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Abstract

This paper analyses the errors on the frequency response function measurement of a transfer function due to finite window effects (leakage).
First an analysis of the rectangular and the Hanning window is made. It will be shown that the leakage error consists of two components:
a transient error due to initial and end condition effects, and an interpolation error due to the combination of neighbouring spectral lines.
Starting from these insights an extremely simple expression to calculate the leakage induced bias and variance errors is generated. Eventually,
a new ‘default’ window is proposed with slightly better properties. This allows a reduction in measurement time by 25% if the leakage errors
dominate the disturbing output noise.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Frequency response function measurements of transfer func-
tions (FRF) are very intensively used in many engineering
fields. Nowadays these measurements are mostly done with
the discrete Fourier transform (DFT), calculated with the fast
Fourier transform (FFT). The DFT calculates the spectrum of
the time domain sequence on a discrete equidistant set of fre-
quencies, called spectral lines. For random excitations these
spectral results are disturbed by leakage (windowing) errors
that are induced by the finite length of the measurement win-
dow; the signal at one frequency ‘leaks’ into the neighbouring
lines. Measuring a periodic signal over an integer number peri-
ods removes the leakage problem completely, and we strongly
advise the reader to apply periodic excitation signals when-
ever it is possible (Pintelon & Schoukens, 2001). However,
in many applications the users prefer to apply random noise
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excitations for psychological or technological reasons. In this
paper we give a new insight in the nature of the leakage errors.
The kernel idea is based on the observation that the leakage
errors in an FRF measurement are highly structured which al-
lows to split them into two contributions. The first one is due
to initial and end condition (transients) effects, the second con-
tributions are due to the interpolation of the transfer function
over neighbouring frequency lines. Replacing the rectangular
window by the Hanning window shifts the nature of the error
from the first contribution to the second one. Explicit expres-
sions will be given to describe this behaviour. Bias and vari-
ance expressions are obtained, and the results are illustrated on
some simulations.

In the literature a large number of windows are defined
and their properties are intensively studied, keeping essen-
tially spectral analysis applications in mind (Harris, 1978).
The major contribution of this paper is to study these prop-
erties keeping FRF-measurements in mind which leads to
new insights, and eventually to the definition of a new win-
dow function. This allows to reduce the ‘leakage errors’ on
the FRF measurements, while the noise sensitivity is not
increased.
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An alternative approach to reduce the leakage (and noise)
errors is to smooth the FRF over neighbouring lines. This re-
quires again a trade-off between bias (interpolation) errors and
variance (leakage or noise). Methods are proposed to do this
automatically without user interaction (Stenman & Gustafsson,
2001). However, it is still better to avoid the errors instead
of reducing them later on in a smoothing process. And if the
variance on the improved measurements is still too high, it is
possible to use these as the raw data input to the smoothing
algorithms.

2. The general framework

2.1. Setup

Consider a stable, causal, discrete or continuous time, single-
input-single-output (SISO) linear time invariant system G with
impulse response g0, and transfer function G0,

y(t) = g0(t)
∗u0(t) + v(t) = y0(t) + v(t), (1)

with * the convolution product, u0, y0 the exact input and output
signal, and v(t) the disturbing noise. N samples of the input
and output are measured at kT s = k/fs:

u0(k), y(k) with k = 0, . . . , N − 1. (2)

The results that are reported in this paper are only valid for
stable systems excited with random inputs. This is precisely
described in the system and excitation assumptions below.

Assumption 1. System: The system G with impulse response
g0(t) is assumed to be stable such that |g0(t)|��1e−�1t for
t, �1, �1 > 0; and causal such that g0(t < 0) = 0.

Assumption 2. Excitation: The excitation is a filtered white
noise sequence: u0(t)=f (t)∗�(t), where �(t) is an i.i.d. random
signal with bounded moments of order 4, and |f (t)|��2e−�2t

for t, �2, �2 > 0.
For continuous time systems, the power spectrum Su0u0(�)

is band limited: Su0u0(|�| > �fs) = 0.
In practice the band limited assumption is approximately

realized by applying anti-alias filters before sampling the input
and output. This is necessary in order to avoid alias errors.

Under Assumption 2, it can be shown that the discrete Fourier
transform of u0(t) as defined later in (3) will be asymptotically
(for N → ∞) circular complex normally distributed. Moreover,
the spectrum U0(k) becomes asymptotically independent from
U0(l) for k �= l (Brillinger, 1981; Pintelon & Schoukens, 2001).

Assumption 3. Disturbing noise: v(t) is a stationary noise
sequence with bounded second order moments.

2.2. The hidden nature of leakage errors in FRF measurements

Starting from measurements (2), the FRF G0(�l ) has to be
retrieved at the frequencies fl = lf s/N , l = 0, . . . , N/2, with
G0(�) the Fourier transform of the impulse response g0(t),
and �l = j2�fl for continuous time systems, and �l = ej2�fl/fs

for discrete time systems. To solve this problem, the discrete

Fourier transform U0(l), Y (l) of the measured input and output
signal is calculated, implemented using the fast Fourier trans-
form (FFT) (Brigham, 1974):

X(l) = 1

N

N−1∑
k=0

x(k)e−j (2�/N)kl . (3)

In Pintelon, Schoukens, and Vanderstreen, 1997 and Pintelon
and Schoukens, 2001, it is shown for SISO-systems that the
following remarkably simple relation holds:

Y0(l) = G0(�l )U0(l) + T̃0(�l ) + �c(�l )

= G0(�l )U0(l) + T0(�l ), (4)

with G0 and T̃0 smooth rational functions of the frequency �.
T̃0 can be interpreted as a generalized transient term combin-
ing initial and end effects. This relation was later generalized
to multiple-input-multiple-output systems (McKelvey, 2000).
�c(�l ) is only present for continuous time systems, it is a resid-
ual spectral alias error (see Appendix B) that is a smooth func-
tion of �. From here on we will call T0(�l )= T̃0(�l )+�c(�l )

the ‘transient term’. With the DFT definition (3), U0(l), Y0(l),
V (l) are an O(N−1/2), and the transient T0(�l ) is an O(N−1)

(Pintelon & Schoukens, 2001). The impact of initial condition
effects on FRF measurements was already recognized before
by Douce and Balmer (1985), who studied the contribution to
bias errors on the FRF.

