence criterion is however chosen differently by different
authors. Åström and Bohlin (1965) as well as Tse and Anton (1972) tested for con-
vergence in probability, (Staley and Yue, 1970) used the convergence in the mean
square. In the lines of Staley and Yue (1970) and Young (1984), the following con-
cepts shall be used.
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Definition of Parameter Identifiability

The parameter vector � of a model is identifiable, if the estimated values O� converge
to the true parameters �0 in the mean square. This means that

lim
N !1 E

˚ O�.N /� D �0

lim
N !1 cov� O�.N / D 0

and hence requires an estimator that is consistent in the mean square.
In the following, the conditions that have to be fulfilled by the system S, the

experiment X, the model structure M, and the identification method I to guarantee
parameter identifiability shall be analyzed and shall be tested for the method of least
squares.

It is first assumed that the model structure M and the system structure S agree and
that the model structure has been chosen such that Theorem 9.2 is fulfilled, i.e. that
a consistent estimate can be obtained. Now, it shall be analyzed, which additional
requirements have to be fulfilled by the system S and the experiment X.

To be able to obtain the parameter estimates O� according to (9.1.18), one must
ensure that det.� T� / ¤ 0, (9.1.23), and (9.1.25) to ensure that the cost function
reaches its global minimum and hence O� becomes the optimal parameter set. Both
conditions are satisfied if

det� T� D detP�1 > 0 : (9.1.107)

With the correlation matrix, one can write

det
1

N
� T� D det OR.N / > 0 : (9.1.108)

With (9.1.70), also cov�� will convergence to zero as N ! 1, so that the estimate
is consistent in the mean square. The correlation matrix is now divided and analyzed
in its limit N ! 1,

R D
�
R11 R12

R21 R22

�
(9.1.109)

such that e.g.

R22 D

˙
Ruu.0/ Ruu.1/ : : : Ruu.m � 1/
Ruu.�1/ Ruu.0/ : : : Ruu.m � 2/

:::
:::

:::

Ruu.�mC 1/ Ruu.�mC 2/ : : : Ruu.0/

�
(9.1.110)

or due to the symmetry of Ruu,

R22 D

˙
Ruu.0/ Ruu.1/ : : : Ruu.m � 1/
Ruu.1/ Ruu.0/ : : : Ruu.m � 2/
:::

:::
:::

Ruu.m � 1/ Ruu.m � 2/ : : : Ruu.0/

�
: (9.1.111)
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For the determinant in (9.1.108) with the decomposition in (9.1.109), one can
now write (Young, 1984)

jRj D jR11j jR22 �R21R
�1
11 R12j (9.1.112)

or
jRj D jR22j jR11 �R12R

�1
22 R21j : (9.1.113)

Necessary conditions are hence that

detR22 > 0 (9.1.114)

and
detR11 > 0 : (9.1.115)

These conditions lead to requirements on both the input signal and the system as will
be discussed in the following. One can in this context discern structural identifiabil-
ity, which means that the system is in general identifiable and identifiability, which
means that the chosen input allows indeed to identify the system.

Conditions on the Input Signal

In order to satisfy the condition in (9.1.114), one must check that (9.1.110) fulfills the
requisite that its determinant is greater than zero. According to the Sylvester criterion
for positive definite matrices, one must ensure that all northeastern sub-determinants
are also positive, i.e.

detRi > 0 for i D 1; 2; : : : ; m : (9.1.116)

This means that

detR1 D Ruu.0/ > 0

detR2 D
ˇ̌̌
ˇ Ruu.0/ Ruu.1/

Ruu.�1/ Ruu.0/

ˇ̌̌
ˇ > 0

:::

and finally
detR22 > 0 : (9.1.117)

Here, R22 > 0 does only depend on the input signal u.k/, hence (9.1.114) can
always be fulfilled by an appropriate choice of u.k/.

Theorem 9.3 (Condition for Persistent Excitation).
A necessary condition for the parameter estimation by means of the method of

least squares is that the input signal u.k/ D U.k/ � U fulfills the conditions

U D lim
N !1

1

N

mCdCN �1X
kDmCd

U.k/ (9.1.118)
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and
Ruu.�/ D lim

N !1
�
U.k/ � U ��U.k C �/ � U � (9.1.119)

exist and that the matrix R22 is positive definite. ut
These conditions have been stated by Åström and Bohlin (1965) for the maxi-

mum likelihood method and have been termed persistently exciting of order m. One
will note that the condition (9.1.114) is the same as for the correlation analysis,
(7.2.4) with the only difference being the order of the persistent excitation. Some
examples of persistently exciting input signals are

� Ruu.0/ > Ruu.1/ > : : : > Ruu.m/, a moving average signal process of order m
� Ruu.0/ ¤ 0;Ruu.1/ D : : : D Ruu.m/ D 0, white noise for m ! 1
� Ruu.0/ D a2 for � D 0;N�; 2N�; : : :, Ruu.�/ D �a2=N for �.1C 	N/ < � <

�.N � 1 C 	N/; 	 D 0; 1; 2; : : :, PRBS with amplitude a, cycle time � D T0

and period length N , persistently exciting of order m if N D mC 1

The condition stated in Theorem 9.3 can easily be examined by evaluating the auto-
correlation function of deterministic or stochastic signals.

The conditions for a persistent excitation of orderm can also be interpreted in the
frequency domain. From the Fourier analysis, one knows that a necessary condition
for the existence of the power spectral density of a signal process in discrete-time,

S�
uu.!/ D

1X
nD�1

Ruu.n/e�i!T0n D Ruu.0/C 2

1X
nD1

Ruu.n/ cos!T0n ; (9.1.120)

in the range 0 < ! < �=T0 is that the auto-correlation functionRuu.�/ > 0 for all � .
Then, the signal is persistently exciting of arbitrary order. Therefore, if S�

uu.!/ > 0

for all !, then the signal is persistently exciting of any order (Åström and Eykhoff,
1971). Persistent excitation of finite order means that S�

uu.!/ D 0 for certain frequen-
cies (as e.g. the Fourier transform of pulses, Sect. 4.2, or of the PRBS, Sect. 6.3).

Ljung (1999) requires that for the identification of a transfer function of orderm,
the signal should be persistently exciting of order 2m. It is hence sufficient to use m
sinusoids, see also Chap. 4 for multi-sine signals.

Conditions on the Process

In order to satisfy (9.1.115), one must ensure

detR1 D Ryy.0/ > 0

detR2 D
ˇ̌̌
ˇ Ryy.0/ Ryy.1/

Ryy.�1/ Ryy.0/

ˇ̌̌
ˇ D R2

yy.0/ �Ryy.1/ > 0

:::

and finally
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detR11 > 0 : (9.1.121)

While (9.1.117) had to be satisfied by choosing an appropriate input signal, the con-
dition in (9.1.121) depends on the system. If R22 is positive definite, then it follows:

Theorem 9.4 (Condition on the Process).
A necessary condition for the parameter estimation by means of the method of

least squares is that for the output y.k/ D Y.k/ � Y with

Y D lim
N !1

1

N C 1

mCdCNX
kDmCd

Y.k/ (9.1.122)

and

Ryy.�/ D lim
N !1

mCdCNX
kDmCd

�
Y.k/ � Y ��Y.k C �/ � Y � (9.1.123)

the matrix
R11 D �

Rij D Ryy.i � j /� i; j D 1; : : : ; m (9.1.124)

is positive definite. ut
In order to satisfy these requirements, one must ensure the following:

� The system must be stable. All poles of A.´/ must lie within the unit circle.
� Not all coefficients bi ; i D 1; 2; : : : ; m may be zero. To ensure that for a per-

sistently exciting input of order m, the output signal is persistently excited of the
same order m and hence the matrix R11 is positive definite, one must ensure that
...

� A.´/ and B.´/ may not have common roots.

This also means that the correct order m of the model must be chosen. If the
order of the system model is chosen too high, then poles and zeros can cancel. The
above results can be combined as follows (Tse and Anton, 1972):

� If the minimal dimension m is known, then stability, controllability, and observ-
ability also ensure identifiability.

If the conditions in Theorem 9.3 and 9.4 are satisfied and hence (9.1.114) and
(9.1.115) and satisfied, it is still not sure that (9.1.108) is satisfied since according to
(9.1.112) and (9.1.113), also the right factors must be positive definite. This shall be
illustrated by an example.

Example 9.4 (Parameter Identifiability for a Harmonic Excitation).
A linear, discrete-time process shall be excited by a sinusoidal excitation

u.kT0/ D u0 sin!1kT0 :

It shall now be investigated up to which order m, the parameters of the processes
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GP;A D b0 C b1´
�1 C : : :C bm´

�m

1C a1´�1 C : : :C am´�m

GP;B D b1´
�1 C : : :C bm´

�m

1C a1´�1 C : : :C am´�m

are identifiable if the transients in the output have settled. In both cases, the output
will be given as

y.kT0/ D y0 sin
�
!1kT0 C '

�
with different y0 and '. The correlation functions are given as

Ruu.�/ D u2
0

2
cos!1�T0

Ryy.�/ D y2
0

2
cos!1�T0 :

First process A (b0 ¤ 0) will be examined. One has to set up the matrices

R22 D

�
Ruu.0/ : : : Ruu.m/
:::

:::

Ruu.m/ : : : Ruu.0/

�

and

R11 D

�
Ryy.0/ : : : Ryy.m � 1/
:::

:::

Ryy.m � 1/ : : : Ryy.0/

�
:

For the process order m D 1,

detR22 D R2
uu.0/ �R2

uu.1/ D u2
0

2

�
1 � cos2 !1T0

�

D u2
0

2
sin2 !1T0 > 0 if !1T0 ¤ 0; �; 2�; : : :

detR11 D Ryy.0/ D y2
0

2
> 0

detR > 0 according to (9.1.112) :

The process is hence identifiable.
Now the case of a process order m D 2 is investigated,

detR22 D R3
uu.0/C 2R2

uu.1/Ruu.2/ �R2
uu.2/Ruu.0/ � 2R2

uu.1/Ruu.0/

D
�
u2

0

2

�3�
1 � cos4 !1T0 � sin4 !1T0 � 2 cos2 !1T0 sin2 !1T0

�
D 0

detR11 D R2
yy.0/ �R2

yy.1/ D y2
0

2
sin2 !1T0 > 0

detR D 0 according to (9.1.113) :
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The process is in this case not identifiable.
Now, process B (b0 D 0) will be examined. The matrices

R22 D

�
Ruu.0/ : : : Ruu.m � 1/
:::

:::

Ruu.m � 1/ : : : Ruu.0/

�

and

R11 D

�
Ryy.0/ : : : Ryy.m � 1/
:::

:::

Ryy.m � 1/ : : : Ryy.0/

�

have to be analyzed. For m D 1, the analysis yields

detR22 D Ruu.0/ D u2
0

2
> 0

detR11 D Ryy.0/ D y2
0

2
> 0

detR > 0 :

The process is identifiable. For m D 2,

detR22 D R2
uu.0/ �R2

uu.1/ D u2
0

2
sin2 !1T0 > 0

detR11 D R2
yy.0/ �R2

yy.1/ D y2
0

2
sin2 !1T0 > 0 if !1T0 ¤ 0; �; 2�; : : : :

However, even though R22 and R11 are positive definite, R is not, as can be shown
by e.g. choosing ' D �=2 and then evaluating the determinants.

This example shown that for b0, the conditions in (9.1.114) and (9.1.115) already
suffice to ensure that detR > 0, but not for b0 ¤ 0. (The conditions that have been
stated in (Åström and Bohlin, 1965) only cover the case b0 ¤ 0). The common
result is that with a single sinusoidal oscillation, one can only identify a process of a
maximum order of 1. One should note however that for process A, one can identify
three parameters b0; b1; a1 and for process B the two parameters b1; a1. ut

All important conditions for the method of least squares can now be summarized
in the following theorem.

Theorem 9.5 (Conditions for a Consistent Parameter Estimation by the Method
of Least Squares).

The parameters of a linear, time-invariant difference equation can be estimated
consistent in the mean square by the method of least squares if the following neces-
sary conditions are satisfied:

� Order m and dead time d are known.
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� The input signal u.k/ D U.k/ � U00 must be exactly measurable and the DC
value U00 must be known.

� The matrix
R D 1

N C 1
� T�

must be positive definite. This requires that
– The input signal u.k/ must be persistently exciting of at least order m, see

Theorem 9.3.
– The process must be stable, controllable and observable, see Theorem 9.4.

� The stochastic disturbance n.k/ which is superimposed onto the output signal
y.k/ D Y.k/�Y00 must be stationary. The DC value Y00 must be known exactly
and must correspond to U00.

� The error e.k/ may not be correlated and Efe.k/g D 0.
ut

From this conditions follows for O� D �0.

1)E
˚
n.k/

� D 0 (which follows from (9.1.47), (9.1.51) and Theorem 9.5)
(9.1.125)

2)Rue.�/ D 0 (which follows from (9.1.55)) : (9.1.126)

These equations can be used in addition to validate the parameter estimates. Exten-
sions of the above notions to non-linear systems are e.g. shown in (van Doren et al,
2009).

9.1.5 Unknown DC Values

As for process parameter estimation the variations of u.k/ and y.k/ of the measured
signals U.k/ and Y.k/ have to be used, the DC (direct current or steady-state) values
U00 and Y00 either have also to be estimated or have to be removed. The following
methods are available for dealing with unknown DC values U00 and Y00.

Differencing

The easiest way to obtain the variations without knowing the DC values is just to
take the differences

U.k/ � U.k � 1/ D u.k/ � u.k � 1/ D �u.k/

Y.k/ � Y.k � 1/ D y.k/ � y.k � 1/ D �y.k/ :
(9.1.127)

Instead of u.´/ and y.´/, the signals �u.´/ D u.´/.1 � ´�1/ and �y.´/ D
y.´/.1 � ´�1/ are then used for the parameter estimation. As this special high-pass
filtering is applied to both the process input and output, the process parameters can
be estimated in the same way as in the case of measuring u.k/ and y.k/. In the
parameter estimation algorithms u.k/ and y.k/ have to be replaced by �u.k/ and
�y.k/. However, the signal-to-noise ratio may become worse. If the DC values are
required explicitly, other methods have to be used.
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Averaging

The DC values can be estimated simply by averaging from steady-state measurement

OY00 D 1

N

N �1X
kD0

Y.k/ (9.1.128)

before starting the dynamic excitation. The recursive version of this is

OY00 D OY00.k � 1/C 1

k

�
Y.k/ � OY00.k � 1/� : (9.1.129)

For slowly time varying DC values, recursive averaging with exponential forgetting
leads to

OY00 D � OY00.k � 1/C .1 � �/Y.k/ (9.1.130)

with � < 1. A similar argument applies for U00. The variations u.k/ and y.k/ can
be determined by

u.k/ D U.k/ � U00 (9.1.131)
y.k/ D Y.k/ � Y00 : (9.1.132)

Implicit Estimation of a Constant

The estimation of the DC values U00 and Y00 can also be included into the parameter
estimation problem. Substituting (9.1.132) and (9.1.131) into (9.1.5) results in

Y.k/ D � a1Y.k � 1/ � : : : � amY.k �m/C b1U.k � d � 1/
C : : :C bmU.k � d �m/C C ;

(9.1.133)

where

C D .1C a1 C : : :C am/Y00 � .b1 C : : :C bm/U00 : (9.1.134)

Extending the parameter vector O� by including the element C and the data vector
 T.k/ by adding the number 1, the measured Y.k/ and U.k/ can directly be used for
the estimation and C can also be estimated. Then, for one given DC value the other
can be calculated, using (9.1.134). For closed-loop identification, it is convenient to
use

Y00 D W.k/ : (9.1.135)

Explicit Estimation of a Constant

The parameters Oai and Obi for the dynamic behavior and the DC constant C can
also be estimated separately. First the dynamic parameters are estimated using the
differencing method above. Then with
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L.k/ D Y.k/C Oa1Y.k � 1/C : : :C OamY.k �m/
� Ob1U.k � d � 1/ � : : : � ObmU.k � d �m/ ; (9.1.136)

the equation error becomes
e.k/ D L.k/ � C (9.1.137)

and, after applying the LS method,

C.mC d CN/ D 1

N C 1

mCdCNX
kDmCd

L.k/ : (9.1.138)

For large N , one obtains

OC �
 
1C

mX
iD1

Oai

!
OY00 �

 
mX

iD1

Obi

!
OU00 : (9.1.139)

If the OY00 is of interest and U00 is known, it can be calculated from (9.1.139) using
the estimate OC . In this case O� and OC are only coupled in one direction, as O� does
not depend on OC . A disadvantage can be the worse noise-to-signal ratio caused by
the differencing. The final selection of the DC method depends on the particular
application.

9.2 Spectral Analysis with Periodic Parametric Signal Models

Many problems associated with the determination of the Fourier transformation (see
Sect. 3.1) would vanish if the course of the transformed signal would also be known
outside the measurement interval. For this reason, Burg (1968) was looking for tech-
niques to predict the unknown signal course from the measured data points without
making any a priori assumptions about the signal course. This estimation of the val-
ues with maximum uncertainty concerning the signal course led to the term maximum
entropy and to a substantially improved spectral estimation.

9.2.1 Parametric Signal Models in the Time Domain

A method to obtain the phase and angle of oscillations with known frequency is
suggested by Heij et al (2007) as follows: In the least squares setting (see Chap. 8),
the data matrix is set up as

� D

˙
cos!1 sin!1 : : : cos!n sin!n

cos 2!1 sin 2!1 : : : cos 2!n sin 2!n

:::
:::

:::
:::

cosN!1 sinN!1 : : : cosN!n sinN!n

�
(9.2.1)

and the output vector chosen as the signal x.k/ to be analyzed, i.e.
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yT D �
x.1/ x.2/ : : : x.N /

�
: (9.2.2)

The vector of estimated parameters then has the form

O�T D � Ob1 Oc1 : : : Obn Ocn

�
(9.2.3)

The phase and amplitude of the oscillation

yi .k/ D ai sin
�
!ik C 'i

�
(9.2.4)

can then be estimated as

Oai D
q

Ob2
i C Oc2

i (9.2.5)

and

O'i D arctan
Obi

Oci

: (9.2.6)

Nice features of the estimation technique are the fact that neither the omission of
relevant frequencies nor the inclusion of irrelevant frequencies influences the result
of the parameter estimation.

9.2.2 Parametric Signal Models in the Frequency Domain

The periodic signal is treated as if it was generated by a fictitious form filter F.´/ or
F.i!/ respectively. The form filter is driven by a ı- impulse ı.k/ (2.4.10) to generate
a steady state oscillation y.k/. The aim now is to match the frequency response of
the form filter F.´/ with the amplitude spectrum of the measured signal y.´/. This
is equivalent to match the power spectral densities,

Syy.´/
ŠD jF.´/j2Sıı.´/ D jF.´/j2 : (9.2.7)

In general, a parametric signal model can have three different profile structures
as has been discussed in Sect. 2.4. For the moving average model, which would be

FMA.´/ D ˇ0 C ˇ1´
�1 C : : :C ˇn´

�m ; (9.2.8)

the signal spectrum is approximated by a polynomial of the (limited) order m and
would in general be more appropriate for the approximation of smooth spectra. On
the contrary, this model is extremely unsuited for the modeling of oscillations, which
manifest themselves as distinct peaks in the frequency spectrum.

This leads to the auto-regressive model as the next possible candidate structure.
The purely auto-regressive model, given as

FAR.´/ D ˇ0

1C ˛1´�1 C : : :C ˛m´�n
; (9.2.9)

is able to approximate the sharp spectral lines of periodic signals according to the
poles of the denominator polynomial. This makes it an appealing choice for the es-
timation of the spectra of harmonic oscillations (Tong, 1975, 1977; Pandit and Wu,
1983).
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The third possible setup is the combined auto-regressive moving average model
given by

FARMA.´/ D ˇ0 C ˇ1´
�1 C : : :C ˇn´

�m

1C ˛1´�1 C : : :C ˛m´�n
; (9.2.10)

which combines the possibilities of both the AR and the MA model. The biggest dis-
advantage is the increase in the number of parameters, which doubles compared to
the AR and the MA model respectively. This can also lead to convergence prob-
lems. More complex and more special estimators have been described in litera-
ture (Makhoul, 1975, 1976).

Coming back to (9.2.7), one obtains for the power spectral density of the AR-
model,

Syy.´/ D F.´/F �.´/Sıı.´/ D ˇ2
0ˇ̌̌

ˇ1C
nX

�D0

˛�´
��

ˇ̌̌
ˇ
2
: (9.2.11)

Estimation of the coefficients b0 and ak from the measured signal y.k/ leads to a
parametric, auto-regressive model in the frequency domain for the power spectral
density Syy.i!/, characterized by its nC 1 parameters, with n typically being in the
range 4 : : : 30. This technique, where the maximum entropy for the power spectral
density Syy.i!/ is determined for a pure AR filter, has e.g. been described by Edward
and Fitelson (1973) as well as Ulrych and Bishop (1975).

9.2.3 Determination of the Coefficients

In order to suppress stochastic disturbances, the maximum entropy spectral estima-
tion will also employ correlation functions instead of the measured signal y.t/. The
measured signal shall for now be composed of a number of damped oscillations as

y.t/ D
mX

�D1

y0�e�d� t sin
�
!� t C '�

�
: (9.2.12)

Its auto-correlation function is then given as

Ryy.�/ D E
˚
y.t/y.t C �/

� D
mX

�D1

y2
0�

2
e�d�� cos!�� : (9.2.13)

As is discussed in Sect. 5.5, the ACFRyy.�/ of a periodic signal y.t/ is periodic in � .
Taking the above considerations into account, one can surely approximate the ACF
by a form filter as well, i.e.

Ryy.´/ D F.´/ı.´/ : (9.2.14)

By the calculation of the ACF, the phase information gets lost and the amplitude is
changed by a constant factor
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R0� D 1

2
y2

0� : (9.2.15)

To capturem frequencies in the model of the ACF, the model must have an order
of 2m. As one is only interested in the stationary steady-state oscillations, one can
use exclusively an AR model which for a signal of order 2m is given as

Rnn.�/ D Ryy.�/C˛1Ryy.��1/C˛2Ryy.��2/C: : :C˛2mRyy.��2m/ ; (9.2.16)

where also an additive, zero-mean, uncorrelated disturbance n.t/ has been taken into
account with its ACF

Rnn.�/ D
�
n0 for � D 0

0 else : (9.2.17)

For different time lags � , a system of equations can be constructed as˙
Ryy.0/ Ryy.1/ : : : Ryy.2m/

Ryy.1/ Ryy.0/ : : : Ryy.2m � 1/
:::

:::
:::

Ryy.2m/ Ryy.2m � 1/ : : : Ryy.0/

�˙
1

˛1

:::

˛2m

�
D

˙
n0

0
:::

0

�
; (9.2.18)

where the fact has been exploited that the ACF is axis-symmetric, i.e. Ryy.k/ D
Ryy.�k/. The coefficient n0 with

Rnn.0/ D n0 D E
˚
n2.k/

� D E
n�
y.k/ � Oy.k/�2o (9.2.19)

is a measure for the mean square model error with Oy.k/ being the model prediction
for y.k/.

To set up this system of equations, estimates of the ACF Ryy.�/ have to be sup-
plied for � D 0; : : : ; 2m from the measured signal sequence y.k/ at the time steps
k D 0; : : : ; N � 1. They are determined according to (7.1.4) given as

ORyy.�/ D 1

N � j� j
N �1�j� jX

�D0

y.	/y.	 C j� j/ for 0 � j� j � N � 1 : (9.2.20)

The system of equations in (9.2.18) can efficiently be solved by the Burg algo-
rithm (Press et al, 2007). The frequencies of the significant discrete oscillations in
y.t/ can then be determined by a pole decomposition of the denominator polynomial
of the AR signal model,

´2m
�
1C a1´

�1 C a2´
�2 C : : :C a2m´

�2m
� ŠD

mY
�D1

�
1C a1�´

�1 C a2�´
�2
�
:

(9.2.21)

From a corresponding table for the ´-transform (Isermann, 1991), one can obtain
for each conjugate complex pair of poles the angular frequency !k of the appropriate
sinusoidal oscillation in y.t/ as



9.2 Spectral Analysis with Periodic Parametric Signal Models 261

!k D 1

T0

arccos

 
�a1�

2
p
a2�

!
: (9.2.22)

Thus, one can determine all significant oscillation frequencies of the signal y.t/.

9.2.4 Estimation of the Amplitudes

The amplitudes y0k of each contributing oscillation could theoretically be deter-
mined from the AR signal model. Unfortunately, this proves to be a very inaccurate
method as the result depends on the denominator coefficients ak and the constant nu-
merator coefficient b0. The slightest errors in the estimation of the coefficients could
result in large errors for the amplitude estimate. To avoid these undesired effects, a
second estimation is carried out to determine the amplitudes (Neumann and Janik,
1990; Neumann, 1991).

The damping term in the ACF of a periodic oscillation,

Ryy.�/ D E
˚
y.t/y.t C �/

� D
mX

�D1

y2
0�

2
e�d�� cos!�� (9.2.23)

can be neglected for small damping values. In this case, one obtains

Ryy.�/ D E
˚
y.t/y.t C �/

� D
mX

�D1

y2
0�

2
cos!�� ; (9.2.24)

which has been used widespread in Chap. 5. Provided that the frequencies of the
oscillations contributing to y.t/ are known from the antecedent estimation problem,
one can now set up a second system of equations to determine the amplitudes of the
ACF, i.e. the values of R0k as˙

Ryy.1/

Ryy.2/
:::

Ryy.m/

�
D

˙
cos.!1T0/ cos.!2T0/ : : : cos.!mT0/

cos.!12T0/ cos.!22T0/ : : : cos.!m2T0/
:::

:::
:::

cos.!1mT0/ cos.!2mT0/ : : : cos.!mmT0/

�˙
R01
R02
:::

R0m

�
:

(9.2.25)
The signal amplitudes can finally be determined from the amplitudes of the ACF by

y0� D
p
2R0� : (9.2.26)

Thus, a parametric model representation for the power spectral density Syy of the
measured signal y.kT0/ was found, representing the spectrum by a parametric AR
model respectively by frequencies of significant sinusoidal components. The order
m has to be selected or searched for (Isermann, 2005, 2006).



262 9 Least Squares Parameter Estimation for Dynamic Processes

9.3 Parameter Estimation with Non-Parametric Intermediate Model

If the structure of the process model is not known a priori, it can be useful to first
identify a non-parametric model and then determine a parametric model based on the
previously identified intermediate model. In the first step, no assumptions about the
model structure have to be made. The determination of an appropriate model order
and dead time then takes place during the second step of the identification. Since the
non-parametric model already condenses the measured data, much less data have to
be operated upon in the second step. The non-parametric model also allows to already
make statements about the quality of the identification results. In the following, two
different approaches shall be presented.

9.3.1 Response to Non-Periodic Excitation and Method of Least Squares

For good signal-to-noise ratios, one can identify a process by first recording several
responses to the same deterministic input signal and then determine the average of
these signals to eliminate the influence of stochastic disturbances. The input signals
must excite the interesting process dynamics, but apart from that can have any arbi-
trary form. One often prefers steps and ramps or rectangular and trapezoidal pulses
respectively.

Now, the deterministic input signal uj .k/ and the corresponding output yj .k/

shall be considered. Here, uj .k/ and yj .k/ are once again small signal values. If
the identical input signal uj .k/ is applied M times, then the average of the system
response is given as

y.k/ D 1

M

MX
j D1

yj .k/ : (9.3.1)

If the output from the process yj .k/ is superpositioned with a stochastic noise n.k/,

yj .k/ D yuj .k/C nj .k/ ; (9.3.2)

the expected value is given as

E
˚
y.k/

� D yu.k/C E
˚
n.k/

�
: (9.3.3)

The expected value of the averaged output signal hence is identical with the useful
signal if Ef n.k/ g D 0. For the parameter estimation, now y.k/ D y.k/ will be
written. A parametric model in the form of a difference equation is assumed as

y.k/ D �a1y.k � 1/ � a2y.k � 2/ � : : : � amy.k �m/
C b1u.k � d � 1/C b2u.k � d � 2/C : : :C bmu.k � d �m/ : (9.3.4)

(9.3.4) can now be written in vector form for the interval 1 � k � l as
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y.1/

y.2/

y.3/
:::

y.l/

�
D

ˇ
0 0 : : : 0 u.�d/ : : : 0

�y.1/ 0 : : : 0 u.1 � d/ : : : 0

�y.2/ �y.1/ : : : 0 u.2 � d/ : : : 0
:::

:::
:::

:::
:::

�y.l � 1/ �y.l � 2/ : : : �y.l �m/ u.l � d � 1/ : : : u.l � d �m/

�
�

a1

a2

:::

am

b1

:::

bm

˘

;

(9.3.5)

which can then be written as
y D R� : (9.3.6)

Introducing the error e as
e D y �R� (9.3.7)

and using a quadratic cost function V as

V D eTe (9.3.8)

will lead to the parameter estimates as

O� D �
RTR

��1
RTy : (9.3.9)

The parameter estimates are consistent in the mean square, since for the limiting
value of the error, one obtains

lim
M!1 E

˚
e.k/

�ˇ̌
O�D�0

D lim
M!1 E

˚
n.k/C a1n.k � 1/C : : :C amn.k �m/ � D 0 ;

(9.3.10)
if Ef n.k/ g D 0 and hence

lim
M!1 E

˚ O� � �0

� D lim
M!1 E

n�
RTR

��1
RTe

o
D 0 (9.3.11)

lim
M!1 E

n� O� � �0

�� O� � �0

�T
o

D lim
M!1 E

n�
RTR

��1
RTeTeR

�
RTR

��1
o

D 0 : (9.3.12)

l must be chosen such that the entire transient is covered. A lower bound is given
by the number of parameters to be estimated as l � 2m, an upper bound by the
condition

det
�
RTR

� ¤ 0 : (9.3.13)

The matrix RTR becomes approximately singular if l is chosen too large and too
many datapoints stem from the steady state. Then, the individual rows are roughly
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linearly dependent. The difference of this method compared to the normal method
of least squares is that the datapoints are first averaged which reduces the influence
of disturbances and at the same time avoids the bias problem for correlated error
signals.

9.3.2 Correlation Analysis and Method of Least Squares (COR-LS)

If a stochastic or pseudo-stochastic signal is used as an input, then the auto-correlation
function of the input is given as

Ruu.�/ D lim
N !1

1

N C 1

NX
kD0

u.k � �/u.k/ (9.3.14)

and the cross-correlation between the input and the output as

Ruy.�/ D lim
N !1

1

N C 1

NX
kD0

u.k � �/y.k/ : (9.3.15)

The correlation functions can also be determined recursively as

ORuy.�; k/ D ORuy.�; k � 1/C 1

k C 1

�
u.k � �/y.k/ � ORuy.�; k � 1/� : (9.3.16)

The process model is once again given by the difference equation

y.k/ D �a1y.k � 1/ � a2y.k � 2/ � : : : � amy.k �m/
C b1u.k � d � 1/C b2u.k � d � 2/C : : :C bmu.k � d �m/ : (9.3.17)

Upon multiplying with u.k � �/ and calculation of the expected values, one obtains

Ruy.�/ D �a1Ruy.� � 1/ � a2Ruy.� � 2/ � : : : � amRuy.� �m/
C b1Ruu.� � d � 1/C b2Ruy.� � d � 2/C : : :C bmRuu.� � d �m/ :

(9.3.18)

This relation is the basis for the following identification technique (Isermann and
Baur, 1974). A similar method has been presented by Scheuer (1973). (9.3.18) does
also result, if only a finite number N of measurements is used as a basis for the
determination of the correlation functions. In this case, the correlation functions shall
be replaced by their estimates

ORuy.�/ D 1

N C 1

NX
kD0

u.k � �/y.k/ : (9.3.19)

The values of the cross-correlation function that are used for the parameter estimation
shall be Ruy.�/ ¤ 0 in the interval �P � � � M and Ruy.�/ � 0 for � < �P and
� > M , see Fig. 9.9.
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Fig. 9.9. Correlation function values employed for parameter estimation (colored noise input)

Then, one obtains the system of equations given as
�

Ruy.�P Cm/
:::

Ruy.�1/
Ruy.0/

Ruy.1/
:::

Ruy.M/

˘

D

�

�Ruy.�P CmC 1/ : : : �Ruy.�P / Ruu.�P Cm � d � 1/ : : :
:::

:::
:::

�Ruy.�2/ : : : �Ruy.�1 �m/ Ruu.�2 � d/ : : :

�Ruy.�1/ : : : �Ruy.�m/ Ruu.�d � 1/ : : :

�Ruy.0/ : : : �Ruy.1 �m/ Ruu.�d/ : : :
:::

:::
:::

�Ruy.M � 1/ : : : �Ruy.M �m/ Ruu.M � d � 1/ : : :

˘




a1

:::

am

b1

:::

�

;

(9.3.20)

which can then be written as
Ruy D S� ; (9.3.21)

and application of the method of least squares leads to the parameter estimates

O� D �
S TS

��1
S TRuy : (9.3.22)

Example 9.5 (Parameter Estimation by Means of the COR-LS Method).
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The parameters of the discrete-time transfer function of the Three-Mass Oscilla-
tor shall be estimated by means of the COR-LS method. Hence, first the correlation
function estimates ORuu.�/ and ORuy.�/ have been determined, see Fig. 9.10. Here, the
input u.k/ was a PRBS signal, hence the auto-correlation function in the evaluated
interval shows a close resemblance to the auto-correlation function of a white noise.
The input u.k/ and output y.k/ D !3.k/ have already been shown in Fig. 9.6.

Once again, the parameters of a transfer function of order m D 6 between the
input and the output shall be determined. The setup of the matrix � and the vector
y , see (9.3.20), is as follows (with P D 0 according to the PRBS input),

� D

˙ � ORuy.5/ : : : � ORuy.0/ ORuu.5/ : : : ORuu.0/

� ORuy.6/ : : : � ORuy.1/ ORuu.6/ : : : ORuu.1/
:::

:::
:::

:::

� ORuy.M � 1/ : : : � ORuy.M � 6/ ORuu.M � 1/ : : : ORuu.M � 6/

�

(9.3.23)
and y as

y D

˙ ORuy.6/
ORuy.7/
:::

ORuy.M/

�
: (9.3.24)

The parameter vector � is constructed as

�T D �
a1 a2 : : : a6 b1 b2 : : : b6

�
: (9.3.25)

In order to judge the quality of the estimated model, the frequency response of the
estimated discrete-time model has been shown together with the frequency response
determined by the orthogonal correlation (see Sect. 5.5.2) in Fig. 9.11. One can see
the good fidelity of the estimated model. ut

The convergence of the estimate shall now be investigated. From Chap. 7, it is
known that the estimates of the correlation function converge for N ! 1 as

lim
N !1 E

˚ ORuu.�/
� D Ruu;0.�/ (9.3.26)

lim
N !1 E

˚ ORuy.�/
� D Ruy;0.�/ ; (9.3.27)

if Efn.k/g D 0 and Efu.k � �/n.k/g D 0. Hence the estimates which were deter-
mined over a finite time horizon will converge towards the true values of the corre-
lation functions and thus, it follows that

lim
N !1 Efeg D 0 (9.3.28)

provided that the model matches in structure and model order with the process. Then,
it can be shown that this method provides estimates that are consistent in the mean
square. The technique can either be applied recursively or non-recursively.
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Fig. 9.10. Parameter estimation using COR-LS for a discrete-time model of the Three-Mass
Oscillator, correlation functions. Values in gray-shaded area used for the parameter estimation

Non-Recursive Method (COR-LS)

For the non-recursive method, the following steps need to be taken:

1. u.k/ and y.k/ are stored
2. Ruu.�/ andRuy.�/ are determined according to (9.3.19), O� is determined accord-

ing to (9.3.22)

Recursive Method (RCOR-LS)

The recursive method requires the following steps to be taken:

1. Ruy.�; k/ and if necessary Ruu.�; k/ are determined recursively according to
(9.3.16) at each time step k

2. O� is determined according to (9.3.22) either after every time step or in larger
intervals

The method of correlation analysis and least squares differs in the following as-
pects from the normal method of least squares:

1. Instead of the N � 2m matrix � , one processes the matrix S of size P CM �
m C 1/ � 2m which normally has a smaller size. The matrices � T� and S TS

however both have the same dimension 2m � 2m
2. The COR-LS method uses P CM C1 values of the CCF, the normal LS method

only 2m� 1. If P and M are chosen accordingly, one can consider more values
of the CCF
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3. One obtains consistent parameter estimates for arbitrary stationary disturbances

In (9.3.18), which was the basis for the formulation of the parameter estimation
problem, only the small signal quantities had been evaluated. For large signal quan-
tities U.k/ and Y.k/, it can first be shown that the results are independent of Y00

if
U00 D E

˚
u.k/

� D 0 :

If however, the DC values are unknown, one can use the techniques that had been
outlined in Sect. 9.1.5. For the implicit estimation of a constant, one has to calculate
the estimates of the correlation functions as follows

ORuu.�/ D 1

N C 1

NX
kD0

U.k � �/U.k/ (9.3.29)

ORuy.�/ D 1

N C 1

NX
kD0

U.k � �/Y.k/ : (9.3.30)

The matrix S is augmented with a column of 1 as

Ruy D

�
S

1
:::

1

�

S̃�

�� : (9.3.31)

Then, the new parameter vector �� contains as the last element the constant C as
described in Sect. 9.1.5.

9.4 Recursive Methods of Least Squares (RLS)

The method of least squares as presented until now assumed that all parameters had
first been stored and had then been processed in one pass (batch processing). This
also means that the parameter estimates are only available after the end of the mea-
surement. The non-recursive method of least squares is hence more suitable for off-
line identification.

If the process however shall be identified online and in real-time, then new pa-
rameter estimates should be available during the measurement, e.g. after each sam-
ple step. If one would apply the non-recursive method of least squares, which was
already introduced, one would augment the data matrix � with one row after each
sample step and would then process all available data (even from the previous sample
steps). Such an approach would require a lot of computations and is hence inappro-
priate. Recursive methods reduce the computational effort and provide an update of
the parameter estimates after each sample step. Previous measurements do not have
to be stored. With appropriate modifications that will be presented later in this chap-
ter, it is also possible to identify time varying processes.
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The recursive method of least squares was also described by Gauss (1809), see
(Genin, 1968). First applications of this technique to dynamic systems have been
presented by Lee (1964) and Albert and Sittler (1965). In Sect. 9.4.1, the fundamental
equations will be derived. Then, the recursive parameter estimation is extended to
stochastic signals in Sect. 9.4.2. Methods for the treatment of unknown DC values are
presented in Sect. 9.4.3. The convergence is analyzed in a later chapter (Sect. 12.4).

9.4.1 Fundamental Equations

The parameter estimate of the non-recursive method of least squares for the sample
step k is given as

O�.k/ D P.k/� T.k/y.k/ (9.4.1)

with

P.k/ D �
� T.k/� .k/

��1 (9.4.2)

y.k/ D

˙
y.1/

y.2/
:::

y.k/

�
(9.4.3)

� .k/ D

˙
 T.1/

 T.2/
:::

 T.k/

�
(9.4.4)

and

 T D ��y.k � 1/ �y.k � 2/ : : : �y.k �m/ u.k � d � 1/ : : : u.k � d �m/ � :
(9.4.5)

Accordingly, the parameter estimate for the sample step k C 1 is given as

O�.k C 1/ D P.k C 1/� T.k C 1/y.k C 1/ : (9.4.6)

This equation can be split up as

O�.k C 1/ D P.k C 1/

�
� .k/

 T.k C 1/

�T�
y.k/

y.k C 1/

�

D P.k C 1/
�
� .k/y.k/C T.k C 1/y.k C 1/

�
:

(9.4.7)

Based on (9.4.1), one can substitute � .k/y.k/ D P�1.k/ O�.k/ and obtains

O�.k C 1/ D O�.k/C �
P.k C 1/P�1.k/ � I� O�.k/CP.k C 1/ .k C 1/y.k C 1/ :

(9.4.8)
According to (9.4.2),
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P.k C 1/ D
��

� .k/

 T.k C 1/

�T�
� .k/

 T.k C 1/

���1

D �
P�1.k/C .k C 1/ T.k C 1/

��1

; (9.4.9)

and hence
P�1.k/ D P�1.k C 1/ � .k C 1/ T.k C 1/ : (9.4.10)

Together with (9.4.8), one then obtains

O�.k C 1/ D O�.k/ C P.k C 1/ .k C 1/

New Parameter
Estimate

Old Parameter
Estimate

Correction
Vector�

y.k C 1/  T.k C 1/ O�.k/�
New

Measurement
Predicted Measurement based
on Last Parameter Estimate

:

(9.4.11)

In this way, a recursive formulation of the estimation problem has been found. Ac-
cording to (9.1.7), the term

 T.k C 1/ O�.k/ D Oy.k C 1jk/ (9.4.12)

can be interpreted as a one-step prediction of the model with the parameters and the
measurements up to sample step k. The factor in brackets in (9.4.11) is according to
(9.1.10) the equation error

�
y.k C 1/ � T.k C 1/ O�.k/� D e.k C 1/ ; (9.4.13)

so that (9.4.11) can finally be written as

O�.k C 1/ D O�.k/CP.k C 1/ .k C 1/e.k C 1/ : (9.4.14)

One has to determineP.kC1/ according to (9.4.9) respectivelyP�1.kC1/ accord-
ing to (9.4.10) recursively. This requires one matrix inversion per update step. The
inversion of the matrix can be avoided by exploiting the matrix inversion theorem
presented in App. A.4. Then, instead of (9.4.9), one can write

P.k C 1/ DP.k/ �P.k/ .k C 1/�
 T.k C 1/P.k/ .k C 1/C 1

��1
 T.k C 1/P.k/ :

(9.4.15)

Since the term in brackets is a scalar quantity only, one does not have to invert a full
matrix any longer. Upon multiplication with  .k C 1/, one obtains

P.k C 1/ .k C 1/ D 1

 T.k C 1/P.k/ .k C 1/C 1
P.k/ .k C 1/ ; (9.4.16)

which combined with (9.4.11) yields the recursive method of least squares as

O�.k C 1/ D O�.k/C �.k/
�
y.k C 1/ � T.k C 1/ O�.k/� : (9.4.17)
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The correction vector �.k/ is given as

�.k/ D P.k C 1/ .k C 1/ D 1

 T.k C 1/P.k/ .k C 1/C 1
P.k/ .k C 1/ :

(9.4.18)
From (9.4.15) follows

P.k C 1/ D �
I � �.k/ T.k C 1/

�
P.k/ : (9.4.19)

The recursive method of least squares is hence given by the three equations above,
which have to be evaluated in the sequence (9.4.18), (9.4.17), (9.4.19), see also
(Goodwin and Sin, 1984). The matrixP.kC1/ is a scaled estimate of the covariance
matrix of the estimation error, since according to (9.1.69)

E
˚
P.k C 1/

� D 1

�2
e

cov��.k C 1/ (9.4.20)

holds true for bias-free estimates.
In order to start the recursive method of least squares, initial values for O�.k/

and P.k/ must be known. For an appropriate choice of these values, the following
methods have proven successful (Klinger, 1968):

� Start with non-recursive method of least squares: One uses the non-recursive
method of least squares on at least 2m equations, e.g. from k D d C 1 up to
k D d C 2m D k0 and then uses the values O�.k0/ and P.k0/ as initial values for
the recursive method of least squares which will start at time step k D k0.

� Use of a priori estimates: If one knows a priori approximate values of the para-
meters, their covariance and the variance of the equation error, then these values
can be used to initialize O�.0/ and P.0/, see (9.4.20).

� Assumption of appropriate initial values: The easiest solution however is to as-
sume appropriate initial values for O�.0/ and P.0/ (Lee, 1964).

An appropriate choice of P.0/ can be derived as follows: From (9.4.10) follows

P�1.k C 1/ D P�1.k/C .k C 1/ T.k C 1/

P�1.1/ D P�1.0/C .1/ T.1/

P�1.2/ D P�1.1/C .2/ T.2/

D P�1.0/C .1/ T.1/C .2/ T.2/

:::

P�1.k/ D P�1.0/C � T.k/� .k/ : (9.4.21)

If one chooses
P.0/ D ˛I (9.4.22)

with a large value ˛, then one obtains
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lim
˛!1P

�1.0/ D 1

˛
I D 0 (9.4.23)

and (9.4.21) matches with (9.4.2), which was how P.k/ was defined for the non-
recursive case.

With large values of ˛, P.0/ has a negligibly small influence on the recursively
calculated P.k/. Furthermore, it follows from (9.4.11) that

O�.1/ D O�.0/CP.1/ .1/
�
y.1/ � T.1/ O�.0/�

D P.1/
	
 .1/y.1/C �� .1/ T.1/CP�1.1/

� O�.0/



with (9.4.21) follows

O�.1/ D P.1/
�
 .1/y.1/CP�1.0/ O�.0/� (9.4.24)

and correspondingly

O�.2/ D P.2/
�
 .2/y.2/CP�1.1/ O�.1/�

D P.2/
�
 .2/y.2/C .1/y.1/CP�1.0/ O�.0/� ;

so that one finally obtains

O�.k/ D P.k/
�
� .k/y.k/CP�1.0/ O�.0/� : (9.4.25)

Because of (9.4.23), (9.4.25) will for large ˛ and arbitrary O�.0/ match with the non-
recursive estimation in (9.4.1). The choice of large values of ˛ can be interpreted
such that at the beginning, a large variance of the error of the estimates O�.0/ is
assumed, (9.4.20). To start the recursive method, one can thus chooseP.0/ according
to (9.4.22) and an arbitrary O�.0/ or for reasons of simplicity O�.0/ D 0.

Now, it has to be investigated how large ˛ should at least be chosen. From
(9.4.18), one can see that P.0/ D ˛I has no substantial influence on the correc-
tion vector �.0/ (Isermann, 1974), if

 T.1/P.0/ .1/ D ˛ T.1/ .1/ 	 1 ; (9.4.26)

because in this case

lim
˛!1 �.0/ D lim

˛!1P.0/ .1/
�
 T.1/P.0/ .1/

��1 D  .1/
�
 T.1/ .1/

��1
:

(9.4.27)
If the process has been in its steady state for k < 0, i.e. u.k/ D 0 and y.k/ D 0

before the test signals started at k D 0, then it follows for e.g. d D 0,

 T.1/ D �
0 : : : 0 u.0/ : : :

�
(9.4.28)

and from (9.4.26) follows ˛u2.0/ 	 1 or

˛ 	 1

u2.0/
: (9.4.29)
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If the process was not in its steady state, so one can derive the relation

˛ 	 1

m�1X
kD0

y2.k/C
m�1X
kD0

u2.k/

(9.4.30)

for the correct choice of ˛. One can see that ˛ depends on the square of the signal
changes. The larger the signal changes, the smaller ˛ can be chosen. For u.0/ D 1,
a value of ˛ D 10 is sufficient (Lee, 1964). Baur (1976) has shown by means of
simulation that for ˛ D 10 or ˛ D 105, only small differences appear for sufficiently
long measurement times. In practice, one will choose values of ˛ in the range ˛ D
100; : : : ; 10 000.

Example 9.6 (Recursive Identification of a First Order Difference Equation with 2
Parameters).

The same process that was already used in Example 9.2 shall be used again. The
process is governed by

yu.k/C a1yu.k � 1/ D b1u.k � 1/
y.k/ D yu.k/C n.k/ :

The process model according to (9.1.6) is given as

y.k/C Oa1y.k � 1/ � Ob1u.k � 1/ D e.k/

or
y.k/ D  T.k/ O�.k � 1/C e.k/

with

 T.k/ D ��y.k � 1/ u.k � 1/ �
O�.k � 1/ D � Oa1.k � 1/ Ob1.k � 1/ �T

:

The estimation will now be programmed in the following form

1. The new data u.k/, y.k/ are measured at time step k

2. e.k/ D y.k/ � ��y.k � 1/ u.k � 1/ �
� Oa1.k � 1/

Ob1.k � 1/
�

3. The new parameter estimates are then given as� Oa1.k/
Ob1.k/

�
D
� Oa1.k � 1/

Ob1.k � 1/
�

C
� O�1.k � 1/

O�2.k � 1/
�

š
from step 7

e.k/

4. The data y.k/ and u.k/ are plugged into  T.k C 1/ D ��y.k/ u.k/ �
5. P.k/”

from step 8

 k C 1 D
�
p11.k/ p12.k/

p21.k/ p22.k/

���y.k/
u.k/

�

D
��p11.k/y.k/C p12.k/u.k/

�p21.k/y.k/C p22.k/u.k/

�
D
�
i1
i2

�
D i
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6.  T.k C 1/ P.k/ .k C 1/›
from step 5

D ��y.k/ u.k/ �
�
i1
i2

�
D �i1y.k/C i2u.k/ D j

7.
� O�1.k/

O�2.k/

�
D 1

j C�

�
i1
i2

�

8. Now, one can determine P.k C 1/

P.k C 1/ D 1

�

�
P.k/ � �.k/ T.k C 1/P.k/

�

D 1

�

	
P.k/ � �.k/ �P.k/ .k C 1/

�Tœ
from step 5




D 1

�

�
P.k/ � �.k/i T�

D 1

�

�
p11.k/ � �1i1 p12.k/ � �1i2
p21.k/ � �2i1 p22.k/ � �2i2

�

9. For the next time step .kC 1/ is now replaced by k and one starts over with step
1.

For starting at time k D 0, one chooses

O�.0/ D
�
0

0

�
and P.0/ D

�
˛ 0

0 ˛

�

where ˛ is a large number. ut
The recursive method of least squares can now be represented as a block diagram,
see Fig. 9.12.

In order to develop the block diagram, (9.4.17) will be rewritten as

O�.k C 1/ D O�.k/C� O�.k C 1/

� O�.k C 1/ D �.k/
�
y.k C 1/ � T.k C 1/ O�.k/� D �.k/e.k C 1/ :

This yields a closed loop with the controlled quantity� O�.kC1/, the setpointw D 0,
the integral-acting discrete-time “controller”

O�.´/
� O�.´/ D 1

1 � ´�1

and the manipulated variable O�.k/. The “plant” consists of the process model and the
correction vector � . Since the model as well as the factor � are adjusted according
to the signals u.k/ and y.k/, the “plant” shows a time-variant behavior. This con-
sideration was used by Becker (1990) to design improved recursive algorithms with
“better control behavior”.

The underlying idea is that one replaces the integral-acting discrete-time “con-
troller” by other control algorithms leading to the RLS-IF (Recursive Least Squares
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Process

Model

ψ θ
T
( +1) ( )k k^ γ( )k

w=0w=0
z

-1

Δθ( 1)k+ θ( 1)k+ θ( )k^^^

u k( +1) y k( +1)

e k( +1)

”Controller“

y kM( +1)

-

Fig. 9.12. Block diagram of the recursive parameter estimation by the method of least squares

with Improved Feedback). The requirement of bias-free estimates then correlates
to the requirement that the control shows no steady-state error. An analysis fur-
ther shows that the controller matrix only contains elements on the diagonal, which
means that each parameter can be controlled by a SISO controller, thus simplify-
ing the controller design enormously. Furthermore, one can use methods such as
a “disturbance feedforward control”. If one knows, how the estimated parameters
change in dependence of measured signals (e.g. operating-point dependent changes,
temperature-dependent changes), then one can use this knowledge to speed up the
parameter adaptation by feedforward control. By using higher order polynomials for
the controller transfer function, it was for example possible to avoid a lag error on
the parameter estimates for monotonous/non-monotonous parameter changes. As a
controller architecture, the transfer function

G.´/ D �
´ � a

.´ � 1/.´ � b/ (9.4.31)

was suggested, i.e. one additional pole and zero were introduced. The tuning of the
parameters of the controller however depends strongly on the process to be identified
and hence no general tuning rules can be presented here.

9.4.2 Recursive Parameter Estimation for Stochastic Signals

The method of least squares can also be used for the parameter estimation of stochas-
tic signal models. As a model, a stationary auto-regressive moving-average (ARMA)
process is chosen, i.e.

y.k/C c1y.k � 1/C : : :C cpy.k � p/
D 	.k/C d1	.k � 1/C : : :C dp	.k � p/ ; (9.4.32)
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ν(z) y z( )D z( )
-1

C z( )
-1

(White
Noise)

Fig. 9.13. Auto-regressive moving-
average (ARMA) stochastic signal model

see Fig. 9.13. Here, y.k/ is a measurable signal and 	.k/ a virtual white noise with
Ef	.k/g D 0 and variance �2

� . According to (9.1.7), one can write

y.k/ D  T.k/ O�.k � 1/C 	.k/ (9.4.33)

with

 T.k/ D ��y.k � 1/ : : : �y.k � p/ 	.k � 1/ : : : 	.k � p/ � (9.4.34)

and
O�T.k/ D �

c1 : : : cp d1 : : : dp

�
(9.4.35)

If the values 	.k � 1/; : : : ; 	.k � p/ would be known, one could use the recur-
sive method of least squares as it was applied to the estimation of dynamic process
models, since 	.k/ can be interpreted as an equation error and per definition is sta-
tistically independent.

Now, the time after the measurement of y.k/ will be discussed. At this point in
time, y.k � 1/; : : : ; y.k � p/ are known. If one assumes that the estimates O	.k �
1/; : : : ; O	.k�p/ and O�.k�1/ are known, then one can estimate the latest input O	.k/
by using (9.4.33) (Panuska, 1969)

O	.k/ D y.k/ � O T.k/ O�.k � 1/ (9.4.36)

with

O T.k/ D ��y.k � 1/ : : : �y.k � p/ O	.k � 1/ : : : O	.k � p/ � : (9.4.37)

Then, also

O T.k C 1/ D ��y.k/ : : : �y.k � p C 1/ O	.k/ : : : O	.k � p C 1/
�

(9.4.38)

is available, so that now the recursive estimation algorithm in (9.4.17) through
(9.4.19) can be used to estimate O�.k C 1/ if  T.k C 1/ is replaced by O T.k C 1/.
Then, O	.k C 1/ and O�.k C 2/ can be estimated and so on. For the initialization, one
uses

O	.0/ D Oy.0/; O�.0/ D 0; P.0/ D ˛I (9.4.39)

with ˛ being appropriately large. Since 	.k/ is statistically independent and also
	.k/ and O T.k/ are uncorrelated, one will according to Theorems 9.1 and 9.2 and
(9.1.70) obtain estimates that are consistent in the mean square.

Additional requirements for parameter identifiability are given as follows:
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1. The poles of C.´/ D 0 must be asymptotically stable, i.e. inside the unit circle
to ensure that (9.4.32) is stationary and that the correlation functions in R con-
verge towards fixed values. This corresponds to the requirement of stability of
the dynamic process that is excited by the input u.k/.

2. The zeros D.´/ D 0 must lie inside the unit circle as well to ensure that the
estimate of the white noise according to (9.4.36) or

O	.´/ D
OC.´�1/

OD.´�1/
y.´/

does not diverge.

The variance of 	.k/ can be estimated according to (9.1.71) by

O�2
� .k/ D 1

k C 1 � 2p
kX

iD0

O	2.k/ (9.4.40)

or in the recursive form

O�2
� .k C 1/ D O�2

� .k/C 1

k C 2 � 2p
� O	2.k C 1/ � O�2

� .k/
�
: (9.4.41)

In general, the estimates of a stochastic signal process converge significantly slower
than those of a dynamic process, since the input signal 	.k/ is unknown and must be
estimated as well.

9.4.3 Unknown DC values

If the DC values U00 and Y00 are unknown, one can use in principle the same meth-
ods that were introduced in Sect. 9.1.5. These techniques must only be reformulated
for the recursive application.

Averaging

The recursive equation for providing an estimate of the average is given as

OY00.k/ D OY00.k � 1/C 1

k

�
Y.k/ � OY00.k � 1/� : (9.4.42)

For slowly time-varying DC values, one should use an averaging with exponential
forgetting,

OY00.k/ D � OY00.k � 1/C .1 � �/Y.k/ (9.4.43)

with � < 1 (Isermann, 1987).

Differencing

The differencing is done as described in (9.1.127).
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Implicit Estimation of a Constant

Also for the recursive estimation, one can determine a constant by extending the
parameter vector O� by including the element C and extending the data vector  T.k/

by adding the number 1. The measured Y.k/ and U.k/ can directly be used for the
estimation and C can also be estimated.

Explicit Estimation of a Constant

For the explicit estimation of a constant, one must use a recursive estimation for OK0

similarly to (9.4.42) or (9.4.43).

9.5 Method of weighted least squares (WLS)

9.5.1 Markov Estimation

For the method of least squares presented so far, all values e.k/ of the equation error
have been weighted with the same weight. In the following, the weighting for the
individual values of e.k/ shall be chosen differently to obtain a more general method
of least squares. The cost function (9.1.15) is then given as

V Dw.mC d/e2.mC d/C w.mC d C 1/e2.mC d C 1/C : : :

C w.mC d CN/e2.mC d CN/
(9.5.1)

or in a more general form
V D eTWe ; (9.5.2)

where W must be a symmetric positive-definite matrix, since only the symmetric
part of W contributes to V and only a positive definite matrix ensures the existence
of a unique solution. For the weighting as in (9.5.1), the matrix W is a diagonal
matrix,

W D

˙
w.mC d/ 0 : : : 0

0 w.mC d C 1/ : : : 0
:::

:::
:::

0 0 : : : w.mC d CN/

�
: (9.5.3)

Analog to (9.1.18) and starting with (9.5.2), one obtains the non-recursive parameter
estimation by means of the weighted least squares as

O� D �
� TW �

��1
� TWy : (9.5.4)

The conditions for a consistent estimation are the same as those stated in Theo-
rem 9.5. For the covariance of the estimate, one obtains in analogy

cov�� D E
˚
.� TW � /�1� T�W E

˚
eeT�W E

˚
� .� TW � /�1

�
: (9.5.5)
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If the weighting matrixW is chosen as

W D
	

E
˚
eeT�
�1

; (9.5.6)

then (9.5.5), reduces to

cov��MV D
	
� T�E˚eeT���1

�

�1

; (9.5.7)

and therefore
cov��MV � cov�� ; (9.5.8)

which means that the choice of (9.5.6) as the weighting matrix yields parameter esti-
mates with the smallest possible variance (Deutsch, 1965; Eykhoff, 1974). Estimates
with minimum variance are also termed Markov estimates. One should however note
here that the covariance matrix of the equation error is in general not known a priori.
If the error e is uncorrelated, then its covariance matrix is a diagonal matrix and from
(9.5.4) and (9.5.6) yield the estimate with minimum variance as

O� D �
� T�

��1
� Ty ; (9.5.9)

which is the method of least squares.
The recursive method of weighted least squares can be derived as follows: Ac-

cording to (9.4.2), one introduces

PW.k/ D �
� T.k/W .k/� .k/

��1 (9.5.10)

with the symbols

�W D W .k/� .k/ and yW.k/ D W .k/y.k/ ; (9.5.11)

one obtains

 T
W.k/ D  T.k/w.k/

PW.k/ D �
� T.k/�W.k/

��1
: (9.5.12)

Then, the estimates at the time k and k C 1 are given as

O�.k/ D PW.k/�
T.k/yW.k/ (9.5.13)

O�.k C 1/ D PW.k C 1/� T.k C 1/yW.k C 1/

D PW.k C 1/

�
� .k/

 T.k C 1/

�T�
yW.k/

yW.k C 1/

�
(9.5.14)

D PW.k C 1/
�
� T.k/yW.k/C .k C 1/yW.k C 1/

�
:

The further calculations can be carried out in analogy to (9.4.8 ff). One obtains the
following equations for the estimation by the method of the recursive weighted least
squares as
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O�.k C 1/ D O�.k/C �W.k/
�
yW.k C 1/ � T

W.k C 1/ O�.k/� (9.5.15)

�W.k C 1/ D 1

 T
W.k C 1/PW.k/ .k C 1/C 1

PW.k/ .k C 1/ (9.5.16)

PW.k C 1/ D �
I � �W.k/ 

T
W.k C 1/

�
PW.k/ : (9.5.17)

If one assumes a diagonal matrix as a weighting matrix

W .k/ D

˙
w.0/ 0 : : : 0

0 w.1/ : : : 0
:::

:::
:::

0 0 : : : w.k/

�
; (9.5.18)

then according to (9.5.11), one obtains

 T
W.k/ D  T.k/w.k/ and yW.k/ D y.k/w.k/ ; (9.5.19)

and by using (9.5.15) through (9.5.17), one finally obtains

O�.k C 1/ D O�.k/C �.k/
�
y.k C 1/ � T.k C 1/ O�.k/� (9.5.20)

�.k/ D 1

 T.k C 1/PW.k/ .k C 1/C 1
w.kC1/

PW.k/ .k C 1/ (9.5.21)

PW.k C 1/ D �
I � �.k/ T.k C 1/

�
PW.k/ : (9.5.22)

Compared with the standard recursive least squares formulation, the calculation
of the correction vector � changes, as in the denominator, the term 1 is replaced by
1=w.k C 1/. This means that also the values of PW.k C 1/ change.

9.6 Recursive Parameter Estimation with Exponential Forgetting

If the recursive estimation algorithms should be able to follow slowly time-varying
process parameters, more recent measurements must be weighted more strongly
than old measurements. Therefore the estimation algorithms should have a fading
memory. This can be incorporated into the least squares method by time-depending
weighting of the squared errors, as was introduced in the previous section.

By choice of

w.k/ D �.mCdCN /�k D �N 0�k ; 0 < � < 1 ; (9.6.1)

the errors e.k/ are weighted as shown in Table 9.2 for N 0 D 50. The weighting then
increases exponentially to 1 for time step N 0. Hence, one talks about the exponential
forgetting memory and � is termed forgetting factor.

The weighting matrix (9.5.3) for the non-recursive estimation is then given as
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Table 9.2. Weighting factors due to (9.6.1) for N 0 D 50

k 1 10 20 30 40 47 48 49 50

� D 0:99 0:61 0:67 0:73 0:82 0:90 0:97 0:98 0:99 1

� D 0:95 0:08 0:13 0:21 0:35 0:60 0:85 0:90 0:95 1

W .mC d C n/ D

�

�N

�N �1

: : :

�2

�

1

�

: (9.6.2)

Upon the arrival of a new measurement, the weighting matrix is updated as

W .k C 1/ D
�
�W .k/ 0

0T 1

�
: (9.6.3)

Therefore, the parameter estimates are now updated as

O�.k C 1/ D PW.k C 1/

�
� .k/

 T.k C 1/

��
�W .k/ 0

0T 1

��
y.k/

y.k C 1/

�

D PW.k C 1/
�
�� T.k/W .k/y.k/C .k C 1/y.k C 1/

�
D PW.k C 1/

�
�PW.k/

�1 O�.k/C .k C 1/y.k C 1/
�
;

(9.6.4)

see also (9.5.4) and (9.5.13). Furthermore,

PW.k C 1/ D
��

� .k/

 T.k C 1/

�T�
�W .k/ 0

0T 1

��
� .k/

 T.k C 1/

���1

D �
�� T.k/W .k/� .k/C .k C 1/ T.k C 1/

��1

D �
�PW.k/

�1 C .k/ T.k C 1/
��1

:

(9.6.5)

Therefore,
P�1

W .k C 1/ D �P�1
W .k/C .k C 1/ T.k C 1/ : (9.6.6)

Then follows according to (9.4.8) from (9.6.4)

O�.k C 1/ D O�.k/C �
�PW.k C 1/P�1

W .k/ � I� O�.k/
CPW.k C 1/� .k C 1/y.k C 1/

(9.6.7)

and, after inserting (9.6.5),

O�.k C 1/ D O�.k/CPW.k C 1/ .k C 1/
�
y.k C 1/ � T.k C 1/ O�.k/� : (9.6.8)
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Application of the matrix inversion lemma similarly to (9.4.15) then yields

PW.k C 1/ D 1

�
PW.k/

� 1

�
PW.k/ .k C 1/

�
 T.k C 1/

1

�
PW.k/ .k C 1/C 1

��1

 T.k C 1/
1

�
PW.k/

(9.6.9)

and

PW.k C 1/ .k C 1/ D PW.k/ .k C 1/

 T.k C 1/PW.k/ .k C 1/C �
D �W.k/ : (9.6.10)

Finally, the recursive estimation algorithms are now given as

O�.k C 1/ D O�.k/C �W.k/
�
y.k C 1/ � T.k C 1/ O�.k/� (9.6.11)

�W.k/ D 1

 T.k C 1/PW.k/ .k C 1/C �
PW.k/ .k C 1/ (9.6.12)

PW.k C 1/ D �
I � �W.k/ 

T.k C 1/
�
PW.k/

1

�
(9.6.13)

and will be evaluated in the order (9.6.12), (9.6.11), and finally (9.6.13).
The effect of � on the parameter estimates can easily be seen from (9.6.6) and

(9.6.8). P�1
W .k/ is for � D 1 proportional to the covariance matrix of the parameter

estimates. P�1
W .kC 1/ now is constructed in such a way that the new measured data

 .kC1/ T.kC1/ are weighted with 1, the old data P�1
W .k/ are however weighted

with the smaller weight � < 1. This is tantamount to increasing the covariance
values of the last step or equivalently increasing the uncertainty of the old parameter
estimates.

The choice of � presents a compromise between better suppression of distur-
bances (� ! 1) or a better tracking of time-varying systems (� < 1). In practical
applications, values between 0:9 < � < 0:995 have been proven well. The detailed
choice of � either as a constant or as a time-varying parameter is discussed in detail
in Chap. 12.

9.6.1 Constraints and the Recursive Method of Least Squares

The recursive method of least squares allows to incorporate constraints in a very ele-
gant way (Goodwin and Sin, 1984), which will shortly be outlined in the following.
Equality constraints should be taken care of a priori by transforming the set of para-
meters accordingly. Inequality constraints, e.g. bounds for the individual parameters
to ensure stability etc., can be incorporated in the following way:

After each iteration of the RLS algorithm, check whether the estimated para-
meters O� , lie in the feasible area, i.e. are within the set of admissible values, which
shall be denoted as C . If so, proceed with the next iteration as usual. If not, the new
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parameter vector is projected onto the boundary of C and then proceed with the next
step.

The projection onto the boundary of C has to be done such that the value of
the cost function remains as small as possible under the constraint. This is done as
follows, (Goodwin and Sin, 1984):

1. Transform the parameter vector to a new coordinate basis by

� D P� 1
2 O� (9.6.14)

2. Orthogonally project � onto the boundary of the transformed feasible area C

3. Back transform the result to obtain O� 0

9.6.2 Tikhonov Regularization

The Tikhonov regularization (Tikhonov and Arsenin, 1977; Tikhonov, 1995) adds a
penalty term to the quadratic cost function as

V.�/ D
NX

kD1

e2.k;�/C �˝.�/ : (9.6.15)

In this equation, � > 0 is a scalar parameter that determines the degree of regu-
larization and ˝.�/ is the regularization term that depends on the parameters to be
estimated. Often, ˝.�/ is calculated by means of the weighted vector 2-norm of the
parameters as

˝.�/ D �TK� (9.6.16)

For this choice, the problem of least squares can still be solved directly as

O� D �
� T� C �K

��1
� Ty : (9.6.17)

One can choose the matrix K as the identity matrix, which will cause unnecessary
parameters to go to zero. In the more general case, one can choose ˝.�/ D .� �
�0/

T.� � �0/ to draw the parameters towards �0. This is also known under the term
ridge regression (Hoerl and Kennard, 1970a,b).

9.7 Summary

The method of least squares is very suitable for the identification of linear dynamic
discrete-time processes and for non-linear (static) processes which are linear in the
parameters. It has been shown in this chapter that the estimation is then based on
the generalized equation error. However, the disturbance must be generated by a
very special filter from white noise, in order to obtain unbiased estimates. For more
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general disturbances, the method of least squares will result in biased parameter es-
timates. The next chapter will show further strategies to avoid this bias or limit its
impact on the estimates.

Besides process models, also the estimation of signal model parameters in the
time and frequency domain has been discussed. Here, the estimation of the spectral
density by means of parametric signal models has been treated. The biggest advan-
tage is the elimination of the leakage effect as it is no longer assumed that the signal is
periodically repeated outside the measurement interval. Several different techniques
have been presented. The first is based on the formulation of a pure LS parameter
estimation problem in the time domain. Another approach tries to match the power
spectral densities of the measured signal and a colored noise, which is realized from
white noise by means of a form filter.

Furthermore, conditions have been provided which allow to judge whether the
parameters are identifiable. In particular, it has been found that the input must be per-
sistently exciting of a certain order. Tests to find out whether an input is persistently
exciting or not have been formulated along with examples for often applicable per-
sistently exciting inputs. The method of least squares has also been formulated in a
recursive form, which allows a computationally efficient online parameter estimation
in real-time. By introducing the method of weighted least squares and subsequently
the exponential forgetting, it is also possible to identify time-varying processes.

The use of an intermediate non-parametric model has allowed to obtain unbiased
estimates and also allowed to condense the experimental data before the parameter
estimation takes place.

Also in this chapter, the inclusion of constraints has been discussed and the
Tikhonov regularization, which is also termed ridge regression, had been introduced
to “pull” unused parameters towards zero.

Problems

9.1. Discrete-Time Process 1
Given is the discrete-time process

G.´/ D 0:5´�1

.1 � 0:5´�1/.1 � 0:1´�1/

Determine the step response for u.k/ D �.k/.
Determine the response for the input signal u.k/ D sin�k=5.
Given is a simplified model of the process as

Gm.´/ D b1´
�1

1C a1´�1

Determine the parameters a1 and b1 by the method of least squares for the step input
and the sinusoidal input.
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9.2. Discrete-Time Moving Average Process
Given is the second order process

y.k/ D b0u.k/C b1u.k � 1/
and the following measurements
Data point k 0 1 2 3 4 5 6 7 8 9 10

Input u.k/ 0 1 �1 1 1 1 �1 �1 0 0 0

Output y.k/ 0 1:1 �0:2 0:1 0:9 1 0:1 �1:1 �0:8 �0:1 0

Estimate the parameters b0 and b1 by means of the method of least squares.
Determine the disturbance n.k/, its mean and variance.

9.3. Discrete-Time Process 2
The PRBS signal with

u.k/ D 1;�1; 1; 1; 1;�1;�1; 1;�1; 1; 1; 1; 1;�1; : : :
which is periodic with N D 7 is used as an input signal for the process

G.´/ D 0:7´�1

1 � 0:3´�1

Determine the output y.k/, the auto-correlation function Ruu.�/ and the cross-
correlation function Ruy.�/.
Use Ruu.�/ as an input for the process and compare it with Ruy.�/ as calculated be-
fore.
Estimate the impulse response of the system and compare it with Ruy.�/.
Estimate the parameters b0 and b1 by the method of least squares.

9.4. Discrete-Time Process 3
Given is the process

y.k/C a1y.k � 1/ D b1u.k � 1/ :
State the equation of recursive least squares. What changes if the process has a dead
time with d D 2?

9.5. Discrete-Time Process 4
A process of first order shall be identified by the method of least squares. The process
cannot respond directly to a step. For the identificationN D 18 pairs of input-/output
data have been recorded.
Draw the block diagram for the calculation of the input error, output error, and equa-
tion error between process and model. Which setup must be chosen to ensure that
the error is linear in the parameters?
What is the non-recursive estimation equation for the method of least squares if � is
the parameter vector, � the data matrix and y the output vector? What dimension do
the individual vectors and matrices have?
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As an input signal, a PRBS signal of amplitude 1 is used. One obtains the following
data for the auto-correlation and cross-correlation:

Ruy.0/ D �0:0662 Ruy.1/ D 0:4666

Ryy.0/ D 0:278 Ryy.1/ D 0:112

Determine the parameters a1 and b1 of the model.

9.6. Bias-free Estimation
What are the conditions for a bias-free estimation of the parameters of a first order
model by means of the method of least squares? Which estimates show a bias for
white noise as a disturbance n.k/?

9.7. DC Value
Compare the advantages and disadvantages of the different methods of working with
large signal values U.k/ and Y.k/.

9.8. Exponential Forgetting
What happens for the method of least squares with exponential forgetting (� < 1) if
the input signal does not change?

9.9. Sinusoidal Excitation
If a process is excited with a single sinusoidal oscillation, what is the maximum
model order that can be handled?

9.10. Stochastic Disturbances
According to which relation diminishes the error of the parameter estimates as a
function of the measurement time if stochastic disturbances are acting on the process.
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10

Modifications of the Least Squares Parameter Estimation

In order to obtain bias-free estimates of linear dynamic processes by the method of
least squares, the error signal e.k/ may not be correlated. This requirement is only
satisfied if the disturbance n.k/ that is acting on the system is a colored noise that
is generated from a white noise 	.k/ filtered by a form filter with the transfer func-
tion 1=A.´�1/. Since this prerequisite is hardly ever met in practice, the method of
least squares typically works on a correlated error signal and hence yields biased
estimates. The bias can be so high for larger noise levels that the results are unus-
able. To avoid this problem, in the following, methods are presented which yield
bias-free estimates for larger classes of dynamic processes. Furthermore, methods
of stochastic approximation are introduced, namely the Robbins-Monro algorithm,
the Kiefer-Wolfowitz algorithm, the least mean squares and the normalized least
mean squares algorithms, all of which allow to approximate the solution of the Least
Squares method with much less computational effort.

10.1 Method of Generalized Least Squares (GLS)

In the following, methods are introduced, which give greater flexibility to the noise
model by introducing additional degrees of freedom into the transfer function of the
form filter. The most flexible model is the Box-Jenkins model, which allows to freely
parameterize numerator and denominator (Ljung, 1999) of the noise. However, more
degrees of freedom also raise the question on how these additional parameters can
be identified. Therefore, limiting the degrees of freedom can be attractive and/or
necessary to e.g. be able to use a direct least squares parameter estimation method.

10.1.1 Non-Recursive Method of Generalized Least Squares (GLS)

The fundamental idea behind the method of generalized least squares is that the error
signal in the model for the normal method of least squares

A.´�1/y.´/ � B.´�1/´�du.´/ D e.´/ (10.1.1)

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_10, © Springer-Verlag Berlin Heidelberg 2011 
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with the uncorrelated error signal e.k/ is being replaced by a correlated signal, i.e. a
colored noise 
.k/, which is generated by means of a form filter


.´/ D 1

F.´�1/
e0.´/ ; (10.1.2)

where e0.´/ is uncorrelated. 
.k/ is assumed to be an auto regressive signal process.
Since the filter polynomial F.´�1/ is unknown, Clarke (1967) proposed the follow-
ing iterative procedure:

Step 1

The method of least squares is applied to the measurements in the interval mC d �
k � mC d CN based on the model

A.´�1/y.´/ � B.´�1/´�du.´/ D 
.´/ ; (10.1.3)

where the estimates O�1 are biased and 
.´/ is a correlated signal.

Step 2

The error signal 
.k/ is determined for the estimated parameters O�1 according to
(10.1.3). Using the AR model


.k/ D  T
� .k/f C e0.k/ (10.1.4)

yields

 T
� .k/ D ��
.k � 1/ �
.k � 2/ : : : �
.k � 	/ � (10.1.5)

f T D �
f1 f2 : : : f�

�
: (10.1.6)

The order 	 has to be assumed appropriately, e.g. 	 D m. Then, the parameters are
estimated according to the method of least squares as

Of D �
� T�

��1
� T	 ; (10.1.7)

where � is made up of the row vectors of  T
�
.k/.

Step 3

The measured input and output signal u.k/ and y.k/ are processed by the filter

GF.´
�1/ D OF .´�1/ ; (10.1.8)

so that
Qu.´/ D GF.´

�1/u.´/ and Qy.´/ D GF.´
�1/y.´/ : (10.1.9)
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Fig. 10.1. Block diagram for the method of generalized least squares (GLS)

Step 4

The method of least squares is now applied to the filtered signals Qu and Qy, i.e. to the
model

A.´�1/ Qy.´/ � B.´�1/´�d Qu.´/ D 
 0.´/ ; (10.1.10)

see Fig. 10.1. One obtains the parameters O�2.

Step 5

Steps 2 through 4 are repeated until O�j does not change significantly from one itera-
tion to the next.

In order to obtain bias-free parameter estimates, the error signal 
 0.k/ must be
uncorrelated. This is the case, if OF .´�1/matches with F.´�1/ according to (10.1.2).
The method of generalized least squares provides bias-free estimates of the noise
generating form filter of the form

G�.´/ D n.´/

	.´/
D D.´�1/

C.´�1/
D 1

A.´�1/F.´�1/
; (10.1.11)

what can be proven by inserting (10.1.2) into (10.1.3) and 	.´/ D e0.´/. If this form
of the noise filter does not apply to the disturbance, then the method of generalized
least squares provides biased estimates or does not converge at all.

A simple form of the GLS method has been suggested by Steiglitz and McBride
(1965): In the i th iteration, it is suggested to set OFj .´

�1/ D OA.j �1/.´
�1/. This how-

ever leads to a very specific filter G�.´
�1/.
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Stoica and Söderström (1977) proposed a further GLS method which replaced

.k/ in (10.1.3) by a moving-average process,


.´/ D H.´�1/e0.´/ ; (10.1.12)

see also (Isermann, 1974). This method however is similar to the ELS method,
Sect. 10.2, which does not require an iterative approach. Compared to the normal
method of least squares, the method of generalized least squares requires a much
larger effort, but as a remuneration for that also delivers a model of the noise gener-
ating signal process.

10.1.2 Recursive Method of Generalized Least Squares (RGLS)

In a similar manner to the method of least squares, one can also derive a recursive
formulation for the method of generalized least squares. Only the resulting set of
equations shall be presented here, the derivation is e.g. presented by Hastings-James
and Sage (1969). The recursive equations are given as

O�.k C 1/ D O�.k/C �
 T.k C 1/ QP.k/ Q .k C 1/C 1

��1

QP.k/ Q .k C 1/
� Qy.k C 1/ � T.k C 1/ O�.k/� (10.1.13)

QP.k C 1/ D QP.k/
	
I � Q T.k C 1/ Q .k C 1/ QP.k/

� Q T.k C 1/ QP.k/ Q .k C 1/C 1
��1



(10.1.14)

Qf .k C 1/ D Qf .k/C �
 T

� .k C 1/Q.k/ �.k C 1/C 1
��1

Q.k/ �.k C 1/
�

.k C 1/ � T

� .k C 1/ Of .k/� (10.1.15)

Q.k C 1/ D Q.k/
	
I � T

� .k C 1/ �.k C 1/Q.k/

�
 T

� .k C 1/Q.k/ �.k C 1/C 1
��1



: (10.1.16)

The elements of Q are the filtered signals from (10.1.10). The initial values of P.0/
andQ.0/ are chosen as diagonal matrices with large elements according to (9.4.22).
˛ may however not be chosen too large as the estimate may diverge in this case. As
initial values for the parameters, one can choose O�.0/ D 0.

An exponential weighting of the past data with � can be achieved by replacing
the terms�

 T.k C 1/ QP.k/ Q .k C 1/C �
�

in (10.1.13) and (10.1.14) (10.1.17)

QP.k C 1/ D 1

�
QP.k/.i � : : :/ in (10.1.14) (10.1.18)

and also the respective terms in (10.1.15) and (10.1.16). This exponential weighting
can also lead to better convergence if the first 100 to 200 values are weighted with
� D 0:99 (Isermann and Baur, 1973). The initial values then have less influence on
the results in subsequent recursions.
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10.2 Method of Extended Least Squares (ELS)

If instead of the LS method

A.´�1/y.´/ � B.´�1/ ´�d u.´/ D ".´/ (10.2.1)

with a correlated error signal ".´/ the ARMAX model

A.´�1/y.´/ � B.´�1/´�du.´/ D D.´�1/e0.´/ (10.2.2)

with a correlated signal ".´/ D D.´�1/e0.´/ is used, the recursive methods for
dynamic processes and for stochastic signals can be combined to form the extended
least squares method (Young, 1968; Panuska, 1969). Based on

y.k/ D  T.k/ O�.k � 1/C e.k/ ; (10.2.3)

the following extended vectors are introduced:

 T.k/ D ��y.k � 1/ : : : �y.k �m/ u.k � d � 1/ : : :
u.k � d �m/ O	.k � 1/ : : : O	.k � p/ � (10.2.4)

O�T D � Oa1 : : : am
Ob1 : : : Obm

Od1 : : : Odp

�
: (10.2.5)

Herewith, as in the case of the ARMA signal process (9.4.35), the virtual and hence
unknown white noise 	.k/ is taken as an estimate Ok D e0.k/, which can be deter-
mined recursively by

O	.k/ D y.k/ � T.k/ O�.k � 1/ : (10.2.6)

Then, the recursive version is applied, i.e.

