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 Informed = use problem-specific knowledge

 Which search strategies?
◦ Best-first search and its variants

 Heuristic functions?
◦ How to invent them

 Local search and optimization
◦ Hill climbing, local beam search, genetic algorithms,…
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 A problem is defined by:
◦ An initial state, e.g. Arad
◦ Successor function S(X)= set of action-state pairs

 e.g. S(Arad)={<Arad  Zerind, Zerind>,…}
intial state + successor function = state space

◦ Goal test, can be

 Explicit, e.g. x=‘at bucharest’
 Implicit, e.g. checkmate(x)

◦ Path cost (additive)

 e.g. sum of distances, number of actions executed, …

 c(x,a,y) is the step cost, assumed to be >= 0

A solution is a sequence of actions from initial to goal state.

Optimal solution has the lowest path cost.
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function TREE-SEARCH(problem,fringe) return a solution or failure

fringe  INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTY?(fringe) then return failure

node  REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)

fringe  INSERT-ALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of 
node expansion

9/25/2015A.I. 4



Criterion Breadth-

First

Uniform-

cost

Depth-First Depth-

limited

Iterative 

deepening

Bidirectional 

search

Complete? YES* YES* NO YES, 

if l  d

YES YES*

Time bd+1 bC*/e bm bl bd bd/2

Space bd+1 bC*/e bm bl bd bd/2

Optimal? YES* YES* NO NO YES YES
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 The cardinality: 1019

 Any position can be solved in 20 or fewer 
moves (where a half-twist is counted as a 
single move)! (?how is it possible?)

 average branching factor is ~13.3

 Invented in 1974 by Ernő Rubik.

 Rubik's cube current world records
◦ http://www.youtube.com/watch?v=oC0B4b4J9Ys

 How can we guide the search process???

http://www.youtube.com/watch?v=oC0B4b4J9Ys


 General approach of informed search:
◦ Best-first search: node is selected for expansion based on an 

evaluation function f(n) in TREE-SEARCH().

 Idea: evaluation function measures distance to 
the goal. 
◦ Choose node which appears best

 Implementation:

◦ fringe is queue sorted in decreasing order of desirability.

◦ Special cases: greedy search, A* search
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 [dictionary]“A rule of thumb, simplification, 
or educated  guess that reduces or limits the 
search for solutions in  domains that are 
difficult and poorly understood.”
◦ h(n) = estimated cost of the cheapest path from 

node n to goal node.

◦ If n is goal then h(n)=0

How to derive? (more information later)
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 hSLD=straight-line 
distance heuristic.

 hSLD can NOT be 
computed from the 
problem description 
itself

 In this example 
f(n)=h(n)
◦ Expand node that is closest 

to goal

= Greedy best-first search
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 Assume that we want to use greedy search to 
solve the problem of travelling from Arad to 
Bucharest.

 The initial state=Arad
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Arad (366)



 The first expansion step produces:
◦ Sibiu, Timisoara and Zerind

 Greedy best-first will select Sibiu.
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Arad

Sibiu(253)

Timisoara

(329)

Zerind(374)



 If Sibiu is expanded we get:
◦ Arad, Fagaras, Oradea and Rimnicu Vilcea

 Greedy best-first search will select: Fagaras
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Arad

Sibiu

Arad

(366)
Fagaras

(176)

Oradea

(380)

Rimnicu Vilcea

(193)



 If Fagaras is expanded we get:
◦ Sibiu and Bucharest

 Goal reached !! 
◦ Yet not optimal (see Arad, Sibiu, Rimnicu Vilcea, Pitesti)
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Arad

Sibiu

Fagaras

Sibiu

(253)

Bucharest

(0)



 Completeness: NO (cfr. DF-search)
◦ Check on repeated states

◦ Minimizing h(n) can result in false starts, e.g. Iasi to Fagaras.
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 Completeness: NO (cfr. DF-search)

 Time complexity?
◦ Cfr. Worst-case DF-search

(with m is maximum depth of search space)

◦ Good heuristic can give dramatic improvement.
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O(bm )



 Completeness: NO (cfr. DF-search)

 Time complexity:

 Space complexity:
◦ Keeps all nodes in memory
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 Completeness: NO (cfr. DF-search)

 Time complexity:

 Space complexity:

 Optimality? NO
◦ Same as DF-search
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 Best-known form of best-first search.
 Idea: avoid expanding paths that are already 

expensive.
 Evaluation function f(n)=g(n) + h(n)
◦ g(n) the cost (so far) to reach the node.
◦ h(n) estimated cost to get from the node to the 

closest goal.
◦ f(n) estimated total cost of path through n to goal. 

