
BME Operating Systems 2015.

UNIX processes 1 / 21

UNIX process handling

Tamás Mészáros
http://www.mit.bme.hu/~meszaros/

Department of Measurement and Information Systems

Budapest University of Technology and Economics

http://www.mit.bme.hu/~meszaros/

BME Operating Systems 2015.

UNIX processes 2 / 21

Typical problems to solve

• “The system is slow”
– What's happening?
– Who is doing what?

• “An application is eating up CPU power”
– Why is it too slow?
– What is it doing?

• “The battery depletes too fast”
– What is running? Is it necessary to run?
– What is consuming the more power?

• “Core dumped”, “kernel panic”
– Why is it terminated? What's happened?
– What causes kernel errors? What apps were running, what's happened

BME Operating Systems 2015.

UNIX processes 3 / 21

Overview (two lectures)

• Introduction
– What is a process? How does it start? How to monitor its execution?
– Its relation to the kernel
– Context and execution mode

• Processes
– administrative data
– state and state transition
– life cycle: creation, working, waiting, zombie and termination

• Classical UNIX scheduling in practice
– priority, time sharing, preemptivity

• System calls
– create a new process
– execute a new program

BME Operating Systems 2015.

UNIX processes 4 / 21

The user's view: what is happening?

• Listing active processes
– ps, ps -ef, ps axu, ps -u <user>, pstree, ...

– top, atop, htop és graphical tools (System monitor, gkrellm, procexp, ...)

• What do we see in these lists?
– PID (Process ID): unique identifier (PPID: parent ID)
– State (running, sleeping, ready to run, etc.)
– Scheduling informantion (e.g. priority)
– Credentials (UID, GID, EUID, EGID, UID=0 root / superuser)
– STIME: start time
– TIME: time on CPU
– CMD: which program is running
– Statistical data
– Session info: terminal device (TTY)
– Aggregate statistics: CPU%, MEM%, DSK%, NET%, etc.
– ...

BME Operating Systems 2015.

UNIX processes 5 / 21

The user's view: what are the processes?

• Kernel processes
– shown between [] in the lists

– examples: kjournald, kswapd, init (PID=1)

• Service processes (or daemon processes)
– Usually started by init by running scripts from /etc/init.d/

– The start sequence is specified by /etc/rc?.d/ file order.

– Examples: networking, time, file systems maintenance, firewall, LDAP, …

– init is getting replaced by Systemd (see RHEL 7, Ubuntu 15.04)
Interesting reading: http://0pointer.de/blog/projects/systemd.html

– Configuring startup services: ntsysv, bum

• User processes
– special process: shell (command interpreter)
– application processes (Firefox, Chrome, Thunderbird, Libreoffice, etc.)

http://0pointer.de/blog/projects/systemd.html

BME Operating Systems 2015.

UNIX processes 6 / 21

Simple family tree of UNIX shells

Forrás: http://www.ibm.com/developerworks/

http://www.ibm.com/developerworks/

BME Operating Systems 2015.

UNIX processes 7 / 21

Runlevel

• UNIX systems have different service levels (called runlevel)
– It is identified by a number
– The system admin can change the runlevel
– Services start and stop at different levels

• Runlevels
– See /etc/inittab
– There are slight differences among the UNIX variants

• 0: full stop
• 1 or S: single-user (admin) mode
• 2-5: multi-user modes
• 3 or 5: default multi-user mode with graphical user interface
• 6: reboot

• Commands to change the runlevel
telinit, init, shutdown, halt, reboot

BME Operating Systems 2015.

UNIX processes 8 / 21

The user's view: process management

• Process life cycle
– Starting, ready to run, running, sleeping, stopping

• How and when do they start?
– System starts: the kernel starts it's own processes and init (PID=1)
– Boot procedure: daemon processes and terminal monitors
– The user logs in: shell or GUI processes
– The user starts applications from the shell or GUI
– On demand: an event yields a process startup

• How to control them?
– (in addition to their regular user interface)
– Signals: CTRL+C, CTRL+Z, kill <SIGNAL> <PID>

– Setting the priority: renice

BME Operating Systems 2015.

UNIX processes 9 / 21

UNIX Process Life-cycle

• Creation
– fork(): create a new process
– exec(): load a new program code\

• Normal operation: running and waiting
– there are two running states: kernel and user

• Termination
– exit() system call
– enters a zombie state first
– notification of the parent process
– adopting children
– final termination

BME Operating Systems 2015.

UNIX processes 10 / 21

Classical UNIX process states and transitions

Running in
kernel mode

Suspended
sleeping

Suspended
ready to run

Running in
user mode

Ready to run Sleep

Start Zombie

BME Operating Systems 2015.

UNIX processes 11 / 21

fork() and exec() system calls

• fork() returns with a different value for the child and parent
processes

• exec() does not return on success

• Code sample

if ((res = fork()) == 0) {
// child
exec(...);
// won't reach this line on successful exec

} else if (res < 0) {
// fork error (can't create more processes)

}
// res = CHILD_PID (>0), parent

BME Operating Systems 2015.

UNIX processes 12 / 21

Family tree

• Processes are created by other processes (except PID 1)
– every process has a parent
– processes may have children

• fork() gives the PID of the child process to the parent

• The Origin: PID 1 (typically called init, upstart, systemd, ...)
– the anchestor of all processes
– runs until the system is running
– takes over abandoned child processes
– monitors (sometimes even restarts) important system services

• Family is important in UNIX
– the parent has to ACK when a child dies

BME Operating Systems 2015.

