Artificial Intelligence Informed search

Peter Antal antal@mit.bme.hu

Outline

- Informed = use problem-specific knowledge
- Which search strategies?
 - Best-first search and its variants
- Heuristic functions?
 - How to invent them
- Local search and optimization
 - Hill climbing, local beam search, genetic algorithms,...

Reminder ("symbols&search"): single state problem formulation

- A problem is defined by:
 - An initial state, e.g. Arad
 - **Successor function** *S*(*X*)= set of action-state pairs
 - e.g. $S(Arad) = \{ < Arad \rightarrow Zerind, Zerind > ... \}$
 - intial state + successor function = state space
 - Goal test, can be
 - Explicit, e.g. *x='at bucharest'*
 - Implicit, e.g. *checkmate(x)*
 - Path cost (additive)
 - e.g. sum of distances, number of actions executed, ...
 - c(x,a,y) is the step cost, assumed to be >= 0

A solution is a sequence of actions from initial to goal state. Optimal solution has the lowest path cost.

Reminder: tree-search

function TREE-SEARCH(problem,fringe) return a solution or failure
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if EMPTY?(fringe) then return failure
node ← REMOVE-FIRST(fringe)
if GOAL-TEST[problem] applied to STATE[node] succeeds
 then return SOLUTION(node)
fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

A strategy is defined by picking *the order of node expansion*

Reminder: main properties of uninformed search algorithms

Criterion	Breadth- First	Uniform- cost	Depth-First	Depth- limited	Iterative deepening	Bidirectional search
Complete?	YES*	YES*	NO	$YES, \\ if l \ge d$	YES	YES*
Time	b^{d+1}	<i>В^{С*/е}</i>	b^m	b^l	b^d	$b^{d/2}$
Space	b^{d+1}	$b^{C^{*/e}}$	bm	bl	bd	$b^{d/2}$
Optimal?	YES*	YES*	NO	NO	YES	YES

Fifteen Puzzle

Rubik's Cube

Rubik's Cube

- ▶ The cardinality: 10¹⁹
- Any position can be solved in 20 or fewer moves (where a half-twist is counted as a single move)! (?how is it possible?)
- average branching factor is ~13.3
- Invented in 1974 by Ernő Rubik.
- Rubik's cube current world records
 - <u>http://www.youtube.com/watch?v=oC0B4b4J9Ys</u>

How can we guide the search process???

Best-first search

- General approach of informed search:
 - Best-first search: node is selected for expansion based on an *evaluation function f(n)* in TREE-SEARCH().
- Idea: evaluation function measures distance to the goal.
 - Choose node which *appears* best
- Implementation:
 - *fringe* is queue sorted in decreasing order of desirability.
 - Special cases: greedy search, A* search

A heuristic function

- [dictionary]"A rule of thumb, simplification, or educated guess that reduces or limits the search for solutions in domains that are difficult and poorly understood."
 - *h*(*n*) = estimated cost of the cheapest path from node *n* to goal node.
 - If *n* is goal then h(n)=0

How to derive? (more information later)

Romania with step costs in km

241
234
3.80
100
cea 193
2.53
329
30
199
374

- *h_{SLD}*=straight-line distance heuristic.
- *h_{SLD}* can **NOT** be computed from the problem description itself
- In this example f(n)=h(n)
 - Expand node that is closest to goal
 - = Greedy best-first search

- Assume that we want to use greedy search to solve the problem of travelling from Arad to Bucharest.
- The initial state=Arad

- The first expansion step produces:
 - Sibiu, Timisoara and Zerind
- Greedy best-first will select Sibiu.

If Sibiu is expanded we get:

- Arad, Fagaras, Oradea and Rimnicu Vilcea
- Greedy best-first search will select: Fagaras

- If Fagaras is expanded we get:
 - Sibiu and Bucharest
- Goal reached !!
 - Yet not optimal (see Arad, Sibiu, Rimnicu Vilcea, Pitesti)

- Completeness: NO (cfr. DF-search)
 - Check on repeated states
 - Minimizing h(n) can result in false starts, e.g. lasi to Fagaras.

- Completeness: NO (cfr. DF-search)
- Time complexity?
 - Cfr. Worst-case DF-search $O(b^m)$
 - (with m is maximum depth of search space)
 - Good heuristic can give dramatic improvement.