O�.k C 1/ D O�.k/C �.k/
�
y.k C 1/ � O T.k C 1/ O�.k/� ; (10.2.7)

and the equations corresponding to (9.4.17) through (9.4.19). Instead of (10.2.6),
also

O	.k/ D y.k/ � T.k/ O�.k/ (10.2.8)

can be used. This implies that

H.´/ D 1

D.´/
� 1

2
(10.2.9)

must be positive real.
The signal values O	.k/ D e.k/ in O T.kC1/ are calculated recursively. Therefore

the roots of D.´/ D 0 must lie within the unit circle of the ´-plane. The parameter
estimation is unbiased and consistent in the mean square if the convergence condi-
tions of the LS method are transferred to the model equation (10.2.3). That means
that (10.2.2) has to be valid.

The noise form filter now is given as
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Fig. 10.2. Block diagram for the method of extended least squares (ELS)

G�.´/ D n.´/

	.´/
D D.´�1/

A.´�1/
; (10.2.10)

see also Fig. 10.2. Although the fixed denominator polynomial limits the general
applicability, there are still enough degrees of freedom by the variable order of the
numerator polynomial to be able to approximate a given disturbance n.k/ precisely
enough. The parameters of D.´�1/ converge slower than those of the process. The
method however requires little additional effort and has proven itself in many appli-
cations.

10.3 Method of Bias Correction (CLS)

The methods presented so far tried to avoid biased estimates by making special as-
sumptions about the signal process for the disturbance and hence could accommo-
date a correlated error e.k/ in the original underlying model of the method of least
squares. A different solution to this problem is to determine the resulting bias and
then use this result to correct the biased estimates of the method of least squares.
This however requires that the bias can be determined with reasonable effort, which
is only possible in very special cases, first and foremost for white noise as a distur-
bance. An overview over the different methods is given by Stoica and Söderström
(1982). Basis can be a model of the form

y.´/ D B.´�1/

A.´�1/
´�du.´/C n.´/ ; (10.3.1)

where the disturbance n.k/ is assumed to be a white noise with Efn.k/g D 0 and
variance �2

n . Then, the bias is according to (9.1.65) given as

E
˚
b.N C 1/

� D �E
˚
R�1.N C 1/

� �I 0
0 0

�
—

S

�0�
2
n ; (10.3.2)

where �0 denotes the exact parameters. This bias is now used to correct the parameter
estimates O�LS, compare (9.1.39),
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O�CLS.N C 1/ D O�LS.N C 1/ � b.N C 1/

D OR�1.N � 1/ 1

N C 1
� T.N C 1/y.N C 1/

C OR�1.N C 1/S O�CLS.N C 1/�2
n

(10.3.3)

and from there

O�CLS.N C 1/ D �
R.N � 1/ � S�2

n

��1 1

N C 1
� T.N C 1/y.N C 1/ : (10.3.4)

The variance �2
n follows for a known system model from (10.3.1) and with

n.´/ D y.´/ � B.´�1/

A.´�1/
´�du.´/ (10.3.5)

or, based on the the difference equation,

n.k/ D y.k/ � T.k/ O�.k/ � T
n .k/S

O�.k/ (10.3.6)

as

�2
n .N C 1/ D E

˚
n2.k/

� D 1

N C 1 � 2mn
T.N C 1/n.N C 1/ : (10.3.7)

(10.3.4) and (10.3.7) can be used iteratively. A different way for the calculation of
�2

n is given by Stoica and Söderström (1982). There, it has also been shown that
the estimates are not better than those for the method of instrumental variables. A
method for the partial correction of a bias for colored errors e.k/ is presented by
Kumar and Moore (1979).

10.4 Method of Total Least Squares (TLS)

The method of least squares uses a model of the form

y � e D � O� (10.4.1)

and determines the parameters from

O� D arg min kek2
2 : (10.4.2)

Here, it was assumed that only the output was disturbed by noise and hence only the
distance between the model output yM and the measurements y had to be minimized,
see Fig. 10.3.

For the method of total least squares as proposed by Golub and Reinsch (1970)
and Golub and van Loan (1980), the model is now given as

y C e D .� C F / O� ; (10.4.3)
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Fig. 10.3. Calculation of the error between measurement and model for the one dimensional
case y D �1x for the normal method of least squares and the method of total least squares

i.e. one now assumes an error not only in the measurements in the output vector y ,
but also in the measurement contained in the data matrix � . The above model can
be rewritten as 	 �

� ;y
�–

C

C �
F ; e

�•
�


� O�
�1
�

D 0 : (10.4.4)

The method of total least squares will in the following be introduced in two ways:
First, a more practical way will be presented and then, the correct mathematical
derivation will be outlined.

The matrixC of the disturbed measurements in (10.4.4) will have the dimensions
N � .m C 1/ with N 	 m C 1 and for disturbed measurements will have full
rank mC 1. In order to determine the m parameters of the model, the rank must be
reduced to m. For rank m, one column of the m C 1 columns is linearly depend on
the other columns and hence the system of equations can be solved unambiguously
for the vector of parameter estimates O� . This rank defect can be realized by utilizing
the singular value decomposition. One carries out a singular value decomposition
and then removes the smallest eigenvalue. This procedure will in the following be
motivated from a mathematical point of view as well.

The underlying goal in the method of total least squares is to minimize the entries
of the augmented error matrix � D .F ; e/. This minimization is done in the sense
of the Frobenius norm, which is given as

k�k2
F D

MX
iD1

NX
j D1

�2
ij ; (10.4.5)

where i and j are the row and column index of � respectively. For real-valued
measurements and in a non-mathematical way, this norm can be interpreted as the
extension of the Euclidian vector norm to a matrix by taking the vector norm not
only of the output error vector e, but also of all columns of the data error matrix F .
With the Frobenius norm, the parameter estimates are then given as

O� D arg min k�k2
F : (10.4.6)
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In order to solve the problem of total least squares, one will make use of the
fact that the Frobenius norm of a matrix does not change under multiplication with a
orthonormal matrix U (that satisfies U�1 D U T ),

kUAk2
F D kAk2

F : (10.4.7)

This fact will now be exploited in the development of the method of total least
squares. One tries to minimize the augmented error matrix�, or equivalently, find a
matrix QC of rank m that best approximates the matrix C ,

k�k2
F D kC � QC k2

F : (10.4.8)

The matrix C can without a loss of generality be written as

C D U˙V T (10.4.9)

where

˙ D diag
�
�1 �2 : : : �nC1

�
with �1 � �2 � : : : � �nC1 ; (10.4.10)

which merely represents the Singular Value Decomposition (SVD) of C . The matri-
ces U and V are orthonormal. The matrix QC can be written as

QC D U˙V T , U�1 QC �V T��1 D U T QCV D S (10.4.11)

with an arbitrary matrix S . Then, the cost function can be rewritten as

kC � QC k2
F D kU˙V T � USV Tk2

F D k˙ � Sk2
F ; (10.4.12)

since U and V are orthonormal. Because the matrix ˙ is a diagonal matrix, it is
obvious that the matrix S should also be diagonal. All non-diagonal elements of S
must be zero to ensure that the cost function indeed reaches a minimum. The matrix
S will now be written as

S D diag
�
s1 s2 : : : snC1

�
; (10.4.13)

and the cost function becomes

V D k˙ � Sk2
F D

mC1X
iD1

�
�i � si

�2
: (10.4.14)

As the matrix QC should be of rank m, the matrix S can have at least m non-zero
entries si on the diagonal and must have one element with si D 0. In the interest
of minimizing the cost function, one should choose si D �i for i D 1; : : : ; n and
snC1 D 0. The cost function then becomes

V D k˙ � Sk2
F D �2

nC1 : (10.4.15)
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The matrix QC is hence given as

OC D U diag
�
�1 �2 : : : �n 0

�
V T : (10.4.16)

Now that the rank n approximation OC has been determined, one can solve (10.4.4),
which is repeated here as

OC
� O�

�1
�

D 0 : (10.4.17)

This is equal to determining the null space of OC , defined as

OCx D 0 : (10.4.18)

The SVD delivers an orthonormal basis for the null space, therefore the solution
to the above equation can easily be given. The columns of the matrix V that are
associated with singular values being zero form an orthonormal basis for the null
space of the matrix QC . As the last singular value of the matrix OC has been set to
zero, the last column of V forms the orthonormal basis of the null space of QC , hence

� O�
�1
�

D ˛x D ˛

�
V12

V22

�
: (10.4.19)

From the requirement ˛V22 D �1, one can fix ˛ as ˛ D �V �1
22 and hence the

parameter estimates can be determined as

O� D �V �1
22 V12 : (10.4.20)

For the derivation of this solution, see also (Goedecke, 1987; Zimmerschied, 2008).
This approach is also termed errors-in-variables and orthogonal regression. A de-
tailed survey of the method of total least squares can be found in the monograph
by van Huffel and Vandewalle (1991) or the survey by Markovsky and van Huffel
(2007).

If errors have different variance, then one can resort to the problem of generalized
total least squares (GTLS), which allows to incorporate the variance of the different
columns of � . In this case, one introduces a scaling matrix G into the problem, so
that the cost function

V D k�Gk2
F (10.4.21)

is minimized, whereG D diag.1=�1; 1=�2; : : : ; 1=�nC1/ and �i is the error standard
deviation of the corresponding regressor or output respectively.

By an appropriate scaling, one can also deal with correlation between the differ-
ent columns of�. The covariance matrix C of the error of� must be known up to a
scaling factor. The scaling matrix can then be chosen as

G D R�1
C ; (10.4.22)

where RC is given such that C D RT
CRC.
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Fig. 10.4. Block diagram of the method of instrumental variables (IV)

It is pointed out by Markovsky and van Huffel (2007) and Söderström (2007)
that the method of total least squares may in its native form not be well suited for the
identification of dynamic systems since the elements of � and y are often coupled
and especially since � is often a Hankel matrix. Here, the STLS (structured total
least squares) method can be of better suitability (Markovsky et al, 2005).

The method of total least squares closely relates to the principal component ana-
lysis (PCA) which is used in statistics to find correlation in data sets and to reduce
the dimensionality of data sets. The PCA determines and keeps those subspaces of
measured data that have the largest variance, see e.g. the book by Jolliffe (2002).
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10.5 Instrumental Variables Method (IV)

10.5.1 Non-Recursive Method of Instrumental Variables (IV)

A direct method to avoid the problem of biased estimates is the introduction of the
so-called Instrumental Variables. This method goes back to Reiersøl (1941), Durbin
(1954), and Kendall and Stuart (1961). It is also based on the model equation of the
equation error as

e D y � �� : (10.5.1)

This equation is now multiplied on both sides with the transpose of an instrumental
variable matrix W as

W Te D W Ty �W T�� : (10.5.2)

If the elements ofW , the so-called instrumental variables are chosen such that

plim
N !1

W Te D 0 (10.5.3)

plim
N !1

W T� positive definite ; (10.5.4)

then it follows from (10.5.2)

plim
N !1

W T�� D plim
N !1

W Ty (10.5.5)

and the estimation equation is given as

O� D �
W T�

��1
W Ty : (10.5.6)

According to Theorem 9.2, this equation yields asymptotic bias-free (consistent) es-
timates if in addition

plim
N !1

e D 0 : (10.5.7)

The main problem now is to find appropriate instrumental variables. (10.5.3 ) and
(10.5.4) suggest to choose the instrumental variables wi .k/ so that they are as much
as possible

� uncorrelated with the disturbance n.k/
� correlated with the useful signals u.k/ and yu.k/

In the matched case with O� D �0, e.k/ depends only on n.k/ so that (10.5.3) is
satisfied and with the useful signals in W , also W T� will be positive definite, see
Sect. 9.1.4.

The input signal was chosen as instrumental variables by Joseph et al (1961), i.e.

wT D �
u.k � 1 � ı/ : : : u.k �m � ı/ u.k � d � 1/ : : : u.k � d �m/ � ;

(10.5.8)
because these instrumental variables are easy to obtain and are correlated with � .
One can choose ı such that the elements of the covariance matrix Rw .�/ are max-
imal.
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A stronger correlation between W and � can be obtained if W contains the
undisturbed signals of � . One therefore has to estimate the undisturbed output sig-
nals h.k/ D Oyu.k/. Then, one can set up the instrumental variable matrix as

wT D ��h.k � 1/ : : : �h.k �m/ u.k � d � 1/ : : : u.k � d �m/ � : (10.5.9)

This was proposed by Wong and Polak (1967) and Young (1970). The estimates of
the undisturbed output can be obtained by means of the known input signals and the
estimated parameters according to (9.1.18) as

h.k/ D Oyu.k/ D  T.k/ O�.k/ : (10.5.10)

This can be considered as an auxiliary model, providing auxiliary parameters �aux,
with the goal to reconstruct the useful output yu.k/, see Fig. 10.4. The matrix of
instrumental variables is then given as

W D

˙ �h.mC d C 1/ : : : �h.d/ u.m � 1/ : : : u.0/

�h.mC d/ : : : �h.d C 1/ u.m/ : : : u.1/
:::

:::
:::

:::

�h.mC d CN C 1/ : : : �h.d CN/ u.mCN � 1/ : : : u.N /

�
:

(10.5.11)
For the non-recursive application of this method, one uses the following approach

(Young, 1970):

1. In the first iteration, one uses the instrumental variables from (10.5.8) or one
uses the normal method of least squares according to (9.1.18)

2. From the parameter estimates O�1, the improved instrumental variables are deter-
mined according to (10.5.10) and estimates of the new parameter vector O�2 are
obtained

3. Step 2 is repeated until the estimated parameters do not change significantly
from iteration to iteration

In general, a few iterations are already sufficient to obtain suitable estimates.
Furthermore, experience has shown that the instrumental variables do not have to
match the undisturbed signals very precisely. The start with the normal method of
least squares has proven very useful (Baur, 1976).

The covariance of the parameter estimates is in analogy to (9.1.69) given as

cov�� D E
˚
. O���0/. O���T

0 /
� D E

˚
.W T� /�1W TeeTW .W T� /�1

�
: (10.5.12)

In this equation,W and e are statistically independent, but this is not true for � and
e, since e is correlated. Therefore, this equation cannot be simplified immediately.

If the parameters of the auxiliary model converge (10.5.10) to the true process
parameters,

plim
N !1

O�aux D plim
N !1

O� D �0 ; (10.5.13)

one can assume that for large N
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1

N C 1
E
˚
W T�

� � 1

N C 1
E
˚
W TW

�
: (10.5.14)

Then, it follows from (10.5.12),

cov�� � E
n�
W TW

��1
W T

o
E
˚
eeT�EnW �

W TW
��1

o
: (10.5.15)

One can show by the appropriate manipulations of the above equation that the co-
variance diminishes with 1=

p
N C 1, if e.k/ is stationary.

So far, only the small signal behavior of the input and output, i.e.

u.k/ D U.k/ D U00; y.k/ D Y.k/ � Y00 ;

was considered. Here, Y00 is typically unknown. If however EfU.k/g D 0, then Y00

has no influence, if the output of the auxiliary model is also governed by Efh.k/g D
0, since in (10.5.6), the values of y.k/ are not correlated with the h.k/.

Theorem 10.1 (Conditions for a Consistent Parameter Estimation by the Method
of Instrumental Variables).

The parameters � can be estimated consistently in the mean square, if the fol-
lowing conditions are satisfied:

1. m and d are known exactly
2. u.k/ D U.k/ � U00 is known exactly
3. e.k/ is not correlated with the instrumental variables wT.k/

4. Efe.k/g D 0

ut
From this follows that

1. Efu.k � �/n.k/g D 0 for j� j � 0

2. Y00 must not be known if Efu.k/g D 0 and Efh.k/g D 0 with h.k/ D 0

according to (10.5.9)
3. If either Efn.k/g D 0 and Efu.k/g D const: or Efu.k/g D 0 and Efn.k/g D 0

A big advantage of the method of instrumental variables is that no special assump-
tions must be made about the noise and its form filter. The noise n.k/ can be an
arbitrary stationary colored noise, i.e. it can be described by

n.´/ D D.´�1/

C.´�1/
	.´/ : (10.5.16)

Then the polynomialsD.´�1/ and C.´�1/ can, if they have stable roots, be arbitrary
and independent of A.´�1/ and B.´�1/. The IV method per se does not provide a
model of the noise. This can however be derived as is described in the next section. A
detailed analysis of IV methods is given by Söderström and Stoica (1983). Although
proposed for frequency domain identification, the following idea can also be applied
in the time domain: In the case of multiple measurements, Pintelon and Schoukens
(2001) propose to use measurements from a different experiment as instrumental
variables as these are strongly correlated with the measurements and practically un-
correlated with the noise. The instrumental variable approach can also be combined
with weighting of the estimation equations (Stoica and Jansson, 2000).
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10.5.2 Recursive Method of Instrumental Variables (RIV)

According to the recursive method of least squares, one can also provide recursive
equations for the method of instrumental variables (Wong and Polak, 1967; Young,
1968):

O�.k C 1/ D O�.k/C �.k/
�
y.k C 1/ � T.k C 1/ O�.k/� (10.5.17)

�.k/ D 1

 T.k C 1/P.k/ .k C 1/C 1
P.k/w.k C 1/ (10.5.18)

P.k C 1/ D �
I � �.k/ T.k C 1/

�
P.k/ (10.5.19)

Here,

P.k/ D �
W T.k/� .k/

��1 (10.5.20)

wT.k/ and h.k/ see (10.5.9) and (10.5.10) :

A block diagram of this method is shown in Fig. 10.4.
To avoid a strong correlation between the instrumentals h.k/ and the current

error signal e.k/, it is suggested by Wong and Polak (1967) to introduce a dead
time q between the estimated parameters and the parameter set used for the auxiliary
model, where q should be chosen such that e.k C q/ is independent of e.k/.

Young (1970) furthermore used a discrete-time low-pass filter so that

O�aux.k/ D .1 � ˇ/ O�aux.k � 1/C ˇ O�.k � q/ : (10.5.21)

In this case, the choice of q is less critical and the parameter estimates are smoothed,
such that fast parameter changes of the auxiliary model are avoided. ˇ should be
chosen as 0:01 � ˇ � 0:1 (Baur, 1976).

As initial values, one chooses in analogy to the normal method of least squares
the matrix P.0/ D ˛I as a diagonal matrix with large elements and the parameter
vector O� D 0. In the starting phase, one might also want to supervise the convergence
of the auxiliary model. It has been proven useful to employ the recursive method of
least squares in the starting phase of the algorithm (Baur, 1976).

Since one does not automatically obtain a model of the disturbance, one can
proceed as follows (Young, 1970):

1. First, the noise n.k/ is determined as

n.k/ D y.k/ � Oyu.k/ D y.k/ � h.k/ ;
where y.k/ is the measured process output and h.k/ the output of the auxiliary
model.

2. Then one uses a suitable parameter estimation technique to determine the para-
meters of an ARMA signal process given by

n.´/ D D.´�1/

C.´�1/
	.´/ :

One can employ e.g. the recursive method of least squares as described in
Sect. 9.4.
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10.6 Method of Stochastic Approximation (STA)

The methods of stochastic approximation are recursive parameter estimation tech-
niques, which are computationally less demanding than the recursive method of
least squares. The minimum of the cost function is determined by a gradient-based
method, which can be applied to both deterministic and stochastic models.

The method of stochastic approximation goes back to work by Robbins and
Monro (1951), Kiefer and Wolfowitz (1952), Blum (1954), and Dvoretzky (1956). A
survey of the methods can be found in (Sakrison, 1966; Albert and Gardner, 1967;
Sage and Melsa, 1971) and recently e.g. in (Kushner and Yin, 2003).

10.6.1 Robbins-Monro Algorithm

As an introductory example for the gradient based methods, the one-dimensional
case, i.e. the estimation of a single parameter, is presented. This parameter � satisfies
the equation

g.�/ D g0 ; (10.6.1)

where g.0/ must be exactly measurable and g0 must be a known constant. Then, the
unknown parameter � , i.e. the root of (10.6.1), can be determined iteratively by the
gradient as

�.k C 1/ D �.k/ � %.k/�g.�.k// � g0

�
: (10.6.2)

Here, the weighting factors %.k/must be chosen appropriately to ensure convergence
of the algorithm. If g.�.k// � g0 D 0, then �.k C 1/ is the exact solution.

Now, it is assumed that g.�/ cannot be measured and that one can only measure
the disturbed quantity

f .�; n/ D g.�/C n ; (10.6.3)

where n is a stochastic quantity with Efng D 0 and finite variance. Then, also f .�; n/
is a stochastic quantity and (10.6.2) cannot be used to determine � as g.�/ is not
known. Since

E
˚
f .�; n/

� D g.�/ ; (10.6.4)

one would expect that the algorithm in (10.6.2) after replacing g.�/ by f .�; n/ and
becoming a stochastic algorithm

O�.k C 1/ D O�.k/ � %.k/�f . O�.k/; n.k// � g0

�
(10.6.5)

would still converge towards the true value �0 after a sufficient number of iterations.
This algorithm is termed Robbins-Monro algorithm.

The new value of the parameter estimate is then obtained by subtracting of the er-
ror as determined by the disturbed equation (10.6.1) from the old parameter estimate
weighted with a correction factor %.k/

e.k/ D f . O�.k/; n.k// � g0 : (10.6.6)
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Theorem 10.2 (Robbins-Monro Algorithm). The Robins-Monro algorithm con-
verges in the mean squared error sense

lim
k!1

E
n� O�.k/ � �0

�2o D 0

under the following conditions:

1. (10.6.1) has a unique solution
2. The stochastic quantities f .k/ must have an equal probability density function

and must be statistically independent

3. lim
k!1

%.k/ D 0,
1X

kD1

%.k/ D 1,
1X

kD1

%2.k/ < 1
ut

The proof is presented e.g. in (Sakrison, 1966). Some weighting factors %.k/ which
satisfy the above stated conditions are

%.k/ D ˛

ˇ C k
or %.k/ D ˛

k
: (10.6.7)

The choice of ˛ and ˇ is arbitrary. If ˛ is sufficiently large, one can expect a good
convergence for large k.

10.6.2 Kiefer-Wolfowitz Algorithm

A second stochastic approximation algorithm can be stated, if a parameter � has to
be determined such that a function g.�/ reaches an extremal point, i.e.

d
d�
g.�/ D 0 (10.6.8)

is satisfied. The deterministic, gradient-based algorithm is in this case given as

�.k C 1/ D �.k/ � %.k/ d
d�
g.�/ : (10.6.9)

If g.�/ cannot be measured exactly and the only possible measurement is governed
by (10.6.3), then one can derive in analogy to (10.6.5) the following stochastic algo-
rithm

O�.k C 1/ D O�.k/ � %.k/ d
d�
f . O�.k/; n.k// ; (10.6.10)

which is termed the Kiefer-Wolfowitz algorithm.
If the function f . O�.k/; n.k// is not differentiable everywhere or if the determi-

nation of the derivative is too difficult, one can resort to replacing the first derivative
by the difference quotient and one obtains

O�.k C 1/ D O�.k/ � %.k/

2��.k/

�
f . O�.k/C��.k/; n.k// � f . O�.k/ ���.k/; n.k//� :

(10.6.11)
This leads directly to
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Theorem 10.3 (Kiefer-Wolfowitz Algorithm). The Kiefer-Wolfowitz algorithm con-
verges in the mean squared error under the following conditions:

1. g.�/ has a single extremal point
2. The stochastic quantities f .k/ must have an equal probability density function

and must be statistically independent

3. lim
k!1

��.k/ D 0, lim
k!1

%.k/ D 0,
1X

kD1

%.k/��.k/ < 1,

1X
kD1

�
%.k/

��.k/

�2

< 1
ut

In order to simultaneously estimate more than one parameter of the scalar func-
tion g.�/, one can replace the scalar quantity � in (10.6.5) and (10.6.10) by a param-
eter vector � .

The method of the stochastic approximation shall now be applied to the estima-
tion of the parameters of a difference equation according to (9.1.5) or (9.1.7) respec-
tively. For this, one is interested in determining the minimum of the cost function

V.k/ D e2.k/ : (10.6.12)

For determining the minimum, which is not known a priori, one will now employ the
Kiefer-Wolfowitz algorithm. The following relations are in line with Sect. 9.4. The
error for a given sample can be determined as

e.k C 1/ D y.k C 1/ � T.k C 1/ O�.k/ ; (10.6.13)

compare (9.4.13). Then, the derivative of the cost function in (10.6.12) becomes

@V.k C 1/

@�
D �2 .k C 1/

�
y.k C 1/ � T.k C 1/ O�.k/� : (10.6.14)

Then (10.6.10) is given as

O�.k C 1/ D O�.k/ C 2%.k C 1/ .k C 1/

New Parameter
Estimate

Old Parameter
Estimate

Correction
Vector�

y.k C 1/ �  T.k C 1/ O�.k/�
New

Measurement
Predicted Measurement based
on Last Parameter Estimate

:

(10.6.15)

It is often suggested to choose the weighting factor as

2%.k C 1/ D 1

k C 1

1

�
with � > 0 : (10.6.16)

This stochastic algorithm matches with the algorithm of recursive least squares in
(9.4.11) up to the correction vector, which is defined differently. The difference is
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Fig. 10.5. Suggested time behavior of
%.k/ for the stochastic approximation

that the recursive method of least squares determines the update as a function of the
variance of the data. In the vectorial case, one will use the scalar correction factor
2%.kC1/ for the stochastic approximation and the parameter error covariance matrix
P.kC1/ in the case of the recursive least squares, which weights the latest equation
error based on the current accuracy of the parameter estimates. Hence, the method
of stochastic approximation can be interpreted as a strongly simplified version of the
recursive method of least squares.

According to Theorem 10.3 and (10.6.12), e2.k/ must be statistically indepen-
dent for a consistent estimation. Since this can in most applications not be guaran-
teed, one will typically not obtain bias-free estimates. Saridis and Stein (1968) show
that the bias can be corrected if the statistic properties of the measured signals are
known exactly. One can use the method of stochastic approximation also for the
estimation of non-parametric models (Saridis and Stein, 1968; Isermann and Baur,
1973).

It should also be mentioned that the convergence can be improved by certain
modifications of the calculation of the weighting factor %.k/. If the factor is chosen
according to the suggestion in (10.6.16), then it becomes very large at the start of
the algorithm, meaning that the error e.k/ is emphasized too strongly. A choice of
%.k/ according to Fig. 10.5 leads to a damped change of the parameter estimates and
leads to better convergence as was shown by Isermann and Baur (1973). The method
of stochastic approximation is only used in very limited areas of application as the
convergence is unreliable and also the higher computational effort for the recursive
method of least squares can in most cases easily be handled nowadays.

Example 10.1 (Identification of a First Order Process with the Kiefer-Wolfowitz Al-
gorithm and the Normalized Least Mean Squares).

Example 9.2 shall now be used for a comparison of the RLS method and the
Kiefer-Wolfowitz (termed KW from now on) method. One can see a comparison
of the convergence of the parameter estimates in Fig. 10.6 and can see that the RLS
method converges much faster. Figure 10.7 shows how the methods converge towards
the optimal parameter set, One can see that the choice of the (in this case constant)
factor % has tremendous influence on the convergence behavior and speed. The el-
lipsoids are contours of the cost function V , i.e. the sum of squared errors

P
e2.k/.
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Fig. 10.6. Parameter estimation for a first order system comparing the method of recursive
least squares with the Kiefer-Wolfowitz algorithm with % D 0:2

In this example, also the results of the normalized least mean squares (NLMS) have
been shown. The algorithm will be discussed in the next section.

Example 10.2 (Identification of the Three-Mass Oscillator by Means of the Kiefer-
Wolfowitz Algorithm).

The Kiefer-Wolfowitz algorithm has now been applied to the three-mass oscilla-
tor, where the system was excited with a PRBS signal (see Sect. 6.3). The measure-
ments were the same as in Fig. 9.6 to be able to compare the results of the different
methods.

As can be seen from Fig. 10.8, the parameters need a long time to converge,
compare this with the time of 15 seconds that the parameter estimates needed to
settle in case of the RLS method, as could be witnessed in Fig. 9.7. An important
issue for convergence is the factor %.k/ which was chosen according to the approach
presented in Fig. 10.5. The value of %.k/ as a function of time has been graphed in
Fig. 10.10. Even at the end of the experiment, the frequency response does not match
totally with the theoretical model, see Fig. 10.9. During the experiments, it has been
shown also that the factor %.k/ which on the one hand is critical for convergence, is
difficult to choose on the other hand. ut

10.7 (Normalized) Least Mean Squares (NLMS)

Similar to the update equation of the Kiefer-Wolfowitz algorithm (10.6.15), one can
write
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Fig. 10.8. Parameter estimation by means of the Kiefer-Wolfowitz gradient method for a
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O�.k C 1/ D O�.k/ C ˇ .k C 1/

New Parameter
Estimate

Old Parameter
Estimate

Correction
Vector�

y.k C 1/ �  T.k C 1/ O�.k/�
New

Measurement
Predicted Measurement based
on Last Parameter Estimate

;

(10.7.1)

where the weighting factor for the correction vector has been written as ˇ.k C 1/.
This yields the least mean squares algorithm (Haykin and Widrow, 2003). Here, ˇ is
interpreted as a learning rate. While for the Kiefer-Wolfowitz algorithm, the factor
%.k C 1/ was steered by the number of time steps k only, the learning rate ˇ will
now be expressed as a function of the measured data.

In the noise free case, the algorithm should converge to the true values in one
sample step. Therefore, with the parameter update O�.kC1/, the model output should
match with the measurement, i.e.

y.k C 1/ D  T.k C 1/ O�.k C 1/ : (10.7.2)

Combining (10.7.1) and (10.7.2) yields the ideal step size as

y.k C 1/ D  T.k C 1/
	 O�.k/C ˇ .k C 1/

�
y.k C 1/ � T.k C 1/ O�.k/�


, ˇ D 1

 T.k C 1/ .k C 1/
:

(10.7.3)

Hence, the learning rate should be in the interval
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0 < ˇ <
1

 T.k C 1/ .k C 1/
: (10.7.4)

The big disadvantage of the least mean squares algorithm is the fact that the actual
fault reduction varies from step to step. Hence the algorithm is normalized and one
uses the update equation

O�.k C 1/ D O�.k/C
Q̌

 T.k C 1/ .k C 1/
 .k C 1/

�
y.k C 1/ � T.k C 1/ O�.k/� ;

(10.7.5)
see (Brown and Harris, 1994). The algorithm was also presented in Example 10.1 in
Fig. 10.7. One can see that the convergence has not improved much compared to the
KW algorithm. A further problem can be that one divides by  T.k C 1/ .k C 1/,
which can become zero. Goodwin and Sin (1984) present two remedial actions: The
first idea is to augment the vector by  .k/ by the constant “1” as the last element.
This would at the same time allow to estimate an operation point dependent DC
value. The other idea is to divide by the factor  T.k C 1/ .k C 1/C c, where c is
a constant with c > 0.

10.8 Summary

Modifications to and alternative solutions of the method of least squares have been
presented in this chapter. The modifications to the classical method of least squares
had the goal to avoid the bias that exists if the method of least squares is applied to
identify linear dynamic discrete-time systems with considerable noise at the output.
Different assumptions about the noise signal model have been made, such as AR,
MA, or ARMA. The quality of the estimates depends strongly on the assumptions
about the noise. The method of RELS has found more widespread use due to the
simplicity of its application. Other methods accept the existence of a bias and try to
correct the bias after the estimation has taken place. The method of total least squares
is different from the previous methods as it allowed to account for noise both on the
input and the output.

The method of instrumental variables has also been presented in this chapter. It is
another attractive parameter estimation method as it can provide bias-free estimates.
The convergence of the method however depends strongly on the choice of the in-
strumental variables and can be problematic if the method is applied for closed loop
parameter estimation, see Chap. 13. The choice of the instrumental variables has also
been discussed in this chapter.

Finally, the method of stochastic approximation has been presented in this chap-
ter. It is an easy to realize method that has its origin in the gradient based optimization
methods, see Chap. 19, and can be interpreted as a severely simplified RLS parameter
estimation method. The stochastic approximation is not frequently used in practical
applications as the additional computational expense of the RLS method does not
matter nowadays in most applications.
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Problems

10.1. GLS, ELS, and TLS
What are the assumptions made on the noise model for the three methods generalized
least squares, extended least squares, and total least squares?

10.2. Instrumental Variables Method I
What are the instrumental variables? What requirements do they have to satisfy to
provide a bias-free estimate. What are typical approaches to choose the instrumental
variables?

10.3. Instrumental Variables Method II
If several experiments with the same test signal have been recorded, how could one
choose the instrumental variables in this case.

10.4. Robbins-Monro and Kiefer-Wolfowitz Algorithm
What equation does the estimated parameter � in the one-dimensional case satisfy?
Which of the two methods can be used to determine the extremal point of a function?
Explain in your own words, why the method of RLS in general converges faster than
the Kiefer-Wolfowitz algorithm.
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11

Bayes and Maximum Likelihood Methods

While the parameter estimation methods presented so far assumed that the para-
meters � and the observations of the output y are deterministic values, the para-
meters themselves and/or the output will now be seen in a stochastic view as a series
of random variables. In Bayes estimation, the parameter vector has the probability
density function p.�/ and the output can be described by the conditional probability
density function p.yj�/. One can then derive a solution to the parameter estimation
problem based on this statistical information. As especially information about the
probability density function of the parameters, p.�/, is seldom available in practical
applications, the maximum likelihood estimator will be derived subsequently. It is
based on the probability density function of the observed output p.yj�/.

11.1 Bayes Method

For a given set of measurements y , one can infer the parameters from the conditional
probability density function p.�jy/. This conditional probability density function
can only be determined once the experiment has been conducted since it obviously
depends on the measurements. Hence, it is an a posteriori probability density func-
tion. Based on this a posteriori probability density function, one is now interested in
finding “best” parameter estimates O� . To judge the optimality, once again an opti-
mality criterion has to be introduced asW. O�;�/, for which a cost function must then
be minimized,

min
O�

Z
m

W. O�;�/p.�jy/dm� ; (11.1.1)

and to find the minimum

@

@ O�
Z

m

W. O�;�/p.�jy/dm� D 0 ; (11.1.2)

where
R

m is them-dimensional integral over all components d�1; d�2; : : : ; d�m of � .
The optimality criterion can for example be a quadratic function such as

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_11, © Springer-Verlag Berlin Heidelberg 2011 
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W D � O� � ��T� O� � �� : (11.1.3)

In the one dimensional case, one can then write (11.1.1) as

min
O


Z
. O� � �/2p.� jy/d� : (11.1.4)

Taking the first derivative to determine the optimal value O� leads to

O� D
Z
�p.� jy/d� : (11.1.5)

which is just the expected value of the parameter � for the given probability density
function p.� jy/.

A different approach is to choose the most likely value as indicated by the proba-
bility density function i.e. to choose the maximum of the probability density function
as the estimate,

O� D arg max


p.�jy/ : (11.1.6)

In this setting, the PDF is termed likelihood function.
The key issue for both approaches is the determination of the conditional prob-

ability density function p.�jy/, which can be determined by Bayes rule (Papoulis,
1962) as

p.�;y/ D p.�jy/p.y/ : (11.1.7)

Here, p.�;y/ is the joint PDF and p.y/ is the a posteriori PDF which follows from
the measurements conducted during the experiment. Furthermore

p.�;y/ D p.yj�/p.�/ : (11.1.8)

Hence, it follows from (11.1.7) that

p.�jy/ D p.�;y/

p.y/
; (11.1.9)

and with (11.1.8) that

p.�jy/ D p.yj�/p.�/
p.y/

; (11.1.10)

where the PDF of � must be known a priori. If this is the case, then one could for
example solve (11.1.2) directly.

Similarly, (11.1.6) can be written using the above results as

O� D arg max


p.yj�/p.�/ : (11.1.11)

If no assumption can be made about � and hence it is assumed to be distributed
uniformly over the parameter space, then

O� D arg max


p.yj�/ (11.1.12)
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Fig. 11.1. Derivation of different parameter estimation methods from the Bayes method
through specializing assumptions

results, which is the maximum likelihood estimate, that has been introduced in
Sect. 8.5. In those cases, where the prior PDF has negligible influence on the es-
timation results, the maximum a posteriori estimation is also close to the maximum
likelihood estimation (Ljung, 1999).

The main drawback is the fact that the Bayes estimation necessitates knowledge
of the probability density function of the parameters � and that the conditional prob-
ability density function can only be established under a high mathematical burden.
Hence, the Bayes estimation has little relevance for practical applications in the area
of system identification. It can however be seen as the most comprehensive parame-
ter estimation technique and it serves as a starting point for the development of many
other algorithms, such as e.g. the maximum likelihood estimate, which is covered
in the following section and can be seen as a specialization of the Bayes estimation.
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The maximum likelihood method in turn can be brought into liaison with the least
squares parameter estimation under certain assumptions about the noise (Isermann,
1992), see Fig. 11.1. For further reading, one can consult e.g. (Lee, 1964; Nahi, 1969;
Eykhoff, 1974; Peterka, 1981; Ljung, 1999). The Bayes rule is also often applied in
classification problems (e.g. Isermann, 2006) .

There number of publications about the application of Bayes method for param-
eter estimation is relatively sparse. This can mainly be attributed to the problems in
the computational problems in determining the conditional probability density func-
tions and the fact that the probability density functions of the parameters are typi-
cally unknown. Therefore, the Bayes estimation is mainly of theoretical value. It can
be regarded as the most general and most comprehensive estimation method. Other
fundamental estimation methods can be derived from this starting point by making
certain assumptions or specializations.

This is depicted in Fig. 11.1. Upon the assumption of uniformly distributed para-
meters, i.e. p.�0/ D const, then the Bayes estimation (11.1.11) becomes a maximum
likelihood estimation (11.1.12). As will be shown in the following derivation of the
maximum likelihood estimation for dynamic systems, one uses the equation error e
instead of the measured signals y due to the easier treatment, i.e.

O� D arg max


p.ej�/ : (11.1.13)

If one furthermore assumes that the error e is statistically independent, Gaussian
distributed with Efeg D 0, and has the error covariance matrix R D Efe eTg, then

p.ej�/ D 1

.2�/N=2.detR/1=2
exp

�
�1
2
eTR�1e

�
(11.1.14)

results, which will be derived in Sect. 11.2 in a more detailed way. From there follows

lnp.ej�/ D �1
2
eTR�1e C const (11.1.15)

and
@

@�
D � @

@�
eTR�1e D 0 : (11.1.16)

Hence, one has to minimize the quadratic cost function (11.1.15), where the errors
are weighted with the inverse of their covariance matrix. According to (9.5.6) and
(9.5.4) this is the method of weighted least squares with minimal variance of the
parameter estimates,

O� D �
� TR�1�

��1
� TR�1y ; (11.1.17)

and therefore is a Markov estimator. For uncorrelated errors, one obtains

R D �2
eI ; (11.1.18)

so that (11.1.17) results in the estimation equation for the method of least squares as

O� D �
� T�

��1
� Ty : (11.1.19)
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Fig. 11.2. Schematic diagram of the arrangement for the maximum likelihood method for
dynamic systems

The maximum-likelihood method, which is described in Sect. 11.2, can be regarded
as a method of least squares as it is assumed that e is uniformly distributed and sta-
tistically independent. The estimation equation must be solved iteratively due to the
non-linear relation between e and the coefficients of the noise form filter polynomial
D.´�1/.

11.2 Maximum Likelihood Method (ML)

In the following, the maximum likelihood estimator for linear dynamic discrete-time
systems will first be formulated in a non-recursive formulation. It is then shown
that under certain simplifying assumptions, it can also be formulated in a recursive
fashion.

11.2.1 Non-Recursive Maximum Likelihood Method

While the maximum likelihood method has been introduced in Sect. 8.5 for static
systems, it shall now be applied to linear dynamic systems in discrete-time. The
process shall be governed by the model

A.´�1/y.´/ � B.´�1/u.´/ D D.´�1/e.´/ (11.2.1)

with
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y

p( | , )y u θ Fig. 11.3. Conditional probability density function
of the observed signal y.k/

A.´�1/ D 1C a1´
�1 C : : :C am´

�m (11.2.2)

B.´�1/ D b1´
�1 C : : :C bm´

�m (11.2.3)

D.´�1/ D 1C d1´
�1 C : : :C dm´

�m ; (11.2.4)

where e.k/ shall be a Gaussian distributed, statistically independent signal with
.0; �e/ and all roots of D.´�1/ shall lie within the unit circle. Compared to the
method of least squares as introduced in Sect. 9.1, the model in (11.2.1) filters the
equation error ".k/ with the filter 1= OD.´�1/, i.e.

".´/ D OD.´�1/e.´/ , e.´/ D 1

OD.´�1/
".´/ : (11.2.5)

The equation error ".k/ is hence assumed to be a correlated signal, which by means
of the filter is converted into an uncorrelated error e.k/, see Fig. 11.2.

In order to derive the maximum likelihood estimator (see also the development
in Sect. 8.5), the probability density function of the measured, disturbed output has
to be considered. In the following, it shall be assumed that the measured output
y.k/ follows a Gaussian distribution, which allows to analytically treat the resulting
equations.

The conditional probability density function of the observed signal samples
fy.k/g for a given input signal fu.k/g and for given process parameters

� D �
a1 : : : am b1 : : : bm d1 : : : dm

�
(11.2.6)

shall be denoted as
p.fy.k/gjfu.k/g;�/ D p.yju;�/ : (11.2.7)

and shall be known, see Fig. 11.3. One can now insert the measured values yp.k/

and up.k/ into the above equation. Then, one obtains the likelihood function

p.yPjuP;�/ ; (11.2.8)

which is analyzed in dependence of the unknown parameters �i , see Fig. 11.4.
As the parameters �i are constants and hence no stochastic variables, the likeli-

hood function is not a probability density function of the parameters. The underlying
principle of the maximum likelihood estimation is the idea that the best estimates for
the unknown parameters �i are those values that attribute maximum possibility (or
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θi

p( | , )y u θi
Fig. 11.4. Likelihood function for a single param-
eter �i

likelihood) to the observed results. Mathematically speaking, one is looking for those
values of �i that maximize the likelihood function. Hence, the parameters � can be
determined by locating the maximum of the likelihood function or correspondingly
by taking the first derivative and equating it to zero

@

@�
p.yju;�/

ˇ̌̌
ˇ
�D O�

D 0 : (11.2.9)

Since the individual measurements y.k/ are not statistically independent, the proba-
bility density function is difficult to calculate. Hence, the following derivation will be
based on the error e.k/ which is assumed to be Gaussian distributed and statistically
independent. In this case, one can consider the likelihood function

p.eju;�/ (11.2.10)

and can determine the estimates by

@

@�
p.eju;�/

ˇ̌̌
ˇ
�D O�

D 0 : (11.2.11)

Because e.k/ is assumed to be statistically independent, one can now write the
probability density function p.eju;�/ as

p.eju;�/ D
NY

kD1

p.e.k/ju;�/ : (11.2.12)

As the individual errors e.k/ are assumed to be Gaussian distributed, it is beneficial
to take the logarithm of the likelihood function as

L.�/ D ln

 �
1

�e
p
2�

�N NY
kD1

e
� 1

2
e2.k/

�2
e

!

D � 1

2�2
e

NX
kD1

e2.k/ �N ln �e � N

2
ln 2� :

(11.2.13)

One can see that maximizing the log-likelihood function (which should more pre-
cisely be called ln-likelihood function) with respect to the parameters � is the same
as minimizing the sum of squared errors,
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V D
NX

kD1

e2.k/ : (11.2.14)

Hence, for a Gaussian distributed error e.k/, the maximum likelihood and the
least squares estimator yield identical results for the system structure as shown in
Fig. 11.2.

The solution can only be determined iteratively, since the cost function is linear
in the parameters of A.´�1/ and B.´�1/, but non-linear in the parameters D.´�1/.
Åström and Bohlin (1965) employed a Newton-Raphson algorithm to solve this op-
timization problem. The first and second order derivatives will be denoted as

V T
� .�/ D

�
@V

@�

�T

D
�
@V

@�1

@V

@�2

: : :
@V

@�p

�
(11.2.15)

with the Hesse matrix being

V��.�/ D @2V

@�T@�
D




@2V

@�1@�1

: : :
@2V

@�p@�1
:::

:::

@2V

@�1@�p
: : :

@2V

@�p@�p

�

: (11.2.16)

The corresponding partial derivatives can be summarized as

@V

@�i

D
NX

kD1

e.k/
@e.k/

@�i

(11.2.17)

@2V

@�i@�j
D

NX
kD1

@e.k/

@�i

@e.k/

@�j
C

NX
kD1

e.k/
@2e.k/

@�i@�j
: (11.2.18)

One therefore needs the partial derivatives of the error e.k/ with respect to the indi-
vidual parameters, which can be provided as follows

D.q�1/
@e.k/

@ai

D y.k/q�i (11.2.19)

D.q�1/
@e.k/

@bi

D �u.k/q�i (11.2.20)

D.q�1/
@e.k/

@di

D �e.k/q�i (11.2.21)

D.q�1/
@2e.k/

@ai@dj

D �q�j @e.k/

@ai

D �q�i�j C1 @e.k/

@a1

(11.2.22)

D.q�1/
@2e.k/

@bi@dj

D �q�j @e.k/

@bi

D �q�i�j C1 @e.k/

@b1

(11.2.23)

D.q�1/
@2e.k/

@di@dj

D �2q�j @e.k/

@di

D �2q�i�j C1 @e.k/

@d1

; (11.2.24)
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where the time shift operator q has been introduced and defined as

y.k/q�l D y.k � l/ (11.2.25)

Furthermore

D.q�1/
@2e.k/

@ai@aj

D 0 (11.2.26)

D.q�1/
@2e.k/

@ai@bj

D 0 (11.2.27)

D.q�1/
@2e.k/

@bi@bj

D 0 : (11.2.28)

Since the update equation for the optimization algorithm is given as

�.k C 1/ D �.k/ �
	 @2V

@�T@�


�1 ˇ̌̌
�D�.k/

	@V
@�


ˇ̌̌
�D�.k/

D �.k/ � V��
�
�.k/

��1
V�.�.k// ;

(11.2.29)

the term D.q�1/ in this case cancels out.
A prerequisite for the convergence of the maximum likelihood estimate are ap-

propriate initial values. It is suggested to set D.´�1/ D 1, i.e. di D 0, in the first
iteration, which leads to the normal method of least squares and allows to obtain
(biased) initial values by the direct solution of the least squares problem.

Theorem 11.1 (Convergence of the Maximum Likelihood Estimate).
The Maximum Likelihood estimator delivers for an ARMAX process as depicted

in Fig. 11.2 consistent asymptotically efficient parameter estimates, that fulfill the
Cramér-Rao bound (Åström and Bohlin, 1965; van der Waerden, 1969; Deutsch,
1965), if the following conditions are met:

� u.k/ D U.k/ � U00 is exactly known
� Y00 is exactly known and belongs to U00

� The elements of e.k/ are statistically independent and Gaussian distributed
� The roots of D.´/ D 0 lie within the unit circle
� Appropriate initial values O�.0/ are known

ut
The described method should also converge for many other noise distributions,

but will in most cases not be asymptotically efficient any longer.
The maximum likelihood estimation for dynamic systems has also been outlined

in (Raol et al, 2004). Here, the maximum likelihood estimation is applied to the out-
put error model, partial derivatives of the cost function with respect to the parameters
have been determined by finite differencing and a corresponding perturbation of the
parameters. The monograph by van den Bos (2007) also discusses the maximum
likelihood estimation in combination with non-linear optimization algorithms. The
maximum likelihood estimation can according to Ljung (1999) also be interpreted as
a maximum entropy or minimum information distance estimate.
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11.2.2 Recursive Maximum Likelihood Method (RML)

The recursive Maximum Likelihood method can be derived by an approximation
of the partial derivatives of the non-recursive method (Söderström, 1973; Fuhrt and
Carapic, 1975). For the derivation, the process model in (11.2.1) is first expressed as

y.k/ D  T.k/� C 	.k/ (11.2.30)

with

 T.k/ D ��y.k � 1/ : : : �y.k �m/ u.k � d � 1/ : : : u.k � d �m/
	.k � 1/ : : : 	.k �m/ � (11.2.31)

and
�T D �

a1 : : : am b1 : : : bm d1 : : : dm

�
: (11.2.32)

The cost function is given as

V.k C 1; O�/ D V.k; O�/C 1

2
e2.k C 1; O�/ : (11.2.33)

The first and second partial derivative are then given as

V�. O�; k C 1/ D V�. O�; k/
�̃0

Ce. O�; k C 1/
@e.�; k C 1/

@�

ˇ̌
�D O� (11.2.34)

and

V��. O�; k C 1/ D V��. O�; k/C
	@e.�; k C 1/

@�


T ˇ̌̌
�D O�

	@e.�; k C 1/

@�


ˇ̌̌
�D O�

C e. O�; k C 1/
	@2e.�; k C 1/

@�2


ˇ̌̌
�D O�

‘

�0

;

(11.2.35)

where the indicated terms have been approximated by zero (Söderström, 1973).
These equations now allow to formulate the estimation algorithm as

O�.k C 1/ D O�.k/C �.k/e.k C 1/ (11.2.36)

with

�.k/ D P.k C 1/'.k C 1/ D P.k/'.k C 1/

1C 'T.k C 1/P.k/'.k C 1/
(11.2.37)

P.k/ D V �1
�� .

O�.k � 1/; k/ (11.2.38)

P.k C 1/ D �
I � �.k/'T.k C 1/

�
P.k/ (11.2.39)

'.k C 1/ D �@e.�.k/; k C 1/

@�

ˇ̌̌
�D O� (11.2.40)

e.k C 1/ D y.k C 1/ � O T.k C 1/ O�.k/ (11.2.41)
O	.k C 1/ D Oe.k C 1/ (11.2.42)
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and hence one approximates  T from (11.2.31) by

O T.k C 1/ D ��y.k � 1/ : : : �y.k �m/ u.k � d � 1/ : : : u.k � d �m/
e.k � 1/ : : : e.k �m/ � :

(11.2.43)

The elements of the vector 'T.k C 1/ can now be determined as

'T.k C 1/ D �
�
@e.k C 1/

@a1

: : :
@e.k C 1/

@am

@e.k C 1/

@b1

: : :
@e.k C 1/

@bm

@e.k C 1/

@d1

: : :
@e.k C 1/

@dm

� (11.2.44)

with e.k/ D O	.k/ and (11.2.1) are given as

´
@e.´/

@ai

D 1

OD.´�1/
y.´/´�.i�1/ D y0.´/´�.i�1/ (11.2.45)

´
@e.´/

@bi

D � 1

OD.´�1/
u.´/´�.i�1/´�d D �u0.´/´�.i�1/´�d (11.2.46)

´
@e.´/

@di

D � 1

OD.´�1/
e.´/´�.i�1/ D �e0.´/´�.i�1/ (11.2.47)

for i D 1; : : : ; m. These entries can be understood as filtered signals

O'T.k C 1/ D ��y0.k � 1/ : : : �y0.k �m/ u0.k � d � 1/ : : :
u0.k � d �m/ e0.k � 1/ : : : e0.k �m/ � (11.2.48)

which can be generated by the difference equation

y0.k/ D y.k/ � Od1y
0.k � 1/ � : : : � Odmy

0.k �m/ (11.2.49)

u0.k � d/ D u.k � d/ � Od1u
0.k � d � 1/ � : : : � Odmu

0.k � d �m/ (11.2.50)

e0.k/ D e.k/ � Od1e
0.k � 1/ � : : : � Odme

0.k �m/ : (11.2.51)

For the Odi , one can use the current estimates Odi .k/. Due to the simplifying approxi-
mations at the beginning of the derivation, one will only obtain an approximation of
the solution of the non-recursive maximum likelihood method.

As initial values, one can use

O�.0/ D 0; P.0/ D ˛I ; '.0/ D 0 : (11.2.52)

The convergence criteria are identical to those of the non-recursive maximum likeli-
hood estimation. In particular, the roots of D.´/ D 0 must be within the unit circle,
so that (11.2.49), (11.2.50), and (11.2.51) are stable.
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11.2.3 Cramér-Rao Bound and Maximum Precision

The Cramér-Rao bound (Eykhoff, 1974), see (8.5.14), can also be evaluated for the
maximum likelihood estimation of linear dynamic systems. In the case of multiple
parameters, the Cramér-Rao bound is given as

cov� O� D E
˚
. O� � �0/. O� � �0/

T� � J�1 (11.2.53)

with the information matrix

J D E
��

@L

@�0

��
@L

@�0

�T�
D �E

�
@2L

@�0@�
T
0

�
: (11.2.54)

Here, �0 denotes the true parameters. For a Gaussian distributed error e.k/, one can
equate

@L

@�0

D � 1

�2
e

@V

@�0

(11.2.55)

and hence

J D 1

�4
e

E
��

@V

@�0

��
@V

@�0

�To
D 1

�2
e

E
�
@2L

@�0@�
T
0

�
: (11.2.56)

From this follows for the covariance of the parameter estimates

cov� O� � 2V

N
E
˚
V �1
��

�
: (11.2.57)

This result shows that under the given assumptions, there is no other unbiased esti-
mator that delivers estimates with a smaller variance than the maximum likelihood
estimator. The maximum likelihood estimate is hence asymptotically efficient.

If the Cramér-Rao bound is applied to the fundamental equation of the least
squares parameter estimation, (9.1.12),

y D � O� C e ; (11.2.58)

then the ln-likelihood function is given as

L.�/ D � 1

2�2
e
eTe C const (11.2.59)

and the information matrix is given as

J D 1

�2
e

E
˚
� T�

�
; (11.2.60)

and hence, compare (9.1.24),

cov� O� � �2
e E
n�
� T�

��1
o
: (11.2.61)
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The lower bound is thus identical with (9.1.69). A further comparison with (9.5.7)
shows that for the case of a non-correlated error signal and a model according to
(9.1.12) or (11.2.58) respectively, the estimation by means of the method of least
squares, by the Markov estimation and by the maximum likelihood method all
yield parameter estimates with the smallest possible variance. A comparison of the
Cramér-Rao bound with simulation results by van den Boom (1982) shows a good
match for the best parameter estimation methods. Ninness (2009) discussed the error
quantification also for finite (and especially short length) data sequences.

11.3 Summary

This chapter has presented the Bayes estimator and the maximum likelihood esti-
mator, which were now specifically tailored to the identification of linear dynamic
systems in discrete-time. The Bayes estimator treats the parameters as random vari-
ables and incorporates information about their probability density functions into the
solution of the parameter estimation problem. As this information however is seldom
available in practical applications, the Bayes estimator is limited in its applicability
for parameter estimation from experimental data. Still, it can be shown that the max-
imum likelihood estimator and the least squares estimator can both be derived from
the Bayes estimator, see Fig. 11.1.

The maximum likelihood estimation is based on a stochastic treatment of the
measured signals. The parameter estimates are determined based on the probabil-
ity density function of the observed measurements. For an ARMAX model struc-
ture and a normally distributed, statistically independent error signal, a maximum
likelihood estimation technique has been derived for linear dynamic discrete-time
systems, which can be solved by a non-linear optimization algorithm. After certain
simplifying approximations, also a recursive maximum likelihood estimator could be
formulated. While the computational burden for the maximum likelihood estimator
is high, it can on the other hand be shown that the estimator is asymptotically effi-
cient, i.e. that it reaches the Cramér-Rao bound and yields estimates with the small-
est possible variance for specified conditions. Maximum likelihood estimators can
also be formulated for many other settings, e.g. for frequency domain identification
(McKelvey, 2000).

Problems

11.1. Bayes Estimation
How can the Bayes rule be used to determine the conditional probability density
function of the parameters for a given set of observed measurements p.�jy/?
11.2. Bayes Estimation, Maximum Likelihood, and Least Squares
How do these parameter estimation methods relate to each other. Which assumptions
lead from one estimator to the other?
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11.3. Cramér-Rao Lower Bound
Derive the Cramér-Rao inequality for one parameter �0. (Solution can be found in (,
p. 14 Isermann, 1992)
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12

Parameter Estimation for Time-Variant Processes

For many real processes, the parameters of the governing linear difference equa-
tions are not constant. They rather vary over time due to internal or external influ-
ences. Also, quite often non-linear processes can only be linearized in a small interval
around the current operating point. If the operating point changes, also the linearized
dynamics will change in this case. For slow changes of the operating point, one can
obtain good results with linear difference equations that contain time-varying pa-
rameters. The method of recursive least squares (see Chap. 9) can also be used to
identify time-varying parameters. Different methods are introduced in the following
that allow to track the changes of time varying parameters with the method of least
squares.

12.1 Exponential Forgetting with Constant Forgetting Factor

In connection with the method of weighted least squares, a technique was suggested
in Sect. 9.6 which allowed the identification of slowly time-varying processes by
choosing the weights w.k/ as

w.k/ D �N 0�k : (12.1.1)

This particular way of choosing w.k/ to rate the error is termed exponential forget-
ting.

The recursive estimation equations (9.6.11), (9.6.12), and (9.6.13) for the method
of weighted least squares with exponential forgetting had been given as

O�.k C 1/ D O�.k/C �.k/
�
y.k C 1/ � T.k C 1/ O�.k/� (12.1.2)

�.k/ D 1

 T.k C 1/P.k/ .k C 1/C �
P.k/ .k C 1/ (12.1.3)

P.k C 1/ D �
I � �.k/ T.k C 1/

�
P.k/

1

�
: (12.1.4)

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_12, © Springer-Verlag Berlin Heidelberg 2011 
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The influence of the forgetting factor � can be recognized directly from the in-
verse of the covariance matrix (9.6.6)

P�1.k C 1/ D �P�1.k/C .k C 1/ T.k C 1/ : (12.1.5)

P�1 is proportional to the information matrix J (11.2.60) given by

J D 1

�2
e

E
˚
� T�

� D 1

�2
e

E
˚
P�1

�
; (12.1.6)

see (Eykhoff, 1974; Isermann, 1992).
By taking � < 1, the information of the last step is reduced or the covariances

are increased respectively. This means a worse quality of the estimates is pretended,
such that the new measurements get more weight.

For � D 1, one obtains

lim
k!1

E
˚
P.k/

� D 0 (12.1.7)

lim
k!1

E
˚
�.k/

� D lim
k!1

E
˚
P.k C 1/ .k C 1/

� D 0 : (12.1.8)

For large times k, the measurements have practically no influence on O�.kC1/. Then
the elements of P�1.k C 1/ tend to infinity, (12.1.5).

If, however, one uses a forgetting factor � < 1, then, from (12.1.5), follows

P�1.k/ D �kP�1.0/C
kX

iD0

�k�i .i/ T.i/ : (12.1.9)

For large values ˛ of the initial matrixP.0/ D ˛I , the first term in (12.1.9) vanishes.
As for � < 1

lim
k!1

kX
iD1

�k�i D lim
k!1

k�1X
iD0

�i < 1 (12.1.10)

(convergent series with positive elements) and hence P�1.k/ converges to fixed val-
ues

lim
k!1

E
˚
P�1.k/

� D P�1.1/ (12.1.11)

and does not approach infinity. Hence,

lim
k!1

E
˚
P.k/

� D P.1/ (12.1.12)

as well as
lim

k!1
E
˚
�.k/

� D �.1/ (12.1.13)

are finite and nonzero. Therefore, the new measurements get a constant weight for
large k and the estimator remains sensible to parameter changes and can follow slow
changes of the process. This is in contrast to the case � D 1, where the weight or
influence of new measurements gets smaller and smaller as k increases. Because of
the smaller effective averaging time for the case of exponential forgetting, the noise
influence increases and also the variances.
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Fig. 12.1. Parameter estimation for a second order system with a change in the system para-
meters, � D 0:9. True parameter values (dash-dotted line)
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Fig. 12.2. Parameter estimation for a second order system with a change in the system para-
meters, � D 0:99. True parameter values (dash-dotted line)
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Example 12.1 (Parameter Estimation with a Constant Forgetting Factor).
The system is given as a second order system governed by

G.s/ D K

.1C T1s/.1C T2s/
(12.1.14)

with K D 1, T1 D 0:75 s and T2;0 D 0:5 s. At time t D 50 s, the system parameters
are changed and the second time constant becomes T2;1 D 0:25 s. The system is
excited by a PRBS signal with amplitude a D 1 and cycle time T D 0:25 s. The
system has been discretized with a sample time of T0 D 0:25 s and the discrete-time
transfer functions have been determined as

G0.´/ D 0:06347´C 0:04807

´2 � 1:323´C 0:4346
(12.1.15)

and
G1.´/ D 0:1091´C 0:07004

´2 � 1:084´C 0:2636
: (12.1.16)

A Gaussian white noise has been superpositioned with .0; 0:0045/.
Now, the system has been identified first with � D 0:9, see Fig. 12.1, and then

with � D 0:99, see Fig. 12.2. One can see that for smaller values of �, the changes of
the system parameters are tracked faster, but at the same time, the system parameters
have a larger variance. ut

The forgetting factor � has to be selected as follows:

� � small, if the speed of parameter changes is large (say � D 0:90). Then only
small noise is allowed

� � large, if the speed of parameter changes is small (say � D 0:98). Then the
noise can be larger

Goodwin and Sin (1984) suggested to introduce a dead zone and hence only update
the parameter estimation if the correction vector exceeds a certain threshold. This ef-
fectively cancels the small parameter variations that otherwise occur if the forgetting
factor is chosen small in order to be able to track time-variant processes sufficiently
fast.

As the RML and RELS methods converge more slowly during the starting phase,
because of the unknown e.k/ D O	.k/, the convergence can be accelerated by smaller
weights at the beginning.

Söderström et al (1974) suggest the following way of choosing a time-variant
forgetting factor

�.k/ D �0�.k � 1/C 1 � �0 (12.1.17)

with �0 < 1 and �.0/ < 1. Mikleš and Fikar (2007) proposed to choose the initial
conditions as

�.0/ D �0 D 0:95 : : : 0:99 : (12.1.18)

The forgetting factor asymptotically goes to 1 and hence only initial data are forgot-
ten over time.
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One can also combine this start-up technique with the exponential forgetting by
varying � as

�.k C 1/ D �0�.k/C �.1 � �0/ : (12.1.19)

According to the parameters �0 and �, one can achieve a smaller weighting of the
error during the starting phase, and then, for large k, obtain the classical exponential
forgetting as

lim
k!1

�.k C 1/ D � : (12.1.20)

Parameter estimation algorithms with constant forgetting factor are suited for
processes with small parameter changes and persistent input excitation. Also, if the
process parameters are constant, good results are obtainable if the noise with regard
to the memory length M D 1=.1 � �/ is not too large. However, problems may
arise if in the case of a constant forgetting factor � < 1, the input is not sufficiently
exciting. Then the values P�1.kC 1/ decrease because  .kC 1/ � 0, see (12.1.5),
or the elements of P.kC 1/ increase continuously (covariance matrix blows up). As
the correcting vector is

�.k/ D P.k C 1/ .k C 1/ ; (12.1.21)

the estimator becomes more and more sensitive. Then a small disturbance or a numer-
ical error may suffice to generate sudden large changes of the parameter estimates.
The estimator then becomes unstable. This situation can be observed with adaptive
control systems. Therefore, the input excitation has to be monitored or the forgetting
factor has to be time-variant.

12.2 Exponential Forgetting with Variable Forgetting Factor

In order to match the forgetting factor � to the current situation, one can control
the forgetting factor � as a function of the estimation quality, e.g. by watching the
a posteriori error. If e0.k/ is small, then the estimation either is in good accordance
with the process or the the process is not excited. In both cases, one should choose
�.k/ � 1. On the other hand, if the error is large, then one should reduce �.k/ to
allow for fast changes of the model coefficients to track the process behavior.

One could also use the weighted sum of the a posteriori error (Fortescue et al,
1981), which is given as

˙.k/ D �.k/˙.k � 1/C �
1 � T.k/�.k � 1/�e2.k/ ; (12.2.1)

where �.k/ is now chosen such that the weighted sum of the a posteriori error re-
mains constant ˙.k/ D ˙.k � 1/ D ˙0 and hence �.k/ D is given as

�.k/ D 1 � 1

˙0

�
1 � T.k/�.k � 1/�e2.k/ : (12.2.2)

Isermann et al (1992) discussed the choice of ˙0. There, it is proposed to choose



12.3 Manipulation of Covariance Matrix 341

˙0 D �2
nN0 (12.2.3)

with �2
n being the variance of the noise and

N0 D 1

1 � �0

: (12.2.4)

A small value of N0 results in a sensitive estimator (�0 small) and hence allows a
fast adaptation to parameter changes and vice versa. In addition, one must define a
lower bound �min.

Example 12.2 (Parameter Estimation with a Time-Varying Forgetting Factor).
The same process as in Example 12.1 is used again to illustrate the effects of the

time-varying forgetting factor. Figure 12.3 shows the implementation and illustrates,
how the forgetting factor is adjusted during the change of the system parameters,
where the forgetting factor is reduced to 0:4 � �.k/ � 1. ut

A practical problem is the choice of ˙0. If it is chosen too small, then also �.k/
will vary too much, even if there are no parameter changes. Another disadvantage is
the fact that �.k/ changes also according to the variance of the noise �2

n even if the
process parameters do not change. Furthermore, �.k/ gets smaller as �2

n increases
which is contradictionary to an useful adaption of �.k/ to the noise.

The performance of the algorithm can be increased, if the variance �2
n is esti-

mated (Siegel, 1985). This can for example be done by the recursive equation

O�2
n .k/ D � O�2

n .k � 1/C .1 � �/e2.k/ with � < 1 : (12.2.5)

If the following thresholds

O�2
n .k/ � �2

n0 (12.2.6)

j O�2
n .k/ � O�2

n .k � 1/j � ��2
n (12.2.7)

are exceeded, then it is assumed that the parameters have changed and hence one
chooses N02 small such that

˙0 D O�2
nN02 : (12.2.8)

If the value of O�2
n .k/ did not exceed the thresholds, one sets

˙0 D O�2
nN01 (12.2.9)

on the contrary with N01 > N02 (e.g. N01 D 10N02).

12.3 Manipulation of Covariance Matrix

The methods based on adjusting the forgetting factor � are well suited for slow pa-
rameter changes only, since the correction vector �.k/ depends on the covariance
matrix P.k/ that only changes (exponentially) slow, see (12.1.2) though (12.1.5).
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Fig. 12.3. Parameter estimation for a second order system with a change in the system para-
meters, variable forgetting factor �.k/. True parameter values (dash-dotted line)
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However, for fast parameter changes, �.k/ and also P.k/ must change fast, which
can achieved by adding a matrix R.k/ to P.k/ as

P.k C 1/ D
�
I � �.k/ T.k C 1/P.k/

1

�

�
CR.k/ : (12.3.1)

Increasing the elements of the covariance matrix allows the parameters to change
much more rapidly than just changing the forgetting factor. If one only considers
diagonal matrices as e.g. for the choice of the initial values of P.0/, then one can
choose e.g.

R.k/ D ˇ
e2.k/

O�2
n .k/

I ; (12.3.2)

if the thresholds in (12.2.6) and (12.2.7) are exceeded. Below the thresholds, one sets
R.k/ D 0.

A disadvantage is that the diagonal elements of P.k/ are all increased by the
same value. One can therefore think about introducing the relation

R.k/ D ˛RP.k/ ; (12.3.3)

which relates the change to the current values of P.k/. One should chose ˛R 	 1,
e.g. ˛R D 100; : : : ; 1 000. This can be seen as a restart.

Example 12.3 (Parameter Estimation of a Time-Variant Process with Manipulation
of the Covariance Matrix).

The process from Example 12.1 is considered again. Figure 12.4 shows the con-
trol of the adaptation speed by means of a manipulation of the covariance matrix.
Because the covariance is increased after passing the threshold ��2

n .k/ > 0:0002

(gradient of the estimated variance of the disturbance or error signal according to
(12.2.7)), the covariance is increased by ˛R D 100. Therefore, the adaptation speed
becomes faster, however, with passing higher variances. ut

12.4 Convergence of Recursive Parameter Estimation Methods

Convergence of the parameter estimates has been exhaustively analyzed, where a
classical results has been presented by Lai and Wei (1982) and revisited recently by
Hu and Ljung (2008). This classical analysis of convergence has also been outlined
by Isermann (1992) and Isermann et al (1992) and shall not be repeated here. If one
however interprets the parameter estimates O� as state variables, then characteristics
of discrete-time state feedback and state observers can be transferred to the recursive
parameter estimation as was shown by Kofahl (1988) and Isermann (1992) and will
be outlined in the following.
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Fig. 12.4. Parameter estimation for a second order system with a change in the system para-
meters, covariance matrix manipulation. After passing the threshold ��2

n .k/ > 0:0002, the
covariance is increased by ˛R D 100. True parameter values (dash-dotted line)
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12.4.1 Parameter Estimation in Observer Form

For a process that is represented by a state space model (2.2.24) and (2.2.25), the
equation for a state observer of this SISO system is given as

Ox.k C 1/ D A Ox.k/C bu.k/C h
�
y.k/ � cT Ox.k/� : (12.4.1)

The error of the state estimate,

Qx.k/ D x.k/ � Ox.k/ (12.4.2)

is then governed by the difference equation

Qx.k C 1/ D �
A � hcT� Qx.k/ : (12.4.3)

In order for the error Qx.k/ to vanish for k ! 1, i.e.

lim
k!1

Qx.k/ D 0 ; (12.4.4)

(12.4.3) must be asymptotically stable. The characteristic equation of the observer,

det
�
´I �A � hcT� D .´ � ´1/.´ � ´2/ : : : .´ � ´m/ (12.4.5)

may hence only have poles with j´i j < 1; i D 1; 2; : : : ; m. If one now interprets
the time-variant parameters � of the process as state variables, then one can derive a
parameter state model as

�.k C 1/ D I�.k/C 
.k/ (12.4.6)

y.k C 1/ D  T.k C 1/�.k/C n.k C 1/ : (12.4.7)

Here 
.k/ denotes a (deterministic) parameter change. The resulting block diagram
is shown in Fig. 12.5.

The recursive least squares parameter estimation algorithm is then according to
(9.4.17) given as

O�.k C 1/ D O�.k/C �.k/e.k C 1/ (12.4.8)

e.k C 1/ D y.k C 1/ � T.k C 1/ O�.k/ (12.4.9)

with

 T.k C 1/ D ��y.k/ : : : �y.k �mC 1/ u.k � d/ : : : u.k � d �mC 1/
�
:

(12.4.10)
This estimation is shown in Fig. 12.5 in the lower part. The block diagram corre-
sponds to a state observer (12.4.1) without input (b D 0) and the following equiva-
lent terms

A ! I ; h ! �.k/; c !  T.k C 1/ : (12.4.11)
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Fig. 12.5. Block diagram of the recursive parameter estimation by the method of least squares
in a state space framework

This parameter-state observer has a time-variant feedback gain �.k/ and a time-
variant output vector T.kC1/. For the error of the parameter estimates, one obtains
with (12.4.6), (12.4.8), (12.4.9),

e�.k C 1/ D �.k C 1/ � O�.k C 1/

D �
I � �.k/ T.k C 1/

�
e�.k C 1/C 
.k/ � �.k/n.k C 1/ :

(12.4.12)

This corresponds to the homogeneous vector difference equation in (12.4.3) of the
state observer, with the difference that � and  T are time varying quantities that
depend on the measured signals. Furthermore, the disturbances 
.k/ as well as
�.k/n.k C 1/ are acting on the system. These however vanish for a time invariant
process and n.k/ D 0.

In order for the parameter error in (12.4.12) not to diverge, the homogeneous part
of the difference equation must be asymptotically stable. This part however contains
time variant terms, which is in contrast to the classical state observer. Assuming that
these time variant parameters can be frozen, one can determine the characteristic
equation in a similar way to (12.4.5) as

det
�
´I � I C �.k/ T.k C 1/

� D 0 : (12.4.13)

In analogy to the observer, one can now determine the eigenvalues from this
equation. According to Kofahl (1988), one obtains with �.k/ D � and  T.kC1/ D
 T being treated as constant quantities,
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det
�
´I � I C � T� D det

�
.´I � I/.I C .´I � I/�1� T/

�
D det

�
´I � I� det

�
I C .´I � I/�1� T� : (12.4.14)

By employing the relation det.A C uvT/ D detA.1 C vTA�1u/ (Gröbner, 1966),
one can now write

det
�
´I � I� det.I/

�
1C TI�1.´I � I/�1�

�
D .´ � 1/n�1C T.´ � 1/�1�

�
D .´ � 1/n�1

�
´ � 1C T�

� (12.4.15)

and then determine the eigenvalues as

´i D 1 for i D 1; : : : ; n � 1 (12.4.16)

´n D 1 � T.k C 1/�.k C 1/ : (12.4.17)

The eigenvalue ´n that was assumed to be constant depends on the time varying
quantities �.k/ and  T.k C 1/ and is hence time variant. It shall be called the “time
variant eigenvalue” of the parameter estimation equation.

From this follows, see also (Isermann et al, 1992),

Theorem 12.1 (Dynamics of the Recursive Parameter Estimation).
The recursive method of least squares has for n parameters

� .n � 1/ constant eigenvalues at

´i D 1; i D 0; 1; : : : ; n � 1 (12.4.18)

� One “time variant eigenvalue” at

´n D 1 � T.k C 1/�.k/

D �
�C T.k C 1/P.k/ .k C 1/

��1 (12.4.19)

with
0 < ´n.k/ � � ; (12.4.20)

where the right side in (12.4.19) follows from (9.4.18). ut
As discussed by Kofahl (1988), the “time-variant eigenvalue” tends to

´n.k/ ! 0 (12.4.21)

for a sudden excitation. In case of no excitation, the eigenvalue approaches

lim
k!1

´n.k/ ! � : (12.4.22)

This behavior can be witnessed in the following example.
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lator excited by a PRBS signal
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Table 12.1. Different cases for the estimation of time-varying processes

Disturbance / Noise
Speed of Parameter Change

Slow Fast Variable

Small A C B
.! �1/ .! � D f .�2

e //

Large A - -
.! �2 > �1/

Variable B - B
.! � D f .�2

n // .! � D f .�2
n ; k//

Method A: Constant Forgetting Factor �
Method B: Variable Forgetting Factor �.k/
Method C: Correction of the Covariance Matrix P.k/

Example 12.4 (Eigenvalues of the Recursive Parameter Estimation).
Figure 12.6 shows the behavior of the “time-varying eigenvalue” ´n.k/ of the

parameter estimation for � D 0:95 and � D 1. In the case of a sudden excitation, the
eigenvalue gets smaller and in the intervals of little or no excitation, it tends to the
chosen value of � D 0:95 or � D 1 respectively. ut

The “eigenvalue” ´n.k/ hence is a measure for the amount of excitation and
can be used to control or supervise the time variant parameter estimation, e.g. for
adaptive control applications (Kofahl, 1988).

12.5 Summary

For the parameter estimation of time-variant processes, one can discern different par-
tially contrary cases as illustrated in Table 12.1. The speed of the parameter changes
can be fast or slow or both (variable). Further, the signal-to-noise ratio can be small
or large or both (variable). In all of these cases, one must find a compromise with
respect to the parameter estimation algorithm and the capabilities of

� fast tracking of parameter changes
� good elimination of disturbances

The simplest case is the combination of slow parameter changes and small distur-
bances, the most difficult to handle case is the combination of fast parameter changes
and large disturbances.

For slow parameter changes, one can use recursive parameter estimation with
a constant forgetting factor � in the presence of either small or large disturbances.
For faster parameter changes and small disturbance levels, one should correct the
covariance matrix. If the speed of the parameter changes varies and the noise level is
small and/or variable, then the forgetting factor should be variable as well.

As an alternative, one can model the time behavior of the parameters (Isermann,
1992; Young, 2009)
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Problems

12.1. Exponential Forgetting with Constant Forgetting Factor I
What is the trade-off that has to be observed in the choice of �? How is � chosen if
the noise is high?

12.2. Exponential Forgetting with Constant Forgetting Factor II
Why can it be beneficial to reduce the forgetting factor � during the starting phase?

12.3. Exponential Forgetting with Variable Forgetting Factor
Why might it be necessary to steer the forgetting factor?

12.4. Manipulation of Covariance Matrix
Why might it be necessary to manipulate the covariance matrix? Describe in own
words, why this allows to track parameter changes.

12.5. No Excitation
What happens with the parameter estimates of a time-variant process if the input
excitation tends to zero?
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13

Parameter Estimation in Closed-Loop

In certain applications, the process can only be identified in closed loop. For exam-
ple, in biological and economical systems, the controller is an integrated and by no
means detachable part of the system. For technical systems, e.g. in the area of adap-
tive control systems, the process model must also be updated while the system is
under closed-loop control. Furthermore, integral acting processes can typically only
be operated reliably in closed-loop control to account for the influence of distur-
bances acting on the system, thereby avoiding a drift of the system. Also, for many
safety critical systems it may be too dangerous to disconnect the controller. In pro-
duction systems on the other hand, it may not be possible to maintain the necessary
quality of the product without closed-loop control.

For the application of the identification methods presented so far, one must first
check, whether the convergence criteria allow operation in closed loop. For the cor-
relation analysis for example, it was required that the input u.k/ and the disturbance
n.k/ are not correlated. A feedback loop however will cause such a correlation. For
the method of least squares on the other hand, it was required that the error e.k/
is not correlated with the data vector  T.k/. Here, it must also be checked if the
feedback loop will cause such a correlation.

For the identification, one can in general discern two cases, see also Figs. 13.1
and 13.2:

� Case a: Indirect Process Identification: A model of the closed-loop process is
identified. The controller must be known and the process model is derived from
the closed-loop model.

� Case b: Direct Process Identification: The process is identified directly, that is
without the intermediate step of determining the closed-loop model. The con-
troller must therefore not be known.

Further issues that can be identified are

� Case c: Only the output y.k/ is measured.
� Case d: Input u.k/ and output y.k/ are both measured.
� Case e: No injection of an additional test signal.

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_13, © Springer-Verlag Berlin Heidelberg 2011 



354 13 Parameter Estimation in Closed-Loop

B z( )
-1

D z( )
-1

Q z( )
-1

A z( )
-1

A z( )
-1

P z( )
-1

w

υ

yu

n

yu

Process

z
-d

-
ew

Controller

Fig. 13.1. Block diagram of the process to be identified in closed loop without an additional
test signal

� Case f : Additional test signal uS.k/ (either not measurable or measurable)
� Case g: Additional measurable test signal uS.k/ is used for identification.

As will be shown in the following, several combinations are possible. Sec-
tion 13.1 will cover the cases a+c+e and b+d+e. Sections 13.2 and 13.3 will then
deal with the cases a+g and b+d+f.

13.1 Process Identification Without Additional Test Signals

According to Fig. 13.1, a linear time invariant process with the transfer function

GP D yu.´/

u.´/
D B.´�1/

A.´�1/
´�d D b1´

�1 C : : :C bmb
´�mb

1C a1´�1 C : : :C ama
´�ma

´�d (13.1.1)

and the noise form filter

G�.´/ D n.´/

	.´/
D D.´�1/

C.´�1/
(13.1.2)

shall be identified in closed-loop operation. By assuming C.´�1/ D A.´�1/ in the
form filter describing the noise, the identification without an additional test signal is
severely simplified. The form filter is then given as

G�.´/ D n.´/

	.´/
D D.´�1/

A.´�1/
D 1C d1´

�1 C : : :C dmd
´�md

1C a1´�1 C : : :C ama
´�ma

: (13.1.3)

The controller is given by the transfer function

GC D u.´/

ew.´/
D Q.´�1/

P.´�1/
D q0 C q1´

�1 C : : :C q�´
��

1C p1´�1 C : : :C p�´��
: (13.1.4)

Furthermore, the output and the control deviation are given as
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y.´/ D yu.´/C n.´/

ew.´/ D w.´/ � y.´/ :
In general, it shall be assumed that w.´/ D 0, i.e. ew.´/ D �y.´/, 	.´/ shall be a
non-measurable, statistically independent noise with Ef	.k/g D 0 and the variance
�2

� .

13.1.1 Indirect Process Identification (Case a+c+e)

The disturbance transfer function of the closed-loop process is given as

y.u/

	.´/
D G�.´/

1CGC.´/GP.´/

D D.´�1/P.´�1/

A.´�1/P.´�1/C B.´�1/´�dQ.´�1/

D 1C ˇ1´
�1 C : : :C ˇr´

�r

1C ˛1´�1 C : : :C ˛l´�l
D B.´�1/

A.´�1/
:

(13.1.5)

The output y.k/ hence is an ARMA process. By the control loop assuming the role
of a form filter, the output y.k/ is generated from the statistically independent noise
	.k/. The orders of the polynomials are

l D max.ma C �;mb C 	 C d/ (13.1.6)
r D md C � : (13.1.7)

If only the output y.k/ of the control loop is analyzed, then the estimates of the
ARMA process

�T
˛;ˇ D � Ǫ1 : : : Ǫ l

Ǒ
1 : : : Ǒ

r

�
(13.1.8)

can be determined, e.g. by the recursive method of ELS that was covered in Sect. 10.2,
if all poles of A.´�1/ are inside the unit circle and the polynomials D.´�1/ and
A.´�1/ have no common roots.