If no averaging is applied, and assuming that the disturbing
noise v(t) = 0 the estimate of the FRF is given by

Ĝ(�l ) = Y0(l)

U0(l)
= G0(�l ) + T0(�l )

U0(l)
. (5)

It is the last term in (5) that causes the leakage in the FRF
measurements and due to the presence of the random variable
U0(l), the smooth behaviour of the leakage generating mecha-
nism (the transient T0) is completely lost in the final error on
the FRF. However, this hides a highly structured nature that
can be described by a smooth function T0 in �. Windowing
methods exploit this smooth behaviour of T0 to reduce the leak-
age errors. Note that the leakage errors in (5) disappear as an
O(N−1/2).

It is common practice to average the estimate Ĝ(�l ) over
multiple measurements, because for a single realization of the
input, U0(l) can be very small at some frequencies which makes
the FRF estimates extremely sensitive to leakage and noise
disturbances resulting in ‘spiky’ measurements. Classically the
average is made as (Bendat & Piersol, 1980)

ĜM(�l ) =
∑M

m=1 Y [m](l)U [m]
0 (l)∑M

m=1U
[m]
0 (l)U

[m]
0 (l)

, (6)

where X[m](l) is the spectrum of the signal in the mth realiza-
tion of the experiment. This estimate converges for M → ∞ to
the noise free solution (v(t) = 0) if the output noise v(t) is not
correlated with the input u0(t). But due to the leakage effects,
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this limit is still biased:

lim
m→∞ ĜM(�l ) = limM→∞

∑M
m=1Y

[m]
0 (l)U

[m]
0 (l)

limM→∞
∑M

m=1U
[m]
0 (l)U

[m]
0 (l)

�= G0(�l ).

(7)

2.3. Windows

The Fourier transform of a discrete time signal x(t) is an
infinite sum

∑∞
t=−∞x(t)e−j�t . For engineering applications,

this infinite sum should be restricted to a finite one. This is
done by considering only a finite number of samples: the sum
is calculated on the ‘windowed’ signal,

xw(t) = w(t)x(t), (8)

with w(t)=0 if t is outside the interval [0, N−1]. A large num-
ber of different windows is proposed in the literature (Harris,
1978), here we focus on the rectangular and the Hann window
(mostly called Hanning window).

Rectangular (Dirichlet) window:

w(t) = 1 for t = 0, 1, . . . , N − 1, (9)

Hanning window:

w(t) = 0.5 − 0.5 cos(2�t/N). (10)

There exists a simple relation between the DFT spectra obtained
with the Hanning window (XHann) and the rectangular window
(XRect) (Harris, 1978):

XHann(l) = 0.5

[
XRect(l) − XRect(l − 1) + XRect(l + 1)

2

]
.

(11)

3. Analysis of the leakage error

From (4) it is seen that the leakage errors in an FRF mea-
surement are due to the presence of the transient term T0(�).
Since this is a smooth function, it can be assumed that it varies
‘slowly’ over neighbouring frequencies, and that information
can be used to reduce its impact by averaging the DFT spec-
tra U0(l), Y0(l) over well-chosen combinations of the corre-
sponding spectral input/output lines (this is the frequency do-
main interpretation of windowing in the time domain). This
will work indeed, but the ‘averaging’ process over these neigh-
bouring lines creates a new interpolation error because also G0
is frequency dependent. The error due to the transient term (the
leakage generating mechanism) will be called e1, the error due
to the ‘interpolation’ of G0 over neighbouring lines will be
called e2.

In the subsections below the rectangular and the Hanning
window will be analysed. Next, a new window is proposed that
has slightly better characteristics and actually can replace the
Hanning window as the default choice in practice. During these
discussions it is assumed that the disturbing noise v(t) = 0. At
the end the impact of the disturbing noise is analysed for the
three proposed windows.

3.1. Rectangular window

Using the rectangular window in the FFTs (Bendat & Pier-
sol, 1980; Brigham, 1974), it is found immediately that in the
noiseless case

ĜRect(�l ) = Y0(l)

U0(l)
= G0(�l )U0(l)

U0(l)
+ T0(l)

U0(l)

= G0(�l ) + O(N−1/2) = G0(�l ) + e1Rect(l). (12)

In this case no averaging over neighboring lines is done and
hence e2Rect(l) = 0. This result shows that the leakage errors
disappear as an O(N−1/2) for stationary random excitations,
which is in agreement with the results of Ljung (1999). The
averaged estimate is

ĜM
Rect(�l ) =

∑M
m=1 Y

[m]
0 (l)U

[m]
0 (l)∑M

m=1 U
[m]
0 (l)U

[m]
0 (l)

= G0(�l )

+ (1/M)
∑M

m=1 U
[m]
0 (l)T

[m]
0 (�l )

(1/M)
∑M

m=1 U
[m]
0 (l)U

[m]
0 (l)

. (13)

3.1.1. Systematic contributions
In this section we analyse the systematic error that remains

if M → ∞. T
[m]

0 is the sum of two transient contributions
(at the beginning and the end of the window) and the alias
term. Each of these contributions depends on the input signal
(u(t), t < 0 for the begin transient; u(N − t), t > 0 for the end
transient; u(t), t = 0, 1, . . . , N − 1 for the alias term). Hence,
a weak correlation between T