UNIX processes 13 / 21

UNIX processes – the kernel's view

• Separating processes from the kernel
– execution mode: protected or user
– context: kernel or process data

• Execution mode:
– Kernel („protected”) mode

• performing restricted actions that need to be protected

– User („free”) mode
• execution of the user's program code

• Execution context:
– Kernel (or interrupt) context

• data needed by the kernel's own tasks

– Process context (handled by virtual memory management)
• program code, data, stack, etc.
• administrative data to handle the process

BME Operating Systems 2015.

UNIX processes 14 / 21

Processes and the kernel

Hardware resources

System libraries

Syscall interface

Process handling
scheduling, memory management
communication

BME Operating Systems 2015.

UNIX processes 15 / 21

Running programs: execution mode and context

user mode kernel mode

process context

kernel context

application system call

interrupts,
kernel tasks

(empty)

BME Operating Systems 2015.

UNIX processes 16 / 21

More details on the process context

• Program text, data, stack, etc.
• Hardware context (registers)
• Administrative data (to handle processes)

– needed only when the process actually runs u-area
• access control data Part of the process'
• system call state and data adress space
• open file handles
• etc.

– always good to be at hand proc structure
• IDs (PID, user, etc.) Part of the kernel addr. space
• running state and scheduling data
• memory management data (including the address of the u-area)

• Environment (inherited from the parent process)
– attributum = value pairs (e.g. terminal type, shell, language, etc.)
– set, setenv, export

BME Operating Systems 2015.

UNIX processes 17 / 21

Switching from user mode to kernel mode

• This is typically performed during a system call issued by a process
– Wishes to execute an operation that can only be done in protected mode

(e.g. opening, reading, writing a file, querying the system time, etc.)
– The process calls the appropriate system call (e.g. open(), read(), etc.)

This seems like a classical function call but it is not.
It is implemented in libc that will start the real system call.

– libc issues the SYSCALL interrupt (this is a CPU instruction)
This depends on the actual CPU architecture: SYSCALL, TRAP, SYSENTER

– The CPU enters protected mode
– The kernel processes the interrupt and executes the system call program
– The kernel returns from the interrupt (IRET, SYSEXIT)
– The CPU leaves the protected mode
– libc processes the results and returns from the system call
– The process gets the return values from the system call

• Other hardware interrupts and exceptions (errors) also yield to CPU
mode change

BME Operating Systems 2015.

UNIX processes 18 / 21

Demo: process tracing

• Let's look at the system calls performed by a process
– trace command: strace

– more information and examples: man strace

– There are other solutions, like the Solaris DTrace

• Let's have a look at the syscalls performed by the ps command!
strace -c ps
strace -e open ps

• Let's peek into the Firefox Web browser's system calls
RHEL 5, Firefox 3.0.12
ps -ef | grep firefox
strace -c -p <Firefox_PID>

BME Operating Systems 2015.

UNIX processes 19 / 21

The /proc filesystem

• We can access kernel data through a special filesystem location
– /proc
– see man proc
– Every process has a directory here named by its PID
– ps and other process listing programs read these directories
– We can read them using classical file reading apps (cat, less, more)

• Process data in the /proc filesystem
– These set of files depends on the UNIX (and kernel) version
– the program and its parameters (cmd, cmdline)
– working directory (cwd) and the process environment (environ)
– file descriptors (fd, fdinfo)
– memory info (maps, statm)
– process state (stat – it is not easy to read, use ps instead)
– system call info (wchan)

Linux: http://www.lindevdoc.org/wiki//proc/pid/status

http://www.lindevdoc.org/wiki//proc/pid/status

BME Operating Systems 2015.

UNIX processes 20 / 21

Virtual system calls

• The problem: many syscalls, interrupts, context switches take time
– See the Firefox example: it is calling gettimeofday() way too often
– gettimeofday() – libc – SYSCALL – mode change – ... – IRET – libc

• There are simple cases when we could try to shorten this path
– No security, reliability, etc. risk
– Try to avoid hardware interrupts and execution mode changes
– If we don't have mode change the calll must be accessible in user space
– We transfer certain system calls into the process' own address space

• Virtual system calls (Linux)
– map a special kernel page to the process address space
– put safe system calls (e.g. gettimeofday()) there
– no interrupts, no mode changes, fast execution
– we don't have to modify the user program (it issues the same syscall)

BME Operating Systems 2015.

UNIX processes 21 / 21

Summary

• Basic knowledge about processes
– commands: ps, kill, nice

– execution mode and context
– system calls
– administrative data (u-area and process table)

• Life-cycle
– creation: fork() system call

– Loading a new program code: exec()

– states (note the two running and the suspended states)
– termination: zombie state

• Family tree
– fork() builds a tree, the master process is called init (PID 1)

– parents are notified when a child dies

	UNIX: folyamatok és kommunikáció
	Slide 2
	Áttekintés
	Felhasználói ismeretek
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Folyamatok életciklusa
	Klasszikus UNIX állapotátmeneti gráf
	fork() és exec()
	Folyamatok családfája
	A folyamatok és a kernel
	A kernel és a rendszerhívás interfész
	Futási módok és kontextusok
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Összefoglalás