9/25/2015A.I. 20



 A* search uses an admissible heuristic 
◦ A heuristic is admissible if it never overestimates

the cost to reach the goal (~optimistic).

Formally: 

1. h(n) <= h*(n) where h*(n) is the true cost from n
2. h(n) >= 0 so h(G)=0 for any goal G.

e.g. hSLD(n) never overestimates the actual road distance

Theorem: If h(n) is admissible, A* using BEST-FIRST-
SEARCH() with selector function f(n)=h(n) is optimal.
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 Find Bucharest starting at Arad
◦ f(Arad) = c(??,Arad)+h(Arad)=0+366=366
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 Expand Arrad and determine f(n) for each node
◦ f(Sibiu)=c(Arad,Sibiu)+h(Sibiu)=140+253=393

◦ f(Timisoara)=c(Arad,Timisoara)+h(Timisoara)=118+329=447

◦ f(Zerind)=c(Arad,Zerind)+h(Zerind)=75+374=449

 Best choice is Sibiu
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 Expand Sibiu and determine f(n) for each node
◦ f(Arad)=c(Sibiu,Arad)+h(Arad)=280+366=646

◦ f(Fagaras)=c(Sibiu,Fagaras)+h(Fagaras)=239+179=415

◦ f(Oradea)=c(Sibiu,Oradea)+h(Oradea)=291+380=671

◦ f(Rimnicu Vilcea)=c(Sibiu,Rimnicu Vilcea)+

h(Rimnicu Vilcea)=220+192=413

 Best choice is Rimnicu Vilcea
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 Expand Rimnicu Vilcea and determine f(n) for each node
◦ f(Craiova)=c(Rimnicu Vilcea, Craiova)+h(Craiova)=360+160=526

◦ f(Pitesti)=c(Rimnicu Vilcea, Pitesti)+h(Pitesti)=317+100=417

◦ f(Sibiu)=c(Rimnicu Vilcea,Sibiu)+h(Sibiu)=300+253=553

 Best choice is Fagaras
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 Expand Fagaras and determine f(n) for each node
◦ f(Sibiu)=c(Fagaras, Sibiu)+h(Sibiu)=338+253=591

◦ f(Bucharest)=c(Fagaras,Bucharest)+h(Bucharest)=450+0=450

 Best choice is Pitesti !!!
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 Expand Pitesti and determine f(n) for each node
◦ f(Bucharest)=c(Pitesti,Bucharest)+h(Bucharest)=418+0=418

 Best choice is Bucharest !!!
◦ Optimal solution (only if h(n) is admissable) 

 Note values along optimal path !!
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 Suppose a suboptimal goal G2 in the queue.
 Let n be an unexpanded node on a shortest to optimal goal G.

f(G2 ) = g(G2 ) since h(G2 )=0
> g(G) since G2 is suboptimal
>= f(n) since h is admissible

Since f(G2) > f(n), A* will never select G2 for expansion (i.e. for checking, but 
note that G2 can be inside the queue).

A.I. 299/25/2015



 Discards new paths to repeated state.
◦ Previous proof breaks down

 Solution:
◦ Add extra bookkeeping i.e. keep only the path with 

lowest cost.

◦ Ensure that optimal path to any repeated state is 
always first followed. 

 Extra requirement on h(n): consistency (monotonicity)
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 A heuristic is consistent if

 If h is consistent, we have

i.e. f(n) is non-decreasing along any path.

Theorem: If h(n) is consistent, A* using 
GRAPH-SEARCH is optimal
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h(n)  c(n,a,n') h(n')



f (n')  g(n')  h(n')

 g(n)  c(n,a,n')  h(n')

 g(n)  h(n)

 f (n)



 A* expands nodes in order of increasing f value

 Contours can be drawn in state space
◦ Uniform-cost search adds circles.