[m]
0 (�l ) and U

[m]
0 exists. It is

shown in Appendix A (discrete time systems) and Appendix
B (continuous time systems) that this results eventually in a
systematic error contribution that can be bounded:

lim
M→∞

∑M
m=1 U

[m]
0 (l)T

[m]
0 (�l )∑M

m=1 U
[m]
0 (l)U

[m]
0 (l)

= E{U [m]
0 (l)T

[m]
0 (�l )}

E{U [m]
0 (l)U

[m]
0 (l)}

= O(N−1), (14)

at all excited frequencies (E{U [m]
0 (l)U

[m]
0 (l)} �= 0),

lim
M→∞ ĜM

Rect(�l ) = G0(�l ) + O(N−1). (15)

3.1.2. Variance
In the absence of disturbing noise, the variance of ĜM

Rect(�l )

is completely set by the variance of

e1Rect(l) = (1/M)
∑M

m=1 U
[m]
0 (l)T

[m]
0 (�l )

(1/M)
∑M

m=1 U
[m]
0 (l)U

[m]
0 (l)

. (16)

In Appendix A, it is shown that the variance of e1Rect(l) is
bounded by an O(M−1N−1) under Assumptions 1 and 2.

3.2. Hanning window

The errors for the rectangular window are completely due to
the leakage term T0(l)/U0(l). An attempt to reduce the impact
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of this term is to apply a Hanning window during the calculation
of the DFT spectra. From (11) it follows that

ĜHann(l) = Y0Hann(l)

U0Hann(l)
= 2Y0(l) − Y0(l + 1) − Y0(l − 1)

2U0(l) − U0(l + 1) − U0(l − 1)
.

(17)

Define � = fs/N . Because G0 and T0 are smooth, a Taylor
series representation can be used:

G0(�l±1) = G0(�l ) ± G
(1)
0 (�l )� + G

(2)
0 (�l )

�2

2
+ O(N−3),

T0(�l±1) = T0(�l ) ± T
(1)

0 (�l )� + T
(2)

0 (�l )
�2

2
+ O(N−3)O(N−1), (18)

and X(n)(�) the nth derivative of X(�) with respect to f =
�/(2�). The last O(N−1) is because T

(3)
0 is an O(N−1). Sub-

stituting (18) in (17) results in

ĜHann(l) = G0(�l ) + e1Hann(l) + e2Hann(l) + O(N−3) (19)

with the leakage error

e1Hann(l) = − T
(2)
0 (�l )�

2 1

2U0(l) − U0(l + 1) − U0(l − 1)

= O(N−5/2), (20)

and the interpolation error

e2Hann(l) = − G
(1)
0 (�l )�

U0(l + 1) − U0(l − 1)

2U0(l) − U0(l + 1) − U0(l − 1)

− G
(2)
0 (�l )

�2

2

U0(l + 1) + U0(l − 1)

2U0(l) − U0(l + 1) − U0(l − 1)

= O(N−1) + O(N−2). (21)

In this case the leakage error e1Hann is reduced to an
O(N−5/2), but compared with the rectangular window a new
‘interpolation’ term e2Hann appears which is O(N−1). Hence,
for N sufficiently large, the Hann window reduces the error
from an O(N−1/2) to an O(N−1), and it switches the nature
of the dominant error from ‘leakage’ errors to ‘interpolation’
errors. In the rest of this paper we will always assume that N

is large enough. This aspect will be discussed a bit more in
detail in the Conclusions at the end of this section.

Just as for the rectangular window, an averaging procedure
is needed:

ĜM
Hann(�l ) =

∑M
m=1Y

[m]
0Hann(l)U

[m]
0Hann(l)∑M

m=1U
[m]
0Hann(l)U

[m]
0Hann(l)

. (22)

3.2.1. Systematic contributions
In this subsection we can focus completely on the interpo-

lation error e2Hann because this is the dominating term. In Ap-
pendix C it is shown that both terms in (21) create a systematic

contribution, and eventually it is found that

lim
M→∞ ĜM

Hann(�l ) = G0(�l ) + 2G
(l)
0 (�l )

P
(1)
u0u0(�l )

6Pu0u0(�l )
�2

− G
(2)
0 (�l )

�2

6
= G0(�l ) + O(N−2), (23)

with Pu0u0(�l ) = E{|U0(l)|2}.
Hence compared to the rectangular window, the systematic

errors are reduced from O(N−1) to an O(N−2).

Remark. For a white noise excitation, P
(1)
u0u0(�l ) = 0.

3.2.2. Variance
The variance of ĜM

Hann(�l ) is dominated by the first term in
(21). In Appendix C it is shown that the variance becomes

var(ĜM
Hann(�l )) = |G(l)

0 (�l )�|2
3M

= O(M−1N−2). (24)

3.2.3. Estimation of the bias and variance
Eqs. (23) and (24) show that it is easy to estimate the level

of the systematic errors (for white noise excitation only) and
the variance from the available measurement results. Approxi-
mating the second derivative of G0

G
(2)
0 (�l )�

2

≈ (2ĜM
Hann(�l ) − ĜM

Hann(�l−1) − ĜM
Hann(�l−1))

�2
�2

= diff(diff(ĜM
Hann(�l+1))) (25)

with diff(X(l)) = X(l + 1) − X(l), and using (23) leads to

lim
M→∞ ĜM

Hann(�l ) − G0(�l ) ≈ −diff(diff(ĜM
Hann(�l+1)))

6
if P (1)

u0u0
(�l ) = 0 (white noise excitation), (26)

and similarly

std(ĜM
Hann(�l )) ≈ diff(ĜM

Hann(�l−1))√
3M

. (27)

Hence it is possible at the end of a measurement process to
quantify very easily the impact of the windowing effects.