The further task of the indirect identification method is to determine the unknown
process parameters

�T D � Oa1 : : : Oama
Ob1 : : : Obmb

Od1 : : : Odmd

�
(13.1.9)

from the estimated parameters Ǫ i and Ǒ
i . To ensure that the parameters can be deter-

mined unambiguously, certain conditions on the identifiability must be satisfied.

Conditions for the Identifiability in Closed Loop

A process shall be called parameter identifiable, if its parameter estimates are con-
sistent upon the application of a suitable parameter estimation method. In the fol-
lowing, conditions are formulated, which must be satisfied if only the output y.k/ is
measurable.
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Identifiability Condition 1

In a condensed notation, the input/output behavior of the control loop from (13.1.5)
is given as �

AC B
Q

P

�
y D D	 : (13.1.10)

This equation can now be manipulated by adding and subtracting the polynomial
S.´�1/.

�
AC S C B

Q

P
� S

�
y D D	 (13.1.11)

�
AC S C

�
B � P

Q
S

�
Q

P

�
y D D	 (13.1.12)

�
Q.AC S/C .QB � PS/Q

P

�
y D QD	 (13.1.13)

�
A� C B�Q

P

�
y D D�	 : (13.1.14)

Comparison with (13.1.10) shows that a control loop with

B�

A� D BQ � PS
AQC SQ

and
D�

A� D DQ

AQC SQ
(13.1.15)

and the controller Q=P has the same input/output behavior as the originally con-
sidered control loop from (13.1.5). Since S can be arbitrary, the process cannot be
identified unambiguously from the input/output behavior y=	 even if the controller
Q=P is known exactly unless the order of the polynomials B.´�1/´�d and A.´�1/

is also known exactly (Bohlin, 1971). Hence, the identifiability condition 1 is: The
model order must be known a priori.

Identifiability Condition 2

From (13.1.5) follows that the ma C mb unknown parameters Oai and Obi must be
determined from the l parameters Ǫ i . If the polynomials D and A have no com-
mon roots, then, for the unambiguous determination of the process parameters, it is
required that l D ma Cmb or

max.ma C �;mb C 	 C d/ � ma Cmb (13.1.16)
max.� �mb; 	 C d �ma/ � 0 : (13.1.17)

The identifiability condition 2 therefore is: The controller order has to be large
enough and has to satisfy

if 	 > � � d Cma �mb ) 	 � ma � d (13.1.18)

or
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if 	 < � � d Cma �mb ) � � mb : (13.1.19)

In the case d D 0, the controller order must either be 	 � ma or � � mb . If d > 0,
then either 	 � ma � d or � � mb . It is indifferent whether the dead time belongs
to the process or to the controller. Hence, the identifiability condition can also be
satisfied by a controller with dead time d D ma and the order 	 D 0; � D 0.

The parameters Odi (13.1.3) can be determined unambiguously from Ǒ
i (13.1.5)

if r � md or
� � 0 : (13.1.20)

The estimation of the parameters di is hence possible with any arbitrary controller,
as long as D.´�1/ and A.´�1/ have no common roots.

IfD.´�1/ and A.´�1/ have p common roots, then those cannot be identified and
hence only l �p parameters Ǫ i and r �p parameters Ǒ

i are available. Identifiability
condition 2 for the process parameters Oai and Obi is then given as

max.� �mb; 	 C d �ma/ � p : (13.1.21)

A note should be made that only the common roots of D.´�1/ and A.´�1/ matter
and not those of B.´�1/ and A.´�1/ as B D DP and P is known.

If the order of the controller is not large enough, one can conduct the identifica-
tion in closed loop with two different sets of controller parameters (Gustavsson et al,
1974; Kurz and Isermann, 1975; Gustavsson et al, 1977).

Example 13.1 (Identification in Closed Loop with External Disturbance).
The parameters of a process of first order with ma D mb D m D 1

y.k/C ay.k � 1/ D bu.k � 1/C 	.k/C d	.k � 1/ (13.1.22)

shall be identified in closed loop. For this endeavor, different controllers will be
considered.

1. One P controller: u.k/ D �q0y.k/.	 D 0; � D 0/.
With this controller, one obtains the ARMA process equation

y.k/C .aC bq0/y.k � 1/ D 	.k/C d	.k � 1/ (13.1.23)

or
y.k/C ˛y.k � 1/ D 	.k/C ˇ	.k � 1/ : (13.1.24)

By equating coefficients, one obtains

Ǫ D OaC Obq0 (13.1.25)
Ǒ D Od (13.1.26)

and can immediately see that no unique solution for Oa and Ob can be obtained.
This is in line with the conditions in (13.1.19), which are clearly violated as
	 � 1 or � � 1.
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2. One PD-controller: u.k/ D �q0y.k/ � q1y.k � 1/.	 D 1; � D 0/

The ARMA process equation is now of second order

y.k/C .aC bq0/y.k � 1/C bq1y.k � 2/ D 	.k/C d	.k � 1/ (13.1.27)
y.k/C ˛1y.k � 1/C ˛2y.k � 2/ D 	.k/C ˇ	.k � 1/ : (13.1.28)

By equations coefficients, one obtains

Oa D Ǫ1 C Obq0 (13.1.29)
Ob D Ǫ2=q1 (13.1.30)
Od D Ǒ : (13.1.31)

The process parameters can hence be identified.
3. Two P controllers: u.k/ D �q01y.k/; u.k/ D �q02y.k/.

With these controllers, one obtains two ARMA process equations, which by
equating coefficients, yield

Ǫ11 D OaC Obq01 (13.1.32)

Ǫ12 D OaC Obq02 : (13.1.33)

From there follows

Oa D Ǫ11 � q01
q02

Ǫ12

1 � q01
q02

(13.1.34)

Ob D 1

q02

� Ǫ12 � Oa� : (13.1.35)

The process parameters are hence identifiable, provided that q01 ¤ q02. ut
In the general case, one obtains the process parameters O� from the parameters

Ǫ1; : : : ; Ǫ l of the ARMA model by equating coefficients in (13.1.3) observing the
above stated conditions for identifiability. If d D 0, ma D mb , and the controller
order is governed by 	 D m and � � m, hence l D 2m, and thus satisfying the
condition in (13.1.19), then it follows with p0 D 1 that

a1 Cb1q0 D ˛1 � p1

a1p1 Ca2 Cb1q1 Cb2q0 D ˛2 � p2

:::
:::

:::
:::

:::

a1pj �1 Ca2pj �2 : : : Campj �m Cb1qj �1 Cb2qj �2 : : : bmqj �m D j̨ � pj

:

(13.1.36)
In matrix form, this set of equations can be written as
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ˇ

1 0 : : : 0 q0 0 : : : 0

p1 1 : : : 0 q1 q0 : : : 0
::: p1 : : : 0 q2 q1 : : :

:::

p�

::: 1
::: q0

0 p� p1 qm q1

0 0
::: 0 qm

:::
::: p�

:::
:::

:::

0 0 : : : 0 0 0 : : : qm

�

’

S

ˇ

a1

a2

a3

:::

am

b1

b2

:::

bm

�

™
�

D

ˇ

˛1 � p1

˛2 � p2

˛3 � p3

:::

˛� � p�

˛�C1

˛�C2

:::

˛2m

�

›̨
�

: (13.1.37)

Since the matrix S is a square matrix, one can determine the process parameters by

O� D S�1˛� : (13.1.38)

This shows again that for an unambiguous solution of (13.1.37) the matrix S must
have the rank r D 2m, hence 	 D m or � D m. If 	 > m or � > m, one can solve
the overdetermined system of equations by the pseudo-inverse. As will be discussed
in Sect. 13.3, the process parameters for the indirect process identification converge
very slowly for constant controller parameters. A further disadvantage is also that
in some practical applications, the controller is not linear. Even a standard industrial
PID controller can have delimiters, anti-windup and other non-linear effects like dead
zones, making the application of the indirect methods infeasible if one cannot stay
within the linear range of operation (Forssell and Ljung, 1999).

13.1.2 Direct Process Identification (Case b+d+e)

In the last section, it was assumed that the output y.k/ was measurable and the con-
troller was known. Then, one could calculate the plant input u.k/ by the controller
equation and hence the measurement of u.k/ would in theory not provide any new
information about the process. However, if one measures the input u.k/, then the
process can be identified directly, that is without the intermediate step of identify-
ing the closed loop dynamics. Furthermore, knowledge of the controller is no longer
necessary.

If one would use methods for the identification of non-parametric models, such
as e.g. the correlation analysis on the control loop according to Fig. 13.1 and hence
the measured signals u.k/ and y.k/, then, because of

u.´/

	.´/
D � �GC.´/G�.´/

1CGC.´/GP.´/
(13.1.39)

and
y.´/

	.´/
D � �G�.´/

1CGC.´/GP.´/
; (13.1.40)

one would identify the process with the transfer function
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y.´/

u.´/
D y.´/=	.´/

u.´/=	.´/
D � 1

GC.´/
; (13.1.41)

which is the negative reciprocal transfer function of the controller. For the identifica-
tion, one should employ the useful signal yu.k/ D y.k/ � n.k/, because then

yu.´/

u.´/
D y.´/ � n.´/

u.´/
D y.´/=	.´/ � n.´/=	.´/

u.´/=	.´/
D GP.´/ (13.1.42)

i.e. the process transfer function can be identified. This points out that the form filter
n.´/=	.´/ must be known. Therefore, the process model from (13.1.1) and (13.1.3)
will be used, resulting in

OA.´�1/y.´/ D OB.´�1/´�du.´/C OD.´�1/	.´/ : (13.1.43)

This process model also contains the form filter of the disturbance.
As shown in Fig. 13.1, the process is operated in closed loop with

u.´/

ew.´/
D Q.´�1/

P.´�1/
, Q.´�1/y.´/ D �P.´�1/u.´/ : (13.1.44)

Inserting the control law into (13.1.43) yields

OA.´�1/P.´�1/y.´/� OB.´�1/´�dP.´�1/u.´/ D OD.´�1/P.´�1/	.´/ : (13.1.45)

After canceling P.´�1/, one can see that this is identical to the open loop model of
the process (13.1.43). The only difference to open loop operation of the process is
that the input u.k/ cannot be chosen freely, but depends on the output y.k/ according
to the control law in (13.1.44).

The identifiability conditions can be derived from the requirement that the cost
function V has a unique minimum. It can be shown that with e.k/ D 	.k/ in case
of convergence, the same identifiability conditions hold that have already been intro-
duced in the last section on indirect process identification (Isermann, 1992).

Finally, it shall be investigated if the same methods for direct parameter estima-
tion can be used that have already successfully been applied to open loop identifica-
tion.

The method of least squares as well as the method of extended least squares is
based on the error

e.k/ D y.k/ � Oy.kjk � 1/ D y.k/ � T.k/ O�.k � 1/ : (13.1.46)

A condition for convergence is that e.k/ is statistically independent from the ele-
ments of  T.k/. For the method of least squares, one must ensure that

 T.k/ D ��y.k � 1/ : : : u.k � d � 1/ : : : � (13.1.47)

and for the method of extended least squares

 T.k/ D ��y.k � 1/ : : : u.k � d � 1/ : : : O	.k � 1/ : : : � (13.1.48)
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are statistically independent from e.k/. Upon convergence, one may assume that
e.k/ D 	.k/. Since however 	.k/ does only influence y.k/; y.k C 1/; : : : and these
values do not turn up in  T.k/, one can conclude that e.k/ is independent from the
elements of  T.k/.

If a feedback loop is introduced, basically nothing changes. Also in closed loop,
the error e.k/ does not depend on the elements of  T.k/. Therefore, all methods
that are based on the prediction error e.k/ as formulated in (13.1.46), will also deliver
consistent estimates in closed loop as long as the previously formulated identifiability
conditions are met. These methods can hence be applied to the signals u.k/ and y.k/
regardless of the presence of the feedback loop. The suitability of other parameter
identification methods is treated in Sect. 13.3.

The most important results for the identification in closed loop without an in-
jected test signal and a linear, time-invariant, noise-free controller can be summa-
rized as follows:

1. For the indirect process identification (measurement of y.k/ only) as well as
the direct process identification (measurement of y.k/ and u.k/) with parameter
estimation methods, the identifiability conditions 1 and 2 in Sect. 13.1.1 must be
satisfied.

2. Since for the indirect identification, a signal process with l � ma C mb para-
meters in the denominator and r D md C � parameters in the numerator and in
the case of direct identification only a process withma parameters in the denom-
inator and mb parameters in the numerator must be identified, one may expect
better results if the direct identification methods are applied, especially, if the
process has a high order.

3. For the direct identification methods in closed loop, one can use the open loop
methods that are based on the prediction error, if the identifiability conditions
are met. The controller must not be known.

4. If the controller does not satisfy identifiability condition 2, because the order
of the controller is too low, one can still obtain identifiability by the following
measures:
a) Switching between two controllers with different parameters (Gustavsson

et al, 1977; Kurz, 1977)
b) Including a dead time in the feedback loop with d � ma � 	 C p

c) Use of a non-linear or time-variant controller
5. The underlying system does not need to be stable (Forssell and Ljung, 1999)

13.2 Process Identification With Additional Test Signals

Now, an external test signal shall be injected into the control loop that was introduced
at the beginning of this chapter, see Fig. 13.2. In this case, the input u.k/ to the
process is given as

u.k/ D uC.k/C uS.k/ ; (13.2.1)
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Fig. 13.2. Block diagram of the process to be identified in closed loop with an additional test
signal

where

uC.´/ D �Q.´
�1/

R.´�1/
y.´/ : (13.2.2)

The additional signal uS.´/ can be generated by a special filter from the signal s.´/,

uS.´/ D GS.´/s.´/ : (13.2.3)

This setup allows to treat different experimental setups simultaneously: If GS.´/ D
GR.´/, then s.k/ D w.k/ is the setpoint. s.k/ can also be a disturbance that is
caused by the controller as e.g. in the case of non-technical controllers. Finally, if a
test signal is acting directly on the process input, then GS.´/ D 1 and s.k/ D uS.k/.

uS.k/ can be generated in different ways. For the following derivations, it must
however only be ensured that uS.k/, which is an external signal acting on the control
loop, is uncorrelated with the disturbance 	.k/. The additional signal s.k/ does in
general not need to be measurable for now.

The process can again be identified indirectly based on measurements of y.k/ or
directly with measurements of u.k/ as well as y.k/. The following derivations will
be confined to the direct identification as the indirect identification does not provide
any benefits.

The closed-loop transfer function is given as

y.´/ D DP

AP C B´�dQ
	.´/C B´�dP

AP C B´�dQ
uS.´/ : (13.2.4)

From this follows
�
AP C B´�dQ

�
y.´/ D DP	.´/C B´�dPuS.´/ : (13.2.5)

Considering (13.2.1), one obtains

A.´�1/P.´�1/y.´/ � B.´�1/´�dP.´�1/u.´/ D D.´�1/P.´�1/	.´/ : (13.2.6)

After canceling the polynomial P.´�1/, the same relation as for the open loop, i.e.
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A.´�1/y.´/ � B.´�1/´�du.´/ D D.´�1/	.´/ (13.2.7)

result. In contrast to (13.1.43), u.´/ is not only generated by the controller, but rather
according to (13.2.1) also by an external test signal uS.´/. Therefore, the difference
equation is given as

u.k � d � 1/ D � p1u.k � d � 2/ � � � � � p�u.k � � � d � 1/
� q0y.k � d � 1/ � � � � � q�y.k � 	 � d � 1/
C uS.k � d � 1/ � � � � � p1uS.k � d � 2/
: : :C p�uS.k � � � d � 1/

(13.2.8)

considering (13.2.1) and (13.2.2). If uS.k/ ¤ 0, then u.k � 1/ is for any arbitrary
order � and 	 not linearly dependent on  T.k/. Hence the process according to
(13.2.7) is directly identifiable, as long as the external signal uS.k/ is sufficiently
exciting the interesting process dynamics. Also note that it was not assumed that
the additional test signal uS.´/ is measurable. For an external test signal uS.k/, the
identifiability condition 2 that was formulated in the last section is no longer relevant.
Identifiability condition 1 however still has to be fulfilled.

As in the last section, one can use the same open loop identification methods that
are based on the prediction error e.k/ also in closed-loop identification, if an external
test signal uS.k/ is injected into the control loop. The controller must not be known
and also the additional signal uS does not need to be measurable. These results are
also valid for an arbitrary noise form filter D.´�1/=C.´�1/.

For the identification of non-parametric transfer function models, a similar ap-
proach is suggested by Schoukens et al (2009). It is proposed to identify the transfer
function OG.i!k/ by

OG.i!k/ D
OGwy.i!k/

OGwu.i!k/
; (13.2.9)

where w.i!/ denotes the setpoint and OGwy.i!k/ the estimate of the transfer func-
tion from w.i!/ to y.i!/. Both intermediate transfer functions show a measurement
error only in the “output” and can hence be identified asymptotically bias-free with
appropriate methods for the identification of frequency responses.

13.3 Methods for Identification in Closed Loop

In this section, some concluding remarks shall be made on the applicability of on-
line identification methods to closed-loop process identification. For the application,
one has to observe the identifiability conditions that have been stated in Sects. 13.1
and 13.2.

13.3.1 Indirect Process Identification Without Additional Test Signals

If the process is identified indirectly, i.e. only by measurement of the output y.k/
and if no additional signal is injected into the control loop, then one can determine
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the parameters ˛i and ˇi of the ARMA process in (13.1.5) by the RLS method
for stochastic signals, see Sect. 9.4.2. In a second step, the process parameters ai

and bi have to be determined from (13.1.37) by e.g. (13.1.38), if the identifiability
conditions are met. A different method is based on the correlation in combination
with least squares (RCOR-LS) (Kurz and Isermann, 1975).

The parameter estimates converge very slowly, which can be attributed to both
the large number of parameters l C r to be estimated and the fact that the input
signal 	.k/ is also unknown and must be estimated as well. If the process input u.k/
is measurable, one should therefore always prefer the direct method, as discussed in
the next section.

13.3.2 Indirect Process Identification With Additional Test Signals

If the controller is completely known, it is theoretically also possible to identify a
model from setpoint w.k/ to output y.k/ and then determine the transfer function of
the plant from knowledge of the identified transfer function of the entire closed-loop
process and the transfer function of the controller. As w.k/ and y.k/ are uncorre-
lated, one can in this case use all methods that are capable of identifying open-loop
systems (Forssell and Ljung, 1999).

13.3.3 Direct Process Identification Without Additional Test Signals

As shown in Sect. 13.1, parameter estimation methods that are based on the predic-
tion error e.k/ are on principle also suited for identification in closed loop. Therefore,
especially the methods RLS, RELS, and RML are applicable. If the identifiability
conditions 1 and 2 are satisfied, then these methods can be applied to the signals
u.k/ and y.k/ just as in the open-loop case. They yield unbiased and consistent es-
timates, if the form filter of the noise has the form 1=A in the case of RLS and the
form D=A in the case of RELS and RML.

For the unbiased estimation with the RIV method, the vector of instrumental
variables wT.k/ (10.5.9) may not be correlated with the error e.k/ and hence the
disturbance n.k/. The process input u.k � �/ is due to the feedback loop, however,
for � � 0 correlated with n.k/. The method RIV will henceforth yield biased esti-
mates in closed loop. The correlation between u.k � �/ and e.k/ would vanish for
� � 1 only, if the form filter of the noise has the form 1=A and e.k/ is an uncorre-
lated signal. Special adaptations of the instrumental variable method to closed-loop
identification have been proposed (e.g. Gilson and van den Hof, 2005; Gilson et al,
2009).

13.3.4 Direct Process Identification With Additional Test Signals

If, as described in Sect. 13.2, an external signal is injected into the control loop,
then one must only observe identifiability condition 1 and can abolish identifiability
condition 2. If u.k/ and y.k/, but not the additional signal uS.k/, are utilized for
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parameter estimation, then one can use the methods RLS, RELS, and RML. If mea-
surable, the additional signal uS.k/ can be used to form instrumental variables for
RIV. Then, this method can be applied to the same form filters of the noise as in the
open loop case.

The application of the RCOR-LS method in closed loop to the three cases con-
sidered in this chapter has been described by Kurz and Isermann (1975). It is suitable
if the parameter estimates are not required after each sample step, but only in larger
time intervals.

13.4 Summary

The identification of processes in closed loop can be accomplished even without an
additional external test signal. In case of the indirect method, one measures the out-
put signal y.k/ only, estimates an intermediate ARMA model of the closed-loop
process and then determines the parameters of the open-loop process from this inter-
mediate model. The direct parameter estimation method makes use of the measure-
ments of both the input u.k/ and output y.k/ as in the open loop case. In both cases,
the process is identifiable under two identifiability conditions that have been formu-
lated in Sect. 13.1.1. The order of controller and process must be known exactly and
the feedback must be of sufficiently high order. If the identifiability condition 2 is
not fulfilled by a constant controller, one can identify in closed loop by switching
between two different controllers or between two different parameter sets for the
same controller. Kurz (1977) has shown that the variance of the parameter estimates
can be reduced if the switching time is reduced to .5 : : : 10/T0. A quantification of
the variance-error for identified poles and zeros is shown in (Mårtensson and Hjal-
marsson, 2009) and is also discussed for the closed loop case. Often, closed loop
identification shall be used to improve the control quality of the closed loop sys-
tem by subsequently designing an improved (adaptive) controller. This gives raise to
different issues that are discussed in (Hjalmarsson, 2005).

For the identification with an additional external test signal, the second iden-
tifiability condition does not need to be considered any longer. Since the indirect
methods converge very slowly, one will in general prefer the direct methods. Here,
one can apply the typical open-loop methods that have already been introduced in
the previous chapters. As a lookahead to subspace methods (Chap. 16), it shall be
noted here that subspace methods will typically yield biased estimates when applied
to closed-loop identification (Ljung, 1999).

Problems

13.1. Indirect Process Identification
Given a process of order n D 2 and d D 1. What is the required order of a linear
controller for indirect process identification in closed loop?
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13.2. Direct Process Identification
Why should you employ information about both the input u.k/ and the output y.k/
whenever possible?

13.3. Direct Process Identification
A colleague suggests to identify a system in closed loop without an external test
signal by measuring both the input u.k/ and the output y.k/ and determining the
process transfer function by G.i!/ D y.i!/=u.i!/. Why will this not provide the
expected results? If one can inject an external test signal, will the approach then
work?
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Parameter Estimation for Frequency Responses

This chapter presents parameter estimation methods which use the non-parametric
frequency response function as an intermediate model. Using this intermediate model
can provide many advantages: One can use methods such as the orthogonal correla-
tion to record the frequency response function even under very adverse (noise) condi-
tions. Furthermore, the experimental data are in most cases condensed by smoothing
the frequency response function before the parameter estimation method is applied.
Also, the non-parametric frequency response function can give hints on the model
order to choose, the presence of a dead-time, resonances, and so forth. Juang (1994)
also points out that e.g. in modal analysis, the frequency response is much better es-
tablished representation than the plot of measurement data over time and thus more
familiar to the test engineers.

14.1 Introduction

In the following, it is assumed that N C 1 points of the frequency response function
have been determined as

G.i!�/ D jG.i!�/je�i'.!�/ D RefG.i!�/g C ImfG.i!�/g (14.1.1)

by using a direct frequency response measurement technique, see Chap. 4 and 5.
This frequency response, which is given in non-parametric form and represents

an intermediate model, shall now be approximated by a parametric transfer function

G.i!/ D b0 C b1i! C : : :C bm.i!/m

1C a1i! C : : :C an.i!/n
: (14.1.2)

While in the past, often graphical methods have been used, see e.g. the overview by
Strobel (1968), nowadays mainly analytical methods are used (e.g. Isermann, 1992;
Pintelon and Schoukens, 2001).

In the following, methods shall be presented that allow to extract a parametric
model from the frequency response. Some of the methods covered in the following
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use only one coordinate of the frequency response, i.e. magnitude or phase or real or
imaginary part respectively, as under certain prerequisites, the two components are
coupled. This mutual dependency is given as follows:

Real and imaginary part of a stable, realizable (m � n) system are coupled by
means of the Hilbert transform g.y/ D H.f .x//, see e.g. (Unbehauen, 2008; Kam-
meyer and Kroschel, 2009),

g.y/ D H.f .x// D 1

�

Z 1

�1
f .x/

y � x dx (14.1.3)

as

R.!/ D C 1

�

Z 1

�1
I.u/

! � uduCR.1/ (14.1.4)

I.!/ D � 1
�

Z 1

�1
R.u/

! � udu : (14.1.5)

Hence, if the course of the imaginary part of the frequency response is given, one
can determine the real part under the above stated prerequisites and vice versa. As a
side-note, the satisfaction of the Hilbert transform is a necessary and also a sufficient
condition for causality of a system.

A similar relation is given for the magnitude and phase,

ln jG.i!/j � ln jG.i1/j D � 1
�

Z 1

�1
'.u/ � '.!/
u � ! du (14.1.6)

'.!/ D 1

�

Z 1

�1
ln jG.iu/j � ln jG.i!/j

u � ! du : (14.1.7)

For a given shape of the magnitude jG.i!/j, one can thus easily determine the phase
and vice versa. For those methods that only approximate the shape of the magni-
tude of the frequency response, one must ensure that the system does not contain a
dead-time or an all-pass. If a dead-time is present, one should first determine the ra-
tional part of the transfer function by approximating the magnitude of the frequency
response and then in the next step determine the dead time from the phase difference.

14.2 Method of Least Squares for Frequency Response
Approximation (FR-LS)

Typically, there are much more points of the frequency response function measured
than there are parameters of the (parametric) transfer function to be identified. In this
case, one can use parameter estimation methods to minimize the error between the
measured frequency response function and the model. The process shall be given by

G.i!/ D R.!/C iI.!/ (14.2.1)

and the model by
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OG.i!/ D
OB.i!/
OA.i!/ D

OBR.!/C i OBI.!/

OAR.!/C i OAI.!/
: (14.2.2)

The task is now to determine the parameters Oai and Obi from N C 1 measurements

G.i!n/ D R.!n/C iI.!n/; n D 0; 1; : : : ; N : (14.2.3)

For this task, one could use the output error as shown in Fig. 1.8 and defined as

e.i!n/ D G.i!n/ �
OB.i!n/

OA.i!n/
: (14.2.4)

A cost function would then be given by

V D 1

N C 1

NX
kD0

jG.i!k/ � OG.i!k ;�/j2
�2

G.k/
; (14.2.5)

where in this case, already the measurement error has been introduced as a weight
for the individual errors (Pintelon and Schoukens, 2001).

The output error once again is non-linear in the parameters and hence necessitates
the use of an iterative optimization algorithm, see Chap. 19. Here, the identification
of G.i!k/ might have been carried out by dividing the DFT of the output y.i!k/ by
the the DFT of the input u.i!k/. In most applications, the sampling is fast enough and
the transfer function shows a sufficient decay of the amplitude at high frequencies
so that G.i!k/ approximates the continuous-time transfer function G.s/ sufficiently
well. In other cases, one must use approximating techniques as described e.g. by
Gillberg and Ljung (2010).

Multiplying (14.2.5) with U.s/, one can derive the cost function

V D
NX

kD1

jY.i!k/ � OY .i!k ;�/j2 ; (14.2.6)

which still leads to a non-linear optimization problem (Pintelon and Schoukens,
2001)

One can also use the generalized equation error, which in this case is given as

".i!n/ D OA.i!n/e.i!n/ D OA.i!n/G.i!n/ � OB.i!n/ ; (14.2.7)

see (Levy, 1959; Sawaragi et al, 1981; Pintelon and Schoukens, 2001). As a cost
function, one can now use the sum of the weighted squared error as

V D
NX

nD0

wnj".i!n/j2 ; (14.2.8)

where the wn are weighting factors. Inserting (14.2.3) and (14.2.7), one obtains



372 14 Parameter Estimation for Frequency Responses

".i!/ D OA.i!/e.i!/ D�R.!/ OAR.!/ � I.!/ OAI.!/ � OBR.i!/
�

C i
�
R.!/ OAI.!/C I.!/ OAR.!/ � OBI.i!/

�
;

(14.2.9)

which then yields

V D
NX

nD0

	
wn

�
R.!n/ OAR.!n/ � I.!n/ OAI.!n/ � OBR.!n/

�2

C wn

�
R.!n/ OAI.!n/C I.!n/ OAR.!n/ � OBI.!n/

�2


D
NX

nD0

wn

�
L2

n CM 2
n

�
:

(14.2.10)

With the polynomials

AR.!/ D 1 � a2!
2 C a4!

4 � a6!
6 C : : : (14.2.11)

AI.!/ D a1! � a3!
3 C a5!

5 � : : : (14.2.12)

BR.!/ D b0 � b2!
2 C b4!

4 � b6!
6 C : : : (14.2.13)

BI.!/ D b1! � b3!
3 C b5!

5 � : : : ; (14.2.14)

one can now formulate the data matrix, parameter vector, and output vector for the
method of least squares. As the cost function (14.2.10) contains a sum of two squared
terms for each frequency !n, the matrices and vectors will contain two rows for each
frequency !n. For a certain frequency, the addend�V.!n/ for the cost function V is
given as

�V.!n/ D wn"R.!n/
2 C wn"I.!n/

2 : (14.2.15)

Therefore,

"n D
�
"R.!n/

"I.!n/

�
: (14.2.16)

The errors for the real part can be written as

"R.!n/ D R.!n/ � a2!
2
nR.!n/C a4!

4
nR.!n/ � : : :

� a1!nI.!n/C a3!
3
nI.!n/ � : : : � b0 C b2!

2
n � b4!

4
n � : : :

(14.2.17)

and the imaginary part as

"I.!n/ D I.!n/ � a2!
2
nI.!n/C a4!

4
nI.!n/ � : : :

C a1!nR.!n/ � a3!
3
nR.!n/C : : : � b1!n C b3!

3
n � : : : : (14.2.18)

These equations can now be split up into the data matrix

� T
n D

� �!nI.!n/ �!2
nR.!n/ !3

nI.!n/ !4
nR.!n/ : : : �1 0 !2

n 0 : : :

C!nR.!n/ �!2
nI.!n/ �!3

nR.!n/ !
4
nI.!n/ : : : 0 �!n 0 !3

n : : :

�

(14.2.19)
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and the output vector

yn D
�
R.!n/

I.!n/

�
: (14.2.20)

For this decomposition, the parameter vector is given as

�T D �
a1 a2 a3 a4 : : : b0 b1 b2 b3 b4 : : :

�
(14.2.21)

and the weighting matrix is given as

Wn D
�
w.!n/ 0

0 w.!n/

�
: (14.2.22)

From these parts, one can now construct

� D

˙
 T

0

 T
1
:::

 T
N

�
(14.2.23)

and

y D

˙
y0

y1

:::

yN

�
; (14.2.24)

as well as

W D

˙
W0 0 0

0 W1 0

: : :

0 0 WN

�
; (14.2.25)

and can solve the problem of weighted least squares by e.g.

O� D �
� TW �

��1
� TWy ; (14.2.26)

see (9.5.4).
For the choice of the weighting factors wn, one can consider the accuracy of the

frequency response measurements by weighting with the relative error

wn D c
jG.i!n/j2

j�G.i!n/j2 ; (14.2.27)

where j�G.i!n/j is a given absolute value. This is often an appealing choice as the
relative error of the measurements increases at higher frequencies. Measurements at
high frequencies are often of smaller accuracy and hence by choosing the recipro-
cal, a high relative error will lead to a small weight. Furthermore, as pointed out by
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Pintelon et al (1994), the cost function in (14.2.7) is a polynomial in !n and mea-
surement errors are weighted with !2m

n . Therefore, the individual terms of the cost
function will have a smaller weight as ! increases.

By formulating the equation error (14.2.7), one does from a mathematical point
of view weight the output error e.!n/ with A.i!n/. This weighting can be compen-
sated by choosing wn as

wn D 1

jA.i!n/j2
: (14.2.28)

As A.i!n/ is seldom known a priori, one must use an iterative approach to solve the
parameter estimation problem. One can also combine both of the above weights.

A modified method of least squares was proposed by Strobel (1968, 1975). Here,
the cost function is formulated by the weighted relative frequency response error

V D
NX

nD0

wn

ˇ̌̌
ˇ�G.i!n/

G.i!n/

ˇ̌̌
ˇ
2

D
NX

nD0

wn

ˇ̌̌
ˇ̌G.i!n/ � OG.i!n/

G.i!n/

ˇ̌̌
ˇ̌
2

(14.2.29)

with
�G.i!n/ D G.i!n/ � OG.i!n/ (14.2.30)

being the deviation between measured and estimated frequency response.

Example 14.1 (Identification of a Discrete-Time Dynamic Model from the Frequency
Response of the Three-Mass Oscillator).

This technique has now been applied to the Three-Mass Oscillator and a trans-
fer function has been estimated from the frequency response that was recorded by
means of the orthogonal correlation, see Sect. 5.5.2. The results have been shown in
Fig. 14.1 and illustrate a good match between the parametric transfer function model
and the non-parametric frequency response. ut

If the input u.k/ and output y.k/ have been brought independently to the fre-
quency domain by the Fourier transform, one can formulate the cost function

V D
NX

kD1

j OA.i!k ;�/Y.i!k/ � OB.i!k ;�/U.i!k/j2 (14.2.31)

in analogy to the above equation error. This formulation is also linear in parameters
and can be solved by the direct and recursive method of least squares (Pintelon and
Schoukens, 2001; Ljung, 1999).

14.3 Summary

It has been shown how one can estimate the parameters of the transfer function from
the directly measured frequency response as an intermediate model. Determining the
frequency response as a non-parametric model before estimating the parameters of
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the transfer function has several advantages. First, the frequency response can e.g.
be determined by means of the orthogonal correlation, which is capable of process-
ing very noisy signals. Secondly, as the frequency response function in this case is
a non-parametric model, it can be used to verify the assumptions about the model
order and dead time before deriving the parametric model. Also, the transfer func-
tion can easily be converted into a set of ordinary differential equations governing
the dynamics of the process in continuous-time. As pointed out in Chap. 15, the co-
efficients of ordinary differential equations can often easily be converted to process
parameters. Pintelon et al (1994) also stress the easy noise reduction capabilities by
simply leaving out non or slightly excited and hence especially noisy frequencies and
the possibility the combine data from different experiments. Hence, the parameters
can more easily be interpreted than those of discrete-time models. Other estimators,
such as e.g. maximum likelihood estimators based on different assumptions about the
noise have been formulated for identification in the frequency domain, (Pintelon and
Schoukens, 1997; McKelvey, 2000). However, these can often only be solved with
iterative optimization algorithms and hence can become computationally expensive.

Problems

14.1. Identification from Frequency Response
Name three advantages of using the non-parametric frequency response function as
an intermediate model. What methods do you know to obtain the frequency response
function?

14.2. Minimum Phase System
Why is it for a minimum phase system sufficient to match the real part of the recorded
non-parametric frequency response and the parametric transfer function?

14.3. Minimum Phase System with Additional Dead Time
Given is a minimum phase system with an unknown dead time due to the measure-
ment setup. Why is it possible to identify this system based on the magnitude of the
frequency response function neglecting the dead time? Derive a cost function that
would identify the parametric transfer function based on the magnitude. How can
one identify the dead time of the measurement setup?
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Parameter Estimation for Differential Equations and
Continuous Time Processes

Parameter estimation methods for dynamic processes were first developed for pro-
cess models in discrete-time in combination with digital control systems. For some
applications, e.g. the validation of theoretical models or for fault diagnosis, however,
parameter estimation methods for models with continuous-time signals are needed.

Furthermore, continuous-time models are often better to interpret as the model
parameters can in many cases be transformed to physical parameters. A comparison
of discrete-time and continuous-time methods to identify a continuous-time model
has been carried out by Rao and Garnier (2002). Garnier and Wang (2008) and Rao
and Unbehauen (2006) suggest to discern two fundamentally different approaches:
For direct approaches, a discrete-time model is set up with the same parameteriza-
tion as the continuous time model, for indirect approaches, the model is estimated in
discrete time with a different parameterization and then transformed back to continu-
ous time. Both methods will be treated in this chapter. First, it will be discussed, how
models with the continuous time parameterization can be estimated directly, where
various techniques are presented to determine the derivatives. Then, the approach to
convert a discrete time model to continuous time parameters will also be discussed.
The first survey paper on this topic was published in 1981 by Young (1981), a re-
cent survey was given by Rao and Unbehauen (2006). Also, the book by Garnier and
Wang (2008) gives an overview over different developments in this field.

15.1 Method of Least Squares

15.1.1 Fundamental Equations

A stable process with lumped parameters is considered, which can be described by
the linear, time invariant differential equation

any
.n/
u .t/C an�1y

.n�1/
u .t/C : : :C a1y

.1/
u .t/C yu.t/

D bmu
.m/.t/C bm�1u

.m�1/.t/C : : :C b1u
.1/.t/C b0u.t/ ;

(15.1.1)

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_15, © Springer-Verlag Berlin Heidelberg 2011 



380 15 Parameter Estimation for Differential Equations and Continuous Time Processes
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Fig. 15.1. Linear process with
continuous-time signals

where m < n. It is assumed that the derivatives of the output signal

y.j /.t/ D djy.t/

dtj
with j D 1; 2; : : : ; n (15.1.2)

and of the input signal u.t/ for j D 1; 2; : : : ; m exist. u.t/ and y.t/ are the deviations

u.t/ D U.t/ � U00

y.t/ D Y.t/ � Y00

(15.1.3)

of the absolute signals U.t/ and Y.t/ from the operating point described by U00 and
Y00. The transfer function corresponding to the ODE given in (15.1.1) is

GP.s/ D yu.s/

u.s/
D B.s/

A.s/
D b0 C b1s C : : :C bm�1s

m�1 C bms
m

1C a1s C : : :C an�1sn�1 C ansn
; (15.1.4)

see Fig. 15.1.
The measurable signal y.t/ contains an additional disturbance signal n.t/

y.t/ D yu.t/C n.t/ : (15.1.5)

Substituting (15.1.5) into (15.1.1) and introducing an equation error e.t/ yields

y.t/ D  T.t/� C e.t/ (15.1.6)

with

 T.t/ D ��y.1/.t/ : : : �y.n/.t/ u.t/ : : : u.m/.t/
�

(15.1.7)

� D �
a1 : : : an b0 : : : bm

�T (15.1.8)

in similarity to Sect. 9.1. All methods presented in this chapter work with the equa-
tion error. If one wants to use the output, i.e. simulation error, one has to resort to the
methods described in Chap. 19.

One can also set up the model

y.n/.t/ D  T.t/� C e.t/ (15.1.9)

with the appropriate entries of  and � (Young, 1981). As one should try to select
the most noisy variable as the output y of the model for identification methods that
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assume noise only on the model output, this can be an appealing alternative. One can
however also use other methods, such as the method of total least squares (TLS), see
Sect. 10.4, that assume noise not only on the model output, but also on the regressors.

The input and output signals are now measured at discrete-time samples t D kT0

with k D 0; 1; 2; : : : ; N with sampling time T0 and the derivatives are determined.
Based on these data, then N C 1 equations can be written down

y.k/ D  T.k/� C e.k/ for k D; 1; 2; : : : ; N : (15.1.10)

This system of equations can be written in matrix notation as

y D �� C e (15.1.11)

with

yT D �
y.0/ y.1/ : : : y.N /

�
(15.1.12)

� D

˙ �y.1/.0/ : : : �y.n/.0/ u.0/ : : : u.m/.0/

�y.1/.1/ : : : �y.n/.1/ u.1/ : : : u.m/.1/
:::

:::
:::

:::

�y.1/.N / : : : �y.n/.N / u.1/ : : : u.m/.N /

�
: (15.1.13)

Both, Ljung and Wills (2008) as well as Larsson and Söderström (2002) point out
that an irregular sample time can much easier be accommodated by continuous-time
models. If the derivatives can be measured directly, one could obviously evaluate
the differential equations for any time t . Otherwise, algorithms for determining the
derivatives of the measured signals numerically have to be adapted to the varying
sample time (e.g. Larsson and Söderström, 2002).

Minimizing the cost function

V D eTe D
NX

kD0

e2.k/ (15.1.14)

yields with dV=d O� D 0 and � D O� , as previously shown in Sect. 9.1, the vector of
parameter estimates for the least squares method as

O� D �
� T�

��1
� Ty : (15.1.15)

The existence of a unique solution requires that the matrix � T.N /� .N / is non-
singular. It can be seen that this approach is very similar to the least squares method
for models with discrete-time signals. Hence, a lot of the derivations can be trans-
ferred directly, such as the recursive formulation and the numerically improved ver-
sions in Chap. 22. However, particular problems arise concerning the convergence
and the evaluation of the required derivatives of the signals.



382 15 Parameter Estimation for Differential Equations and Continuous Time Processes

15.1.2 Convergence

It is now assumed that the output is disturbed by a stationary stochastic signal n.t/.
Similarly to the derivations in Sect. 9.1.2, the expected value of the parameter esti-
mates can now be determined.

After inserting
y.k/ D  T.k/�0 C e.k/ (15.1.16)

into (15.1.15), i.e. assuming that the model parameters O� match with the true para-
meters �0, one obtains the expected values

E
˚ O�� D �0 C E

˚
.� T� /�1� Te

�
; (15.1.17)

where
b D E

˚
.� T� /�1� Te

�
(15.1.18)

is a bias. For the bias to vanish, it is required that

E
˚
� Te

� D 0 : (15.1.19)

With (15.1.5), an unbiased estimate will only result if

ORy.j /e D ORn.j /e (15.1.20)

and since e.t/ and u.t/ are uncorrelated, an unbiased estimate can only be obtained
if

E

„� ORn.1/e.0/ � ORn.2/e.0/ : : : � ORn.n/e.0/

0
:::

0

…
D 0T : (15.1.21)

This leads to the differential equation

e.t/ D ann
.n/.t/C : : :C a1n

.1/.t/C n.t/ ; (15.1.22)

so that the disturbance n.t/ is generated from the equation error e.t/ by the form
filter

GF.s/ D n.s/

e.s/
D 1

1C a1s C : : :C ansn
: (15.1.23)

After multiplication of (15.1.22) with n.j /.t � �/ and taking the expected value, one
obtains

ORn.j /e.�/ D an
ORn.1/n.n/.�/C : : :C a1

ORn.1/n.1/.�/C an
ORn.1/n.�/ : (15.1.24)

Now, one can write

ORn.j /e.�/ D dj

d�
ORne.�/ D dj

d�
E
˚
n.t/e.t C �/

�
: (15.1.25)
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It is now assumed that e.t/ is a Gaussian white noise with

Ree.�/ D �ı.t/ : (15.1.26)

The cross-correlation function of the form filter is then given as

Rne.�/ D gF.�/ D L�1
˚
GF.s/

�
(15.1.27)

and the elements of (15.1.21) are hence given as

ORn.j /e.0/ D lim
�!0

�
sj C1GF.s/ � sjgF.0C/ � sj �1g

.1/
F .0C/ � : : : � sg.j �1/

F .0C/�
�D 0 for j D 1; 2; : : : ; n � 2

¤ 0 for j D n � 1; n :

(15.1.28)

Hence (15.1.21) is not satisfied, and therefore, biased estimates will result. In contrast
to the method of least squares for discrete-time linear dynamic systems, one will
not obtain bias-free estimates if the error e.t/ is a Gaussian distributed white noise.
Henceforth, the method of least squares for continuous-time systems should only be
used if the signal-to-noise ratio is very favorable.

15.2 Determination of Derivatives 1

If the required derivatives of the signals are directly measurable (e.g. as for vehicle
applications), these values can be entered directly into the data matrix � and there-
fore the correlation functions in the matrix .� T� /=.N C 1/ can easily be calculated
directly. On the contrary, if the derivatives are not measurable, the derivatives have
to be determined from the sampled signals u.t/ and y.t/. For this, one basically has
a choice between numerical differentiation and state variable filtering. A short look
shall be thrown on the determination of the derivatives by means of FIR filters, but
especially if a large number of derivatives are required, the computational effort can
exceed that of the state variable filter extensively.

15.2.1 Numerical Differentiation

The numerical differentiation in combination with interpolation approaches (e.g.
splines) is usually not able to suppress noise due to disturbance signals for higher
derivatives which limits this technique to the application of second or third order
derivatives as a maximum. Often however, only first order derivatives can be deter-
mined reliably. Approaches to use the derivative of an interpolation function have
been discussed e.g. by (Söderström and Mossberg, 2000).

One can in general the following methods of determining the derivatives:

1 Based on the diploma thesis by Michael Vogt (1998)
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Fig. 15.2. State variable filter for filtering and determining the derivatives of a signal simulta-
neously

Forward Differential Quotient: OPx.k/ D x.k C 1/ � x.k/
T0

(15.2.1)

Backward Differential Quotient: OPx.k/ D x.k/ � x.k � 1/
T0

(15.2.2)

Central Differential Quotient: OPx.k/ D x.k C 1/ � x.k � 1/
2T0

: (15.2.3)

All of them have distinct advantages and disadvantages: While the forward and the
central differential quotient depend on future values, the backward differential quo-
tient introduces a delay of half a sample step.

15.2.2 State Variable Filters

The principle of state variable filters is to use a low-pass filter that dampens out the
higher frequent noise and transform it into a state-space representation, such that the
states are the derivatives of the filter output, i.e. the filtered signal. They are designed
to suppress any noise above the cut-off frequency, i.e. for f > fc.

State variable filters (SVF), see Fig. 15.2,

GF.s/ D yF.s/

y.s/
D f0

f0 C f1s C : : :C fn�1sn�1 C sn
(15.2.4)

have proven to yield good results in identification of continuous-time systems. A
state variable filter is an analog filter with a certain topology that is subsequently dis-
cretized for the realization on a digital computer. The input signal u.t/ and the output
signal y.t/must both be filtered with the same state variable filter, see Fig. 15.5. The
choice of the filter parameters fi is relatively free. For the discretization, different
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Table 15.1. Polynomials B.s/ of the normalized Butterworth filter

Order n Polynomial B.s/ of the Butterworth Filter
n D 1 s C 1

n D 2 s2 C 1:4142s C 1

n D 3 s3 C 2s2 C 2s C 1

n D 4 s4 C 2:6131s3 C 3:4142s2 C 2:6131s C 1

n D 5 s5 C 3:2361s4 C 5:2361s3 C 5:2361s2 C 3:2361s C 1

n D 6 s6 C 3:8637s5 C 7:4641s4 C 9:1416s3 C 7:4641s2 C 3:8637s C 1

approximation techniques can be employed, see also the detailed analysis by Vogt
(1998).

According to Young (1981), one can choose the filter coefficients as fi D Oai ,
which yields an adaptive low-pass filter. However, also a fixed parameterization is
possible. For linear systems, one can e.g. choose a Butterworth low-pass filter or any
other type of low-pass filter, e.g. Bessel, Chebyshev, etc. (Kammeyer and Kroschel,
2009; Hamming, 2007; Tietze et al, 2010). For non-linear processes one should resort
to other filters, such as Bessel, that do not exhibit oscillations in the time domain.

The Butterworth filter is designed such that its transfer function has a constant
amplitude in the passband as long as possible. The transfer function of the normal-
ized Butterworth filter (!c D 1) is given as

GF.s/ D KY
i

�
1C ˛is C ˇis

2
� D K

B.s/
(15.2.5)

with the coefficients being

� For order n even:
˛i D 2 cos .2i�1/	

2n

ˇi D 1

�
i D 1; : : : ;

n

2
(15.2.6)

� For order n odd:

˛1 D 1I ˛i D 2 cos .i�1/	
n

ˇ1 D 0I ˇi D 1

�
i D 2; : : : ;

nC 1

2
(15.2.7)

The coefficients of the Butterworth filter are listed in Table 15.1. for low orders of
n. The frequency response is shown in Fig. 15.3. If the filter shall be designed for an
arbitrary cut-off frequency !C , then the transfer function is given as

GF.s/ D 1Y
i

�
1C ˛i

s

!C
C ˇi

s2

!2
C

� ; (15.2.8)

where typically, also K D 1 is chosen. This transfer function can then be multiplied
out, yielding
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GF.s/ D 1

1C a1s C : : :C ansn
: (15.2.9)

This filter can now be brought to the controllable canonical form, which is given by
the state space system

d
dt
xF.t/ D




0 1 0 : : : 0

0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

� 1
an

� a1

an
� a2

an
: : : � an�1

an

�

‘

A

xF.t/C




0

0
:::

0
1

an

�

b̃

x.t/ : (15.2.10)

The output equation is negligible since the states of the state variable filter already
provide all necessary quantities. A comparison with the structure in Fig. 15.2 reveals
that
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f0 D � 1
an

f1 D � a1

an

:::

fn�1 D � an�1

an
:

…
(15.2.11)

This filter will be implemented on a digital computer and hence must be dis-
cretized. Therefore, one must derive the discrete-time state space representation
which can be obtained by

x.k C 1/ D Adx.k/C bdu.k/ (15.2.12)

y.k/ D cT
d x.k/C ddu.k/ ; (15.2.13)

see (2.2.24) and (2.2.25), where the index d shall denote the discrete-time variables.
The continuous-time system can be transformed into the discrete-time representation
by means of the the relations

x.k/ D eAT0x.k � 1/C
Z .k/T0

.k�1/T0

eA.kT0��/bu.�/d�

D eAT0x.k � 1/C
Z .k/T0

.k�1/T0

eA.�/bu.kT0 � �/d� ;
(15.2.14)

compare (2.1.27). One can see already that the resulting discrete-time implementa-
tion will have the state matrix

Ad D eAT0 D
1X

kD0

1

k

�
AT0

�k
; (15.2.15)

where the infinite sum can be approximated by a sum of low order. As an alternative,
one can employ special algorithms for the calculation of the matrix exponential (e.g.
Moler and van Loan, 2003).

The shape of u.�/ inside the integration interval .k � 1/T0 < � < kT0 is un-
known as the signal is sampled only at integer multiples t D kT0. The input signal
u.t/ shall in the following be approximated by a polynomial as

u.kT0 � �/ � p.�/ D
rX

iD0

�i

�
�

T0

�i

; (15.2.16)

see (Wolfram and Vogt, 2002). Inserting this polynomial approximation into (15.2.14),
one obtains

x.k/ � eAT0x.k � 1/C
rX

iD0

�i

Z T0

0

eA.�/b

�
�

T0

�i

d��
�i

D eAT0x.k � 1/C �

�
�0

:::

�r

�
:

(15.2.17)
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Fig. 15.4. Discrete time state variable filter with interpolator

The columns of � D .�0 �1 : : : �r /, can be determined as

�0 D A�1
�
eAT0 � I�b (15.2.18)

�i D A�1

�
eAT0b � i

T0

�i�1

�
for i D 1; : : : ; r : (15.2.19)

A way to determine the polynomial coefficients �i is to mandate that the polyno-
mial and the signal match for the last r C 1 samples (Peter, 1982), i.e.

p.lT0/
ŠD u

�
.k � l/T0

�
for l D 0; : : : ; r ; (15.2.20)

which leads to the system of equations˙
1 0 : : : 0
:::

:::
:::

1 r � 1 : : : .r � 1/r
1 r : : : rr

�

Ÿ
V

˙
�0

�1

:::

�r

�
D

˙
u.kT0/

u..k � 1/T0/
:::

u..k � r/T0/

�
: (15.2.21)

This system of equations can be solved by the inversion of Vandermonde matrix V
(e.g. Eisinberg and Fedele, 2006). With

B D � V �1 ; (15.2.22)

one can derive the structure shown in Fig. 15.4. V �1 for r D 1; 2; 3 is given in
Table 15.2.

For higher orders of r , the polynomial can show ripples. An alternative for the
determination of the coefficients of the approximation polynomial is the use of a
Taylor series expansion. For this approximation, one equates the first r derivatives of
the polynomial and the input sequence for k as

p.l/.0/ D u.l/.kT0/ for l D 0; : : : ; r : (15.2.23)

The derivatives are given as
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Table 15.2. Matrices V �1 and T for low orders of r

Order n Matrix V �1 Matrix T

r D 1

�
1 0

�1 1
� �

1 0

1 �1
�

r D 2

	
1 0 0

� 3
2 2 � 1

2
1
2 �1 1

2


 	
1 0 0

1 �1 0
1
2 �1 1

2




r D 3

�
1 0 0 0

� 11
6 3 � 3

2
1
3

1 � 5
2 2 � 1

2

� 1
6

1
2 � 1

2
1
6

� �
1 0 0 0

1 �1 0 0
1
2 �1 1

2 0
1
6 � 1

2
1
2 � 1

6

�

p.0/ D dlp.�/

d� l

ˇ̌̌
ˇ
�D0

D lŠ

T l
0

�l (15.2.24)

and

u.l/ D dlu.kT0 � �/
d� l

ˇ̌̌
ˇ
�D0

� 1

T l
0

�lu.kT0/ D 1

T l
0

lX
iD0

.�1/iu�.k � i/T0

�
;

(15.2.25)
which leads to the polynomial coefficients as

�i D
lX

kD0

.�1/i
lŠ

 
l

i

!
u..k � i/T0/ D

lX
kD0

.�1/i
i Š .l � i/Š (15.2.26)

or, in matrix form,
� D Tu.kT0/ : (15.2.27)

For the structure in Fig. 15.4, the matrix Bd is now given as

Bd D � T : (15.2.28)

The entries of T for r D 1; 2; 3 are given in Table 15.2.
Another alternative to obtain a discrete-time realization is by means of the bilin-

ear transform (Wolfram and Vogt, 2002). Here, one replaces s by

s D 2

T0

´ � 1
´C 1

or
1

s
D T0

2

´C 1

´ � 1 : (15.2.29)

The bilinear transform can now be used to transform the state equation

sx.s/ D Ax.s/C bu.s/ ; (15.2.30)

which is the Laplace transform of the continuous-time state equation into the ´-
domain, which is better suited for later discrete-time processing. The bilinear trans-
form is given as
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2

T0

´ � 1
´C 1

x.´/ D Ax.´/C bu.´/ : (15.2.31)

To bring the above equation into the form of a normal state equation, new states have
to be introduced. These new states can be chosen in two different ways. The first
choice is given as

Qx D 1

T0

�
I � T0

2
A

�
x � 1

2
bu ; (15.2.32)

which leads to

Ad D
�
I C T0

2
A

��
I � T0

2
A

��1

(15.2.33)

bd D
�
I � T0

2

��1

b (15.2.34)

Cd D T0

�
I � T0

2
A

��1

(15.2.35)

dd D T0

2

�
I � T0

2
A

��1

b : (15.2.36)

Here, Cd and dd are dense matrices.
A different choice of the state variables Qx leads to Cd being an identity matrix.

The state variables are chosen as

Qx D x � T0

2

�
I � T0

2
A

�
bu (15.2.37)

leading to
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Ad D
�
I � T0

2
A

��1�
I C T0

2
A

�
(15.2.38)

bd D T0

�
I � T0

2
A

��2

b (15.2.39)

Cd D I (15.2.40)

dd D T0

2

�
I � T0

2
A

��1

b : (15.2.41)

The squared term in bd is critical from a numerical point of view. If one does not
need all derivatives, one could leave out the corresponding rows in the calculation.
An investigation of the frequency response has shown that the bilinear transform is
also beneficial in terms of the damping in the stop-band as the bilinear transform
introduces an additional pole at T0=2.

Due to the good damping characteristics, the discretization by means of the bilin-
ear transform is in general suggested for the derivation of state variable filters. If one
however wants to use Taylor series or polynomial approximation, one should, espe-
cially for higher derivatives, choose the Taylor series approximation as it avoids the
problems associated with interpolation with polynomials (Wolfram and Vogt, 2002).

To ensure that the results of the parameter estimation match with the original
signal, the input and output must be filtered with the same filter, see Fig. 15.5. Then,
the use of the state variable filter should in general not change the transfer function
of a linear process to be estimated, however it still affects the estimation results as
the noise characteristics are altered (Ljung, 1999).

15.2.3 FIR Filters

Due to the infinitely long impulse response of the state variable filter (which is an
IIR filter), it is difficult to predict the influence of disturbances on the filtered signal.
Furthermore, one has to take stability issues into account as an IIR filter can theoret-
ically become unstable. Other aspects of the comparison of FIR and IIR filters can
be seen in Table 15.3, see also (Wolfram and Vogt, 2002).

These problems can be avoided by using FIR filters, i.e. filters with an impulse
response of finite length. In order to determine the derivatives of the filtered signal,
the appropriate derivative of the impulse response of a low-pass filter is convolved
with the signal itself. This is possible, because the time-derivative of the convolution
of an arbitrary signal u.t/ with an FIR filter with the final time TF of the impulse
response can be determined as

dy.t/
dt

D d
dt

Z t

t�TF

g.t � �/u.�/d�

D
Z t

t�TF

@

@t
g.t � �/u.�/d� C g.0/u.t/ � g.TF/u.t � TF/ :

(15.2.42)

If the impulse response vanishes outside the interval 0 < t < Tf, then the time
derivative is given as
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Table 15.3. Properties of FIR and IIR filters

IIR (Infinite Impulse Response) FIR (Finite Impulse Response)

Impulse response is of infinite duration Impulse response is of finite duration

A steady state is theoretically only
reached for k ! 1

For filter order m, the steady state is
reached after k D mC 1 sample steps

If implemented on computers with fi-
nite word length, the filter can become
unstable or limit cycles can occur

Filters cannot become unstable and
limit cycles cannot occur

Can typically only be implemented on
floating point units

Implementation is also possible on
fixed point units

No constant group delays and hence
non-linear phase

Group delay is constant for symmet-
ric impulse responses and hence linear
phase

One filter provides all derivatives Separate filter for each derivative
Typically small filter order Large filter order necessary

Py.t/ D
Z TF

0

Pg.�/u.t � �/d� ; (15.2.43)

see (Oppenheim and Schafer, 2009; Wolfram and Moseler, 2000; Wolfram and Vogt,
2002). The main problem however is the design of the FIR filter, where it might
be necessary to use high filter orders and/or fast sample rates. High filters orders
are required to have good damping characteristics. Long filter length unfortunately
go along with a large phase shift. Furthermore, for each derivative, a separate filter
must be designed, a disadvantage that can become important if higher order models
shall be identified. This usually leads to a higher computational effort compared
with the state variable filter. However, FIR filters are non-recursive and hence cannot
become unstable. Furthermore, they have a linear phase if designed appropriately. A
comparison of the magnitude of the filter transfer functions is shown in Fig. 15.6.
Here, one can see that the FIR filter shows a certain ripple in the stop-band and also
has a less distinct fall-off at the corner frequency.

As the parameter estimation of continuous-time processes using the method of
least squares in the end goes back to the discrete-time algorithms because the esti-
mation is finally implemented on a digital computer, one can analogously apply all
results obtained in part III and part VII of this book, especially the modifications and
extensions that have been provided. These include

� recursive implementations of the estimation algorithms
� time variant processes
� numerically improved methods
� determination of the model order
� choice of the input signal
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Example 15.1 (Estimation of a Continuous-Time Model of the Three-Mass Oscilla-
tor).

This technique has been applied to the Three-Mass Oscillator as well and a
continuous-time transfer function model could be obtained, see Fig. 15.7. A state
variable filter with Butterworth characteristics has been used to generate the deriva-
tives of the input and output signal. The parameters of the filter were a cut-off fre-
quency of !C D 37:9 rad=s and a filter order of n D 9. Figure 15.8 shows the
frequency response of the state variable filter that was used to filter the input and
output. ut

15.3 Consistent Parameter Estimation Methods

15.3.1 Method of Instrumental Variables

For favorable signal-to-noise ratios, the above presented least squares method has
been shown to yield good results. For larger noises, consistent parameter estima-
tion methods should be employed such as the instrumental variables method, see
Sect. 10.5.

As was already described, instrumental variables have to be found that on the
one hand are strongly correlated with the useful signals, on the other hand are little
or not at all correlated with the noise. One can use an adaptive model analogously to
the setup shown in Fig. 10.4 to reconstruct the useful signal as
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Fig. 15.7. Estimated frequency response of the Three-Mass Oscillator based on a continuous-
time model
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Fig. 15.8. Frequency response of the state variable filter for the generation of the (a) filtered
input (yF.t/) and (b) first time derivative of the filtered input ( PyF.t/)

Oyu.s/ D
OB.s/
OA.s/ u.s/ : (15.3.1)

The estimated system output in the time domain Oyu.s/ together with the input sig-
nal u.t/ and the corresponding derivatives can then be used to form the vector of
instrumental variables as

wT.t/ D ��y.n/
u .t/ : : : �y.1/

u .t/ �yu.t/ u
.m/.t/ : : : u.1/.t/ u.t/

�
; (15.3.2)

which can then be used together with the estimation equations. A big advantage is
the fact that no assumptions must be made about the noise. In conjunction with the
state variable filters used for determining the derivatives, the results can be improved
(Young, 1981, 2002).

15.3.2 Extended Kalman Filter, Maximum Likelihood Method

The Extended Kalman Filter as introduced in Chap. 21 can be used to estimate pa-
rameters of a system and can also be applied to continuous-time systems. One can
also use a combination of the Kalman filter for state generation and a parameter es-
timation method for parameter estimation (e.g. Raol et al, 2004; Ljung and Wills,
2008).

15.3.3 Correlation and Least Squares

The combination of correlation methods for the generation of a non-parametric in-
termediate model and the subsequent application of the method of least squares can
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also be adapted to work with continuous-time models. If one multiplies the differ-
ential equation in (15.1.1) with u.t � �/ and determines the expected values of all
products, then one obtains

anRuy.n/.�/C an�1Ruy.n�1/.�/C : : :C a1Ruy.1/.�/CRuy.�/

D bmRuu.m/.�/C bm�1Ruu.m�1/.�/C : : :C b1Ruu.1/.�/C b0Ruu.0/.�/ :

(15.3.3)

As

djRuy.�/

d�j
D dj

d�j
E
˚
y.t C �/u.t/

� D E
�

dj

d�j
y.t C �/u.t/

�

D E
��

dj

dtj
y.t C �/

�
u.t/

�
D Ruy.n/.�/ ;

(15.3.4)

one obtains

Ruy.n/.�/ D djRuy.�/

d�j
: (15.3.5)

With this result, (15.3.3) can now be written as a differential equation of the correla-
tion functions

an

dn

d�n
Ruy.�/C an�1

dn�1

d�n�1
Ruy.�/C : : :C a1

d
d�
Ruy.�/CRuy.�/

D bm

dm

d�m
Ruu.�/C bm�1

dm�1

d�m�1
Ruu.�/C : : :C b1

d
d�
Ruu.�/C b0Ruu.�/ :

(15.3.6)

One can now proceed as for the COR-LS method in discrete-time. One determines
the correlation functions and its derivative for different times � D 	�0 where �0 is the
sample time of the correlation function values. After introducing an equation error
setup, one can obtain the estimation equation as
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�

Ruy.�P�0/
:::

Ruy.��0/

Ruy.0/

Ruy.�0/
:::

Ruy.M�0/

˘

œ̊

D

˙

R
.1/
uy .�P�0/ : : : R

.n/
uy .�P�0/ Ruu.�P�0/ : : : R

.m/
uu .�P�0/

:::
:::

:::
:::

�R.1/
uy .��0/ : : : �R.n/

uy .��0/ Ruu.��0/ : : : R
.m/
uu .��0/

�R.1/
uy .0/ : : : �R.n/

uy .0/ Ruu.0/ : : : R
.m/
uu .0/

�R.1/
uy .�0/ : : : �R.n/

uy .�0/ Ruu.�0/ : : : R
.m/
uu .�0/

:::
:::

:::
:::

�R.1/
uy .M�0/ : : : �R.n/

uy .M�0/ Ruu.M�0/ : : : R
.m/
uu .M�0/

�

S

�

a1

:::

an

b0

:::

bm

�

�̃

C

�

e.�P�0/
:::

e.��0/

e.0/

e.�0/
:::

e.M�0/

˘

›
e

;

(15.3.7)

where as in the discrete-time case, the correlation functions are known in the time in-
terval PT0 � � � MT0. Minimizing the cost function V D eTe yields the estimates
as

O� D �
S TS

��1
S T˚ : (15.3.8)

The COR-LS method can hence be applied with the following steps:

1. The correlation functions Ruy.�/ and Ruu.�/ are determined for �P�0 � � �
M�0 either recursively or non-recursively

2. The derivatives of the correlation functions are determined by numerical meth-
ods, e.g. spline approximation

3. The parameter estimates can be determined according to (15.3.8) by any of the
methods presented for the solution of the least squares problem
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The method yields consistent estimates provided that the correlation functions
converge as was shown in Sect 9.3.2. A major advantage is the fact that one does
not have to determine the derivatives of the original signals but rather of the correla-
tion functions, where the influence of the noise has already been reduced drastically.
Also, one does not only employ correlation function values for � D 0 (as does the
method of least squares), but rather for various � . Further advantages are the easy
determination of model order and dead time because of the smaller matrices to be
operated on (data reduction).

15.3.4 Conversion of Discrete-Time Models

Many parameter estimation methods for discrete-time process models have been de-
veloped and several software packages are available for this task. Hence, an obvious
approach is to estimate the (unbiased) parameters of a model in the discrete-time
first and then determine the parameters of a continuous-time model by an appro-
priate transformation. One method shall be presented that allows to determine the
parameters of the continuous-time model

Px.t/ D Ax.t/CBu.t/ (15.3.9)
y.t/ D Cx.t/ (15.3.10)

from the parameters of the discrete-time model

x.k C 1/ D Fx.k/CGu.k/ (15.3.11)
y.k/ D Cx.k/ ; (15.3.12)

see (Sinha and Lastman, 1982). The methods vary in the assumptions that are made
on the time lapse of the input signals between the sample points.

One method is based on the integration of (15.3.9) (Hung et al, 1980) as

x.k C 1/ D x.k/CA

Z .kC1/T0

kT0

x.t/dt CB

Z .kC1/T0

kT0

u.t/dt (15.3.13)

and its approximation according to the trapezoidal rule

x.kC1/ D x.k/C 1

2
AT0

�
x.kC1/Cx.k/�C 1

2
BT0

�
u.kC1/Cu.k/� : (15.3.14)

The parametersA andB can now be determined e.g. by the method of least squares,
if the input signals as well as the state variables are known (Sinha and Lastman,
1982).

The conversion of a model from a discrete-time representation to a continuous-
time representation can require a high computational effort and can become cum-
bersome, and frequently one can only provide a solution for special cases. Hence,
other methods should be preferred if one is interested in the identification based on
continuous-time models.
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Fig. 15.9. Dynamic process model with
model parameters � and physical process
coefficients p

15.4 Estimation of Physical Parameters

For certain tasks, one is not only interested in determining the parameters � of an
input/output model of the process (e.g. a differential equation), but is rather inter-
ested in determining the physically defined parameters p of the governing physical
laws, see Fig. 15.9. These physical parameters shall be termed process coefficients to
distinguish them from the model parameters � of the input/output model. For many
typical tasks in control engineering, such as the design of fixed parameter controllers
or adaptive controllers, knowledge of the model parameters � is sufficient. However,
for the following tasks, one must also know the process coefficients p:

� Determination of not directly measurable coefficients in all fields of natural sci-
ences

� Verification of specifications of technical processes
� Fault detection and diagnosis during operation
� Quality control of production plants

The model parameters can in general be determined from the process coefficients
by means of algebraic relations as

� D f .p/ : (15.4.1)

These often non-linear relations are known from theoretical modeling, see Sect. 1.1.
The question which shall now be discussed is how one can determine the process
coefficients p from measurements of the input signal u.t/ and the (disturbed) output
signal y.t/. This typically leads to models where the error is not linear in the para-
meters, hence iterative methods must be applied, see Chap. 19. This direct way of
estimating process coefficients leads to offline solutions.

A different approach is to first estimate model parameters � and then by means
of the inverse relation

p D f �1.�/ : (15.4.2)

determine the process coefficients p. However, this gives rise to the following ques-
tions:
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� Can the process coefficients p be determined uniquely?
� Which test signals must be applied and which signals must be measured so that

the process coefficients p are identifiable?
� Can one employ a priori knowledge as e.g. a priori known process coefficients

pi or model parameters �i to improve the estimation results of � or p?

For the solution of these questions, one must combine theoretical and experi-
mental modeling techniques. The first step is to set up balance equations, constitu-
tive equations (physical or chemical equations of state), phenomenological equations
and the corresponding interconnection equations. These yield a physically motived
process model in form of a set of equations or a block diagram.

It is assumed that the process is linear and possessesM measurable signals �j .t/

and N non-measurable signals 
j .t/. For L elements the Laplace transformed pro-
cess element equations become

MX
j D1

gij�j .s/ D
NX

j D1

hij 
j .s/; i D 1; 2; : : : ; L (15.4.3)

with

gij 2 f0;˙1; ˛ij ; s
�g (15.4.4)

hij 2 f0;˙1; ˇij ; s
�g (15.4.5)

� 2 f�1; 0; 1g : (15.4.6)

The system of L equations can now be written in vector/matrix-notation as

Gq D H	 (15.4.7)

and


T D �
�1 �2 : : : �M

�
(15.4.8)

	T D �

1 
2 : : : 
N

�
; (15.4.9)

where G has the dimensions L �M and the matrixH has the dimensions L �N .
It is assumed that the individual process element equations are linearly indepen-

dent.
The parameter estimation requires a model structure, where only measurable sig-

nals turn up. In order to eliminate the non-measured signals, the system of equations
in (15.4.7) must be transformed such that the matrixH has an upper triangular form.
After applying the inverse Laplace transform, one obtains an ordinary differential
equation that governs the input/output behavior as

a�
ny

.n/.t/C : : :C a�
1y

.1/.t/C a�
0y.t/ D b�

0u.t/C b�
1u

.1/.t/C : : :C b�
mu

.m/.t/ :

(15.4.10)
In this equation, all variables are connected with a parameter. For the parameter
estimation, one however needs the form



15.4 Estimation of Physical Parameters 401

any
.n/.t/C : : :C a1y

.1/.t/C y.t/ D b0u.t/C b1u
.1/.t/C : : :C bmu

.m/.t/ :

(15.4.11)
All starred quantities a�

i and b�
i must therefore be multiplied with the factor 1=a�

0 .
In the fundamental equation (15.4.7), the process coefficients pi show up as in-

dividual values in their original form. Therefore, the elements of G andH are given
as

gij D pgij s
� ; hij D phij s

� ; � 2 .�1; 0; 1/ : (15.4.12)

After transforming into the upper triangular form, then only the last row has to be
considered to set up the input/output model. In this row, the parameters show up as

�i D
qX

�D1

ci�

lY
�D1

p
"��
�

D ci1p
"11

1 p
"12

2 : : : p
"1t
t C ci2p

"21

1 p
"22

2 : : : p
"2t
t

C : : :C ciqp
"q1

1 p
"q2

2 : : : p
"qt

t :

(15.4.13)

For this equation, it was assumed that a�
0 contains the process coefficients in a simple

product form, such that e.g.

a�
0 D

lY
�D1

p
"��
� : (15.4.14)

With

´� D
lY
�

p
"��
� ; (15.4.15)

one then obtains

�i D
qX

�D1

ci�´� ; (15.4.16)

which provides the parameters as algebraic functions of the process coefficients.
The parameters ´� are here abbreviations for all appearing products and single oc-
currences of the process coefficients p1; : : : ; pi . For the exponents, one often has
"�� D 1 or "�� D �1.

The relation between the model parameters and the process coefficients are then
given in vector/matrix notation as˙

�1

�2

:::

�r

�

—
�

D

˙
c11 : : : c1q

c21 : : : c2q

:::
:::

cr1 : : : crq

�

›
C

˙
´1

´2

:::

´q

�

—
z

: (15.4.17)

Th vector z contains the products ´� of the process coefficients as well as the process
coefficients individually and hence the dimension of z is q � l .
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In the following, it is assumed that the parameters �i have already been deter-
mined by the application of parameter estimation methods and one is now interested
in determining the process coefficients p� .

As the relation � D f .p/ is in most cases non-linear, the above questions cannot
be answered in general. Once the r model parameters �i have been determined by
any of the parameter estimation methods presented in this book, one is now interested
in determining the l process coefficients pj . These can be determined by solving the
system of non-linear equations � D f .p/ for the unknown process coefficients pj ,
i.e. determine

p D f �1.�/ (15.4.18)

For models of low order, i.e. first or second order, the above system of equations can
typically be solved with moderate effort. However, for process models with a higher
number of parameters, only some general considerations can be given.

Here, it is often helpful to rewrite the system of equations as an implicit equation˙
q1

q2

:::

qr

�

—
q

D

˙
�1

�2

:::

�r

�

—
�

�

˙
c11 : : : c1q

c21 : : : c2q

:::
:::

cr1 : : : crq

�

›
C

˙
´1

´2

:::

´q

�

—
z

D

˙
0

0
:::

0

�

•
0

; (15.4.19)

which leads to
q D � � Cz D 0 : (15.4.20)

Here,
z D g.p/ (15.4.21)

with the required process coefficients,

p D �
p1 p2 : : : pt

�T
: (15.4.22)

According to the implicit function theorem, the non-linear system of equations can
be solved for the l unknowns p in a neighborhood around the solution p0 if for the
Jacobian holds

detQp ¤ 0 ; (15.4.23)

whereQp is given as

Qp D @qT

@p
D

�

@q1

@p1

@q2

@p1

: : :
@qr

@p1
@q1

@p2

@q2

@p2

: : :
@qr

@p2
:::

:::
:::

@ql

@p1

@ql

@p2

: : :
@ql

@pr

˘

(15.4.24)
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Here, q must be continuously differentiable and furthermore r D l . From here, one
can derive conditions for the identifiability of process coefficients p.

Necessary conditions for the unambiguous determination of l process coeffi-
cients p� from r model parameters �i are that r D l and that the Jacobian (detQp)
does not vanish in a neighborhood of the solution p0 (Isermann, 1992).

The identifiability condition does only state, whether the problem can be solved
in general. A certain solution cannot be derived from this condition. One still has
to determine the unknowns by a successive solution of the system of equations for
the unknown process parameters. For this, it can be helpful to use computer algebra
programs (Schumann, 1991). For worked out examples, see also (Isermann, 1992).

A different approach is based on similarity transforms, see (17.2.9) through
(17.2.11). Here, one first estimates a black box model in state space representation
and in the next step, one determines a similarity transform to transform to system
into a structure that matches a physically derived state space model and determines
the parameters of that model (Parillo and Ljung, 2003; Xie and Ljung, 2002).

Example 15.2 (Determination of Physical Coefficients from the Model Parameters of
a Continuous-Time Model of the Three-Mass Oscillator).

From a transfer function estimate, it is impossible to deduce the parameters of
the Three-Mass Oscillator directly as the symbolic transfer function, which could be
used for a comparison of coefficients is a highly complex and non-linear function of
the physical system parameters. With full state information, it is however possible to
parameterize the full state matrix and from there determine all physical parameters.

As is shown in detail in Chap. 17, the equations of motion of the Three-Mass
Oscillator can be written as

R'1.t/ D c1

J1‘

11

�
'2.t/ � '1.t/

�C �d1

J1“

12

P'1.t/C 1

J1‘

13

MM.t/ (15.4.25)

R'2.t/ D c1

J2‘

21

�
'1.t/ � '2.t/

�C c2

J2‘

22

�
'3.t/ � '2.t/

�C �d2

J2“

23

P'2.t/ (15.4.26)

R'3.t/ D c2

J3‘

31

�
'2.t/ � '3.t/

�C �d3

J3“

32

P'3.t/ : (15.4.27)

From the model coefficient estimates O�11; : : : ; O�32, one can determine the physi-
cal parameters as follows

OJ1 D 1

O�13

D 12:2 � 10�3 kg m2 (15.4.28)

Od1 D � O�12
OJ1 D 0:0137

s Nm
rad

(15.4.29)

Oc1 D O�11
OJ1 D 2:4955

Nm
rad

(15.4.30)
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OJ2 D Oc1

O�21

D 7:8 � 10�3 kg m2 (15.4.31)

Od2 D O�23
OJ2 D 0:0017

s Nm
rad

(15.4.32)

Oc2 D O�22
OJ2 D 1:9882

Nm
rad

(15.4.33)

OJ3 D Oc2

O�31

D 13:7 � 10�3 kg m2 (15.4.34)

Od3 D O�32
OJ3 D 0:0024

s Nm
rad

: (15.4.35)

It was luck that in this case there were as many estimated model coefficients as
physical parameters. This however does not always have to be so. ut

15.5 Parameter Estimation for Partially Known Parameters

It is now assumed that some parameters ai and bi of the parameter vector

� D �
a1 a2 : : : an b0 b1 : : : bm

�T (15.5.1)

of the differential equations (15.1.1) are known a priori. These known parameters
will be denoted with a00

i and b00
i .

Then, the parameter vector � can be split up into a vector of known parameters
� 00and a vector of remaining unknown parameters � 0 as

� D
�
� 0
� 00
�
: (15.5.2)

In the corresponding system of equations, one can bring the known parameters along
with the corresponding elements of the data vector to the left side,

y.t/ � 00T .t/� 00 D  0T .t/� 0.t/C e.t/ : (15.5.3)

With the short hand notation

Qy.t/ D y.t/ � 00T .t/� 00 ; (15.5.4)

one can then write
Qy.t/ D  0T .t/� 0.t/C e.t/ (15.5.5)

and in vector form
Qy D � 0� 0 C e ; (15.5.6)

leading to
O� 0 D �

� 0T� 0��1
� 0T Qy 00 : (15.5.7)
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Hence, the parameter estimation methods can be applied to the reduced parameter
vector � 0, the reduced data matrix � 0, and the augmented output vector Qy .

The influence of individual a priori known parameters on the quality of the pa-
rameter estimates was investigated by Rentzsch (1988) with several processes of
second order, which were governed by

a2y
.2/.t/C a1y

.1/.t/C a0y.t/ D b1u
.1/.t/C b0u.t/ : (15.5.8)

The results can be summarized as follows:

� One parameter known: The parameter estimation can be improved asymptoti-
cally by fixing those parameters that would have a relatively large estimation
variance otherwise, hence especially a priori knowledge about a2 and b1 is help-
ful.

� Multiple parameters known:
1. In comparison to the case of only one known parameter as outlined above,

the asymptotic estimation quality does only improve if a2 or b1 are among
the known parameters

2. The convergence speed increases the more parameters are known

In comparison to the case of a totally unknown parameter vector, big improve-
ments can be obtained even if only a priori knowledge about one single parameter
is available. Especially, a priori knowledge of a2 can cause a big enhancement. The
a priori knowledge of further parameters is only beneficial if these parameters are
relatively well known (for the example considered above, up to 5% error).

15.6 Summary

For the parameter estimation of processes governed by continuous-time models, one
can in general use the same methods that have already been introduced for discrete-
time models. However, a problem is the calculation of the derivatives. Numerical
methods such as finite differencing have only proven helpful for low orders, in many
cases even only first order. Therefore, the state variable filter has been introduced in
this chapter as a tool to determine the derivatives of the (filtered) signal.

Its transfer function must be a low-pass filter such as e.g. the Butterworth fil-
ter. The cut-off frequency should be placed close to the highest process frequency
and the order should be two higher than the order of the process, which in turn
determines the highest derivative that is required. The sample frequency should be
approximately 20 times the corner frequency. It must be kept in mind that the filter
determines the derivatives of the filtered signal uF.t/; yF.t/ and not of the original
signal u.t/; y.t/. Especially, the presence of larger disturbances can still lead to sys-
tematic errors in the estimation. In this cases, one should use consistent parameter
estimation methods, such as the method of instrumental variables, correlation meth-
ods and iterative optimization methods. A case study comparing different approaches
is shown in (Ljung, 2009).
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An appealing alternative that also avoids the calculation of derivatives is to use a
parallel model and evaluate the output error y.t/ � Oy.t/. This however necessitates
the use of iterative optimization techniques, see Chap. 19. Subspace methods can
also be applied to continuous-time systems, see Chap. 16.

One can also use frequency domain methods to determine a transfer function
which then yields the coefficients of continuous-time differential equations, see also
Chap. 4 and Chap. 14 in this book and (Pintelon and Schoukens, 2001). Here, one
can also estimate a noise model together with the parametric transfer function (e.g.
Pintelon et al, 2000).

Finally, one has to derive the process parameters from the model coefficients.
Here, one typically has to solve a system of non-linear equations, for which some
guidelines and necessary conditions for the solution have been stated in this chapter.
As general results, one can conclude that much more process parameters can be
identified from the dynamic behavior than from the static behavior. Furthermore,
it also depends on the choice and availability of certain inputs and outputs of the
process, whether process parameters can be identified from dynamic measurements.