- Completeness: NO (cfr. DF-search)
- Time complexity: $O(b^m)$
- Space complexity: $O(b^m)$
 - Keeps all nodes in memory

- Completeness: NO (cfr. DF-search)
- Time complexity: $O(b^m)$
- Space complexity: $O(b^m)$
- Optimality? NO
 - Same as DF-search

A* search

- Best-known form of best-first search.
- Idea: avoid expanding paths that are already expensive.
- Evaluation function f(n)=g(n) + h(n)
 - g(n) the cost (so far) to reach the node.
 - *h(n)* estimated cost to get from the node to the closest goal.
 - *f(n)* estimated total cost of path through *n* to goal.

A* search

- A* search uses an admissible heuristic
 - A heuristic is *admissible* if it *never overestimates* the cost to reach the goal (~optimistic).

Formally:

- 1. $h(n) \le h^*(n)$ where $h^*(n)$ is the true cost from n
- 2. $h(n) \ge 0$ so h(G)=0 for any goal G.

e.g. $h_{SLD}(n)$ never overestimates the actual road distance

Theorem: If *h(n)* is admissible, A^{*} using BEST-FIRST-SEARCH() with selector function f(n)=h(n) is optimal.

Romania example

A* search example

(a) The initial state

Find Bucharest starting at Arad

• f(Arad) = c(??,Arad) + h(Arad) = 0 + 366 = 366

Expand Arrad and determine *f(n)* for each node

- f(Sibiu)=c(Arad,Sibiu)+h(Sibiu)=140+253=393
- f(Timisoara)=c(Arad,Timisoara)+h(Timisoara)=118+329=447
- f(Zerind)=c(Arad,Zerind)+h(Zerind)=75+374=449
- Best choice is Sibiu

A* search example

- Expand Sibiu and determine *f(n)* for each node
 - f(Arad)=c(Sibiu,Arad)+h(Arad)=280+366=646
 - f(Fagaras)=c(Sibiu,Fagaras)+h(Fagaras)=239+179=415
 - f(Oradea)=c(Sibiu,Oradea)+h(Oradea)=291+380=671
 - f(Rimnicu Vilcea)=c(Sibiu,Rimnicu Vilcea)+

h(Rimnicu Vilcea)=220+192=413

Best choice is Rimnicu Vilcea

• Expand Rimnicu Vilcea and determine *f(n)* for each node

- f(Craiova)=c(Rimnicu Vilcea, Craiova)+h(Craiova)=360+160=526
- f(Pitesti)=c(Rimnicu Vilcea, Pitesti)+h(Pitesti)=317+100=417
- f(Sibiu)=c(Rimnicu Vilcea,Sibiu)+h(Sibiu)=300+253=553
- Best choice is Fagaras

A* search example

Expand Fagaras and determine f(n) for each node

- f(Sibiu)=c(Fagaras, Sibiu)+h(Sibiu)=338+253=591
- *f*(*Bucharest*)=*c*(*Fagaras*,*Bucharest*)+*h*(*Bucharest*)=450+0=450
- Best choice is Pitesti !!!

9/25/2015

A* search example

- Expand Pitesti and determine f(n) for each node
 - f(Bucharest)=c(Pitesti,Bucharest)+h(Bucharest)=418+0=418
- Best choice is Bucharest !!!
 - Optimal solution (only if *h(n)* is admissable)
- Note values along optimal path !!

Optimality of A*(standard proof)

- Suppose a suboptimal goal G_2 in the queue.
- Let n be an unexpanded node on a shortest to optimal goal G.

 $\begin{array}{ll} f(G_2) &= g(G_2) & \text{since } h(G_2) = 0 \\ &> g(G) & \text{since } G_2 \text{ is suboptimal} \\ &> = f(n) & \text{since } h \text{ is admissible} \end{array}$ Since $f(G_2) > f(n)$, A* will never select G_2 for expansion (i.e. for checking, but note that G_2 can be inside the queue).

BUT ... graph search

- Discards new paths to repeated state.
 - Previous proof breaks down
- Solution:
 - Add extra bookkeeping i.e. keep only the path with lowest cost.
 - Ensure that optimal path to any repeated state is always first followed.
 - Extra requirement on *h(n)*: consistency (monotonicity)

Consistency

i.e. f(n) is non-decreasing along any path. Theorem: If *h(n)* is consistent, A * using GRAPH-SEARCH is optimal

Optimality of A*(more usefull)

- A* expands nodes in order of increasing *f* value
- Contours can be drawn in state space
 - Uniform-cost search adds circles.

 F-contours are gradually Added:

 nodes with f(n)<C*
 Some nodes on the goal Contour (f(n)=C*).

Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$.