3.3. The Diff window

The results of Sections 3.1 and 3.2 show that it is possible
to reduce the impact of the windowing effects on the FRF-
measurements from an O(N−1) to an O(N−2) (systematic er-
ror and variance) by replacing the rectangular window by a
Hanning window. This explains why the Hanning method be-
came so popular from the very beginning of DFT-based FRF-
measurements. However, the study also reveals that this error
reduction is obtained due to a shift of the nature of the errors
from ‘leakage’ (e1) errors to ‘interpolation’ (e2) errors. The
latter grow with the width of the interpolation interval which is



J. Schoukens et al. / Automatica 42 (2006) 27–38 31

2 bins (3 lines) for the Hanning window. This suggests that it is
possible to define an alternative window with a smaller width
so that a better balancing between the leakage and interpolation
errors is obtained. This idea is elaborated below.

3.3.1. A new window
The primary function of the window in an FRF measurement

is the suppression of the impact of the transient in (4) while
keeping at the same time the interpolation error on the first term
in (4) small. An alternative for the 3-lines Hanning window is
to consider the difference of the output spectrum that combines
only 2 lines:

ĜDiff(�l+1/2) = Y0(l + 1) − Y0(l)

U0(l + 1) − U0(l)
= Y0Diff(l)

U0Diff(l)
, (28)

and

ĜM
Diff(�l+1/2) =

∑M
m=1Y

[m]
0Diff(l)U

[m]
0Diff(l)∑M

m=1U
[m]
0Diff(l)U

[m]
0Diff(l)

. (29)

Applying again the Taylor series representation (18) but this
time around �l+1/2 results in

ĜDiff(�l+1/2) = G0(�l+1/2) + e1Diff(l + 1
2 )

+ e2Diff(l + 1
2 ), (30)

with leakage error

e1Diff(l + 1
2 ) = T

(1)
0 (�l+1/2)�

1

U0(l + 1) − U0(l)

= O(N−3/2), (31)

and interpolation error

e2Diff(l + 1
2 ) = G

(1)
0 (�l+1/2)

�

2

U0(l + 1) + U0(l)

U0(l + 1) − U0(l)

+ G
(2)
0 (�l+1/2)

�2

8
= O(N−1) + O(N−2). (32)

Note that e2Diff is reduced w.r.t. e2Hann by working around the
middle frequency �l+1/2. In that case an approximation is made
over only half a bin to the left and to the right instead of a
full bin for the Hann window. The leakage error is increased
to O(N−3/2), but this is not that important because it is not
the dominating error (remember that N is assumed to be large
enough). More detailed results are given in the next section,
but first a time domain interpretation is made.

3.3.2. Time domain interpretation
Making the difference over two neighboring frequencies can

be interpreted as applying the following complex window in
the time domain:

w(k) = ej(2�/N)k − 1, (33)

which is shown in Fig. 1.

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

Time

Real

Imag

Fig. 1. Real and imaginary parts of the complex window corresponding to
the difference operation.

3.3.3. Systematic contributions
Although the errors are again dominated by the interpola-

tion error e2Diff , it turns out (see Appendix D) that both terms
contribute to the limit error with an O(N−2) term

lim
M→∞ ĜM

Diff(�l+1/2) = G0(�l+1/2) + O(N−2). (34)

Compared to the rectangular window, the systematic errors are
reduced from O(N−1) to an O(N−2), and the same order is
found as for the Hanning window.

3.3.4. Variance
The variance of GM

Diff(�l+1/2) is dominated by the first term
in (32). In Appendix D it is shown that the variance becomes

var(ĜM
Diff(�l+1/2)) = |G(l)

0 (�l+1/2)�|2
4M

= O(M−1N−2). (35)

So the variance is slightly reduced (−1.25 dB) compared to the
Hanning window. This allows to reduce the measurement time
by 25% for the same level of variance of the leakage error on
the measured FRF.

3.3.5. Estimation of the bias and variance
Eq. (35) shows that it is easy to estimate the level of the

variance from the available measurement results using the same
ideas as for the Hanning window:

std(ĜM
Diff(�l+1/2)) = |diff(ĜM

Diff(�l+1/2))|√
4M

. (36)

No expression is given for the limit error, because the systematic
transient contributions are not simply described.

3.4. Conclusion

In Table 1 all the results of the previous discussions are col-
lected. It is seen that for FRF measurements from records that
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Table 1
Comparison of the Rectangular, Hanning, and Diff windows

Window Leakage error Interpolation Systematic Variance
e1 error e2 error (M → ∞)

wRect(k) = 1 O(N−1/2) 0 O(N−1) O(M−1N−1)

wHann(k) = 0.5

(
1 − cos k

2�
N

)
O(N−5/2) O(N−1) O(N−2) O(M−1N−2)

|G(1)
0 (�l )�|2/(3M)

wDiff (k) = 1 − ej(2�/N)k O(N−3/2) O(N−1) O(N−2) O(M−1N−2)

|G(1)
0 (�l+1/2)�|2/(4M)

are sufficiently long, the Hanning window is superior to the
rectangular window for a wide range of experimental condi-
tions (NT s should be large enough compared to the time con-
stant of the system), while the Diff window even does a little
bit better. So the Diff window can replace the Hanning window
as default choice in FRF measurements. From the expressions
found in this section, it is impossible to say what is the mini-
mum length N for which the Hanning window is doing better
than the rectangular window, or the Diff window is better than
the Hanning window. The basic reason for this is that all errors
were bounded using expressions of the form O(N−�), without
knowing the exact scale factor that is multiplied with it. It is
hard or impossible to give numerical values for this scale fac-
tor because it depends on the derivatives G

(1)
0 , G

(2)
0 , T

(1)
0 , T

(2)
0 .

However, from practical experience it turned out over the years
that the required length N is very low, and from that experi-
ence the Hanning window is used nowadays as the default win-
dow. Within the same philosophy, the results in Table 1 sug-
gest strongly to replace this ‘classic’ default choice by the Diff
window.

