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Typical problems to solve

• “The system is slow”
– What's happening?
– Who is doing what?

• “An application is eating up CPU power”
– Why is it too slow?
– What is it doing?

• “The battery depletes too fast”
– What is running? Is it necessary to run?
– What is consuming the more power?

• “Core dumped”, “kernel panic”
– Why is it terminated? What's happened?
– What causes kernel errors? What apps were running, what's happened
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Overview (two lectures)

• Introduction
– What is a process? How does it start? How to monitor its execution?
– Its relation to the kernel
– Context and execution mode

• Processes
– administrative data
– state and state transition
– life cycle: creation, working, waiting, zombie and termination

• Classical UNIX scheduling in practice
– priority, time sharing, preemptivity

• System calls
– create a new process
– execute a new program
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The user's view: what is happening?

• Listing active processes
– ps, ps -ef, ps axu, ps -u <user>, pstree, ...

– top, atop, htop és graphical tools (System monitor, gkrellm, procexp, ...)

• What do we see in these lists?
– PID (Process ID): unique identifier (PPID: parent ID)
– State (running, sleeping, ready to run, etc.)
– Scheduling informantion (e.g. priority)
– Credentials (UID, GID, EUID, EGID, UID=0 root / superuser)
– STIME: start time
– TIME: time on CPU
– CMD: which program is running
– Statistical data
– Session info: terminal device (TTY)
– Aggregate statistics: CPU%, MEM%, DSK%, NET%, etc.
– ...
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The user's view: what are the processes?

• Kernel processes 
– shown between [ ] in the lists

– examples: kjournald, kswapd, init (PID=1)

• Service processes (or daemon processes)
– Usually started by init by running scripts from /etc/init.d/ 

– The start sequence is specified by /etc/rc?.d/ file order.

– Examples: networking, time, file systems maintenance, firewall, LDAP, …

– init is getting replaced by Systemd (see RHEL 7, Ubuntu 15.04)
Interesting reading: http://0pointer.de/blog/projects/systemd.html

– Configuring startup services: ntsysv, bum

• User processes
– special process: shell (command interpreter)
– application processes (Firefox, Chrome, Thunderbird, Libreoffice, etc.)

http://0pointer.de/blog/projects/systemd.html
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Simple family tree of UNIX shells

Forrás: http://www.ibm.com/developerworks/

http://www.ibm.com/developerworks/
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Runlevel

• UNIX systems have different service levels (called runlevel)
– It is identified by a number
– The system admin can change the runlevel
– Services start and stop at different levels

• Runlevels
– See /etc/inittab
– There are slight differences among the UNIX variants

• 0: full stop
• 1 or S: single-user (admin) mode
• 2-5: multi-user modes
• 3 or 5:  default multi-user mode with graphical user interface
• 6: reboot

• Commands to change the runlevel
telinit, init, shutdown, halt, reboot
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The user's view: process management

• Process life cycle
– Starting, ready to run, running, sleeping, stopping

• How and when do they start?
– System starts: the kernel starts it's own processes and init (PID=1)
– Boot procedure: daemon processes and terminal monitors
– The user logs in: shell or GUI processes
– The user starts applications from the shell or GUI
– On demand: an event yields a process startup

• How to control them?
– (in addition to their regular user interface)
– Signals: CTRL+C, CTRL+Z, kill <SIGNAL> <PID>

– Setting the priority: renice
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UNIX Process Life-cycle

• Creation
– fork(): create a new process
– exec(): load a new program code\

• Normal operation: running and waiting
– there are two running states: kernel and user

• Termination
– exit() system call
– enters a zombie state first
– notification of the parent process
– adopting children
– final termination
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Classical UNIX process states and transitions

Running in
kernel mode

Suspended
sleeping

Suspended
ready to run

Running in
user mode

Ready to run Sleep

Start Zombie
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fork() and exec() system calls

• fork() returns with a different value for the child and parent 
processes

• exec() does not return on success

• Code sample

if ((res = fork()) == 0) {
// child
exec(...);
// won't reach this line on successful exec

} else if ( res < 0 ) {
// fork error (can't create more processes)

}
// res = CHILD_PID (>0), parent
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Family tree

• Processes are created by other processes (except PID 1)
– every process has a parent
– processes may have children

• fork() gives the PID of the child process to the parent

• The Origin: PID 1 (typically called init, upstart, systemd, ...)
– the anchestor of all processes
– runs until the system is running
– takes over abandoned child processes
– monitors (sometimes even restarts) important system services