9/25/2015

- Completeness: YES
 - Since bands of increasing *f* are added
 - Unless there are infinitly many nodes with *f<f(G)*

- Completeness: YES
- Time complexity:
 - Number of nodes expanded is still exponential in the length of the solution.

- Completeness: YES
- Time complexity: (exponential with path length)
- Space complexity:
 - It keeps all generated nodes in memory
 - Hence space is the major problem not time

- Completeness: YES
- Time complexity: (exponential with path length)
- Space complexity:(all nodes are stored)
- Optimality: YES
 - Cannot expand f_{i+1} until f_i is finished.
 - A* expands all nodes with $f(n) < C^*$
 - A* expands some nodes with $f(n) = C^*$
 - A* expands no nodes with $f(n) > C^*$

Also *optimally efficient* (not including ties)

Memory-bounded heuristic search

- Some solutions to A* space problems (maintain completeness and optimality)
 - Iterative-deepening A* (IDA*)
 - Here cutoff information is the *f*-cost (*g+h*) instead of depth
 - Recursive best-first search(RBFS)
 - Recursive algorithm that attempts to mimic standard best-first search with linear space.
 - (simple) Memory-bounded A* ((S)MA*)
 - Drop the worst-leaf node when memory is full

Learning to search better

- > All previous algorithms use *fixed strategies*.
- Agents can learn to improve their search by exploiting the *meta-level state space*.
 - Each meta-level state is a internal (computational) state of a program that is searching in *the object-level state space*.
 - In A* such a state consists of the current search tree
- A meta-level learning algorithm from experiences at the meta-level.

Heuristic functions

E.g for the 8-puzzle

- Avg. solution cost is about 22 steps (branching factor +/- 3)
- Exhaustive search to depth 22: 3.1 x 10¹⁰ states.
- A good heuristic function can reduce the search process.

Heuristic functions

- E.g for the 8-puzzle knows two commonly used heuristics
- *h*₁ = the number of misplaced tiles
 h₁(s)=8
- h_2 = the sum of the distances of the tiles from their goal positions (manhattan distance).
 - $h_2(s)=3+1+2+2+3+3+2=18$

Heuristic quality

- Effective branching factor b*
 - Is the branching factor that a uniform tree of depth d would have in order to contain N+1 nodes.

$$N+1=1+b*+(b*)^{2}+...+(b*)^{d}$$

- Measure is fairly constant for sufficiently hard problems.
 - Can thus provide a good guide to the heuristic's overall usefulness.
 - A good value of b* is 1.

Heuristic quality and dominance

1200 random problems with solution lengths from 2 to 24.

bag	bodi plilo de s	Search Cost	ang daman frag	Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$\mathbf{A}^{*}(h_{1})$	$A^{*}(h_{2})$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	neen - non	539	113	Stort - Read	1.44	1.23
16	Section of the	1301	211	-	1.45	1.25
18	-	3056	363	_	1.46	1.26
20	1010837020101	7276	676	1200LUNESS	1.47	1.27
22	General - and	18094	1219	baxal= still	1.48	1.28
24	-	39135	1641		1.48	1.26

If $h_2(n) >= h_1(n)$ for all *n* (both admissible) then h_2 dominates h_1 and is better for search

Inventing admissible heuristics

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem:
 - ^o Relaxed 8-puzzle for h_1 : a tile can move anywhere As a result, $h_1(n)$ gives the shortest solution
 - Relaxed 8-puzzle for h_2 : a tile can move to any adjacent square. As a result, $h_2(n)$ gives the shortest solution.

The optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem. ABSolver found a useful heuristic for the *Rubic cube*.

Inventing admissible heuristics

- Admissible heuristics can also be derived from the solution cost of a subproblem of a given problem.
- > This cost is a lower bound on the cost of the real problem.
- Pattern databases store the exact solution for every possible subproblem instance.
 - The complete heuristic is constructed using the patterns in the DB

Start State

Goal State

Inventing admissible heuristics

- Another way to find an admissible heuristic is through learning from experience:
 - Experience = solving lots of 8-puzzles
 - An inductive learning algorithm can be used to predict costs for other states that arise during search.

Local search and optimization

- Previously: systematic exploration of search space.
 - Path to goal is solution to problem
- > YET, for some problems path is irrelevant.
 - E.g 8–queens
- Different algorithms can be used
 Local search

Local search and optimization

- Local search = use single current state and move to neighboring states.
- Advantages:
 - Use very little memory
 - Find often reasonable solutions in large or infinite state spaces.

Are also useful for pure optimization problems.

- Find best state according to some *objective function*.
- e.g. survival of the fittest as a metaphor for optimization.

