
BME Operating Systems 2015.

UNIX interprocess communication 1 / 22

UNIX inter-process communication

Tamás Mészáros
http://www.mit.bme.hu/~meszaros/

Department of Measurement and Information Systems

Budapest University of Technology and Economics

http://www.mit.bme.hu/~meszaros/

BME Operating Systems 2015.

UNIX interprocess communication 2 / 22

Previously....

• The kernel
– handles processes, managers resources
– separates processes from each other (“virtual machine”)

• Process
– a running user program
– communicates with the kernel via system calls
– has a family (parent and children)

• Communication in theory
– shared memory region, messages, remote procedure calls (RPC)
– data channel (resource) sharing, critical region, semaphore
– blocking (synchronized) and non-blocking (asynchronous)

BME Operating Systems 2015.

UNIX interprocess communication 3 / 22

UNIX IPC examples

• Processing output of a program
ps -ef | more ps -ef | wc -l
ps -ef | cut -d \ -f 1 | sort | uniq | wc -l

– The “|” symbol represents a pipe: the output of the first command
(process) is redirected to the input of the second one.

• For independent processes
prw-rw-r-- 1 demo demo 8 márc 26 10:46 /tmp/named_pipe

– The “p” marks a special pipe: named pipe or FIFO

• Signals
CTRL + C CTRL + Z kill <SIG> <PID>

– Interrupt, suspend and continue
– Notifies a process about an event (e.g. child process dies)

• Other simple examples: Speaking UNIX: !$#@*%

http://www.ibm.com/developerworks/aix/library/au-spunix_clitricks/index.html

BME Operating Systems 2015.

UNIX interprocess communication 4 / 22

Examples (2)

• Spam and virus filtering in a UNIX system

srw-r--r-- 1 clamav clamav 0 Nov 27 11:38 /var/clamav/clmilter.socket
srwxr-xr-x 1 sa-milt sa-milt 0 Nov 27 11:38 /var/run/spamass-milter/spamass-milter.sock

– “s” denotes a socket, which is a “network” communication interface.

• Database systems use shared memory extensively
– They have many processes which needs fast and simple communication
– Typical usage:

• static data
• locking
• data buffers

– It should be properly configured during database installation
It is not uncommon to assign half of the physical memory as shared

– For more info, see e.g. Oracle System Global Area
http://docs.oracle.com/cd/B19306_01/server.102/b14220/memory.htm

http://docs.oracle.com/cd/B19306_01/server.102/b14220/memory.htm

BME Operating Systems 2015.

UNIX interprocess communication 5 / 22

UNIX process communication – an overview

• Signal
– event handling (raise and handle)

• Pipe
– data flow FIFO, communication mainly in the family

• Semaphore

• Message queue
– has a type and clear boundary

• Shared memory
– several processes use the same physical memory region

• “network” (socket) communication

• Remote procedure call: the UNIX way

BME Operating Systems 2015.

UNIX interprocess communication 6 / 22

UNIX Signals

• Goals
– notify a process about events raised by other processes or the kernel
– synchronize processes (we have a better solution for this now)

• Signals have type (SIGINT, SIGCHLD, SIGKILL, … See: kill –l)
– system: exceptions (errors), quota, alarm, notices (e.g. zombie child)
– user: stop, kill, user defined, etc.

• How it works
– generation: it is generated by a system call or some event)
– delivery: the kernel notifies the target process about the signal
– processing: the target process does something (or nothing) in the signal

handler

• Problems
– generation and delivery in (quite) different times
– several different implementations, some of them are not too good

BME Operating Systems 2015.

UNIX interprocess communication 7 / 22

Generation and delivery

• Generation (by a process)
#include <signal.h> /* kill() */
kill(pid, SIGUSR1); /* send the signal */

• Delivery and handling
– Several signal handlers exists

• Core: core dump and stop (exit())

• Term: stop (exit())

• Ign: ignore
• Stop: suspend
• Cont: return from suspended states

– processes can define their own handlers
signal(SIGALRM, alarm); /* set the handler */
void alarm(int signum) { ... } /* the handler */

– it depends on the signal type which handler could be used
• e.g. SIGKILL can not be ignored or handled by a process function

BME Operating Systems 2015.

UNIX interprocess communication 8 / 22

UNIX Signals: examples

#include <signal.h> /* signal(), kill() */
#include <unistd.h> /* getpid() */

#include <sys/types.h> /* pid_t */

pid_t pid = getpid(); /* own PID */

kill(pid, SIGSTOP); /* send the STOP signal */

You can do the same in the command line: kill -STOP <PID>

signal(SIGCLD, SIG_IGN); /* ignore child stops events */

signal(SIGINT, SIG_IGN); /* ignore the CTRL+C */

signal(SIGINT, SIG_DFL); /* set the default handler */

signal(SIGALRM, alarm); /* set a special handler function */

void alarm(int signum) { ... } /* the handler... */

alarm(30); /* set and ALARM signal for 30 secs */

BME Operating Systems 2015.