• Family is important in UNIX
– the parent has to ACK when a child dies
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UNIX processes – the kernel's view

• Separating processes from the kernel
– execution mode: protected or user
– context: kernel or process data

• Execution mode:
– Kernel („protected”) mode

• performing restricted actions that need to be protected

– User („free”) mode
• execution of the user's program code

• Execution context:
– Kernel (or interrupt) context

• data needed by the kernel's own tasks

– Process context (handled by virtual memory management)
• program code, data, stack, etc.
• administrative data to handle the process
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Processes and the kernel

Hardware resources

System libraries

Syscall interface

Process handling
scheduling, memory management
communication
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Running programs: execution mode and context

user mode kernel mode

process context

kernel context

application system call

interrupts,
kernel tasks

(empty)
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More details on the process context

• Program text, data, stack, etc.
• Hardware context (registers)
• Administrative data (to handle processes)

– needed only when the process actually runs       u-area
• access control data        Part of the process'
• system call state and data        adress space
• open file handles
• etc.

– always good to be at hand       proc structure
• IDs (PID, user, etc.)            Part of the kernel addr. space
• running state and scheduling data
• memory management data (including the address of the u-area)

• Environment (inherited from the parent process)
– attributum = value   pairs  (e.g. terminal type, shell, language, etc.)
– set, setenv, export
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Switching from user mode to kernel mode

• This is typically performed during a system call issued by a process
– Wishes to execute an operation that can only be done in protected mode

(e.g. opening, reading, writing a file, querying the system time, etc.)
– The process calls the appropriate system call (e.g. open(), read(), etc.)

This seems like a classical function call but it is not.
It is implemented in libc that will start the real system call.

– libc issues the SYSCALL interrupt (this is a CPU instruction)
This depends on the actual CPU architecture: SYSCALL, TRAP, SYSENTER

– The CPU enters protected mode
– The kernel processes the interrupt and executes the system call program
– The kernel returns from the interrupt (IRET, SYSEXIT)
– The CPU leaves the protected mode
– libc processes the results and returns from the system call
– The process gets the return values from the system call

• Other hardware interrupts and exceptions (errors) also yield to CPU 
mode change
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Demo: process tracing

• Let's look at the system calls performed by a process
– trace command: strace

– more information and examples: man strace

– There are other solutions, like the Solaris DTrace

• Let's have a look at the syscalls performed by the ps command!
strace -c ps
strace -e open ps

• Let's peek into the Firefox Web browser's system calls
RHEL 5, Firefox 3.0.12
ps -ef | grep firefox
strace -c -p <Firefox_PID>
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The /proc filesystem

• We can access kernel data through a special filesystem location
– /proc
– see man proc
– Every process has a directory here named by its PID
– ps and other process listing programs read these directories
– We can read them using classical file reading apps (cat, less, more)

• Process data in the /proc filesystem
– These set of files depends on the UNIX (and kernel) version
– the program and its parameters (cmd, cmdline)
– working directory (cwd) and the process environment (environ)
– file descriptors (fd, fdinfo)
– memory info (maps, statm)
– process state (stat – it is not easy to read, use ps instead)
– system call info (wchan)

Linux: http://www.lindevdoc.org/wiki//proc/pid/status

http://www.lindevdoc.org/wiki//proc/pid/status
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Virtual system calls

• The problem: many syscalls, interrupts, context switches take time
– See the Firefox example: it is calling gettimeofday() way too often
– gettimeofday() – libc – SYSCALL – mode change – ... – IRET – libc

• There are simple cases when we could try to shorten this path
– No security, reliability, etc. risk
– Try to avoid hardware interrupts and execution mode changes
– If we don't have mode change the calll must be accessible in user space
– We transfer certain system calls into the process' own address space

• Virtual system calls (Linux)
– map a special kernel page to the process address space
– put safe system calls (e.g. gettimeofday()) there
– no interrupts, no mode changes, fast execution
– we don't have to modify the user program (it issues the same syscall)
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Summary

• Basic knowledge about processes
– commands: ps, kill, nice

– execution mode and context
– system calls
– administrative data (u-area and process table)

• Life-cycle
– creation: fork() system call

– Loading a new program code: exec()

– states (note the two running and the suspended states)
– termination: zombie state

• Family tree
– fork() builds a tree, the master process is called init (PID 1)

– parents are notified when a child dies
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