#### Knowledge and data engineering with Bayesian networks (a homework solution guide) Péter Antal

# Outline

- Tasks in the homework
- Knowledge enginering steps
  - Importance of ordering
  - Canonical models
    - Conditional probability decision trees

#### Homework

- Guide
- Tool
  - <u>http://redmine.genagrid.eu/projects/bayescub</u> edownload/wiki/Wiki
- Manual
- List of illustrative domains

# Goal of the homework

# To demonstrate and practice this multifaceted nature of Bayesian networks.

- As a probabilistic logic knowledge base, it provides a coherent framework to represents beliefs (see Bayesian interpretation of probabilities).
- As a decision network, it provides a coherent framework to represent preferences for actions.
- As a dependency map, it explicitly represents the system of conditional independencies in a given domain.
- As a causal map, it explicitly represents the system of causal relations in a given domain.
- As a decomposable probabilistic graphical model, it parsimoniously represents the quantitative stochastic dependencies (the joint distribution) of a domain and it allows efficient observational inference.
- As an uncertain causal model, it parsimoniously represents the quantitative, stochastic, autonomous mechanisms in a domain and it allows efficient interventional and counterfactual inference.

A.I.: BN homework guide

# Obligatory and optional subtasks

- The minimal level contains the following subtasks (10 point):
  - Select a domain, select candidate variables (5-10), and sketch the structure of the Bayesian network model.
  - Consult it.
  - Quantify the Bayesian networks.
  - Evaluate it with global inference and "information sensitivity of inference" analysis.
  - Generate a data set from your model.
  - Learn a model from your data.
  - Compare the structural and parametric differences between the two models.
- Optional tasks:
  - Analyse estimation biases (5 point).
  - Investigate the effect of model uncertainty and sample size on learning: vary the strength of dependency in the model (increase underconfidence to decrease information content) and sample size and see their effect on learning (10 point).

#### Consultation

The preliminary approval of your planned homework is mandatory!

#### Documentation

| Domain description.                    | 10-100 words                                           |  |
|----------------------------------------|--------------------------------------------------------|--|
| Variable definitions, with definitions | <20 words/variable                                     |  |
| of their values.                       |                                                        |  |
| Structure of the Bayesian network.     | Explain the (preferably) causal order of the variables |  |
|                                        | and interesting independencies in your model. 50-500   |  |
|                                        | words + figure(s).                                     |  |
| Quantify the Bayesian networks.        | Illustrate your estimation in your model. 50-200 words |  |
|                                        | + table(s)/figure(s).                                  |  |
| Evaluate it with global inference and  | 20-100 words + table(s)/figure(s).                     |  |
| "information sensitivity of inference" |                                                        |  |
| analysis.                              |                                                        |  |
| Compare the structural and             | 50-200 words.                                          |  |
| parametric differences between the     |                                                        |  |
| constructed and learnt models.         |                                                        |  |
| Analyse estimation biases.             | 250-500 words + table(s)/figure(s).                    |  |
| Investigate the effect of model        | 500-1000 words + table(s)/figure(s).                   |  |
| uncertainty and sample size on         |                                                        |  |
| learning.                              |                                                        |  |

The overall documentation can be 3-5 pages (minimal) or 5-10 pages (full).

# Submission

- After consultation(!)
- the model XML with its documentation should be sent by email to your consulent.
- Deadlines:
  - Soft: before the last week of the semester (5th of December)
  - Hard: before the end of the semester (15th of December).

# Subtasks: importance of causality

- The minimal level contains the following subtasks (10 point):
  - Select a domain, select candidate variables (5-10), and sketch the structure of the Bayesian network model.
  - Consult it.
  - Quantify the Bayesian networks.
  - Evaluate it with global inference and "information sensitivity of inference" analysis.
  - Generate a data set from your model.
  - Learn a model from your data.
  - Compare the structural and parametric differences between the two models.
- Optional tasks:
  - Analyse estimation biases (5 point).
  - Investigate the effect of model uncertainty and sample size on learning: vary the strength of dependency in the model (increase underconfidence to decrease information content) and sample size and see their effect on learning (10 point).

# Subtasks: canonical models

- The minimal level contains the following subtasks (10 point):
  - Select a domain, select candidate variables (5-10), and sketch the structure of the Bayesian network model.
  - Consult it.
  - Quantify the Bayesian networks.
  - Evaluate it with global inference and "information sensitivity of inference" analysis.
  - Generate a data set from your model.
  - Learn a model from your data.
  - Compare the structural and parametric differences between the two models.
- Optional tasks:
  - Analyse estimation biases (5 point).
  - Investigate the effect of model uncertainty and sample size on learning: vary the strength of dependency in the model (increase underconfidence to decrease information content) and sample size and see their effect on learning (10 point).