UNIX interprocess communication 9 / 22

man -s 7 signal (excerpt)

 Signal Value Action Comment

 ──

 SIGHUP 1 Term Hangup detected on controlling terminal

 or death of controlling process

 SIGINT 2 Term Interrupt from keyboard

 SIGQUIT 3 Core Quit from keyboard

 SIGILL 4 Core Illegal Instruction

 SIGABRT 6 Core Abort signal from abort(3)

 SIGFPE 8 Core Floating point exception

 SIGKILL 9 Term Kill signal

 SIGSEGV 11 Core Invalid memory reference

 SIGPIPE 13 Term Broken pipe: write to pipe with no

 readers

 SIGALRM 14 Term Timer signal from alarm(2)

 SIGTERM 15 Term Termination signal

 SIGUSR1 30,10,16 Term User-defined signal 1

 SIGUSR2 31,12,17 Term User-defined signal 2

 SIGCHLD 20,17,18 Ign Child stopped or terminated

 SIGCONT 19,18,25 Cont Continue if stopped

 SIGSTOP 17,19,23 Stop Stop process

 SIGTSTP 18,20,24 Stop Stop typed at tty

 SIGTTIN 21,21,26 Stop tty input for background process

 SIGTTOU 22,22,27 Stop tty output for background process

BME Operating Systems 2015.

UNIX interprocess communication 10 / 22

UNIX Pipes: pipe()

• Goal: transfer data between processes (ls -la | more)

• Features
– works within the family (parent – children, or between children)
– it is a data flow (no message boundary)
– it is a directed data flow (writer → reader) (there could be several readers

and writers on the same channel!)
– it has a limited capacity: e.g.. 4k (Linux < 2.6.11), 65k (Linux >= 2.6.11)

• How does it work?
– a process creates a pipe (pipe())

– the kernel creates the pipe data structures and returns file descriptors
– the process creates child processes, they inherit these descriptors

– these processes communicate via the desciptors (read(), write())

• Limitations
– no addressing, no boundary, works in the “family”

BME Operating Systems 2015.

UNIX interprocess communication 11 / 22

UNIX Named Pipe

• Goals / problems to solve
– How to communicate between independent processes?
– How to access a pipe that was created by an independent process?

(naming or identification problem)

• Features
– it is the same as a normal Pipe
– but it works outside the family
– the file system helps in the identification of the pipe

• Example: communication with the init process (PID 1)
– we can see its pipe interface in the file system:

prw------- 1 root root 0 Jan 1 12:38 /dev/initctl

(we can open this “file” and then we can send commands in the pipe)

BME Operating Systems 2015.

UNIX interprocess communication 12 / 22

UNIX System V IPC

• Goal: unified communication interface between processes
– data transfer
– synchronization

• Common foundation (and notation)
– resources: means of communication (see below)
– key: resource identifier (a number)

– functions for control and access: *ctl(), *get(… key …)

– access management:
• creator, owner and their groups
• the usual UNIX access management system works here too

• Resources
– semaphores

– message queues see these man pages: man svipc ipc ipcs

– shared memory

BME Operating Systems 2015.

UNIX interprocess communication 13 / 22

UNIX System V IPC: semaphores

• Goal: synchronization between processes
– P() and V() operators
– to handle multiple semaphores at once

• How does it work?
sem_id = semget(key, num, options);

– access a number of semaphores identified by the key
(they will be created if needed)

– perform the operations defined in the ops structure (see man semop):
 status = semop(sem_id, ops, ops_méret);

• multiple operations on multiple semaphores
• blocking and non-blocking P()
• there is also a simple transaction managements (undo)

BME Operating Systems 2015.

UNIX interprocess communication 14 / 22

UNIX System V IPC: message queues

• Goal: data exchange between processes
– messages with clear boundary
– a message type helps in filtering

• How does it work?
msgq_id = msgget(key, options);

– access a message queue identified by the key
(it will be created if needed)

– send messages (the msg contains a type identifier):
 msgsnd(msgq_id, msg, size, options);

– receive: msgrcv(msgq_id, msg, size, type, options);

– the type (number) can be used to filter out messages
= 0 any message
> 0 a message with the specified type
< 0 a message with the same or “lower” type (“importance”)

BME Operating Systems 2015.

UNIX interprocess communication 15 / 22

UNIX System V IPC: shared memory

• Goal: simple and fast data exchange between processes
– a special area of the system memory reserved for this purpose
– there is no kernel overhead on data transfer (shared physical memory)

• How does it work?
shm_id = shmget(key, size, options);

– access a shared memory region identified by the key
(it will be created if needed)

– bind this region to a virtual address:
var = (type) shmat(...);

We can access the memory via the variable.

– Unbind: shmdt(var);

– Note: mutual exclusion have to be guaranteed using e.g. semaphores

BME Operating Systems 2015.