Local search and optimization

Hill-climbing search

- "is a loop that continuously moves in the direction of increasing value"
 - It terminates when a peak is reached.
- Hill climbing does not look ahead of the immediate neighbors of the current state.
- Hill-climbing chooses randomly among the set of best successors, if there is more than one.
- Hill-climbing a.k.a. *greedy local search*

Hill-climbing search

function HILL-CLIMBING(problem) return a state that is a local maximum input: problem, a problem local variables: current, a node. neighbor, a node.

current ← MAKE-NODE(INITIAL-STATE[*problem*]) loop do

neighbor ← a highest valued successor of *current* if VALUE [*neighbor*] ≤ VALUE[*current*] then return STATE[*current*]

current ← *neighbor*

Hill-climbing example

- 8-queens problem (complete-state formulation).
- Successor function: move a single queen to another square in the same column.
- Heuristic function h(n): the number of pairs of queens that are attacking each other (directly or indirectly).

Hill-climbing example

a)

- a) shows a state of h=17 and the h-value for each possible successor.
- b) A local minimum in the 8-queens state space (h=1).

Drawbacks

- Ridge = sequence of local maxima difficult for greedy algorithms to navigate
- Plateaux = an area of the state space where the evaluation function is flat.
- Gets stuck 86% of the time.

Hill-climbing variations

- Stochastic hill-climbing
 - Random selection among the uphill moves.
 - The selection probability can vary with the steepness of the uphill move.
- First-choice hill-climbing
 - cfr. stochastic hill climbing by generating successors randomly until a better one is found.
- Random-restart hill-climbing
 - Tries to avoid getting stuck in local maxima.

Simulated annealing

- Escape local maxima by allowing "bad" moves.
 - Idea: but gradually decrease their size and frequency.
- Origin: Physics, annealing
- Bouncing ball analogy:
 - Shaking hard (= high temperature).
 - Shaking less (= lower the temperature).
- If T decreases slowly enough, best state is reached.
- Applied for VLSI layout, airline scheduling, etc.

Simulated annealing

function SIMULATED-ANNEALING(*problem, schedule*) **return** a solution state **input**: *problem*, a problem

schedule, a mapping from time to temperature

local variables: *current*, a node.

next, a node.

T, a "temperature" controlling the probability of downward

steps

```
current ← MAKE-NODE(INITIAL-STATE[problem])
```

for t \leftarrow 1 to ∞ do

 $T \leftarrow schedule[t]$

if T = 0 then return *current*

next \leftarrow a randomly selected successor of *current*

 $\triangle E \leftarrow VALUE[next] - VALUE[current]$

if $\Delta E > 0$ then *current* \leftarrow *next*

else *current* \leftarrow *next* only with probability $e^{\Delta E/T}$

Local beam search

- Keep track of k states instead of one
 - Initially: *k* random states
 - Next: determine all successors of k states
 - If any of successors is goal \rightarrow finished
 - Else select *k* best from successors and repeat.
- Major difference with random-restart search
 - Information is shared among k search threads.
- Can suffer from lack of diversity.
 - Stochastic variant: choose k successors at proportionallu to state success.

Genetic algorithms

Variant of local beam search with *recombination*.

Genetic algorithm

function GENETIC_ALGORITHM(*population*, FITNESS-FN) **return** an individual **input**: *population*, a set of individuals

FITNESS-FN, a function which determines the quality of the individual repeat

new_population ← empty set loop for i from 1 to SIZE(*population*) do

 $x \leftarrow \text{RANDOM_SELECTION}(population, FITNESS_FN)$ $y \leftarrow \text{RANDOM_SELECTION}(population, FITNESS_FN)$

child \leftarrow REPRODUCE(*x*,*y*)

if (small random probability) then child \leftarrow MUTATE(child) add child to new_population

population ← *new_population*

until some individual is fit enough or enough time has elapsed **return** the best individual

Local search in continuous spaces

- Discrete vs. continuous environments
 - Successor function produces infinitly many states.
- How to solve?
 - Discretize the neighborhood of each state
 - $^\circ$ Use gradient information to direct the local search method. $+\delta$

• The Newton-Rhapson method

$$\mathbf{x} \leftarrow \mathbf{x} + \alpha \nabla f$$
 where $\nabla f = \left\{ \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \ldots \right\}$

Summary

- Heuristic function
- Admissible heuristics and A*
- Optimization: simulated annealing method
- Suggested reading
 - Prieditis: Machine Discovery of Effective Admissible Heuristics, 1993