4. Noise analysis

The analysis in Section 3 was made assuming that the dis-
turbing noise equals zero. The three windows resulted eventu-
ally in the same type of estimates:

Ĝ = Z

X0
= Z0 + NZ

X0
, (37)

where Z and X are defined in Eqs. (12), (17) and (28). For
multiple measurements Z[l], X[l], l = 1, . . . , M , are available,
and the H1 averaging technique is used (Bendat & Piersol,
1980):

ĜM =
∑M

l=1Z
[l]X[l]

0∑M
l=1X

[l]
0 X

[l]
0

. (38)

The variance for ĜM
Rect, Ĝ

M
Diff , Ĝ

M
Hann is approximately given by

�2
G = �2

NZ

ME{|X|2} . (39)

Table 2
Study of the stochastic behaviour of the averaged spectrum of a random signal

M Additional uncertainty in dB
(95% bound)

1 13
2 7.5
4 4.7
8 3.0

16 2.1
32 1.4
64 1.0

128 0.7
256 0.5

This shows that under Assumptions 2 and 3, the noise sensitivity
of all these estimators is the same and the variance due to the
disturbing noise is

�2
G = �2

V

ME{|U0|2} , (40)

with E{ } the expected value taken over the successive realiza-
tions of the input signal.

For small M, (1/M)
∑M

l=1|U [l]
0 (k)|2 can be significantly dif-

ferent from E{|U0|2}. At some frequencies large drops in the
realized power spectrum appear, jeopardizing the FRF measure-
ment completely. Therefore, it is strongly advised to choose M

large enough to avoid these dips (Pintelon & Schoukens, 2001).
In Table 2 the ratio of the 95% lower bound to the rms value is
tabulated to illustrate the additional loss in SNR of the weakest
components due to the drops in the amplitude spectrum of the
individual realizations of the noise excitation. On the average,
5% of the measure frequencies will have a signal-to-noise-ratio
(SNR) drop that is larger than the tabulated values.

5. Simulations

The methods that were discussed in the previous section are
illustrated on a simulation. A discrete time system (the coeffi-
cients are given in Appendix E) is excited with white Gaussian
noise (RMS-value of 1). M = 64 experiments of 8192 points
are processed, such that 1024 frequency points in the frequency
band of interest are available. A first time, no disturbing noise
is added (v(t) = 0) in order to be able to emphasize the ef-
fects that are described in this paper. The simulation is repeated
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Fig. 2. Comparison of three FRF-estimators: GHann, GDiff , GRect , together
with the exact value G0 of the FRF. Top: global view; bottom: zoom around
the first resonance frequency. The experimental and theoretical standard de-
viations (�) and the bias errors are shown for the Hann (beHann) and the
Diff windows (beDiff ).

1000 times. The mean and the standard deviation for the three
FRF-estimators are calculated and the results are shown in
Fig. 2. For the Hanning window, the theoretically predicted and
experimentally observed standard deviations are compared and
a good agreement is found. This is also true for the system-
atic error. Note also that the new window does slightly better
than the Hanning window as was expected from the theory. A
second time, white Gaussian noise is added to the output with
an rms-value of 10% of that of the noiseless output. 100 simu-
lations were performed and the standard deviations are shown
in Fig. 3. In those frequency regions where the noise domi-
nates the leakage error, the standard deviation of the error is the
same for all estimators, as was expected from theory. Note the
leakage dominates in a wider region for the rectangular win-
dow than for the Hanning and the Diff window. At those fre-
quencies where the leakage error dominates, exactly the same
conclusions can be made as in the noiseless simulation.

6. Conclusions

In this paper, an analysis of the windowing/leakage effects
on FRF-measurements is made. It turns out that the leakage
errors in FRF-measurements have hidden a highly structured
nature that can be used to reduce their impact. The arguments

Fig. 3. Comparison of the three FRF-estimators in the presence of output
noise: GHann, GDiff , GRect , together with the exact value G0 of the FRF.

used in window analysis for spectral analysis applications can-
not be unaltered transferred to FRF-measurements. Replacing
the rectangular window by alternatives (for example Hanning)
shifts the nature of the error from leakage to interpolation. Al-
though the popular Hanning window is also a good choice for
FRF-measurements, it turns out that an alternative ‘Diff’ win-
dow can be proposed with slightly better properties. This Diff
window allows to reduce the required measurement time with
25% if the leakage errors are the dominant error source. If the
output noise is the dominating error source, both windows have
the same disturbing noise sensitivity. Eventually, simple but ac-
curate expressions to estimate the variance that is induced by
the leakage effect are given.
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Appendix A. Errors of the rectangular window for discrete
time systems

In this appendix we calculate the systematic error and the
variance on the FRF due to leakage errors for discrete time
systems.

A.1. Systematic errors

In this section it is shown that

E{U [m]
0 (l)T

[m]
0 (l)}

E{U [m]
0 (l)U

[m]
0 (l)}

= O(N−1)

at all excited frequencies.
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Consider the fundamental expression (4): Y0(l)=G0(�l )U0(l)

+ T0(�l ) (in this case �c = 0). The structure of T0(�l ) is
analysed and interpreted in detail by Pintelon and Schoukens
(2001, Section 2.6.4 & Appendix 5.B). A possible represen-
tation of the transient T0 is to consider it as the sum of two
contributions −t01(t) + t02(t). The first term t01 is due to the
excitation of the system before the start of the experiment (im-
pact of the initial conditions) and it should be subtracted from
the measured output. The second contribution t02 is due to the
not measured response of the system once the measurement is
stopped and it should be added to the measured output:

t01(t) =
−1∑

k=−∞
g0(t − k)u0(k), t = 0, 1, . . . , N − 1, (41)

and

t02(t) =
N−1∑
k=0

g0(t − k)u0(k), t = N, N + 1, . . . ,∞. (42)