◦ F-contours are gradually

Added: 

1) nodes with f(n)<C*
2) Some nodes on the goal

Contour (f(n)=C*).

Contour i has all nodes 

with f=fi, where fi < fi+1.
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 Completeness: YES
◦ Since bands of increasing f are added

◦ Unless there are infinitly many nodes with f<f(G)
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 Completeness: YES

 Time complexity:
◦ Number of nodes expanded is still exponential in 

the length of the solution.
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 Completeness: YES

 Time complexity: (exponential with path 
length)

 Space complexity:
◦ It keeps all generated nodes in memory

◦ Hence space is the major problem not time
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 Completeness: YES

 Time complexity: (exponential with path 
length)

 Space complexity:(all nodes are stored)

 Optimality: YES
◦ Cannot expand fi+1 until fi is finished.

◦ A* expands all nodes with f(n)< C*
◦ A* expands some nodes with f(n)=C*
◦ A* expands no nodes with f(n)>C*

Also optimally efficient (not including ties)
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 Some solutions to A* space problems (maintain 
completeness and optimality)
◦ Iterative-deepening A* (IDA*)

 Here cutoff information is the f-cost (g+h) instead of 
depth

◦ Recursive best-first search(RBFS)

 Recursive algorithm that attempts to mimic standard 
best-first search with linear space.

◦ (simple) Memory-bounded A* ((S)MA*)

 Drop the worst-leaf node when memory is full
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 All previous algorithms use fixed strategies.

 Agents can learn to improve their search by 
exploiting the meta-level state space.
◦ Each meta-level state is a internal (computational) state of a 

program that is searching in the object-level state space.

◦ In A* such a state consists of the current search tree

 A meta-level learning algorithm from 
experiences at the meta-level.
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 E.g for the 8-puzzle
◦ Avg. solution cost is about 22 steps (branching factor +/- 3)

◦ Exhaustive search to depth 22: 3.1 x 1010 states.

◦ A good heuristic function can reduce the search process.
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 E.g for the 8-puzzle knows two commonly used heuristics

 h1 = the number of misplaced tiles
◦ h1(s)=8

 h2 = the sum of the distances of the tiles from their goal 
positions (manhattan distance). 
◦ h2(s)=3+1+2+2+2+3+3+2=18
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 Effective branching factor b*
◦ Is the branching factor that a uniform tree of depth 

d would have in order to contain N+1 nodes.

◦ Measure is fairly constant for sufficiently hard 
problems.
 Can thus provide a good guide to the heuristic’s 

overall usefulness.

 A good value of b* is 1.
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N 11 b*(b*) 2  ... (b*) d



 1200 random problems with solution lengths 
from 2 to 24.

 If h2(n) >= h1(n) for all n (both admissible)

then h2 dominates h1 and is better for search
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 Admissible heuristics can be derived from the 
exact solution cost of a relaxed version of the 
problem:
◦ Relaxed 8-puzzle for h1 : a tile can move anywhere

As a result, h1(n) gives the shortest solution
◦ Relaxed 8-puzzle for h2 : a tile can move to any adjacent square.

As a result, h2(n) gives the shortest solution.

The optimal solution cost of a relaxed problem is 
no greater than the optimal solution cost of the 
real problem.

ABSolver found a useful heuristic for the Rubic
cube.
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 Admissible heuristics can also be derived from the solution 
cost of a subproblem of a given problem.

 This cost is a lower bound on the cost of the real problem.

 Pattern databases store the exact solution for every possible 
subproblem instance.
◦ The complete heuristic is constructed using the patterns in the DB
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 Another way to find an admissible heuristic is 
through learning from experience:
◦ Experience = solving lots of 8-puzzles

◦ An inductive learning algorithm can be used to 
predict costs for other states that arise during 
search. 
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 Previously: systematic exploration of search 
space.
◦ Path to goal is solution to problem

 YET, for some problems path is irrelevant.
◦ E.g 8-queens

 Different algorithms can be used
◦ Local search 

9/25/2015A.I. 46



 Local search= use single current state and 
move to neighboring states.

