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 Why FOL?
 Syntax and semantics of FOL
 Knowledge engineering in FOL
 Inference in FOL
◦ Reducing first-order inference to propositional 

inference
◦ Unification
◦ Generalized Modus Ponens

 Forward chaining

 Backward chaining

◦ Resolution
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 Propositional logic is declarative.
 Propositional logic is compositional:

meaning of B1,1  P1,2 is derived from meaning of B1,1 and of P1,2

 Propositional logic allows 
partial/disjunctive/negated information
(unlike most data structures and databases)

 Meaning in propositional logic is context-
independent.
(unlike natural language, where meaning depends on context)

 Propositional logic has very limited expressive 
power
◦ E.g., cannot say "pits cause breezes in adjacent squares“

 except by writing one sentence for each square
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 Whereas propositional logic assumes the 
world contains facts,

 first-order logic (like natural language) 
assumes the world contains
◦ Objects: people, houses, numbers, colors, baseball 

games, wars, …
◦ Relations: red, round, prime, brother of, bigger 

than, part of, comes between, …
◦ Functions: father of, best friend, one more than, 

plus, …
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 Constants KingJohn, 2,... 

 Predicates Brother, >,...

 Functions Sqrt, LeftLegOf,...

 Variables x, y, a, b,...

 Connectives , , , , 

 Equality = 

 Quantifiers  , 
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Atomic sentence = predicate (term1,...,termn) 
or term1 = term2

Term            = function (term1,...,termn) 
or constant or variable

 E.g., Brother(KingJohn,RichardTheLionheart) > 
(Length(LeftLegOf(Richard)), 
Length(LeftLegOf(KingJohn)))
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 Complex sentences are made from atomic 
sentences using connectives



S, S1  S2, S1  S2, S1  S2, S1  S2,

E.g. Sibling(KingJohn,Richard) 
Sibling(Richard,KingJohn)

>(1,2)  ≤ (1,2)

>(1,2)   >(1,2) 
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 Sentences are true with respect to a model and an 
interpretation

 Model contains objects (domain elements) and relations 
among them



 Interpretation specifies referents for
constant symbols → objects

predicate symbols → relations

function symbols → functional relations

 An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn

are in the relation referred to by predicate
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 <variables> <sentence>


Everyone at Y is smart:
x At(x,Y)  Smart(x)

 x P is true in a model m iff P is true with x being each 
possible object in the model



 Roughly speaking, equivalent to the conjunction of 
instantiations of P

 At(KingJohn,NUS)  Smart(KingJohn) 
 At(Richard,NUS)  Smart(Richard) 
 At(NUS,NUS)  Smart(NUS) 
 ...
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 Typically,  is the main connective with 



 Common mistake: using  as the main 
connective with :
x At(x,Y)  Smart(x)

means “Everyone is at Y and everyone is smart”
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 <variables> <sentence>

 Someone at Y is smart:

 x At(x,Y)  Smart(x)$



 x P is true in a model m iff P is true with x being some possible 
object in the model



 Roughly speaking, equivalent to the disjunction of instantiations
of P

 At(KingJohn,NUS)  Smart(KingJohn) 

 At(Richard,NUS)  Smart(Richard) 

 At(NUS,NUS)  Smart(NUS) 

 ...
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 Typically,  is the main connective with 

 Common mistake: using  as the main 
connective with :



x At(x,Y)  Smart(x)

is true if there is anyone who is not at Y!
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 x y is the same as y x

 x y is the same as y x

 x y is not the same as y x



 x y Loves(x,y)

◦ “There is a person who loves everyone in the world”

◦

 y x Loves(x,y)

◦ “Everyone in the world is loved by at least one person”

◦

 Quantifier duality: each can be expressed using the other

 x Likes(x,IceCream)x Likes(x,IceCream)

 x Likes(x,Broccoli) x Likes(x,Broccoli)
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 term1 = term2 is true under a given 
interpretation if and only if term1 and term2

refer to the same object



 E.g., definition of Sibling in terms of Parent:



x,y Sibling(x,y)  [(x = y)  m,f  (m = f) 
Parent(m,x)  Parent(f,x)  Parent(m,y) 
Parent(f,y)]
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The kinship domain:

 Brothers are siblings


x,y Brother(x,y)  Sibling(x,y)

 One's mother is one's female parent


m,c Mother(c) = m  (Female(m)  Parent(m,c))