Consider T0(�l ) = T01(�l ) + T02(�l ) with

T01(�l ) = 1

N

N−1∑
r=0

t01(r)e
−j(2�/N)rl

= 1

N

N−1∑
r=0

−1∑
k=−∞

g0(r − k)u0(k)e−j(2�/N)rl ,

T02(�l ) = 1

N

∞∑
r=N

t02(r)e
−j(2�/N)rl

= 1

N

∞∑
r=N

N−1∑
k=0

g0(r − k)u0(k)e−j(2�/N)rl , (43)

and take the expected value after multiplication with U0(l) =
(1/N)

∑N−1
s=0 u0(s)ej(2�/N)sl . This gives for the first term (the

second one is calculated completely similarly)

|E{T01(�l )U0(l)}|

=
∣∣∣∣∣ 1

N2

N−1∑
r=0

N−1∑
s=0

N−1∑
k=−∞

g0(r − k)E{u0(k)

× u0(s)}e−j(2�/N)(r−s)l
∣∣∣ .

� 1

N2

N−1∑
r=0

N−1∑
s=0

N−1∑
k=−∞

|g0(r − k)| |Ru0u0(k − s)|. (44)

From Assumption 2, it follows that

|Ru0u0(k − s)|��3e−�2|k−s| ��3e−�2|k|e−�2s

(k < 0, s�0), (45)

and similarly from Assumption 1,

|g0(r − k)|��1e−�1|r−k| ��1e−�1|k|e−�1r (k < 0, r �0).

(46)

Substituting these expressions in the triple sum results eventu-
ally in

E{T01(�l )U0(l)} = 1

N2
O(N0) = O(N−2). (47)

On the other hand, it is clear that

E{|U0(l)|2} = 1

N2

N−1∑
r=0

N−1∑
s=0

E{u0(r)e
−j(2�/N)rlu0(s)e

j(2�/N)sl}

= 1

N2

N−1∑
r=0

N−1∑
s=0

Ru0u0(r − s)e−j(2�/N)(r−s)l . (48)

Since Ru0u0 is exponentially bounded, E{|U0(l)|2} = (1/N2)

O(N) = O(N−1) at those frequencies where the system is
excited. At these frequencies the expected value equals

Ru0u0(0)

N
+ 2

N

N−1∑
m=1

(
1 − m

N

)
Ru0u0(0) cos

(
2�

ml

N

)

= O(N−1). (49)

This estimate of the power spectrum of u0 is known as Bartlett’s
method (see, for example, Proakis & Manolakis, 1996). It con-
verges to

E{|U0(l)|2} = Pu0u0(�l ) = |F(�l )|2WB(�l ) with

WB(�) = 1

N

(
sin(N�/2)

sin(�/2)

)2

, (50)

which is the power spectrum |F(�l )|2 calculated with a trian-
gular window.

Combining (47) and (49) proves the appendix.

A.2. Variance

Notice that
(i) U

[m]
0 , T

[m]
0 is independent U

[n]
0 , T

[n]
0 for m �= n.

(ii) Under Assumption 2, the denominator is within a con-
stant 	2(2M) distributed and hence converges to E{|U0(l)|2}=
O(N−1) for growing values of M . The numerator converges to
E{T01(�l )U0(l)} = O(N−2) (47). So e1Rect(l) can be written
as (E{T01(�l )U0(l)} = A0, and E{|U0(l)|2} = B0)

e1Rect(l) = (1/M)
∑M

m=1U
[m]
0 (l)T

[m]
0 (�l )

(1/M)
∑M

m=1U
[m]
0 (l)U

[m]
0 (l)

= A0 + a

B0 + b
≈ 1

B0

(
A0 + a − bA0

B0

)
, (51)

with

A0

B0
an O(N−1) (see section Systematic errors). (52)

Note also that

a is an O(N−3/2)O(M−1/2), (53)

because each term in the sum of a is an O(N−3/2)O(M−1),

E{a}= 0 by definition, and the individual terms in the sum are
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independent. Similarly it is found that b =O(N−1)O(M−1/2).
Hence a dominates bA0/B0 in (51).

(iii) The variance of e1Rect(l) is dominated by var(a)/|B0|2:

var(e1Rect(l))�
E{|a|2}
|B0|2 = O(N−3)O(M−1)

O(N−2)

= O(N−1M−1). (54)

Appendix B. Errors of the rectangular window for
continuous time systems

B.1. Basic relations

In this section we consider a causal continuous time system.
First we setup the expressions for the continuous input and
output signals, considered on the interval 0� t �T = NTs . In
order to indicate explicitly the continuous time nature, � is
used as frequency variable. Define

U0T (�) = 1

T

∫ T

0
u0(t)e

−j�t dt

(windowed Fourier transform),

Y0T (�) = 1

T

∫ T

0
y0(t)e

−j�t dt ,

Y1(�) = 1

T

∫ T

0

∫ 0

−∞
g0(t − 
)u0(
)e

−j�t dt d


(initial conditions),

Y2(�) = 1

T

∫ ∞

T

∫ T

0
g0(t − 
)u0(
)e

−j�t dt d


(end conditions). (55)

Note that Y1(�), Y2(�) are smooth (rational) functions of �.
Then the following relation holds:

y0(t) =
∫ 0

−∞
g0(t − 
)u0(
) d
 +

∫ t

0
g0(t − 
)u0(
) d
. (56)

Y0T (�) = 1

T

∫ T

0
y0(t)e

−j�t dt

= 1

T

∫ T

0

{∫ 0

−∞
g0(t − 
)u0(
) d


}
e−j�t dt

+ 1

T

∫ T

0

{∫ t

0
g0(t − 
)u0(
) d


}
e−j�t dt

= Y1(�) + 1

T

∫ ∞

0

{∫ t

0
g0(t − 
)u0(
) d


}
e−j�t dt

− 1

T

∫ ∞

T

{∫ t

0
g0(t − 
)u0(
) d


}
e−j�t dt . (57)