 Advantages:
◦ Use very little memory

◦ Find often reasonable solutions in large or infinite state spaces.

 Are also useful for pure optimization problems.
◦ Find best state according to some objective function.

◦ e.g. survival of the fittest as a metaphor for optimization.
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 The „knapsack”/backpack problem

 The travelling sales man problem

 The ménage problem

 The map coloring problem, the 3-SAT problem,...
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 “is a loop that continuously moves in the 
direction of increasing value”
◦ It terminates when a peak is reached.

 Hill climbing does not look ahead of the 
immediate neighbors of the current state.

 Hill-climbing chooses randomly among the 
set of best successors, if there is more than 
one.

 Hill-climbing a.k.a. greedy local search
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function HILL-CLIMBING( problem) return a state that is a local 
maximum

input: problem, a problem

local variables: current, a node.

neighbor, a node.

current  MAKE-NODE(INITIAL-STATE[problem])

loop do

neighbor  a highest valued successor of current
if VALUE [neighbor] ≤ VALUE[current] then return

STATE[current]

current  neighbor
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 8-queens problem (complete-state 
formulation).

 Successor function: move a single queen to 
another square in the same column.

 Heuristic function h(n): the number of pairs of 
queens that are attacking each other (directly 
or indirectly).
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a) shows a state of h=17 and the h-value for 
each possible successor.

b) A local minimum in the 8-queens state space 
(h=1).
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 Ridge = sequence of local maxima difficult for greedy 
algorithms to navigate

 Plateaux = an area of the state space where the 
evaluation function is flat.

 Gets stuck 86% of the time.
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 Stochastic hill-climbing
◦ Random selection among the uphill moves.
◦ The selection probability can vary with the 

steepness of the uphill move.

 First-choice hill-climbing
◦ cfr. stochastic hill climbing by generating 

successors randomly until a better one is found.

 Random-restart hill-climbing
◦ Tries to avoid getting stuck in local maxima.
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 Escape local maxima by allowing “bad” moves.
◦ Idea: but gradually decrease their size and frequency.

 Origin: Physics, annealing

 Bouncing ball analogy:
◦ Shaking hard (= high temperature).

◦ Shaking less (= lower the temperature).

 If T decreases slowly enough, best state is 
reached.

 Applied for VLSI layout, airline scheduling, etc.
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function SIMULATED-ANNEALING( problem, schedule) return a solution state

input: problem, a problem

schedule, a mapping from time to temperature

local variables: current, a node.

next, a node.

T, a “temperature” controlling the probability of downward 
steps

current  MAKE-NODE(INITIAL-STATE[problem])

for t  1 to ∞ do

T  schedule[t]
if T = 0 then return current

next  a randomly selected successor of current

∆E  VALUE[next] - VALUE[current]

if ∆E > 0 then current  next 

else current  next only with probability e∆E /T
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 Keep track of k states instead of one
◦ Initially: k random states

◦ Next: determine all  successors of k states

◦ If any of successors is goal  finished
◦ Else select k best  from successors and repeat.

 Major difference with random-restart search
◦ Information is shared among k search threads.

 Can suffer from lack of diversity.
◦ Stochastic variant: choose k successors at proportionallu to state 

success.
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 Variant of local beam search with recombination.
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function GENETIC_ALGORITHM( population, FITNESS-FN) return an individual

input: population, a set of individuals

FITNESS-FN, a function which determines the quality of the individual

repeat

new_population  empty set

loop for i from 1 to SIZE(population) do

x  RANDOM_SELECTION(population, FITNESS_FN)
y  RANDOM_SELECTION(population, FITNESS_FN)

child  REPRODUCE(x,y)

if (small random probability) then child   MUTATE(child )
add child to new_population

population   new_population
until some individual is fit enough or enough time has elapsed

return the best individual
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 Discrete vs. continuous environments
◦ Successor function produces infinitly many states.

 How to solve?
◦ Discretize the neighborhood of each state      .
◦ Use gradient information to direct the local search 

method.

◦ The Newton-Rhapson method
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 Heuristic function

 Admissible heuristics and A*

 Optimization: simulated annealing method

 Suggested reading
◦ Prieditis: Machine Discovery of Effective Admissible 

Heuristics, 1993
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