Problems

15.1. Continuous-Time Models I
What can be reasons for the interest in working with a continuous-time model?

15.2. Continuous-Time Models II
Which methods allow to identify continuous-time models directly?

15.3. Derivative Information
Describe ways to provide derivative information to the parameter estimation methods
described in this chapter and show this for a second order differential equation.

15.4. First Order System
Determine the gain and time constant for the thermometer governed in Example 2.1
by first estimating the parameters of a discrete-time first order model and then con-
verting this model to a continuous-time model.

15.5. First Order System
Determine the gain and time constant for the thermometer governed in Example 2.1
by using a continuous-time first order model, matching the time response directly.
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16

Subspace Methods

Subspace methods can identify state space models if only input and output measure-
ments are available. Since no measurements of the states are required and employed,
it is not possible to come up with a unique structure, hence the model is only known
up to a similarity transform T . Interesting features of the state space identification
are the fact that subspace identification allows to determine the suitable model oder
as part of the identification process and furthermore, the method is from the very
beginning formulated to cover MIMO systems as well. A short history of subspace
methods can e.g. be found in the editorial note by Viberg and Stoica (1996).

After some preliminaries, the subspace identification will be introduced. Two dif-
ferent approaches will be presented. First, the case of a purely deterministic system
will be discussed, where there is no noise acting on the system. This allows to easily
convey the notions and ideas behind subspace identification. Then, the more practical
case of measurements which are more or less affected by noise will be discussed.

16.1 Preliminaries

In order to derive the subspace identification approach, first the discrete-time state
space equations shall be recalled from Chap. 2. The recursive solutions (2.2.32) and
(2.2.33) are restated here for convenience,

x.k/ D Akx.0/C
k�1X
iD0

Ak�i�1Bu.i/ (16.1.1)

y.k/ D Cx.k/CDu.k/ : (16.1.2)

Based on these equations, it is possible to derive equations for the input/output be-
havior of the process. These equations can then be used to derive an identification
technique that provides state space models based on measurements of the input and
output only.

For a stream of k samples of the input sequence u, the corresponding output y
can be written as

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_16, © Springer-Verlag Berlin Heidelberg 2011 
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y.0/

y.1/

y.2/
:::

y.k � 1/

�

D




C

CA

CA2

:::

CAk�1

�

š
QBk

x.0/

C




D 0 0 : : : 0

CB D 0 : : : 0

CAB CB D : : : 0
:::

:::
::: 0

CAk�2B CAk�3B CAk�4B : : : D

�

•

Tk




u.0/

u.1/

u.2/
:::

u.k � 1/

�

:

(16.1.3)

The matrices D, CB, CAB, up to CAk�2B are called the Markov parameters
(Juang, 1994; Juang and Phan, 2006).

The above equations are also valid for a shift in time of d samples, hence˙
y.d/

y.d C 1/
:::

y.d C k � 1/

�
D QBkx.d/C Tk

˙
u.d/

u.d C 1/
:::

u.d C k � 1/

�
: (16.1.4)

In the above equations, the matrixQBk denotes the extended observability matrix

QBk D




C

CA

CA2

:::

CAk�1

�

: (16.1.5)

QBk is assumed to have full rank, which is tantamount to the assumption that the
system is observable. QBk is called extended observability matrix, because k > n.
Also, the reversed extended controllability matrix QSk is defined as

QSk D �
Ak�1B Ak�2B : : : AB B

�
: (16.1.6)

This matrix is also assumed to be of full rank, which means that the system is as-
sumed to be controllable. Finally, the matrix Tk is given as
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Tk D




D 0 0 : : : 0

CB D 0 : : : 0

CAB CB D : : : 0
:::

:::
:::

:::

CAk�2B CAk�3B CAk�4B : : : D

�

(16.1.7)

and contains the so-called Markov parameters of the system, see Chap. 17.
In the interest of a compact notation, the input u.k/ and output y.k/ are now

both grouped as

U D
�
U�
UC

�
D
�
U0jk�1

Ukj2k�1

�
D

˙

u0 u1 u2 : : : uN �1

u1 u2 u3 : : : uN

:::
:::

:::
:::

uk�1 uk ukC1 : : : ukCN �2

uk ukC1 ukC2 : : : ukCN �1

ukC1 ukC2 ukC3 : : : ukCN

:::
:::

:::
:::

u2k�1 u2k u2kC1 : : : u2kCN �2

�

;

(16.1.8)
for the input and

Y D
�
Y�
YC

�
D
�
Y0jk�1

Ykj2k�1

�
(16.1.9)

for the output, where the subscript “�” denotes the past values and the subscript “C”
the future values. Matrices with such a special structure are termed Hankel matrices,
they have constant values along the counter (block) diagonals (Golub and van Loan,
1996).

The above relations and definitions can now be used to relate the past and future
values of the input u and output y as

Y� D QBkX� C TkU� (16.1.10)
YC D QBkXC C TkUC ; (16.1.11)

where X� denotes the past state matrix as

X� D �
x.0/ x.1/ : : : x.k � 1/ � : (16.1.12)

and XC is analogously defined as the future state matrix,

XC D �
x.k/ x.k C 1/ : : : x.2k/

�
: (16.1.13)

The state matrices XC and X� are related as

XC D AkX� CQSkU� : (16.1.14)

The following assumptions have to be made
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� rankXk D n ) The system is excited sufficiently and more samples k than the
state matrix dimension n have been recorded

� rankU D 2kn; with k > n ) The system is persistently excited of order 2k
� spanXk \ spanUC D ; ) The row vectors ofXk and UC are linearly indepen-

dent, hence the system must be operated in open loop

The major drawback is that the method by itself is not suitable for closed loop system
identification, where the feedback causes a correlation between the input and the
output. Similarly to what is presented in Chap. 13, there are different approaches. The
first approach is to neglect the effect of the feedback loop and hope that the resulting
error due to a possible correlation between the input and the output is acceptable.
The second approach is to identify the closed-loop dynamics and then determine the
open loop dynamics by considering the controller transfer function. Finally, one can
once again employ joint input-output techniques (Katayama and Tanaka, 2007).

There are also modifications to the subspace identification that allow operation
in closed loop. One idea is presented by Ljung and McKelvey (1996) and is based
on using a high-dimensional intermediate ARX model. Other work is presented in
(Verhaegen, 1993; Chou and Verhaegen, 1999; van Overshee and de Moor, 1997; Lin
et al, 2005; Jansson, 2005). The consistency of subspace identification algorithms for
closed-loop system identification is treated by Chiuso and Picci (2005).

From (16.1.10), one can determine the states X� as

X� D QBk
�Y� �QBk

�TkU� : (16.1.15)

With (16.1.14), one obtains

XC D �
QSk �AkQBk

�Tk AkQBk
�
�

	

L�

�
U�
Y�

�
–
W�

; (16.1.16)

where the past (and future) inputs and outputs are grouped as

W� D
�
U�
Y�

�
: (16.1.17)

From (16.1.11)

YC D QBkXC C TkUC D QBkL�W� C TkUC ; (16.1.18)

one can already determine the number of states of the system. The state matrix X
has rank n, since it has the dimension n � k with k � n and the rank of any m � n
matrix A is at most the minimum of m and n, i.e. rankA � min.m; n/.

Unfortunately, XC is not known. Instead, one only knows U and Y . If the term
TkUC could be eliminated from YC, then an analysis of the rank of YC would di-
rectly provide the rank of X , since the product of that above m � n matrix A and
an l � m matrix C satisfies rankCA D rankA, provided that C has rank m. This
can be applied to the problem at hand, The matrix QBk has full rank as the system
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was assumed to be observable. Hence, the remainder of YC without the effect of the
input matrix UC will also have rank n.

The question now is how one can eliminate the influence of UC on YC. This can
be done by a so-called subspace based approach, which will be presented after a
short introduction to subspaces in general.

16.2 Subspace

Before the identification method is further developed, the notion of the subspace of
a matrix along with the projection into the subspace of a matrix shall be introduced.
Any real valued matrix A of dimension m � n can be written as

A D

˙
r1

r2

:::

rm

�
D �

c1 c2 : : : cn

�
(16.2.1)

with the row vectors rk 2 R1�n or column vectors ck 2 Rm�1. Then, the row
space of the matrix is spanned by the row vectors rk , i.e. the space contains all
points that can be represented as a linear combination of the row vectors. The column
space is correspondingly spanned by the column vectors ck . Both of these spaces are
subspaces of the matrix A.

Now, the orthogonal projection into the subspace of a matrix is introduced. For
the projection of the vector f into the row space of the matrix A, one thus wants to
express the vector f by a linear combination of the row vectors rk of the matrix A,
i.e.

Qf D
mX

iD1

giri D gA ; (16.2.2)

where the projection was denoted as Qf . This projection is given as

f =A D gA D fAT�AAT��1
A (16.2.3)

The extension from a vector f to a matrix F is straightforward.
The oblique projection is a projection, where the vector f is first projected onto

the joint space of A and B and only the part laying in the subspace of A is re-
tained,which formally means that the vector f is projected along the row space of
B into the row space of A. This operation is written as

f =BA D gA D f
�
AT BT

��AAT ABT

BAT BBT

���
A

B

�

D f
�
AT BT

��AAT ABT

BAT BBT

���
A

0

�
;

(16.2.4)
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where the zero matrix 0 has the dimensions ofB andB means that this term is taken
out. This is tantamount to

f =BA D gA D f
�
AT BT

���AAT ABT

BAT BBT

��
�

Retain first m columns

A ; (16.2.5)

where A is a m � n matrix. Once again, the extension from the vector to a matrix is
straightforward.

16.3 Subspace Identification

Provided that inputs and outputs have been grouped as in (16.1.8) and (16.1.9), one
can proceed in the (almost) noise free case as follows and calculates

YC=UC

�
U�
Y�

�
D QBkL�

�
U�
Y�

�
D QBkXC D P : (16.3.1)

This is the basic approach to the N4SID (Numerical algorithms for Subspace State
Space IDentification) (van Overshee and de Moor, 1994).

This oblique projection can also be calculated using a QR decomposition. With
the notation 	

UC
W�
YC



D
	
R11 0 0

R21 R22 0

R31 R32 R33


	
QT

1

QT
2

QT
3



; (16.3.2)

the solution is given as

P D YC=UC

�
U�
Y�

�
D R32R

�
22W� : (16.3.3)

This is the basic idea of the MOESP (Multi-variable Output Error State sPace) al-
gorithm (Verhaegen, 1994).

The matrix P contains all information about the extended observability matrix
QBk as well as the state matrix XC. Furthermore, one can determine the number of
states n from P , because P has the same rank as the state matrix XC. To unveil all
of this information, a singular value decomposition of P is carried out, yielding

P D U˙V T D �
U1 U2

��˙1 0

0 ˙2

��
V T

1

V T
2

�
with ˙1i i 	 ˙2jj for all i; j :

(16.3.4)
˙1 and ˙2 are diagonal matrices and the entries on the diagonal of ˙1 are much
larger than those of ˙2, which, in the noise free case, should be zero, i.e. ˙2 D 0

and in the noisy case will deviate more or less from zero. The dimension of the n�n
matrix ˙1 determines the number of states xi of the system.

To divide the eigenvalues �i into “larger” and “smaller” ones, the values of �i

can be sorted in descending value and then a threshold can be selected by the user.
Once the threshold is determined, the number of states of the system is fixed.



16.3 Subspace Identification 415

Next, the extended observability matrix QBk and the state matrix XC can be
extracted from the measured data. Up to a similarity transform T , the extended ob-
servability matrix and the state matrix are given as

QBn D U1˙
1=2
1 T (16.3.5)

XC D T �1˙
1=2
1 V T

1 : (16.3.6)

The existence of the similarity transform T can easily be explained because from sole
measurement of the input u.k/ and output y.k/, one does only obtain information
about the number of states n, but not about how the states relate to the inputs and
outputs.

There are now several ways on howQBn andXC can be related to the matricesA,
B, C , andD of the state space model. Two ways shall be presented in the following,
making however no claim on completeness.

Looking at the structure ofQBk with

QBk D




C

CA

CA2

:::

CAk�1

�

; (16.3.7)

one notes the following: The first p rows QBk provide directly the matrix C . Fur-
thermore,

QBk
D QBkA withQBk

D




C

CA

CA2

:::

CAk�1

�

andQBk D




C

CA

CA2

:::

CAk�1

�

;

(16.3.8)
where the first r rows have been eliminated by the notation C respectively last r
rows have been eliminated by CAk�1 . This allows to determine the matrix A as

A D QB
�

kQBk
: (16.3.9)

The matricesB andD can then be determined by the following approach: In addition
to the projection onto the column space, the projection onto the orthogonal column
space is defined asQBk

? D I �QBk.QBk
TQBk/

�1QBk
T. This allows to derive

QBk
?Y TC D QBk

?Tk D QBk
?
�
I 0

0 QBk

�
; (16.3.10)

which allows to determine the matrices B andD by the method of least squares.
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An alternative solution is based on the state equations (16.1.1) and (16.1.2). For
one sample step, the state equation and output equation are given as

XC D AX CBU (16.3.11)
Y D CX CDU ; (16.3.12)

with

U D �
uk ukC1 ukC2 : : : ukCN �1

�
(16.3.13)

Y D �
yk ykC1 ykC2 : : : ykCN �1

�
(16.3.14)

X D �
xk xkC1 xkC2 : : : xkCN �1

�
(16.3.15)

XC D �
xkC1 xkC2 xkC3 : : : xkCN

�
: (16.3.16)

The only unknown are the states XC at time step k C 1. Based on

YkC1jkCN D QB;N�1X
C � TN �1UkC1jkCN ; (16.3.17)

these can be determined as

XC D QB;N�1
�YkC1jkCN �QB;N�1

�TN �1UkC1jkCN : (16.3.18)

Now that all entries are known, the system of equations
�
XC
Y

�
D
�
A B

C D

��
X

U

�
(16.3.19)

can be solved by the method of least squares and all parameter matrices of the state
space model be determined.

In the case of excessive noise, an augmented state space model with noise should
be chosen as the underlying model structure, i.e.

x.k C 1/ D Ax.k/CBu.k/Cw.k/ (16.3.20)
y.k/ D Cx.k/CDu.k/C v.k/ (16.3.21)

with the noise having the statistical properties

E
��
w.k/

v.k/

��
wT.k/ vT.k/

�� D
�
Q S

S T R

�
ı.k/ : (16.3.22)

The first algorithm is easy to understand but biased. First, one uses the oblique
projection to determine

Pk D YC=UC
W� (16.3.23)

PkC1 D Y �C =U�

C

W C� ; (16.3.24)

where the superscript “�” and “C” denote the matrices where the boundary has
been moved by one row in the respective direction to lengthen respectively shorten
the matrix. Then, the singular value decomposition
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Pk D U˙V T (16.3.25)

is used to determine

QBn D U1˙
1=2
1 T (16.3.26)

QB;N�1 D QBn (16.3.27)

and from there determine the state sequences as

Xn D QBn
�Pn (16.3.28)

XnC1 D QB;N�1
�PnC1 : (16.3.29)

Next, one can determine the parameters of the state space model by first solving the
equation

�
X.nC 1/

Y

�
D
�
A B

C D

��
X.n/

U

�
C
�
%w
%v

�
; (16.3.30)

where the parameters of the noise model can be determined from the residuals % as
�
Q S

S T R

�
D E

��
%w
%v

��
%T

w %
T
v

��
(16.3.31)

with the expected value being determined as the time average for the number of sam-
ples going to infinity. This algorithm as presented by (van Overshee and de Moor,
1994) is unfortunately biased in most applications. It is only unbiased if the mea-
surement time goes to infinity, the system is purely deterministic (i.e. noise-free) or
the input u is white noise. This can in most cases not be ensured.

Other algorithms which are less sensitive to noise are also presented by van Over-
shee and de Moor (1996b). One of them shall be outlined in the following: If the
future outputs are projected onto the past inputs and outputs as well as the future
inputs, one obtains

Zk D YC=
�
W�
UC

�
D QBk OXk C TkUC : (16.3.32)

The same is true for the next sample step, hence

ZkC1 D Y �C =
�
W C�
U�C

�
D QB.k�1/

OXkC1 C Tk�1U
�C : (16.3.33)

The estimated states could e.g. be provided by an observer and should only resemble
the dynamics of the deterministic part, i.e. should obey the differential equation

OXkC1 D A OXk CBUk C %w (16.3.34)
OYk D C OXk CDUk C %v : (16.3.35)

From (16.3.32) and (16.3.33), one obtains
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OXk D QBk
�.Zk � TkUC/ (16.3.36)

OXkC1 D QB.k�1/
�.ZkC1 � Tk�1U

�C / : (16.3.37)

With (16.3.34) and (16.3.35), one obtains�
QB.k�1/

�ZkC1

Y

�
D
�
A

C

�
QBk

�Zk

C
��
B QB.k�1/

�Tk�1

� �AQBk
�Tk�

D 0
� � CQBk

�Tk

�
“

K

U C
�
%w
%v

�
:

(16.3.38)

This equation can be solved by the method of least squares for A, C , and K , where
the noise %w and %v is first seen as a residual and not identified at the present time.
From knowledge of K , one can then determine B and D. In the last step, one can
determine the residuals %w and %v and from there, the respective noise covariances.

16.4 Identification from Impulse Response

Especially in modal analysis of mechanical systems, one can often measure the im-
pulse response of systems. Here, for example, a system is excited with a hammer
and then the resulting accelerations at different parts of the structure are measured.
The Ho-Kalman method (Ho and Kalman, 1966) allows to directly work with such
measurements of the impulse response, see also (Juang, 1994).

The impulse response of a MIMO system in state space representation is given
as

Gk D
�
D for k D 0

CAk�1B for k D 1; 2; : : :
: (16.4.1)

The recorded impulse response can now be used to determine the model parameters
of a state space model. Obviously, the matrixD can directly be determined as

D D G0 : (16.4.2)

The parameters A, B, and C , can now be determined based on a Hankel matrix
representation. The Hankel matrix H is in this case defined as

Hk;l D




G1 G2 G3 : : : Gl

G2 G3 G4 : : : GlC1

G3 G4 G5 : : : GlC2

:::
:::

:::
:::

Gk GkC1 GkC2 : : : GkClC1

�

(16.4.3)

It can be shown that the Hankel matrix can be written as the product of controllability
and observability matrix, i.e.
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Hk;l D QBkQSl : (16.4.4)

The Hankel matrix can now be decomposed by means of a singular value decompo-
sition as

Hk;l D U˙V T D �
U1 U2

��˙1 0

0 ˙2

��
V T

1

V T
2

�
with ˙2 D 0 : (16.4.5)

The singular value decomposition yields the observability and controllability matrix
up to a similarity transform T as

QB D U1˙
1=2
1 T (16.4.6)

QS D T �1˙
1=2
1 V T

1 : (16.4.7)

From there, one can determine the wanted matrices as

A D QB
�

k
QBk (16.4.8)

B D QS.1 W n; 1 W m/ (16.4.9)
C D QB.1 W p; 1 W n/ ; (16.4.10)

where the matricesB andC are cut out of the observability and controllability matrix
respectively.

16.5 Some Modifications to the Original Formulations

Many modifications have been introduced to original formulation, allowing e.g. to
solve the subspace identification problem recursively (Houtzager et al, 2009). Here,
the large number of parameters can still object a real-time application of the algo-
rithms. Massiono and Verhaegen (2008) show a method for large-scale systems.

The subspace identification can also be used for frequency domain identification
(van Overshee and de Moor, 1996a). Here, the idea is that in the frequency domain
the state space model is given as

sx.s/ D Ax.s/CBIm (16.5.1)
g.s/ D Cx.s/CDIm : (16.5.2)

Since the input u.s/ in the frequency domain is chosen as the unit matrix Im of ap-
propriate dimensions, the output y.s/ represents the impulse response of the system.
Then, the data matrices are set up as

G D

˙
g.i!1/ g.i!2/ : : : g.i!N /

.i!1/g.i!1/ .i!2/g.i!2/ : : : .i!N /g.i!N /
:::

:::
:::

.i!1/
2k�1g.i!1/ .i!2/

2k�1g.i!2/ : : : .i!N /
2k�1g.i!N /

�
; (16.5.3)
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and

I D

˙
Im Im : : : Im

.i!1/Im .i!2/Im : : : .i!N /Im

:::
:::

:::

.i!1/
2k�1Im .i!2/

2k�1Im : : : .i!N /
2k�1Im

�
; (16.5.4)

as well as
X D �

x.i!1/ x.i!2/ : : : x.i!N /
�
: (16.5.5)

With these matrices, one can then use the classical approach as presented above, i.e.
use the SVD of

H=I? D U˙V T D�U1 U2

��˙1 0

0 ˙2

��
V T

1

V T
2

�
with ˙1i i 	 ˙2jj for all i; j

(16.5.6)
and proceed as above. As the matrices might be badly conditioned, an alternative
solution is also shown in (van Overshee and de Moor, 1996a). Asymptotic properties
of the subspace estimation method have been discussed e.g. in (Bauer, 2005).

Example 16.1 (Subspace Identification of the Three-Mass Oscillator).
In this example, the N4SID algorithm is applied to identify a model of the Three-

Mass Oscillator.
The process has been excited with a PRBS signal (see Sect. 6.3). The process in-

put is the torque of the motorMM acting on the first mass. The output is the rotational
speed of the third mass, !3 D P'3, as shown in Fig. 16.1. An important issue in the
estimation of discrete-time models is the sample rate. The data for the Three-Mass
Oscillator have been sampled with a sample time of T0 D 0:003 s. This sample rate
was too high to obtain reasonable results, thus the data have been downsampled by a
factor of N D 6, leading to T0 D 18ms.

In order to judge the quality of the estimated model, the frequency response of
the discrete-time model has been graphed against the frequency response determined
by direct measurement with the orthogonal correlation (see Sect. 5.5.2). This com-
parison in Fig. 16.2 demonstrates the good fidelity of the estimated model. ut

16.6 Application to Continuous Time Systems

The above-described approach can in general also be applied to continuous time
systems, see (Rao and Unbehauen, 2006). One can use the equation

Yi D T1;iX C T2;iUi (16.6.1)

as a basis with
X D �

x.t1/ x.t2/ : : : x.tN /
�

(16.6.2)

and
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Fig. 16.1. Input and output signals for the parameter estimation of a discrete-time model of
the Three-Mass Oscillator based on N4SID

Ui D

˙
u.t1/ : : : u.tN /

Pu.t1/ : : : Pu.tN /
:::

:::

u.r�1/.t1/ : : : u
.r�1/.tN /

�
(16.6.3)

as well as

Yi D

˙
y.t1/ : : : y.tN /

Py.t1/ : : : Py.tN /
:::

:::

y.i�1/.t1/ : : : y
.i�1/.tN /

�
: (16.6.4)

Here, one can already see the problematic point of this approach, which is to obtain
the derivative of the appropriate order. The extended observability matrix is then
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formed as

QB D

˙
C

CA
:::

CAi�1

�
(16.6.5)

and the extended controllability matrix as

QS D

˙
D 0 : : : 0

CB D : : : 0
:::

:::
:::

CAi�2B CAi�3B : : : D

�
: (16.6.6)

With these matrices, one could now employ the subspace based approach as outlined
above.

16.7 Summary

In this chapter, subspace based methods, so-called subspace methods, have been pre-
sented. They allow to identify not only single, but also multiple input/output (MIMO)
systems, see Chap. 17. Their biggest advantage is that no a priori assumptions must
be made and the model order is determined as part of the identification process.
Furthermore, a state space model can be identified without the need to know the ini-
tial conditions of the states and without the need to know the relation between the
states and the input/output behavior of the system. This comes at the expense that
the states and the matrices of the state space model are only known up to a similarity
transform T . A priori knowledge is hard to introduce into the model apart from an
appropriate, but difficult to realize choice of T . The method is not directly suitable
for non-linear models and furthermore, in the fundamental formulation, the system
must be operated in open loop. What speaks in favor of the subspace methods is that
a solution is provided without iterations, similar to the direct method of least squares.
It is suggested to choose k two or three times larger than the model order n. Some
first investigation of user choices in subspace identification is presented in (Ljung,
2009).

Problems

16.1. Subspace Identification 1
Why is the state space model that is identified by subspace methods only known up
to a similarity transform T ?

16.2. Subspace Identification 2
Does the original subspace identification algorithm as introduced in this chapter work
in closed loop? Why or why not?
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IDENTIFICATION OF MULTI-VARIABLE SYSTEMS



17

Parameter Estimation for MIMO Systems

The choice of an appropriate model structure plays an important role in the identifica-
tion of MIMO systems as it determines the number of parameters, the convergence
and the computational effort. Hence, in this chapter, different model structures for
MIMO systems will be presented.

Due to the large number of model structures and identification methods, there ex-
ists a huge variety of methods, which cannot be treated in full in this chapter. Rather,
this chapter will concentrate on a few structures that have proven well in the identi-
fication of MIMO systems. The P-canonical and a simplified P-canonical structure
will be introduced as structures which are well suited if input/output models shall
be identified. Then, the state space representation of MIMO systems is introduced in
various forms. In particular, the observable and the controllable canonical form are
introduced. Furthermore, it is shown how these state space representations can be
transformed into input-output models. Also, the representation by impulse responses
and the associated Markov parameters are presented.

Many methods that have already been introduced for the identification of SISO
systems can as well be used for the identification of MIMO systems. A first (yet
very slow) approach is to excite one input after the other and identify each input-
output dynamics separately as a SISO model. However, much time can be saved, if all
inputs are excited in parallel. Furthermore, this will yield coherent models. The input
signals must exhibit certain properties to be suitable for the identification methods
to be presented. To account for this, a method is presented that allows to generate
orthogonal test signals from a PRBS signal. Then, identification methods that can be
applied to MIMO system identification will be presented, such as correlation analysis
and parameter estimation based on the method of least squares.

17.1 Transfer Function Models

In the following, a linear process with p inputs uj and r outputs yi will be con-
sidered. If one describes each output yi as a sum of the contributions of the partial

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_17, © Springer-Verlag Berlin Heidelberg 2011 
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G11

G21

G12

G22

u1 y1

u2 y2

Fig. 17.1. MIMO process with p D 2

inputs and r D 2 outputs in transfer
function representation in the P-canonical
form

transfer functionsGij driven by the inputs uj , then one obtains the generalized trans-
fer function matrix model˙

y1

y2

:::

yr

�

—
y.´/

D

˙
G11 G12 : : : G1p

G21 G22 : : : G2p

:::
:::

:::

Gr1 Gr2 : : : Grp

�

�
G.´/

˙
u1

u2

:::

up

�

—
u.´/

: (17.1.1)

For the same number of inputs and outputs r D p, G will be a square matrix.
Figure 17.1 shows the corresponding P-canonical structure for r D p D 2. Other
canonical forms, such as e.g. the V-canonical structure can be transformed to a P-
canonical structure (Schwarz, 1967, 1971; Isermann, 1991).

If one assumes individual transfer functions for the entries Gij of the transfer
function matrix, then a P-canonical structure will result directly, regardless of the
true system structure. In many cases, the individual transfer functions Gij contain
common parts, so that the transfer function matrix G contains too many parameters.
Since (17.1.1) furthermore does not allow to formulate an equation error that is linear
in the parameters, this very general transfer function matrix representation is not well
suited for parameter estimation. For the determination of non-parametric models, it
can however be used as a model structure.

A simplified structure, see Fig. 17.2, can be obtained if the transfer functions
contributing to one output

yi D
pX

j D1

Gijuj D
pX

j D1

Bij

Aij

uj (17.1.2)

have a common denominator polynomial Aij D Ai , such that

yi D 1

Ai

pX
j D1

Bijuj : (17.1.3)
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Fig. 17.2. MIMO process with p D 2 inputs and r D 2 outputs in transfer function represen-
tation in the simplified P-canonical form or matrix polynomial form

In this case, the simplified P-canonical transfer function model is given as˙
A1 0 : : : 0

0 A2 0
:::

: : :
:::

0 0 Ar

�

œ
A.´�1/

˙
y1

y2

:::

yr

�

—
y.´/

D

˙
B11 B12 : : : B1p

B21 B22 : : : B2p

:::
:::

:::

Br1 Br2 : : : Brp

�

�
B.´�1/

˙
u1

u2

:::

up

�

—
u.´/

(17.1.4)

or
y.´/ D A�1.´�1/B.´�1/u.´/ ; (17.1.5)

such that
G .´/ D A�1.´�1/B.´�1/ : (17.1.6)

If the output y.k/ is affected by statistically independent noises,

n.´/ D G�.´/
.´/ (17.1.7)

with

.´/T D �

	1.´/ 	2.´/ : : : 	r .´/
�
; (17.1.8)

then a transfer function matrix model follows

y.´/ D G .´/u.´/CG�.´/
.´/ : (17.1.9)

17.1.1 Matrix Polynomial Representation

An alternative to the transfer function representation is the matrix polynomial model

A.´�1/y.´/ D B.´�1/u.´/ (17.1.10)
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with the matrix polynomials

A.´�1/ D A0 CA1´
�1 C : : :CAm´

�m (17.1.11)

B.´�1/ D B0 CB1´
�1 C : : :CBm´

�m : (17.1.12)

IfA.´�1/ is a diagonal matrix polynomial, then (17.1.4) results and hence the system
is in simplified P-canonical structure. One can also include the influence of distur-
bances as

A.´�1/y.´/ D B.´�1/u.´/CD.´�1/
.´/ : (17.1.13)

17.2 State Space Models

In the following, different models in state space form will be presented. While the
general state space form was already introduced and Sects. 2.1.2 as well as 2.2.1, and
will only shortly be touched upon, the main focus will be on different structures for
the parameter matrices and vectors of the state space models.

17.2.1 State Space Form

It is assumed that a linear time-invariant MIMO system can be determined by the
discrete-time generalized state space representation

x.k C 1/ D Ax.k/CBu.k/ (17.2.1)
y.k/ D Cx.k/ (17.2.2)

with
x.k/ State Vector dimx D m � 1
u.k/ Input Vector dimu D p � 1
y.k/ Output Vector dimy D r � 1
A State Matrix dimA D m �m
B Input Matrix dimB D m � p
C Output Matrix dimC D r �m :

Here, the vectorial quantities are given as deviations from the DC values, i.e.

u.k/ D U .k/ � U00 and y.k/ D Y .k/ � Y00 : (17.2.3)

Such a model can for example result from a theoretical continuous-time model that
was then discretized as e.g. described in Sect. 2.2.1. The structure of the state space
representation depends on the system and the laws that describe its dynamics.

As was stated in Sect. 2.2.1, a system has the minimal realizable form if it is both
controllable and observable. A system is controllable if the controllability matrixQS
with

QS D �
B AB : : : Am�1B

�
(17.2.4)
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has full rank (i.e. rank m). Similarly, a system is observable if the observability ma-
trixQB defined as

QB D

˙
C

CA
:::

Cm�1A

�
(17.2.5)

has full rank (i.e. rank m).
In state space representation, the model contains a maximum of m2 C mp C

mr parameters. If the system furthermore has a direct feedthrough, the maximum
number of parameters increases to m2 Cmp Cmr C pr . For the description of the
input/output behavior, one however typically needs much less parameters, which will
be shown in the following.

By a linear transformation T ,

xt D Tx ; (17.2.6)

where T is a non-singular transform matrix, it follows that

xt.k C 1/ D Atxt.k/CBtu.k/ (17.2.7)
y.k/ D Ctxt.k/ (17.2.8)

with

At D TAT �1 (17.2.9)
BT D TB (17.2.10)

Ct D CT �1 : (17.2.11)

The transfer function matrix of the state space model is

G .´/ D C
�
´I �A��1

B (17.2.12)

and for the transformed system

Gt.´/ D Ct
�
sI �At

��1
Bt D C

�
´I �A��1

B D G .´/ ; (17.2.13)

as one can proof by inserting the transform relations that have just been introduced.
The choice of the transformation matrix hence has no influence on the input-

output behavior. Therefore, there is no unambiguous realizationA;B;C for a certain
input-output behavior. One can now choose T such that as many elements of A are
fixed to 0 or 1 as possible. This leads to special canonical forms. Two of them shall
shortly be presented in the following.

Observable Canonical Form

The observable canonical form is characterized by a special form of the matrices A
and C . For the SISO case, one can obtain this canonical form by the transformation
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T D QB. In the MIMO case, one can formulate a similar transformation. First, the
output matrix is divided into row vectors as

C D

˙
cT

1

cT
2
:::

cT
r

�
: (17.2.14)

The transformation matrix is then constructed as

T 0 D

cT
1

cT
1A
:::

cT
1A

m1�1

…
m1

:::

cT
r

cT
rA
:::

cT
rA

mr �1

…
mr

: (17.2.15)

This matrix must containm linearly independent row vectors, since T 0 must be non-
singular with the rank m. Hence, one should start with the first output and places
cT

1 ; c
T
1A; : : : in the matrix until the first linearly dependent vector cT

1A
m1 occurs.

Then one does the same with the second output, etc. One can see that

rX
iD1

mi D m : (17.2.16)

The observable canonical form is then given as

x0.k C 1/ D A0x0.k/CB 0u.k/ (17.2.17)
y 0.k/ D C 0x0.k/ (17.2.18)

with
x0 D T 0x (17.2.19)

and

A0 D

˙
A0

11 0 : : : 0

A0
21 A

0
22 : : : 0

:::
:::

:::

A0
r1 A

0
r2 : : : A

0
rr

�
; (17.2.20)

where
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A0
i i D




0 1 0 : : :

0 0 1 : : :
:::
:::
: : :

0 0 0 : : : 1

a0T
i i

�

; A0
ij D




0 0 0 : : :

0 0 0 : : :
:::
:::
: : :

0 0 0 : : : 0

a0T
ij

�

i D 1; 2; : : : ; r; j D 1; 2; : : : ; r

a0T
ij D �

a0
ij;mj

; : : : ; a0
ij;1

�
; j D 1; : : : ; i

(17.2.21)

and the output matrix as

c0 D

ˇ

m1>0‚ …„ ƒ
1 0 : : : 0

0 0 : : : 0
:::
:::

:::

0 0 0

m2>0‚ …„ ƒ
1 0 : : : 0

0 0 : : : 0
:::
:::

:::

0 0 0

� � �

mp>0‚ …„ ƒ
1 0 : : : 0

0 0 : : : 0
:::
:::

:::

0 0 0

c0T
mC1
:::

c0T
r

�
mi D 0

�‡

r (17.2.22)

with

c0T
i D �

a0T
i1; a

0T
i2; : : : ; a

0T
i;i�1; 0; : : : ; 0

�
i D mC 1; : : : ; r ;

(17.2.23)

see also (Goodwin and Sin, 1984).
The controllability matrix follows with B 0 D T 0B as

B 0 D

˙

b0T
11
:::

b0T
1m1

�
m1

:::

b0T
r1
:::

b0T
rmr

�
mr

�

D

˙

cT
1B
:::

cT
1A

m1�1B
:::

cT
rB
:::

cT
rA

mr �1B

�

(17.2.24)

with

b0T
ij D �

b0
ij1; : : : ;b

0
ijp

�
; with i D 1; : : : ; r; and j D 1; : : : ; mi : (17.2.25)

Using the Markov parameters

M .q/ D

�
mT

1.q/
:::

mT
r .q/

�
D CAq�1B D C 0A0.q�1/B 0; q D 1; 2; : : : ; (17.2.26)
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one can also write
b0

ij D mT
i .j / D cT

i A
j �1B : (17.2.27)

The observable canonical form has the following properties:

� The blocks of the system matrix A have a triangular form, therefore the subsys-
tems are only coupled in one direction, The i th subsystem is only coupled with
the subsystems 1; 2; : : : ; i � 1

� On the main diagonal, one can find the subsystems with the orderm1; m2; : : : ; mr

in the observable canonical form for SISO systems
� The output matrix has an extremely simple form: Each output yi is matched with

one subsystem of order m1; m2; : : :. The outputs are hence identical with the
corresponding number of state variables.

� If outputs occur with mi D 0, then the vectors aij show up in the matrix C
� The number of parameters gets the smallest, if one chooses as the first output y1

the smallest system m1, then the second smallest additional system m2, etc.

The observable canonical form is treated extensively in (Popov, 1972; Guidorzi,
1975; Ackermann, 1988; Blessing, 1980; Goodwin and Sin, 1984).

Controllable Canonical Form

The controllable canonical form is the dual form the observable canonical form and
characterized by a special form of the matrices A and B. For the SISO case, this
canonical form can be determined by the transform T D QS

�1. Once again, a similar
transform will now be formulated for the MIMO case. The input matrixB is divided
as

B D �
b1 b2 : : : bp

�
: (17.2.28)

The transformation matrix is then constructed as the controllability matrixQS

.T 00/�1 D �
b1;Ab1; : : : ;A

m1�1
m1

b1�ˇ̌
: : :
ˇ̌
bp;Abp; : : : ;A

mp�1
mp

br�� D R :

(17.2.29)
This matrix must also contain m linearly independent column vectors as T 00 must
be nonsingular and of rank m. As for the observable canonical form, one now starts
with the first input until the first linearly dependent vectorAm1b1 occurs. Then, one
continues with the second input. The structural parameters, that can be interpreted as
controllability indices, fulfill the relation

pX
iD1

mi D m : (17.2.30)

The controllable canonical form is then given as

x00.k C 1/ D A00x00.k/CB 00u.k/ (17.2.31)
y 00.k/ D C 00x00.k/ (17.2.32)
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with
x00 D T 00x D R�1x (17.2.33)

and

A0 D

˙
A00

11 A
00
12 : : : A

00
1p

0 A00
22 : : : A

00
2p

:::
:::

:::

0 0 : : : A00
pp

�
; (17.2.34)

where

A00
i i D

˙
0 : : : 0

1 : : : 0
:::
: : :

: : : a00
i i

0 : : : 1

�
; A0

ij D

˙
0 : : : 0

1 : : : 0
:::
: : :

: : : a00
ij

0 : : : 1

�

i D 1; 2; : : : ; p; j D 1; 2; : : : ; p

a00T
ij D �

a00
ij;mj

; : : : ; a00
ij;1

�
; j D 1; : : : ; i

(17.2.35)

and

B 0 D

1 0 : : : 0

0 0 : : : 0
:::
:::

:::

0 0 0

…
m1

1 0 : : : 0

0 0 : : : 0
:::
:::

:::

0 0 0

…
m2

:::
:::

:::

1 0 : : : 0

0 0 : : : 0
:::
:::

:::

0 0 0

…
mp

: (17.2.36)

Here, mi ¤ 0 was assumed. The output matrix follows from C 00 D CR as

C 00 D . c00
11 : : : c

00
1m1

: : : c00
p1 : : : c

00
pmp

/

D .Cb1 : : : CA
m1�1b1 : : : Cbp : : : CA

mp�1bp /
(17.2.37)

with
c00

ij D �
c00

ij1; : : : ; c
00
ijp

�
; i D 1; : : : ; p; j D 1; : : : ; mi ; (17.2.38)

see also (Goodwin and Sin, 1984). In this equation, one can find the Markov para-
meters as
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M .q/ D �
m1.q/; : : : ;mp.q/

� D CAq�1B D C 00A00.q�1/B 00; q D 1; 2; : : : ;

(17.2.39)
so that

c00
ij D mi .j / D CAj �1bi : (17.2.40)

The controllable canonical form has the following properties:

� The blocks of the system matrix A have an upper triangular form. Hence, sub-
systems are only coupled in one direction, the i th subsystem is only coupled with
the subsystems i C 1; i C 2; : : : ; p

� On the main diagonal, one can find the subsystems with the orderm1; m2; : : : ; mp

in the controllable canonical form for SISO systems
� The input matrix has an extremely simple form. Each input uj is assigned to one

subsystem of order m1; m2; : : :

Besides these two canonical forms, one can also use the Jordan canonical or
block diagonal form for identification. Stochastic disturbances are included into the
state space structure as

x.k C 1/ D Ax.k/CBu.k/CD
.k/ (17.2.41)
y.k/ D Cx.k/C 
.k/ : (17.2.42)

17.2.2 Input/Output Models

The state space models that were just presented required knowledge of the states
x.k/ to be able to determine the parameters, i.e. either A and C or A and B. The
states are not always measured and in this case, need to be estimated as well. This
leads to a non-linear estimation problem. One can apply an extended Kalman filter
to this estimation problem, see Chap. 21, but the convergence often is slow. The esti-
mation can even diverge. It is in many cases practical to bring the state space system
to an input/output form, estimate the parameters and transform the model back to
state space (Blessing, 1980; Schumann, 1982). Here, the observable canonical form
is especially well suited. From (17.2.41) follows for y.k C 	/ with 	 D 0; 1;m � 1˙

y.k/

y.k C 1/
:::

y.k Cm � 1/

�
D

˙
C

CA
:::

CAm�1

�
x0.k/

C

˙
0 : : : 0

0 : : : CB
:::

:::

CB : : : CAm�2B

�˙
u.k/

u.k C 1/
:::

u.k Cm � 2/

�

C

˙

.k/


.k C 1/
:::


.k Cm � 1/

�
C

˙
0 : : : 0

0 : : : CD
:::

:::

CD : : : CAm�2D

�˙

.k/


.k C 1/
:::


.k Cm � 2/

�
:

(17.2.43)



17.3 Impulse Response Models, Markov Parameters 439

Since x0 is multiplied with the observability matrix and T D Q�1
B , an identity matrix

will result. Hence, one can solve the system of equations as

x0.k/ D ym � 
m � Suum � S�
m (17.2.44)

and by application of the ´-transform, one obtains

A0
i i

�
yi .´/ � 	i .´/

� D
i�1X
j D1

A0
ij .´

�1/.yi .´/ � 	i .´//

C
pX

j D1

B 0
ij .´

�1/uj .´/C
rX

j D1

D0
ij .´

�1/	j .´/

(17.2.45)

with i D 1; 2; : : : ; r (Schumann, 1982). The model shall be denoted as the minimal
input/output model. It contains coupling terms of the outputs yi .k/ which depend on
yj .k/ for j < i . If one successively removes these coupling terms, then a simplified
P-canonical input-output model results as

Ai iyi .´/ D
pX

j D1

Bij .´
�1/uj .´/CDi i .´

�1/	i .´/ : (17.2.46)

These P-canonical models are however no longer minimal. A direct determination of
the state space model in (17.2.41) is hence no longer possible.

17.3 Impulse Response Models, Markov Parameters

For the calculation of the outputs for given inputs, one can recursively evaluate
(17.2.1) and together with (17.2.2) obtain the solution

y.k/ D CAkx.0/C
k�1X
�D0

CA�Bu.k � 	 � 1/; k D 2; 3; : : : ; (17.3.1)

where x.0/ are the initial values of the states and

G .	/ D CA�B (17.3.2)

is the impulse response matrix (Schwarz, 1967, 1971). The transfer function matrix
is then given as

G .´/ D
1X

�D0

G .	/´�� : (17.3.3)

One denotes
M� D G .	/ D CA�B; 	 D 0; 1; 2; : : : (17.3.4)

as the Markov parameters of the MIMO system (Ho and Kalman, 1966).
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From (17.3.1) and (17.3.3) follows for the transfer function matrix

G .´/ D
1X

�D0

M�´
�.�C1/ (17.3.5)

and for the output

y.k/ D Mkˇ0 C
k�1X
�D0

M�u.k � 	 � 1/ (17.3.6)

with
Bˇ0 D x.0/ or ˇ0 D �

BTB
��1
Bx.0/ : (17.3.7)

In vectorial notation, one gets˙
y.0/

y.1/

y.2/
:::

�
D

˙
M0 0 : : : 0

M1 M0 0 : : : 0

M2 M1 M0 : : : 0
:::

:::
:::

:::

�˙
u.�1/
u.0/

u.1/
:::

�
C

˙
M0 M1 : : : Mm�1

M1 M2 : : : Mm

M2 M3 : : :MmC1

:::
:::

:::

�˙
ˇ0

0

0
:::

�

(17.3.8)
or

y D T .0;1/uC H .m;1/ˇ0 ; (17.3.9)

which is termed a Hankel model. Here, T is a Toeplitz matrix and H a Hankel ma-
trix. The Hankel matrix is given as the product from controllability and observability
matrix as

H D QBQS D

˙
M0 M1 : : : Mm�1

M1 M2 : : : Mm

M2 M3 : : :MmC1

:::
:::

:::

�
(17.3.10)

with the Markov parameters M� as elements and rank H D m. For the often en-
countered case of zero initial conditions, i.e. ˇ0 D 0, one obtains

�
y.0/;y.1/;y.2/; : : :

� D �
M0;M1;M2; : : :

�
˙
u.�1/ u.0/ u.1/ : : :

0 u.�1/ u.0/ : : :
0 0 u.�1/ : : :
:::

:::
:::

�
;

(17.3.11)
which can be written as

Y D MU (17.3.12)

with additional disturbances
Y D MU CN : (17.3.13)
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17.4 Subsequent Identification

If one excites the inputs i D 1; 2; : : : ; p one after the other and measures all outputs
j D 1; 2; : : : ; r , then one can identify a SIMO system for each input separately. If
using a P-canonical model structure, one can use the classical SISO identification
methods presented so far. However, upon the simultaneous excitation of multiple
inputs (MIMO), one can save a lot of measurement time and in addition, one obtains
a coherent model. Hence, MIMO identification methods will be discussed in the
following. The positive effects of a parallel excitation of all inputs have also been
proven in (Gevers et al, 2006).

17.5 Correlation Methods

The correlation analysis methods from Chaps. 6 and 7 will now be used to identify
MIMO systems. Based on the correlation functions, one can once again use the de-
convolution for MIMO systems.

17.5.1 De-Convolution

If one multiples the convolution sum

y.k/ D
k�1X
�D0

M�u.k � 	 � 1/ (17.5.1)

from the right with uT.k � �/ and considers the expected value, then one obtains

Ruy D
k�1X
�D0

MvRuu.� � 	 � 1/ : (17.5.2)

If one estimates the correlation functions from the measured signals as presented in
Chap. 7, then one can determine the Markov parameters in analogy to (7.2.1) through
(7.2.3) by means of the de-convolution. One sets up the system of equations as

Ruy D MRuu (17.5.3)

and obtains
M D RuyR

�1
uu ; (17.5.4)

if Ruu is a square matrix. If Ruu is a non-square matrix, then one has to use the
pseudo-inverse as

M D RuyR
T
uu

�
RT

uuRuu
��1

: (17.5.5)

The computational effort is very high since a matrix of high dimensions has to be
inverted. If the input signals u.k/ consists of components that are white noise, hence
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Ruu.�/ D Ruu.0/ı.�/ (17.5.6)

and these input signals are mutually uncorrelated, then one can determine the Markov
parameters directly as

mk;i;j D Rui yj
.k/

Rui ui
.0/

: (17.5.7)

This is also presented in (Juang, 1994).

17.5.2 Test Signals

For a simultaneous excitation of all inputs, the identification will become more easy
with respect to both evaluation and convergence, if the input signals are uncorrelated.
For the application of correlation methods and stable systems with M� � 0 for
	 > 	max, the cross-correlation functions should vanish, i.e.

Rui uj
.�/ D 0 for j� j D 0; : : : ; 	max; i D 1; : : : ; pI j D 1; : : : ; p; i ¤ j : (17.5.8)

This means that the test signals must be orthogonal to each other. The PRBS signals
that have been used in the SISO case however do not satisfy this requirement. They
can however be modified to do so (Briggs et al, 1967; Tsafestas, 1977; Blessing,
1980).

For the generation of orthogonal test signals, one has to write the input signal as
a product of two binary periodic signals as

ui .k/ D hi .k/p.k/ (17.5.9)
hi .k/ D hi .k C 	NH/; 	 D 1; 2; : : : (17.5.10)
p.k/ D p.k C 	Np/ : (17.5.11)

The period length of ui .k/ is then given as N D NpNH. Here, p.k/ is a basis PRBS
as described in Sect. 6.3. If hi .k/ and p.k/ are statistically independent, then the
cross-correlation is given as

Rui uj
D Rhi hj

Rpp i; j D 1; : : : ; p : (17.5.12)

In order for the underlying PRBS signal to satisfy

Rpp.�/ D 0 for j� j D 1; : : : ; Np � 1 ; (17.5.13)

one must use the amplitudes Ca and �aP , where

P D
p
Np C 1 � 2p
Np C 1

: (17.5.14)

According to (17.5.8), the input signals must be uncorrelated, i.e.

Rui uj
D Rhi hj

Rpp D 0 for i ¤ j ; (17.5.15)
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and therefore
Rhi hj

D 0 for i ¤ j : (17.5.16)

This can be fulfilled if the signals hi .k/ with the period NH are chosen from the
elements of a Hadamard matrix H of the order NH D 2n (Brauer, 1953). A simple
generation of a Hadamard matrix of order NH D 2n can be realized if its elements
are Walsh functions (Briggs et al, 1967; Blessing, 1980). Then follows the recursive
relation

H.2n/ D
�
H.2n�1/ H.2n�1/

H.2n�1/ �H.2n�1/

�
(17.5.17)

with H1 D 1 and n D p � 1. For the generation of p inputs, one has to set up
a matrix H.NH / with NH D 2n D 2p�1. The periodic binary signals hi .k/ can
then be generated from the components of the i th row of H multiplied with the
amplitude Hi . Since the first row of H only contains the value 1, u1.k/ will be a
pseudo-random binary signal with the amplitudes H1 and �H1P . The other signals
u2.k/; u3.k/; : : : ; up.k/ will assume the four different values ˙Hi and ˙HiP , so
that one has four-valued signals (Blessing, 1980; Hensel, 1987). This means am-
plitude modulated PRBS signals (APRBS) have been generated. In (Pintelon and
Schoukens, 2001), the same method is suggested for frequency domain identifica-
tion.

The period length of the individual test signals is N D NHNP. For 2; 3; 4; : : :
input signals, one has n D 1; 2; 3; : : : and N D 2NP; 4NP; 8NP. This at the same
time is the smallest possible sample length so that all p input signals are mutually
uncorrelated. Figures 17.3 and 17.4 show an example of an orthogonal test signal.

17.6 Parameter Estimation Methods

Due to the large number of model structures and parameter estimation methods, there
are many possibilities to estimate the parameters of MIMO systems. If in addition to
the input and output signals, one can also measure the states of the system, one should
use the state space representation (17.2.1) and (17.2.2), which can for example be
obtained from physically modeling the system (typically continuous-time signals).
This model must be both controllable and observable. One can then use the SISO
parameter estimation methods, e.g. method of least squares, if one uses for each
output signal the submodel

yi .k/ D  T
i �i C ei .k/; i D 1; 2; : : : ; p : (17.6.1)

In  T
i .k/, one has to include all measured signals (i.e. also the states) which act on

the corresponding yi .k/. If the states are not measurable and one wants to avoid
the concurrent estimation of states and parameters due to the non-linearity of the
resulting estimation problem, then one has to resort to input/output models, see the
overview in Fig. 17.5.
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Fig. 17.3. Pseudo random binary signal generated by a shift register with n D 5 stages and
NP D 31 and a Hadamard matrix of order NH D 8
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17.6.1 Method of Least Squares

The method of least squares can directly by applied to the following input/output
models: Minimal I/O model, P-canonical I/O model, simplified P-canonical I/O
model, and matrix polynomial I/O model, if for each output yi .k/, a submodel ac-
cording to (17.6.1) is set up. This means that the MIMO system is split up into MISO
systems for the purpose of estimating the parameters. Then, the data vector and pa-
rameter vector are e.g. for the simplified P-canonical model given as

 T
i D .

��yi .k � 1/ : : : �yi .k �m/ u1.k � 1/ : : : u1.k �mi /

up.k � 1/ : : : up.k �mi /
�

(17.6.2)

�T
i D �

ai11 : : : ai1mi
bi11 : : : bi1mi

bip1 : : : bipmi

�
; (17.6.3)

see also (Schumann, 1982; Hensel, 1987). For the estimation of the parameters of
such a model, one can use the parameter estimation methods for SISO systems either
in non-recursive or recursive form.

17.6.2 Correlation Analysis and Least Squares

The advantages of the parameter estimation with a non-parametric intermediate
model as introduced in Sect. 9.3 are even more beneficial, if the methods are ap-
plied to MIMO systems. This is especially true, if also the structure, i.e. model order
and dead time must be determined from experimental data.

The method COR-LS, that was described in Sect. 9.3 can also be applied to the
estimation of multiple I/O models of MIMO systems. For example, for a P-canonical
I/O model, one can, based on

Ai i .q
�1/yi .q/ D

pX
j D1

Bij .q
�1/uj .q/ (17.6.4)

and multiplication with uj .q� �/ and subsequent calculation of the expected values,
obtain

Ai i .q
�1/Rui yj

.�/ D
pX

j D1

Bij .q
�1/Rui uj

.q/ (17.6.5)

and set up a system of equations as in (9.3.20), which can then be solved as in
(9.3.22).

The computational effort can be reduced, if one determines the sum of the input
signals (Hensel, 1987)

u†.k/ D
pX

j D1

uj .k/ : (17.6.6)

If the input signals are uncorrelated, it holds that

Ru†uj
.�/ D Ruj uj

.�/ : (17.6.7)
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The model is then given as

Ai i .q
�1/Ru†yj

.�/ D
pX

j D1

Bij .q
�1/Ru†uj

.q/ : (17.6.8)

The correlation functions can be determined recursively to obtain a reduction of the
storage space, (9.3.16).

Blessing (1979, 1980) has applied the method COR-LS to a minimal I/O model
which is based on the observable-canonical form .A;B;C / and hence can be con-
verted to this structure. In a second step, also the parameters of a noise model have
been estimated.

For the determination of model order and dead time of I/O models and the struc-
tural indices for state space models, one can use in principle the same methods as for
SISO systems, see Sect. 23.3. It is shown in (Blessing, 1980) how one can determine
the structural index Omi which belongs to the output yi by means of an analysis of the
cost function and of the eigenvalues of the information matrix. The determinant ratio
test from (Woodside, 1971) was applied to the information matrix of the simplified
P-canonical model by Hensel (1987).

17.7 Summary

Figure 17.5 gives an overview over the different model structures for MIMO systems
as well as the suitable identification methods for the case that only the inputs and
outputs of the system, but not the states, can be measured and that multiple inputs
are excited at once.

The state space model follows directly from a theoretical model of the system.
For identification, the system as well as the model must be controllable and observ-
able, hence it must be a minimal realization. By transformation into a canonical state
space model, one obtains a model with the minimum number of parameters and can
furthermore work with a model structure that can be employed for e.g. state feedback
controller design or observer design. Furthermore, such a model can be transformed
into other models.

If one wants to avoid non-linear estimation problems, then one has to eliminate
the states, so that the states and the parameters must no longer be estimated simul-
taneously. Hence, one must eliminate state variables and use suitable input/output
models. From the canonical state space models, one can obtain directly a minimal
input/output model and by elimination of the couplings between the outputs, one
obtains the simplified P-canonical input/output model. This can also be written as a
matrix polynomial input/output model.

The parameter estimation can be carried out with any of the input/output models.
One obtains the parameters of the model that was taken as a basis for the formulation
of the parameter estimation problem. If one wants to obtain a canonical state space
model as result, one can obtain this from the minimal input/output model by simple
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conversion and from the P-canonical input/output models by means of a minimal
realization.

For the use of correlation functions, one can use non-parametric input/output
models with Markov parameters.

The identification of non-parametric models with correlation methods and the
identification of parametric models by means of parameter estimation methods itself
can upon the concurrent excitation of all inputs be done with the same methods as
for the SISO case. In order to simplify the evaluation of the resulting equations and
to speed up the convergence, one should use always orthogonal test signals, which
can be generated from a single PRBS signal by the approach shown in this chapter.

The Markov parameters can be determined by the de-convolution of the correla-
tion functions. For an overview of model structure suitable for parameter estimation,
one should consider Fig. 17.5. The method of least squares and the modifications to
it that have been presented in preceding chapters can be applied to multiple I/O mod-
els. The method COR-LS is especially well suited for the identification of MIMO
systems. The determination of model order and dead time or other structural indices
can also be incorporated into the identification of MIMO systems, here one can ap-
ply many techniques that have been presented for SISO systems in a straightforward
way. An alternative to the identification of MIMO systems are subspace methods,
see Chap. 16, which allow to determine the model order during the identification and
hence need no a priori assumptions.

One attractive application for the simultaneous excitation of several input signals
is the identification of MISO models for internal combustion engines on test benches
for the calibration of electronic control systems (Schreiber and Isermann, 2009).

Problems

17.1. MIMO System Identification Based on SISO Models
Which of the above model structures can be used in conjunction with SISO identifi-
cation methods?

17.2. Two Input/Two Output Model 1
Assuming that all 4 transfer functions of the P-canonical structure are first order
processes, determine the various possibilities for identification.

17.3. Two Input/Two Output Model 2
What changes follow for G12.s/ D 0 in Fig. 17.1 for the identification?
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Parameter Estimation for Non-Linear Systems

Due to the many structural possibilities of non-linear relations between the input and
output of dynamic systems, one cannot expect to be able to identify many types of
non-linear system with only a few model classes. However, for certain types of non-
linear systems, models can be formulated that match well with the requirements on
the model structure of known identification methods. In this sense, some model struc-
tures and suitable parameter identification methods will be covered in the following.
First, dynamic systems with continuously differentiable non-linearities will be dis-
cussed, then dynamic systems with non-continuously differentiable non-linearities,
such as friction and dead zone will be treated.

18.1 Dynamic Systems with Continuously Differentiable
Non-Linearities

Classical methods for the identification of dynamic systems are mostly based on
polynomial approximators. One distinguishes between general approaches, e.g. Vol-
terra series or Kolmogorov-Gabor polynomials, and approaches that involve special
structural assumptions such as Hammerstein, Wiener or non-linear difference equa-
tion (NDE) models (Eykhoff, 1974; Haber and Unbehauen, 1990; Isermann et al,
1992).

Certain static polynomial approximators have the advantage of being linear in
the parameters. This advantage can be maintained for certain dynamic polynomial
models. This way, computationally expensive iterative optimization methods can be
avoided.

Hence, in the following, a special focus will be placed on examples of classical
non-linear dynamic models that are based on a representation of the non-linearity by
polynomials together with a dynamic part modeled as a linear discrete-time system.
Note that the linear difference equation is written with the shift operator q�1, where
y.k/q�i D y.k � i/

A.q�1/ y.k/ D B .q�1/ q�d u.k/CD .q�1/ v.k/ (18.1.1)

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_18, © Springer-Verlag Berlin Heidelberg 2011 
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according to (10.2.2).

18.1.1 Volterra Series

In allusion to the convolution integral

y.t/ D
Z t

0

g.�/u.t � �/d� ; (18.1.2)

one can describe the input-output relation of systems with continuously differentiable
non-linearities by means of a Volterra series

y.t/ Dg0
0 C

Z t

0

g0
1.�1/u.t � �1/d�1 C

Z t

0

Z t

0

g0
2.�1; �2/u.t � �1/u.t � �2/d�1d�2

C
Z t

0

Z t

0

Z t

0

g0
3.�1; �2; �3/u.t � �1/u.t � �2/u.t � �3/d�1d�2d�3 C : : : ;

(18.1.3)

see (Volterra, 1959; Gibson, 1963; Eykhoff, 1974; Schetzen, 1980). This infinite
functional power series contains symmetric Volterra kernels g0

n.�1; : : : ; �n/ of the
order n, which are also termed impulse response of order n. The condition of causal-
ity implies that

g0
n.�1; : : : ; �n/ D 0 for �i < 0; i D 1; 2; : : : ; n : (18.1.4)

With n D 1, one obtains the convolution integral for linear system. This model is
suitable for continuous-time processes. However, typically the discrete-time form is
used.

For discrete-time systems, the Volterra series is given as

y.k/ D g0 C
kX

�1D0

g1.�1/u.k � �1/C
kX

�1D0

kX
�2D0

g2.�1; �2/u.k � �1/u.k � �2/

C
kX

�1D0

kX
�2D0

kX
�3D0

g3.�1; �2; �3/u.k � �1/u.k � �2/u.k � �3/C : : : ;

(18.1.5)

These Volterra series are non-parametric models, whose identification however ne-
cessitates the determination of the function values of the kernels. As non-linear mod-
els can also describe the system behavior for large deviations from the operating
point, the large signal values U.k/ and Y.k/ will be used in the following. If one
limits the significant elements of the impulse responses to the time k � M , then one
can write the above Volterra series up to order p by
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y.k/ D c00 C
pX

nD1

vn
M .k/ (18.1.6)

	n
M D

MX
i1D0

� � �
MX

inD1

˛n.i1; : : : ; in/u.k � i1/ : : : u.k � in/ (18.1.7)

and determine all coefficients by the method of least squares as they appear linearly
in the above function (Doyle et al, 2002). However, the number of parameters can
grow quite fast, as typically long sequences of the impulse response have to be cov-
ered. Such a model is called non-linear finite impulse response (NFIR) model.

An alternative is to approximate the discrete Volterra series, which is limited to
the order p, by a parametric model as

A.q�1/y.k/ D c00 C B1.q
�1/u.k � d/

C
hX

ˇ1D0

B2ˇ1
.q�1/u.k � d/u.k � d � ˇ1/C : : :

C
hX

ˇ1D0

hX
ˇ2Dˇ1

� � �
hX

ˇp�1Dˇp�2

Bpˇ1ˇ2:::ˇp�1
.q�1/u.k � d/

p�1Y
�D1

u.k � d � ˇ�/C : : : ;

(18.1.8)

see (Bamberger, 1978; Lachmann, 1983), where the dead time d D TD=T0 has been
introduced into the formulation. This non-linear difference equation now allows to
approximate the Volterra series by a finite number of parameters and is called an
AR-Volterra series.

As a limiting case, one can derive special non-linear parametric models, the
so-called Hammerstein models. The following derivation is based on Lachmann
(1983, 1985), see also (Isermann, 1992).

18.1.2 Hammerstein Model

If no time shift of the input signals u.k/ is allowed, i.e. h D 0, then one obtains the
generalized Hammerstein model as

A.q�1/y.k/ Dc00 C BH
1 .q

�1/u.k � d/C BH
2 .q

�1/u2.k � d/
C : : :C BH

p .q�1/up.k � d/ : (18.1.9)

The most well known Hammerstein model is the simple Hammerstein Model, see
Fig. 18.1, which consists of a static non-linearity governed by a polynomial of order
p,

x�.k/ D r0 C r1u.k/C r2u
2.k/C : : :C rpu

p.k/ (18.1.10)

and a linear dynamic system given by

A.q�1/y.k/ D B�.q�1/q�dx�.k/ (18.1.11)
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Fig. 18.1. Non-Linear Models

with

A.q�1/ D 1C a1q
�1 C : : :C amq

�m (18.1.12)

B�.q�1/ D b�
1q

�1 C : : :C b�
mq

�m ; (18.1.13)

see (Hammerstein, 1930). Hence

A.q�1/y.k/ Dr00 C B�
1 .q

�1/u.k � d/
C : : :C B�

p .q
�1/up.k � d/CD.q�1/	.k/ :

(18.1.14)

with

r00 D r0

mX
j D1

b�
j (18.1.15)

and
B�

i .q
�1/ D riB

�.q�1/ with i D 1; 2; : : : ; p : (18.1.16)

Here, the subsequent linear system can be interpreted as a MISO system, where each
power of u.k/ feeds an input of the MISO system (Chang and Luus, 1971). If the
linear part is assumed to be an MA model and furthermore identical for all powers
of u.k/, then one obtains a finite Hammerstein model.

If an arbitrary static non-linearity drives a linear SISO system, then such a model
can only be identified by a non-linear optimization algorithm. However, the number
of parameters to be optimized in the non-linear search can be reduced drastically
by the method of separable least squares. Here, the parameters of the non-linear
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subsystem are determined by non-linear optimization and the parameters of the linear
subsystem are then determined by the method of least squares directly as knowledge
of the non-linear model parameters allows to provide estimates for Ox�.k/.

If the static non-linearity is linear in parameters, one can also employ the direct
method of least squares to estimate the parameters assuming that the linear model
shall be known and hence it is possible to provide estimates for Ox�.k/ based on the
measured output and knowledge of the linear system. Then, with the estimated model
of the linear part, one can provide an estimate for Ox�.k/ based on the measured input
and the model of the non-linearity. This can be employed to refine the model of the
linear part and so on (Liu and Bai, 2007). An example is given in Sect. 18.1.5.

Another special model structure is obtained if several finite Hammerstein models
are connected in parallel, leading to a so-called Uryson model.

18.1.3 Wiener Model

A Hammerstein model describes a sequential concatenation of a static non-linearity
at the input followed by a linear dynamic system, whereas a Wiener model consists
of a linear dynamic model followed by a static non-linearity. The generalized Wiener
model is given as

A1.q
�1/y.k/C A2.q

�1/y2.k/C : : :C Al .q
�1/yl .k/ D c00 C B.q�1/u.k � d/ :

(18.1.17)
If the linear transfer function

A.q�1/x.k/ D B.q�1/q�du.k/ (18.1.18)

and the static non-linearity, given as a polynomial of order p,

y.k/ D r0 C r1x.k/C r2x
2.k/C : : :C rlx

l .k/ (18.1.19)

are connected in series, then one obtains the simple Wiener Model as

y.k/ D r0 C r1
B.q�1/q�d

A.q�1/
u.k/C r2

�
B.q�1/q�d

A.q�1/

�2

u2.k/C : : : ; (18.1.20)

see Fig. 18.1. A finite Wiener model consequently results, if the linear model again
is an MA model. A parallel connection of several finite Wiener models is called
projection-pursuit model.

If the non-linearity is positioned between two linear transfer functions, then one
obtains a Wiener-Hammerstein model. A Hammerstein-Wiener model describes the
opposite case, where a linear dynamic system is enframed by two non-linearities.

For parameter estimation, those models are especially well suited that are linear
in parameters. This condition is met for the parametric Volterra model and the Ham-
merstein model, but not for the Wiener model. Hence, Wiener models can e.g. be
identified based on a non-linear optimization problem, where the squared output er-
ror .y.k/� Oy.k//2 is minimized. Therefore, Lachmann (1983) has proposed a model,
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that has a non-linearity on the output side, but still is linear in its parameters and is
governed in the next section.

Crama et al (2003) presented a method to obtain initial estimates for iterative
optimization algorithms. The basic idea is to first identify the linear transfer function
by using the input/output data. Once an initial estimate for the linear transfer function
has been obtained, one can calculate the input and output signal of the static non-
linearity and hence obtain an initial estimate for the model parameters of the static
non-linearity. The approach can be repeated multiple times. Hagenblad et al (2008)
developed a maximum likelihood cost function that can account for both noise acting
on the output as well as noise disturbing the intermediate quantity x.k/.

18.1.4 Model According to Lachmann

If the generalized Hammerstein model is augmented by time-delayed products of the
output, then one obtains (Lachmann, 1983)

A.q�1/y.k/C
hX

ˇ1D0

A2ˇ1
.q�1/y.k/y.k � ˇ1/C : : :

C
hX

ˇ1D0

hX
ˇ2Dˇ1

� � �
hX

ˇp�1Dˇp�2

Apˇ1ˇ2:::ˇp�1
.q�1/y.k/

p�1Y
�D1

y.k � ˇ�/

D B.q�1/u.k � d/C c00 ;

(18.1.21)

in similarity to the parametric Volterra model with

Apˇ1ˇ2:::ˇp�1
.q�1/ D apˇ1ˇ2:::ˇp�11q

�1 C : : :C apˇ1ˇ2:::ˇp�1mq
�m : (18.1.22)

One can see that the model is the mirrored Volterra model.

18.1.5 Parameter Estimation

If, for a non-linear process, the underlying model structure is linear in parameters,
then a linear estimation problem results that can be solved by any direct estimation
method, such as e.g. the method of least squares and its modifications, see Chap. 9
and Chap. 10. The following model structures are linear in parameters:

� Parametric Volterra model
� General and simple Hammerstein model
� Model according to Lachmann

All of these models have the form

A.q�1/y.k/ D NL.u; y; q�1/ ; (18.1.23)

For other model structures, such as e.g. the Wiener model, the estimation equation
is upon introduction of the equation error, non-linear in parameters. Then, one must
employ iterative parameter estimation methods, see Chap. 19.
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For the direct estimation methods, one can rewrite the model in the form

y.k/ D  T.k/ O�.k � 1/C e.k/ ; (18.1.24)

compare (9.1.11), and apply methods such as the LS or RLS. The data vector contains
the following signal values (d D 0):

� Parametric Volterra model

 T.k/ D ��y.k � 1/; : : : ; u.k � 1/; : : : u2.k � 1/; : : :
u.k � 1/u.k � 2/; : : : ; u3.k � 1/; : : : ; u.k � 1/u2.k � 2/; : : :� (18.1.25)

� Generalized Hammerstein model

 T.k/ D ��y.k�1/; : : : ; u.k�1/; : : : u2.k�1/; : : : ; u3.k�1/; : : :� (18.1.26)

� Model according to Lachmann

 T.k/ D � � y.k � 1/; : : : ;�y2.k � 1/; : : : ;�y.k � 1/y.k � 2/; : : :
� y3.k � 1/; : : : ;�y.k/; y2.k � 1/; : : : ; u.k � 1/; : : :�

(18.1.27)

The models can be augmented by a noise form filter so that from (18.1.23) follows

A.q�1/y.k/ D NL.u; y; q�1/CD.q�1/	.k/ : (18.1.28)

Then for example, also the ELS method can be applied.
The conditions for an unbiased estimate by the method LS and ELS are for the

parametric Volterra model and the generalized Hammerstein model the same as for
linear models, i.e. there is no bias if the noise is generated by a form filter with the
transfer function 1=A.q�1/ or D.q�1/=A.q�1/ respectively. For the model accord-
ing to Lachmann, in general biased estimates will occur if n.k/ ¤ 0 (Lachmann,
1983).

The conditions for parameter identifiability once again result from the condition
that � T� must be positive definite. For the identification of the generalized Ham-
merstein model with p D 2 for example, the matrix

H22 D

�

Ruu.0/ : : : Ruu.m � 1/ Ruu2.0/ : : : Ruu2.m � 1/
: : :

:::

Ruu.0/

Ru2u2.0/
: : :

Ru2u2.0/

�

(18.1.29)

must be positive definite. Hence the auto-correlation functions

Rui uj .�/ D E
˚
ui .k/uj .k � �/�; for i D 1; : : : ; p; j D 1; : : : ; p (18.1.30)
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must be such that detH22 > 0. This condition is satisfied by some multi-level
pseudo-random binary signals (Godfrey, 1986; Dotsenko et al, 1971; Bamberger,
1978; Lachmann, 1983). Examples of the parameter estimation for non-linear pro-
cesses with continuously differentiable non-linearities can be found e.g. in (Bam-
berger, 1978; Haber, 1979; Lachmann, 1983). While often, these non-linear models
are used for discrete-time processes, it is possible to employ the same methods to
continuous-time processes as well (Rao and Unbehauen, 2006).

Example 18.1 (Parameter Estimation for the Hammerstein Model).
The non-linearity is assumed to be of second order

x�.k/ D r0 C r1u.k/C r2u
2.k/ (18.1.31)

and the dynamic model of first order

y.k/ D �a1y.k � 1/C b1u.k � 1/ : (18.1.32)

The Hammerstein model then follows as

y.k/ D �a1y.k � 1/C b1r0 C b1r1u.k � 1/C b1r2u
2.k � 1/ (18.1.33)

and

y.k/ D  T.k/ O� with  T.k/ D ��y.k � 1/ 1 u.k � 1/ u2.k � 1/ � (18.1.34)

The parameters O� can directly be determined by

O� D �
a1 b1r0 b1r1 b1r2

� D �
a1 b

�
0 b

�
1 b

�
2

�
(18.1.35)

As can be seen, the parameter b1 cannot be determined unambiguously and hence
will be fixed to b1 D 1. The parameters r0 through r2 can then be determined as
r0 D b�

0=b1, r1 D b�
1=b1, and r2 D b�

2=b1. ut

18.2 Dynamic Systems with Non-Continuously Differentiable
Non-Linearities

Non-continuously differentiable non-linear processes appear in mechanical systems,
especially in the form of friction and backlash and in electrical systems with mag-
netization hysteresis. They typically have to be modelled in the time domain as the
resulting differential equation is non-linear and cannot be handled by the Laplace or
´-transformation.

18.2.1 Systems with Friction

In many mechanical processes, dry and viscous friction appears. If a mechanical
oscillator according to Fig. 18.2 is considered, the equation of motion is
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Fig. 18.2. Mechanical oscillator with friction. (a) schematic set-up. (b) block diagram

m Ry2.t/C d Py2.t/C cy2.t/C FF.t/ D cy1.t/ : (18.2.1)

The friction force follows a Stribeck curve, see Fig. 18.3. With fF D FF=FN, where
FN is the normal force, it holds

fF D ��C sign v C fvv C fme�cjvj sign v ; (18.2.2)

where the Friction force is then given by multiplication with the normal force FN.
During standstill, i.e. v D 0, the static (adhesive) friction

jFFsj � FFmax D �SmaxFN (18.2.3)

is acting on the process. The static friction force is always as large as the attacking
force and opposing in direction (and hence sign) to the attacking force. Once, the
maximum force FFmax is exceeded, the object will start to move suddenly.

The friction forces can often be approximated by

FF.t/ D FF0 sign Py.t/C fF1 Py.t/ ; (18.2.4)

where FF0 is the velocity independent term of Coulomb or dry friction and fF1 Py.t/
denotes the amount of velocity proportional, viscous friction (Isermann, 2005). One
can incorporate this model directly into the dynamic equation of the system. How-
ever, one can also use the following identification technique:
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μ Fig. 18.3. Friction curve according to
Stribeck for the dynamic friction �C dry
or Coulomb friction, fv Py.t/ viscous fric-
tion, fm maximum amount of friction
forces for Py ! 0C, �smax maximum
holding force

For the identification of processes with friction, the hysteresis curve can directly
be found pointwise by slow continuous or stepwise changes of the input signal
u.t/ D y1.t/ and the measurement of y.t/ D y2.t/.

If the hysteresis curves are described by

yC.u/ D K0C CK1Cu
y�.u/ D K0� CK1�u ;

(18.2.5)

then the parameters can be estimated from 	 D 1; 2; : : : ; N � 1 measured points
with the least squares method

OK1˙ D N
P
u.v/y˙.v/ �P

u.v/
P
y˙.v/

N
P
u2.v/ �P

u.v/
P
u.v/

(18.2.6)

OK0˙ D 1

N

 X
y˙.v/ � OK1˙

X
u.v/

!
(18.2.7)

As the differential equations are linear in the parameters, direct methods of parameter
estimation can be applied for processes with dry and viscous friction in motion.
For this, both differential and difference equations are well-suited process models.
In some cases, it is expedient not only to use velocity-dependent dry friction but
also velocity direction-dependent dynamic parameters, e.g. in the form of difference
equations

y.k/ D �
mX

iD1

a1Cy.k � 1/C
mX

iD1

biCu.k � i/CK0C (18.2.8)

y.k/ D �
mX

iD1

ai�y.k � i/C
mX

iD1

b1�u.k � 1/CK0� (18.2.9)

K0C and K0� can be understood as direction-dependent offsets or DC values. Then,
the following methods can be applied for the estimation of these offsets:
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u t( ) Fig. 18.4. Test signal for parameter esti-
mation of processes with dry friction

� Implicit estimation of the offset parameters K0C and K0�;
� Explicit estimation of the offset parameters K0C and K0� with generation of

differences �y.k/ and �u.k/ and parameter estimation for

�y.k/ D �
mX

iD1

Oai�y.k � i/C
mX

iD1

Obi�u.k � i/ (18.2.10)

with the assumption of velocity-independent dynamic parameters Oai and Obi . Then,
for each direction, the parameters OK0C and OK0� have to be estimated separately.

For this parameter estimation method with a direction-dependent model, an addi-
tional identification requirement has to be considered, which is that the motion takes
place in only one direction without reversal. This means that the motion has to satisfy

Py.t/ > 0 or Py.t/ < 0 ; (18.2.11)

which can be tested by
�y.k/ > " or �y.k/ < �" (18.2.12)

for all k.
A test signal for proportional acting processes fulfilling this condition was pro-

posed by Maron (1991), Fig. 18.4. The motion in one direction with a certain velocity
is generated by a linear ascent. Then, this is followed by a step for the excitation of
higher frequencies and a transition to a steady state condition. In the case of a re-
versal of motion, the parameter estimation has to be stopped (in Fig. 18.4 the points
1, 2, 3, : : :) and has either to be restarted or continued with values according to the
same direction.

The hysteresis curve can be computed from the static behavior of the model
(18.2.8), (18.2.9) as

yC.u/ D
OK0C

1CP OaiC
C

P ObiC
1CP OaiC

u (18.2.13)

y�.u/ D
OK0�

1CP Oai�
C

P Obi�
1CP Oai�

u : (18.2.14)

For the verification of the parameter estimation based on the dynamic behavior, the
computed characteristic curve can be compared with the measured curve resulting
directly from the measured static behavior.
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For rotary drives, Held (1989, 1991) has developed a special parameter estima-
tion method that correlates the measured torque with the rotational acceleration and
estimates the moment of inertia. Following from that, the characteristic curve of the
friction torque can be estimated in a non-parametric form.

The methods described above for the identification of processes with friction
have been successfully tested in practical applications and applied to digital control
with friction compensation by Maron (1991) and Raab (1993). Further treatment is
given by Armstrong-Hélouvry (1991) and Canudas de Wit (1988). The estimation
of friction of ball bearings in robot drives was shown by Freyermuth (1991, 1993)
and the friction of automotive suspension shock absorbers by Bußhardt (1995) and
Weispfenning (1997).

18.2.2 Systems with Dead Zone

As an example again, an oscillator with backlash or dead zone of width 2yt is con-
sidered, Fig. 18.5. For the oscillator without backlash, it is

m Ry2.t/C d Py2.t/C cy2.t/ D cy3.t/ : (18.2.15)

The backlash can be described as follows

y3.t/ D
˚
y1.t/ � yt for y1.t/ > yt

0 for � yt � y1.t/ � yt

y1.t/C yt for y1.t/ < �yt

: (18.2.16)

This equation leads to the non-linear characteristic curve shown in Fig. 18.5b. In the
case where the backlash is at one restriction with y1.t/ > yt , it is

m Ry2.t/C d Py2.t/C cy2.t/C cyt D cy1.t/ (18.2.17)

and for the other restriction with y1.t/ < yt

m Ry2.t/C d Py2.t/C cy2.t/ � cyt D cy1.t/ : (18.2.18)

The backlash appears as a constant with a sign depending on the sign of y1.t/. For the
range inside the backlash, it is y3.t/ D 0 and it holds that the system eigenbehavior
is

m Ry2.t/C d Py2.t/C cy2.t/ D 0 ; (18.2.19)

if point 3 (for instance, because of friction not modeled) is fixed. If point 3 is not
fixed and can move arbitrarily inside the backlash, the spring forces do not apply.
Then, one has to set y2 D y3 and in (18.2.19) c D 0.

The parameter estimation of the dead zone parameter yt is only possible outside
the dead zone, i.e. y1.t/ < �yt and y1.t/ > yt.t/, similar as for the dry friction
according to (18.2.8) and (18.2.9). As test signal, a slow motion in both directions
can be applied in order to obtain the hysteresis curve (Maron, 1991). The estimation
of dead zones in robot drives was motivated by Specht (1986), see also (Isermann,
2005, 2006).

Summarizing, one obtains a simplified block diagram for the regions outside
the backlash shown in Fig. 18.6. The effect of the backlash in these regions can be
interpreted as an offset shift of the input signal with changing sign.
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Fig. 18.5. Mechanical oscillator with backlash (dead zone). (a) schematic set-up. (b) block
diagram for the cases y1.t/ > yt and y1.t/ < �yt
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Fig. 18.6. Simplified block diagram for a
linear system with backlash for jy1.t/j >
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18.3 Summary

The parameter estimation methods originally developed for linear systems can as
well be applied to non-linear systems, if model structures can be used that are linear
in the parameters. For continuously differentiable systems, one can e.g. use Volterra
series or Hammerstein models, etc. For non-linear systems which have models that
are non-linear in parameters, iterative parameter estimation methods must be em-
ployed, which numerically minimize the cost function, such as e.g. the maximum
likelihood cost. Here, e.g. Ninness (2009) suggested to use particle filtering to be
able to determine the probability density function and hence be able to e.g. apply
prediction error or maximum likelihood methods for parameter estimation. The opti-
mality of the two-stage algorithm for Hammerstein system identification is analyzed
by Wang et al (2009).

Problems

18.1. Hammerstein and Wiener Model
What are differences between the two model setups? Which model setup(s) can
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be identified with direct parameter estimation methods such as the method of least
squares.