 “Sibling” is symmetric


x,y Sibling(x,y)  Sibling(y,x)
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1. Identify the task.
2. Assemble the relevant knowledge.
3. Decide on a vocabulary of predicates, 

functions, and constants.
4. Encode general knowledge about the 

domain.
5. Encode a description of the specific 

problem instance.
6. Pose queries to the inference procedure 

and get answers.
7. Debug the knowledge base.
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 Syllogisms

 Reducing first-order inference to propositional 
inference

 Unification

 Generalized Modus Ponens

 Forward chaining

 Backward chaining

 Resolution
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A universal Affirmative x. B(x)  A(x)

E universal nEgative x. B(x)  A(x)

I partIcular affirmative x. C(x)  B(x)

O particular nOt affirmative (negative) x. C(x) 

B(x)

BARBARA:

x. B(x)  A(x)

x. C(x)  B(x)

x. C(x)  A(x)



10/16/2015A.I. 20

CAMESTRES:

x. B(x)  A(x)

x. C(x)  A(x)

x. C(x)  B(x)

FESTIMO:

x. B(x)  A(x)

x. C(x)  A(x)

x. C(x)  B(x)

BAROCO:

x. B(x)  A(x)

x. C(x)  A(x)

x. C(x)  B(x)

CESARE:

x. B(x)  A(x)

x. C(x)  A(x)

x. C(x)  B(x)

DARII:

x. B(x)  A(x)

x. C(x)  B(x)

x. C(x)  A(x)

CELARENT:

x. B(x)  A(x)

x. C(x)  B(x)

x. C(x)  A(x)

FERIO:

x. B(x)  A(x)

x. C(x)  B(x)

x. C(x)  A(x)

BARBARA:

x. B(x)  A(x)

x. C(x)  B(x)

x. C(x)  A(x)

FELAPTON:

x. C(x)  A(x)

x. C(x)  B(x)

x. B(x)  A(x)

DISAMIS:

x. C(x)  A(x)

x. C(x)  B(x)

x. B(x)  A(x)

DATISI:

x. C(x)  A(x)

x. C(x)  B(x)

x. B(x)  A(x)

DARAPTI:

x. C(x)  A(x)

x. C(x)  B(x)

x. B(x)  A(x)

BOCARDO:

x. C(x)  A(x)

x. C(x)  B(x)

x. B(x)  A(x)

Fig. I. 
Fig. II.

Fig. III.

FERISON: x. C(x)  A(x)

x. C(x)  B(x)

x. B(x)  A(x)

Fig. IV. 
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Suppose the KB contains just the following:

x King(x)  Greedy(x)  Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

 Instantiating the universal sentence in all possible ways, we have:
King(John)  Greedy(John)  Evil(John)
King(Richard)  Greedy(Richard)  Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

 The new KB is propositionalized: proposition symbols are


King(John), Greedy(John), Evil(John), King(Richard), etc.

10/16/2015 22A.I.



 Every FOL KB can be propositionalized so as to preserve 
entailment



 (A ground sentence is entailed by new KB iff entailed by 
original KB)



 Idea: propositionalize KB and query, apply resolution, return 
result



 Problem: with function symbols, there are infinitely many 
ground terms,
◦ e.g., Father(Father(Father(John)))
◦
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Theorem: Herbrand (1930). If a sentence α is entailed by an FOL 
KB, it is entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is
semidecidable (algorithms exist that say yes to every entailed 

sentence, but no algorithm exists that also says no to every 
nonentailed sentence.)
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Without the termination of any of them, there is no information about 

provability/truth.

Semidecidability in FOL: effect of finite time on proof

t1 

conclusion: if not proved, then false!?

original negated

t2t1



 Propositionalization seems to generate lots of irrelevant 
sentences.

 E.g., from:




x King(x)  Greedy(x)  Evil(x)
King(John)
y Greedy(y)
Brother(Richard,John)

 it seems obvious that Evil(John), but propositionalization
produces lots of facts such as Greedy(Richard) that are irrelevant



 With p k-ary predicates and n constants, there are p·nk

instantiations.
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 Every instantiation of a universally quantified sentence is entailed by it:


v α

Subst({v/g}, α)

for any variable v and ground term g

 E.g., x King(x)  Greedy(x)  Evil(x) yields:




King(John)  Greedy(John)  Evil(John)
King(Richard)  Greedy(Richard)  Evil(Richard)
King(Father(John))  Greedy(Father(John))  Evil(Father(John))
.
.
.
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 For any sentence α, variable v, and constant symbol k that does not
appear elsewhere in the knowledge base:



v α

Subst({v/k}, α)

 E.g., x Crown(x)  OnHead(x,John) yields:

Crown(C1)  OnHead(C1,John)

provided C1 is a new constant symbol, called a Skolem constant
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 We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)



θ = {x/John,y/John} works

 Unify(α,β) = θ if αθ = βθ 


p q θ
Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,OJ) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,OJ) 

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)

10/16/2015 29A.I.