UNIX interprocess communication 16 / 22

UNIX “network” (socket) communication

• Goal: data transfer that supports addressing and several protocols
– between any processes, even on different computers
– supports many protocols (e.g. the TCP/IP family)
– provides several addressing methods

• Basic notation
– socket: the communication endpoint (an identifier)
– address and port number (see computer networks)

• Usage sfd = socket(domain, type, protocol);
server: bind(sfd, address, ...);
client: connect(sfd, address, ...);
server: listen(sfd, queue_size);
server: accept(sfd, address, ...);
send(sfd, message, ...);
recv(sfd, message, ...);
shutdown(sfd);

BME Operating Systems 2015.

UNIX interprocess communication 17 / 22

How does it work in client-server architecture?

Client program

socket()

connect()

send()
recv()
close()

Server program

sfd1 = socket()
bind(sfd1)
listen(sfd1)
while

sfd2 = accept(sfd1)
fork()

parent: go back to the cycle
child: recv(sfd2)

send(sfd2)
close(sfd2)
exit()

BME Operating Systems 2015.

UNIX interprocess communication 18 / 22

(Sun) RPC (remote procedure call)

• A distributed system architecture based on socket communication
• Goals:

– high level communication between processes
– calling functions in different processes (even on a different machine)
– help the programmers: interface specification + code generation

• Basic notation
– RPC language: a method to describe callable interfaces
– identifier: program and function identifiers in the interface description
– portmapper: mapping between network ports and identifiers
– rpcgen: generates C code from the interface description

• Sun RPC has
– a method to describe interfaces
– a program code generator to create client and server code from interface

descriptions
– a communication infrastructure to do the underlying work

BME Operating Systems 2015.

UNIX interprocess communication 19 / 22

RPC interface description and code generation

• RPC language (example: date.x)

program DATE_PROG {

 version DATE_VERS {

 long BIN_DATE(void) = 1; /* function identifier = 1 */

 string STR_DATE(long) = 2; /* function identifier = 2 */

 } = 1; /* version = 1 */

} = 0x31237; /* program identifier = 0x31237 */

• Code generation using rpcgen
– rpcgen date.x will create several files

• date.h: definitions of data types

• date_clnt.c: client stub that contains the functions called by client
programs

• date_srv.c: server skeleton that contains functions to be implemented

• (…)

BME Operating Systems 2015.

UNIX interprocess communication 20 / 22

How to choose the right one (for a purpose)?

• (Implementation bindings: programming language, environment, etc.)
• Communication endpoints

– on a single computer: all methods, RPC might not work (portmapper)
– networked: socket, RPC, distributed filesystems (see next UNIX lecture)

• The nature of the communication
– notifying about events: signals (SIGUSR1)
– synchronization: semaphores (signals)
– data stream (pipe, socket) vs. data messages (message queue)
– message types, filtering (message queue)
– amount of data (shared memory: small, pipe, socket)

• Performance
– speed: shared mempry, pipe, socket (PF_UNIX)
– resource consumption: all but shared memory

• Convenience
– RPC, shared memory (but semaphores often needed)

• Programming examples: http://beej.us/guide/bgipc/

http://beej.us/guide/bgipc/

BME Operating Systems 2015.

UNIX interprocess communication 21 / 22

Summary: UNIX inter-process communication

• Classical forms of communication:
– Signals, pipes and named pipes (FIFO)

• System V IPC: a unified communication framework
– Semaphores
– Message queues
– Shared memory

• (not just) Network communication methods
– socket communication
– Sun RPC – remote procedure call, the UNIX way

• Standards: IEEE Posix, System V, BSD

• There are other possibilities
– more speed: e.g. MegaPipe
– higher abstraction level: CORBA, DCOM, SOAP, REST, etc.

http://www.eecs.berkeley.edu/~sylvia/papers/osdi2012_megapipe.pdf

BME Operating Systems 2015.

UNIX interprocess communication 22 / 22

Roll your own... Web server (homework)

• Pick a virtual machine (e.g. CentOS 7)

• Implement the HTTP GET protocol
GET /directory/file.html

• Your server shoud handle multiple
clients at the same time.

fork()

• Test your server with a Web browser

• Stress test your server

ab -n 100 -c 10 http://localhost/

100 requests, 10 at a time

• Compare your results to a real server

Program skeleton

sfd1 = socket()

bind(sfd1)

listen(sfd1)

while
sfd2 = accept(sfd1)
fork()

parent: back to accept
child: recv(sfd2)

 analyse input
 load the req'd file

send(sfd2)
close(sfd2)
exit()

	UNIX: kommunikáció
	Ismétlés
	Slide 3
	Slide 4
	Áttekintés
	UNIX jelzések
	Slide 7
	Slide 8
	Slide 9
	Csővezetékek
	Elnevezett csővezetékek
	System V IPC
	szemaforok
	üzenetsorok
	osztott memória
	socket kommunikáció
	socket program példa
	RPC: távoli eljáráshívás
	Slide 19
	Slide 20
	Slide 21
	Slide 22