18.2. Friction 1
How can the Stribeck curve be simplified in such a way so that its parameters can be
identified directly by the method of least squares?

18.3. Friction 2
How can the estimation of dry and viscous friction be included in the equation for
a mechanical of 2nd order? Which experiments and parameter identification method
are applicable for estimation.

18.4. Backlash
Which conditions must be satisfied to be able to estimate backlash parameters?
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Iterative Optimization

In this chapter, numerical optimization algorithms are presented, which allow to min-
imize cost functions even though they are not linear in parameters.

19.1 Introduction

For the development of identification methods for parametric continuous-time mod-
els, the use of analog computers played an important role in the past. Their models
were tunable and the model adjustment techniques or model reference adaptive iden-
tification methods were developed. Nowadays, these models are no longer realized
on analog computers, but can rather be realized as part of computer programs or in
special software tools. In the following, numerical optimization algorithms are pre-
sented, which allow to adjust parameters of models such that the model matches best
with recorded measurements. So far, the parameter estimation methods have been
limited mainly to models whose cost function had been linear in the parameters. In
the following, methods will be presented that can also deal with cost functions that
are non-linear in the parameters. This gives a great latitude in the design of the cost
function and e.g. allows to directly determine physical parameters in non-linear pro-
cess models instead of e.g. transfer function coefficients, where physical parameters
are frequently lumped together. Also, constraints can be included such as the stabil-
ity of the resulting system or the requirement that certain physical parameters are
positive.

Depending on the arrangement of the model, one has different ways of determin-
ing the error, as was shown in Fig. 1.8. The output error

e.s/ D y.s/ � yM.s/ D y.s/ � BM.s/

AM.s/
u.s/ (19.1.1)

leads to a parallel model, the equation error

e.s/ D AM.s/y.s/ � BM.s/u.s/ (19.1.2)

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_19, © Springer-Verlag Berlin Heidelberg 2011 
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Fig. 19.1. Model setups for iterative optimization

to a series-parallel model and the input error

e.s/ D AM.s/

BM.s/
y.s/ � u.s/ (19.1.3)

would lead to a series model or reciprocal model. Similar setups can be formulated
in the time domain and for non-linear systems, see Fig. 19.1. A big advantage of the
series-parallel model is the fact that it cannot become unstable as it does not contain
a feedback loop. On the other hand, it cannot be guaranteed that the model obtained
by the series-parallel setup can run as a stand-alone simulation model. Especially, for
very small sample times compared to the system dynamics, the series-parallel model
can pretend a model fidelity that is well above the true model fidelity. For very small
sample times compared to the process dynamics, the model often collapses to simply
yM.k/ � y.k � 1/.

As a cost function, one can choose any even function of the error, e.g. f .�; e/ D
e2 or f .�; e/ D jej. One can also think about combined cost functions that rate
small errors differently than large to moderate the influence of outliers. As was al-
ready discussed in Chap. 8, the use of the quadratic cost function over-emphasizes
the effect of outliers. To mitigate this effect, several other cost functions have been
proposed. They are tabulated in Table 19.1, see also Fig. 19.2 and (Rousseeuw and
Leroy, 1987; Kötter et al, 2007).

The cost function V.�; e/ is typically a (weighted) sum of the individual errors
and the parameters are determined such that the cost function is minimized. Ad-
ditional constraints, such as boundaries of the parameter space or stability of the
resulting system can be formulated. In the following, it will be assumed that the
cost function has a unique minimum. At the minimum, the error e does not have to
vanish. The following sections will describe algorithms that allow to determine the
minimum of a (non-linear) function numerically.
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Table 19.1. Different cost functions, see also Fig. 19.2

Name Cost Function

Least Squares e2

Huber

�
e2=2 for jr j � c

c.jej � c=2/ for jr j > c

Bisquare

(
c2=6

	
1 � �

1 � .r=c/2�3
 for jr j � c

c2=6 for jr j > c

L1-L2 2

�q
1C e2=2 � 1

�

Absolute Value jej

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

e [−]

V
e(
) 

[−
]

Least Squares
Absolute Error
L1-L2
Huber
Bisquare

Fig. 19.2. Figure of different cost functions with c D 1:345 for Huber and c D 4:6851 for
Bisquare, see also Table 19.1

19.2 Non-Linear Optimization Algorithms

There exists a huge number of algorithms for the optimization of non-linear func-
tions. A small selection of those algorithms shall be presented in the following, fo-
cusing on those algorithms that are easy to implement and have proven to be practical
for system identification. A thorough treatment of the subject of optimization algo-
rithms can e.g. be found in the books by Vanderplaats (2005), Nocedal and Wright
(2006), Snyman (2005), Ravindran et al (2006), and Boyd and Vandenberghe (2004)
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or with a focus on the computer implementation in the book by Press et al (2007).
In these books, the reader can find detailed derivations of the algorithms. The aim
of this chapter merely is to give some background information on how the different
algorithms work so that one can choose the appropriate algorithm to solve a given
parameter estimation problem. A survey of these as well as stochastic optimization
techniques can also be found in (Nelles, 2001).

The non-linear optimization problem can in general be formulated as

min
x
f .x/

s.t. g.x/ � 0

h.x/ D 0

; (19.2.1)

where “s.t.” stands for “subject to” and the notation has been used as it is typical
for optimization problems. One wants to minimize the value of f .x/ by adjusting
the individual variables in the vector x accordingly. The optimization is subject to
(s.t.) the constraints, i.e. the requirements that g.x/ � 0 and h.x/ D 0. To adapt it
to the system identification framework, one must set x D � and f .x/ D V.�/. In
numerical optimization the parameter vector is called vector of design variables x
and the cost or merit function is termed objective function f .

The constraints can be derived from conditions that have been stated for the de-
sign variables. Note that constraints are always formulated such that the resulting
term satisfies the condition gi .x/ < 0 or hj .x/ D 0 respectively. If one for ex-
ample has to ensure that x1 < 4, then one will set up the the inequality constraint
g.x/ D x1 C 4 < 0. Similarly, if one wants to guarantee that x1x2 D x2

3 , then one
will formulate the equality constraint h.x/ D x1x2 � x2

3 D 0.
Many optimization algorithms are iterative in the form

x.k C 1/ D x.k/C ˛s.k/ ; (19.2.2)

where x.k/ with k D 0; 1; : : : is the minimizing sequence. The vector s.k/ is termed
the search vector and the value ˛ is a measure for how far the algorithm proceeds
in direction of the search vector to obtain x.k C 1/. The optimal point that should
finally be approached is denoted as x�.

Obviously, one needs an initial guess x.0/ as a starting point. The initial guess
should be close to the optimum if possible. One can for example use process para-
meters from the specifications/data sheets or results from previously applied identifi-
cation methods as starting points. If no information is available, one can also choose
a random starting point or even restart the algorithm from several randomly chosen
or equidistantly positioned starting points.

One must also define conditions, when the iterative algorithm should stop. A
local optimum of the unconstrained function would have been reached if

rf .x/ D 0 ; (19.2.3)

where rf .x/ is the gradient defined as
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rf .x/ D
 
@f .x/

@x

!
D
 
@f .x/

@x1

@f .x/

@x2

: : :
@f .x/

@xp

!T

: (19.2.4)

Furthermore, the Hessian matrixH .x/ D r2f .x/2 defined as

r2f .x/ D @2f .x/

@xT@x
D




@2f .x/

@x1@x1

: : :
@2f .x/

@xp@x1
:::

:::

@2f .x/

@x1@xp

: : :
@2f .x/

@xp@xp

�

(19.2.5)

must be positive definite to guarantee that (at least a local) minimum has been
reached. However, due to numerical inaccuracies or due to the presence of con-
straints, one may not reach the minimum exactly. Hence, one often uses termination
criteria based on the size of the update step and the improvement of the cost function
as

kx.k C 1/ � x.k/k � "x f .x.k// � f .x.k C 1// � "f : (19.2.6)

One can also formulate relative convergence criteria.
The feasible area is the area of the design space, where all constraints are satis-

fied. The usable area is the area that leads to a reduction in the objective function.
The feasible, usable area is where one should continue to search for the optimum in
the next iteration.

Depending on what information about the cost function is used, one can differ-
entiate

� Zeroth order methods: These methods only evaluate the cost function f .x/
� First order methods: Here the cost function f .x/ and its gradient @f=@x are

employed
� Second order methods: They utilize the cost function f .x/, its gradient @f=@x

and the Hessian @2f=@xT@x (or an approximation to it)

The partial derivatives can be provided either analytically or by finite differencing,
see Sect. 19.7.

19.3 One-Dimensional Methods

First, one-dimensional optimization techniques will be covered, which can be used
to solve optimization problems with only one variable x to be chosen such that f
becomes optimal. Although they are very elementary methods, yet they represent an
extremely important type of optimization algorithm as even many multi dimensional
optimization methods will employ a subsequent one dimensional search to determine
the value ˛ in (19.2.2) once the search vector has been established. The determination
of ˛ is called line search.
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Point Estimation Algorithm (Zeroth Order Method)

If a function is unimodal and continuous, it can be approximated by a polynomial,
which can then be used to determine the minimum. For the approximation polyno-
mial, one can use the standard methods from calculus to determine the optimal point.

Given are the three points .x1; f1/, .x2; f2/, and .x3; f3/. They can now be
matched to a quadratic function

f .x/ D a0 C a1.x � x1/C a2.x � x1/.x � x2/ : (19.3.1)

With the parameters being given as

a0 D f1 (19.3.2)

a1 D f2 � f1

x2 � x1

(19.3.3)

a2 D
f3�f1

x3�x1
� f2�f1

x2�x1

x3 � x2

; (19.3.4)

the optimal solution follows with @f .x/=@x D 0 as

x� D x2 � x1

2
� a1

2a2

: (19.3.5)

This algorithm has the big advantage that only a few function evaluations are re-
quired. On the other hand, one can give no guarantee concerning the quality of the
estimate, which can become a problem especially for highly non-linear functions.

One can also use higher order approximations, such as e.g. a cubic approxima-
tion, but with an increase in the order of the approximating polynomial, the com-
putational effort for finding the minimum also grows. Furthermore, the number of
local extrema increases as the polynomial order increases. Although point estima-
tion methods should theoretically be superior to region elimination methods, this has
not always proven true in practical applications. Region elimination methods benefit
from their high robustness in practical applications and should be used for an initial
interval refinement. The point estimation can then be used to precisely find the exact
solution, once the solution has been bounded sufficiently well.

Region Elimination Algorithm (Zeroth Order Method)

Region elimination methods eliminate in each iteration certain subintervals of the
region of interest and hence reduce the interval that has to be searched through to
find the optimum.

The optimum is assumed to be bounded by xL and xR and the objective function
values fL and fR are assumed to be known. Then

1. Evaluate fM at the midpoint xM given by

xM D xL C xR

2
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2. Determine the points x1 and x2 as

x1 D xL C xR � xL

4
and x2 D xR � xR � xL

4

3. Determine f1 and f2

4. Compare f1 and fM.
If f1 < fM then xR D xM, xM D x1

Else compare f2 and fM
If f2 < fM then xL D xM, xM D x2

If f2 > fM then xL D x1, xR D x2

5. Check for convergence, else repeat from step 2

As the algorithm can eliminate half of the bounding interval in each iteration, the
necessary number of steps can be determined a priori, if a termination tolerance on
the interval length is given as "x.

Golden Section Search (Zeroth Order Method)

The golden section search is the most popular region elimination algorithm and is
similar to the bisection algorithm presented thereafter in this section. It consists of
the following steps:

1. Evaluate

x1 D .1 � �/xL C �xR

x2 D �xL C .1 � �/xR

and determine the corresponding values of the objective function f1 and f2

2. If f1 > f2, then xL D x1, x1 D x2, f1 D f2, and

x2 D �xL C .1 � �/xR :

Then evaluate f2 at x2.
If f1 < f2, then xR D x2, x2 D x1, f2 D f1, and

x1 D .1 � �/xL C �xR :

Then evaluate f1 at x1

3. Repeat from step 2 until converged

For the golden section search algorithm, � D 0:38197 and 1 � � D 0:61803 have
been chosen. These numbers guarantee that the ratio of the distance of the points
remains constant. Although a choice of � D 0:5 would bound the maximum tighter
in the same number of iterations, one often prefers the golden section ratio as it is
felt to be beneficial because of its more conservative bounding of the optimal point.
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Bisection Algorithm (First Order Method)

The bisection algorithm is a simple method that is based on evaluating the objective
function and the first derivative of it. The first derivative shall be denoted as f 0 D
@f=@x in the interest of a compact notation of the algorithm. The method is very
simple, it cuts the starting interval .xL; xR/ in half in each iteration. The objective
function must be unimodal and it must be differentiable so that f 0 exists. One only
needs the first derivative in contrast to the Newton-Raphson algorithm, which will be
presented later.

1. Find two points xL and xR that bound the minimum such that f 0.xL/ < 0 and
f 0.xR/ > 0

2. Find the mid-point

xM D xL C xR

2

3. Evaluate f 0.xM/

4. If f 0.xM/ > 0, then eliminate the right half of the interval (xR;new D xM;old),
otherwise eliminate the left half of the interval (xL;new D xM;old).

5. Check for convergence and if necessary, continue with step 2

Newton-Raphson Algorithm (Second Order Method)

The Newton-Raphson algorithm requires knowledge of the objective function as well
as the first and second derivative of it with respect to the unknown parameters. The
method is very efficient, if started close to the optimum. Further away from the op-
timum, it has the danger of diverging away from the optimum under adverse condi-
tions.

1. Start from a point x
2. Move on to the new point

x� D x � f 0.x/
f 00.x/

3. Evaluate f �.x�/
4. Check for convergence and if necessary, continue with step 2

19.4 Multi-Dimensional Optimization

Most often, one is confronted with multi-dimensional optimization problems, where
the objective function f depends on a vector of design variables x. In this case, the
following methods can be applied. All of the following methods will in their original
formulation solve unconstrained optimization problems. The inclusion of constraints
will be treated later, see Sect. 19.5.



19.4 Multi-Dimensional Optimization 477

19.4.1 Zeroth Order Optimizers

Zeroth order methods do only employ information about the function variable. They
are well suited in cases, where information about the gradient is not available. Fur-
thermore, they have the advantage of being robust and simple to implement. For a
survey on derivative free optimization see e.g. (Conn et al, 2009). Other zeroth order
methods include genetic algorithms (Mitchell, 1996), simulated annealing (Schnei-
der and Kirkpatrick, 2006), and biologically inspired algorithms such as swarm op-
timization (Kennedy et al, 2001) to name some techniques.

Downhill Simplex Algorithm (Nelder-Mead)

In an n-dimensional space, a simplex is a polyhedron of N C 1 equidistant points
from its vertices. For example, in a two-dimensional space, it is a triangle. In each
iteration of the downhill simplex algorithm, the worst point is projected through
its respective opposing vertex, which results in a new simplex. Also, the size of
the simplex can be adjusted to better bound the optimum. The downhill simplex
algorithm, although very simple, has also proven to be very robust and to perform
well in the presence of noise. Note that there is also a simplex algorithm used in linear
programming, which should not be confused with this downhill simplex algorithm.

1. Order the points according to their ascending values of their objective function
values as f .x1/ � f .x2/ � : : : � f .xnC1/

2. Reflexion: Mirror the worst performing point through the center of gravity of the
remaining points x0 as xR D x0 C .x0 � xnC1/. If the objective function for
the reflected point f .xR/ is better than f .xn/, but not better than f .x1/ then
replace xnC1 by xR and go to step 6

3. Expansion: If the reflected point is the new optimal point, i.e. better than f .x1/,
then it might be beneficial to extend the search in this direction by expanding
the simplex as xE D x0 C �.x0 � xnC1/ with � > 1. If the expanded point xE
yields an even lower objective function value, then expand the simplex and keep
this point by replacing xnC1 by xE and go to step 6, else keep the size of the
simplex and replace xnC1 by xR and go to step 6

4. Contraction: The objective function value could not yet be reduced as even the
reflected point is still the worst point f .xn/. Therefore, one should try not to
probe too far and contract the simplex by determining the point xC D x0 C
%.x0 � xnC1/ with % < 1. If the contracted point xC is better than xnC1, then
contract the simplex and keep this point by replacing xnC1 by xC and go to step
6.

5. Reduction: At this point is seems likely that the optimum already is inside the
simplex. Hence its size must be reduced to bound the optimum. All but the best
point are replaced by xi D x1 C �.xi � x1/ for i D 2; : : : ; nC 1

6. Terminate if the convergence tolerances are met, else go to step 1.

Example 19.1 (Downhill Simplex Algorithm for Determining the Parameters of a
First Order System).
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In order to illustrate the general functioning principle of the downhill simplex
algorithm, a two dimensional parameter estimation problem has been chosen, where
the gain K and time constant T of the transfer function

G.s/ D K

T s C 1
(19.4.1)

are determined based on the output error e.t/ D y.t/ � Oy.t/. The expansion of the
simplex has been disabled for illustrative purposes.

The cost function has been set up as

V D
N �1X
kD0

.y.k/ � Oy.k//2 : (19.4.2)

For the determination of the model response Oy.k/, the process is simulated on a
computer, hence the index .k/ is used, even though the model is formulated in
continuous-time. As a side-note, it should be mentioned that this cost function is
the same as for the maximum likelihood estimation provided that a white noise is
disturbing the output y.k/ and that the parallel model is used. This also provides the
theoretically optimal solution (Ljung, 2009).

For the process model, the parameters K D 2 and T D 0:5 s have been used.
The input and output are shown in Fig. 19.3. Figure 19.4 shows how the algorithm
approaches the minimum of the objective function from a given starting point, which
had been chosen arbitrarily as K D 0:5, T D 1:8 s. As the minimum is approached,
the simplex is reduced several times. This example will also be solved with the gra-
dient descent algorithm to allow a comparison between zeroth order and first order
methods. ut

19.4.2 First Order Optimizers

First order methods also employ information about the gradient of the objective func-
tion, denoted as rf .x/ D @f .x/=@x. The gradient can be provided analytically or
by means of finite differencing.

Gradient Descent (First Order Method)

The gradient descent proceeds in each search step in the negative direction of the
gradient rf .x/ as

x.k C 1/ D x.k/C ˛s.k/ (19.4.3)

s.k/ D � rf .x.k//
krf .x.k//k2

; (19.4.4)

where s.k/ is the search vector and the step size ˛ can be determined by a subsequent
one dimensional search in the negative direction of the gradient, see Sect. 19.3. The
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Fig. 19.3. Input u.k/, process output y.k/, and model output Oy.k/ for the example first order
system

gradient is typically normalized to unit length, i.e. divided by the Euclidian norm of
the vector, i.e. krf .x.k//k2. The method is often called steepest descent as well.
Its main disadvantage is the fact that it can become very slow e.g. for badly scaled
design variables (Press et al, 2007).

An extension is the Fletcher-Reeves algorithm that has quadratic convergence
for quadratic objective functions. After a first search in the direction of the steepest
descent, the subsequent search vectors are given by

s.k/ D �rf .x.k//C ˇ.k/s.k � 1/ (19.4.5)

with

ˇ.k/ D
�rf .x.k//�T�rf .x.k//�T

�rf .x.k � 1//�T�rf .x.k � 1//�T : (19.4.6)

Besides the quadratic convergence for quadratic functions, it is advantageous that
the method in general reuses information from past steps. It is also reliable if em-
ployed far from the optimum and accelerates as the optimum is approached. Due to
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Fig. 19.4. Convergence of the downhill simplex algorithm with contours of the cost function

numerical imprecision, it might be necessary to restart the Fletcher-Reeves algorithm
during the optimization run from time to time. In this case, one starts with a step in
the direction of the gradient. A modification of the algorithm is given by

ˇ.k/ D
�rf .x.k// � rf .x.k � 1//�T�rf .x.k//��rf .x.k � 1//�T�rf .x.k � 1//�T ; (19.4.7)

which is the Polak-Ribiere algorithm.

Example 19.2 (Gradient Descent for Determining the Parameters of a First Order
System).

Figure 19.5 shows the convergence of the gradient descent algorithm applied to
the example first order system that was already identified using a downhill simplex
algorithm. One can see that the gradient descent algorithm converges in much less it-
erations, however the calculation of the gradient can become cumbersome for larger
and more complex problems. Once again, the system parameters are identified cor-
rectly but in much less iterations. ut

19.4.3 Second Order Optimizers

Second order methods are very fast and efficient, but suffer from the disadvantage
that the second order derivatives must be known to determine the Hessian matrix.
For many problems they cannot be supplied analytically because of the complexity
of the calculation of the respective second partial derivatives of the cost function
with respect to the individual parameters. To overcome this disadvantage, several
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approximation techniques have been proposed as will be described directly after the
derivation of the Newton algorithm. These approximation techniques try to approxi-
mate the Hessian based on gradient information alone.

Newton algorithm

The Newton algorithm, sometimes also referred to as Newton-Raphson algorithm for
finding zeros of a function, can be derived by considering the second order approxi-
mation of f .x/ at x0 with

f .x0 C�x/ � f .x0/C rf .x0/�x C 1

2
�xTr2f .x0/�x : (19.4.8)

For the optimal point, the gradient with respect to the parameter vector x must van-
ish, hence

@f .x0 C�x/

@�x
D rf .x0/C r2f .x0/�x D 0

,�x D ��r2f .x0/
��1rf .x0/ ;

(19.4.9)

which yields the Newton step. If the function f .x/ is indeed quadratic, then the
Newton step

x.k C 1/ D x.k/C s.k/ (19.4.10)

s.k/ D ��r2f .x.k//
��1rf .x.k// (19.4.11)
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will lead directly to the optimum x� with ˛ D 1. As pointed out in Sect. 22.3,
the direct inversion of a matrix (r2f .x.k// in the case at hand) can be numerically
problematic. Furthermore, the Hessian matrix is seldom available, see also the Quasi-
Newton algorithms in the next section.

If the function can be approximated sufficiently well by a quadratic function, then
this approach will yield a point close to the optimum. The algorithm has to be carried
out iteratively. A big advantage of the second order methods is their speed and effi-
ciency. However, the second oder derivatives must be known and it must be ensured
that the Hessian matrix is positive definite, which may not be the case far from the
optimal point. In contrast to the first order (i.e. gradient based) algorithms, the size of
the update step is automatically determined as ˛ D 1 for the truly quadratic problem
and hence the unit step length must in theory not be determined by a subsequent one
dimensional line search. If it is however determined by a subsequent line search, then
˛ D 1 is a good initial value for the line search.

Quasi-Newton algorithms

The main disadvantage of the Newton algorithm is that information about the Hes-
sian matrix is seldom available. Hence, many Quasi-Newton algorithms have been
derived that try to approximate the Hessian from first order information alone.

Here, the update step is given as

x.k C 1/ D x.k/C s.k/ (19.4.12)
s D �H .k/ rf .x.k// ; (19.4.13)

where H .k/ is not the Hessian, but an approximation that approaches the inverse of
the Hessian matrix. The matrix H .k/ is initialized as H .0/ D I . The update step is
then given as

H .k C 1/ D H .k/CD.k/ (19.4.14)

with

D.k/ D � C ��

�2
p.k/p.k/T C � � 1

�
H .k/y.H .k/y/T

� �

�

�
H .k/ypT C p.H .k/y/T

� (19.4.15)

and the parameters

� D pTy (19.4.16)

� D yTH .k/y (19.4.17)
p D x.k/ � x.k � 1/ (19.4.18)

y D rf .x.k// � rf .x.k � 1// : (19.4.19)

The parameter � allows to switch between different modifications. For � D 0, one
obtains the DFP (Davidon, Fletcher, Powell) and for � D 1 the BFGS (Broyden,
Fletcher, Goldfarb, Shanno) algorithm, which vary on how they approximate the
inverse Hessian matrix.
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Gauss-Newton algorithm

For an objective function that is based on the sum of squares of an error function
ek.x/, one can find a special approximation of the Hessian matrix which leads to the
Gauss-Newton algorithm. The objective function shall be given as

f .x/ D
NX

kD1

e2
k.x/ : (19.4.20)

Then, the elements of the gradient @f .x/=@x are given as

@f .x/

@xi

D @

@xi

 
NX

kD1

e2
k.x/

!
D

NX
kD1

@

@xi

e2
k.x/ D

NX
kD1

2ek.x/
@

@xi

ek.x/ (19.4.21)

and the elements of the Hessian matrixH .x/ are given as

Hi;j .x/ D @2f .x/

@xi@xj

D @

@xj

 
NX

kD1

2e2
k.x/

@

@xi

ek.x/

!

D 2

NX
kD1

�
@

@xj

ek.x/

��
@

@xi

ek.x/

�
C 2

NX
kD1

@2

@xi@xj

ek.x/œ
�0

� 2

NX
kD1

�
@

@xj

ek.x/

��
@

@xi

ek.x/

�
:

(19.4.22)

Here, the Hessian can be approximated by first order information alone.
Using the Jacobian, defined as

J D @e

@x
; (19.4.23)

one can write the update step as

x.k C 1/ D x.k/C s.k/ (19.4.24)

s.k/ D ��J TJ
��1�

J Te
�
: (19.4.25)

Then, the approximate of the Hessian matrix is given asH � 2J TJ and the gradient
as r2f .x.k// D 2J Te. Once again, the direct inversion is numerically critical and
should be avoided. Hence, one can also determine the search vector from the equation

�
J TJ

��1
s.k/ D �J Te (19.4.26)

with the approaches that have been used in Sect. 22.3 to solve the problem of least
squares.
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Levenberg-Marquart algorithm

A modification to the Gauss-Newton is employed by the Levenberg-Marquart algo-
rithm, which is given as

x.k C 1/ D x.k/C s.k/ (19.4.27)

s.k/ D ��J TJ C �I
��1�

J Te
�
; (19.4.28)

where I is the unit matrix. This technique is also called trust-region algorithm. The
additional term in the denominator allows to rotate the update search vector s.k/ in
the direction of the steepest descent. For optimal results, the parameter � has to be
updated for each search step. However, typically, a heuristic approach is used and
� is increased if the algorithm is divergent and is decreased again if the algorithm
is convergent. By the introduction of the term �I and appropriate choice, one can
enforce descending function values in the optimization sequence. Furthermore, the
term �I can be used to increase the numerical stability of the algorithm.

19.5 Constraints

Often, constraints have to be imposed as part of the optimization problem. One typ-
ical constraint is stability of the model as an unstable model may not be simulated
correctly and may not be useful for the later application. Also, in many cases the
model is made up of physical parameters such as e.g. spring stiffnesses or masses,
which can for physical reasons not be negative and hence such physically mean-
ingless models should be excluded from the design space. Also, the inclusion of
constraints limits the flexibility of the model and hence can reduce the variance of
the model at the price of an increased bias, see also the bias-variance dilemma in
Sect. 20.2.

19.5.1 Sequential Unconstrained Minimization Technique

One approach to incorporate constraints into the optimization problem is the SUMT
technique, i.e. sequential unconstrained minimization technique. Here, a pseudo-
objective function is formulated as

˚.x; rP/ D f .x/C rPp.x/ ; (19.5.1)

where p.x/ is termed the penalty function and introduces the constraints into the
cost function. rP denotes the scalar penalty multiplier and is typically increased as
the optimization goes on to put more and more emphasis on avoiding constraint
violations. Several approaches are possible as described in the following.
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Exterior Penalty Function Method

The exterior penalty function method is given by

p.x/ D
mX

iD1

�
max.0; gj .x//

�2 C
lX

kD1

�
hk.x/

�2
: (19.5.2)

As was stated in the introduction, the entries gj .x/ represent inequality constraints,
i.e. must satisfy the condition gj .x/ � 0 and the entries hi .x/ represent equality
constraints, i.e. hi .x/ D 0.

Here, a penalty is only imposed if the corresponding constraint is violated, hence
the term exterior. The optimal design is therefore always approached from the in-
feasible side, premature stopping will cause an infeasible and hence often unusable
solution. One typically starts with small values of the penalty multiplier to allow in-
feasible designs at the beginning and hence to also permit the initial exploration of in-
feasible regions. rP can start with e.g. 0:1 and approach values of 10 000 : : : 100 000.

Interior Penalty Function Method

The interior penalty function method is given by

p.x/ D r 0
P

mX
iD1

�1
gj .x/

C rP

lX
kD1

.hk.x//
2 : (19.5.3)

The penalty term is positive as long as the solution is feasible and approaches infinity
as a constraint is violated. Here, both terms are weighted differently by rP and r 0

P.
The interior penalty function should be used if one can start in the feasible area at
a point not too far from the optimum. Then, the algorithm approaches the optimal
solution from the feasible region. The exterior penalty function should be used if the
initial guess is infeasible and/or far from the optimum. In contrast, one should never
starts the interior penalty function algorithm from an infeasible initial guess as the
algorithm likes infeasible solutions.

Extended Interior Penalty Function Method

The extended interior penalty function method is governed by

p.x/ D r 0
P

mX
iD1

Qgj .x/

with Qgj D

�
� 1

gj .x/
if gj .x/ � �"

�2" � gj .x/

"2
if gj .x/ > �"

;

(19.5.4)

where " is a small positive number and the penalty function is no longer discontinu-
ous at the constraint boundary.
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Quadratic Extended Interior Penalty Function Method

The quadratic extended interior penalty function method calculates the penalty func-
tion as

p.x/ D r 0
P

mX
iD1

Qgj .x/

with Qgj D

‚
� 1

gj .x/
if gj .x/ � "

�1
"

��
gj .x/

"

�
2 � 3gj .x/

"
C 3

�
if gj .x/ > " ;

(19.5.5)

where now also second order minimization techniques can be applied as the second
derivatives are now also continuous. However, this comes at the expense that the
degree of non-linearity of the penalty function increases.

Other Penalty Functions

Table 19.2 lists some penalty functions that can also be used.

Example 19.3 (Downhill Simplex Algorithm for Constrained Identification of the
Frequency Response of the Three-Mass Oscillator based on a Physical Model).

In this example, the physical parameters of the Three-Mass Oscillator shall be
determined from the frequency response that has been identified by means of the
orthogonal correlation.

The identification has been carried out in three steps: First, the frequency re-
sponse has been determined by the orthogonal correlation as described in Sect. 5.5.2.
Then, the amplitude of the experimentally determined frequency response has been
used to determine the physical parameters of the state space model, i.e. the vector of
estimated parameters was given as

�T D �
J1 J2 J3 d1 d2 d3 c1 c2

�
: (19.5.6)

As a cost function, the squared error between the amplitude jG.i!n/j of the recorded
frequency response and the amplitude of the model j OG.i!n/j was chosen. Hence

V D
NX

nD1

�jG.i!n/j � j OG.i!n/j
�2
: (19.5.7)

This allows to determine the parameters of the minimum-phase system. Constraints
have been introduced that guarantee that all parameters are non-negative to ensure
that one obtains physically meaningful parameter estimates.

The parameter estimates result as

OJ1 D 0:0184 kg m2 OJ2 D 0:0082 kg m2 OJ3 D 0:0033 kg m2

Oc1 D 1:3545Nm
rad Oc2 D 1:9307Nm

radOd1 D 9:8145 � 10�5 Nm s
rad

Od2 D 1:1047 � 10�7 Nm s
rad

Od3 D 0:0198Nm s
rad
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Table 19.2. Some penalty functions

Name, Shape and Equation Name, Shape and Equation

Parabolic Penalty Semiparabolic Penalty

h x( )

p x( )

g x( )

p x( )

p.x/ D rP
�
h.x/

�2
p.x/ D

�
rP
�
g.x/

�2 if g.x/ > 0
0 else

see Exterior Penalty Function Method see Exterior Penalty Function Method

Infinite Barrier Penalty Log Penalty

g x( )

p x( )

Huge Value whenever
Constraint is Violated

g x( )

p x( )

-1

p.x/ D
�
1020 if g.x/ > 0
0 else

p.x/ D �rP log
��g.x/�

Inverse Penalty

g x( )

p x( )

p.x/ D �rP 1
g.x/
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In the last step, also the phases have been matched, †G.i!n/ and † OG.i!n/ for
all n. This allowed to detect an additional dead time that comes from the sampling
and subsequent signal conditioning.

The additional dead time has been determined as

TD D 0:0047 s :

Finally, the frequency response of the model with this dead time is shown in
Fig. 19.6. ut
Example 19.4 (Downhill Simplex Algorithm for Constrained Identification based on
the Output Error of the Three-Mass Oscillator with a Physical Model).

In this example, the physical parameters of the Three-Mass Oscillator shall be
determined again, this time from a measurement in the time domain. The Three-
Mass Oscillator model was augmented with dry friction (Bähr et al, 2009) as the
iterative optimization techniques can deal also with non-linear models.

The cost function will be based on the output error

V D
NX

kD1

�
y.k/ � Oy.k/�2 (19.5.8)

and will yield the parameter vector

�T D �
J1 J2 J3 d1 d2 d3 d0;1 d0;2 d0;3 c1 c2

�
: (19.5.9)

Constraints have once again been introduced that guarantee that all parameters are
positive to ensure that one obtains meaningful parameter estimates. The results of
the time domain model with the parameter estimates are presented in Fig. 19.7.

OJ1 D 0:0188 kg m2 OJ2 D 0:0076 kg m2 OJ3 D 0:0031 kg m2

Oc1 D 1:3958Nm
rad Oc2 D 1:9319Nm

radOd1 D 2:6107 � 10�4 Nm s
rad

Od2 D 0:001Nm s
rad

Od3 D 0:0295Nm s
radOd10 D 0:0245 Nm Od20 � 0:0 Nm Od30 D 0:6709 Nm

OTD D 0:0018 s

Comparing these values with the results from Example. 19.3, where a purely
linear model was used, one can see that the results match very well. As the friction
model was refined, the identification results for the friction model of course have
changed. ut

One can also derive constrained direct search techniques. However, for these
techniques the reader is referred to the before mentioned books that deal exclusively
with numerical optimization techniques.
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19.6 Prediction Error Methods using Iterative Optimization

The identification of linear systems as discussed in Chap. 9 was limited to special
model classes as the problem had to be linear in parameters. Hence, only an ARX
model could be estimated using the direct method of least squares. Several modifica-
tions to this basic approach for linear dynamic processes were presented in Chap. 10
and allowed to also identify certain other model classes. In this section, the prediction
error method will now be introduced, which uses the Gauss-Newton or Levenberg-
Marquart method to solve a non-linear least squares problem. As the problem now
does not have to be linear in the parameters, a much larger variety of different model
classes can be identified (Ljung, 1999).

The class of prediction error methods (PEM) shall now be developed. Their com-
mon approach is to predict the current process output Oy.k/ based on measurement
of the input up to time step k � 1. The algorithm will be developed for the most
generic case depicted in Fig. 19.8 and can easily be adapted to more specific cases
by equating the appropriate terms.

The output y.k/ is given by the sum of the response due to the model input u.k/
and the disturbing noise n.k/ as

y.k/ D yu.k/C n.k/ : (19.6.1)

If the white noise 	.k/ that is driving the form filter used to generate the disturbance
n.k/ would be known, one could easily calculate the true values of the disturbance
n.k/ as a function of time by

mcX
iD0

ci	.k/q
�i D

mdX
iD0

din.k/q
�i ; (19.6.2)

which is just the transfer function of the form filter written in the time domain, see
Fig. 19.9a. Here and in the following c0 D 1, d0 D 1.

However, since the true value of the white noise at time step k is unknown, it
must be estimated as O	.kjk � 1/ based on measurements up to time step k � 1.
(19.6.2) can be written as

mcX
iD0

ci O	.k/q�i D
mdX

iD0

din.k/q
�i : (19.6.3)
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Fig. 19.9. Prediction of the noise On.k/ based on measurements of n.i/ for i � k � 1

The past values of 	.i/ with i � k � 1 can be determined from the past values of
n.i/ with i � k � 1 and are hence assumed to be known. The current value 	.k/
is unknown and must be assumed properly. Since 	.k/ is a zero-mean white noise
sequence, each value of 	.k/ is uncorrelated with all other values and the expected
value is Ef	.k/g D 0. Therefore, the estimate O	.k/ should be chosen as

O	.kjk � 1/ D E
˚
	.k/

� D 0 : (19.6.4)

Then, the estimate On.kjk � 1/ is given as
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mcX

iD1

ci O	.k/q�1 �
mdX

iD1

din.k/q
�1 D On.kjk � 1/

,
 

mcX
iD0

ci O	.k/q�i � O	.k/
!

�
 

mdX
iD0

din.k/q
�i � n.k/

!
D On.kjk � 1/ :

(19.6.5)

The resulting block diagram is shown in Fig. 19.9c. This block diagram can be trans-
formed to the form in Fig. 19.9d, which then provides the prediction of On.kjk � 1/

as

On.kjk � 1/ D
�
1 � D.q�1/

C.q�1/

�
n.k/ : (19.6.6)

This model already allows to estimate noise models, i.e. estimate stochastic models.
In the next step, the deterministic part of the process model in Fig. 19.8 will be

attached. Since
y.k/ D yu.k/C n.k/ (19.6.7)

and

yu.k/ D B.q�1/

A.q�1/
u.k/ ; (19.6.8)

one can first subtract yu.k/ to obtain n.k/, then provide the estimate On.kjk � 1/

by (19.6.6) and then add yu.k/ to obtain Oy.kjk � 1/. This leads to the prediction
equation

Oy.kjk � 1/ D
�
1 � D.q�1/

C.q�1/

�
y.k/C D.q�1/ B.q�1/

C.q�1/ A.q�1/
u.k/ ; (19.6.9)

see also Fig. 19.9e.
The predicted output Oy.kjk � 1/ can now be used to determine the prediction

error e.k/ as
e.k/ D y.k/ � Oy.kjk � 1/ : (19.6.10)

Based on this error, one can now use a quadratic cost function as

f .x/ D
NX

kD1

e2
k.x/ ; (19.6.11)

which can be solved by the Gauss-Newton algorithm presented in Sec. 19.4.3.
For the model in (19.6.9), analytical gradients can be determined as

@

@ai

Oy.kjk � 1/ D � D.q�1/ B.q�1/

C.q�1/ A.q�1/ A.q�1/
u.k � i/ (19.6.12)

@

@bi

Oy.kjk � 1/ D D.q�1/

C.q�1/ A.q�1/
u.k � i/ (19.6.13)



494 19 Iterative Optimization

@

@ci

Oy.kjk � 1/ D � D.q�1/ B.q�1/

C.q�1/ C.q�1/ A.q�1/
u.k � i/C D.q�1/

C.q�1/ C.q�1/
y.k � i/
(19.6.14)

@

@di

Oy.kjk � 1/ D B.q�1/

C.q�1/ A.q�1/
u.k � i/ � 1

C.q�1/
y.k � i/ : (19.6.15)

19.7 Determination of Gradients

In the previous section, first and second order methods have been presented, which
require knowledge of the corresponding derivatives. One can use the standard finite
differencing techniques. In the one dimensional case, the first derivative of f with
respect to x can be approximated by

df .x/
dx

D f .x C�x/ � f .x/
�x

; (19.7.1)

where �x must be chosen appropriately. The second derivative can be determined
as

d2f

dx2
D f .x C�x/ � 2f .x/C f .x ��x/

�x2
: (19.7.2)

The approach can be extended to the multi-dimensional case in a straightforward
way.

For state space systems, also an algorithm for determining the derivatives of the
output with respect to a parameter of the input or state matrix shall be derived. As
this approach can also be used for the identification of input/output models for linear
systems based on the differential equation in the output error setting, this derivation
is of high relevance.

For the state space model given in (2.1.24) and (2.1.25)

Px.t/ D Ax.t/C bu.t/ (19.7.3)

y.t/ D cTx.t/C du.t/ ; (19.7.4)

one now wants to determine the partial derivative of the states x.t/ and the out-
put y.t/ with respect to the entry ai;j of the matrix A. There one can determine
@x.t/=@ai;j by the differential equation

@

@ai;j

Px.t/ D @A

@ai;j

x.t/CA
@x.t/

@ai;j

: (19.7.5)

Hence, one can solve the augmented state space system	 Px.t/
@

@ai;j

Px.t/



D
	

A 0
@A

@ai;j

A


	
x.t/
@

@ai;j

x.t/



C
�
b

0

�
u.t/ : (19.7.6)
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to obtain the states and the partial derivatives of the state with respect to the entry
ai;j at the same time. From there, one can determine the partial derivative of the
output as

@

@ai;j

y.t/ D cT @x.t/

@ai;j

: (19.7.7)

With a similar approach, one can determine the partial derivative of the states
x.t/ and the output y.t/ with respect to the parameter bi of the input vector. Here,
the augmented state space system is given as	 Px.t/

@

@bi

Px.t/



D
�
A 0

0 A

�	 x.t/
@

@bi

x.t/



C
	
b
@b

@bi



u.t/ (19.7.8)

and
@

@bi

y.t/ D cT @x.t/

@bi

: (19.7.9)

Partial derivatives with respect to the entries ci of the output distribution vector man-
ifest themselves only in the output equation (2.1.25) as the states are not a function
of the ci . Hence

@

@ci

y.t/ D @cT

@ci

x.t/ : (19.7.10)

From these partial derivatives, one can easily determine the partial derivatives of
the cost function with respect to the parameters to be estimated in the linear case.
A derivation of the partial derivatives can also be found in (Verhaegen and Verdult,
2007) and (van Doren et al, 2009). The major disadvantage is that for a large number
of parameters �i , a large number of filters must be employed (Ninness, 2009), where
also alternatives for high dimensional parameter estimation problems are discussed.
Note that one can speed up the calculation by first solving the differential equation
Px.t/ D Ax.t/ C bu.t/ and then solving the differential equation for the partial
derivatives of the states in a second step.

The book by van den Bos (2007) also contains an extensive treatment of non-
linear optimization algorithms for parameter estimation and shows the derivation of
the Newton step for some other cost functions, such as the maximum likelihood, as
well.

19.8 Model Uncertainty

With an approach similar to Sect. 9.1.3, one can now also determine the parameter
covariance for the solutions found by the iterative optimization. One approach, based
on a Taylor series expansion is shown in (Ljung, 1999). Here, a different approach
will be pursued based on the rules of error propagation. The model output shall be
denoted as

Oy D f . O�/ : (19.8.1)
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The covariance of the model output can be determined from

cov Oy D E
˚
. Oy � Ef Oyg/2� ; (19.8.2)

which for finite sample times can be determined as

cov Oy � 1

N

N �1X
kD0

� Oy.k/ � y.k/�2 ; (19.8.3)

where it was assumed that the model error, i.e. Oy.k/ � y.k/ is zero-mean. If it was
not zero mean, then one would not have obtained the minimum possible error metric.
Furthermore, from error propagation, one knows that

cov y D
�
@y.�/

@�

ˇ̌̌
ˇ
�D O�

�T

cov��
�
@y.�/

@�

ˇ̌̌
ˇ
�D O�

�
; (19.8.4)

which can now be solved for the covariance of the parameters as

cov�� D�
@2y.�/

@�@�T

ˇ̌̌
ˇ
�D O�

��1�
@y.�/

@�

ˇ̌̌
ˇ
�D O�

�T

cov y
�
@y.�/

@�

ˇ̌̌
ˇ
�D O�

��
@2y.�/

@�@�T

ˇ̌̌
ˇ
�D O�

��1

:

(19.8.5)

This equation allows to determine the parameter error covariance for arbitrary non-
linear models.

19.9 Summary

The numerical optimization algorithms presented in this chapter allow to solve pa-
rameter estimation problems even and especially if they are not linear in the para-
meters. Due to the iterative approach of these algorithms, they hardly qualify for
real-time implementations. However, their big advantage is the fact that these meth-
ods can solve a much larger variety of estimation problems than the direct methods
and that in addition constraints on the parameters can easily be introduced into the
problem formulation.

The parallel and the series-parallel model are introduced as two means to deter-
mine the error between model and measurement. The optimization problem state-
ment has been introduced incorporating both inequality and equality constraints. Al-
though it may seem impeding at first to formulate constraints, it is often advisable
to do so. Constraints can help to steer the optimizer towards the optimum as they
exclude certain areas of the design space from the search. Furthermore, equality con-
straints can be used to reduce the number of parameters that have to be determined
by the optimizer. Also, constraints can be necessary to ensure the subsequent appli-
cability of the model. For example, physical parameters can often not be negative
and hence such useless solutions can be excluded from the very beginning.
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A big advantage is the fact that the model must not be brought to a form where it
is linear in parameters, i.e. any model can be used for system identification regardless
of being linear or non-linear, continuous-time or discrete-time, linear in parameters
or not.

The major disadvantage is the fact that it is not guaranteed that the global opti-
mum is found. As a matter of fact, convergence is not guaranteed at all. Also, the
number of iterations that is necessary to reach an optimal point is not known a priori
for most algorithms, thus impeding real-time application. And finally, the computa-
tional effort is much larger than for the direct methods presented so far.

Although the solution of many of these parameter estimation problems are in
theory unbiased and efficient, no guarantee is given that the numerical algorithms,
employed for the solution of the problem, in fact approach the global optimum. How-
ever, properties such as efficiency and unbiasedness are only satisfied for the glob-
ally optimal solution. Therefore, one might obtain results that are of less quality than
those results obtained by the direct methods such as e.g. the method of least squares.

One should try to impose constraints on the parameters whenever easily possible.
Often, an interval with lower and upper bound can be specified for the parameters.
Stability is another typical constraint, especially since unstable systems can hardly
be simulated in parallel to the process. A very easy approach is to incorporate the
constraints into the cost function by means of a penalty function. Many details have
been spared in this overview, such as design variable scaling, constraint scaling, etc.

The starting point of the optimization run, which is called initial guess, plays an
important role for the convergence of the algorithms. One can try to start the algo-
rithm from several randomly chosen starting points to ensure that the optimizer ap-
proaches the global optimum and does not get stuck in a local optimum. Also, some
penalty functions require that the initial guess is feasible, i.e. satisfies all constraints.
For the determination of starting values, the simple methods presented in Sect. 2.5
that allowed to determine characteristic values of the system can be helpful. A fur-
ther approach is to first identify a model using a non-iterative method such as e.g. the
method of least squares (see Chap. 9) or subspace methods to derive the parameters
of a black-box model. This model is either given in a state space representation or
can be brought to such a form. Then, a similarity transform (see (17.2.9) through
(17.2.11)) can be determined that transforms the identified state space model to the
structure of a physically derived state space model and at the same time allows to
determine the physical parameters, (Parillo and Ljung, 2003; Xie and Ljung, 2002),
see Chap. 15.

For such an initial model determination, a zeroth order method together with the
incorporation of constraints by means of a penalty function seems a very favorable
way as zeroth order methods are very robust and the number and type of constraints
changes often. Also, for zeroth order methods, one does not have to provide infor-
mation about the gradient and possibly Hessian matrix. This is very beneficial at
the beginning of the process identification, where the structure of the model might
be changed or refined often due to first identification results. One might even start
without any constraints and add constraints as they become necessary to steer the op-
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timizer away from meaningless solutions. Here, one can always use the same uncon-
strained optimization algorithms regardless of the presence or absence of constraints.

If the model as parameterized by the above non-linear parameter estimation
method, has been proven well in representing the process dynamics (see Sect. 23.8,
for methods to validate the results), then one should try to formulate a model that is
linear in parameters and can be parametrized by direct methods as this will guarantee
that the estimator converges and that the global optimum will be obtained. Also, the
computational effort is much smaller, which is beneficial if e.g. models of multiple
similar processes must be parameterized or the parameter estimation shall be imple-
mented in a real-time application, e.g. for adaptive control (Isermann et al, 1992) or
for fault detection and diagnosis (Isermann, 2006).

Problems

19.1. Parallel and Serial-Parallel Model
What are advantages and disadvantages of the two model setups? Why does the
series-parallel model become extremely problematic for small sample times com-
pared to the system dynamics?

19.2. Rosenbrock Function
Using different n-dimensional optimization algorithms that have been presented in
this chapter, try to determine the optimum of the Rosenbrock function

f .x/ D .1 � x1/
2 C 100.x2 � x2

1/
2

also called banana function.

19.3. Zeroth, First, and Second Order Methods
What are the advantages and disadvantages of using an algorithm that requires gra-
dient or Hessian information?

19.4. Objective Functions
Set up suitable objective functions for identification in the time domain and the
frequency domain. Are these objective functions linear in parameters or not? How
would you determine the optimal parameters, i.e. find the minimum?

19.5. Constraints
What are typical constraints in the area of system identification that could be intro-
duced into the optimization problem?

19.6. System Identification
Determine the optimization algorithm for a first order process

y.k/C a1y.k � 1/ D b1u.k � 1/
by forming a quadratic cost function and apply

� a gradient search algorithm
� a Newton-Raphson algorithm

to identify the parameters a1 and b1.
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20

Neural Networks and Lookup Tables for Identification

Many processes show a non-linear static and dynamic behavior, especially if wide
areas of operation are considered. Therefore, the identification of non-linear pro-
cesses is of increasing interest. Examples are vehicles, aircraft, combustion engines,
and thermal plants. In the following, models of such non-linear systems will be de-
rived based on artificial neural networks, that had first been introduced as universal
approximators of non-linear static functions.

20.1 Artificial Neural Networks for Identification

For a general identification approach, methods of interest are those that do not re-
quire specific knowledge of the process structure and hence are widely applicable.
Artificial neural networks fulfill these requirements. They are composed of mathe-
matically formulated neurons. At first, these neurons were used to describe the be-
havior of biological neurons (McCulloch and Pitts, 1943). The interconnection of
neurons in networks allowed the description of relationships between input and out-
put signals (Rosenblatt, 1958; Widrow and Hoff, 1960). In the sequel of this chapter,
artificial neural networks (ANNs) are considered that map input signals u to output
signals y, Fig. 20.1. Usually, the adaptable parameters of neural networks are un-
known. As a result, they have to be adapted by processing measured signals u and y
(Hecht-Nielsen, 1990; Haykin, 2009). This is termed “training” or “learning”.

One can discern two steps in the design of a neural net. The first is the training,
where the weights or other parameters of the neural net are optimized. The second
step then is the generalization, where the net is used to simulate new data, that have
not been part of the training data and allow to judge the performance of the net for
unknown data. The goal is to obtain the smallest possible error for both training and
generalization. The model error can be split in two parts as

E
˚
.y0 � Oy/2�š

.Model Error/2

D E
˚
.y0 � Ef Oyg/2�›

.Bias Error/2

C E
˚
. Oy � Ef Oyg/2�›
.Variance Error/

: (20.1.1)

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_20, © Springer-Verlag Berlin Heidelberg 2011 
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Fig. 20.1. System with P inputs and M
outputs, which has to be approximated by
an artificial neural network (ANN)
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Fig. 20.2. Trade-off between bias error
and variance error

The bias error is a systematic deviation between the true system output and the
expected model output, that appears when the model does not have enough flexibility
to fit the real process (Underfitting). Consequently, the bias error decreases as the
model complexity increases. The variance error is the deviation between the model
output and the expected model output. The variance error increases as the number of
degrees of freedom of the model increases. The model is more and more adapted to
the specific peculiarities of the training data set such as noise and outliers. Hence, in
choosing the model structure, there is always a trade-off between the bias error and
the variance error, which is termed bias-variance dilemma, see Fig. 20.2 (German
et al, 1992; Harris et al, 2002).

In identification, one is interested in approximating the static or dynamic behav-
ior of processes by means of (non)-linear functions. On the contrary, if inputs and
outputs are gathered into groups or clusters, a classification task in connection with
e.g. pattern recognition is given (Bishop, 1995). In the following, the problem of
non-linear system identification is considered (supervised learning). Thereby, the ca-
pability of ANNs to approximate non-linear relationships to any desired degree of
accuracy is utilized. Firstly, ANNs for describing static behavior (Hafner et al, 1992;
Preuß and Tresp, 1994), will be investigated, which will then be extended to dynamic
behavior (Ayoubi, 1996; Nelles et al, 1997; Isermann et al, 1997).

20.1.1 Artificial Neural Networks for Static Systems

Neural networks are universal approximators for static non-linearities and are con-
sequently an alternative to polynomial approaches. Their advantages are the require-
ment of only little a priori knowledge about the process structure and the uniform
treatment of single-input and multi-input processes. In the following, it is assumed
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Fig. 20.3. General neuron model for process modeling with measured inputs and outputs

that a non-linear system with P inputs and M outputs has to be approximated, see
Fig. 20.1.

Neuron Model

Figure 20.3 shows the block diagram of a neuron. In the input operator (synaptic
function), a similarity measure between the input vector u and the (stored) weight
vector w is formed, e.g. by the scalar product

x D wTu D
PX

iD1

wiui D jwTjjuj cos' (20.1.2)

or the Euclidean distance

x D ku �wk2 D
PX

iD1

�
ui � wi

�2
: (20.1.3)

Ifw and u are similar, the resulting scalar quantity x will be large in the first case
and small in the second case. The quantity x, also called the activation of the neuron,
affects the activation function and consequently the output value
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Fig. 20.4. Network structure: Layers and links in a neural network

y D �.x � c/ : (20.1.4)

Table 20.1 shows several examples of those in general non-linear functions. The
threshold c is a constant causing a parallel shift in the x-direction.

Network Structure

The single neurons are interconnected to a network structure, Fig. 20.4. Hence, one
has to distinguish between different layers with neurons arranged in parallel: the in-
put layer, the first, second, : : : hidden layer and the output layer. Generally, the input
layer is used to scale the input signals and is often not counted as a separate layer.
Then, the real network structure begins with the first hidden layer. Figure 20.4 shows
the most important types of internal links between neurons: feedforward, feedback,
lateral and recurrent. With respect to their range of values, the input signals can be
either binary, discrete, or continuous. Binary and discrete signals are used especially
for classification, while continuous signals are used for identification tasks.

Multi Layer Perceptron (MLP) Network

The neurons of an MLP network are called perceptrons, Fig. 20.5, and follow directly
from the general neuron model, shown in Fig. 20.3. Typically, the input operator is
realized as a scalar product, while the activation functions are realized by sigmoidal
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Table 20.1. Examples of activation functions

Name, Shape and Equation Name, Shape and Equation

Hyberbolic Tangens Neutral Zone
(Tangens Hyperbolics)

x

y

-1

1

c x

y

-1

1

c

2

y D e.x�c/ � e�.x�c/

e.x�c/ C e�.x�c/
y D

˚
x � c � 1 for x � c � 1

0 for jx � cj < 1
x � c C 1 for x � c � �1

Sigmoid Function Gauss Function

x

y

-1

1

0,5

c x

y

-1

1

c

y D 1
1Ce�.x�c/

y D e�.x�c/2

Limiter Binary Function

x

y

-1

1

c x

y

-1

1

c

y D
˚
1 for .x � c/ � 1

x � c for jx � cj < 1
�1 for x � c � �1

y D
�
0 for x � c < 0
1 for x � c � 0
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Fig. 20.6. Feedforward Multi Layer Perceptron network (MLP network). Three layers with
.2 � 3 � 1/ perceptrons. < K > is the first hidden layer

or hyperbolic tangent functions. The latter ones are a multiple of differentiable func-
tions yielding a neuron output with y D 0 in a wide range. As however, the output
is also non-zero in a wide range as well, they have a global effect with extrapolation
capability. The weights wi are assigned to the input operator and lie in the signal
flow before the activation function.

The perceptrons are connected in parallel and are arranged in consecutive layers
to a feedforward MLP network, Fig. 20.6. Each of the P inputs affects each percep-
tron in such a way that in a layer with P inputs andK perceptrons there exist .K �P /
weights wkp . The output neuron is most often a perceptron with a linear activation
function, Fig. 20.7.

The adaptation of the weights wi based on measured input and output signals is
usually realized by the minimization of the quadratic cost function.

V.w/ D 1

2

N �1X
kD0

e2.k/ (20.1.5)
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Fig. 20.7. Output neuron as Perceptron with linear activation function for layer M

with
e.k/ D y.k/ � Oy.k/ ; (20.1.6)

where e.k/ is the model error, y.k/ is the measured output signal, and Oy.k/ is the
network output after the output layer M .

As in the case of parameter estimation with the least squares method, one equates
the first derivative of the cost function with respect to the parameters of the net to
zero, i.e.

dV.w/
dw

D 0 : (20.1.7)

Due to the non-linear dependency, a direct solution is not possible. Therefore, e.g.
gradient-based methods for numerical optimization are applied, see also Chap. 19.
Because of the necessary back-propagation of the errors through all hidden layers,
the method is called error back-propagation or also delta-rule. The so-called learn-
ing rate � has to be chosen (tested) suitably. In principle, gradient-based methods
allow only slow convergence in the case of a large number of unknown parameters.

Radial Basis Function (RBF) Network

The neurons of RBF networks, Fig. 20.8, compute the Euclidean distance in the input
operator

x D ku � ck2 (20.1.8)

and feed it to the activation function

ym D �m

�ku � cmk2
�
: (20.1.9)

The activation function is given by radial basis functions usually in the form of Gaus-
sian functions with

�m D exp

 
�1
2

�
.u1 � cm1/

2

�2
m1

C .u2 � cm2/
2

�2
m2

C: : :C .uP � umP /
2

�2
mP

�!
: (20.1.10)
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Fig. 20.8. Neuron with Radial Basis Function (RBF)

The centers cm and the standard deviations �m are determined a priori so that the
Gaussian functions are spread, e.g. uniformly in the input space. The activation func-
tion determines the distances of each input signal to the center of the corresponding
basis function. However, radial basis functions contribute to the model output only
locally, namely in the vicinity of their centers. They possess less extrapolation ca-
pability, since their output values tend to go to zero with a growing distance to their
centers.

Usually, radial basis function networks consist of two layers, Fig. 20.9. The out-
puts yi are weighted and added up in a neuron of the perceptron type, Fig. 20.7, so
that

Oy D
MX

mD1

wm�m

�ku � cmk2
�
: (20.1.11)

Since the output layer weights are located behind the non-linear activation functions
in the signal flow, the error signal is linear in these parameters and consequently,
the least squares method in its explicit form can be applied. In comparison to MLP
networks with gradient-based methods, a significantly faster convergence can be ob-
tained. However, if the centers and standard deviations have to be optimized too,
non-linear numerical optimization methods are required again.

Local Linear Model Networks

The local linear model tree network (LOLIMOT) is an extended radial basis function
network (Nelles et al, 1997; Nelles, 2001). It is extended by replacing the output layer
weights with a linear function of the network inputs (20.1.12). Furthermore, the RBF
network is normalized, such that the sum of all basis functions is always one. Thus,
each neuron represents a local linear model with its corresponding validity function,
see Fig. 20.10. The validity functions determine the regions of the input space where
each neuron is active. The general architecture of local model networks is extensively
discussed in (Murray-Smith and Johansen, 1997a).
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Fig. 20.9. Feedforward Radial Basis Function (RBF) network

The kind of local model network discussed here utilizes normalized Gaussian
validity functions (20.1.10) and an axis-orthogonal partitioning of the input space.
Therefore, the validity functions can be composed of one-dimensional membership
functions and the network can be interpreted as a Takagi-Sugeno fuzzy model.

The output of the local linear model is calculated by

Oy D
MX

mD1

˚m.u/
�
wm;0 C wm;1um C : : :C wm;pup

�
(20.1.12)

with the normalized Gaussian validity functions

˚m.u/ D �m.u/

MX
iD1

�i .u/

(20.1.13)

with

�i .u/ D
pY

j D1

exp

 
�1
2

 �
uj � ci;j

�2
�2

i;j

!!
: (20.1.14)

The centers ci;j and standard deviations �i;j are non-linear parameters, while the
local model parameters wm are linear parameters. The local linear model tree
(LOLIMOT) algorithm is applied for the training. It consists of an outer loop, in
which the input space is decomposed by determining the parameters of the validity
functions, and a nested inner loop in which the parameters of the local linear models
are optimized by locally weighted least squares estimation.

The input space is decomposed in an axis-orthogonal manner, yielding hyper-
rectangles. In their centers, Gaussian validity functions �i .u/ are placed. The stan-
dard deviations of these Gaussians are chosen proportionally to the extension of
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Fig. 20.10. Local Linear Model Network (LOLIMOT)

hyper-rectangles to account for the varying granularity. Thus, the non-linear para-
meters ci;j and �i;j are determined by a heuristic-avoiding explicit non-linear opti-
mization. LOLIMOT starts with a single linear model that is valid for the whole in-
put space. In each iteration, it splits one local linear model into two new sub-models.
Only the (locally) worst performing local model is considered for further refinement.
Splits along all input axes are compared and the best performing split is carried out,
see Fig. 20.11.

The main advantages of this local model approach are the inherent structure
identification and the very fast and robust training algorithm. The model structure
is adapted to the complexity of the process. However, explicit application of time-
consuming non-linear optimization algorithms can be avoided.

Another local linear model architecture, the so-called hinging hyperplane trees,
is presented by Töpfer (1998, 2002a,b). These models can be interpreted as an exten-
sion of the LOLIMOT networks with respect to the partitioning scheme. While the
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LOLIMOT algorithm is restricted to axis-orthogonal splits, the hinging hyperplane
trees allow an axis-oblique decomposition of the input space. These more complex
partitioning strategies lead to an increased effort in model construction. However,
this feature has advantages in the case of strongly non-linear model behavior and
higher-dimensional input spaces.

The fundamental structures of three artificial neural networks have been de-
scribed. These models are very well suited to the approximation of measured in-
put/output data of static processes, compare also (Hafner et al, 1992; Preuß and
Tresp, 1994). For this, the training data has to be chosen in such a way that the
considered input space is as evenly as possible covered with data. After the training
procedure, a parametric mathematical model of the static process behavior is avail-
able. Consequently, direct computation of the output values Oy for arbitrary input
combinations u is possible.

An advantage of the automatic training procedure is the possibility of using ar-
bitrarily distributed data in the training data set. There is no necessity to know data
at exactly defined positions, as in the case of grid-based look-up table models, see
Sect. 20.2. This clearly decreases the effort required for measurements in practical
applications.
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Example 20.1 (Artificial Neural Network for the Static Behavior of an Internal Com-
bustion Engine).

As an example, the engine characteristics of a six-cylinder SI (spark-ignition)
engine is used. Here, the engine torque has to be identified and is dependent on the
throttle angle and the engine speed. Figure 20.12 shows the 433 available data points
that were measured on an engine test stand.

For the approximation, an MLP network is applied. After the training, an approx-
imation for the measurement data shown in Fig. 20.13 is given. For that purpose, 31
parameters are required. Obviously, the neural network possesses good interpolation
and extrapolation capabilities. This also means that in areas with only few training
data, the process behavior can be approximated quite well (Holzmann et al, 1997).

ut

20.1.2 Artificial Neural Networks for Dynamic Systems

The memoryless static networks can be extended with dynamic elements to dynamic
neural networks. One can distinguish between neural networks with external and
internal dynamics (Nelles et al, 1997; Isermann et al, 1997). ANNs with external
dynamics are based on static networks, e.g. MLP or RBF networks. The discrete-
time input signals u.k/ are passed to the network through additional filters Fi .q

�1/.
In the same way, either the measured output signals y.k/ or the NN outputs Oy.k/ are
passed to the network through filters Gi .q

�1/. The operator q�1 denotes a time shift

y.k/q�1 D y.k � 1/ : (20.1.15)

In the simplest case, the filters are pure time delays, Fig. 20.14a, such that the time-
shifted sampled values are the network input signals, i.e.

Oy.k/ D fNN
�
u.k/; u.k � 1/; : : : ; Oy.k � 1/; Oy.k � 2/; : : :� : (20.1.16)

The structure in Fig. 20.14a shows a parallel model (equivalent to the output
error model for parameter estimation of linear models). In Fig. 20.14b, the measured
output signal is passed to the network input. This represents, the series-parallel model
(equivalent to the equation error model for parameter estimation of linear models).
One advantage of the external dynamic approach is the possibility of using the same
adaptation methods as in the case of static networks. However, the drawbacks are
the increased dimensionality of the input space, possible stability problems, and an
iterative way of computing the static model behavior, namely through simulation of
the model.

ANNs with internal dynamics realize dynamic elements inside the model struc-
ture. According to the kind of included dynamic elements, one can distinguish be-
tween recurrent networks, partially recurrent networks and locally recurrent globally
feedforward networks (LRGF) (Nelles et al, 1997). The LRGF networks maintain the
structure of static networks except that dynamic neurons are utilized, see Fig. 20.15.
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The following can be distinguished: Local synapse feedback, local activation feed-
back, and local output feedback. The simplest case is the local activation feedback
(Ayoubi, 1996). Here, each neuron is extended by a linear transfer function, most
often of first or second order, see Fig. 20.16. The dynamic parameters ai and bi are
adapted. Static and dynamic behavior can be easily distinguished and stability can
be guaranteed.

Usually, MLP networks are used in LRGF structures. However, RBF networks
with dynamic elements in the output layer can be applied as well, if a Hammerstein-
structure of the process can be assumed (Ayoubi, 1996). Usually, the adaptation of
these dynamic NNs is based on extended gradient methods (Nelles et al, 1997).

Based on the basic structure of ANNs, special structures with particular prop-
erties can be built. If, for example, the local linear model network (LOLIMOT) is
combined with the external dynamic approach, a model structure with locally valid
linear input/output models result. The excitation of non-linear processes requires the
application of multi-valued input signals, e.g. amplitude modulated random binary
signals (e.g. APRBS or AGRBS), see Sect. 6.3.

20.1.3 Semi-Physical Local Linear Models

Frequently the static or dynamic behavior of processes depends on the operating
point, described by the variables z. Then all the inputs have to be separated into
manipulated variables u and operating point variables z. By this separation, local



20.1 Artificial Neural Networks for Identification 515

Σ

Σ

q
-1

q
-1

q
-1

q
-1

q
-1

q
-1

q
-1

q
-1

Σ

Σ

a)

b)

c)

q
-1

q
-1

q
-1

q
-1

Σ Σ

Fig. 20.15. Dynamic neurons for neural networks with internal dynamics. (a) local synapse
feedback. (b) local activation feedback. (c) local output feedback



516 20 Neural Networks and Lookup Tables for Identification

w1

w1

w2

w2

wP

wP

Σ

Σ

..
.

..
.

u1

u1

u2

u2

uP

uP

υ

υ

x

x

y

y

x

x

y

y

-1

-1

1

1

c

c

b +b z +b z0 1 2

-1 -2

Σbi

1+a z +a z1 2

-1 -2

1+ aΣ i

Dynamic Perceptron

Static Perceptron

k=

Fig. 20.16. Dynamic and static perceptron (Ayoubi, 1996)

linear models can be identified with varying parameters depending on the operating
point, also called linear parameter variable models (LPVM) (Ballé, 1998).

A non-linear discrete-time dynamic model with p inputs ui and one output y can
be described by

y.k/ D f .x.k// (20.1.17)

with

xT.k/ D �
u1.k � 1/ : : : u1.k � nu1/ : : : up.k � 1/ : : : up.k � nup/

y.k � 1/ : : : y.k � ny/
�
:

(20.1.18)

For many types of non-linearities this non-linear (global) overall model can be rep-
resented as a combination of locally active submodels

Oy D
MX

mD1

˚m.u/gm.u/ : (20.1.19)

The validity of each submodel gm is given by its corresponding weighting func-
tion ˚m (also called activation or membership function). These weighting functions
describe the partitioning of the input space and determine the transition between
neighboring submodels (Nelles and Isermann, 1995; Babuška and Verbruggen, 1996;
Murray-Smith and Johansen, 1997a; Nelles, 2001). Different local models result
from the way of partitioning the input space u, e.g. grid structure, axis-orthogonal
cuts, axis-oblique cuts, etc., as well as the local model structure and the transition
between submodels (Töpfer, 2002b).
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Due to their transparent structure, local models offer the possibility of adjusting
the model structure to the process structure in terms of physical law based relation-
ships. Such an incorporation of physical insight improves the training and the gener-
alization behavior considerably and reduces the required model complexity in many
cases.

According to (20.1.19), identical input spaces for the local submodels gm.u/ and
the membership functions ˚.u/ have been assumed. However, local models allow
the realization of distinct input spaces, Fig. 20.17, with

Oy D
MX

mD1

˚m.z/gm.x/ : (20.1.20)

The input vector z of the weighting functions contains only those inputs of the vector
u having significant non-linear effects that cannot be captured sufficiently well by the
local submodels. Only those directions require a subdivision into different parts. The
decisive advantage of this procedure is the considerable reduction of the number of
inputs in z. Thus, the difficult task of structure identification can be simplified.

The use of separate input spaces for the local models (vector x) and the member-
ship functions (vector z) becomes more precise by considering another representa-
tion of the structure in (20.1.20). As normally, local model approaches are assumed
to be linear with respect to their parameters according to

gi .x/ D wi0 C wi1x1 C : : :C winx
xnx

: (20.1.21)

One can arrange (20.1.20) as

Oy D w0.z/Cw1.z/x1C: : :Cwnx
.z/xnx

withwj .z/ D
MX

mD1

wmj˚m.z/ ; (20.1.22)

where typically a constant term wm0 is added to each local model making it an affine
local model rather than a purely linear local model. The term wm0 is used to model
the operation point dependent DC value of the large signal values.

Thus, the specified local model approaches can be interpreted as linear in the
parameters with operating point dependent parameters wj .z/, whereupon these pa-
rameters depend on the input values in the vector z. Consequently, the process co-
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efficients wj .z/ still have a physical meaning. To account for this, these models are
called semi-physical models (Töpfer et al, 2002).

The choice of approximate submodel structures always requires a compromise
between submodel complexity and the number of submodels. The most often applied
linear submodels have the advantage of being a direct extension of the well known
linear models. However, under certain conditions, more complex submodels may
be reasonable. If the main non-linear influence of input variables can be described
qualitatively by a non-linear transformation of the input variables (e.g. f1.x/ D
.x2

1 ; x1x2; : : :/), then the incorporation of that knowledge into the submodels leads
to a considerable reduction of the required number of submodels. Generally, this
approach can be realized by a pre-processing of the input variables x to the non-
linearly transformed variables, Fig. 20.18,

x� D F.x/ D �
f1.x/ f2.x/ : : : fnx�

.x/
�T
: (20.1.23)

Besides those heuristically determined model structures, local model approaches also
enable the incorporation of fully physically determined models. Furthermore, local
models allow the employment of inhomogeneous models. Consequently, different
local submodel structures are valid within the different operating regimes.

20.1.4 Local and Global Parameter Estimation1

For parameter estimation of local dynamic models, some additional care has to be
taken in comparison to the stationary case. In general, there are two possibilities to
estimate the model parameters: They can either be estimated by means of a local loss
function or by a global loss function. The local loss function is given as

Vm;local D 1

2

NX
kD1

.y � Oym/
TWm.y � Oym/ ; (20.1.24)

where Wm is the diagonal weighting matrix of the m-th local model resulting from
the activation function ˚m.z/. This loss functions is set up and minimized individ-
ually for each local model m D 1; 2; : : :M . According to the least squares solution
(9.5.4), the model parameters calculate to

1 compiled by Heiko Sequenz
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wm D .XTWmX/
�1XTWmy : (20.1.25)

It can be seen, that the local parameters are independent with respect to each other.
Thus they can be estimated consecutively. The local models can be regarded as local
linearizations of the process, independent of the neighboring linearizations. There-
fore, an implicit regularization of the parameters is given by the local parameter
estimation.

In contrast to that, the global loss function can be written as

Vglobal D 1

2

NX
kD1

.y � Oy/T.y � Oy/ ; (20.1.26)

where the global model output is calculated as in (20.1.12) by a superposition of
local models

Oy D
MX

mD1

Wm Oym : (20.1.27)

Inserting (20.1.27) in (20.1.26), it can be seen that the weighting matrix is introduced
quadratically in contrast to the local case (20.1.24), where the error is weighted with
a single weighting matrix. Again, the model parameters can be calculated by the least
squares solution

w D �
XT

g Xg
��1
XT

g y ; (20.1.28)

with the global regression matrix

Xg D �
W1X W2X : : : WMX

�
: (20.1.29)

Here w is the global parameter vector consisting of all local model parameters. The
local model parameters wm are therefore coupled with each other by the matrix Xg.
This makes the global model more flexible as the transition regions of the local mod-
els are also used to adapt the process. On the other hand, the model loses its regular-
ization effect. Due to the higher flexibility, the variance-error increases. Furthermore,
the model can no longer be interpreted locally and the parameter estimation becomes
more complex.

For these reasons, it is recommended to use the local loss function for parameter
estimation if possible. This is in general possible for stationary models, but is not
possible for some dynamic models as is shown in the following section.

20.1.5 Local Linear Dynamic Models2

This section is organized in four parts. First, the choice of ´-regressors for dynamic
models is discussed. The second part presents a variation of the model structure
based on parameters varying at different points of time. The following part presents
the analogy of the presented transfer function structure to the state space structure.
Finally, the parameter estimation is discussed for different error configurations. It is
shown for which model structures, a minimization of the global loss function be-
comes necessary.

2 compiled by Heiko Sequenz based on the dissertation by Ralf Zimmerschied (2008)
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Fig. 20.19. Distribution in the ´-regressor space for ´-regressor from the same inputs showing
(a) an APRBS input signal (b) the output of a PT1 first order process (with the APRBS as
input) and (c) a white noise input signal.

Choice of ´-regressors

For dynamic models, the number of parameters is a multiple of the number of para-
meters in the stationary case. To lower the computational effort, the input spaces of
the local models and the activation functions can be distinct as was already shown
in Sect. 20.1.3. There, the separation of the input spaces was motivated by a pri-
ori knowledge, and only those inputs with significant non-linear influence were uti-
lized for the activation function. The inputs of the activation function are denoted
as ´-regressors and the inputs of the local models as x-regressors. The ´- and the
x-regressors consist of process inputs u and process outputs y, since both u and y
are regarded as model inputs for dynamic models.

Instead of a priori knowledge, the separation of the input spaces will here be
motivated from the point of view of identification. Therefore, the distribution in the
´-regressor space will be regarded for commonly used input signals. Figure 20.19a
shows the distribution of an APRBS (see Sect. 6.3) with the ´-regressors chosen
as ´1 D u.k � 1/ and ´2 D u.k � 2/. It can be seen that most of the data is
placed on the diagonal, which is due to the holding time of an APRBS. The data is
only distributed around the diagonal if a step in the input signal occurs. The example
shows the utilization of a single input u.k/with two different time delays, but this can
be generalized to any ´-regressor vector arising from the same input with different
time delays. The distribution is even worse if the process output is regarded as a ´-
regressor, see Fig. 20.19b. Here, a simple PT1 first order process is considered. Due
to its filter characteristics, most of the data is placed around the diagonal. It can be
seen that broad areas of the input space are not covered.

The poor distribution in Fig. 20.19a can be encountered with different input sig-
nals. An equally distributed white noise as is shown in Fig. 20.19c covers the input
space quite well. However, even this input signal does not improve the poor distribu-
tion shown in Fig. 20.19b. Furthermore, a white noise input signal might not be an
appropriate system excitation as it excites the high frequencies and has a poor signal
to noise ratio.

Because of these reasons, it is recommended to use at most one regressor of each
model input/output as ´-regressor. Meaning for the considered example that either
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´1 D u.k � 1/ can be used as input for the activation function or ´1 D u.k � 2/

but not both. This limits the model flexibility and thus increases the bias-error but at
the same time decreases the variance-error. Furthermore, a bad coverage of the input
space arising from ´-regressors of the same model input/output as was shown in this
section can easily be avoided.

Delayed Parameter Variation

The choice of ´-regressors can be further improved with a delayed parameter vari-
ation. So far, the model parameters depend on the ´-regressor for a definite time,
such as z.k/ D u.k � 1/. Meaning that for a second order SISO system with
z.k/ D u.k � 1/ as the only ´-regressor, the output calculates to

Oy.k/ D
MX

mD1

˚m.z.k//
�
b1u.k � 1/C b2u.k � 2/C a1y.k � 1/C a2y.k � 2/�

D b1.z.k//u.k � 1/C b2.z.k//u.k � 2/C a1.z.k//y.k � 1/C a2.z.k//y.k � 2/
(20.1.30)

with the parameters in (20.1.30) expressed with respect to the ´-regressor

bi .z.k// D
MX

mD1

˚m.z.k//bi;m (20.1.31)

and the parameters ai analog. Notice that all parameters vary with a fixed delay time
of the ´-regressor, which is z.k/ D u.k � 1/ in this example. Therefore, model
inputs can be found, which are further in the past than their parameters’ activation
function, such as u.k � 2/ with the parameter b2 depending on the activation func-
tions ˚m.z.k// D ˚m.u.k � 1//. This means in general, that inputs u.k � i/ can
be coupled with parameters b.k � j / depending on different times k � i and k � j

respectively.
The transfer function can also be written in the general form

Oy.k/ D
MX

mD1

˚m.z.k//

 
nuX

iD1

biu.k � i/C
nyX

iD1

aiy.k � i/
!

(20.1.32)

with the dynamic orders nu and ny for the input and output respectively.
It is therefore recommended to change the parameters individually with their

inputs. Then, for the inputs u.k � 1/ and y.k � 1/, the parameters b1 and a1 depend
on the ´-regressor z.k � 1/ D u.k � 1/ and for the input u.k � 2/ and y.k � 2/ the
parameters b2 and a2 depend on z.k � 2/ D u.k � 2/. This varied model structure
does not change the model flexibility but has some desirable theoretical properties
as it can be transformed to a state space structure, which is shown in the following
section. The model given in (20.1.30) can then be written as
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Oy.k/ D b1.z.k � 1//u.k � 1/C b2.z.k � 2//u.k � 2/
C a1.z.k � 1//y.k � 1/C a2.z.k � 2//y.k � 2/ : (20.1.33)

Notice the difference of the individually delayed parameters in (20.1.33) to the not
individually delayed form in (20.1.30).

The model can also be written in the general form with the dynamic orders nu

and ny

Oy.k/ D
nuX

iD1

bi .z.k � i//u.k � i/C
nyX

iD1

ai .z.k � i//y.k � i/ (20.1.34)

and the parameters bi as sum of the m D 1; 2; : : : ;M local parameters bi;m

bi .z.k � i// D
MX

mD1

˚m.z.k � i//bi;m : (20.1.35)

Notice again the difference of the non-delayed form in (20.1.32) and the delayed
form in (20.1.34).

Analogy to the State Space Structure

Given the model as a transfer function with the previously presented delayed param-
eter variation, it can be transformed to a state space structure. It shall be mentioned
that the transformation from local linear transfer functions to local state space mod-
els is in general not obvious and a meaningful analog local state space model might
not even exist. However, given the model in the presented structure (20.1.34), the
analog state space model can be stated in the following observable canonical form:

x.k C 1/ D

˙
0 : : : 0 �an.z.k//

1 0 �an�1.z.k//
:::
: : :

:::
:::

0 : : : 1 �a1.z.k//

�
x.k/C

˙
bn.z.k//

bn�1.z.k//
:::

b1.z.k//

�
u.k/ (20.1.36)

y.k/ D �
0 : : : 0 1

�
x.k/ : (20.1.37)

To prove the equivalence of (20.1.37) and (20.1.34), the transformation from the state
space structure to the transfer function will be sketched in the following. Writing the
matrix equation (20.1.37) row by row, the states could be written as

x1.k C 1/ D � an.z.k//xn.k/ C bn.z.k//u.k/

x2.k C 1/ D x1.k/ � an�1.z.k//xn.k/ C bn�1.z.k//u.k/
:::

xn.k C 1/ D xn�1.k/ � a1.z.k//xn.k/ C bn�1.z.k//u.k/ :

(20.1.38)

Substituting the first row delayed by one time step (x1.k/) in the second row gives
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x2.k C 1/ D � an.z.k � 1//xn.k � 1/ C bn.z.k � 1//u.k � 1/ : : :
� an�1.z.k//xn.k/ C bn�1.z.k//u.k/ :

(20.1.39)

This equation can again be delayed and inserted for x2.k/ in the third line

x3.k C 1/ D x2.k/ � an�2.z.k//xn.k/ C bn�2.z.k//u.k/

D �an.z.k � 2//xn.k � 2/ C bn.z.k � 2//u.k � 2/ : : :

�an�1.z.k � 1//xn.k � 1/ C bn�1.z.k � 1//u.k � 1/ : : :
�an�2.z.k//xn.k/ C bn�2.z.k//u.k/

(20.1.40)
and so on until the last but one line (xn�1.k/) is inserted into the last line (xn.kC1/).
Finally, with y.k/ D xn.k/, the transfer function (20.1.34) is obtained, what proves
the equivalence. Therefore, every function given in the delayed parameter variation
form can be transformed to a state space realization in observable canonical form.