# Noisy-OR

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents  $U_1 \ldots U_k$  include all causes (can add leak node)
- 2) Independent failure probability  $q_i$  for each cause alone

 $\Rightarrow P(X|U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^j q_i$ 

| Cold | Flu | Malaria | P(Fever) | $P(\neg Fever)$                     |
|------|-----|---------|----------|-------------------------------------|
| F    | F   | F       | 0.0      | 1.0                                 |
| F    | F   | Т       | 0.9      | 0.1                                 |
| F    | Т   | F       | 0.8      | 0.2                                 |
| F    | Т   | Т       | 0.98     | $0.02 = 0.2 \times 0.1$             |
| Т    | F   | F       | 0.4      | 0.6                                 |
| Т    | F   | Т       | 0.94     | $0.06 = 0.6 \times 0.1$             |
| Т    | Т   | F       | 0.88     | $0.12 = 0.6 \times 0.2$             |
| Т    | Т   | Т       | 0.988    | $0.012 = 0.6 \times 0.2 \times 0.1$ |

Number of parameters linear in number of parents

A.I.: BN homework guide

#### Decision trees, decision graphs



Decision tree: Each internal node represent a (univariate) test, the leafs contains the conditional probabilities given the values along the path. Decision graph: If conditions are equivalent, then subtrees can be merged. E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreg) A.I.: BN homework guide

# Subtasks: sensitivity of inference

- The minimal level contains the following subtasks (10 point):
  - Select a domain, select candidate variables (5-10), and sketch the structure of the Bayesian network model.
  - Consult it.
  - Quantify the Bayesian networks.
  - Evaluate it with global inference and "information sensitivity of inference" analysis.
  - Generate a data set from your model.
  - Learn a model from your data.
  - Compare the structural and parametric differences between the two models.
- Optional tasks:
  - Analyse estimation biases (5 point).
  - Investigate the effect of model uncertainty and sample size on learning: vary the strength of dependency in the model (increase underconfidence to decrease information content) and sample size and see their effect on learning (10 point).

# Subtasks: sensitivity of inference

- The minimal level contains the following subtasks (10 point):
  - Select a domain, select candidate variables (5-10), and sketch the structure of the Bayesian network model.
  - Consult it.
  - Quantify the Bayesian networks.
  - Evaluate it with global inference and "information sensitivity of inference" analysis.
  - Generate a data set from your model.
  - Learn a model from your data.
  - Compare the structural and parametric differences between the two models.
- Optional tasks:
  - Analyse estimation biases (5 point).
  - Investigate the effect of model uncertainty and sample size on learning: vary the strength of dependency in the model (increase underconfidence to decrease information content) and sample size and see their effect on learning (10 point).

# Subtasks: learn model

- The minimal level contains the following subtasks (10 point):
  - Select a domain, select candidate variables (5-10), and sketch the structure of the Bayesian network model.
  - Consult it.
  - Quantify the Bayesian networks.
  - Evaluate it with global inference and "information sensitivity of inference" analysis.
  - Generate a data set from your model.
  - Learn a model from your data.
  - Compare the structural and parametric differences between the two models.
- Optional tasks:
  - Analyse estimation biases (5 point).
  - Investigate the effect of model uncertainty and sample size on learning: vary the strength of dependency in the model (increase underconfidence to decrease information content) and sample size and see their effect on learning (10 point).

# Subtasks: estimation bias

- The minimal level contains the following subtasks (10 point):
  - Select a domain, select candidate variables (5-10), and sketch the structure of the Bayesian network model.
  - Consult it.
  - Quantify the Bayesian networks.
  - Evaluate it with global inference and "information sensitivity of inference" analysis.
  - Generate a data set from your model.
  - Learn a model from your data.
  - Compare the structural and parametric differences between the two models.
- Optional tasks:
  - Analyse estimation biases (5 point).
  - Investigate the effect of model uncertainty and sample size on learning: vary the strength of dependency in the model (increase underconfidence to decrease information content) and sample size and see their effect on learning (10 point).

# Subtasks: effect of model uncertainty and sample size on learning

- The minimal level contains the following subtasks (10 point):
  - Select a domain, select candidate variables (5-10), and sketch the structure of the Bayesian network model.
  - Consult it.
  - Quantify the Bayesian networks.
  - Evaluate it with global inference and "information sensitivity of inference" analysis.
  - Generate a data set from your model.
  - Learn a model from your data.
  - Compare the structural and parametric differences between the two models.
- Optional tasks:
  - Analyse estimation biases (5 point).
  - Investigate the effect of model uncertainty and sample size on learning: vary the strength of dependency in the model (increase underconfidence to decrease information content) and sample size and see their effect on learning (10 point).

# Summary

- The homework takes you through real stages of knowledge engineering and machine learning:
  - Select a domain, create variables (5-10), and specify structure.
  - Quantify the Bayesian network.
  - Analyse estimation biases
  - Evaluate it with "information sensitivity of inference" analysis.
  - Generate a data set from your model.
  - Learn a model from your data.
  - Compare the structural and parametric differences between the two models.
  - Investigate the effect of model uncertainty and sample size on learning.