Notice that for a causal system
∫ t

0 g0(t−
)u0(
) d
=∫ ∞
0 g0(t−


)u0(
) d
. Moreover, without any loss of generality, it can be
assumed that u0(t > T ) = 0, because for a causal system this

input does not affect the experiment in [0, T ], which allows to
change the integration limits in the last integral. Hence

Y0T (�) = Y1(�) + 1

T

∫ ∞

0

{∫ ∞

0
g0(t − 
)u0(
) d


}
× e−j�t dt − Y2(�) (58)

or

Y0T (�) = 1

T

∫ ∞

0

∫ ∞

0
g0(t − 
)u(
) e−j�t dt d


+ Y1(�) − Y2(�). (59)

Keeping in mind that we set u0(t > T ) = 0, (59) can be rear-
ranged as

Y0T (�) = G0(j�)U0T (�) + Y1(�) − Y2(�). (60)

The reader should realize that the spectra in (60) are based on
continuous time Fourier transforms. These should be replaced
first by the discrete time equivalents. However, U0T (�), Y1(�),
Y2(�) are not band limited, even if u0 is. Hence the DFT spectra
will be prone to alias errors, for example

Y0DFT(l) = Y0T (�l ) +
∞∑
k �=0

k=−∞

Y0T (�l + k�s)

with

�s = 2�/Ts , (61)

and similar for the other spectra. Eventually, (60) becomes

Y0DFT(l) = G0(j�l )U0DFT(l) + Y1DFT(k) − Y2DFT(l)

+
∞∑
k �=0

k=−∞

(G0(j (�l − k�s))

− G0(j�l ))U0T (�l + k�s)

= G0(j�l )U0DFT(l) + Y1DFT(l)

− Y2DFT(l) + �c(l). (62)

From Pintelon and Schoukens (2001, Appendix 5.F.2 of
Chapter 5) it follows that �c(l) is an O(N−1) for the DFT
definition (3).

B.2. Systematic errors

For the systematic errors, the cross-correlation between
U0DFT(l) and Y1DFT(l), Y2DFT(l), or �c(l) is needed.

First E{Y1DFT(l)U0DFT(l)} is considered, next E{�c(l)

U0DFT(l)} is analysed.
(i) E{Y1DFT(l)U0DFT(l)} (similar for E{Y2DFT(l)U0DFT(l)})

E{Y1DFT(l)U0DFT(l)}

= 1

N2

N−1∑
r=0

∫ 0

−∞

N−1∑
s=0

g0(rT s − 
)

× Ru0u0(sT s − 
)e−j(2�/N)lrej(2�/N)ls d
, (63)
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and

|E{Y1DFT(l)U0DFT(l)}|� 1

N2

N−1∑
r=0

∫ 0

−∞

N−1∑
s=0

| g0(rT s − 
)|

× |Ru0u0(sT s − 
)| d
. (64)

From Assumption 1, it is known that |g0(t)| is exponentially
bounded as function of time and hence

|g0(rT s − 
)|Ts �
∫ rT s

(r−1)Ts

�1e−�1t1 dt1

�e�1Ts

∫ (r+1)Ts

rT s

�1e−�1t1 dt1. (65)

A similar result is found for the second sum using Assumption
2. So

|E{Y1DFT(l)U0DFT(l)}|
� e�1Ts e�2Ts

N2T 2
s

∫ T

0

∫ 0

−∞

∫ T

0
�1e−�1t1�3e−�2(t2−
)

× dt1 d
 dt2 �T −2
s O(N−2). (66)

So, for a given sampling frequency fs = 1/Ts , it follows that
for a continuous time system with sampled input/output data

|E{Y1DFT(l)U0DFT(l)}| = O(N−2). (67)

(ii) E{�c(l)U0DFT(l)}

U0DFT(l) = U0T (�l ) +
∞∑
k �=0

k=−∞

U0T (�l + k�s)

= U0T (�l ) + �U(l). (68)

Note that U0T (�l ) is an O(N−1/2) and �U(l) is an O(N−1).
So

E{�c(l)�U(�l )}�O(N−2), (69)

and only E{�c(l)U0T (�l )} remains to be analysed, this is in
essence the correlation between U0T (�l ) and the sum of all
aliased contributions U0T (�l + k�s). After some tedious cal-
culations (Schoukens, 2004), it turns out that

E{�c(l)U0T (�l )}
= O(N−2) and hence E{�c(l)U0(�l )} = O(N−2). (70)

Starting from (67), (69), and (70), expression (14) can be proven
again but this time for sampled data measured on continuous
time systems, using the proof for the discrete time systems.

B.3. Variance errors

The results of the discrete system in Appendix A, apply
directly to the continuous system using (67), (69), and (70)
instead of (47).

Appendix C. Errors of the Hanning method

In this section the systematic error and the variance of
e1Hann + e2Hann is analysed. The proofs are valid for discrete
and continuous time systems. Because e1Hann is an O(N−5/2),
the Hanning error is completely dominated by e2Hann:

e2Hann = − G
(1)
0 (�l )�

U0(l + 1) − U0(l − 1)

2U0(l) − U0(l + 1) − U0(l − 1)

− G
(2)
0 (�l )

�2

2

U0(l + 1) + U0(l − 1)

2U0(l) − U0(l + 1) − U0(l − 1)

= e21Hann + e22Hann = O(N−1) + O(N−2). (71)

C.1. Systematic error

The limit value for e21Hann and e22Hann are analysed for the
number of averages M → ∞, using (22),