Parameter Estimation

As mentioned before, the estimation of parameters depends for dynamic models on
the error configuration. The two common error configurations are given by the par-
allel and by the series-parallel model (see Fig. 20.14). The latter corresponds in the
linear case to the equation error, which is presented in Sect. 9.1 with the correspond-
ing model denoted as ARX models. Accordingly, a local linear dynamical model
in series-parallel configuration as presented here is called NARX(Non-Linear ARX)
model. The model is denoted as non-linear, since the local linear ARX models com-
pose to a global non-linear ARX model. This model depends on measured inputs and
measured outputs and is given by the equation

OyNARX.k/ D
MX

mD1

 
nuX

mD1

bi .z.k�i//u.k�i/C
nyX

mD1

ai .z.k�i//y.k�i/
!
: (20.1.41)

In an analog way, the parallel model configuration corresponds to the output error
which again corresponds to the OE model in the linear case. The global non-linear
model in parallel configuration which is composed by local linear OE models is
therefore denoted as NOE (Non-Linear OE) model. This model depends on mea-
sured inputs and modeled outputs

OyNOE.k/ D
MX

mD1

 
nuX

mD1

bi .z.k�i//u.k�i/C
nyX

mD1

ai .z.k�i// Oy.k�i/
!
: (20.1.42)

Notice the difference of the models in the delayed process outputs on the right hand
side of (20.1.41) and (20.1.42), which are either measured or modeled in the NARX
or the NOE model respectively.

The local model output of the NARX model can therefore be written in depen-
dence of measured values only
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OyNARX;m.k/ D
nuX

mD1

z.k � i/u.k � i/C
nyX

mD1

z.k � i/y.k � i/ : (20.1.43)

In contrast to that, the NOE model uses the modeled output also as a model input

OyNOE;m.k/ D
nuX

mD1

z.k � i/u.k � i/C
nyX

mD1

z.k � i/ Oy.k � i/ : (20.1.44)

For the NOE model, the outputs must therefore be simulated up to Oy.k� 1/ to deter-
mine Oy.k/. This means in particular, that all local models use the global model output
as input and are therefore dependent on one another. Hence for the NOE model, the
parameters need to be estimated all at once. Thus a global parameter estimation,
as presented in Sect. 20.1.4, is necessary. Since the error is no longer linear in the
parameters, non-linear optimization algorithms, such as the Levenberg-Marquardt
algorithm (see Sect. 19.4.3) are applied. This makes the training of the NOE model
computationally costly. Furthermore, the convergence to the global minimum can no
longer be guaranteed as convergence depends on the initial values.

In contrast to that, the local models of the NARX model can be regarded inde-
pendently as the measured outputs are available. Therefore, either the local or the
global parameter estimation can be applied. As the local estimation has some de-
sirable properties, such as an implicit regularization, and is computationally much
faster, this is usually preferred.

Despite the higher computational effort, the NOE model is often preferred if the
model shall be used for simulation. The NOE model minimizes the simulation error
and is therefore better suited for simulation than the NARX model. This model on
the other hand minimizes the prediction error and would therefore be preferred if the
process output shall be predicted on the base of previous measured outputs. Surely,
the NARX model can also be used for simulation but as it was not trained in that
configuration, it is expected to have a bias-error (Ljung, 1999).

A major drawback of the NOE model is its lost local interpretability. That draw-
back can be met with an explicit regularization, which is described in more detail in
(Zimmerschied and Isermann, 2008, 2009).

20.1.6 Local Polynomial Models with Subset Selection3

In this section, a further development of the LOLIMOT algorithm (Sect. 20.1.1) is
presented. The extensions are based on the algorithm presented in (Sequenz et al,
2009), where some parts are described in more detail. The algorithm is primarily
suited for stationary processes, but can also be used for dynamic processes. As was
already shown in Sect. 20.1.1, the LOLIMOT algorithm consists of an outer loop to
adapt to the non-linearities of the process and an inner loop for local model estima-
tion. So far the local models are restricted to be linear or affine.

3 compiled by Heiko Sequenz
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To overcome the associated limitations, here the assumption of a general local
function is made. The local function is approximated by a power series up to a pre-
defined order o. This allows a reduction of the number of local models, since now,
the local models are more complex and have thus a wider validity region. As the
number of x-regressors grows fast with the order o and the number of inputs p, a
selection algorithm of the significant regressors is introduced. This algorithm elimi-
nates regressors without process information and hence decreases the variance error.

The structure of the model is illustrated in Fig. 20.20. The local models are de-
noted as LPM (Local Polynomial Model) and are weighted by Gaussian activation
functions. The decomposition of the input space is attained by a tree construction
algorithm with axis orthogonal partitions, see Fig. 20.11. Because this outer loop is
the same as for the LOLIMOT algorithm, in the following only the estimation of
the local models will be illustrated. Further the term regressors will be used for the
x-regressors as the ´-regressors are not further regarded.

The idea for the local model approach is as follows: Basically all steady functions
appearing in real applications can be approximated arbitrarily well by a power series
in a neighborhood of its center. This center point is denoted by u0, and hence a
multi-dimensional power series for a general non-linear function can be written as
(e.g. Bronstein et al, 2008)

f .u0 C�u/ D f .u0/C
oX

iD1

1

iŠ

�
@

@u1

�u1 C : : :C @

@up

�up

�i

f .u0/CRo ;

(20.1.45)
where o is the order of the power series expansion and Ro the remainder. The re-
mainder decreases with the order, but the number of regressors increases. Therefore,
an order o D 3 is recommended as a good trade-off between accuracy and com-
putational effort (Hastie et al, 2009). In order to eliminate negligible regressors, a
selection algorithm needs to be performed.

Motivated by the power series, an admissible set of regressors is given as

A D ˚
u1; u2; u

2
1; u

2
2; u1u2; : : :

�
(20.1.46)

from which the best subset of regressors needs to be selected. A guarantee to find the
best subset can only be given by checking all possible subsets of regressors. As this is
not feasible even for relatively small admissible sets, a heuristic selection algorithm
is introduced.

This selection algorithm combines forward selection, backward elimination, and
replacement of regressors. It is sketched in Fig. 20.21. The algorithm starts with an
empty set and adds successively regressors to that selection set from the admissible
set by a forward selection. After adding a new regressor to the selection set, some
previously selected regressors might become negligible. Therefore, a backward elim-
ination is performed to delete regressors from the selection set. The replacement of
regressors tries to swap regressors between the selection set and the admissible set
to exchange significant regressors by even more significant regressors. A detailed
overview of selection algorithms can be found in (Miller, 2002). It shall be men-
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Fig. 20.20. Local Polynomial Model (LPM) Network — a further development of the
LOLIMOT structure

tioned, that the combination of the selection steps should depend on the size of the
admissible set, as it can become computationally costly as well.

For comparing models with regressor sets of different sizes, a criterion of fit is
required to rate the models. Possible criteria are among others Mallows’ Cp-statistic,
Akaike’s AIC, and Bayesian Information Criterion (BIC). Mallows’ Cp-statistic can
be calculated as

Cp D

NX
iD1

�
yi � Oyi

�2

O�2
�N C 2n ; (20.1.47)

where O�2 is an estimation of the residual variance, Oy the output of the considered
model with n parameters fitted and N the size of the dataset. Similar, the AIC cor-
rected for finite sets is given as
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Fig. 20.21. Selection algorithm to find the set of most significant regressors starting from the
empty set

AICc D N ln

 PN
iD1

�
yi � Oyi

�2
N

!
C 2N

N � n � 1n : (20.1.48)

Both give a trade-off between the number of regressors n, which increases with the
model complexity, and the error

PN
iD1.yi � Oyi /

2, that is decreasing with the model
complexity. This trade-off is an estimator of the minimum of the model error de-
composed into bias and variance error, see Fig. 20.2. Other criteria such as the BIC
work in a similar way and are detailed described in (Mallows, 1973; Burnham and
Anderson, 2002; Stoica and Selen, 2004; Loader, 1999).

As these criteria are designed for global models, and since here local models with
weighting functions are regarded, these criteria must be adapted. A local version of
Mallows’ Cp is given by Loader (1999) as

Cp;local;j D .y � Oyj /
0Wj .y � Oyj /

O�2
C tr.Wj /C 2neff;j ; (20.1.49)

where the numerator is the local model error instead of the global model error as
in (20.1.47). The term neff;j describes the effective number of parameters in the j th

local model. The effective number of parameters is smaller than the total number of
parameters n. This is caused by the overlapping of the local models, which introduces
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a regularization on the local models and thus reduces the total number of degrees of
freedom. These degrees of freedom are denoted for the local models as the effective
number of parameters. Further literature about the effective number of parameters
can be found in (Moody, 1992) or (Murray-Smith and Johansen, 1997b). It can be
calculated by the trace of the HAT matrix (see Sect. 23.7.2) and is given as

neff;j D tr
	
WjX

�
X 0WjX

��1
X 0Wj



D trHj : (20.1.50)

The residual variance, indicated as O�2 in (20.1.49), can be estimated as the weighted
squared error sum divided by the degrees of freedom

O�2 D

MX
j D1

.y � Oyj /
0Wj .y � yj /

N �
MX

j D1

neff;j

: (20.1.51)

To evaluate the local model output Oy , the parameters have to be determined first.
This can for the stationary local model simply be done by the least squares solution.
Notice that regressors, like u1u2 are themselves non-linear, but their parameters ci

are linear in the model equation

Oyj D
MX

mD1

Wj

�
c1u1 C c2u

2
1 C c3u1u2 C : : :

�
: (20.1.52)

Given this criterion, local models with differently sized regressor sets can be rated.
Thus for each local model, the best regressor set can be selected, which allows an
individual local adaption to the process non-linearities.

Besides for local regressor selection, the introduced criteria (20.1.47) or (20.1.48)
can be used to select the best global model in the partitioning algorithm (outer loop).
As the input space is divided in a tree construction algorithm, several partitions are
selectable. Regarding the training error, the model with the most partitions will be
best. However, as the variance error increases with the number of parameters and
therefore with the number of local models, again a trade-off has to be found. This
can be attained by minimizing the global version of the presented criteria.

Regarding the local model structure, a global version of the Cp-statistic is given
as

Cp;global D

MX
j D1

.y � Oyj /
0Wj .y � yj /

O�2
�N C 2

 
MX

j D1

neff;j CM

!
: (20.1.53)

The M additional parameters in the last term are added to account for the M local
variance estimations. With this criterion given, the partitioning algorithm can be ter-
minated if no further improvement is achieved by additional partitions of the input
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Fig. 20.22. Example of identification of a non-linear static process with (a) Local Linear Mod-
els (LLM) and (b) Local Polynomial Models (LPM)

Table 20.2. NRMSE training and validation error using local linear models (LLM) and local
polynomial models (LPM) averaged over 100 simulations

Training Validation # Regressors

LLM 0.073 0.034 16
LPM 0.076 0.032 13

space. It is also possible to divide the input space up to a predefined number of local
polynomial models or until a predefined accuracy is reached and then select the best
model by (20.1.53).

To illustrate the advantages of the presented algorithm in comparison to the
LOLIMOT algorithm, a known non-linear process shall be identified. Figure 20.22
shows a realization of the function

y D xe
�x2

4 C 	 ; (20.1.54)

where the true process output is disturbed by a white measurement noise 	. The
simulated data is marked by crosses in Fig. 20.22. This data is used to identify the
process with the LOLIMOT algorithm and with the modified algorithm showing in
the left and the right plots respectively. The training error and the error with respect
to the true process are given in Table 20.2.

It can well be seen that both algorithms are able to adapt to the non-linear struc-
ture. The LOLIMOT algorithm needs 8 partitions, whereas the modified algorithm
needs only half of the partitions as can be seen in Fig. 20.22. Furthermore, the modi-
fied algorithm was able to achieve a slightly better quality on the true process with an
even smaller total number of regressors, as is shown in Table 20.2. A further advan-
tage of the modified algorithm is, that less transition regions of local models exist. A
drawback however is, that the local models become more complex and can no longer
be interpreted as linearizations but rather as local power series realizations.
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Further examples of the presented algorithm can be found in (Sequenz et al,
2010) and (Mrosek et al, 2010), where the emissions of a Common-Rail Diesel en-
gine are modeled.

It can be summarized, that the modified algorithm is especially useful if only few
measurements are available, as only the most significant parameters and less local
models have to be estimated. Given a large dataset, both algorithms are able to adapt
to the process structure. Furthermore, with the new algorithm, a selection criterion
for the best global model is provided.

It shall be mentioned that the same algorithm can be used for identification of
dynamic processes. However, depending on the error configuration, the estimation
of the parameters might become computationally costly (see global parameter esti-
mation in Sect. 20.1.5). Hence the selection algorithm must then be reduced to a very
simple one, such as a simple forward selection. Some recent work on selection pro-
cedures for dynamic processes can be found in (Piroddi and Spinelli, 2003; Farina
and Piroddi, 2009).

Example 20.2 (Dynamic Model of the Three-Mass Oscillator).
A dynamic model of the Three-Mass Oscillator has been identified using the

LOLIMOT neural network, see Fig. 20.23. As can be seen from the diagrams, the
dynamic behavior has been modeled quite well. Bähr et al (2009) used a LOLIMOT
model to model the friction effects. ut

20.2 Look-Up Tables for Static Processes

In this section, a further non-linear model architecture besides the polynomial-based
models, neural networks, and fuzzy systems is presented. Grid-based look-up tables
(data maps) are the most common type of non-linear static models used in practice.
Especially in the field of non-linear control, look-up tables are widely accepted as
they provide a transparent and flexible representation of non-linear relationships.
Electronic control units of modern automobiles, for example, contain up to sev-
eral hundred such grid-based look-up tables, in particular for combustion engine and
emission control (Robert Bosch GmbH, 2007).

In automotive applications, due to cost reasons, computational power and storage
capacity are strongly restricted. Furthermore, constraints of real-time operation have
to be met. Under these conditions, grid-based look-up tables represent a suitable
means of storing non-linear static mappings. The models consist of a set of data
points or nodes positioned on a multi-dimensional grid. Each node comprises two
components. The scalar data point heights are estimates of the approximated non-
linear function at their corresponding data point position. All nodes located on grid
lines, as shown in Fig. 20.25, are stored, e.g. in the ROM of the control unit. For
model generation, usually all data point positions are fixed a priori. The most widely
applied method of obtaining the data point heights is to position measurement data
points directly on the grid.

In the following, the most common two-dimensional case will be considered.
The calculation of the desired output Z for given input values X and Y consists of
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Fig. 20.24. Areas for interpolation within
a look-up table

two steps. In the first step, the indices of the enclosing four data points have to be
selected. Then, a bilinear area interpolation is performed (Schmitt, 1995). For this,
four areas have to be calculated, as shown in Fig. 20.24 (Schmitt, 1995; Töpfer,
2002b).

For the calculation of the desired output Z, the four selected data point heights
are weighted with the opposite areas and added up. Finally, this result has to be
divided by the total area,

Z.X; Y / D
	�
Z.i; j / .X.i C j / �X/.Y.j C 1/ � Y /

‘

area 1

�

C �
Z.i C 1; j / .X �X.i//.Y.j C 1/ � Y / 

area 2

�

C �
Z.i; j C 1/ .X.i C 1/ �X/.Y � Y.j // 

area 3

�

C �
Z.i C 1; j C 1/ .X �X.i//.Y � Y.j //�

area 4

�


=
	
.X.i C 1/ �X.i//.Y.j C 1/ � Y.j //
“

overall area



:

(20.2.1)

Because of the relatively simple computational algorithm, area interpolation rules
are widely applied, especially in real-time applications. The accuracy of the method
depends on the number of grid positions. For the approximation of “smooth” map-
pings, a small number of data points is sufficient, while for stronger non-linear be-
havior a finer grid has to be chosen.

The area interpolation is based on the assumption that all data point heights are
available in the whole range covered by the grid. However, this condition is often not
fulfilled.

Grid-based look-up tables belong to the class of non-parametric models. The de-
scribed model structure has the advantage that a subsequent adaptation of single data
point heights due to changing environmental conditions is easy to realize. However,
the main disadvantage of this look-up table is the exponential growth of the number
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Fig. 20.25. Grid-based look-up table (data map) of a six-cylinder SI engine

of data points with an increasing number of inputs. Therefore, grid-based look-up
tables are restricted to one- and two-dimensional input spaces in practical applica-
tions. If more inputs have to be considered, this can be handled with nested look-up
tables. Determination of the heights of the look-up table based on measurements at
arbitrary coordinates with parameter estimation methods is treated by Müller (2003).

Example 20.3 (Grid-Based Look-up Table for the Static Behavior of an Internal
Combustion Engine).

The engine characteristics of a six-cylinder SI (spark-ignition) engine already
presented in Example 20.1 is used again. This time, the 433 available data points
that were measured on an engine test stand and had been shown in Fig. 20.12 were
used to generate a grid-based look-up table. The resulting two-dimensional look-up
table is shown in Fig. 20.25. ut

Another alternative are parametric model representations, like polynomial mod-
els, neural networks or fuzzy models, which clearly require less model parameters
to approximate a given input/output relationship. Therefore, the storage demand of
these models is much lower. However, in contrast to area interpolation, the complex-
ity of the computation of the output is much higher, since non-linear functions for
each neuron have to be computed. On the other hand, grid-based look-up tables are
not suitable for the identification and modeling of dynamic process behavior.

A detailed overview of model structures for non-linear system identification is
given by Nelles (2001).
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20.3 Summary

This chapter has discussed the application of neural networks to the identification
of non-linear processes. Neural networks are universal static approximators. The
Multi Layer Perceptron and the Radial Basis Function network are prominent net-
work structures. The MLP can only be trained by a non-linear iterative optimization
algorithm. While the weights of the RBF nets can be determined directly by the
method of least squares, one has the problem that the placement of Gaussian ba-
sis functions cannot be optimized during the training with the least squares method.
Also, the placement of the Gaussian basis functions can be quite difficult for higher
dimension, as the basis functions can no longer be evenly spread in the input space.

By means of external dynamics, these universal static approximators can also be
used to identify dynamic systems. However, the main disadvantage is the fact that
the resulting models cannot be interpreted well as the structure of the neural nets in
general does not allow a physical interpretation. However, better interpretability of
the models is possible with local linear models, which are weighted by radial basis
functions for different operating points. The LOLIMOT net, which represents such a
local model approach, has been presented.

Finally, also look-up tables have been presented. They avoid the complex eval-
uation of the neurons and can also approximate functions universally. The approxi-
mation quality is however determined by the spacing of the data grid. Higher dimen-
sional models can be realized by nested look-up tables. However, then the storage
space typically increases exponentially.

Problems

20.1. Neural Network Structure
Name the different types of links in a neural network.
How are the different layers named?

20.2. Multi Layer Perceptron
Draw the structure of a neuron.
Give examples of activation functions.
How can the parameters of the net be determined?
How does the complexity of the net increase with additional inputs?

20.3. Radial Basis Function Networks
Draw the structure of a neuron.
Give examples of activation functions.
How can the parameters of the net be determined?
How does the complexity of the net increase with additional inputs?
What is in this context meant by the curse of dimensionality?

20.4. Dynamic Neural Networks
What are two possibilities to use a neural net with external dynamics?
What are the advantages and disadvantages of the two approaches?
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20.5. Comparison Neural Networks and Look-Up Tables
How is the interpolation performance for neural networks and look-up tables.

20.6. Look-Up Tables
Draw a look-up table for the fuel consumption of an automobile with gasoline engine
in dependence on (constant) speed and mass. Discuss the selection of a grid.
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21

State and Parameter Estimation by Kalman Filtering

Often, one is interested in providing an estimate Ox.k/ of the states of a discrete-time
system at the time step k based on measurements of the input u.l/ and the output
y.l/ up to the point in time j , see Sects. 2.1.2 and 2.2.1 and Fig. 21.1. Different
cases can be discriminated based on the choice of k and j . The state estimation can
then be given different names (Tomizuka, 1998)

k > j n-step (ahead) prediction problem with n D k � j
k D j filtering problem
k < j smoothing problem :

The one-step (ahead) prediction problem will be considered in the following as this
is the typical setting for state and parameter estimation problems.

While the classical approach for filtering, smoothing and prediction, which was
developed by Wiener and Kolmogorov (e.g. Hänsler, 2001; Papoulis and Pillai,
2002), was based on a design in the frequency domain, the Kalman filter can com-
pletely be designed in the time domain. In Sect. 21.1, first the original Kalman filter
for linear, time-invariant discrete-time systems will be developed. Following the lines
of Kalmans original derivation, (Kalman, 1960), it is assumed that the state variables
x.k/ and the input u.k/ are Gaussian distributed variables with zero mean.

For the time-invariant case, the filter gains will tend to constant values, which
can be computed a priori, saving a lot of computations and making the filter easier
to implement online. This is shown in Sect. 21.2. Furthermore, the Kalman filter can
easily be formulated for linear time-varying discrete-time systems, see Sect. 21.3.
In Sect. 21.4, the Kalman filter will be extended to cover non-linear, time-variant
discrete-time systems. Although the extended Kalman filter is not an optimal estima-
tor, it is nevertheless employed for many tasks. The extended Kalman filter can not
only be used to estimate the system states, but can also be used to obtain parameter
estimates at the same time. This is discussed in Sect. 21.5.

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_21, © Springer-Verlag Berlin Heidelberg 2011 
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Fig. 21.1. State space representation of a discrete-time MIMO system

21.1 The Discrete Kalman Filter

The classical (discrete-time) Kalman filter shall be derived in the following, starting
with the state space representation of a linear dynamic system as

x.k C 1/ D Ax.k/CBu.k/C V
.k/ (21.1.1)
y.k/ D Cx.k/C n.k/ ; (21.1.2)

where 
.k/ and n.k/ are uncorrelated white noise processes with zero mean and
covariances

E
˚

.k/
T.k/

� D M (21.1.3)

E
˚
n.k/nT.k/

� D N : (21.1.4)

These noises are acting on the system states and also on the system outputs. The
assumed model does not have a direct feedthrough. Consequently, there is no direct
feedthrough matrixD in the output equation (21.1.2).

One is now interested in finding the optimal linear filter such that the states are
predicted with the smallest error possible. The optimality measure is therefore the
expected value of the squared prediction error. The prediction error is measured by
the vector 2-norm as

V D E
n�� Ox.k C 1/ � x.k C 1/

��2

2

o

D E
n� Ox.k C 1/ � x.k C 1/

�T� Ox.k C 1/ � x.k C 1/
�o
:

(21.1.5)

This cost function shall be minimized and is the basis for the development of the
Kalman filter.

In the following derivation, the Kalman filter will be developed in a predic-
tor/corrector setting, i.e. the states will first be predicted one time-step ahead into
the future at kC1 and then will be corrected based on the available measurements of
the output y.kC1/. In the following, x.k/will be the true states at time k, Ox.kC1jk/
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will be the predicted states based on measurements until k and Ox.k C 1jk C 1/ will
the predicted and corrected estimates of the states at time step k C 1. The notation
.k C 1jk/ means that the value at time-step k C 1 is determined based on measure-
ments up to the time-step k only. The matrix P.k/ will be the covariance of the
states, i.e.

P.k/ D E
n� Ox.k/ � x.k/�� Ox.k/ � x.k/�T

o
: (21.1.6)

First, the prediction step will be derived. The true system dynamics will be gov-
erned by

x.k C 1/ D Ax.k/CBu.k/C V
.k/ : (21.1.7)

The actual noise 
.k/ is unknown. Since the noise 
.k/ is assumed to be zero mean,
the estimates of the states are updated as

Ox.k C 1jk/ D A Ox.k/CBu.k/ (21.1.8)

based on the measurements up to time-step k.
The new covariance matrix P�.k C 1/ can then be determined as

P�.k C 1/ D E
n� Ox.k C 1jk/ � x.k C 1/

�� Ox.k C 1jk/ � x.k C 1/
�T
o

D E
n�
A Ox.k/ �Ax.k/C V
.k/

��
A Ox.k/ �Ax.k/C V
.k/

�o

D AE
n� Ox.k/ � x.k/�� Ox.k/ � x.k/�T

o
AT

CAE
n� Ox.k/ � x.k/�
T

o
V T

C V E
n

.k/

� Ox.k/ � x.k/�T
o
AT

C V E
n

.k/
T.k/

o
V T

(21.1.9)

So, finally
P�.k C 1/ D AP.k/AT C VMV T : (21.1.10)

Here the superscript � denotes the covariance matrix for the prediction step before
the correction has taken place. For the derivation, it has been exploited that Ox.k/ as
well as x.k/ are uncorrelated with 
.k/ and furthermore 
.k/ is zero mean, leading
to

E
˚
x.k/
.k/T

� D 0 (21.1.11)

E
˚ Ox.k/
.k/T� D 0 : (21.1.12)

Now, the correction step follows. A new measurement y.k C 1/ is available and
will be used to correct the estimates by

Ox.kC 1jkC 1/ D Ox.kC 1jk/CK .kC 1/
�
y.kC 1/�C Ox.kC 1jk/� ; (21.1.13)
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where now, the estimates are based on measurements up to time step k C 1. The
choice of the feedback gain K .k C 1/ determines, whether the prediction of the
states Ox.k C 1jk/ based on the internal model or the actual measurements y.k C 1/

get more weight in updating the estimated states Ox.k C 1jk C 1/. The observation
error y.k C 1/ � C Ox.k C 1jk/ is also termed innovation in the context of Kalman
filtering. Now, the question arises, how the optimal feedback gainK .kC 1/ must be
chosen for any given sample kC 1. Therefore, the covariance matrix P.kC 1/ shall
be derived. (21.1.13) is rewritten as

Ox.kC 1jkC 1/ D Ox.kC 1jk/CK .kC 1/
�
Cx.kC 1/Cn.kC 1/�C Ox.kC 1jk/�

(21.1.14)
leading to

P.kC1/ D E
n� Ox.kC1jkC1/�x.kC1/�� Ox.kC1jkC1/�x.kC1/�T

o
: (21.1.15)

The cost function (21.1.5) can be rewritten using the trace operator as

V D E
n�� Ox.k C 1/ � x.k C 1/

��2

2

o

D E
�

tr
	� Ox.k C 1jk C 1/ � x.k C 1/

�� Ox.k C 1jk C 1/ � x.k C 1/
�T

�

D tr E
n� Ox.k C 1jk C 1/ � x.k C 1jk/��x.k C 1/ � Ox.k C 1jt /�T

o
;

(21.1.16)

since the expected value and the trace are both linear operators, their order can be
exchanged arbitrarily. The derivation of the ideal gain matrix K based on the trace
operator and subsequent application of vector calculus is also presented by Heij et al
(2007).

The argument of the trace operator is the expected value of the covariance
between the true states x.k/ and the estimated states Ox.k/, which is the matrix
P.k C 1/. Hence

V D trP.k C 1/ : (21.1.17)

In the following, the indices will be dropped to obtain a more compact notation. Now,
one can insert

P D E
�	

Ox � x �KC � Ox � x�CKn

	

Ox � x �KC � Ox � x�CKn

T
�

D E
�	�
I �KC �� Ox � x�CKn


	�
I �KC �� Ox � x�CKn


T
�

(21.1.18)

and finally obtains

P D �
I �KC �P��I �KC �T CKNKT : (21.1.19)
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To determine the optimal choice ofK .kC 1/, one can determine the first deriva-
tive of (21.1.17) with respect to K .k/ and equate it to zero. This first derivative is
given as

@

@K
trP D @

@K
tr
	�
I �KC �P��I �KC �T CKNKT



: (21.1.20)

In order to determine the derivative of the trace with respect to the gain matrix
K , some aspects from matrix calculus shall be presented first. For arbitrary matrices
A, B, and X , the following rules for the derivative of the trace can be stated

@

@X
tr
�
AXB

� D ATBT (21.1.21)

@

@X
tr
�
AXTB

� D BA (21.1.22)

@

@X
tr
�
AXBXTC

� D ATC TXBT C CAXB (21.1.23)

@

@X
tr
�
XAXT� D XAT CXA ; (21.1.24)

see e.g. (Brookes, 2005). One can apply these rules to (21.1.19) as

@V

@K
D @

@K
tr
�
P� �KCP� �P�C TKT CKCP�C TKT CKNKT�

D � @

@K
trKCP�›

(21.1.21),ADI andBDCP�

� @

@K
trP�C TKTœ

(21.1.22),ADP�C T andBDI

C @

@K
trKCP�C TKT�

(21.1.24),ADCP�C T

C @

@K
trKNKT›

(21.1.24),ADN
(21.1.25)

to determine the derivative as

@V

@K
D �P�C T �P�C T CKCP�C T CKCP�C T CKN T CKN

ŠD 0 :

(21.1.26)

The solution for this equation is given as

2K
�
CP�1C T CN

� D 2P�C T (21.1.27)

,K D P�C T�CP�C T CN
��1

: (21.1.28)

Including the time index k again, yields

K .k C 1/ D P�.k C 1/C T�CP�.k C 1/C T CN
��1

: (21.1.29)
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Fig. 21.2. Block diagram of the Kalman filter

In summary, the Kalman filter is given by the set of equations (21.1.8), (21.1.10),
(21.1.13), (21.1.19), and (21.1.29) and leads to the following algorithm:

Prediction:

Ox.k C 1jk/ D A Ox.k/CBu.k/ (21.1.30)

P�.k C 1/ D AP.k/AT C VMV T (21.1.31)
Correction:

K .k C 1/ D P�.k C 1/C T�CP�.k C 1/C T CN
��1 (21.1.32)

Ox.k C 1jk C 1/ D Ox.k C 1jk/CK .k C 1/
�
y.k C 1/ � C Ox.k C 1jk/�

(21.1.33)

P.k C 1/ D �
I �K .k C 1/C

�
P�.k C 1/ ; (21.1.34)

where the update equation for P.k C 1/ (21.1.34) is in this form only valid if the
optimal Kalman gain K .k C 1/ (21.1.32) has been used for the feedback.

For the initial condition of the states, one typically chooses Ox.0/ D 0. The ma-
trix P.0/ must be supplied by the user as the covariance of the states x.0/. The
corresponding block diagram is shown in Fig. 21.2.

In this setting, the Kalman filter is used as a one-step ahead predictor. For the
derivation of the m-step ahead predictor, the reader is e.g. referred to (Heij et al,
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2007). In order to speed up the calculation, one can interpret the vector of n mea-
surements that are mutually uncorrelated as n subsequent scalar measurements. If
data samples are missing, the filter can be run with K D 0 and hence, only the pre-
diction step, but not the correction using actual measurements, is carried out (Grewal
and Andrews, 2008).

21.2 Steady-State Kalman Filter

The major drawback of the Kalman filter as described by (21.1.30) through (21.1.34)
is the high computational expense, which is mainly caused by the update of the
covariance matrix P.k/ in (21.1.31) and (21.1.34) and the calculation of the filter
gain K .k/ in (21.1.32). For linear, time-invariant systems, it will now be shown that
bothP.k/ andK .k/ tend to constant values as k ! 1. These constant values can be
determined a priori during the design of the Kalman filter and can be left unchanged
during operation of the filter. The a priori determination has the interesting side-
effect that the filter will operate right from the start with the “ideal” filter gain K .k/
as one does not have to wait forP.k/ andK .k/ to settle to their optimal steady-state
values.

In order to determine P.k/ for k ! 1, one sets up the update equation for
P�.k C 1/ from (21.1.31) and (21.1.31) as

P�.k C 1/

D AP�.k/AT �AP�.k/C T�CP�.k/C T CN
��1
CP�.k/AT C VMV T

(21.2.1)

For k ! 1, the entries of the matrix P�.k/ settle to constant values, thus

P�.k/ D P�.k C 1/ D P� : (21.2.2)

(21.2.1) then becomes

P� D AP�AT �AP�C T�CP�C T CN
��1
CP�AT C VMV T : (21.2.3)

This is nothing else than the more general discrete-time algebraic Riccatti equation
(DARE) (e.g. Arnold and Laub, 1984), which is given as

ATXA�ETXE��ATXBCS ��BTXBCR��1�
BTXACS T�CQ D 0 : (21.2.4)

Software packages are available, which allow to solve (21.2.1), see also (Arnold and
Laub, 1984; Söderström, 2002). A comparison of (21.2.3) and (21.2.4) shows, how
the coefficients must be passed to the DARE solver,

P�‘
EDI

D AP�AT

ÃDAT

� AP�C T�CP�C T CN
��1
CP�A

’

ADAT;BDC T; SD0;RDN

C VMV T—
QDVMV T

: (21.2.5)
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The matrix P� becomes the unknown matrix X . This is very similar to the design
of the linear quadratic regulator (LQR). The result of this calculation then is the
steady-state value P

�
of P�.

Once the solution P
�

has been obtained, the steady-state gain of the Kalman
filter can be determined as

K D P
�
C
�
CP

�
C T CN

��1
; (21.2.6)

see also (Verhaegen and Verdult, 2007). Software packages in the control engineering
domain often have dedicated functions for the design of Kalman filters and already
return the gain matrixK . Once, P

�
andK have been determined, the Kalman filter

equations that have to be updated in real-time, reduce to

Prediction:

Ox.k C 1jk/ D A Ox.k/CBu.k/ (21.2.7)
Correction:

Ox.k C 1jk C 1/ D Ox.k C 1jk/CK
�
y.k C 1/ � C Ox.k C 1jk/� : (21.2.8)

For the initial condition of the state estimates, set Ox.0/ D 0.
To obtain a comparison to a state observer, the previous correction (21.2.8) is

inserted in the prediction (21.2.7), leading to

Ox.k C 1jk/ D A Ox.kjk � 1/CBu.k/CAK
�
y.k/ � C Ox.kjk � 1/� (21.2.9)

A comparison with the observer, which is governed by

Ox.k C 1/ D A Ox.k/CBu.k/CH
�
y.k/ � C Ox.k/� ; (21.2.10)

shows that, if the observer gain is chosen as

H D AK ; (21.2.11)

then the observer equation corresponds to the Kalman filter.

21.3 Kalman Filter for Time-Varying Discrete Time Systems

Similar to the above considerations, the Kalman filter can be extended to time-
varying systems as the filter equations are independent of past values of the matrices
A.k/, B.k/, and C .k/. The time-varying process shall be governed by the state
space model

x.k C 1jk/ D A.k/x.k/CB.k/u.k/C V .k/
.k/ (21.3.1)
y.k/ D C .k/x.k/C n.k/ : (21.3.2)

Then, the Kalman filter, given by the set of equations consisting of (21.1.8), (21.1.13),
(21.1.10), (21.1.19), and (21.1.29), can easily be written in a form that is suitable for
time-varying systems. The filter equations are now given by
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Prediction:

Ox.k C 1/ D A.k/ Ox.k/CB.k/u.k/ (21.3.3)

P�.k C 1/ D A.k/P.k/AT.k/C V .k/M .k/V T.k/ (21.3.4)
Correction:

K .k C 1/ D P�.k C 1/C T.k C 1/
�
C .k C 1/P�.k C 1/C T.k C 1/CN .k/

��1

(21.3.5)

Ox.k C 1jk C 1/ D Ox.k C 1jk/CK .k C 1/
�
y.k C 1/ � C .k C 1/ Ox.k C 1jk/�

(21.3.6)

P.k C 1/ D �
I �K .k C 1/C .k C 1/

�
P�.k C 1/ ; (21.3.7)

where the update equation forP.kC1/ is again in this form only valid if the optimal
Kalman gain K .k C 1/ has been used for the feedback.

21.4 Extended Kalman Filter

In many applications, one is confronted with non-linear system models of the form

x.k C 1/ D fk.x.k/;u.k//C V .k/
.k/ (21.4.1)
y.k/ D gk.x.k//C n.k/ ; (21.4.2)

where the index k in fk and gk indicate that also the functions themselves can be
time-varying.

For processes of this form, the Extended Kalman Filter (EKF) has been used
in many applications. In a few first publications, this filter was called the Kalman-
Schmidt-Filter (Grewal and Andrews, 2008). In the EKF, the update equation for the
states is based on the “true” non-linear model, whereas the update for the error co-
variance matrixP.k/ is based on a first order Taylor series expansion of (21.4.1) and
(21.4.1). The prediction step for the states is hence given as

Ox.k C 1jk/ D fk

� Ox.k/;u.k/� (21.4.3)

The update of the covariance matrix requires the calculation of the Jacobian matrices
in each update step. The Jacobian matrices are given as

F .k/ D @fk.x;u/

@x

ˇ̌̌
ˇ
xD Ox.k/; uDu.k/

(21.4.4)

G .k C 1/ D @gkC1.x/

@x

ˇ̌̌
ˇ
xD Ox.kC1jk/

: (21.4.5)

Then, the update equation for P.k C 1/ and the calculation K .k C 1/ are given as

P�.k C 1/ D F .k/P.k/F T.k/C V .k/M .k/V T.k/ (21.4.6)
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K .kC 1/ D P�.kC 1/G .kC 1/
�
G .kC 1/P�.kC 1/GT.kC 1/CN .kC 1/

��1

(21.4.7)
and

P.k C 1/ D �
I �K .k C 1/G .k C 1/

�
P�.k C 1/: (21.4.8)

The state estimates are corrected using the true non-linear relation as

Ox.kC1jkC1/ D Ox.kC1jk/CK .kC1/�y.kC1/�gkC1

� Ox.kC1jk/�� : (21.4.9)

While the derivation of the EKF seems quite simple, it must be stressed at this
point that the EKF does not provide optimal estimates. While the random variables
were remaining Gaussian at all times for the Kalman filter, the distribution of the
random variables will change after going through the non-linear transformations in
the EKF. Furthermore, one should be aware that the filter can quickly diverge due to
the linearization around false operating points, if for example the initial conditions
are chosen wrongly. While these points seem to be severe drawbacks of the EKF, it
is still used in many applications, the most prominent being navigation systems and
GPS devices.

The final extended Kalman filter is then given as

Prediction:

Ox.k C 1jk/ D fk

� Ox.k/;u.k/� (21.4.10)

F .k/ D @fk.x;u/

@x

ˇ̌̌
ˇ
xD Ox.k/; uDu.k/

(21.4.11)

P�.k C 1/ D F .k/P.k/F T.k/C V .k/M .k/V T.k/ (21.4.12)
Correction:

G .k C 1/ D @gkC1.x/

@x

ˇ̌̌
ˇ
xD Ox.kC1jk/

(21.4.13)

K .kC1/ D P�.kC1/G .kC1/�G .kC1/P�.kC1/GT.kC1/CN .kC1/��1

(21.4.14)

Ox.k C 1jk C 1/ D Ox.k C 1jk/CK .k C 1/
�
y.k C 1/ � gkC1

� Ox.k C 1jk/��
(21.4.15)

P.k C 1/ D �
I �K .k C 1/G .k C 1/

�
P�.k C 1/: : (21.4.16)

21.5 Extended Kalman Filter for Parameter Estimation

The extended Kalman filter can also be used for parameter estimation. Here, the
state vector x.k/ is augmented with a parameter vector � , leading to the state space
system
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� Ox.k C 1/

O�.k C 1/

�
D
�
f
� Ox.k/;�.k/;u.k/�

�.k/

�
C
�
Fn.k/

	.k/

�
(21.5.1)

y.k/ D g
� Ox.k/� ; (21.5.2)

where in comparison with (21.4.1), the parameter vector �.k/ has been introduced
and obeys the dynamics

�.k C 1/ D �.k/C 	.k/; (21.5.3)

see (Chen, 1999). One can see that the parameters are modeled as constant quanti-
ties. However, the model includes a stochastic disturbance, i.e. the parameters are
modeled as being disturbed by a white noise. If this was not the case, the extended
Kalman filter would assume that these values are known exactly and would not adjust
these values during the filtering.

21.6 Continuous-Time Models

If one is confronted with continuous-time process models, there are in general two
approaches. Typically, the Kalman filter is implemented on a computer and hence
implemented in discrete-time. In this case, one can bring the continuous-time model
of the dynamics of the observed system to discrete time by determining e.g. the
transition matrix, (2.1.27). Then, one can use the above equations for the discrete-
time case. A formulation that is completely based in the time domain is called the
Kalman-Bucy filter, which is e.g. treated in (Grewal and Andrews, 2008). It is com-
putationally difficult to implement, as it requires the solution of the matrix Ricatti
differential equation.

21.7 Summary

In this chapter, the Kalman filter has first been introduced as a tool to estimate states
of a system, which can e.g. be useful for the application of subspace methods, where
the states of the system must be known. The Kalman filter was developed for lin-
ear time invariant discrete-time systems in this chapter and it has subsequently been
shown that the filter can also be applied to time-varying systems. Then, the extended
Kalman filter (EKF) was introduced, which works with non-linear system models. It
can be shown that the EKF can not only be used to estimate system states, but also
system parameters. Here, it was important to note that the parameters must be mod-
eled as being influenced by a stochastic disturbance since otherwise, the parameters
will not be manipulated by the filter equations. Finally, the application to continuous-
time systems was shortly discussed. One could use the Kalman-Bucy filter, whose
formulation is based entirely in the continuous-time domain, but is mathematically
complex. Furthermore, as the filter will nowadays be implemented on digital com-
puters, it is typically more appropriate to just discretize the continuous-time model
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and then use the discrete-time Kalman filter equations. Some caution should be ex-
ercised when using the extended Kalman filter as the filter will only linearize the
model around the current (estimated) operating point. The filter can diverge, i.e. go
away from the true operating point and lead to completely erroneous results. Real-
time implementation issues are discussed e.g. in Chui and Chen (2009) and Grewal
and Andrews (2008).

Problems

21.1. Kalman Filter I
What are the differences between a state observer and the Kalman filter?

21.2. Kalman Filter II
Write the Kalman filter down for a first order system and develop a signal flow dia-
gram.

21.3. Extended Kalman Filter I
How can the Extended Kalman Filter be used for parameter estimation. Describe the
difference equations that governs the “dynamics” of the parameters.

21.4. Extended Kalman Filter II
What are the implications of linearizing the underlying dynamics locally?
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MISCELLANEOUS ISSUES
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Numerical Aspects

To improve some of the properties of basic parameter estimation methods, the cor-
responding algorithms can be modified. These modifications serve to enhance the
numerical accuracy in digital computers or give access to intermediate results. The
numerical properties are important if the word length is confined or if the changes of
input signals become small, as in adaptive control or fault detection. Such constraints
can lead to ill-conditioned system of equations.

22.1 Condition Numbers

As part of the parameter estimation, the system of equations

A� D b (22.1.1)

must be solved. If now b is disturbed e.g. due to fixed word length of the data or
noise, then one obtains

A
�
� C��

� D bC�b : (22.1.2)

and hence for the parameter error

�� D A�1�b : (22.1.3)

In order to determine the influence of the �b on the parameter estimation error
�� , one can introduce vector norms for kbk and k�k and an appropriate matrix norm
for kA�1k. Since

�� D A�1�b ; (22.1.4)

one obtains
k��k D kA�1�bk � kA�1kk�bk : (22.1.5)

Since furthermore
kbk D kA�k � kAk k�k ; (22.1.6)

one obtains

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
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1

k�k � kAk
kbk : (22.1.7)

From there follows with kbk ¤ 0,

k��k
k�k � kA�1kk�bk

kxk � kAkkA�1kk�bk
kbk : (22.1.8)

This relation now is a measure for the influence of relative errors in b on the relative
errors in � . This is called the condition number of a matrix

cond.A/ D kAkkA�1k : (22.1.9)

The condition number depends on the matrix norm. If one uses the 2-norm of a
matrix, then one obtains the simple relation that the condition number is given as the
ratio of the largest to the smallest singular value of A, i.e.

cond.A/ D �max

�min
� 1 : (22.1.10)

The numerical conditions can now be improved by not calculating P as interme-
diate value, in which the squares of signals appear, but square roots of P . This leads
to square root filtering methods or factorization methods (e.g. Biermann, 1977). By
this means, forms can be distinguished which start from the covariance matrix P or
the information matrix P�1 (Kaminski et al, 1971; Biermann, 1977; Kofahl, 1986).

The advantage of this orthogonalization method can be seen from the error sen-
sitivity of the system that determines the parameters (Golub and van Loan, 1996).
If the normal equation (22.3.1) are directly solved by the LS method, the parameter
error is bounded by

k� O�k
k O�k

� cond.� T� /
k�yk
kyk D cond2.� /

k�yk
kyk ; (22.1.11)

However, if the orthogonalization approach is used, the upper bound for the param-
eter errors is given by

k� O�k
k O�k

� cond.� /
k�bk
kbk ; (22.1.12)

i.e. the system (22.3.5) is much less sensitive to measurement errors then the normal
equations (22.3.1) themselves.

The following treatment leans on (Isermann et al, 1992). All of the following
methods try to solve the normal equations

� T� O� D � Ty ; (22.1.13)

either in one pass or recursively as new data point become available during online
identification.
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22.2 Factorization Methods for P

A simple approach would be to use the Gaussian elimination to solve (22.1.13).
However, as � T� is positive definite, one can decompose the symmetric matrix P
into triangular matrices

P D SS T ; (22.2.1)

where S is called the square root. Then, one can work directly on th matrix S , which
leads to the discrete square root filtering in covariance form (DSFC) algorithm. For
the RLS method, the resulting algorithm then becomes:

O�.k C 1/ D O�.k/C �.k/e.k C 1/

�.k/ D a.k/S .k/f .k/

f .k/ D S T.k/ .k C 1/

S .k C 1/ D .S .k/ � g.k/�.k/f T.k//=
p
�.k/

1=.a.k// D f T.k/f .k/C �.k/

g.k/ D 1=.1C
p
�.k/a.k// : (22.2.2)

The starting values are S .0/ D p
˛I and O�.0/ D 0. � is the forgetting factor, see

Sect. 9.6. A disadvantage is the calculation of the square roots for each recursion.
Another method has been proposed by Biermann (1977), the so-called UD fac-

torization (DUDC). Here, the covariance matrix is factorized by

P D UDU T ; (22.2.3)

where D is diagonal and U is an upper triangular matrix with ones on the diagonal.
Then the recursions for the covariance matrix are

U .k C 1/D.k C 1/U T.k C 1/ D
1

�

�
U .k/D.k/U T.k/ � �.k/ T.k C 1/U .k/D.k/U T.k/

�
:

(22.2.4)

After substitution of (9.4.18) and (9.6.12), the right-hand sides becomes

UDU T D 1

�
U .k/

�
D.k/ � 1

˛.k/
v.k/f T.k/D.k/

�
U T.k/

D 1

�
U .k/

�
D.k/ � 1

˛.k/
v.k/vT.k/

�
U T.k/ ;

(22.2.5)

where

f .k/ D U T.k/ .k C 1/

v.k/ D D.k/f .k/

˛.k/ D �C f T.k/v.k/ : (22.2.6)
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The correcting vector then yields

�.k/ D 1

˛.k/
U .k/v.k/ : (22.2.7)

If the term .D � ˛�1vvT/ in (22.2.5) is again factorized, the recursion for the ele-
ments U , P , and � becomes

j̨ D j̨ �1 C vf fj

dj .k C 1/ D dj .k/˛.j � 1/
j̨ � �

bj D vj

vj D fj

j̨ �1

‡
j D 2; : : : ; 2m ; (22.2.8)

see (Biermann, 1977), with the initial values

˛1 D �C v1f1; d1.k C 1/ D d1.k/

˛1�
(22.2.9)

b1 D v1 : (22.2.10)

For each j , the following expressions hold for the elements of U

uij .k C 1/ D uij .k/C rj bi

bi D bi C uij vj

�
i D 1; : : : ; j (22.2.11)

�.k/ D 1

˛2m

b : (22.2.12)

The parameters are finally obtained from (9.4.17) as

O�.k C 1/ D O�.k/C �.k/e.k C 1/ (22.2.13)

e.k C 1/ D y.k C 1/ � T.k C 1/ O�.k/ : (22.2.14)

(22.2.12), (22.2.8), and (22.2.11) are calculated instead of (9.4.18) and (9.4.19). As
compared to DSFC, here no routines are required for square root calculations. The
computational expense is comparable to that of RLS. The numerical properties are
similar to those of DSFC, only the matrix elements of U and D may become larger
than those of S .

To reduce the calculations after each sampling, invariance properties of the matri-
ces (Ljung et al, 1978), may be used to generate fast algorithms. A saving of calcula-
tion time only results for orderm > 5, but at the cost of greater storage requirements
and higher sensitivity for starting values.

22.3 Factorization methods1 for P�1

Discrete square root filtering in information form (DSFI) results from the non-
recursive LS method of the form

1 compiled by Michael Vogt
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P�1.k C 1/ O�.k C 1/ D � T.k C 1/y.k C 1/ D f .k C 1/ (22.3.1)

with

P�1.k C 1/ D �P�1.k/C .k C 1/ T.k C 1/ (22.3.2)
f .k C 1/ D �f .k/C .k C 1/y.k C 1/ : (22.3.3)

The information matrix P�1 is now split into upper triangular matrices R:

P�1 D RTR : (22.3.4)

Note that R D S�1, cf. (22.2.1). Then O�.k C 1/ is calculated from (22.3.1) by
back-substitution from

R.k C 1/ O�.k C 1/ D b.k C 1/ : (22.3.5)

This equation follows from (22.3.1), introducing an orthonormal transformation ma-
trixQ (withQTQ D I), such that

� TQTQ� O� D � TQTQy : (22.3.6)

Here,

Q� D
�
R

0

�
(22.3.7)

possesses an upper triangular form, and the equation

Qy D
�
b

w

�
(22.3.8)

holds. With (22.3.6), it follows that

Q.k C 1/� .k C 1/ O�.k C 1/ D Q.k C 1/y.k C 1/ : (22.3.9)

Actually, DSFI uses a different idea to minimize the sum of errors squared

V D
X

e2.k/ D kek2
2 D k� O� � yk2

2 : (22.3.10)

Whereas the LS method solves the normal equation rV D 0, here the QR factoriza-
tion

Q� D
�
R

0

�
(22.3.11)

is used to simplify (22.3.10). This relies on the fact that the multiplication with an
orthonormal matrixQ does not change the norm of a vector, since

V D k� O� � yk2
2 D kQ� O� �Qyk2

2 D k
�
R

0

�
O� �

�
b

w

�
k2

2

D k
�
R O� � b
0 �w

�
k2

2 D kR O� � bk2
2 C kwk2

2 D min
O�
:
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As already stated in (22.3.5), the parameters O� are determined by solving the system
R O� � b D 0, whereas kwk2

2 is the remaining residual, i.e. the sum of errors squared
for the optimal parameters O� .

The main effort of the method described above is the computation of R and b.
This is usually done by applying Householder transformations to the matrix .� y /

(Golub and van Loan, 1996), so thatQ does not need to be computed.
However, DSFI computes R and b recursively. Assuming that in each step one

row is appended to .� y /, (22.3.9) is now transferred to a recursive form (Kaminski
et al, 1971),

�
R.k C 1/

0T

�
D Q.k C 1/

� p
�R.k/

 T.k C 1/

�
(22.3.12)

�
b.k C 1/

w.k C 1/

�
D Q.k C 1/

� p
�b.k/

y.k C 1/

�
: (22.3.13)

Then R.k C 1/ and b.k C 1/ are used to calculate O�.k C 1/ with (22.3.5), whereas
w.k C 1/ is the current residual. The method is especially suitable if the parameters
are not required for each sample step. Then, only R and b have to be calculated
recursively. This is done by applying Givens rotations to the right hand sides of
(22.3.12) and (22.3.13). The Givens rotation

G D
�
� �

�� �
�

(22.3.14)

is applied to a 2 � � matrix M in order to eliminate the element m0
21 in the trans-

formed matrixM 0 D GM , i.e. to introduce a zero in the matrix
�
� �

�� �
��

m11 m12 � � �
m21 m22 � � �

�
D
�
m0

11 m
0
12 � � �

0 m0
22 � � �

�
: (22.3.15)

The two conditions

det.G / D �2 C �2 D 1 (normalization) (22.3.16)
m0

21 D ��m11 C �m21 D 0 (elimination of m0
21) (22.3.17)

yield the rotation parameters

� D m11q
m2

11 Cm2
21

(22.3.18)

� D m21q
m2

11 Cm2
21

: (22.3.19)

This transformation is now sequentially applied to  T.k C 1/ and the rows of
p
�R

in (22.3.12), where G is now interpreted as an .nC 1/ � .nC 1/ matrix
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Table 22.1. Computational expense of different parameter estimation algorithms. Orthogonal
methods include back substitution. n is the number of parameters to be estimated

Method Add/Sub Mul Div Sqrt

NLMS 3n 3nC 1 1 0

RLS 1:5n2 C 3:5n 2n2 C 4n n 0

RMGS 1:5n2 C 1:5n 2n2 C 3n 2n 0

FDSFI 1:5n2 C 1:5n 2n2 C 5n 2n 0

DSFI 1:5n2 C 1:5n 2:5n2 C 6:5n 3n n

� � � �
0 � �
0 0 �
� � �

�
G1�!

� � � �
0 � �
0 0 �
0 � �

�
G2�!

� � � �
0 � �
0 0 �
0 0 �

�
G3�!

� � � �
0 � �
0 0 �
0 0 0

�

The product of the Givens matrices is the transformation matrixQ.k C 1/:
�
R.k C 1/

0T

�
D Gn.k C 1/ : : :G1.k C 1/Ÿ

Q.k C 1/

� p
�R.k/

 T.k C 1/

�
(22.3.20)

that producesR.kC 1/. The same method is used to compute b.kC 1/ according to
(22.3.13). A complete DSFI update step can now be described as follows:

Compute for i D 1; : : : ; n:

ri i .k C 1/ D
q
�r2

i i .k/C . 
.i/
i .k C 1//2

� D ri i .k/=ri i .k C 1/

� D  
.i/
i .k C 1/=ri i .k C 1/

rij .k C 1/

 
.iC1/
j .k C 1/

D
D

p
��rij .k/C � 

.i/
j .k C 1/

�
p
��rij .k/C � 

.i/
j .k C 1/



j D i C 1; : : : ; n

bi .k C 1/ D
p
��bi .k/C �y.i/.k C 1/

y.iC1/.k C 1/ D �
p
��bi .k/C �y.i/.k C 1/

(22.3.21)
Further discussion of square root filtering may be found in (Peterka, 1975; Good-

win and Payne, 1977; Strejc, 1980).
Table 22.1 shall be used to compare the computational expense of different pa-

rameter estimation algorithms. The normalized least mean squares algorithm is a
stochastic gradient descent method and hence not very reliable in finding the opti-
mum, see Sect. 10.7. The recursive least squares uses more computations per update
step, but is much more precise. On the other end of the table, one finds the discrete
square root filter in information form (DSFI) algorithm, which is numerically very
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Table 22.2. Total number of floating point operations for n D 4 and n D 6 parameters to be
estimated

Method n D 4 n D 6

Add/Sub Mul Div Sqrt Add/Sub Mul Div Sqrt

NLMS 12 13 1 0 18 19 1 0

RLS 38 48 4 0 75 96 6 0

DSFI 30 66 12 4 63 129 18 6

robust, but at the same time requires the most computations per update step, includ-
ing the calculation of n square roots. The DSFI algorithm can be implemented in
an even more efficient form, if the following tricks are used: Store only the upper
triangular part of the matrix R. Store matrix row-wise, as then the elements can be
addressed by incrementing the pointer. Do not calculate the parameter vector in ev-
ery iteration, but only update the matrix R. Table 22.2 illustrates the computational
effort for n D 4 and n D 6 parameters to be estimated.

22.4 Summary

No essential differences in the numerical properties can be observed for DSFC and
DSFI. Therefore, also DSFI requires the computation of n square roots in each
step. There are also factorizations for P�1 that do not require square roots, just
like the U-D factorization for P . These techniques replace the Givens rotations by
fast Givens rotations (Golub and van Loan, 1996), or employ recursive forms of the
Gram Schmidt orthogonalization. These fast orthogonalization methods show the
same error sensitivity, but their matrix elements may become larger than those of
DSFI.

According to Table 22.1 and the fact that computers nowadays provide high com-
putational power, one should in general use the DSFI algorithm. If this is not possi-
ble, then the RLS algorithm is a good choice as it has little computational expense
and still provides a much higher precision than stochastic gradient descent algo-
rithms.

Problems

22.1. QR Decomposition and Householder Transform
Show how a 5� 3 matrix can be QR decomposed by the application of three House-
holder transforms Q1;Q2;Q3. � denotes elements that may change, � denotes ele-
ments that will not change.

22.2. DSFI Algorithm 1
Show that for any orthonormal matrixQ and a vector x results kQxk2

2 D kxk2
2.

Show furthermore that for a vector x with
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x D
�
a

b

�
;

one can obtain
kxk2

2 D kak2
2 C kbk2

2 :

Use these results to minimize the cost function

V D k� O� � yk2
2

by means of the QR decomposition.

22.3. DSFI Algorithm 2
Develop the parameter estimation algorithms to be programmed for a second order
dynamic discrete-time process with

y.k/C a1.y.k � 1/C a2y.k � 2/ D b1u.k � 1/C b2u.k � 2/
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Practical Aspects of Parameter Estimation

Going back to Fig. 1.7, one sees at once that the preceding chapters mainly described
the block Application of Identification Method and the resulting Process Model that
was either non-parametric or parametric. The other blocks will now be discussed
in more detail. Also, some special issues, such as low frequent and high frequent
disturbances, which are typically not accounted for by the identification method it-
self, disturbances at the system input, as well as a special treatment of integral acting
systems shall be discussed. Also, all methods are summarized and their most impor-
tant advantages and disadvantages are discussed, see Sect. 23.4. Finally, means to
critically evaluate the identification results are presented at the end of this chapter.

23.1 Choice of Input Signal

If the input signal for the identification of a dynamic process can be chosen freely,
then one still has to consider the limitations mentioned in Sect. 1.2, i.e. the

� maximum allowable amplitude and speed of the change of the input signal u.t/
� maximum allowable amplitude of the output signal y.t/
� maximum measurement time TM;max

From the identifiability conditions in Sect. 9.1.4, one knows that the input signal
must be persistently exciting of order m, where m is the process order. However,
there is still a magnitude of input signals that satisfy the conditions for a consistent
estimation. If one wants to obtain a model of maximum fidelity under the given
constraints, then the test signal must be designed such that it also optimizes the cost
function of the identified model. It seems obvious to derive a suitable quality criterion
from the error covariance matrix of the parameter estimates. As a quality criterion,
one can indeed define a scalar cost function ˚ as

V D E
˚
˚.J /

�
; (23.1.1)

see (Goodwin and Payne, 1977; Gevers, 2005), e.g.

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_23, © Springer-Verlag Berlin Heidelberg 2011 
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V1 D E
˚
trJ�1

�
; (23.1.2)

which is denoted as A-optimal or

V2 D E
˚
trWJ�1

�
; (23.1.3)

whereW is a suitable weighting matrix (called L-optimal) . A further metric is

V3 D detJ ; (23.1.4)

which is referred to as D-optimal. Under the assumption of a Gaussian distributed
error, one can, for the method of least squares, use

J D 1

�2
e

E
˚
� T�

� D 1

�2
e

E
˚
P�1

�
: (23.1.5)

Based on the quality criterion, one can then try to design an optimal test signal either
in the time or in the frequency domain (Mehra, 1974; Krolikowski and Eykhoff,
1985).

To resolve the mutual dependency of the input signal optimality and the param-
eter estimates, one can use a minimax approach as outlined in (Welsh et al, 2006).
Here, the input signal is optimized by means of any of the above presented cost
functions, but the cost function is not only evaluated for a single parameter set � ,
but over an entire compact parameter set� . The maximum of the cost function over
that entire compact parameter set is then minimized, hence leading to a minimax
optimization problem.

Optimal test signals can hence only be stated for special cases, such as e.g. effi-
cient parameter estimation methods and long measurement times. Furthermore, the
quality criterion should not only be based on the expected error of the parameters, but
also on the final application of the model. In practical applications, things are further
impaired by the fact that the model and the noise are not known a priori, so that one
can only iteratively design test signals or as an alternative employ nearly optimal test
signals. These nearly optimal test signals shall be referred to as favorable test signals
from now on. For the choice of favorable test signals, the following guidelines are
suggested.

Signals from Normal Operation or Artificial Test Signals

As input signals, one can use the signals that occur during the normal operation or
one can inject special test signals. The signals from normal operation are however
only suitable, if they excite the process to be identified sufficiently in the range of the
interesting process dynamics. Furthermore, they must be stationary and uncorrelated
with the disturbances acting on the process. This is only true in very rare cases. One
should therefore, whenever possible, use artificial test signals, whose properties are
exactly known and can be tuned to obtain models of a high fidelity.
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Shape of the Test Signal

The shape of the test signal is first and foremost limited by the actuator (e.g. electri-
cally, pneumatically, or hydraulically powered), as the actuator limits the maximum
speed of change and hence the time derivative of the input. This also constrains the
maximum frequency in the input signal.

Favorable test signals typically excite the interesting eigenvalues of the process
continuously and as strongly as possible compared with the disturbance spectrum.
For the design/choice of test signals, one has to take into account, compare Sect. 1.5:

� The height of the test signal u0 should be as large as possible. Here, one has to
take limitations of the input and output signal as well as the system states due to
operating limitations or the assumption of linearity into account.

� The steeper the edges, the stronger the excitation of the high frequencies (Gibb’s
phenomenon).

� The smaller the width of the pulses in the input signal, the stronger the excitation
of medium to high frequencies. The broader the pulses, the stronger the excitation
of low frequencies.

From these considerations follows that the pseudo-random binary signals and
generalized random binary signals (GRBS) are especially well suited for correlation
analysis and parameter estimation, see Sect. 6.3. If the PRBS signal should excite the
high frequencies, then the cycle time � has to be chosen equal to the sample time T0.
A choice of �=T0 D 2; 3; : : : increases the power spectral density at low frequencies
and allows a better estimation of the DC gain at the price of diminishing excitation
of the high frequencies. By variation of the cycle time �, one can hence adjust the
excited frequency spectrum by means of a single parameter. For the GRBS, one can
influence the signal shape by the probability p. One can also imagine to adjust the
cycle time online during the experiment, see Sect. 6.3 for a treatment of PRBS and
GRBS signals. For processes of low order and limitation of some system states, it can
be advisable to use multi frequency signals, see Sect. 5.3, instead of PRBS signals.
In (Bombois et al, 2008) a method is presented to design an optimal test signal for
multi-sine excitation. Here, the maximum power (i.e. sum of squared amplitudes) is
minimized under constraints on the parameter error covariance.

If there is enough measurement time, the excitation with sine-functions for the
determination of the frequency responses is one of the best method for linear pro-
cesses to determine frequency responses, e.g. by the orthogonal correlation, see
Sect. 5.5.2. Non-linear processes require multi-valued test signals like APRBS,
which are discussed in Sect. 6.3.

23.2 Choice of Sample Rate

For the identification of processes with discrete-time signals, the sample rate must be
chosen prior to the measurement. The sample time cannot be reduced later. On the
opposite, an increase to twice or three times the sample time can easily be realized
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by just using every second, third, etc. sample. Before the downsampling, the data
should however be low-pass filtered to avoid aliasing in the downsampled data. The
choice of the sample time mainly depends on:

� Sample time of the discrete-time model in later application
� Fidelity of the resulting model
� Numerical problems

These issues shall be discussed in the following sections.

23.2.1 Intended Application

If the model is subsequently used to design a digital controller, the sample time must
be chosen according to that of the control algorithm. This quantity in turn depends
on many aspects such as e.g. desired control quality, chosen control algorithm, and
the target hardware. As a reference value, e.g. for PID control algorithms, one can
select

T0

T95
� 1

5
; : : : ;

1

15
; (23.2.1)

where T95 is the 95% settling time of the step response of a proprotional acting pro-
cess (Isermann and Freyermuth, 1991). Upon higher demands on the control quality,
the sample time can become smaller. Similarly, Verhaegen and Verdult (2007) sug-
gested to sample 8 to 9 times during the rise time of the system.

In order to determine the sample rate for an oscillatory system, it is proposed by
Verhaegen and Verdult (2007) to count the number of cycles before the steady-state
is reached in the step response. If this number is denoted by n and it is assumed that
it takes roughly the time of four time constants of the system to settle down, then the
time constant can be estimated as

T � nTcycle

4
: (23.2.2)

With the knowledge of the time constant, one can then choose the sample rate so
that the system is sampled between 5 and 15 times during the interval of one time
constant. A sample rate that is too high is indicated by one or more of the following
effects:

� Bad numerical condition of the matrix � T� due to nearly linearly dependent
rows

� Clustering of the poles of a discrete-time system around ´ D 1

� High frequent noise in the data

23.2.2 Fidelity of the Resulting Model

Table 23.1 shows the influence of the sample time T0 on the parameter estimates
ai and bi of the transfer function of the Three-Mass Oscillator. As one can see, for
decreasing sample times, the absolute value of the parameters bi decreases and the



23.3 Determination of Structure Parameters for Linear Dynamic Models 569

Table 23.1. Parameters of the theoretical model of the transfer function of the Three-Mass
Oscillator (see App. B) as a function of the sample time T0. To reduce the sample time, only
every kth sample was retained in the data vector

T0 Œs� 0:003 0:012 0:048 0:144

k 1 4 16 48

b1 -0.013112 -0.0090007 0.055701 5.2643
b2 -0.0042292 -0.011311 0.49831 7.5739
b3 0.0086402 0.020682 0.767 2.3529
b4 0.0032622 -0.0019679 0.44988 0.73567
b5 -0.0087436 0.026107 0.0081502 0.12386
b6 0.023896 0.047981 -0.051817 -0.031231
a1 -0.73415 -1.4584 -1.955 0.11845
a2 -0.45075 -0.22564 1.718 0.18661
a3 -0.21071 0.38383 -0.68648 -0.60705
a4 -0.01038 0.50713 -0.29154 -0.22439
a5 0.16337 0.16565 0.7275 -0.094103
a6 0.2451 -0.36914 -0.47486 -0.022469P
bi 0:0097141 0:072491 1:7272 16:0194

1CP
ai 0:0024734 0:003428 0:037615 0:35704

K 3:9275 21:1468 45:9185 44:8669

sum of the bi , which is important e.g. to determine the DC gain, depends severely
on the fourth or fifth digit behind the decimal point of the individual bi . As one
can see, small absolute errors in the parameters can have a significant impact on the
input/output behavior of the model (gain, impulse response). On the other hand, if the
sample time is chosen too large, then the resulting model order reduces.This can also
be seen for the last column of Table 23.1. Here, a6 
 j1CP

ai j and b6 
 jP bi j,
hence the model order has reduced as the last coefficients are of negligible size.

23.2.3 Numerical Problems

If the sample time is chosen too small, then a badly conditioned system of equations
results, as the difference equations for different values of k become nearly linearly
depended. Hence, for a decrease of the sample time, one suddenly witnesses a big
increase in the parameter variances.

However, the choice of the sample time is rather uncritical as the range between
too small and too large sample times is relatively broad.

23.3 Determination of Structure Parameters for Linear Dynamic
Models

The determination of the order of a parametric model with the transfer function



570 23 Practical Aspects of Parameter Estimation

GP.´/ D y.´/

u.´/
D b1´

�1 C : : :C b Om´� Om

1C a1´�1 C : : :C a Om´� Om ´
� Od (23.3.1)

means to determine the structure parameters Om and Od of the model of the process
with the true order m0 and d0. In the ideal case, one should obtain Om D m0 and
Od D d0.

In most cases, the structure parameters have to be fixed before the estimation
of the model parameters. They hence represent part of the a priori assumptions and
must be checked as part of the validation of the results, see Sect. 23.8. Therefore, the
model order and dead time can be determined by the methods that will subsequently
in this chapter be used for model validation. Also, a number of specific methods has
been developed which allow to determine the structure parameters and should be
seen together with the respective parameter estimation methods.

The methods are termed order or dead time tests and can be discerned according
to the following properties:

� Deterministic or stochastic approach
� Previous parameter estimation necessary or not
� Process and noise model treated separately or together

In the following, some methods are presented, which allow to determine the
model order and dead time. Model order tests have been summarized by Söderström
(1977), van den Boom (1982), and Raol et al (2004) among others. Often, it is useful
to determine the dead time and the model order consecutively. However, they can
also be determined in parallel. These criteria can also be used for frequency domain
identification as shown in (Pintelon and Schoukens, 2001). Too large models lead to
inefficient estimators, too small models to inconsistent estimators (Heij et al, 2007).
A first estimate of the model order can be obtained by applying non-parametric iden-
tification techniques (e.g. frequency response) and analyzing their results.

23.3.1 Determination of Dead Time

It is for now assumed that the process orderm is known. For the determination of the
dead time, it is assumed that the true dead time d0 is bounded by 0 � d0 � dmax and
that the numerator polynomial of the process model

y.´/ D B�.´�1/

A.´�1/
u.´/ D G�

P .´/u.´/ (23.3.2)

has been augmented as

B�.´�1/ D b�
1´

�1 C : : :C b�
mCdmax

´�m�dmax : (23.3.3)

For the process model in (23.3.1), one then obtains

b�
i D 0 for i D 1; 2; : : : ; Od
b�

i D b
i� Od for i D 1C Od; 2C Od; : : : ; mC Od

b�
i D 0 for i D mC Od C 1; : : : ; mC dmax :

�
(23.3.4)
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For the parameter estimation, one uses the following vectors

 T.k C 1/ D ��y.k/ : : : �y.k �m/ �u.k � 1/ : : : �u.k �m � dmax/
�

(23.3.5)

O� D � Oa1 : : : Oam
Ob�
1 : : :

Ob�
mCdmax

�
: (23.3.6)

For a consistent parameter estimation method, one can expect that

E
˚ Ob�

i

� D 0 for i D 1; 2; : : : ; d0

and i D mC d0 C 1;mC d0 C 2; : : : ; mC dmax :
(23.3.7)

Hence, these coefficients of the numerator polynomial must be small compared to
the remaining parameters. As a criterion for the determination of Od , one can use

j Ob�
i j 


m�dmaxX
iD1

Ob�
i and j Ob�

iC1j 	 j Ob�
i j i D 1; 2; : : : ; Od : (23.3.8)

In the ideal case, the first condition of this this criterion is satisfied for all i D Od �
d0, whereas the second part is only satisfied for i D Od D d0 (Isermann, 1974).
This simple method however assumes that the influence of disturbances is mostly
eliminated, either because the disturbance is small or because the measurement time
is sufficiently long.

If the disturbance is larger, one can use the following approach (Kurz and
Goedecke, 1981):

� Step 1: Determine the largest parameter j Ob�
d 0

max
j of B�.´�1/. Then, the dead time

must be in the interval
0 � Od � d 0

max : (23.3.9)

� Step 2: Determine the error of the impulse responses as

�gd .�/ D Og�.�/ � Ogd .�/; d D 0; 1; : : : ; d 0
max ; (23.3.10)

where Og�.�/ is the impulse response of G�.´/ and Ogd .�/ of GPd .´/, where
GPd .´/ is given as

GPd .´/ D
OB.´�1/

OA.´�1/
´� Od : (23.3.11)

The parameters of OA.´�1/ are identical for both impulse responses. The para-
meters OB.´�1/ of the model GPd .´/ can be determined from g�.�/ as follows:

Ob1 D Og�.1C Od/ (23.3.12)

Obi D Og�.i C Od/C
i�1X
j D1

aj Og�.i � j C Od/; i D 2; : : : ; m : (23.3.13)
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A recursive formulation for the calculation of the error �gd .�/ is presented by
Kurz (1979). Then, the cost function

V.d/ D
MX

�D1

�g2
d .�/; d D 0; 1; : : : ; d 0

max (23.3.14)

is evaluated.
� Step 3: The minimum value of F. Od/ determines the dead time Od
� Step 4: The parameters Obi can now be estimated

The computational effort of this method is comparably low and hence the method
can also be employed after each sample step for the recursive parameter estimation.
Kurz and Goedecke (1981) showed examples of adaptive control of processes with
variable dead time.

For a non-parametric model in the form of an impulse response or step response,
one can also determine the dead time from the delay between the input and the initial
reaction of the output to that input.

23.3.2 Determination of Model Order

In order to determine the unknown model order Om, one can use different criteria such
as

� cost function
� rank of information matrix
� residuals
� poles and zeros

The common principle is that any of these quantities, upon variation of the model or-
der, will show a distinct behavior upon passing the true model order. These individual
criteria are listed in the following sections.

Cost Function

Since all parameter estimation methods minimize a cost function

V.m;N / D eT.m;N /e.m;N / ; (23.3.15)

a rather obvious approach is to analyze the cost function as a function of the model
order estimate Om. e can be the vector of the equation error or the residual of the
employed parameter estimation method or can be the output error between model
and process. Hence, for a given model order estimate Om, one must determine the
parameter vector O�.N / and can then determine the error.

For m D 1; 2; 3; : : : ; m0, the cost function value V.m;N / will decrease as the
error will get smaller with an increasing model order. If no disturbances are acting
on the process, one would theoretically obtain V.m0; N / D 0. If disturbances are
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Fig. 23.1. Cost function V.m;N / of the parameter estimation of the Three-Mass Oscillator as
a function of model order m

acting on the process, it is expected that V.m0; N / is a visible turning point in the
run of the cost function and that V.m;N / for m > m0 does not change that much.
Therefore, a criterion to determine the model order can be the change of V.m;N /
upon an increase of the model order as

�V.mC 1/ D V.m/ � V.mC 1/ (23.3.16)

and the model order test can be to look for the point

�V. OmC 1/ 
 �V. Om/ ; (23.3.17)

where no significant improvement of the cost function can be obtained, or basically
V.m/ does not diminish much more, such that V. Om C 1/ � V. Om/. Then, Om is the
estimate of the model order.

Example 23.1 (Model Order Determination for the Three-Mass Oscillator).
The method of determining the model order by a cost function analysis has been

applied to the Three-Mass Oscillator. One can see in Fig. 23.1 that the model order is
correctly estimated as Om D m0 D 6. Noise has been added to the output to show the
effect of a very slight reduction for increasing the model order m beyond m0. ut

It has to be added that the calculation of the cost function requires an evaluation
of allN data points for each value ofm (and also d ). Here, methods which employ an
intermediate non-parametric model like COR-LS can be an appealing alternative as
the number of data points to be processed is much lower than that of the original time
sequence. This advantage can be decisive for online estimation of model order and
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dead time as here all possible candidates ofm and d have to be tested simultaneously
in parallel during each sample step.

For the automation of the model order estimation, it is advantageous to use sta-
tistical hypothesis testing methods to determine whether a significant change in the
cost function has taken place if the model order changes from m1 to m2. A first pos-
sibility is the F -test (Åström, 1968). The test is based on the statistical independence
between V.m2; N / and V.m1; N /�V.m2; N /, which are �2-distributed for normal
distributed residuals. To test, whether the cost function changes significantly if the
order is increased fromm1 tom2, i.e. if the number of parameters changes from 2m1

to 2m2, one uses the test quantity

t D V.m1/ � V.m2/

V .m2/

N � 2m2

2.m2 �m1/
: (23.3.18)

For large N , the random variable t is asymptotically F Œ2.m2 � m1/; .N � 2m2/�

distributed. One can then define a threshold and obtain its value t� from tables for
hypothesis testing using this very distribution (Lehmann and Romano, 2005, e.g.).
For t < t�, m1 is the estimated model order.

In conjunction with the maximum likelihood estimation, Akaike defined some
test quantities: The final prediction error criterion is given as

FPE D N C 2m

N � 2m det
1

N

NX
kD1

e.k;�/eT.k;�/ ; (23.3.19)

where the e.k;�/ are the one step ahead prediction errors based on the ML esti-
mates � . One will then determine the minimum of the FPE, (Akaike, 1970). Another
criterion is the Akaike information criterion (AIC)

AIC D 2m � 2 logL.�/ ; (23.3.20)

where L.�/ is the likelihood function and � are the ML estimates of order m. Once
again, one tries to determine the minimum of this criterion. The first term ensures
that the cost function increases again if the model is over-parameterized. Another
formulation is the Bayesian information criterion, given as

BIC D 2m logN � 2 logL.�/ : (23.3.21)

Söderström (1977) has shown that asymptotically, the F -test, the FPE and the
AIC are equivalent.

The practical application of the cost function tests requires for each model order
m a parameter estimation to determine �.m/ and an evaluation of the cost function
V.m/. In order to reduce the computational burden, one can choose between the
following approaches:

� Recursive calculation of the covariance matrix P.m;N / for different orders m
without matrix inversion (Schumann et al, 1981)

� Successive reduction of the estimates of a model of too high order by param-
eter estimation employing the DSFI algorithm (smaller computational burden
because of triangular matrix) (Kofahl, 1986)
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Rank Test of the Information Matrix

For the LS parameter estimation

O�.N / D .� T� /�1� Ty ; (23.3.22)

the behavior of the matrix
J 0 D P�1 D � T� (23.3.23)

is investigated. This is part of the information matrix, (11.2.56). For the case that no
noise is acting on the system, the matrix J 0 becomes singular for any model order
m > m0, i.e.

detJ 0 D det� T� D 0 ; (23.3.24)

since
rankJ 0 D 2m0 (23.3.25)

For disturbances n.k/ acting on the system, the determinant will still be non-zero
after the transition Om D m0 ! Om D m0 C 1, but will experience a significant
change. Woodside (1971) therefore proposed to evaluate the determinant ratio

DR.m/ D J 0
m

J 0
mC1

: (23.3.26)

For m D m0 and for good signal-to-noise ratios, one will witness a jump. For larger
noise levels, it is suggested to use

J 00 D J 0 � �2R ; (23.3.27)

where �2R is the covariance matrix of the noise, that must then be known.
A method for the determination of the cost function without determining the

parameter estimates is given by the following derivation (Hensel, 1987).

O� D �
� T�

��1
� Ty D �

� T�
��1
q (23.3.28)

eTe D �
yT � O�T� T��y � � O�� D yTy � qT�� T�

��1
q (23.3.29)

D yTy � qT adj� T�

det� T�
q

eTe det
�
� T�

� D yTy det
�
� T�

�C qT adj
�
� T�

�
q : (23.3.30)

One can now use the fact that

det
�
0 xT

w A

�
D �

X
i

X
j

xiwjAj i D �xT.adjA/w (23.3.31)

det
�
0 qT

q � T�

�
D �qT�adj� T�

�
q : (23.3.32)

From this follows
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eTe det� T� D det
�
yTy qT

q � T�

�
D det�m (23.3.33)

V.m/ D eTe D det�m

detJ 0
m

; (23.3.34)

see (Woodside, 1971). The matrix J 0
m has the dimension 2m � 2m and the extended

information matrix �m the dimension 2m C 1 � 2m C 1. Hence, the dimension of
�m is by 2 smaller than the dimension of the matrix J 0

mC1, which is required for the
determinant ratio test.

Mäncher and Hensel (1985) suggested to evaluate the ratio of the cost functions

VR.m/ D V.m � 1/
V .m/

D det�m�1

detJ 0
m�1

detJ 0
m

det�m

(23.3.35)

and to test this quantity as a function of m. One can determine the required determi-
nant successively for different m. With this approach, one can use a computationally
inexpensive realization of the determination of model order and dead time, which is
also suitable for MIMO systems (Mäncher and Hensel, 1985).

The methods just presented test the rank of the information matrix J 0 or of the
extended information matrix � respectively and establish a link to the theoretical
value of the cost function. A big advantage is the fact that one does not have to
estimate the parameters, which makes this methods well suited for MIMO processes
(Hensel, 1987).

Pole-Zero Test

If a model of higher orderm is chosen than is required by the process orderm0, then
the identified model will have an additional .m � m0/ poles and zeros that almost
cancel each other. This effect can be used to determine the model order. One however
has to calculate the roots of the numerator and denominator polynomials.

The following approach is proposed by Pintelon and Schoukens (2001):

� Make an initial guess of the maximum model order, e.g. by looking at the rank
of the information matrix. The model order assumed should be conservative, i.e.
too high

� Use this model order for an initial parameter estimate
� Cancel poles, zeros, and pole/zero pairs, which do not contribute significantly

to the model dynamics. The significance can e.g. be determined from a partial
fraction expansion. Check the validity of each reduction and terminate if no fur-
ther reduction is possible. Then, the model order has been determined and a final
parameter estimation should be carried out. Possibly restart this method.

Residual Tests

The parameter estimation methods LS, ELS, GLS, and ML should yield in the
case of bias-free estimates and under other idealizing assumptions residuals that are
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white. Hence, one can test the residuals for whiteness, e.g. by calculating the auto-
correlation function. While this method is in general well suited for model validation,
it can also be used for model order determination, (van den Boom and van den En-
den, 1974; van den Boom, 1982). Starting with a model order estimate of Om D 1,
the model order is increased until the residuals are white for the first time, then one
expects that Om D m0.

Concluding Remarks

Practical experience has shown that for processes of higher order, model order iden-
tification methods that are based on the cost function or the information matrix yield
good results. It might be beneficial to combine several tests. In many cases, however,
there might not exist one “best” model order as e.g. several small time constants or
dead times could be combined into one time constant, the structure of a distributed
parameter system or (weakly) non-linear process cannot be captured exactly by the
linear lumped parameter model. Hence, the identified model order can be seen as an
approximation. Depending on the type of application, one can make the following
suggestions:

Interactive Model Order Determination: The decision is made by the user as
part of an offline identification. Here, one can use all methods as the computational
burden does not matter. A combination of different methods is suggested, e.g. a cost
function test and the pole-zero test.