 We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)



θ = {x/John,y/John} works

 Unify(α,β) = θ if αθ = βθ 


p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}
Knows(John,x) Knows(y,OJ) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,OJ) 

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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 We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)



θ = {x/John,y/John} works

 Unify(α,β) = θ if αθ = βθ 



p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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 We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)



θ = {x/John,y/John} works

 Unify(α,β) = θ if αθ = βθ 



p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}

Knows(John,x) Knows(x,OJ) 

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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 We can get the inference immediately if we can find a substitution θ such 
that King(x) and Greedy(x) match King(John) and Greedy(y)



θ = {x/John,y/John} works

 Unify(α,β) = θ if αθ = βθ 


p q θ
Knows(John,x) Knows(John,Jane) {x/Jane}}
Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}
Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
Knows(John,x) Knows(x,OJ) {fail}

 Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)
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 To unify Knows(John,x) and Knows(y,z),


θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

 The first unifier is more general than the 
second.



 There is a single most general unifier (MGU) 
that is unique up to renaming of variables.



MGU = { y/John, x/z }
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p1', p2', … , pn', ( p1  p2  …  pn q)

qθ

p1' is King(John)  p1 is King(x) 

p2' is Greedy(y)  p2 is Greedy(x) 

θ is {x/John,y/John} q is Evil(x) 

q θ is Evil(John)

 GMP used with KB of definite clauses (exactly one positive 
literal)

 All variables assumed universally quantified



where pi'θ = pi θ for all i
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 Full first-order version:


l1  ···  lk,          m1  ···  mn

(l1  ···  li-1  li+1  ···  lk  m1  ···  mj-1  mj+1  ···  mn)θ
where Unify(li, mj) = θ.

 The two clauses are assumed to be standardized apart so that they share 
no variables.



 For example,


Rich(x)  Unhappy(x) 
Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

 Apply resolution steps to CNF(KB  α); complete for FOL
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 If KB1  a , then   (KB1  KB2 )  a

 Old theorems are not invalidated by 
additional axioms.

 Robotics: 
◦ Inferred results remains valid after expanding the 

knowledge-base with new facts from observations.

 Non-monotonic logics
◦ truth-maintenance systems

◦ default logic..



 C.S.Pierce: inference of the most pragmatical explanation for an observation.
 Types of inference

◦ Deduction: modelobservation
◦ Induction: observation(s)  model  observation

 observation(s)  model 

 observation(s)  [model ] observation

◦ Abduction: observation(s)  model
◦ Transduction: observation(s)  observation
◦ Causal: intervention  effect
◦ Counterfactual: (observation/interventioneffect) ( imagery intervention  imagery effect)

 Related to abduction 
◦ theories of explanation
◦ philosophy of science
◦ theories of belief change in artificial intelligence

 Subtypes of abduction
◦ Common sense
◦ Scientific (Ockham’s razor)
◦ Logical
◦ Probabilistic (most probable explanation)
◦ Causal (necessary and sufficient cause)
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 First-order logic:
◦ objects and relations are semantic primitives
◦ syntax: constants, functions, predicates, equality, 

quantifiers

 Inference
◦ Resolution (CNF-based)
◦ Semi-decidable

 Suggested reading: 
◦ Puzzles

 http://www.greylabyrinth.com/puzzle/puzzle102
 http://www.greylabyrinth.com/puzzle/puzzle107

◦ Interview with R. M. Smullyan
 http://www.doverpublications.com/mathsci/0227/news.html

◦ R. M. Smullyan: What Is the Name of This Book?, 1978
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While excavating an ancient Puzzlanian crypt, you
discover an unusual column. The column has four
narrow holes bored into it, all at the same height,
evenly spaced around the column, just large enough
for a human hand. Reading the inscriptions above and
below the holes, you realize that this column is part of
a complex mechanism that will open a secret
chamber. Out of sight within each hole is a switch that
can either be up or down; when all the switches are in
the same position, the secret chamber will open
before you. The column is small enough that you can
reach all the way around, so using both hands you
could flip any two switches at the same time. Here's
the tricky part: As soon as your hand leaves a hole,
the column will rapidly spin for a random number of
quarter rotations. If you're not careful, you might lose
a hand. But you can flip two switches at once, then
quickly pull both hands out at the same time. What
strategy can you use to open the chamber in a finite,
and preferably small, number of attempts? Assume
you cannot discriminate between holes after a spin
without reaching into the column.
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