(1) lim
M→∞ eM

21Hann

eM
21Hann(l) = −G

(1)
0 (�l )�

(1/M)
∑M

m=1 (U
[m]
0 (l + 1) − U

[m]
0 (l − 1))(2U

[m]
0 (l) − U

[m]
0 (l + 1) − U

[m]
0 (l − 1))

(1/M)
∑M

m=1 |2U
[m]
0 (l) − U

[m]
0 (l + 1) − U

[m]
0 (l − 1)|2 . (72)

Notice that under Assumption 2 for N → ∞, E{U [m]
0 (l1)U

[m]
0

(l2)} = 0 (l1 �= l2). Using (50), it follows that

lim
M→∞ e21Hann

= −G
(1)
0 (�l )�

Pu0u0(�l−1) − Pu0u0(�l+1)

4Pu0u0(�l ) + Pu0u0(�l−1) + Pu0u0(�l+1)

≈ −2G
(1)
0 (�l )�

P
(1)
u0u0(�l )�

6Pu0u0(�l )
(73)

or

lim
M→∞ e21Hann ≈ 2G

(1)
0 (�l )

P
(1)
u0u0(�l )

6Pu0u0(�l )
�2. (74)

(2) lim
M→∞ eM

22Hann

lim
M→∞ eM

22Hann

= −G
(2)
0 (�l )

�2

2

× E{|U0(l + 1)2 + |U0(l − 1)|2}
4E{|U0(l)|2} + E{|U0(l + 1)|2 + |U0(l − 1)|2}

≈ −G
(2)
0 (�l )

�2

6
. (75)

Combining both results leads immediately to

lim
M→∞ eM

2Hann ≈ − 2G
(1)
0 (�l )

P
(1)
u0u0(�l )

6Pu0u0(�l )
�2 − G

(2)
0 (�l )

�2

6

= O(N−2). (76)
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C.2. Variance

The variance of e2Hann is completely dominated by e21Hann
which is an O(N−1). Similar to the variance calculations for
the rectangular window in Appendix A, it is set also here by
the variance of the numerator of the fraction B/A in (72). The
numerator B consists of terms of order O(N−1), while its mean
value is an O(N−2). Hence var(B) ≈ E{|B|2}. The calculation
of this expected value is significantly simplified by noticing that
U0 is (i) asymptotically circular complex normally distributed
for N → ∞; (ii) independent over the different realizations
of the input; (iii) independent over the frequency. This results
eventually in

1

M2

M∑
m=1

E{|U [m]
0 (l + 1) − U

[m]
0 (l − 1)|2|2U

[m]
0 (l)

− U
[m]
0 (l + 1) − U

[m]
0 (l − 1)|2}

≈ 12

M
E{|U0(l)|2}, (77)

and

�2
eM

2Hann
(l) ≈ |G(1)

0 (�l )|2|�|2
3M

. (78)

Appendix D. Errors of the Diff method

In this section the systematic error and the variance of
e1Diff + e2Diff is analysed. The proofs are valid for discrete and
continuous time systems.

D.1. Systematic error

In this section, the errors are analysed for the number of
averages M → ∞, using (28)

(1) lim
M→∞ e

[m]
1Diff(l).

From (47) it follows that

e
[m]
1Diff(l) = �

∑M
m=1 T

(1)
0 (�l+1/2)(U

[m]
0 (l + 1) − U

m

0 (l))∑M
m=1 |U [m]

0 (l + 1) − Um
0 (l)|2

= O(N−1)
O(N−2)

O(N−1)
= O(N−2). (79)

(2) lim
M→∞ e

[m]
2Diff(l).

Consider

e2Diff(l) = − G
(1)
0 (�l )

�

2

U0(l + 1) + U0(l)

U0(l + 1) − U0(l)
− G2

0(�l )
�2

8
= e21Diff(l) + e22Diff(l)

= O(N−1) + O(N−2), (80)

em
21Diff(l) = −G

(1)
0 (�l )

�

2

(1/M)
∑M

m=1 (U
[m]
0 (l + 1) + U

[m]
0 (l))(U

[m]
0 (l + 1) − U

[m]
0 (l))

(1/M)
∑M

m=1 |U [m]
0 (l + 1) − U

[m]
0 (l)|2 . (81)

Similar to the previous appendix, it follows that for M → ∞

lim
M→∞ eM

21Diff = − G
(1)
0 (�l )�

P
(1)
u0u0(�l )�

Pu0u0(�l )

= O(N−2), (82)

e22Diff is independent of M , and hence its limiting value equals
−G

(2)
0 (�1)(�2/8) = O(N−2).

Bringing the three sub-results together leads to

lim
M→∞ eM

2Diff = O(N−2). (83)

D.2. Variance

Because e1Diff is an O(N−3/2) , the Diff variance is com-
pletely dominated by e2Diff .

The variance of e2Diff is completely dominated by e21Diff
which is an O(N−1). The denominator in (81) converges to a
constant

lim
M→∞

1

M

M∑
m=1

|U [m]
0 (l + 1)−U

[m]
0 (l)|2≈2E{|U0(l)|2}

M
. (84)

Hence, similar to Appendix A, the variance is set by the vari-
ance of the numerator which is given in this case (similar to
Appendix C) by

1

M2

M∑
m=1

E{|U [m]
0 (l + 1) + U

[m]
0 (l)|2|U [m]

0 (l + 1) − U
[m]
0 (l)|2}

≈ 4

M
E{|U0(l)|2}. (85)

and

�2
eM

2Diff
(l) ≈ |G(1)

0 (�l )|2|�|2
4M

. (86)

Appendix E

The coefficients of the A and B polynomials of the system
G0(z

−1)=B(z−1)/A(z−1) used in the simulation are given by

b = [−9.468e − 002 3.409e − 001 − 4.936e − 001

3.380e − 001 − 9.308e − 002],
a = [−9.395e − 002 3.457e − 001 − 5.0367e − 001

3.431e − 001 − 9.255e − 002].
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