Automated Model Order Determination: If the model order has to be determined
in real time, then the computational effort can play a dominant role in selecting an
appropriate algorithm. In combination with recursive parameter estimation methods,
it is suggested to carry out a cost function test or a rank test.

23.4 Comparison of Different Parameter Estimation Methods

A comparison of the different methods presented in this book will now be given.

23.4.1 Introductory Remarks

The large number of existing parameter estimation methods shall now be categorized
with respect to the model that is to be derived as well as the assumptions on the
noise. The main advantages and disadvantages of the respective methods are then
summarized.

Before these properties shall be compared in the subsequent sections, some intro-
ductory remarks shall now be made with respect to the comparison of identification
methods.

For the comparison of the a priori assumptions, one just has to compare the dif-
ferent assumptions that had to be made for the mathematical development and for
the convergence analysis of the respective method. The same holds true for the com-
putational effort. Here, one can determine the number of floating point operations
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(FLOPS) and the storage space for the algorithms. For the non-recursive methods,
one can compare the total number of floating point operations, whereas for the re-
cursive methods, one can compare the number of FLOPS between two data samples.

Much more difficult is a comparison of the model fidelity. One approach is to
assume a certain model and noise and then carry out a simulation on a computer.
One can then e.g. determine the model error as a function of the data sample length
or the noise level. A big advantage of this approach is that one can also compare
cases where the a priori assumptions or the assumptions that were necessary for the
theoretical convergence analysis are violated. This is often encountered in practical
applications and hence it is interesting to see, how the methods work in such a case.
The major drawback is the fact that all results depend on the simulation model used
and are hence in theory only valid for this particular model considered. Although in
many cases possible, the results cannot unconditionally be generalized.

For some parameter estimation methods, one can also base a comparison on the
theoretical convergence analysis. For example, one can compare directly the covari-
ance matrices of the non-recursive methods of LS, WLS, and ML. For a comparison
of the recursive methods, one could compare e.g. the trajectories of the parameter
estimates. A comparison of the theoretically obtained results for convergence does
implicitly only apply to the case of long (possibly even infinitely long) measurement
times and under the satisfaction of all a priori assumptions. If one is interested in re-
sults for short measurement times and/or in the presence of violations of the a priori
assumptions, then one typically has to resort to simulation studies.

A third possibility is to compare the different methods applied to a real process.
This is especially advisable, if one already has a certain application in mind and can
obtain data which are typical for this application. A problem here however is the
fact that an exact model of the process is in most cases not known. Furthermore, the
process behavior and the disturbances can change over time so that the results can
often not be generalized.

It can be said that there is no single approach to compare the performance of
identification methods in an unambiguous and convincing way. Hence, the results of
all three means of comparison, i.e. simulation, theoretical convergence analysis, and
real applications must be combined to come to general results.

A further problem is the mathematical quantification of the error between model
and process. One can use for example the following errors:

� Parameter error ��i D O�i � �i0

� Output error �y.k/ D Oy.k/ � y.k/
� Equation error e.k/ D y.k/ � T.k/ O�.k � 1/
� Error of the input/output behavior, for example determined by the impulse re-

sponse error �g.�/ D Og.�/ � g.�/
These errors can be evaluated as:

� Absolute values
� Relative values
� Mean values (linear, quadratic)
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Fig. 23.2. Complex structure of a linear process with disturbances

Due to the possible combinations, there exist a lot of different metrics for the
error. Since their information can be quite different, one should always combine
some metrics. For the final judgment, however, the application of the model plays
the most important role.

23.4.2 Comparison of A Priori Assumptions

For the parameter estimation methods, one had to make certain assumptions to ob-
tain bias-free estimates, especially one had to assume a certain structure of the form
filter and the noise or the error. These assumptions shall now be compared and
checked, how well these are satisfied in practical parameter estimation applications.
Figure 23.2 shows the appropriate model structure. It must in general be assumed that
the process is disturbed by several disturbances ´1; : : : ; ´� . For the disturbances, it is
assumed that they act on the measured output signal y by means of the linear distur-
bance transfer functions G´1.´/; : : : ; G´�.´/, see Fig. 23.2. If the individual ´i are
stationary stochastic disturbances, then one can assume that all of them have been
generated from white nose by filtering with appropriate form filters. In this case

n.´/ D G´1.´/GF1.´/	1.´/C : : :CG´�.´/GF�.´/	�.´/ : (23.4.1)

Typically, one uses this model and assumes that the process G.´/ is disturbed by
one white noise 	.´/ that is filtered by one form filter G�.´/, i.e.

n.´/ D G�	.´/ ; (23.4.2)

see Fig. 23.3. Hence, one assumes that the individual form filters are linear and that
one can replace the individual white noises by one common noise source. At this
point, it should be stressed again that the noise signal n is assumed to be stationary.
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Fig. 23.3. Simplified model structure of the process in Fig. 23.2

Often however, there are also non-stationary noises or noises of unknown character,
which must be eliminated by special methods prior to the identification.

Table 23.2 shows the assumptions that have been made about the form filter for
the individual parameter estimation methods. In the most generic case, the form filter
is given by the structure

G�.´/ D D.´�1/

C.´�1/
D d0 C d1´

�1 C : : :C dp´
�p

c0 C c1´�1 C : : :C cp´�p
: (23.4.3)

In order to obtain bias-free estimates with the method LS, the form filter G�.´/

must have the form 1=A.´�1/ The form filter hence must have the same denominator
polynomial as the process that is identified. Since this is almost never the case, the
method of least squares will typically provide biased estimates, The same holds true
for the stochastic approximation.

For the method of generalized least squares, the noise filter must have the more
general form 1=A.´�1/F.´�1/. In most applications, this is not the case, so that this
method will also provide biased estimates. However, by an appropriate choice of the
model order 	 of F.´�1/, one can reduce the size of the bias compared to the normal
method of least squares.

For the maximum likelihood method and the method of extended least squares,
one assumes a form filter as D.´�1/=A.´�1/. This model is not as particular as
the models that were assumed for the method of least squares and the method of
generalized least squares, but still they cannot fully approximate the generic noise
filter D.´�1/=C.´�1/.

The method of instrumental variables and the two-stage methods, such as cor-
relation and least squares do not require any special assumptions about the noise.
They are hence well suited for general purpose applications.

The individual methods are also different with respect to their behavior under
the influence of unknown DC values at the input and output. If Efu.k/g D 0, then
the existence of a DC value Y00 has no influence on the parameter estimation while
using the method of instrumental variables and the method of correlation and least
squares. For the method of least squares, stochastic approximation, and maximum
likelihood, the DC value Y00 must be identified beforehand or must be introduced
into the parameter estimation problem to avoid systematic errors.
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Table 23.2. Comparison of noise models for different parameter estimation methods – for the
model types, see also Fig. 2.8
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23.4.3 Summary of the Methods Governed in this Book

In this section, some important advantages and disadvantages shall be summarized.

Non-Recursive Parameter Estimation Methods

Method of least squares (LS), Sect. 9.1

– Delivers biased estimates for disturbances
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+ However applicable for short measurement times as consistent methods will
not provide better results in these cases

- Sensitive to unknown DC value Y00

+ Relatively small computational effort
+ No special a priori assumptions
– Quadratic cost function overemphasizes outliers

Method of least squares for continuous time (LS), Sect. 15.1

– Delivers biased estimates
– Derivatives of (noisy) signals may have to be determined
0 Special filters can be used to calculate derivatives and low-pass filter the signal

at the same time
+ Estimated parameters typically directly interpretable

Method of generalized least squares (GLS), Sect. 10.1

– Biased estimates possible because noise filter is very particular
– Relatively large computational effort
+ A noise model is being identified
– A priori assumption about the noise form filter order necessary

Method of extended least squares (ELS), Sect. 10.2

– Biased estimates possible if noise filter does not match noise
– Parameters of noise model converge slower than process parameters
+ A noise model is being identified
+ Little additional effort
– A priori assumption about the noise form filter order necessary
– Fixed denominator polynomial of noise model limits applicability

Method of bias correction (CLS), Sect. 10.3

+ Small computational effort
– Requires that the bias can be determined, but bias can only be determined in

special cases
– Limited applicability

Method of total least squares (TLS), Sect. 10.4

+ Can incorporate noise also on the input
– Method of TLS does not account for special structure of data matrix

Method of instrumental variables (IV), Sect. 10.5

+ Good results for a wide range of noises
+ Small/medium computational effort
– Convergence can be problematic
+ Insensitive to unknown DC value Y00 provided u.k/ D 0

– A priori assumption about the noise form filter order necessary
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Maximum-likelihood method (ML), Sect. 11.2

– Large computational effort
+ A noise model is being identified
– Problematic, if there are local minima of the cost function
+ Detailed theoretical analysis available
˙ A priori assumptions depend on the optimization method

Correlation and least squares (COR-LS), Sect. 9.3.2

+ Good results for a wide range of noises
+ Small computational effort
+ Intermediate results available which do not depend on the chosen model

structure
+ Insensitive to unknown DC value Y00 provided u.k/ D 0

+ Small computational effort for model order and dead time determination
+ Easy to validate results
+ A priori assumptions only include the number of correlation function values
– Computationally expensive since correlation functions must first be determined
– Estimation of correlation functions with small error might require long

measurement times
0 shares all the advantages and disadvantages associated with the method

employed for determination of correlation functions

Frequency response and least squares (FR-LS), Sect. 14.2

+ Good results for a wide range of noises
+ Small computational effort, once frequency response has been determined
+ Intermediate results available which do not depend on the chosen model

structure
+ Insensitive to unknown DC value Y00 provided u.k/ D 0

+ Small computational effort for model order and dead time determination
+ Easy to validate results
+ A priori assumptions do only include the number of frequency response points

to be measured
+ Almost insensitive to noise if orthogonal correlation is used for frequency

response measurement
+ Provides a frequency domain model and subsequently identifies a continuous-

time model
+ Estimated parameters typically directly interpretable
– Computationally expensive since frequency response must first be determined
– Estimation of frequency response might require long measurement times

depending on frequency response identification method used
0 shares all the advantages and disadvantages associated with the method

employed for frequency response identification
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Recursive Parameter Estimation Methods

Unless noted otherwise, they have the same properties as the non-recursive methods.

Recursive least squares (RLS), Sect. 9.4

+ Robust method with reliable convergence
+ For small identification times or time-varying processes, it should be preferred

over consistent methods
+ Implementations with good numerical properties are available and should be

preferred whenever possible
+ Has been used in many applications, see Chap. 24

Recursive extended least squares (RELS), Sect. 10.2

+ Good results, if a special noise form filter D=A suits the noise approximately
and 1=D.´�1/ has no unstable poles

– Convergence can be problematic
– Slower initial convergence than RLS
– Slower convergence of the parameters of D.´�1/

+ Rather small computational effort

Recursive instrumental variables (RIV), Sect. 10.5

+ Reliable convergence only if started with other methods, such as RLS
+ Good results for a wide range of noises, if convergence is given

Recursive maximum likelihood (RML), Sect. 11.2

� Basically the same properties as RELS

Stochastic approximation (STA), Sect. 10.6, and normalized least mean square
(NLMS), Sect. 10.7

– Control of step-width problematic
– Slow convergence
+ Easy to implement
+ Computationally less expensive than RLS
– RLS can nowadays be implemented in most cases despite larger computational

expense

Extended Kalman filter (EKF), Sect. 21.4

+ Allows to estimate states and parameters at the same time
+ Model does not have to be linear in parameters
– Local linearization around operating point hence danger of diverging
– Computationally expensive, since states have to be estimated as well
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Other Methods

Characteristic parameter estimation, Sect. 2.5

+ Simple and easy to conduct method that can provide some first ideas about the
dominating time constants, process behavior, and such

– Not very precise

Frequency response measurement with non-periodic signals, Chap. 4

+ Fast algorithms for calculation of Fourier transform available
+ Easy to understand method
+ No assumption about model structure necessary
+ Provides a frequency domain model that can easily be converted to a conti-

nuous-time model
– Method without averaging over multiple measurements is not consistent

Frequency response measurement with periodic signals (orthogonal correlation),
Sect. 5.5.2

+ Extremely strong suppression of noise possible
+ Easy to understand
+ No assumption about model structure necessary
+ Should be used for linear processes whenever experiment time does not play an

important role
+ Provides a frequency domain model that can easily be converted to a conti-

nuous-time model
– Long measurement times

Deconvolution, Sect. 7.2.1

+ No assumption about model structure necessary
+ Easy to understand
+ Easy evaluation for white noise input
– Impulse response is less informative than frequency response

Iterative optimization, Chap. 19

+ Can use various cost functions, e.g. those that do not overemphasize outliers
+ Model does not have to be linear in parameters
+ Easy inclusion of constraints (e.g. ranges for parameters, stability of the resul-

ting model, etc.)
+ Reliable algorithms readily available
– Large computational expense
– Convergence not guaranteed (local minima)
– Properties of the estimator (such as efficiency) only valid if global minimum is

obtained
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Subspace methods, Chap. 16

+ Semi-automatic model order determination
+ Formulation suitable for MIMO models from the beginning
+ Reliable methods available for solution
– Large computational effort
– States are typically not interpretable

Neural networks (NN), Chap. 20

+ Universal approximator
+ Model does not have to be linear in parameters
+ Many implementations available (software toolboxes)
– For many nets, limited or even no physical interpretation
– Large computational effort
– Choice of net parameters not always intuitive

The above compilation of the most important advantages and disadvantages has
shown that there is no single “best” method. Rather, one has to select among several
possibilities the method that is best suited to the experiment conditions, but also to
the later application. Hence, the application examples in the following chapter will
show, how the combination of different methods will lead to success.

23.5 Parameter Estimation for Processes with Integral Action

Linear integral acting processes have the transfer function

GP.´/ D y.´/

u.´/
D B.´�1/

A.´�1/
D B.´�1/

.1 � ´�1/A0.´�1/
(23.5.1)

with
A0.´�1/ D 1C a0

1´
�1 C : : :C a0

m�1´
�.m�1/ : (23.5.2)

The coefficients a0
i depend on the coefficients of A.´�1/ as follows

a1 D a0
1 � 1

a2 D a0
2 � a0

1

:::

am�1 D a0
m�1 � a0

m�2

am D �a0
m�1 :

(23.5.3)

These processes hence have a single pole at ´ D 1 and are still stable (critically sta-
ble). Because of the unambiguous relation between input and output, in general one
can use the same parameter estimation methods as for proportional acting processes.
Still, there are some peculiarities, which lead to different methods of estimating the
parameters, see Fig. 23.4.
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Fig. 23.4. Different setups for the identification of an integral acting process. (a) Case 1:
Treat like proportional acting system, (b) Case 2: Difference of the output signal, (c) Case 3:
Summation of the input signal, (d) Case 4: Difference of the test signal, (e) Case 5: Closed
loop operation with P controller

Treat like Proportional Acting System

The simplest approach is not to regard the integrating pole at all and hence estimate
the parameters of B.´�1/ and A.´�1/ based on the model in (23.5.1) and use the
measurements of u.k/ and y.k/ directly, this shall be denoted as case 1.

A Priori Knowledge of the Integral Action

If the presence of a pole at ´ D 1 is known, then one can consider this pole in
the signals employed for parameter estimation and hence identify the parameters of
B.´�1/ and A0.´�1/ for the model in (23.5.1) either based on (case 2)

y.´/.1 � ´�1/

u.´/
D �y.´/

u.´/
D B.´�1/

A0.´�1/
(23.5.4)

or (case 3)
y.´/

u.´/=.1 � ´�1/
D y.´/

uI.´/
D B.´�1/

A0.´�1/
: (23.5.5)

In case 2, one uses the input signal u.k/ and the first difference of the output�y.k/.
On the contrary, in case 3, one uses the integrated input signal uI.k/ and the output
y.k/.
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Fig. 23.5. Process with disturbed input and output

Adaptation of the Test Signal

If one uses a standard PRBS signal, one first has to remove the mean of the signal
by subtracting the appropriate correction term. In order to excite the high process
frequencies sufficiently, one should choose the cycle time of the PRBS as small as
possible. For the smallest value, i.e. � D 1, the low and high frequencies are excited
equally strong. This can lead to large amplitudes of the output of the integral acting
process, which might not be admissible. In order to increase the high frequent exci-
tation and at the same time reduce the low frequent excitation, one can use the first
difference of the PRBS signal, i.e. the test signal uTS, (case 4) as

u.´/ D .1 � ´�1/uTS.´/ D �uTS.´/ : (23.5.6)

Closed Loop

In practical applications, it is often difficult to avoid a drift of an integral acting pro-
cess during the measurement. To overcome this problem, one can operate the process
in closed loop control during the experiment and adjust the setpoint according to the
test signal (case 5).

Concluding Remarks

The different setups depicted in Fig. 23.4 have been compared on simulated pro-
cesses of order m D 2 and m D 3 with and without disturbances by Jordan (1986).
As estimation method, the method of recursive extended least squares (RELS) was
used. The best convergence was obtained for the adaptation of the test signal (case
4) and by consideration of the integral action in the input or output (cases 2 and
3). Cases 1 and 5 converged most slowly. Methods for identifying integral acting
processes are also presented in (Box et al, 2008).

23.6 Disturbances at the System Input

For the parameter estimation methods, it was in most cases assumed that the input
signal is known exactly. Now, the case of a disturbed input signal is considered. The
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input signal can e.g. be falsified by measurement noise as

uM.k/ D u.k/C 
.k/ : (23.6.1)

The output is also disturbed as

y.k/ D yu.k/C n.k/ ; (23.6.2)

see Fig. 23.5. The process to be identified shall be given by

yu.´/ D B.´�1/

A.´�1/
u.´/ : (23.6.3)

The disturbances 
.k/ and n.k/ are assumed to be zero mean and not mutually cor-
related. Furthermore, they are not correlated with the process input u.k/. This in
particular requires that the process has no external feedback. Calculation of the cor-
relation functions with (23.6.1) and (23.6.2) yields

RuMuM.�/ D E
˚
uM.k/uM.kC �/

� D E
˚
u.k/u.kC �/C 
.k/
.kC �/

�
: (23.6.4)

If 
.k/ is a white noise, then

RuMuM.�/ D Ruu.�/ for � ¤ 0 : (23.6.5)

Furthermore,

RuMy.�/ D E
˚
uM.k � �/y.k/� D E

˚
u.k � �/yu.k/

� D Ruyu
: (23.6.6)

If the measurable input signal is hence disturbed by a white noise 
.k/, then one
can determine the ACF of the input signal for � ¤ 0 and the CCF in the same way
as for processes without a disturbance at the input. For parameter estimation, one
can hence use the method COR-LS as long as the value Ruu.0/ is left out, which
however drastically limits the number of equations. Furthermore, the input signal
may not be a white noise to ensure that Ruu.�/ D 0 for � ¤ 0. Söderström et al
(2009) suggested to estimate the contribution of the disturbing white noise in u.t/
on Ruu.0/ by estimating the noise variance �2

�
as part of the system identification.

As the noise variance �2
�

shows up as an additive element for Ruu.0/, such a term
can be introduced into the problem formulation as an additional parameter.

An overview over different methods for parameter estimation in the presence of
noise at the input is given in (Söderström et al, 2002; Söderström, 2007). This prob-
lem also subsumes under the name errors in variables. It is shown that all methods
that are based on the one step prediction do not deliver bias-free estimates, but rather
biased estimates as the cost function does not assume a minimum for the true para-
meters. Under the assumption of a white noise 
.k/, one can employ spectral analysis
or joint input output methods to obtain unbiased estimates. The last method assumes
that the input signal u.k/ was generated by a filter from the statistically indepen-
dent signal w.k/. Then, u.k/ and y.k/ are seen as output signals of a state space
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model, whose cost function is then minimized by numerical optimization methods.
Identifiability issues have been discussed e.g. in (Agüero and Goodwin, 2008).

Another solution of the errors in variables problem is based on the Frisch scheme,
see e.g. (Hong et al, 2008). Thil et al (2008) compared two instrumental variable
approaches, where the instrumental variables are either chosen as input variables
only or as input/output variables, see also Sect. 10.5.

23.7 Elimination of Special Disturbances

In system identification, one is in general only interested in the particular frequency
range of the output signal that was excited by the test signal. Henceforth, the identifi-
cation methods are mostly capable of eliminating disturbances only in this particular
frequency band over time. Disturbances with a much higher or much lower frequency
have to be eliminated by special measures, as will be discussed in the following. Sub-
sequently, also the elimination of outliers is discussed.

23.7.1 Drifts and High Frequent Noise

High frequent disturbances can best be eliminated by analog low-pass filters prior to
sampling. This is also an important issue with respect to anti-aliasing, see Sect. 3.1.2.
In this context, one speaks of anti-aliasing filters.

Special attention has to be paid to low frequent disturbances, which often mani-
fest themselves as drifts. It had been shown that these low frequent disturbances can
have a severe influence, see e.g. Sects. 1.2 and 5.5.2. These low-frequent disturbances
can e.g. be described by the following models:

1. Non-linear drift of order q

d.k/ D h0 C h1k C h2k
2 C : : :C hqk

q (23.7.1)

2. ARIMA process

d.´/ D F.´�1/

E.´�1/.1 � ´�1/p
	.´/; p D 1; 2 ; (23.7.2)

where 	.k/ is a stationary, uncorrelated signal.
3. Low-frequent periodic signal

d.k/ D
lX

�D0

ˇ� sin.!�T0k C ˛�/ (23.7.3)

These low-frequent disturbances can be eliminated from the output signal y.k/
by the following methods:
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Non-Linear Drift of Order q

One estimates the parameters Oh0; Oh1; : : : ; Ohq by the method of least squares and cal-
culates

Qy.k/ D y.k/ � Od.k/ : (23.7.4)

This method can however mainly be used for offline identification and long measure-
ment times.

ARIMA Process

The non-stationary part can be eliminated by

Qy.´/ D .1 � ´�1/py.´/ ; (23.7.5)

i.e. by differentiating the signal y.k/ p times (Young et al, 1971). This at the same
time however amplifies the high frequent noise so that this method can only be used
if the noise n.k/ is small compared to the useful signal yu.k/.

Low-Frequent Periodic Signal

For the identification of the low-frequent periodic part, one can use the Fourier ana-
lysis. If the frequencies !� of the individual components of the disturbance are un-
known, then one can determine them by calculating the amplitude spectrum. From
there, one can estimate Ǒ

� and Ǫ� and calculate

Qy.k/ D y.k/ � Od.k/ : (23.7.6)

One can also assume a piecewise drift of second order and determine its time-varying
parameters.

High-Pass Filtering

All of the methods described so far have the big disadvantage in common that they
are only suitable for certain disturbances, whose order q, p, or l must be known
a priori or must be determined with large effort. Much easier is the application of
a high-pass filter, which blocks the low-frequent signal components, and lets the
higher frequent signal components pass. For this, a first order high-pass filter with
the transfer function

GHP.s/ D T s

1C T s
(23.7.7)

can be employed. The discrete-time transfer function is given as

GHP.´/ D Qy.´/
y.´/

D 1 � ´�1

1C a1´�1
(23.7.8)
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with
a1 D �e� T0

T ; (23.7.9)

see (Isermann and Freyermuth, 1991). To avoid a falsification of the estimation re-
sults, the input must be filtered with the same filter.

For the choice of the time constant of the filter, one must ensure that no low-
frequent parts of the useful signal are filtered out. Due to this, the choice of T de-
pends both on the spectrum of the low-frequent disturbance as well as the input sig-
nal. If a PRBS signal with the cycle time � and the period time N is used as an input
signal, whose lowest frequency is given as !0 D 2�=N�, then the corner-frequency
of the filter should be chosen such that !HP < !0, i.e.

T >
N�

2�
; (23.7.10)

if the dynamics of the process are only of interest for ! > !0.
Pintelon and Schoukens (2001) suggested to simply disregard the low-frequent

components of input and output when working with frequency domain identification
methods. This is an alternative to high-pass filtering as the amplitude as well as the
phase of the higher frequent frequency content remain unchanged.

23.7.2 Outliers

In the following, graphical and analytical methods for the elimination of outliers
will be presented. Graphical methods have the big advantage that they can be used
very intuitively. No parameters have to be tuned and furthermore, the user can fully
control which data points are removed. The major drawback of graphical methods is
the fact that they cannot be automated easily and hence are difficult to apply to large
data sets, i.e. long measurement times and/or large number of signals.

The elimination of outliers is extremely important for the method of least squares,
which uses a quadratic error. Here, outliers are over-emphasized as the error is
squared and hence large errors have a large influence on the cost function. The use
of alternative cost functions as e.g. discussed in Sect. 19.1 can help to reduce the
influence of outliers. Special care has to be taken that only outliers are removed, as
there is always the danger that also relevant data are removed from the training data.
This can easily happen if the model does not match with the process dynamics.

Furthermore, many estimation methods that estimate dynamic models require an
equidistant spacing of the data points. In this case, one cannot just simply remove
data points, but must find a suitable replacement. A survey of methods for outlier
detection is given by Kötter et al (2007).

x-t Graph

The x-t graph is one of the simplest methods for outlier detection. Here, the mea-
surements are plotted over time. If the measurement is repeated, one can also see drift
effects (see Sect. 23.7.1) or trends as well as cross effects such as temperature. One
should only remove extraordinarily high or low points as also stepwise excitation etc.
can cause sudden jumps of the measured variables.
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Measurement vs. Prediction Graph

The measurement vs. prediction graph plots the measured variable on the x axis
and the prediction, i.e. the model output, on the y-axis. For a perfect match, all
points should lie on the bisectrix between the abscissa and the ordinate. However,
the method is very sensitive to unmodeled dynamics, which can lead to a strong
deviation from the bisectrix during transients.

Leverage

The leverage is the first analytical method to be presented here. The leverage hi of a
measurement is calculated as

hi D hi i withH D �
�
� T�

��1
� T : (23.7.11)

The matrixH is termed hat-matrix and governs the relation

Oy D Hy (23.7.12)

and allows to calculate the error as

e D y � Oy D .I �H /y : (23.7.13)

The value of hi is the potential influence of the measurement on the model. Entries
with a maximum or minimum value have greater influence on the parameter esti-
mation. Although it is sometimes suggested to remove measurements based on the
leverage, this approach seems more than questionable as the leverage only indicates
the relevance of a certain data point for the parameter estimation and does not say
anything about whether the data point fits well or not with the underlying model,
since the output y is not at all considered in the leverage.

Studentized Residuals

The idea of studentized residuals is to normalize the error with respect to the esti-
mated standard deviation of the data set. Furthermore, the error is normalized by the
leverage as data points with a high leverage have strong influence on the parameter
estimates and will hence “pull” the model output in their respective direction. The
studentized residuals are given as

e0
i D ei

O�
p
1 � hi

: (23.7.14)

The variance is estimated by

O� D 1

N �m
NX

kD1

e2
k ; (23.7.15)

where N is the number of data points and m the number of model parameters.
Thresholds for excluding a data point are typically chosen in the range 2...3 (Köt-
ter et al, 2007; Jann, 2006).
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Deleted Studentized Residuals

Deleted studentized residuals differ slightly from the studentized residuals. The only
difference is the fact that for the estimation of the variance, the element to be ana-
lyzed is not included into the calculation of O� , i.e.

O��i D 1

N �m � 1
NX

kD1
k¤i

e2
k : (23.7.16)

This will lead to the calculation of the Deleted Studentized residuals as

e00
i D ei

O��i

p
1 � hi

: (23.7.17)

The index �i means that the i th element is not used for the calculation of the re-
spective values. The same thresholds as for the Studentized residuals above can be
used.

COOK’s D and DFFITS

Other statistics that can be used for outlier detection are COOK’s D and DFFITS. The
underlying idea is that the occurrence of an outlier becomes likely if high leverage
and a high residual occur at the same time. The numbers are calculated as

Di D e02
i

p

hi

1 � hi

(23.7.18)

and

DFFITSi D e00
i

s
hi

1 � hi

: (23.7.19)

Thresholds are suggested as 4=N (Jann, 2006) for COOK’s D and 2
p
�=N for DF-

FITS, (Myers, 1990).

DFBETAS

The last number that shall be presented here is the DFBETAS. The idea is to calculate
the difference in the estimated parameters if one observation is left out. DFBETAS
is calculated by

DFBETASil D
O�l � O�l;�i

O��i

p
ui i

; (23.7.20)

where ui i is the corresponding element of the matrix .� � /�1. Here, the parameters
are once estimated including the i th measurement, �l and once without the i th mea-
surement, �l;�i . Hence, the measure must be calculated for each data point and for
each estimated parameter, leading to N � l values. As each of these calculations
necessitates one full parameter estimation, the calculation of the DFBETAS can be-
come rather time-consuming. A threshold for the rejection of disturbances was given
as 2=

p
N by Myers (1990).
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23.8 Validation

After the process has been identified and its parameters have been estimated, one
has to check, whether the resulting model matches with the process behavior. This
check depends on the identification method and the type of evaluation (non-recursive,
recursive). One should in all cases check:

� A priori assumptions of the identification method
� Match of the input/output behavior of the identified model with the input/output

behavior that has been measured.

The checking of the a priori assumptions can be carried out as follows:

Non-Parametric Identification Methods

� Linearity: Comparison of the model identified for different test signal amplitudes,
comparison of step-responses for different step heights in both directions

� Time-Invariance: Comparison of models identified from different sections of the
recorded measurements

� Disturbance: Is the noise statistically independent from the test signal and sta-
tionary? Is Run.�/ D 0? Is Efn.k/g D 0?

� Impermissible Disturbances: Are there any impermissible disturbances? Out-
liers? Changes in the Mean? Drifts? Check of the recorded signals.

� Input signal: Can it be measured without measurement error or noise? Does it
excite the process permanently?

� Steady state values: Are the steady state values known exactly?

Most methods assume that the system is linear. A simple test for linearity is to
scale the input by a factor ˛ and check, whether the output scales accordingly (Pin-
telon and Schoukens, 2001).

Parametric Identification Methods

In addition to the above stated issues, one should for the individual parameter es-
timation methods check all other a priori assumptions as well. Depending on the
parameter estimation method, these could be

� Error Signal: Is it statistically independent? Is Ree.�/ D 0 for all j� j ¤ 0? Is it
statistically independent from the input signal? Is Rue.�/ D 0? Is Efe.k/g D 0?

� Covariance matrix of the parameter errors: Are the variances of the error of
the parameter estimates decreasing as the measurement time increases? Are they
small enough?

A further evaluation of the model can be based on a comparison of the in-
put/output behavior, e.g. in an x-t plot. Here, the behavior of the model is compared
with the measurements. Also, the measured vs. predicted plot that was introduced in
Sect. 23.7.2 can be used for validation. Box et al (2008) also stresses the importance
of visual inspection of the results.
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1. Comparison of the measured output signal y.k/ and the model output Oy.k/ for
� the same input signal u.k/ as used for identification
� other input signals, such as steps or impulses.

2. Comparison of the cross-correlation function Ruy.�/ of the measured signals
with the cross-correlation functions determined from the model

For processes with good signal-to-noise ratios, one can directly compare the output
signals. In other cases, one has to resort to the correlation functions. As the error
�y.k/ is given as

�y.k/ D y.k/ � Oy.k/ D
�
B.q�1/

A.q�1/
�

OB.q�1/

OA.q�1/

�
u.k/C n.k/ ; (23.8.1)

one can see that for large n.k/, this error is dominated by the noise and not by the
model error. If a model of the noise has been identified as well, then one can use

�y.k/ D
�
B.q�1/

A.q�1/
�

OB.q�1/

OA.q�1/

�
u.k/C

�
n.k/ �

OD.q�1/

OC.q�1/

�
O	.k/ ; (23.8.2)

where one can determine the one step prediction based on the estimate of O	.k � 1/.
A suitable criterion for the comparison of different models is

V D 1

N

NX
kD1

�y2.k/ : (23.8.3)

Other tests can include an analysis of the error. The error must be a Gaussian
distributed zero mean white noise sequence. For this test,

ONe D 1

N

N �1X
kD0

e.k/ (23.8.4)

denotes the mean and

O�2
e D 1

N � 1
N �1X
kD0

.e.k/ � ONe/2 (23.8.5)

the variance of the error sequence. The skewness is defined as the standardized third
central moment

O�3 D 1

N

N �1X
kD0

�
e.k/ � ONe�3

O�3
e

: (23.8.6)

The kurtosis is then given as the standardized fourth central moment

O�4 D 1

N

N �1X
kD0

�
e.k/ � ONe�4

O�4
e

: (23.8.7)
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For a Gaussian distribution, the skewness is always zero due to the symmetry of the
distribution and the kurtosis equal to 3. Hence, one can use these quantities to check
for a Gaussian distribution. Statistical independence can be tested be calculating the
auto-correlation function, which for statistically independent signal samples should
be

Ree.�/ � 0 for � ¤ 0 : (23.8.8)

For a graphic inspection, one can also integrate the probability density function
of the output. This will lead to the cumulative distribution function, which can then
be displayed graphically. Upon an appropriate scaling of the y-axis, the resulting line
will also be the bisectrix. The plot with the appropriate scaling is called the normal
probability plot.

Also, one should validate the model on other data than used for system identifi-
cation. This is termed cross validation. Cross validation overcomes the problem of
overfitting. The data set can be split up e.g. in 2=3 that are used for identification,
1=3 that is used for testing (Ljung, 1999). As was already shown in Chap. 20, the
model error can be split up into a bias error and a variance error. Ljung and Lei
(1997) pointed out that many models that pass the validation are typically suffering
from a dominant variance error, that is, they have already started to adapt to the noise
because of too many degrees of freedom.

23.9 Special Devices for Process Identification

For the identification of dynamic systems, one has used process computers since
around 1970 and later, starting around 1975, also micro computers. Today, one typ-
ically uses computers with appropriate software programs as will be discussed in
the next section. Due to this, special devices for parameter estimation are not as fre-
quently used nowadays. With no claim on completeness, some very short remarks
shall be made on both special hardware devices as well as the identification with
digital computers using software packages.

23.9.1 Hardware Devices

A short reference to the history shall however be made. After the development of
the orthogonal correlation, in a time around 1955 special devices entered the market
that employed this technique for the identification of the frequency response. Such
devices are still available today.

The development of the correlation methods lead to the development of so-called
correlators, which were available as mechanic, photoelectric or magnetic correlators.
One of these devices used a magnetic tape with varying distance between the record-
ing and reading head. It was completely built in analog technology and was able to
output correlation functions and power spectral densities on an x-y plotter.

Of major impact are devices that are based on the digital Fourier transform, which
typically employ the Fast Fourier Transform. These are especially well suited for
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measurements at higher frequencies and also allow to use different representations,
such as correlation functions, power spectral densities and such.

For the generation of test signals, there are special signal generators available on
the market.

23.9.2 Identification with Digital Computers

Nowadays, processes are typically identified using digital computers. There are sev-
eral software packages available on the market that provide tools for identification.
These include generic numerical toolboxes that allow for example to calculate the
Fourier transform or provide tools for a QR decomposition. On the other side, there
are also toolboxes that provide complete process identification functionalities, such
as the system identification toolbox (Ljung, 1999) or LOLIMOT that provides a tool-
box for the LOLIMOT neural net (Nelles, 2001).

23.10 Summary

In this chapter, some aspects of parameter estimation have been discussed. First, the
choice of the input signal was outlined. Although it is impossible to determine the
optimal input signal, one can at least give hints on how the input signal should be
chosen. Some methods have been presented that are based on the optimization of a
cost function, such as e.g. a function of the information matrix. Unfortunately, most
cost functions can only be evaluated once the experiment has been conducted and
hence the input signal optimization can only be carried out iteratively with interme-
diate measurements.

Then, the choice of the sample rate was analyzed. It has been found that the
choice of the sample rate is rather uncritical, as a large interval of different sample
rates will typically lead to good estimation results. If there are no constraints on
the storage space, one should always sample as fast as possible, as one can always
reduce the sample time later e.g. by only retaining every second, third, etc. sample in
the data vector. Also indicators have been presented that allow to detect if the sample
time was chosen wrongly.

After that, methods for the determination of the model order and dead time have
been presented. These methods can be based on different test quantities, such as the
cost function, a test of the residuals, cancellation of poles and zeros in the resulting
model and a rank test of the information matrix.

Integral acting processes can in general be treated just like normal proportional
acting processes. However, the estimation results can be improved if a priori know-
ledge of the integral behavior is exploited. For example, one can specifically adapt
the test signal to the integral acting process. In general, the signal must be zero mean
to avoid a drift. Furthermore, the derivative of the test signal can be injected into the
process to increase the excitation of the high frequent dynamics. Finally, the integral
process can be operated in closed loop to take care of drifts caused e.g. by external
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disturbances acting on the process. The elimination of drifts from the already mea-
sured signals has also been discussed in this chapter. Also the case of noise falsifying
the input measurement has been discussed shortly.

Also, this method has presented a comparison of all identification methods pre-
sented in this book, noting the most important advantages and disadvantages. This
allows to select the methods that seem to be appropriate to solve a given identification
problem.

Finally, methods to test the identification results and judge their quality have
been presented. In most cases, one should compare the process output and the model
output for a given input signal. If the influence of noise is too high, one can also
compare cross-correlation functions between the input and the output. However, ...

... the best test is the application of the model for the task that it was identified
for.

Problems

23.1. Input Signals
What issues have to be taken into consideration for the choice of input signals?
What are favorable input signals?

23.2. Sample Time
What happens if the sample time is chosen too small? What happens if the sample
time is chosen too large?

23.3. Integral Acting Systems
What methods can be used to account for the a priori knowledge that the process is
integrating?

23.4. Special Disturbances
Name examples of special disturbances that should be limited prior to application of
the parameter estimation algorithms.
How can these influences be eliminated?

23.5. Model Validation
How can the identification results be validated?
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Application Examples

In this chapter, examples for the identification of processes from different areas are
presented. These examples cover processes as diverse as electric and fluidic actua-
tors, robots and machine tools, internal combustion engines and automotive vehicles
up to heat exchangers and illustrate the application of the different methods. How-
ever, only a rough overview over the application of the various methods can be given.
One will see that optimal results depend on various aspects. These include

� Design of the experiment and here especially the choice of the input signal and
the signal conditioning (e.g. low-pass filtering)

� A priori knowledge about the process for the choice of the resulting model type
� Intended application of the derived model

It will become clear in the examples that different combinations of identification
methods and filters will be required for different processes, as there will for example
be models that have been identified in the time domain and others that have been
identified in the frequency domain. Furthermore, there are usually static non-linear
models as well as linear dynamic and non-linear dynamic models. Especially with
regard to the final application, either continuous-time or discrete-time models are
preferred. It will also be shown that the selected model structure and the selected
identification method must depend on the physically given properties. Hence, phys-
ical (theoretical) modeling of the process is always a good starting point to gather a
priori knowledge.

An overview of the examples to be presented in this chapter is found in Ta-
ble 24.1. For each application example, the special symbols, that are used, are sum-
marized under the corresponding model equations.

24.1 Actuators

This overview shall begin with electric and fluidic actuators, which are found
widespread as actuators in automation systems in general and in mechatronic sys-
tems in particular. For a detailed treatment of all aspects ranging from construction

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_24, © Springer-Verlag Berlin Heidelberg 2011 
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Table 24.1. Overview of examples covered in this chapter
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Brushless DC Actuators (24.1.1) X X X X
Normal DC motor for electric throttle (24.1.2) X X X X
Hydraulic actuators (24.1.3) X X X X
Machine tool (24.2.1) X X X X
Industrial robot (24.2.2) X X X X
Centrifugal pumps (24.2.3) X X X X
Heat exchangers (24.2.4) X X X X X (X) X
Air conditioning (24.2.5) X X X
Dehumidifier (24.2.6) X X X
Engine teststand (24.2.7) X X X
Estimation of vehicle parameters (24.3.1) X X X X X X
Braking systems (24.3.2) X X X X X
Automotive suspension (24.3.3) X X X (X) X X
Tire pressure (24.3.4) X X X
Internal combustion engines (24.3.5) X X X X X

and design features to the specific advantages and disadvantages of individual real-
izations up to modeling and control, the reader is referred to the book by Isermann
(2005) and with regards to applications for fault detection and diagnosis principles
to (Isermann, 2010) and given references.

24.1.1 Brushless DC Actuators

As a first example for an electrically actuated system, the cabin outflow valve of
a passenger aircraft is presented. The pressure in the fuselage of passenger aircraft
flying above 2 000m is permanently controlled. Fresh bleed air from the engines is
constantly released at the front of the fuselage. At the fuselage tail, so-called cabin
outflow valves are mounted, which allow the air from the cabin to escape to the
surroundings. The valves are driven by brushless DC motors (BLDC) as illustrated
in Fig. 24.1 (Moseler et al, 1999). For safety reasons, there is redundancy in the
drive and there are two brushless DC motors, which act on a common gear. Another
classical DC motor serves as an additional backup.

In the following, a dynamic model of the brushless DC motor and the driven load
shall be set up and subsequently, the parameters shall be identified. The technical
data of the motor have been summarized in Table 24.2.

As electric motors require a rotating magnetic field to keep up the movement of
the rotor, traditional DC motors are equipped with a so-called commutator, which is
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Fig. 24.1. Photo (a) and block diagram (b) of the cabin outflow valve

Table 24.2. Specifications of the BLDC motor

Parameter Value

Weight 335 g
Length 87mm
Diameter 30:5mm
Supply voltage 28V
Armature resistance 2:3�

No-load speed 7 400 rpm
No-load current 50mA
Short-circuit torque 28mNm
Short-circuit current 1A (Limited)

a mechanical device that changes the current feed of the rotor windings. A brush-
less DC motor uses an electronic circuit for this task. Here, the rotor is typically
made up of a permanent magnet and the stator windings are supplied with current to
generate an appropriately rotating magnetic field. As the rotor consists of permanent
magnets only, no electric connection to the rotor is necessary. The position of the
rotor is sensed by Hall sensors and is fed back to an electronic circuit that carries
out the commutation, see Fig. 24.2. The advantage of the electronic commutation
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Fig. 24.2. Scheme of a brushless DC motor with electronic commutation realized by an inte-
grated circuit and transistors

is that no brushes exist, which would be subject to wear-and-tear and could cause
electromagnetic disturbances. Therefore, the reliability is relatively high.

The stator possesses 3 coils which are Y-connected and are driven by a PWM
(pulse width modulation) inverter. The rotor has 4 permanent magnets. The position
of the rotor magnets is measured by 3 Hall sensors mounted on the stator. These
determine the switching sequence of 6 MOSFET transistors of the PWM inverter.
This switching scheme is implemented in a separated programmable logic array.
The PWM inverter is supplied with a fixed voltage UB by the DC power supply and
generates square wave voltages through the commutation logic via the 6 transistors
to the 3 coils (phases).

Usually, only measurements of the supply voltage UB, the input current IB of the
6 phase full bridge circuit, and the angular rotor speed !R are available. However, for
the detailed modeling that will be carried out in the following, also measurements of
the phase current IA and phase voltage UA have been utilized. As the brushless DC
motor switches the current over from one phase to the next as the rotor moves, the
phase voltage and current refer to the active pair of phases (in star connection) that
correlates with the rotor orientation.

The behavior of the motor can be described by the two differential equations

UA.t/ D RAIA.t/C LA
d
dt
IA.t/C 
!R.t/ (24.1.1)


IA.t/ D J
d
dt
!R.t/CMV!R.t/CMC sign!R.t/CM �

L : (24.1.2)

The electric and magneto-mechanic subsystem are coupled by the back emf as
Uemf.t/ D 
!R.t/ and the electric torque Mel.t/ D 
I.t/. The mechanic load
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Fig. 24.3. Block diagram of the brushless DC motor model

is modeled as an inertia with both Coulomb and viscous friction. Also, an external
load torque ML is provided for. The drive shaft of the motor is coupled to the flap
by means of a gear. The gear ratio 	 relates the motor shaft position 'R to the flap
position 'G

'G D 'R

	
(24.1.3)

with 	 D 2 500. The load torque of the flap is a normal function of the position 'G

ML D csf .'G/ (24.1.4)

and the kind of this characteristic is approximately known around the steady-state
operation point. (For the experiments, the flap was replaced by a lever with a spring).
All quantities have been transferred to the “motor” side, the referred load torque has
been denoted as M �

L . A block diagram is shown in Fig. 24.3. In this context, the
following symbols are used:

LA armature inductance J inertia
RA armature resistance MC coefficient of Coulomb friction

 torque constant MV coefficient of viscous friction
	 gear ratio

For the identification, the entire valve was operated in closed-loop position con-
trol of the flap angle 'G.t/. The setpoint and corresponding measurements are shown
in Fig. 24.4. The signals have been sampled with a sampling frequency of 100Hz.
Furthermore, the measurements have been filtered with an FIR realized low-pass fil-
ter with m D 24 coefficients and a corner frequency of fC D 5Hz. The rotational
velocity has been generated by a differentiating filter from the measurement of the
rotational position.

Based on (24.1.1) and (24.1.2), one can now set up a parameter estimation prob-
lem. For the parameter estimation, the following measured and calculated signals are
available: UA.t/, IA.t/, !R.t/, and 'G.t/. It was found that the time constant of the
RL circuit was so small that the inductance LA could not be estimated reliably with
the given sample rate. Hence, the electric circuit was simplified to



610 24 Application Examples

0 5 10 15 20 25 30 35
−900
−450

0
450
900

t [s]

ω
R

F
[r

ad
/s

]

0 5 10 15 20 25 30 35
−0.2

0

0.2

0.4

I A
F

[A
]

0 5 10 15 20 25 30 35
−30
−15

0
15
30

U
A

F
[V

]

0

0

5

5

10

10

15

15

20

20

25

25

30

30

35

35

−1

0

−0.5

40

0

80

0.5
1

120

P
W

M
φ

G
[°

]

b)

a)

c)

d)

e)
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UA.t/ D RAIA.t/C 
!R.t/ : (24.1.5)

The signals were sampled and the model for the parameter estimation was then given
as

y.k/ D  T .k/� (24.1.6)

with

y.k/ D UA.k/ (24.1.7)

 T .k/ D �
IA.k/ !R.k/

�
(24.1.8)

� D
�
RA



�
; (24.1.9)



24.1 Actuators 611

0 5 10 15 20 25 30 35
0.037

0.0375

0.038

t [s]

Ψ
[V

s]

0 5 10 15 20 25 30 35
8.6
8.8

9
9.2
9.4

R
[

]
Ω

^
^

a)

b)
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allowing to provide the parameter estimates ORA and O
 by means of the method of
least squares.

Also, the magneto-mechanical system had to be simplified, resulting in the model


IA.t/ D J
d
dt
!R.t/CMC sign!R C cF'G.t/ : (24.1.10)

A few parameters were assumed to be known, including the rotational inertia and the
load characteristics, leading to the model

y.k/ D  T .k/� (24.1.11)

with

y.k/ D 
IA.k/ � cs'G.k/ � J P!R.k/ (24.1.12)

 T .k/ D �
sign!R.k/

�
(24.1.13)

� D �
MC

�
; (24.1.14)

which allowed to estimate the coefficient of Coulomb friction OMC by means of the
method of least squares. Hence, in total, three parameters ORA, O
 , and OMC are esti-
mated.

Various parameter estimation methods were applied like: RLS (recursive least
squares), DSFI (discrete square root filtering), FDSFI (fast DSFI), NLMS (normal-
ized least mean squares) and compared with regard to computational effort in floating
point and integer word realization and estimation performance. The floating point im-
plementation is standard for e.g. 16 bit signal processors and in this case RLS, DSFI,
or FDFSI can be used. However, integer word implementation is (still) required if
reliable and certified low cost microcontrollers like the 16 bit Siemens C167 have to
be used. Then, only NLMS is feasible (Moseler, 2001).

The forgetting factor has been chosen as � D 0:999. Not all measurements are
evaluated for the parameter estimation as the model is not precise enough in certain
operating regimes. The estimation algorithm employs only measurements from the
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interval 0:05 � PWM � 0:95 and ! > 10 rad=s. This also ensures that no division
by zero can occur in the estimation equation. As FIR filters are used for noise cancel-
lation, the filters can be switched off while no parameters are estimated. Whenever
the measurements enter the corridor for parameter estimation, the firstm samples are
disposed. Upon the time step m C 1, the transient effects in the filter have died out
and the filter output can safely be used for parameter estimation. The run of the es-
timated parameters is shown in Fig. 24.5. Furthermore, the first three seconds of the
measurements have also been disposed to avoid falsification of the estimation results
due to transients. The output of the parameter estimates starts at t D 5 s to ensure
that the variance of the parameter estimates has already reduced to reasonable values.
The high fidelity of the derived model is illustrated in Fig. 24.6. Here, the classical
y-t plot has been used for validation of the results.

24.1.2 Electromagnetic Automotive Throttle Valve Actuator

Another example for parameter estimation applied to a DC drive with load is the
automotive throttle valve actuator. Since about 1990, electrical driven throttle valves
became a standard component for gasoline engines. They control the air mass flow
through the intake manifold to the cylinders. The electric throttles are manipulated
by the accelerator pedal sensors via an electronic control unit and additional control
inputs from idle speed control, traction control, and cruise control. Here, in contrast
to the previous example, a traditional DC motor with mechanical commutator is
employed.
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Fig. 24.7. (a) Scheme and (b) schematic block diagram of an electric throttle of a gasoline
engine

Fig. 24.8. Photo of an electric throttle of a vehicle

Figure 24.7 shows a schematic drawing of the actuator, a photo is shown in
Fig. 24.8. A permanently excited DC motor with brush commutation drives the throt-
tle through a two-stage gear in the opening or closing direction. It operates against
the main helic spring. A second spring works in the closing region in the opposite
direction, in order to open the throttle in the case of a voltage loss into a limp-home
position (a mechanical redundancy). The motor is manipulated by a pulse width mod-
ulated (PWM) armature voltage UA 2 .�12V : : : C 12V/. The measured variables
are the armature voltage UA, the armature current IA, and the angular throttle posi-
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tion 'K 2 .0ı : : : 90ı/. This throttle position is measured by two redundant wiper-
potentiometers operating in two different directions. The position controller was a
model-based sliding-mode-controller or PID controller with time lag and sampling
time T0 D 1:5ms (Pfeufer, 1997, 1999).

Theoretical modeling of the throttle valve leads to the following basic equations
(Isermann, 2005). The DC motor is governed by

UA.t/ D RAIA.t/C 
!A.t/ (24.1.15)
Mel.t/ D 
IA.t/ ; (24.1.16)

while the mechanical part (related to the motor axle) can be modeled as

	J P!k.t/ D Mel.t/ �Mmech.t/ (24.1.17)

Mmech.t/ D 1

	

�
cS1'k.t/CMS0 CMF

�
for 'k > 'k0 (24.1.18)

MF.t/ D MF0 sign!k.t/CMF1!k.t/ (24.1.19)

In this example, the used symbols are:

RA armature resistance 
 magnetic flux linkage
	 gear ratio (	 D 16:42) J moment of inertia of the motor
MF0 Coulomb friction torque MF1 viscous friction torque
cS1 spring constant MS0 spring pretension
!k throttle angular speed (D P'k) !A motor angular speed, !A D 	!k

The armature inductance can be neglected, because the electrical time constant
Mel D LA=RA � 1ms is much smaller than the mechanical dynamics. Depending
on the input excitation either the Coulomb friction or the viscous friction turned out
to be dominant when measurements were taken at a testbed.
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Parameter Estimation for the Dynamic Behavior

The parameter estimation is carried out with recursive least squares estimation in the
form of discrete square root filtering (DSFI). The basic model equation is

y.t/ D  T .t/� (24.1.20)

and the data vector and the parameter estimation for the electrical part are

y.t/ D UA.t/ (24.1.21)

 T .t/ D �
IA.t/ 	!k.t/

�
(24.1.22)

� D
�
�1

�2

�
(24.1.23)

and for the mechanical part

y.t/ D P!k.t/ (24.1.24)

 T .t/ D �
IA.t/ 'k.t/ !k.t/ 1

�
(24.1.25)

� D

�
�4

�5

�6

�7

˘
(24.1.26)

Because of a fast input excitation, the Coulomb friction term is neglected and only
the viscous friction parameter MF1 is estimated under the condition that the speed is
sufficiently large, i.e. j!kj > 1:5 rad=s.

The relation between the physical process coefficients and the parameter esti-
mates are

O�1 D RA; O�2 D 
;

O�4 D 


	J
; O�5 D � cS1

	2J
; O�6 D �MF1

	2J
O�7 D �MS0

	2J

(24.1.27)

As the gear ratio 	 is known, the rotational inertia follows from

J D
O�2

	 O�4

(24.1.28)

All other process coefficients can directly be determined from the parameter esti-
mates O�i .

For the parameter estimation, the actuator operates in closed loop and the setpoint
is changed with a PRBS signal between 10ı and 70ı. The derivatives !k D P'k and
P!k D R'k are determined by a state variable filter with the sampling time chosen as
TO;SVF D 2ms. The sampling time for the parameter estimation is T0 D 6ms. The
resulting parameter estimates converge fast and the largest equation error is � 5%
or � 3:5ı for the electrical part and � 7 : : : 12% for the mechanical part (Pfeufer,
1999).
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Parameter Estimation for the Static Behavior

In order to obtain more precise information about the mechanical part and especially
the friction phenomena, only the static behavior is considered for slow continuous
input changes.

Setting P!k D 0 and neglecting the viscous friction, (24.1.15) to (24.1.19) yield
with t D kT0

IA.k/ D 1

	


�
cS1'k.k/CMS0 CMF0 sign!k.k/

� D  T .k/� (24.1.29)

Because of the direction-dependent Coulomb friction for the opening and closing,
two separate estimations are made

 T
1 .k/ D �

'C
k .k/ 1

�
;  T

2 .k/ D �
'�

k .k/ 1
�

O�C.k/ D
 O�1

O�2

!
O��.k/ D

 O�3

O�4

!

with
O�1 D cS1

	

O�2 D MS0

C MF0	


O�3 D cS1

	

O�4 D MS0 �MF0

	


The magnetic flux linkage 
 is known from (24.1.27). The physical process para-
meters then result as
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cS1 D 	

O�1 C O�3

2

MS0 D 	

O�2 C O�4

2

MF0 D 	

O�2 � O�4

2

The parameter estimation is performed with recursive DSFI and the sample time
T0 D 6ms for each motion. Figure 24.10 shows the resulting friction characteristics.
The spring pretensionMS0 leads to a positive offset of the linear spring characteristic
and the dry friction shifts the friction characteristic byMC

F0 andM�
F0 such that a hys-

teresis characteristic results. A comparison with the electrical torque M 0
el D 	
IA

related to the throttle axle indicates a good agreement with the estimated hystere-
sis characteristic. (The oscillations of the calculated electrical torque are due to the
closed loop behavior in connection with adhesive friction or stick-slip effects, which
are not modeled. The range around the point of return, where adhesion works, is
omitted in the parameter estimation for simplifying reasons).

24.1.3 Hydraulic Actuators

Hydraulic systems are used in manifold applications. They excel especially whenever
there is a need for high power density combined with fast actuation capabilities.
Furthermore, hydraulic cylinders can easily generate linear motions, whereas e.g.
electric motors typically need a conversion gear to generate a linear motion.

Introduction

The typical setup of a hydraulic servo axis is shown in Fig. 24.11: A positive dis-
placement pump acts as a pressure supply. Oil is drawn from a supply tank and is
expelled at high pressure into the supply line. From there, the oil flows to the indi-
vidual hydraulic servo axes, which in the case of a linear motion, typically consist of
a proportional acting valve and a hydraulic cylinder. The valve is used to throttle the
hydraulic flow and direct it into one of the two chambers of the hydraulic cylinder.
For this task, the valve contains a so-called valve spool, which can move freely inside
the valve sleeve. The valve spool can be driven by a variety of forces. By the hand
force of a worker (e.g. construction machinery), by a hydraulic force (e.g. second
stage of a two-stage valve), by a torque motor (e.g. nozzle-flapper unit of the first
stage of a two stage valve), or, as in the case at hand, by the force of two solenoids
(direct-driven valve), see Fig. 24.13. As the valve spool moves tiny openings occur
and a turbulent flow evolves according to the pressure drop�p across the tiny open-
ing. The oil flows into the hydraulic cylinder and exerts a pressure on the piston. By
means of the piston rod, this force is transferred to drive an external load. As the
piston moves, oil from the opposite chamber is pushed back into the supply tank.
The two cylinder chambers thus have to be isolated by the piston. Here, one typi-
cally uses the setup depicted in Fig. 24.14 for standard hydraulic cylinders. Here,
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Fig. 24.11. Scheme of a hydraulic servo axis

Fig. 24.12. Photo of the hydraulic servo axis testbed
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Fig. 24.14. Schematic of the cylinder sealing isolating the two cylinder chambers

one has to obey a certain trade-off: If the cylinder sealing is pushed tightly against
the cylinder housing, it would wear out very fast as the piston constantly moves and
hence friction will occur between the sealing and the cylinder housing. On the other
side, if the sealing is fitted too loosely, a large bypass flow between the two cylin-
der chambers will result as a combined pressure induced and adhesion induced flow
will result. Especially in the area of fault detection and diagnosis, one is interested
in determining the coefficient of leakage flow, as it is a good indicator of the sealing
health. The measurements and results that are presented in this section stem from the
hydraulic servo axis testbed shown in Fig. 24.12. Some technical data are listed in
Table 24.3.

Here and in the remainder of this section, the following symbols are used:

bV coefficient of valve flow AA active piston area chamber A
V0A dead volume chamber A GAB laminar leakage coefficient
E0A bulk modulus chamber A PV volume flow rate
T fluid temperature PVA flow rate into chamber A
yV valve spool displacement y piston displacement
pA pressure in chamber A k spring stiffness of load
m mass of load F0 Coulomb friction force
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24.1 Actuators 621

Table 24.3. Specifications of the hydraulic servo axis shown in Fig. 24.12 operating with
HLP46 as hydraulic oil

Parameter Value

System pressure 80 bar
Max. pressure supplied by pump 280 bar
Pump displacement 45 cm3=rev
Cylinder diameter 40mm
Piston rod diameter 28mm
Cylinder stroke 300mm
Max. velocity 1m=s
Max. force 20 kN
Mass of load 40 kg
Spring stiffness of load 100 000N=m
Density of fluid at 15ıC 0:87 g=cm3

Mean bulk modulus of fluid 2GPa

Chamber
A

4m Hose

yV

pB

pS TP

pA VA

Fig. 24.16. Schematic view of a direct-driven proportional acting valve and hydraulic cylinder

c coefficient of viscous friction

The index denote the following:

A cylinder chamber A B cylinder chamber B
P pressure line T return line or tank
S pressure supply / pump

For the sensor location, see Figs. 24.11 and 24.16. A measurement recorded at the
hydraulic servo axis is shown in Fig. 24.15.

Identification of the Hydraulics

The flow over the control edge is given as

PV .t/ D bV.yV.t/; T .t//
p

j�p.t/j sign�p.t/ : (24.1.30)

One can see that the coefficient of the flow bV depends on both the valve spool dis-
placement yV.t/ as well as the fluid temperature. The flow balance for e.g. chamber



622 24 Application Examples

A of the hydraulic cylinder is given as

PVA.t/ D AA Py.t/ �GAB
�
pA.t/ � pB.t/

� � 1

E0A

�
V0A C AAy.t/

� PpA.t/ : (24.1.31)

For identification purposes, the following signals will be utilized: yV.t/ valve spool
displacement, pA.t/ pressure in chamber A, pB.t/ pressure in chamber B, pS.t/

pressure at the supply, y.t/ position of the piston. The fluid temperature T .t/ is
measured, but can be neglected depending on the requirements of the model fidelity.

The valve opening characteristics bV.yV/ are due to their non-linear behavior
modeled as a polynomial as

bVi .yV/ D bV1iyV.t/C bV2iy
2
V.t/C bV3iy

3
V.t/ ; (24.1.32)

where the index i denotes the control edge to be modeled, see Fig. 24.13 for the
numbering of the control edges. As there are four possible flow paths, there will also
be four independent polynomials.

The individual models will now be combined. This yields

�
V0A C AAy.t/

� 1

NE.T / PpA.t/C AA Py.t/ D
PVPA.pA; pP; T; yV/ � PVAT.pA; T; yV/ �GAB.T /

�
pA.t/ � pB.t/

� (24.1.33)

with

PVPA.pA; pS; T; yV/ DbV2.yV; T /
p

jpS.t/ � pA.t/j sign
�
pP.t/ � pA.t/

�
(24.1.34)

PVAT.pA; T; yV/ DbV1.yV; T /
p

jpA.t/j signpA.t/: (24.1.35)

These equations can be combined into one model. Since parameter estimation is
based on sampled signals, the time t will now be expressed as integer multiples k of
a fixed sampling time T0. The model for chamber A is given as

.V0ACAAy.k//
1

NE.TP/
PpA.k/CAA Py.k/ D � PVA.pA; pS; TP; yV/� PVAB.pA; pB; TP/

�
;

(24.1.36)
where NE is the mean bulk modulus. The valve flow with a polynomial approximation
of the valve flow characteristics is given as

PVA.pA; pS; TP; yV/ D
� lX

iDk

b1i .TP/yV.k/
i

�p
j�pSA.k/j sign�pSA.k/

�
� lX

iDk

b2i .TP/yV.k/
i

�p
j�pAT.k/jsign�pAT.k/

(24.1.37)

where �pSA.k/ D pS.k/ � pA.k/ and �pAT.k/ D pA.k/. The internal leakage is
given as
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PVAB.pA; pB; TP/ D GAB.TP/
�
pA.k/ � pB.k/

�
: (24.1.38)

Combining the above equations and solving for Py.k/ yields

PVA.pA; pS; T; yV/�GAB.T /
�
pA.k/�pB.k/

�� .V0A C AAy.k//

NE.T / PpA.k/ D AA Py.k/
(24.1.39)

Now, the valve flow can be inserted. The polynomial will be written out to see that
this parameter estimation problem is truly linear in parameters,

: : :C b1i .T /yV.k/
i
p

j�pSA.k/j sign
�
�pSA.k/

��
yV.k/ � 0

�C : : :

� : : : � b2i .T /yV.k/
i
p

j�pAT.k/j sign
�
�pAT.k/

��
yV.k/ < 0

� � : : :
�GAB.T /

�
pA.k/ � pB.k/

� � .V0A C AAy.k//

NE.T / PpA.k/ D AA Py.k/
(24.1.40)

where the terms .yV .k/ � 0/ and .yV .k/ < 0/ amount to one if the corresponding
condition is fulfilled and are zero otherwise.

This entire parameter estimation problem now can be split up into the data matrix

� T D

˙

:::

yV.k/
i
p

j�pSA.k/j sign
�
�pSA.k/

� � �yV.k/ � 0
�
: : :

:::

yV.k/
i
p

jpA.k/j signpA.k/ � �yV.k/ < 0
�

: : :
:::

pA.k/ � pB.k/ : : :

AA y.k/ PpA.k/ : : :

�

(24.1.41)

and the output vector
yT D �

AA Py.k/; : : :�: (24.1.42)

The solution of the parameter estimation problem supplies estimates for the parame-
ter vector � given as

O�T D
�

Ob10.T / : : : Ob1n.T / Ob20.T / : : : Ob2n.T / : : : OGAB.T /
1

ONE.T /
�
: (24.1.43)

This parameter vector contains 2nC 2 variables. Although such a parameter es-
timation problem can easily be solved on modern computers, it will only be used
for offline identification. For online identification, the parameter estimation prob-
lem is split: Two independent parameter estimation problems for yV.k/ � 0 and
yV.k/ < 0 are formulated to constrain the number of parameters to be estimated in
each iteration. Since the valve spool displacement can only be positive or negative at
any instant in time, the parameter estimation problem can be simplified.

The results of the parameter estimation can be seen in Fig. 24.17 and Fig. 24.18.
Figure 24.17 shows that the non-linear behavior of the valve flow coefficient as a
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Fig. 24.19. Simulation of the hydraulic subsystem of the hydraulic servo axis

function of the valve opening is identified very well. The identification results of
the laminar leakage coefficient in Fig. 24.18 also match very well with the values
reported in literature. As was stated in the introduction to this section, knowledge
of the laminar leakage coefficient is of special interest in the area of fault detec-
tion and diagnosis. Finally, Fig. 24.19 shows a simulation run and comparison with
measurements. One can see that the model that has been parameterized by measure-
ments shows a very good model fidelity. This high model fidelity can in large part be
attributed to the nonlinear modeling of the valve characteristics.

Hydraulic servo axes typically operate with a large variety of loads. Furthermore,
the load can change drastically during operation. To be able to maintain a good con-
trol quality despite the large variations in the load and hence the plant parameters,
one can use adaptive control algorithms (e.g. Isermann et al, 1992). To be able to
update the controller, one needs a good model of the load. Hence, the load driven
by the hydraulic servo axis will now be identified based on sensors mounted at the
hydraulic servo axis, see Fig. 24.20.

A general load model is shown in Fig. 24.21. This model covers both a mass and
a spring as a load and also contains friction effects, which are modeled as a com-
bination of Coulomb and viscous friction. It should be mentioned that even though
results have been obtained for a spring-mass load only, the methods will apply to all
kinds of loads which can be described by the general load model given in (24.1.44)
and Fig. 24.21.

With the piston as the force-generating element of the hydraulic servo axis, the
mechanics can be described in general form by
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Fig. 24.21. Block diagram of the mechanical load model consisting of spring and mass

pA.t/AA � pB.t/AB D k
�
y.t/ � y0

�Cm Ry.t/C
��F0 C c� Py.t/ for Py.t/ < 0
F0 C cC Py.t/ for Py.t/ � 0 ;

(24.1.44)
where the friction force FF. Py.t// is a combination of Coulomb friction and viscous
friction. F0 is the static friction force and c� and cC are the direction-dependent
coefficients of viscous friction.

(24.1.44) is the basis for the parameter estimation problem. The spring pretension
is estimated by the spring pre-compression displacement y0. Based on this equation,
the data matrix of the parameter estimation problem becomes

� D

˙
y.1/ 1 Ry.1/ sign Py.1/ Py.1/ � . Py.1/ > 0/ Py.1/ � . Py.1/ < 0/
y.2/ 1 Ry.2/ sign Py.2/ Py.2/ � . Py.2/ > 0/ Py.2/ � . Py.2/ < 0/
:::

:::
:::

:::
:::

:::

y.N / 1 Ry.N / sign Py.N / Py.3/ � . Py.N / > 0/ Py.N / � . Py.N / < 0/

�
:

(24.1.45)
The output vector is

y D

˙
pA.1/AA � pB.1/AB
pA.2/AA � pB.2/AB

:::

pA.N /AA � pB.N /AB

�
: (24.1.46)

The parameter of estimated quantities becomes

�T D � Ok . Ok � Oy0/ Om OF0 Oc� OcC � : (24.1.47)
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Fig. 24.23. Estimation of load mass Om in several test runs

With this parameter estimation method, the results depicted in Figs. 24.22 and 24.23
have been obtained. Recalling from the specifications in Table 24.3 and knowing
that the mass of load was m D 40 kg and the spring stiffness k D 100 000N=m, one
can see that the estimates match well with the real values. One can once again run
the model in parallel to the measurements to judge the quality of the identification
results. This has been done in Fig. 24.24.

The identification method used was DSFI, the sample rate was fS D 500Hz.
The first and second derivative of the piston displacement were calculated directly as
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Fig. 24.24. Simulation of the mechanic subsystem of the hydraulic servo axis

the signal was supplied by a digital sensor and had little noise. For this, the central
difference quotient was used to ensure that the measurements are not delayed. All
methods were implemented as recursive parameter estimation to be able to follow
changes of the plant e.g. for fault detection and diagnosis.

The detailed description of these parameter estimation approaches is covered in
the dissertation by Muenchhof (2006). There, also the identification using neural nets
has been discussed as well as the application of these identification techniques for
fault detection and diagnosis.

24.2 Machinery

In the following, the application of identification methods to machinery will be
treated. Here, the application of these methods can be advantageous for controller
design, adaptive control, up to automatic commissioning of the machines as well as
condition monitoring.

24.2.1 Machine Tool

As an example for a main drive, a machining center of type (MAHO MC5) is con-
sidered. A speed-controlled DC motor drives a belt, a gear and tool spindle, carrying
a cutter or drill. Hence, a multi mass-spring-damper system results with 6 masses. A
view of the main drive is shown in Fig. 24.25.
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In the following, small deviations of the variables are considered such that lin-
ear models can be assumed. The dynamic behavior of the DC motor is like in the
previous examples modeled by

LA
d
dt
IA.t/ D �RAIA.t/ � 
!1.t/C UA.t/ (24.2.1)

J1

d
dt
!1.t/ D �
IA.t/ �M1.t/ (24.2.2)

with

LA armature inductance UA armature voltage
RA armature resistance IA armature current

 magnetic flux linkage !1 motor speed (!1 D P')
J1 moment of inertia M1 load torque

An analysis of the eigenfrequencies of the main drive shows that the motor is
able to excite frequencies in open loop f < 80Hz and in closed loop f < 300Hz
(Wanke and Isermann, 1992). The eigenfrequency of the belt drive is 123Hz and
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those of shaft, gear, and spindle are 706, 412, and 1335Hz. Hence, the dynamic
behavior of the main drive is dominated by the motor and the belt drive and can
therefore be modeled by a two-mass system with moment of inertias J1 (motor plus
belt driving pulley) and J2 (belt driven pulley, shaft, gear, spindle). The mechanical
part of the main drive is then described by a linear state space model

Px.t/ D Ax.t/C bu.t/C Fz.t/ (24.2.3)

with

xT.t/ D �
IA.t/ '1.t/ P'1.t/ : : : '5.t/ P'5.t/

�
(24.2.4)

u.t/ D UA.t/ (24.2.5)

zT.t/ D �
M6.t/ MF.t/

�
(24.2.6)

with M6 being the load torque and MF the Coulomb friction torque.
The parameters of the main drive can of course be determined from construction

data. However, if not all parameters can be determined or for fault detection in normal
operation, the estimation of the parameters from measured signals is desired.

To estimate the parameters of the main drive in idle running .M6 D 0/ based
on measurements of accessible signals UA.t/, IA.t/, !1.t/, and spindle speed !5.t/,
the following equations are used:

UA.t/ D �1!1.t/C �2IA.t/C �3
PIA.t/

�1IA.t/ �MR.t/ D �4 P!1.t/C �5 P!5.t/

!5.t/ D �6 P!1.t/C �7!1.t/ � �8 P!5.t/ � �9 R!5.t/

(24.2.7)

with
�1 D 
 �2 D RA �3 D LA
�4 D J1 �5 D iJ2 �6 D di=c

�7 D i �8 D d=c �9 D J2i
2=c

(24.2.8)

The armature flux linkage is estimated by the first equation in (24.2.7) beforehand
(or known from the data sheet). Then all process coefficients can be determined

i D �7 (gear ratio) c D �5�7=�9

J1 D �4 (motor) d D �5�7�8=�9

J2 D �5=�7 (spindle)
(24.2.9)

The derivatives of first and second order for continuous-time parameter estimation
were determined with state variable filters designed as Butterworth filters of 6th order
with corner frequencies of 79:6Hz and 47:8Hz. The resolution of the incremental
rotation sensors was increased to 4 096 slots for the spindle and 1 024 slots for the
motor. Sampling time was T0 D 0:5ms. The results with the parameter estimation
method DSFI (discrete square root filtering information from 40 step functions of
the speed over a time interval of 15 s are shown in Figs. 24.27 to 24.30.

The estimated motor coefficients on the motor side O
 , ORA, and OLA converge very
fast within about 2 s, the mechanical coefficients OJ1, OJ2, Oc, and Od a bit slower within
about 5 s. After about 15 s all 8 process coefficients converge to steady state values
and agree relatively well with theoretical determined values (Wanke, 1993).
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Fig. 24.31. Industrial robot with 6 rotational axes

24.2.2 Industrial Robot

As industrial robots (IR) are usually servo systems with point-to-point movements or
trajectory following, they have sufficient dynamic excitation and therefore parameter
estimation can be applied very well

Structure of a 6-Axis-Robot

The application of identification methods is in the following described for an indus-
trial robot of type JUNGHEINRICH R106, see Fig. 24.31. The device consists of 6
revolving joints actuated by DC servomotors of high dynamic performance. The fol-
lowing considerations concentrate on the investigation of the mechanical subsystem
of the different axes, because a strong demand for parameter estimation techniques
exists for applications, such as preventive maintenance and incipient fault diagnosis
(Freyermuth, 1991, 1993; Isermann and Freyermuth, 1991).

The mechanical drive chains of the axes consist of different standard machinery
elements (gears, bearings, toothed belts, shafts, etc.), transferring torque from the
motor to the moved (actuated) arm as shown in Fig. 24.32.

The control of each axis is performed by a cascaded control with an inner speed
control of the DC motor and an outer position control of the axis joint. Figure 24.33
depicts the signal flow. The measured variables are the joint position ', the motor
speed !, and the armature current of the DC motor IA.
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Assuming the arms as rigid bodies, each joint can be modeled by stating a torque
balance related to the joint axis

Mel.t/=	i D JL.'0; mL/ R'.t/CM 0
F0 sign P'.t/CM 0

F1 P'.t/CM 0
G.mL; '0/ ; (24.2.10)

where

Mel D 
AIA electrical torque at motor output axle

A armature flux linkage
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IA armature current
	 total gear ratio '='m

JL moment of inertia of the arm (position and load dependent)
M 0

F0 Coulomb friction torque on joint side
M 0

F1 viscous friction torque on joint side
M 0

G gravitational torque on joint side
mL mass of load at end effector
' arm position
'0 arm base position
! D P'=	 motor angular speed

The gravitation torque is modeled by

MG.mL; '0/ D M 0
G0 cos' (24.2.11)

and may be dependent on a kinematic gravitational torque compensation device, e.g.
a pneumatic cylinder. The couplings between the axes can be neglected if the move-
ments are not very fast.


A is known from the motor data sheet. Discretizing the continuous-time model
(24.2.10) with k D t=T0, T0 sampling time, and relating the parameters to the motor
side by multiplying with 	 leads to

Mel.k/ D J.'0; mL/ P!.k/CMF0 sign!.k/CMF1!.k/CMG0 cos'.k/ (24.2.12)

(1=	 is for axis 1; : : : ; 6: 197, 197, 131, 185, 222, 194)
Then this equation results in vector notation

Mel.k/ D  T.k/ O�.k/C e.k/

 T.k/ D � P!.k/ sign!.k/ !.k/ cos'.k/
�

O� D

� OJ
OMF0
OMF1
OMG0

˘
(24.2.13)

and is used for recursive parameter estimation in continuous time with

P!.k/ D d!.t/
dt

ˇ̌̌
ˇ
k

D !.k/ � !.k � 1/
T0

;

where T0 is a small sampling time. Note that here, the estimated process parameters
are identical to the physical defined process coefficients.

Figure 24.34 illustrates the typical behavior of the measured signals in the case of
a point-to-point movement (PTP) of basic axis 1. The end effector did not carry any
extra load. Sampling interval T0 D 5ms is identical to that of the position controller
for embedding the parameter estimation software into the robot control system. Ana-
log low-pass filtering is realized at a cut-off frequency fC D 40Hz. Digital filtering
to generate the derivative P! is performed at fC D 20Hz.
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Fig. 24.35. Parameter estimates with the signals of Fig. 24.34

For parameter estimation, the DSFI procedure (discrete square root filtering in in-
formation form) is applied, because of its good numerical properties. The forgetting
factor � is set to � D 0:99. Figure 24.35 shows the parameter estimates after start-
ing the estimation procedure. They converge within one movement cycle to constant
values.

24.2.3 Centrifugal Pumps

Pumps are basic components in most technical processes, like in power and chemical
industries, mineral and mining, manufacturing, heating, air conditioning and cooling
of engines. They are mostly driven by electrical motors or by combustion engines
and consume a high percentage of electrical energy. One distinguishes mainly cen-
trifugal pumps for high deliveries with lower pressures and hydrostatic or positive
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Fig. 24.36. Scheme of the speed-controlled DC motor and centrifugal pump. Closed circuit.
Motor: Pmax D 4 kW, nmax D 3000 rpm, pump: H D 39m, PVmax D 160m3=h, nmax D
2600 rpm. An AC motor was used for steady-state operation and a DC motor for dynamic
operation.

displacement (reciprocating) pumps for high pressures and small deliveries. They
transport pure liquids or mixtures of liquids and solids and herewith increase the
pressure to compensate, e.g. for resistance losses or enabling thermodynamic cycles.
In the following, this section will concentrate on centrifugal pumps.

In the past, centrifugal pumps were mostly driven with constant speed and the
flow rate of liquids was manipulated by valves with corresponding throttling losses.
Due to the availability of cheaper speed-controlled induction motors also centrifugal
pumps with lower power are now used for directly controlling the flow rate in order
to save energy.

The centrifugal pump considered in this example is driven by a speed-controlled
DC motor and pumps water through a closed pipe circuit, see Fig. 24.36. Both, the
DC motor and the pump are now considered as one unit (Geiger, 1985).

The measured signals are: U2 armature voltage, I2 armature current, PV volume
flow rate, ! angular velocity, H pump total head.

The basic equations after some simplifying assumptions are

1. armature circuit

L2

dI2.t/

dt
D �R2I2.t/ � 
!.t/C U2.t/ : (24.2.14)

2. mechanics of motor and pump

JP
d!
dt

D 
I2.t/ �Mf0 � %ghth1!.t/ PV .t/ : (24.2.15)

3. hydraulics of the pump (Pfleiderer and Petermann, 2005)

H.t/ D hnn!
2.t/ � hnv!.t/ PV .t/ � hvv PV 2.t/ D h0

nn
PV 2.t/ : (24.2.16)
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In this case, all three terms can again be lumped together, as PV is proportional
to !.

4. hydraulics of the pipe

aF
d PV .t/

dt
D �hrr PV 2.t/CH.t/: (24.2.17)

The following symbols are used in this example:

L2 armature inductance R2 armature resistance
U2 armature voltage I2 armature current

 magnetic flux linkage ! rotational velocity
JP rotational inertia of pump Mf0 dry friction torque
% density of fluid g gravitational constant
hth1 coeff. theoretical pump head PV volume flow rate
H delivery head hnn coefficient of delivery head
hnv coefficient of delivery head hvv coefficient of delivery head
aF tube characteristics hrr flow friction in tube

The overall model is basically non-linear but linear in the parameters to be es-
timated. Therefore, least squares parameter estimation can be applied in its direct,
explicit form. The models contain 9 process coefficients

pT D �
L2 R2 
 JP Mf0 hth1 h

0
nn aF hrr

�
: (24.2.18)

For the parameter estimation, the equations are brought into the form

yj .t/ D � T
j .t/

O�j ; j D 1; 2; 3; 4 ; (24.2.19)

where

y1.t/ D dI2.t/

dt
y2.t/ D d!.t/

dt

y3.t/ D H.t/ y4.t/ D d PV .t/
dt

�
: (24.2.20)

The model parameters
O�T D � O�T

1
O�T
2

O�T
3

O�T
4

�
(24.2.21)

were estimated by the least squares method in the form of discrete square root filter-
ing (DSFI). Based on the model parameter estimates O� , all nine process coefficients
of p could be calculated uniquely.

The DC motor is controlled by an AC/DC converter with cascade control of the
speed and the armature current as auxiliary control variable. The manipulated vari-
able is the armature current U2. A microcomputer DEC-LSI 11/23 was connected
online to the process. For the experiments, the reference value !S.t/ of the speed
control has been changed stepwise with a magnitude of 750 rpm every 2min. The
operating point was n D 1 000 rpm, H D 5:4m, and PV D 6:48m3=h. The signals
were sampled with sampling time T0 D 5ms and 20ms over a period of 2:5 s and
10 s, so that 500 samples were obtained. These measurements were stored in the core
memory before estimation. Hence, one set of parameters and process coefficients was
obtained every 120 s. The results of 550 step changes are shown in Table 24.4.
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Table 24.4. Estimated parameters of the pump drive

Parameter Mean Std. Dev.

L2 ŒmH� 57:6 5:6%
R2 Œ�� 2:20 5:0%

 ŒWb� 0:947 1:2%
J Œ10�3 kg m2� 24:5 3:7%
cR0 ŒNm� 0:694 13:5%
hTH1 Œ10

�3 ms2� 1:27 3:6%
hNN Œ10

�3 ms2� 0:462 0:8%
aB Œ10

3 s2=m2� 0:905 1:46%
hRR Œ10

6 s2=m5� 1:46 3:9%

24.2.4 Heat Exchangers

Heat exchangers are a typical apparatus in the fields of power and chemical engi-
neering, heating, cooling, refrigeration and air conditioning, and are part of all kind
of machines and engines. Their task is to transport heat between two or more media,
such as e.g. liquids or gases.

Heat Exchanger Types

A large variety of types exists to meet the specific requirements with regard to tem-
peratures, pressures, phase changes, corrosion, efficiency, weight, space, and con-
nections. Frequently used types are

� tubular heat exchangers
� plate heat exchangers.

With regard to the flow direction, one distinguishes counter flow, parallel flow
and cross flow. The fluids are liquids, gases, or steam, resulting in two media with
the combinations:

� liquid - liquid
� gas - liquid
� liquid - steam (condensator, evaporator)
� gas - steam

Steam/Water Heat Exchanger

An industrial size steam-heated heat exchanger, see Fig. 24.37, is considered as an
example, which is part of a pilot plant (W. Goedecke, 1987; Isermann and Frey-
ermuth, 1991). This plant consists of an electrically powered steam generator, a
steam/condensate circulation (circuit 1), a water circulation (circuit 2), and a cross-
flow heat exchanger to transport the heat from water to air.

As inputs and outputs of the considered heat exchanger, the following variables
are measured:
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Fig. 24.37. Tubular heat exchanger and measured variables

Pms mass flow of the steam
Pm1 mass flow of the liquid fluid (water)
#1i inlet temperature of the liquid fluid
#1o outlet temperature of the liquid fluid

The fluid outlet temperature #1o is considered as an output variable, the other
three measured variables as input variables.

Linear Models and Parameter Estimation

To model the dynamic behavior, the heat exchanger is subdivided into the tubular
section, the water head, a transport delay, and the temperature sensor. The dynamic
equations for a heated tube as a distributed parameter process are given e.g. in (Is-
ermann, 2010). In addition, balance equations are stated for the steam space and
the shell tube. After approximation of the transcendent transfer function with those
for lumped parameters and linearization around the operating point, one obtains for
example the approximate transfer function

QGs#.s/ D �#1o.s/

� Pms.s/
D Ks

.1C T1ss/.1C T2ss/
e�Tdss (24.2.22)
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with

Ks D r

Pm1c1

; T1s D 1

v1

�
1C Aw%wcw

A1%1c1

�

T2s D Aw%wcw

˛w1U1

1�
1C Aw%wcw

A1%1c1

�

‡
(24.2.23)

With the quantities being given as

A area cp specific heat capacity
Pm mass flow rate r vaporization heat
˛ heat transfer coefficient # temperature
% density

and the subscripts

1 primary side of heat exchanger 2 secondary side of heat exchanger
w wall s steam
i inlet o outlet.

In this case, three parameter estimates compare to 10 process coefficients. There-
fore, it is not possible to determine all process coefficients uniquely. By assuming
some of the process coefficients to be known, however, the following process coeffi-
cients and combinations of process coefficients can be determined:

˛w1 D A1%1c1

T2sU1

�
1 � 1

T1sv1

�

Aw%wcw D T1s Pm1c1 � A1%1c1

r D Ks Pm1c1

ƒ
: (24.2.24)

The three parameters OKs, OT1s and OT2s are determined by experiments based on
transient function measurements of the fluid outlet temperature #1o due to changes
of the input variables #1i, Pms and Pm1 in the direction of decreasing temperature #so.
The operating point was

Pm1 D 3000
kg
h
; Pms D 50

kg
h
; #1i D 60ıC; #1o � 70ıC :

As sampling time, T0 D 500ms was selected. The time period of one experiment
was 360 s, so that 720 samples were taken. For the parameter estimation, the method
of total least squares in a recursive form was applied using a digital state variable
filter for the determination of the derivatives.

Figure 24.38a shows one measured transient function and Fig. 24.38b the cor-
responding time history of the parameter estimates. A good convergence of the pa-
rameter estimates was obtained in all cases. A verification of the measured and the
calculated transient functions shows a very good agreement.
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Fig. 24.38. Results for a change in the steam flow � Pms: (a) Measured transient functions for
a steam flow change, (b) parameter estimates from transient function

Parameter Variable Local Linear Models

As the behavior of heat exchangers depends strongly on the flow-rates, the static and
dynamic behavior is non-linear for changing flow-rates. In order to develop models
which are applicable over a large operating range, local linear neuronal netmodels
of the type LOLIMOT were used to describe first the nominal behavior. This was
applied to the steam/water heat exchanger used also for Sect. 24.2.4. By using the
LOLIMOT identification method, dynamic models of the water outlet temperature
#1o in dependence on the water volume flow PV1, steam mass flow Pms, and inlet
temperature #1i were determined by simultaneous wide range excitation of the two
flows with amplitude modulated PRBS signals (Ballé, 1998).

This resulted in 10 local linear models in dependence on the water flow. Using a
sample time of T0 D 1 s, a second order dynamic model was sufficient

#1o.k/ D �a1.´/#1o.k � 1/ � a2.´/#1o.k � 1/
C b11.´/ Pms.k � 1/C b12.´/ Pms.k � 2/
C b21.´/ PV1.k � 1/C b31.´/#1i .k � 1/C c0.´/ ;

(24.2.25)

where the parameters depend on the operating point ´ D PV1

a�. PV1/ D
10X

j D1

a� j̊ . PV /; b��. PV1/ D
10X

j D1

b��. PV /; c0. PV1/ D
10X

j D1

c0 j̊ . PV / ;
(24.2.26)

where j̊ is the weighting function within LOLIMOT.
Figure 24.39 shows the resulting stationary outlet temperature in dependence on

the two flows. The identified models then allowed to extract three gains and one
dominant time constant, partially depicted in Fig. 24.40. The operating point depen-
dence is especially strong for low water flow rates. Static gains and the time constant
change with about a factor four.
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24.2.5 Air Conditioning

The air condition system that is considered in this section consists of a heater and a
humidifier, see Fig. 24.41. By means of the hot water supply, the air temperature af-
ter the cross-flow heat exchanger is controlled. Inside the humidifier, the humidity is
controlled by means of the water spray flow. Figure 24.42 shows the measurements
that have been taken at the process. Since it was a linear MIMO process, a PRBS for
the first input was combined with an orthogonal PRMS in order not to apply corre-
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lated input signals. The clock time of the base PRBS was � D 1, the measurement
time was TM D 195 s. As a model structure, a simplified P-canonical model was
chosen. The model order and dead time estimation by employing a determinant test
provided Om1 D 2, Od11 D 0, Od12 D 0, and Om D 1, Od21 D 0, Od22 D 0. By means of
COR-LS, the following models (Hensel, 1987) were then identified

OG11.´/ D �#Ao

�U#.´/
D 0:0509´�1 C 0:0603´�2

1 � 0:8333´�1 C 0:1493´�2

OG21.´/ D �#Ao

�U'.´/
D �0:0672´�1 � 0:0136´�2

1 � 0:8333´�1 C 0:1493´�2

OG22.´/ D �'Ao

�U'.´/
D 0:2319´�1

1 � 0:3069´�1

OG11.´/ D �#Ao

�U#.´/
D 0:0107´�1

1 � 0:3069´�1
:

The estimated static gains result as OK11 D 0:3520, OK12 D �0:2557, OK22 D 0:3345,
and OK12 D 0:0154. The coupling from �U#.´/ to �'Ao.´/ is hence negligible.

24.2.6 Rotary Dryer

A rotary dryer for sugar beets has been identified as described in (Mann, 1980) and
(Isermann, 1987). The input to the process is the amount of fuel supplied, PmF, and the
output is the amount of dry matter, DM. The process shows large disturbances, hence
the identification results that had been obtained in the short measurement time are
not optimal. Figure 24.43 however shows that the measured output and model output
match quite well for longer identification times of roughly 6 hours. The difference in
the DC values can be explained by the large disturbances. The process model, which
was identified using COR-LS, is given as

G.´/ D �1:15´�1 C 1:52´�2 � 0:54´�3 C 0:27´�4 C 0:27´�5

1 � 2:01´�1 C 1:27´�2 � 0:24´�3 C 0:07´�4 � 0:07´�5
´�2 ;

(24.2.27)
see also Fig. 24.45. One can see from the calculated step response in Fig. 24.44 that
the resulting model has an all-pass behavior and contains a dead time.
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24.2.7 Engine Teststand

Dynamic models of a combustion engine testbench are required for designing the
torque or speed control. Figure 24.46 shows the setup. The testbed consists of a
DC motor, a spring shackle clutch, a belt transmission, a torque transducer, and a
flange to connect the combustion engine to the testbed. The dynamometer applies a
dynamic load torque to the combustion engine, which can be shaped to correspond
to a certain driving cycle. To design a suitable controller, a precise linear model of
the dynamics was required. The input signal of the process is the armature current of
the DC motor IA, the output is the torque at the torque transducer MTT (Voigt, 1991;
Pfeiffer, 1997).

Figure 24.47 shows a schematic diagram of the engine testbench with five rota-
tional inertias, which are coupled by spring/damper combinations. The friction in the
roller bearings is modeled as viscous friction. The linear behavior can be described
by a linear state space model as

Px.t/ D Ax.t/C bu.t/C gn.t/ (24.2.28)
y.t/ D Cx.t/ (24.2.29)
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with the input u.t/ being the armature current IA.t/, the disturbance n.t/ being the
torque exerted by the engine Mmot.t/, and

x.t/T D �
!FL �'TT.t/ !P2.t/ �'BD.t/ !P1.t/ �'C.t/ !DC.t/

�
(24.2.30)

y.t/ D �
MTT.t/ !P2.t/

�
: (24.2.31)

The model parameters are given as

A D

�

� dTTCdBF
JFLCJmot

cTT
JFLCJmot

dTT
JFLCJmot

0 0 0 0

�1 0 1 0 0 0 0
dTT
JP2

� cTT
JP2

� dBDCdTTCdBF
JP2

cBD
JP2

iBDdBD
JP2

0 0

0 0 �1 0 iBD 0 0

0 0 iBDdBD
JP1

� iBDcBD
JP1

i2
BDdBDCdCCdBF

JP1

cC
JP1

dC
JP1

0 0 0 0 �1 0 1

0 0 0 0 dC
JDC

� cC
JDC

dCCdBF
JDC

˘

(24.2.32)

bT D
�
0 0 0 0 0 0


DC

JDC

�
(24.2.33)

C D
�
0 cTT 0 0 0 0 0

0 0 1 0 0 0 0

�
: (24.2.34)

The transfer function matrix can then be determined by

G .s/ D C
�
sI �A��1

b : (24.2.35)

Considering IA.t/ as an input andMTT.t/ as an output, the model is of seventh order

GIT.s/ D b0 C b1s

a0 C a1s C a2s2 C a3s3 C a4s4 C a5s5 C a6s6 C a7s7
: (24.2.36)

The parameters of the transfer function depend on the physical parameters of the
system. Here, the quantities are given as


DC magnetic flux linkage DC J rotational moment of inertia
c spring stiffness d damping coefficient
! rotational velocity ' angle
M torque I current

and the indices denote

BF bearing friction P2 belt pulley P2
DC DC motor TT torque transducer
C clutch FL flange
P1 belt pulley P1 mot test engine
BD belt drive.
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Figure 24.48 shows the poles and zeros of the transfer function. Three pairs of
conjugate complex poles are obtained, as well as one real pole and one real zero.
Hence, the following natural angular eigenfrequencies can be distinguished !e;C for
the clutch, !e;TT for the torque transducer, and !e;B for the belt. Considering the not-
coupled elements as undamped second order systems, the characteristic frequencies
can be determined as

f0;C D 1

2�

s
cC.JDC C JP1/

JDCJP1
D 154:7Hz (clutch) (24.2.37)

f0;BD D 1

2�

s
cBD.JDC C JP1/C i2BD.JP2 C JFL/

.JDCJP1/.JP2 C JFL/
D 34:5Hz (belt) (24.2.38)

f0;TT D 1

2�

s
cTT.JP2 C JFL/

JP2JFL
D 154:7Hz (clutch) (24.2.39)

Figure 24.49 shows the measured frequency response of the system without an
engine attached. The three resonance frequencies of the belt (approximately 45Hz),
clutch (120Hz/, and torque transducer (250Hz) can clearly be recognized. The re-
sults show a good agreement between model and measurement (Isermann et al, 1992;
Pfeiffer, 1997). The obtained model allowed the design of a digital torque controller
with the connected combustion engine, allowing the compensation of the testbed
dynamics with accurate powertrain models up to frequencies of 12Hz.

24.3 Automotive Vehicles

Automotive vehicles are another interesting area of application, where the use of ex-
perimental modeling is of great benefit. While the vehicle dynamics can very well
be modeled by a one-track or a two-track model, it is very hard to derive the model
parameters analytically. Furthermore, many parameters, describing e.g. the mass dis-
tribution and the wheel-road-friction, vary over time as e.g. the load changes or the
road surface is dry or wet or icy depending on the weather. Therefore, advanced ve-
hicle dynamics systems have to be adapted to the varying parameters of the vehicle.

Further examples presented in this section include the estimation of wheel sus-
pension system and tire parameters. Both of these are safety critical systems and
hence knowledge about the state of these components is of great benefit in terms
of supervision of these components. Another safety critical system is the braking
system, which will also be modeled and identified in this section.

Finally, combustion engines will be treated. With more and more strict emission
requirements, the amount of actuators at the combustion engine increases steadily,
making these system true (nonlinear) MIMO systems.

24.3.1 Estimation of Vehicle Parameters

In this section, the estimation of vehicle parameters shall be described. The esti-
mation of vehicle parameters is of interest for advanced vehicle dynamic control
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Fig. 24.50. Coordinate system of a road vehicle (Halbe, 2008; Schorn, 2007)

systems, which can employ such an automatically adapted model for model-based
control algorithms.

A simple yet sufficiently precise model is the one-track model, (Milliken and
Milliken, 1997), which can describe the dynamic behavior of a car up to lateral ac-
celerations of roughly aY � 0:4g. For the one-track model, in contrast to the two-
track model, both wheels of each axle are combined into a single wheel at the center
of the axle. Furthermore, it is assumed that the center of gravity of the car is on the
road surface, i.e. the car does not roll. The force buildup between the tire surface
and the road is also assumed to be linearly dependent on the slip angle. Due to these
simplifying assumptions, the one-track model is not always of sufficient fidelity, but
it can be used in most situations that a normal driver experiences.

Figure 24.50 shows the coordinate system of a passenger car and shall be used to
explain the symbols that will be used in the following: x, y, and ´ describe the three
lateral degree of freedom of the car, whereas � denotes the roll,  denotes the yaw,
and � denotes the pitch angle.

The characteristics of a tire governing the tire-road surface interaction are shown
in Fig. 24.51. Here, one can see that the cornering friction force depends non-linearly
on the slip angle, but for small side slip angles can be assumed to be a linear function
of the side slip angle.

The one-track model, see Fig. 24.52, can now be derived based on the force and
momentum balance of the vehicle,

m
v2

R
sinˇ �m Pv cosˇ�

D’Alembert inertial forces

C Fxr C Fxf cos ı � Fyf sin ıŸ
tire forces

D 0 (24.3.1)

�mv
2

R
cosˇ �m Pv sinˇ�

D’Alembert inertial forces

C Fyr C Fxf sin ı � Fyf cos ıŸ
tire forces

D 0 (24.3.2)

�Jz R C �
Fyf cos ı C Fxf sin ı

�
lf � Fyhlh D 0 : (24.3.3)
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Also, one has the following kinematic relations:

˛r D arctan
�
vyr

vxr

�
D arctan

�
lr P � v sinˇ
v cosˇ

�
�
�
lr P � v sinˇ
v cosˇ

�
(24.3.4)

˛f D ı � arctan
�
lf P C v sinˇ
v cosˇ

�
� ı �

�
lf P C v sinˇ
v cosˇ

�
; (24.3.5)

which provide the slip angle of the front and rear wheel. From there, one can deter-
mine the lateral tire forces as
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fyr D c˛r˛r (24.3.6)
fyf D c˛f˛f : (24.3.7)

Finally, the one track model can be written in state space form as

� R 
P̌
�

D

�
�c˛fl

2
f Cc˛rl

2
r

Jzv
�c˛flfCc˛rlr

Jz�c˛flf�mv2Cc˛rlr

mv2
�c˛flfCm PvCc˛r

mv

�� P 
ˇ

�
C

�
c˛flfCc˛rlr

JziSc˛f

mviS

�
ıH :

(24.3.8)
In these equations, the following symbols are used:

m mass v velocity
R instantaneous radius ˇ slip angle
ı steering angle J moment of inertia
l length ˛ side slip angle
c˛ cornering stiffness

with the indices

fl front left fr front right
rl rear left rr rear right.

One can now use test drives to estimate the parameters of the one track model.
The results for a one track model that has been parameterized by a test drive is shown
in Fig. 24.53, where one can see the good match between the model output and the
measurement. For more details see (Wesemeier and Isermann, 2007; Halbe, 2008;
Schorn, 2007).
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24.3.2 Braking Systems

This section is concerned with the modeling and identification of components of
a hydraulic passenger car braking systems. A schematic view of such a system is
shown in Fig. 24.54. The foot force exerted by the driver is amplified by means of a
vacuum operated brake booster and is then transmitted to the master brake cylinder,
which is typically mounted directly at the vacuum brake booster. The master brake
cylinder is divided into two separate chambers by the intermediate piston. From the
master brake cylinder, two separate lines run to the hydraulic control unit, which
houses all valves for the anti-lock braking system, the traction control system, etc.
Four lines connect this block to the four wheel brake cylinders. In the wheel brake
cylinders, brake pads can be pushed against the brake disk in order to generate a
friction torque which in turn will slow the vehicle down. More detailed information
can be found in (Robert Bosch GmbH, 2007; Burckhardt, 1991; Breuer and Bill,
2006).

Hydraulic subsystem

In the following, a detailed model of the hydraulic subsystem of the braking system
used at a passenger car braking system testbed (Fig. 24.55) will be derived. This
model will be formulated as a non-linear state-space model, with the dynamics of
the system being governed by the set of first order non-linear differential equations,

Px D a.x/CBu (24.3.9)

and the output given as
y D cTx C dTu : (24.3.10)
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Fig. 24.55. View of the braking system testbed at IAT, TU Darmstadt (Straky, 2003)

Here and in the remainder of this section, the following symbols are used:

V volume
PV volume flow rate
RT turbulent flow resistance
RL laminar flow resistance
L inertia of hydraulic fluid
C capacity of wheel brake cylinder chamber
p pressure

and the indices denote

fl front left
fr front right
rl rear left
rr rear right
I chamber 1 of master brake cylinder
II chamber 2 of master brake cylinder
wbc wheel brake cylinder

Upon operation of the brake pedal, the master brake cylinder will push a certain
amount of brake fluid into the individual wheel brake cylinders. This amount of fluid
displaced along with the time rate of change of this displacement will be chosen as
the states of the system,

x D �
Vfl PVfl Vfr PVfr Vrl PVrl Vrr PVrr

�T
: (24.3.11)

If subjected to a pressure, the master brake cylinder and the hydraulic connection
lines will widen and the hydraulic fluid will be compressed, all of which will lead to a
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consumption of brake fluid. The flow through the valves inside the hydraulic control
unit will give rise to turbulent flow losses. Some of the valves are backflow valves,
hence the pressure loss depends on the flow direction and must hence be modeled
flow-direction dependent. The long connection lines evoke laminar flow losses. The
wheel brake cylinders are modeled as compressible volumes. This once again cap-
tures the widening of the cylinder walls and the caliper as well as the compression
of the brake pads, brake discs and brake fluid due to a pressure increase.

The dynamics of the system are then governed by

a.x/ D

PVfl

�RT;fl

Lfl

PV 2
fl � RL;fl

Lfl

PVfl � 1

Lfl

Z PVfl

Cfl.Vfl/
dt

PVfr

�RT;fr

Lfr

PV 2
fr � RL;fr

Lfr

PVfr � 1

Lfr

Z PVfr

Cfr.Vfr/
dt

PVrl

�RT;rl

Lrl

PV 2
rl � RL;rl

Lrl

PVrl � 1

Lrl

Z PVrl

Crl.Vrl /
dt

PVrr

�RT;rr

Lrr

PV 2
rr � RL;rr

Lrr

PVrr � 1

Lrr

Z PVrr

Crr.Vrr/
dt

: (24.3.12)

This input distribution matrix B is defined as

B D

�
0 0 0

1

Lfl
0
1

Lrl
0 0

0
1

Lfl
0 0 0 0 0

1

Lrr

�T

: (24.3.13)

with the control input given as the pressure inside the two chambers of the master
brake cylinder

u D
�
pII
pI

�
: (24.3.14)

The output of the model is chosen as the total displaced volume, thus it is the sum of
the individually displaced volumes, calculated by the output distribution vector

cT D �
1 0 1 0 1 0 1 0

�
(24.3.15)

and the direct feed-through vector

dT D �
CII CI

�
: (24.3.16)

As was already mentioned, the pressure-flow characteristics of the hydraulic con-
trol unit are flow direction dependent due to the presence of backflow valves. Thus,
the turbulent resistance is given as
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Fig. 24.56. Simulation run of the pressure buildup in the wheel brake cylinders

RT;i D
�
RTa;i for PVi � 0

RTr;i for PVi < 0
for i 2 ffl; fr; rl; rrg : (24.3.17)

Now, the individual parameters of the model have been determined by iterative
optimization based on measurements taken at the testbed in Fig. 24.55. The high
fidelity of the derived model can be seen from the simulation in Fig. 24.56. Further
details are described in (Straky et al, 2002; Straky, 2003).

Vacuum Brake Booster

The introduction of disc brakes required higher operation forces which in turn man-
dated some means to amplify the control forces exerted by the driver. Coming up
with an easy yet efficient design, the vacuum brake booster is applied. Besides this
amplification of the driver input, the vacuum brake booster is also used as an actu-
ation device for the braking system by the brake assistant (Kiesewetter et al, 1997)
which initiates a full braking in case of an emergency.

Figure 24.57 shows a cut-away drawing of the vacuum brake booster depicting
the different parts of the vacuum brake booster. A photo is shown in Fig. 24.58.
The foot-force exerted by the driver is supplied to the vacuum brake booster via the
linkage. The vacuum brake booster is divided into two chambers by means of the di-
aphragm. The vacuum chamber is always kept at a pressure substantially lower than
the atmospheric pressure, whereas the pressure in the working chamber is controlled
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Fig. 24.57. Cut-away drawing of a vacuum brake booster

Fig. 24.58. Photo of a vacuum brake booster
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Fig. 24.59. Booster in (a) brake stage, (b) release stage

by the pneumatic valves located inside the vacuum brake booster. These valves al-
low to open or shut a flow path from the working chamber to the vacuum chamber
(Fig. 24.59a) or from the working chamber to the surroundings (Fig. 24.59b) respec-
tively. Opening and closing of the valves is controlled by the reaction washer, which
is basically an elastic rubber disc. The air drawn from the surroundings is traversing
an air filter and thereby cleaned. For spark ignition engines, the vacuum pressure is
taken from the engine manifold, whereas for Diesel engines, the vacuum pressure is
supplied by a vacuum pump. For operation at the testbed (Fig. 24.55), the vacuum
brake booster is supplied with vacuum pressure by means of a membrane pump, thus
this setup mimics a car equipped with a Diesel engine.

The pressure difference between the two chambers of the vacuum brake booster
exerts a force onto the membrane, which is transmitted to the master brake cylinder
via a push-rod. For a more detailed description of the vacuum brake booster, the
reader is referred to (Robert Bosch GmbH, 2007; Burckhardt, 1991; Breuer and Bill,
2006).

In the following, the quantities are denoted as

p pressure V volume
m mass R gas constant
T temperature x displacement
A area AV valve opening area
% density v velocity

and indices

vc vacuum chamber wc working chamber
mem membrane, i.e. diaphragm amb ambient
link linkage

will be used.
As was indicated in the previous section, the vacuum brake booster consists of

two chambers. The chambers are modeled as pneumatic storage devices (Isermann,
2005). The state of such a storage device is described by the equation of state for an
ideal gas,
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p.t/V .t/ D m.t/RairT ; (24.3.18)

where p is the pressure, V the currently enclosed volume, m the mass of the en-
closed air, Rair the gas constant and T the temperature. The mass m is chosen as the
conservative quantity. The volume of the vacuum chamber (vc) is determined by the
initial volume of the vacuum chamber, Vvc;0, and the displacement of the diaphragm,
xmem,

Vvc D Vvc;0 � xmemAmem : (24.3.19)

Th cross-sectional area of the membrane is written as Amem. Volume and pressure
changes are assumed to be isothermal. From the mass of the enclosed air, which was
chosen as the conservative quantity, one can calculate the pressure inside the vacuum
chamber as

pvc.t/ D mvcRairT

Vvc
(24.3.20)

and the actual density as
%vc D mvc

Vvc
: (24.3.21)

For the working chamber (wc), similar equations can be derived as

Vwc D Vwc;0 C xmemAmem (24.3.22)

pwc D mwcRairT

Vwc
(24.3.23)

%wc D mwc

Vwc
: (24.3.24)

Now, the valves are modeled. For this endeavor, Bernoulli’s equation (Isermann,
2005) is employed. The fluid is assumed to be barotropic, since the behavior of air
can be approximated by a barotropic fluid. In this case, Bernoulli’s equation is given
as Z 2

1

@v

@t
C
�
P2 C v2

2

2
C U2

�
�
�
P1 C v2

1

2
C U1

�
D 0 (24.3.25)

The influence of the first term, which describes the acceleration induced pressure
loss, is neglected. The terms Pi with i 2 f1; 2g describe the energy expenditure for
the compression respectively expansion phases and are calculated as

PI D
Z p1

p0

dp
%

D RairT

Z p1

p0

dp
p

D RairT ln
�
p1

p0

�
: (24.3.26)

Bernoulli’s equation is now applied to the flow path from point 1 to point 2, as shown
in Fig. 24.59, which results in

RairT ln
�
p1

p2

�
C v2

1

2
� v2

2

2
D 0 : (24.3.27)

Point 1 is in the surroundings, therefore the velocity v1 is assumed to be negligibly
small, and the pressure p1 is set to the atmospheric pressure pamb. Point 2 is located
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Fig. 24.60. Valve 1 opening function (a) and valve 2 opening function (b) of the vacuum brake
booster

inside the working chamber, thus the pressure p2 is identical to pwc. One can now
solve Eq. 24.3.27 with respect to v2 as

v2 D
s
2RairT ln

�
pamb

pwc

�
: (24.3.28)

The mass flow into the working chamber is then determined as

Pmwc D AV1%wcv2 ; (24.3.29)

where AV1 is the active cross-sectional opening area of the aforementioned valve be-
tween the surroundings and the working chamber.Similarly, the equation governing
the behavior of the valve between the working chamber and the vacuum chamber can
now be derived. The flow path is shown in Fig. 24.59 and yields
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Fig. 24.61. Comparison of model and process output

v3 D
s
2RairT ln

�
pwc

pvc

�
(24.3.30)

Pmvc D � Pmwc D AV2%VCv3 : (24.3.31)

The active cross-sectional areas of the two valves as a function of the membrane and
pedal displacement and the active chamber pressures have been derived from exper-
imental data gathered at the testbed. The resulting valve characteristics are shown
in Fig. 24.60. For the identification, an iterative optimization approach was used
employing the output error between the simulated and the real chamber pressures
and using the Gauss-Newton algorithm with numerically determined derivatives. The
model structure was a hybrid physical and black-box model. The pneumatics were
modeled physically, whereas the valve opening functions were modeled as black-box
functions. Further details are shown in (Muenchhof et al, 2003).

24.3.3 Automotive Suspension

Both, the suspension as well as the tire pressure, covered in the next section, have
a large influence on the vehicle dynamics and are thus highly safety critical. In the
following, identification techniques will be developed that allow to identify the char-
acteristics of the vehicle suspension and the tire and can serve for supervision of
these components.

For application either in a service station, for example for technical inspection,
or in a driving state, it is important to use easily measurable variables. If the methods
should be used for technical inspection, then the additional sensors must be easily
mounted to the car. For on-board identification, the existing variables for suspension



664 24 Application Examples

Fz

cW

zW, zW

r

zB, zB

mW

mB

..

..

zB-zW

zB-r

a) b)

cB dB

Fig. 24.62. Quarter car model. (a) Quarter car (b) schematic of the mechanical system

control should be used. Variables which meet these requirements are the vertical
accelerations of body and wheel, ŔB and ŔW, and the suspension deflection ´W �
´B. Another important point is that the methods should require only little a priori
knowledge about the type of car.

A scheme for a simplified model of a car suspension system, a quarter car model,
is shown in Fig. 24.62. The following equations follow from force balances

mB ŔB.t/ D cB
�
´W.t/ � ´B.t/

�C dB
� ṔW.t/ � ṔB.t/

�
(24.3.32)

mW ŔW.t/ D �cB
�
´W.t/ � ´B.t/

� � dB
� ṔW.t/ � ṔB.t/

�C cW
�
r.t/ � ´W.t/

�
(24.3.33)

In this section, the following symbols are used:

a1; b1 parameters of transfer functions FW wheel force
cB stiffness of body spring mB body mass
cW tire stiffness pW wheel pressure
dB body damping coefficient r road displacement
fr resonance frequency ´B vert. body displacement
FC Coulomb friction force ´W vert. wheel displacement
FD damper force �´WB= ´B � ´W
FS spring and damper force suspension deflection

The small damping of the wheel is usually negligible. A survey of passive and semi-
active suspensions and their models is given in (Isermann, 2005).

In general, the relationship between force and velocity of a shock absorber is
nonlinear. It is usually degressive and depends strongly on the direction of motion
of the piston. In addition, the Coulomb friction of the damper should be taken into
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account. To approximate this behavior, the characteristic damper curve can be di-
vided into m sections as a function of the piston velocity. Considering m sections,
the following equation can be obtained.

ŔB D dB;i

mB. ṔW � ṔB/C cB
mB
.´W � ´B/C 1

mB
FC; i

; i D 1; : : : ; m ; (24.3.34)

compare (24.3.32). FC;i denotes the force generated by Coulomb friction and dB;i

the damping coefficient for each section. Using (24.3.34) the damping curve can
be estimated with a standard parameter estimation algorithm measuring the body
acceleration ŔB and suspension deflection ´W � ´B. The velocity ṔW � ṔB can be
obtained by numerical differentiation. In addition, either the body mass mB or the
spring stiffness cB can be estimated. One of both variables must be known a priori.
Using (24.3.32) and (24.3.33), other equations for parameter estimation can be ob-
tained, e.g. (24.3.35) which can be used to estimate the tire stiffness cW additionally

´W � ´B D �dB;i

mB
. ṔW � ṔB/� cB

mB
.´W � ´B/C cW

cB
.r � ´W/� 1

cW
FC;i (24.3.35)

The disadvantage of this equation is the necessity to measure the distance between
road and wheel .r � ´W/, see also (Bußhardt, 1995; Weispfenning and Leonhardt,
1996) for modeling and identification of the automotive suspension.

To test the above method in a driving car, a medium class car, an Opel Omega,
Fig. 24.63, was equipped with sensors to measure the vertical acceleration of body
and wheel as well as the suspension deflections. To realize different damping coef-
ficients, the car is equipped with adjustable shock absorbers at the rear axle, which
can be varied in three steps. In Fig. 24.65, the course of the estimated damping coef-
ficients at different damper settings is given for driving over boards of height 2 cm,
see Fig. 24.64.

After approximately 2:5 s, the estimated values converge to their final values.
The estimated damping coefficients differ approximately 10% from the directly mea-
sured ones. In Fig. 24.66, the estimated characteristic curves at the different damper
settings are shown. The different settings are separable and the different damping
characteristics in compression and rebound is clearly visible, although the effect is
not as strong as in the directly measured characteristic curve. More results are given
in (Börner et al, 2001).

Next, the damping characteristics of the shock absorber were adjusted during a
driving maneuver. Recursive parameter estimation then allow to adapt the damping
coefficient accordingly. Figure 24.67 illustrates the suspension deflection ´W � ´B,
the first derivative of the suspension deflection calculated with a state variable filter
ṔW � ṔB, and the wheel acceleration ŔW for the right rear wheel during a highway
test drive. After 30, 60, 90, and 120 s, a change of the shock absorber damping was
made.

Several estimations have shown that the recursive least squares algorithm (RLS)
with exponential forgetting factor received very good results. This recursive param-
eter estimation is able to adapt to the different damping settings in about 10 s, see
Fig. 24.68.
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Fig. 24.63. Car for driving experimental for model validation and parameter estimation

Fig. 24.64. Driving experiment with wooden plates to excite the vertical dynamics

Table 24.5. Specifications of the Opel Omega for driving experiments

Parameter Value

Type Opel Omega A 2.0i
Year 1993
Drive Rear wheel drive
Top speed 190 km=h
Engine 4 cylinder OHC spark ignition engine
Engine displacement 1:998 � 10�3 m3

Rated power 85 � 10�3Nm=s at 5 200 rpm
Max torque 170Nm at 2 600 rpm
Max drag torque �49Nm
Max rpm 5 800 rpm
Transmission 5 speed manual transmission
Brakes Disc brakes at all four wheels
Steering Continuous ball race power steering
Steering transmission ratio 13:5

Tire size 195/65 R15 91H
Rim size 6 J � 15
Tire radius of unloaded wheel 0:320m
Tire rotational inertia 0:9 kg m2

Unsprung mass front wheel 44 kg
Unsprung mass rear wheel 46 kg
Length 4:738m
Width 1:760m
Wheel base 2:730m
Height of cog 0:58m
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24.3.4 Tire Pressure

The tire pressure is also a very important quantity for vehicle safety. A survey con-
ducted by Michelin in 2006 within the safety campaign “Think Before You Drive”has
shown that only 6:5% of the 20 300 inspected cars had the required tire pressure at all
four wheels. More than 39:5% of the cars had at least one extremely underinflated
tire (< 1:5 bar) (Bridgestone, 2007). It is well known that it is dangerous to drive
with underinflated tires. First of all, the risk of an accident increases due to the worse
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Fig. 24.69. Model of Torsional Wheel Oscillations

vehicle dynamic properties and the increased probability of a tire burst. Because of
the increasing deformation, the tire heats up and its structure destabilizes (Normann,
2000). Furthermore, tire deflation increases fuel consumption and tire wear.

One can in general discern two approaches in tire pressure measurement systems.
Direct measurement and indirect measurement. Direct tire pressure measurement
systems use dedicated pressure sensors (Normann, 2000; Maté and Zittlau, 2006;
Wagner, 2004). As the sensor is mounted directly at the tire, it is exposed to extreme
environmental conditions, such as a wide temperature range and large accelerations.
Also, the power supply of the sensor and the data transmission increase the cost
and complexity of the systems. Therefore, one is interested in employing alternative
measurement principles.

These are the basis of indirect tire pressure measurement systems. Here, one uses
measured signals of the wheel or suspension that are already measured for the use
by other vehicle dynamics control systems. One example is the wheel speed that is
measured by the wheel speed sensors for use by the ABS system. Besides the wheel
speed !, also the vertical wheel acceleration Ŕw can be used to determine the tire
pressure, as will be shown in the following.

Torsional Wheel Speed Oscillations

At the mantle of the wheel, a disturbing torque Md attacks. This torque is caused by
variations in the friction coefficient as well as variations of the height of the road sur-
face. This and the elasto-kinematic bearings cause oscillations, which are transferred
from the wheel speed at the mantle, !m to the wheel speed of the rim ! (Persson
et al, 2002; Prokhorov, 2005).

Figure 24.69 shows a schematic diagram of the dynamics of these torsional wheel
oscillations. The elasto-kinematics between the wheel and the rim are characterized
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by a torsional stiffness c0
t and a torsional damping d 0

t . The moments of inertia are
denoted by Jm and Jr respectively. With these quantities, the transfer function from
the disturbance torque Md to the wheel speed ! is given as

G.s/ D !.s/

Md.s/
D d 0

t s C c0
t

jrJms3 C .Jr C Jm/d
0
t s

2 C .Jr C Jm/c
0
ts
: (24.3.36)

The torsional stiffness c0
t depends on the tire pressure. Changes in the tire pressure

can be detected by analyzing the wheel speed signals. In order to detect changes in
the tire pressure, one determines the spectrum of the wheel speed !. This is done
employing parametric spectral analysis methods.

The filter G.´/ was modeled as an auto-regressive process, i.e.

y.k/ D q.k/ � a1y.k � 1/ � a2y.k � 2/ � : : : � any.k � n/ : (24.3.37)

The model parameters can then be determined e.g. by the method of least squares or
the method of total least squares.

For the wheel speed analysis, the majority of all spectral components is concen-
trated in the low frequency range (< 10Hz). Only small peaks exist in the frequency
range above 10Hz. As the spectral components that are influenced by the tire pres-
sure are expected between 40Hz and 50Hz (Persson et al, 2002; Prokhorov, 2005), a
bandpass filter is applied to attenuate spectral components outside of this frequency
band. The experimental results of test drives with different tire pressure are shown
in Fig. 24.70. One can see that the estimation of the power spectral density of the
wheel speed signal by means of the Fourier transform has many peaks and is very
disturbed. Hence, the resonance maximum is difficult to detect. Application of the
parametric spectral analysis results in a much smoother spectrum. The power spectral
density obtained by the spectral analysis with the method of least squares matches
well with the general shape of the spectrum as estimated using the Fourier transform.
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a straight driving maneuver with v D 50 km=h. Rear right tire underinflated at p D 1:5 bar,
all other tires correctly inflated at p D 2:0 bar. Power spectral density characterized by the
natural frequency f0

Although the maximum of the power spectral density obtained by using the method
of total least squares is far too large, the resonance frequency is still identified well.
By the method of least squares, the resonance of the correctly inflated tire is located
at 43:3Hz and for the deflated tire, reduces to 42:1Hz.

To be able to detect changes in the tire pressure during operation of the vehi-
cle, recursive parameter estimation methods will now be used to estimate the power
spectral density of the wheel speed signal online. Instead of identifying the reso-
nance frequency, the natural frequency f0 will now be identified as it is less affected
by wear of the suspension system (Isermann, 2002).

Figures 24.71 and 24.72 show experimental results. In Fig 24.71, the rear right
tire was underinflated at p D 1:5 bar, whereas all other tires correctly inflated at
p D 2:0 bar. One can see that the detection of changes in tire pressure is possible.
Note that the rear axle is the driven axle of the car and equipped with a differential
gear. Due to the coupling by differential gear, the rear left wheel is also affected
although inflated properly.

Vertical Wheel Acceleration

Signals from the suspension system are also influenced by the tire pressure (Börner
et al, 2002; Weispfenning and Isermann, 1995; Börner et al, 2000), such as e.g. the
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spring deflection ´wb, the vertical body acceleration Ŕb, or the vertical wheel accel-
eration Ŕw. As the body motion ´b, Ŕbb is much slower than the wheel motion ´w,
Ŕw, one cannot expect to see the effect of varying tire pressure in the body motion
(Börner et al, 2000). Considering the quarter car model in Fig. 24.62, one can derive
a transfer function from the road height r to the wheel acceleration Ŕw neglecting the
movement of the body, i.e. ´b D 0, as

G.s/ D Ŕw.s/

´h.s/
D

cw
cbCcw

s2

mw
cbCcw

s2 C db
cbCcw

s C 1
: (24.3.38)

Since the tire stiffness depends on the tire pressure, one can observe changes in the
tire pressure in the spectrum of Ŕw.

Experimental results for this method are shown in Figs. 24.73 through 24.75.
For the analysis of the vertical wheel acceleration spectrum, there are few neighbor-
ing frequency peaks from other effects and hence no filter is required. Figure 24.73
shows that resonance frequency can be clearly detected and the spectrum is strongly
sensitive to changes in the tire pressure. The difference of f0 between the correctly
inflated tires and the underinflated tire is larger when the total least squares spec-
tral analysis is used instead of the least squares spectral analysis. In Fig. 24.75, a
strong dependence between the deflation of the left tire and the respective tires natu-
ral frequency f0 is observable. Hence, the vertical wheel acceleration shows stronger
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Fig. 24.73. Estimated power spectral density of the vertical wheel acceleration for a straight
driving maneuver with v D 50 km=h and a pressure of p D 2:0 bar and p D 1:5 bar respec-
tively of the rear left tire
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Fig. 24.75. Recursive estimation of the power spectral density of the vertical wheel accelera-
tion for a straight driving maneuver with v D 50 km=h. Pressure in rear right tire varied from
1:0 bar up to 2:5 bar

dependence on the tire pressure than the torsional wheel oscillations. A survey on
tire pressure monitoring with direct and indirect measurements is given in (Fischer,
2003).

24.3.5 Internal Combustion Engines

In the following, the identification of models of internal combustion engines for pas-
senger cars shall be treated. The results can be applied to manifold areas of applica-
tion for internal combustion engines. In contrast to earlier combustion engines as well
as modern gasoline engines, Diesel engines require up to 8manipulated variables and
8 control variables to meet the ambitious perspectives for low fuel consumption and
emissions. Therefore, multi-variable non-linear control is necessary, where the un-
derlying non-linear MIMO models are identified on testbenches. In the following,
a Diesel engine is considered as an example of identification of combustion engine
models.

Modern Diesel engines are equipped with the following mechatronic actuators:

� High pressure injection system with multiple injections
� Variable camshaft
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Fig. 24.76. Schematic view of a modern Diesel internal combustion engine with (HFM denotes
hot film air mass flow sensor)

� Variable geometry turbo charger
� Exhaust gas recirculation

As was already stated above, these actuators lead to an increase in the number of
controlled variables, which all influence the static and dynamic behavior. In a strive
for reduced fuel consumption and reduced emissions, one is interested in precise
static or also dynamic models of the Diesel engine, which then allow to optimize the
engine controllers employed in the engine control unit. The derivation of dynamic
engine models becomes more important as recent studies have shown that up to 50%
of the emissions of a dynamic driving cycle are caused by accelerations, (Gschweitl
and Martini, 2004). The key question in identification of engine models is how the
measurement time can be reduced as the huge increase in the number of parameters
to be varied has lead to an exponential increase in required measurement time. Here,
special attention is paid to the design of the input sequence as to minimize the mea-
surement time while still obtaining models of high fidelity, (Schreiber and Isermann,
2009). The symbols used in this section are:
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Fig. 24.77. Control stand

Fig. 24.78. Internal combustion engine on a testbench

mair air mass in combustion chamber
p2 boost pressure
'PI crank angle of pilot injection
�tPI duration of pilot injection
qPI quantity of fuel of pilot injection
qMI quantity of fuel of main injection
NOx nitrogen-oxides
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Table 24.6. Specifications of the vgt turbo-charged Diesel internal combustion engine, type
Opel Z19DTH

Parameter Value

Engine displacement 1:9 l
Engine power 110 kW
Number of cylinders 4

Torque 315Nm at 2 000 rev
Bore � stroke 82mm � 90:4mm
Emission level Euro 4
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Fig. 24.79. Input signals for internal combustion engine excitation. APRBS test signals for
five inputs (simultaneous excitation of the engine at the operating point, nMot D 2000 rpm
and qMI D 20mm3=cyc (Isermann and Schreiber, 2010)

In the following, some experimental results will be presented that have been ob-
tained at an internal combustion engine testbed, see Fig. 24.77. These examples are
taken from (Schreiber and Isermann, 2007) and (Isermann and Schreiber, 2010).

The internal combustion engine is mounted on a cart (Fig. 24.78) and can be
connected to an asynchronous motor that allows to put a certain torque load on the
engine to conduct measurements in different load regimes. The experiments have
been conducted on an Opel Z19DTH Diesel engine, whose specifications can be
found in Table 24.6.

Figure 24.79 shows a test signal sequence that has been used to conduct mea-
surements at the process. As the behavior of the internal combustion engine is highly
non-linear, an APRBS signal has been used for identification, where also the ampli-
tude of the signal is varied in contrast to the two-valued binary PRBS signal. The
input signal was furthermore designed to be D-optimal.
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Fig. 24.80. Measured data and model output for NOx model (Isermann and Schreiber, 2010)
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Fig. 24.81. Generalization results for NOx model for nMot D 2000 rpm and qMI D
20mm3=cyc (Isermann and Schreiber, 2010)

As an example of a non-linear dynamic MISO model, a model of NOx emissions
has been derived using the LOLIMOT neural network. The output of the neural net
and the measurements used for the training are shown in Fig. 24.80. Generalization
results are then presented in Fig. 24.81.

The identification of dynamic models has several advantages. First of all, in con-
trast to stationary measurements, one does not have to wait until the system has set-
tled. Secondly, one can easily deduce a static model from the dynamic model by just
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Fig. 24.82. Calculated stationary map for NOx model for nMot D 2000 rpm and qMI D
20mm3=cyc depending on air mass and boost pressure (Isermann and Schreiber, 2010)

calculating the static gain and neglecting the dynamics. The resulting stationary char-
acteristics have been displayed in Fig. 24.82. With the same approach, other models
of important dynamics have been identified as well. For the highly non-linear char-
acteristics, the local linear net models are especially well suited for identification. A
model of an internal combustion engine had also been the subject of Examples 20.1
and 20.3.

24.4 Summary

This chapter illustrated the use of identification techniques applied to different pro-
cesses. As one can see from the wide area of applications that has been covered in
this chapter, identification methods are a quite universal tools for the extraction of
physical parameters and dynamics of processes and haven proven well in many ap-
plications. The successful application of identification methods necessitates a certain
knowledge of the underlying process dynamics as well as the choice of the appropri-
ate identification method.

For many applications, it is possible to provide physics-based equations that gov-
ern the static and dynamic behavior of the system. Then, the method of least squares
has been applied for the parameterization based on input/output data. If one cannot
provide (simple) equations for the dominant physical effects, one can use (selected)
neural nets for identification and modeling. This has been shown for a combustion
engine model and the heat exchanger with the LOLIMOT approach.
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Other aspects that have been illustrated by the choice of examples are continuous-
time and discrete-time models, non-linear models, time domain and frequency do-
main identification among others, see also Table 24.1. Further application examples
can be found in the books (Isermann, 1992, 2005, 2006, 2010).
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Part IX

APPENDIX



A

Mathematical Aspects

In this appendix, some important fundamental notions of estimation theory shall be
repeated. Also, the calculus for vectors and matrices shall very shortly be outlined. A
detailed overview of the fundamental notions for estimation theory can e.g. be found
in (Papoulis and Pillai, 2002; Doob, 1953; Davenport and Root, 1958; Richter, 1966;
Åström, 1970; Fisher, 1922, 1950).

A.1 Convergence for Random Variables

A sequence of random variables xn is considered with n D 1; 2; : : : . In order to
determine whether this sequence converges to a limit random variable x, one can
employ different definitions of convergence, which shall shortly by outlines in the
following.

Convergence in Distribution

A very weak form of convergence is given, if for the cumulative distribution functions
Fn.x/ of xn and F.x/ of x, the condition

lim
n!1Fn.x/ D F.x/ (A.1.1)

is satisfied for all x where F.x/ is continuous. This is called convergence in distri-
bution.

Convergence in Probability

The sequence xn converges in probability to x if

For every " > 0 lim
n!1P

�jxn � xj > "� D 0 : (A.1.2)

This is a weak definition of convergence. For the convergence in probability, one can
also write (Doob, 1953)

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_25, © Springer-Verlag Berlin Heidelberg 2011 
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plim xn D x or plim
n!1

xn D x : (A.1.3)

Convergence in probability includes convergence in distribution. If x is a constant
x0, then

lim
n!1 Efxng D x0 : (A.1.4)

Almost Sure Convergence

A strong form of convergence follows from the condition

P
n

lim
n!1 xn D x

o
D 1 ; (A.1.5)

which also includes convergence in probability and in distribution. This is also called
convergence with probability one.

Convergence in the Mean Square

An even stronger form of convergence follows from the condition

E
˚
.xn � x/2� D 0 : (A.1.6)

This can be written as
l: i:m: xn D x ; (A.1.7)

(Doob, 1953; Davenport and Root, 1958). Convergence in the mean square includes
convergence in probability and in distribution. It does not include almost sure con-
vergence. For the expected value, it includes that

lim
n!1 Efxng D E

n
lim

n!1 xn

o
D Efxg : (A.1.8)

Slutsky’s Theorem

If a sequence of random variables xn; n D 1; 2; : : : converges in probability to the
constant x0, i.e. plim xn D x0 and y D g.xn/ is a continuous function, then also
plimy D y0 with y0 D g.x0/. From this follows

plimV W D .plimV /.plimW / (A.1.9)

plimV �1 D .plimV /�1 : (A.1.10)

This also includes

lim
n!1 EfV W g D lim

n!1 EfV g lim
n!1 EfW g ; (A.1.11)

see also (Goldberger, 1964; Wilks, 1962).
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A.2 Properties of Parameter Estimation Methods

In the following, it shall be assumed that a process with the parameters

�T
0 D �

�10 �20 : : : �m0
�

(A.2.1)

is given. These parameters shall not be measurable directly, but can only be estimated
based on measurements of an output signal y.k/ of the process. The relation between
the parameters and the true output variables yM.k/ are known by a model

yM.k/ D f .�; k/ with k D 1; 2; : : : ; N : (A.2.2)

However, the true variables yM.k/ are not known exactly, but only disturbed output
variables yP.k/ can be measured. The parameters

O�T D � O�1
O�2 : : : O�m

�
(A.2.3)

shall be estimated such that the outputs of the model yM.k/ agree as good as possible
with the recorded measurements yP (Gauss, 1809). The question is now how well the
estimates O�T match with the true values �T

0 . The following terms were introduced by
Fisher (1922, 1950).

Bias

An estimator is termed unbiased estimator if

E
˚ O�� D �0 ; (A.2.4)

or consequently, if it has a systematic error,

E
˚ O�.N / � �0

� D E
˚ O�.N /� � �0 D b ¤ 0 ; (A.2.5)

then this error is termed bias.

Consistent Estimator

An estimator is termed consistent estimator if the estimates O� converge in probability
to �0, hence

P
	

lim
N !1

O�.N / � �0 D 0



D 1 : (A.2.6)

If the estimator is consistent, it does only state that for N ! 1 it converges to true
values. It does not say anything about the behavior for finiteN . Consistent estimators
can even be biased for finite N . However, asymptotically, a consistent estimator is
bias-free, hence

lim
N !1 E

˚ O�.N /� D �0 : (A.2.7)

An estimator is termed consistent in the mean square if in addition, the variance
of the expected value goes to zero

lim
N !1 E

n� O�.N / � �0

�� O�.N / � �0

�T
o

D 0 (A.2.8)

as N ! 1. Then, both the bias as well as the variance tend to zero for N ! 1.
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Efficient Estimator

An estimator is termed efficient if in a class of estimators, it provides the smallest
variance of the estimated parameters, i.e.

lim
N !1 var O� D lim

N !1 E
n� O� � �0

�� O� � �0

�T
o

! min : (A.2.9)

An estimator is called best linear unbiased estimator (BLUE) , if it is unbiased and
also efficient in the class of all linear unbiased estimators

Sufficient Estimator

An estimator is termed sufficient if it encompasses all information about the observed
values, from which the parameters are estimated. A sufficient estimator must have the
smallest variance of all estimators and hence is also efficient (Fisher, 1950), see also
(Kendall and Stuart, 1961, 1977; Deutsch, 1965).

A.3 Derivatives of Vectors and Matrices

In the derivation of estimators, it is often necessary to determine the first derivative
of vector equations to determine the optimum, e.g. the minimum error, the minimum
variance or other extremal points. For a vector x and a matrix A, one can obtain the
following relations

@

@x

�
Ax

� D AT (A.3.1)

@

@x

�
xTA

� D A (A.3.2)

@

@x

�
xTx

� D 2x (A.3.3)

@

@x

�
xTAx

� D Ax CATx (A.3.4)

@

@x

�
xTAx

� D 2Ax if A is symmetric, i.e. AT D A : (A.3.5)

Furthermore, the following important rules for the derivative of the trace

@

@X
tr
�
AXB

� D ATBT (A.3.6)

@

@X
tr
�
AXTB

� D BA (A.3.7)

@

@X
tr
�
AXBXTC

� D ATC TXBT C CAXB (A.3.8)

@

@X
tr
�
XAXT� D XAT CXA (A.3.9)

can be stated (e.g. Brookes, 2005).
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A.4 Matrix Inversion Lemma

If A, C , and .A�1 CBC�1D/ are non-singular quadratic matrices and

E D .A�1 CBC�1D/�1 ; (A.4.1)

then
E D A �AB.DAB C C /�1DA : (A.4.2)

This can be proven as follows:

E�1 D A�1 CBC�1D (A.4.3)

upon multiplying E from the left

I D EA�1 CEBC�1D ; (A.4.4)

and multiplication of A from the right, one obtains

A D E CEBC�1DA : (A.4.5)

Furthermore, upon multiplication of B from the right

AB D EB CEBC�1DAB (A.4.6)

D EBC�1.C CDAB/ (A.4.7)

AB.C CDAB/�1 D EBC�1 ; (A.4.8)

and multiplication of �DA from the right yields

�AB.DAB C C /�1DA D �EBC�1DA : (A.4.9)

Upon introducing (A.4.5),

A �AB.DAB C C /�1DA D E (A.4.10)

results. ut
This lemma is also valid for D D BT. The big improvement is that one only

needs two matrix inversion in (A.4.2) compared to three in (A.4.1). If D D BT and
B is a column vector and C reduces to a scalar, then one only has to carry out one
division instead of two inversions. This lemma can be applied in the progress of the
derivation of the recursive method of least squares in (9.4.9) by equating the matrices
and vectors as E D P.k C 1/, A�1 D P�1.k/, B D  .k C 1/, C�1 D 1, and
D D BT D  T.k C 1/, which yields (9.4.15).
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B

Experimental Systems

In the individual chapters of this book, measurements from a Three-Mass Oscillator
are used to illustrate the application of the different identification methods as the
system is linearizable in a wide operating range and also easy to understand and
model. Furthermore, the resonance frequencies are low and the resonances are very
distinct in the Bode plot. The testbed is equipped with couplings so that one or two
of the three masses can be disconnected to reduce the system order.

B.1 Three-Mass Oscillator

The Three-Mass Oscillator as shown on the photograph in Fig. B.2 has been realized
as a testbed for laboratories on control. It represents a variety of drive trains ranging
from the automotive drive train up to tool drives in machine tools. The schematic
setup is shown in Fig. B.1. A synchronous motor together with a gear is used to
drive the Three-Mass Oscillator. It is fed by a frequency inverter and is operated
in torque mode, that means the control signal to the frequency inverter determines
the torque generated by the electric motor. Two more masses representing rotational
inertias are connected via soft springs. The angular positions '1.t/, '2.t/, and '3.t/

are measured as outputs. By couplings, one can realize three different setups, a one
mass rotational inertia, a two and three mass oscillator.

In the following, a physics based, theoretical mathematical model shall be de-
rived. The modeling of multi mass oscillators is also treated by Isermann (2005).
For the subsequent modeling of the Three-Mass Oscillator shown in Fig. B.1a, one
should first derive a scheme as shown in Fig. B.1b, which shows the dynamic rela-
tions between the individual elements and the physical effects that have to be con-
sidered. By means of physical relations governing the torque balance at the three
rotational masses, see e.g. (Isermann, 2005), one can come up with the following
system of differential equations

R. Isermann, M. Münchhof, Identification of Dynamic Systems,  
DOI 10.1007/978-3-540-78879-9_26, © Springer-Verlag Berlin Heidelberg 2011 
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MM

φ1 φ2 φ3

J1 c1 c2J2 J3

Synchronous Motor

a)

b)

J1 J2 J3

c1 c2

d1 d2 d3

MM
φ1 φ2 φ3

Fig. B.1. Scheme and block diagram of the Three-Mass Oscillator

J1 R'1 D �d1 P'1 � c1'1 C c1'2 CMM (B.1.1)
J2 R'2 D �d2 P'2 C c1'1 � .c1 C c2/'2 C c2'3 (B.1.2)
J3 R'3 D �d3 P'3 C c2'2 � c2'3 : (B.1.3)

These equations of motion can now be written as a system of second order ODEs as

J R'.t/CD P'.t/C C' D MMM.t/ (B.1.4)

with

J D
	
J1 0 0

0 J2 0

0 0 J3



; D D

	
d1 0 0

0 d2 0

0 0 d3



; C D

	
c1 �c1 0

�c1 .c1 C c2/ �c2

0 �c2 c2



;

and

M D
	
1

0

0



:

This set of second order ODEs can be rewritten as a system of first oder ODEs
with the states chosen as

x.t/ D




'1.t/

'2.t/

'3.t/

P'1.t/

P'2.t/

P'3.t/

�

: (B.1.5)
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Fig. B.2. Photos of the Three-Mass Oscillator. Top photo shows all three rotational inertias
and the electric drive. Bottom photo shows a zoom on two rotational inertias with the angular
position sensors and the electric drive
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The input u.t/ is the torque exerted by the electric drive, i.e. u.t/ D MM.t/. The
output y.t/ is the angular position of the third mass, i.e. y.t/ D '3.t/. This choice
will result directly in the state space representation, (2.1.24), (2.1.25), and Fig. 2.2,
with the state matrix A given as

A D
�

0 I

�J�1C �J�1D

�
D

�

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
�c1

J1

c1

J1
0 �d1

J1
0 0

c1

J2

�.c1Cc2/
J2

c2

J2
0 �d2

J2
0

0 c2

J3

�c2

J3
0 0 �d3

J3

�

(B.1.6)

the input vector b given as

b D




0

0

0
1

J1

0

0

�

(B.1.7)

and the output vector cT

cT D �
0 0 1 0 0 0

�
: (B.1.8)

With the corresponding numerical values, the matrices are given as

A D




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�73:66 73:66 0 �4:995 � 10�3 0 0

164:5 �399:1 234:5 0 �1:342 � 10�5 0

0 579:9 �579:9 0 0 �5:941

�

(B.1.9)

b D




0

0

0

54:38

0

0

�

(B.1.10)

and
cT D �

0 0 1 0 0 0
�
: (B.1.11)

From the state space representation, one can now determine the transfer function in
continuous-time by

G.s/ D y.s/

u.s/
D cT�sI �A��1

b : (B.1.12)
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The transfer functions for the one mass rotational inertia and the two and three
mass oscillator will now be derived. The one mass system has the transfer function

G.s/ D '1.s/

MM.s/
D 1

J1s2 C d1s
D

1
d1

J1

d1
s2 C s

D 10:888

200:21s2 C 1s
(B.1.13)

for the angular position and

G.s/ D !1.s/

MM.s/
D 1

J1s C d1

D
1

d1

J1

d1
s C 1

D 10:888

200:21s C 1
(B.1.14)

for the rotational speed.
For the two mass oscillator, a similar approach can be employed. The equations

of motion are now given as

J1 R'1.t/ D �d1 P'1.t/ � c1'1.t/C c1'2.t/CMM.t/

J2 R'2.t/ D �d2 P'2.t/C c1'1.t/ � c1'2.t/ :

These equations can be brought to the Laplace domain as

J1s
2'1.s/ D �d1s'1.s/ � c1'1.s/C c1'2.s/CMM.s/

J2s
2'2.s/ D �d2s'2.s/C c1'1.s/ � c1'2.s/

and can then be rewritten in transfer function form as

G.s/ D '2.s/

MM.s/

D c1

J1J2s4 C �
J2d1 C J1d2

�
s3 C �

J2c1 C d1d2 C J1c1

�
s2 C �

d2c1 C d1c1

�
s
:

With the numerical values, one obtains

G.s/ D '2.s/

MM.s/
D 1:3545

1:51 � 10�4s4 C 7:58 � 10�7s3 C 0:047s2 C 1:77 � 10�4s

for the position of the second mass, '2 and

G.s/ D !2.s/

MM.s/
D 1:3545

1:51 � 10�4s3 C 7:58 � 10�7s2 C 0:047s1 C 1:77 � 10�4

for its rotational velocity, !2.
For the full three mass system, the transfer function is given as

G.s/ D !3.s/

MM.s/

D 5:189 � 106s � 4:608 � 10�9

s6 C 5:946s5 C 1053s4 C 2813s3 C 155400s2 C 103100s � 3:347 � 10�9
:

(B.1.15)

The process coefficients are given in Table B.1. In addition, a dead time, which stems
from the signal processing, TD D 0:0187 s could be identified at the testbed.
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Table B.1. Process coefficients of the Three-Mass Oscillator

Rotational Inertia Ji

h
kg m2

i
Damping Constants di

�
Nm s



Spring Stiffness ci ŒNm�

J1 D 18:4 � 10�3 d1 D 9:18 � 10�5 c1 D 1:35

J2 D 8:2 � 10�3 d2 D 1:10 � 10�7 c1 D 1:93

J3 D 3:3 � 10�3 d3 D 19:0 � 10�3

References

Isermann R (2005) Mechatronic Systems: Fundamentals. Springer, London
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A-optimal, 566
ACF, see auto-correlation function (ACF)
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adaptive control, 353, 356
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aliasing, 42, 80
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binary signal (AGRBS), 174
amplitude-modulated pseudo-random binary

signal (APRBS), 174
analog-digital converter (ADC), 39
ANN, see network, artificial neural network

(ANN)
AR, see model, auto-regressive (AR)
ARMA, see model, auto-regressive

moving-average (ARMA)
ARMAX, see model, auto-regressive

moving-average with exogenous input
(ARMAX)

artificial neural networks, see network,
artificial neural network (ANN)

ARX, see model, auto-regressive with
exogenous input (ARX)

auto-correlation function (ACF), 48, 55,
153–154, 179–181, 184–189, 264

auto-covariance function, 50, 55
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regressive (AR)
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see model, auto-regressive moving-
average (ARMA)

auto-regressive moving-average with ex-
ogenous input (ARMAX), see model,
auto-regressive moving-average with
exogenous input (ARMAX)

auto-regressive with exogenous input
(ARX), see model, auto-regressive
with exogenous input (ARX)

automotive applications, see tire pressure
electric throttle, see DC motor
engine, see engine, internal combustion

engine
engine teststand, see engine teststand
one-track model, see one-track model

automotive braking system, 655–663
hydraulic subsystem, 655–658
pneumatic subsystem, 658–663

automotive suspension, 663–665
automotive vehicle, 651–679
averaging, 256, 278
a priori assumptions, 18, 423, 449, 570, 579,

595
a priori knowledge, 10, 18, 404

bandpass, 20
Bayes

rule, 322
estimator, 331
method, 319–323
rule, 320

Bayesian information criterion (BIC), 574
best linear unbiased estimator (BLUE), 217
bias, 687
bias correction, see least squares, bias

correction (CLS)
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bias-variance dilemma, 502
bilinear transform, 389
binary signal, 127

discrete random, see discrete random
binary signal (DRBS)

generalized random, see generalized
random binary signal (GRBS)

pseudo-random, see pseudo-random
binary signal (PRBS)

random, see random binary signal (RBS)
bisection algorithm, 476
Box Jenkins (BJ), see model, Box Jenkins

(BJ)
Brushless DC motor (BLDC), see DC motor
Butterworth filter, 385

canonical form
block diagonal form, 438
controllable canonical form, 386, 436, 438
Jordan canonical form, 438
observable canonical form, 436, 438, 522
simplified P-canonical form, 439

CCF, see cross-correlation function (CCF)
centrifugal pumps, 636–638
characteristic values, 16, 58–71, 585
�2-distribution, 237
chirp, see sweep sine
closed-loop identification, 19, 23, 175–176,

353–365
direct identification, 359–361, 364–365
indirect identification, 355–359, 363–364

closed-loop process, see process, closed-loop
CLS, see least squares, bias correction (CLS)
comparison of methods, 15, 581
condition of a matrix, 555–556
constraint, 218, 283–284, 472, 484–486
controllability matrix, 44, 410, 435, 436, 440
convergence, 246, 382, 685–686

non-recursive least squares (LS), 229–235
recursive least squares (RLS), 343–349

convolution, 34, 42, 54, 454
COOK’s D, 594
COR-LS, see least squares, correlation and

least squares (COR-LS)
correlation analysis, 16, 20, 154–161, 190
correlation function

fast calculation, 184–189
recursive calculation, 189

correlogram, see auto-correlation function
(ACF)

cost function, 204, 470, 572
covariance function, 50
covariance matrix, 303, 343

blow-up, 340
manipulation, 341–343

Cramér-Rao bound, 217, 330–331
cross-correlation function (CCF), 48, 55,

150–153, 181–189, 264
cross-covariance function, 50, 55

data matrix, 211
data vector, 225
DC motor

brushless DC motor (BLDC), 606–612
classical DC motor, 612–617
feed drive, see machining center

de-convolution, 154–161, 175–176,
190–197, 585

for MIMO systems, 441–442
dead time, 42, 570–572
dead zone, 464
decomposition

singular value decomposition (SVD), see
singular value decomposition (SVD)

derivatives, 383–393, 494–495
design variables, 472
DFBETAS, 594
dfference equation, 43
DFFITS, 594
DFT, see discrete Fourier transform (DFT)
difference equation, 57, 225

stochastic, 276
differencing, 255, 278
differential equation

ordinary differential equation (ODE), see
ordinary differential equation (ODE)

partial differential equation (PDE), see
partial differential equation (PDE)

digital computer, 598
discrete Fourier transform (DFT), 80, 86
discrete random binary signal (DRBS),

163–164
discrete square root filtering in covariance

form (DSFC), 557–558
discrete square root filtering in information

form (DSFI), 558–561
discrete time Fourier transform (DTFT), 79
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discretization, 387–391
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�2-distribution, see �2-distribution
Gaussian, see normal distribution
normal, see normal distribution

disturbance, 8
downhill simplex algorithm, 477
drift elimination, 590
DSFC, see discrete square root filtering in

covariance form (DSFC)
DSFI, see discrete square root filtering in

information form (DSFI)
DTFT, see discrete time Fourier transform

(DTFT)

efficiency, 216, 217, 688
EKF, see extended Kalman filter (EKF)
ELS, see least squares, extended least

squares (ELS)
engine

engine teststand, 648–651
internal combustion engine, 512, 533,

674–679
ergodic process, 47
error

equation error, 13, 225, 380
input error, 13
metrics, 204, 226, 470, 578
output error, 13, 58
sum of squared errors, 204

error back-propagation, 507
errors in variables (EIV), 300, 589
estimation

consistent, 233
efficient, see efficiency
explicit, 256, 279
implicit, 256, 279
sufficient, 688

estimator
consistent, 687
consistent in the mean square, 687
unbiased, 687

Euclidian distance, 212, 503, 507
excitation

persistent, see persistent excitation
exponential forgetting, 281–284, 335

constant forgetting factor, 335–340
variable forgetting factor, 340–341

extended Kalman filter (EKF), 17, 395,
547–549, 584

extended least squares (ELS), see least
squares, extended least squares (ELS)

fast Fourier transform (FFT), 82–88
FFT, see fast Fourier transform
filter

Butterworth, see Butterworth filter
FIR, 391

finite differencing, 384
finite impulse response (FIR), see model,

finite impulse response (FIR), 391
Fisher information matrix, 218, 336
Fletcher-Reeves algorithm, 479
forgetting factor, 336, 339
Fourier

analysis, 16, 20, 99
series, 77–78
transform, 35, 78–82, 99–108

FR-LS, see least squares, frequency response
approximation (FR-LS)

frequency response, 35, 37
frequency response approximation (FR-LS),

see least squares, frequency response
approximation (FR-LS)

frequency response function, 99, 108–117,
134, 369, 585

frequency response measurement, 16
friction, 460–464, 488

Gauss-Newton algorithm, 483
Gaussian distribution, see normal distribu-

tion
generalization, 501
generalized least squares (GLS), see least

squares, generalized least squares
(GLS)

generalized random binary signal (GRBS),
172–174

generalized total least squares (GTLS), see
least squares, generalized total least
squares (GTLS)

generalized transfer function matrix, 430
Gibbs phenomenon, 78
Givens rotation, 560
GLS, see least squares, generalized least

squares (GLS)
golden section search, 475



700 Index

gradient, 472
gradient descent algorithm, see steepest

descent algorithm
gradient search, see steepest descent

algorithm
GTLS, see least squares, generalized total

least squares (GTLS)

Hammerstein model, 455–458
Hankel matrix, 411, 418, 440
heat exchangers, 639–642
Heaviside function, 34
Hessian matrix, 473
Hilbert transform, 370
hinging hyperplane tree (HHT), see network,

hinging hyperplane tree (HHT)
Householder transform, 560
hydraulic actuator, 617–628

identifiability, 246–255, 363, 403, 459
closed-loop, 355–357, 360
structral, 250

identification
definition of, 2, 8

implicit function theorem, 402
impulse response, 34, 40, 58, 66

MIMO system, 439–440
industrial robot, 633–636
information criterion

Akaike, see Akaike information criterion
(AIC)

Bayesian, see Bayesian information
criterion (BIC)

information matrix, 575–576
innovation, 542
input

persistently exciting, 251
instrumental variables

recursive (RIV), see least squares,
recursive instrumental variables (RIV)

instrumental variables (IV), 393
non-recursive, see least squares, non-

recursive instrumental variables
(IV)

internal combustion engine, see engine,
internal combustion engine

intrinsically linear, 215
IV, see least squares, non-recursive

instrumental variables (IV)

Kalman filter, 540–547
extended, see extended Kalman filter

(EKF)
Kalman-Bucy filter, 549
Kalman-Schmidt-Filter, 547
steady-state Kalman filter, 545–546

Kiefer-Wolfowitz algorithm, see least
squares, Kiefer-Wolfowitz algorithm
(KW)

Kronecker delta, 56
Kurtosis, 596
KW, see least squares, Kiefer-Wolfowitz

algorithm (KW)

L-optimal, 566
Laplace transform, 36, 99
layer, 504
least mean squares (LMS), see least squares,

least mean squares (LMS)
least squares, 331

bias, 235
bias correction (CLS), 296–297, 582
continuous-time, 379–383, 582
correlation and least squares (COR-LS),

264–267, 395, 446–447, 583
covariance, 236–238
direct solution, 229
eigenvalues, 346–347
equality constraint, 218
exponential forgetting, see exponential

forgetting
extended least squares (ELS), 295–296,

582
frequency response approximation

(FR-LS), 370–374, 583
generalized least squares (GLS), 291–294,

582
generalized total least squares (GTLS),

300
geometrical interpretation, 212–214
instrumental variables (IV), 393
Kiefer-Wolfowitz algorithm (KW),

307–310
least mean squares (LMS), 310–315
MIMO system, 446
non-linear static process, 210–212, 216
non-parametric intermediate model,

262–269
non-recursive (LS), 223–245, 581
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non-recursive instrumental variables (IV),
302–304, 582

non-recursive least squares (LS), 558–560
normalized least mean squares (NLMS),

310–315, 584
recursive (RLS), 269–278, 345–349
recursive correlation and least squares

(RCOR-LS), 267
recursive extended least squares (RELS),

584
recursive generalized least squares

(RGLS), 294
recursive instrumental variables (RIV),

305, 584
recursive least squares (RLS), 557,

560–561, 584
recursive weighted least squares (RWLS),

280–281
start-up of recursive method, 272–274,

340
stochastic approximation (STA), 306–315,

584
structured total least squares (STLS), 301
Tikhonov regularization, see Tikhonov

regularization
total least squares (TLS), 297–301, 582
weighted least squares (WLS), 279–280,

373
Levenberg-Marquart algorithm, 484
leverage, 593
likelihood function, 215, 320, 324
linear in parameters, 214
LMS, see least squares, least mean squares

(LMS)
locally recurrent and globally feedworward

networks (LRGF), see network, locally
recurrent and globally feedforward
networks (LRGF)

log-likelihood function, 325
LOLIMOT

seenetwork, local linear model tree
(LOLIMOT), 508

look-up tables, 530
LRGF, see network, locally recurrent

and globally feedforward networks
(LRGF)

LS, see least squares, non-recursive (LS)

MA, see model, moving-average (MA)

machining center, 628–630
Markov estimator, 279–280, 331
Markov parameters, 410, 437, 439–440
matrix calculus, 688
matrix inversion lemma, 689
matrix polynomial model, 431
maximum likelihood, 215–216, 321

non-linear static process, 216
non-recursive (ML), 323–327, 583
recursive (RML), 328–329, 584

maximum likelihood (ML), 395
maximum likelihood estimator, 331
ML, see maximum likelihood, non-recursive

(ML)
MLP, see network, multi layer perceptron

(MLP)
model

auto-regressive (AR), 57
auto-regressive moving-average (ARMA),

58
auto-regressive moving-average with

exogenous input (ARMAX), 58
auto-regressive with exogenous input

(ARX), 58
black-box, 5, 34
Box Jenkins (BJ), 58
canonical state space model, 447
dead time, see dead time
finite impulse response (FIR), 58
fuzzy, 509
gray-box, 5
Hammerstein, see Hammerstein model
Hankel model, 440
input/output model, 438–439
Lachmann, 458
local polynomial model (LPM), 524
matrix polynomial, see matrix polynomial

model
moving-average (MA), 57
non-linear, 454–458
non-linear ARX (NARX), 523
non-linear finite impulse response (NFIR),

455
non-linear OE (NOE), 523
non-parametric, 13, 15, 34
order, 572–577
P-canonical, 430
parallel, 469
parametric, 13, 18, 37, 39
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projection-pursuit, 457
semi-physical model, 514
series model, 470
series-parallel model, 470
simplified P-canonical, 431
state space, 432–439, 447
state space model, 409
structure parameters, 569–577
Uryson, 457
white-box, 5
Wiener, see Wiener model

model adjustment, 16
model uncertainty, 236–238, 495–496
modeling

experimental, 3, 7
theoretical, 3, 7

moving-average (MA), see model,
moving-average (MA)

multi layer perceptron (MLP), see network,
multi layer perceptron (MLP)

multifrequency signal, 127, 567

Nelder-Mead algorithm, see downhill
simplex algorithm

network
artificial neural network (ANN), 17, 501,

586
hinging hyperplane tree (HHT), 510
local linear model tree (LOLIMOT), 508
locally recurrent and globally feedforward

networks (LRGF), 512
multi layer perceptron (MLP), 504
radial basis function network (RBF), 507,

508
structure, 504

neuron, 503
Newton algorithm, 481
Newton-Raphson algorithm, 476
NFIR, see model, non-linear finite impulse

response (NFIR)
NLMS, see least squares, normalized least

mean squares (NLMS)
non-linear ARX model (NARX), see model,

non-linear ARX (NARX)
non-linear finite impulse response (NFIR),

see model, non-linear finite impulse
response (NFIR)

non-linear OE model (NOE), see model,
non-linear OE (NOE)

norm
Frobenius norm, 298

normal distribution, 216
normalized least mean squares (NLMS), see

least squares, normalized least mean
squares (NLMS)

objective function, 472
observability matrix, 45, 410, 440
one-track model, 651–654
optimization

bisection algorithm, 476
constraints, 484–486
downhill simplex algorithm, 477
first order methods, 476, 478
Gauss-Newton algorithm, 483
golden section search, 475
gradient, 494–495
gradient descent algorithm, 478
iterative, 585
Levenberg-Marquart algorithm, 484
multi-dimensional, 476–484
Newton algorithm, 481
Newton-Raphson algorithm, 476
non-linear, 471
one-dimensional, 473–476
point estimation, 474
quasi-Newton algorithms, 482
region elimination algorithm, 474
second order methods, 476, 480
trust region method, 484
zeroth order methods, 474, 477

order test, see model, order
ordinary differential equation (ODE), 3, 37,

380
orthogonal correlation, 134–143, 585
orthogonality relation, 213
oscillation, 214
outlier detection and removal, 592–594
output vector, 211

P-canonical structure, 430, 431
parameter covariance, 303
parameter estimation, 16

extended Kalman filter (EKF), 548–549
iterative optimization, see optimization
method of least squares, see least squares

parameter vector, 211, 225
parameter-state observer, 346
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partial differential equation (PDE), 3, 37
PCA, see principal component analysis

(PCA)
PDE, see partial differential equation (PDE)
penalty function, 484
perceptron, 504
Periodogram, 93–95
persistent excitation, 250
point estimation algorithm, 474
Polak-Ribiere algorithm, 480
pole-zero test, 576
polynomial approximation, 215, 387
power spectral density, 50, 56
prediction error method (PEM), 491–494
prediction, one step prediction, 225
predictor-corrector setting, 541
principal component analysis (PCA), 301
probability density function (PDF), 46
process

closed-loop, 588
continuous-time, 379–383, 420, 454,

460–464, 549
definition of, 1
integral, 586–588
integrating, 69
non-linear, 454–458
process analysis, 1
time-varying, 335–349

process coefficients, 37, 399
processes

statistically indepdendent, 51
projection

oblique, 413
orthogonal, 413

prototype function, 91
pseudo-random binary signal (PRBS),

164–172, 196, 198, 442, 443, 567, 588
pulse

double, 104
rectangular, 102
simple, 100
trapezoidal, 101
triangular, 102

QR factorization, 559
quantization, 39
quasi-Newton algorithms, see optimization,

quasi-Newton algorithms

radial basis function network (RBF), see
network, radial basis function network
(RBF)

ramp function, 106
random binary signal (RBS), 161–162
RBF, see network, radial basis function

network (RBF)
realization, 44

minimal, 45
rectangular wave, 124
recursive generalized least squares (RGLS),

see least squares, recursive generalized
least squares (RGLS)

recursive least squares, see least squares,
recursive (RLS)

recursive parameter estimation
convergence, 343–349

region elimination algorithm, 474
regression, 205

orthonormal, 300
residual test, 576
resonant frequency, 62
RGLS, see least squares, recursive

generalized least squares (RGLS)
Ricatti equation, 545
ridge regression, see Tikhonov regularization
RIV, see least squares, recursive instrumental

variables (RIV)
RLS, see least squares, recursive (RLS)
RML, see maximum likelihood, recursive

(RML)
Robbins-Monro algorithm, 306–307
rotary dryer, 645

sample rate, 567–569
sample-and-hold element, 42
sampling, 39, 42, 79, 381, 567–569
Schroeder multisine, 128
sequential unconstrained minimization

technique (SUMT), 484
Shannon’s theorem, 42, 79
short time Fourier transform (STFT), 20,

89–90
signal

amplitude-modulated generalized random
binary, see amplitude-modulated
generalized random binary signal
(AGRBS)
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amplitude-modulated pseudo-random
binary, see amplitude-modulated
pseudo-random binary signal
(APRBS)

discrete random binary, see discrete
random binary signal (DRBS)

genralized random binary, see generalized
random binary signal (GRBS)

pseudo-random binary, see pseudo-
random binary signal (PRBS)

random binary, see random binary signal
(RBS)

simplex algorithm, see downhill simplex
algorithm

singular value decomposition (SVD), 299,
420

spectral analysis, 93, 257–261
spectral estimation

parametric, 20
spectrogram, 90
spectrum analysis, 20
STA, see least squares, stochastic

approximation (STA)
state space, 38, 43, 409, 432–439
state variable filter, 384
stationary

strict sense stationary, 46
wide sense stationary, 47

steepest descent algorithm, 478
step function, 34, 106
step response, 34, 58, 59, 61, 65
STFT, see short time Fourier transform

(STFT)
STLS, see least squares, structured total least

squares (STLS)
stochastic approximation (STA), see least

squares, stochastic approximation
(STA)

stochastic signal, 45, 54
structured total least squares (STLS), see

least squares, structured total least
squares (STLS)

subspace
of a matrix, 413

subspace identification, 414–418
subspace methods, 17, 409–423, 586
SUMT, see sequential unconstrained

minimization technique (SUMT)
SVD, see singular value decomposition

sweep sine, 128–129
system

affine, 33
biproper, 224
definition of, 1
dynamic, 512
first order system, 59
linear, 33
second order system, 60
system analysis, 1

Takagi-Sugeno fuzzy model, 509
Taylor series expansion, 388
test signal, 21, 565–567

A-optimal, 566
D-optimal, 566
L-optimal, 566
MIMO, 442–443

Tikhonov regularization, 284
time constant, 59
tire pressure, 667–674
TLS, see least squares, total least squares

(TLS)
total least squares (TLS), see least squares,

total least squares (TLS)
training, 501
transfer function, 36, 37, 39, 42, 44
transition matrix, 38
trust region method, see Levenberg-Marquart

algorithm

UD factorization, 557

validation, 12, 595–597
Volterra

model, 458
series, 454–455

wavelet transform, 20, 91–93
weighted least squares (WLS), see least

squares, weighted least squares (WLS)
white noise, 52, 56
Wiener model, 457–458
window

Bartlett window, 89, 90
Blackmann window, 89, 91
Hamming window, 89, 90
Hann window, 89, 91

windowing, 88–89
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WLS, see least squares, weighted least
squares (WLS)

Yule-Walker equation, 232, 234

´-transform, 40
zero padding, 88
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